WorldWideScience

Sample records for altered phosphatidylserine exposure

  1. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    International Nuclear Information System (INIS)

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well

  2. Thresholds for Phosphatidylserine Externalization in Chinese Hamster Ovarian Cells following Exposure to Nanosecond Pulsed Electrical Fields (nsPEF)

    OpenAIRE

    Vincelette, Rebecca L.; Roth, Caleb C.; McConnell, Maureen P.; Payne, Jason A.; Beier, Hope T.; Ibey, Bennett L.

    2013-01-01

    High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF) have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS) externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged Annexin V to observe the externalization of PS on the plasma membrane of isolated Chinese Hamster Ovary (CHO) cells following exposure to ...

  3. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane.

    Science.gov (United States)

    Bevers, Edouard M; Williamson, Patrick L

    2016-04-01

    Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure. PMID:26936867

  4. A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells.

    Science.gov (United States)

    Gasser, Jean-Philippe; Hehl, Michaela; Millward, Thomas A

    2009-01-01

    A simple, "mix-and-measure" microplate assay for phosphatidylserine (PtdSer) exposure on the surface of apoptotic cells is described. The assay exploits the fact that annexin V, a protein with high affinity and specificity for PtdSer, forms trimers and higher order oligomers on binding to membranes containing PtdSer. The transition from soluble monomer to cell-bound oligomer is detected using time-resolved fluorescence resonance energy transfer from europium chelate-labeled annexin V to Cy5-labeled annexin V. PtdSer detection is achieved by a single addition of a reagent mix containing labeled annexins and calcium ions directly to cell cultures in a 96-well plate, followed by a brief incubation before fluorescence measurement. The assay can be used to quantify PtdSer exposure on both suspension cells and adherent cells in situ. This method is simpler and faster than existing annexin V binding assays based on flow cytometry or microscopy, and it yields precise data with Z' values of 0.6-0.7. PMID:18835236

  5. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    Science.gov (United States)

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-11-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  6. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    Directory of Open Access Journals (Sweden)

    Chunyan Gao

    2015-10-01

    Full Text Available Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs, the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS and indole-3-acetic acid (IAA on procoagulant activity (PCA of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients. Phosphatidylserine (PS exposure of RBCs and their microparticles (MPs release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+] with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  7. Measurements of Intracellular Ca2+ Content and Phosphatidylserine Exposure in Human Red Blood Cells: Methodological Issues

    Directory of Open Access Journals (Sweden)

    Mauro C. Wesseling

    2016-06-01

    Full Text Available Background/Aims: The increase of the intracellular Ca2+ content as well as the exposure of phosphatidylserine (PS on the outer cell membrane surface after activation of red blood cells (RBCs by lysophosphatidic acid (LPA has been investigated by a variety of research groups. Carrying out experiments, which we described in several previous publications, we observed some discrepancies when comparing data obtained by different investigators within our research group and also between batches of LPA. In addition, we found differences comparing the results of double and single labelling experiments (for Ca2+ and PS. Furthermore, the results of PS exposure depended on the fluorescent dye used (annexin V-FITC versus annexin V alexa fluor® 647. Therefore, it seems necessary to investigate these methodological approaches in more detail to be able to quantify results and to compare data obtained by different research groups. Methods: The intracellular Ca2+ content and the PS exposure of RBCs separated from whole blood have been investigated after treatment with LPA (2.5 µM obtained from three different companies (Sigma-Aldrich, Cayman Chemical Company, and Santa Cruz Biotechnology Inc.. Fluo-4 and x-rhod-1 have been used to detect intracellular Ca2+ content, annexin V alexa fluor® 647 and annexin V-FITC have been used for PS exposure measurements. Both parameters (Ca2+ content, PS exposure were studied using flow cytometry and fluorescence microscopy. Results: The percentage of RBCs showing increased intracellular Ca2+ content as well as PS exposure changes significantly between different LPA manufacturers as well as on the condition of mixing of LPA with the RBC suspension. Furthermore, the percentage of RBCs showing PS exposure is reduced in double labelling compared to single labelling experiments and depends also on the fluorescent dye used. Finally, data on Ca2+ content are slightly affected whereas PS exposure data are not affected significantly

  8. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes

    OpenAIRE

    1995-01-01

    The appearance of phosphatidylserine (PS) on the cell surface during apoptosis in thymocytes and cytotoxic T lymphocyte cell lines provokes PS-dependent recognition by activated macrophages. Flow cytometric analysis of transbilayer lipid movements in T lymphocytes undergoing apoptosis reveals that downregulation of the adenosine triphosphate- dependent amino-phospholipid translocase and activation of a nonspecific lipid scramblase are responsible for PS reaching the surface from its intracell...

  9. Thresholds for phosphatidylserine externalization in Chinese hamster ovarian cells following exposure to nanosecond pulsed electrical fields (nsPEF).

    Science.gov (United States)

    Vincelette, Rebecca L; Roth, Caleb C; McConnell, Maureen P; Payne, Jason A; Beier, Hope T; Ibey, Bennett L

    2013-01-01

    High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF) have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS) externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged Annexin V to observe the externalization of PS on the plasma membrane of isolated Chinese Hamster Ovary (CHO) cells following exposure to nsPEF. A series of experiments were performed to determine the dosimetric trends of PS expression caused by nsPEF as a function of pulse duration, τ, delivered field strength, ED, and pulse number, n. To accurately estimate dose thresholds for cellular response, data were reduced to a set of binary responses and ED50s were estimated using Probit analysis. Probit analysis results revealed that PS externalization followed the non-linear trend of (τ*ED (2))(-1) for high amplitudes, but failed to predict low amplitude responses. A second set of experiments was performed to determine the nsPEF parameters necessary to cause observable calcium uptake, using cells preloaded with calcium green (CaGr), and membrane permeability, using FM1-43 dye. Calcium influx and FM1-43 uptake were found to always be observed at lower nsPEF exposure parameters compared to PS externalization. These findings suggest that multiple, higher amplitude and longer pulse exposures may generate pores of larger diameter enabling lateral diffusion of PS; whereas, smaller pores induced by fewer, lower amplitude and short pulse width exposures may only allow extracellular calcium and FM1-43 uptake. PMID:23658665

  10. Thresholds for phosphatidylserine externalization in Chinese hamster ovarian cells following exposure to nanosecond pulsed electrical fields (nsPEF.

    Directory of Open Access Journals (Sweden)

    Rebecca L Vincelette

    Full Text Available High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged Annexin V to observe the externalization of PS on the plasma membrane of isolated Chinese Hamster Ovary (CHO cells following exposure to nsPEF. A series of experiments were performed to determine the dosimetric trends of PS expression caused by nsPEF as a function of pulse duration, τ, delivered field strength, ED, and pulse number, n. To accurately estimate dose thresholds for cellular response, data were reduced to a set of binary responses and ED50s were estimated using Probit analysis. Probit analysis results revealed that PS externalization followed the non-linear trend of (τ*ED (2(-1 for high amplitudes, but failed to predict low amplitude responses. A second set of experiments was performed to determine the nsPEF parameters necessary to cause observable calcium uptake, using cells preloaded with calcium green (CaGr, and membrane permeability, using FM1-43 dye. Calcium influx and FM1-43 uptake were found to always be observed at lower nsPEF exposure parameters compared to PS externalization. These findings suggest that multiple, higher amplitude and longer pulse exposures may generate pores of larger diameter enabling lateral diffusion of PS; whereas, smaller pores induced by fewer, lower amplitude and short pulse width exposures may only allow extracellular calcium and FM1-43 uptake.

  11. Taxol®-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor® EL

    DEFF Research Database (Denmark)

    Vader, Pieter; Fens, Marcel HAM; Sachini, Nikoleta;

    2013-01-01

    The conventional clinical formulation of paclitaxel (PTX), Taxol®, consists of Cremophor® EL (CrEL) and ethanol. CrEL-formulated PTX is associated with acute hypersensitivity reactions, anemia and cardiovascular events. In this study, the authors investigated the effects of CrEL-PTX on red blood...... cells (RBCs) and compared these with the effects observed after exposure to the novel nanoparticle albumin-bound PTX, marketed as Abraxane®. Results: The authors demonstrate that CrEL is primarily responsible for RBC lysis and induction of phosphatidylserine exposure. Phosphatidylserine-exposing RBCs...... showed increased association with endothelial cells in culture. The authors also identified CrEL as being responsible for vesiculation of RBCs. This is the first time that excipients have been shown to be involved in microvesicle formation. Microvesicles were taken up by endothelial cells. Conclusion...

  12. Binding of thrombin-activated platelets to a fibrin scaffold through α(IIbβ₃ evokes phosphatidylserine exposure on their cell surface.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIbβ₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.

  13. Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4

    OpenAIRE

    Fernandez-Boyanapalli, Ruby F.; Frasch, S. Courtney; McPhillips, Kathleen; Vandivier, R. William; Harry, Brian L.; Riches, David W.H.; Henson, Peter M.; Bratton, Donna L.

    2009-01-01

    Chronic granulomatous disease (CGD) is characterized by overexuberant inflammation and autoimmunity that are attributed to deficient anti-inflammatory signaling. Although regulation of these processes is complex, phosphatidylserine (PS)–dependent recognition and removal of apoptotic cells (efferocytosis) by phagocytes are potently anti-inflammatory. Since macrophage phenotype also plays a beneficial role in resolution of inflammation, we hypothesized that impaired efferocytosis in CGD due to ...

  14. Breakdown of Phosphatidylserine Asymmetry Following Treatment of Erythrocytes with Lumefantrine

    Directory of Open Access Journals (Sweden)

    Kousi Alzoubi

    2014-02-01

    Full Text Available Background: Lumefantrine, a commonly used antimalarial drug, inhibits hemozoin formation in parasites. Several other antimalarial substances counteract parasitemia by triggering suicidal death or eryptosis of infected erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i, formation of ceramide, oxidative stress and/or activation of p38 kinase, protein kinase C (PKC, or caspases. The present study explored, whether lumefantrine stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, content of reduced glutathione (GSH from mercury orange fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 48 h exposure to lumefantrine (3 µg/mL was followed by a significant increase of annexin-V-binding without significantly altering forward scatter, [Ca2+]i, ROS formation, reduced GSH, or ceramide abundance. The annexin-V-binding following lumefantrine treatment was not significantly modified by p38 kinase inhibitors SB203580 (2 μM and p38 Inh III (1 μM, PKC inhibitor staurosporine (1 µM or pancaspase inhibitor zVAD (1 or 10 µM. Conclusions: Lumefantrine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca2+, ceramide formation, ROS formation, glutathione content, p38 kinase, PKC or caspases.

  15. Phosphatidylserine dynamics in cellular membranes

    OpenAIRE

    Kay, Jason G.; Koivusalo, Mirkka; Ma, Xiaoxiao; Wohland, Thorsten; Grinstein, Sergio

    2012-01-01

    Much has been learned about the role of exofacial phosphatidylserine (PS) in apoptosis and blood clotting using annexin V. However, because annexins are impermeant and unable to bind PS at low calcium concentration, they are unsuitable for intracellular use. Thus little is known about the topology and dynamics of PS in the endomembranes of normal cells. We used two new probes—green fluorescent protein (GFP)–LactC2, a genetically encoded fluorescent PS biosensor, and 1-palmitoyl-2-(dipyrrometh...

  16. Alterations in cognitive and psychological functioning after organic solvent exposure

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  17. Piperlongumine-Induced Phosphatidylserine Translocation in the Erythrocyte Membrane

    OpenAIRE

    Rosi Bissinger; Abaid Malik; Jamshed Warsi; Kashif Jilani; Florian Lang

    2014-01-01

    Background: Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surfa...

  18. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  19. Prenatal corticosteroid exposure alters early developmental seizures and behavior

    OpenAIRE

    Velíšek, Libor

    2011-01-01

    In humans, corticosteroids are often administered prenatally to improve lung development in preterm neonates. Studies in exposed children as well as in children, whose mothers experienced significant stress during pregnancy indicate behavioral problems and possible increased occurrence of epileptic spasms. This study investigated whether prenatal corticosteroid exposure alters early postnatal seizure susceptibility and behaviors. On gestational day 15, pregnant rats were injected i.p. with hy...

  20. Produced water exposure alters bacterial response to biocides.

    Science.gov (United States)

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2014-11-01

    Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity. PMID:25279933

  1. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    International Nuclear Information System (INIS)

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine

  2. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Irma Pujol-Autonell

    Full Text Available The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes.To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes.A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides.We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion.We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for

  3. Piperlongumine-Induced Phosphatidylserine Translocation in the Erythrocyte Membrane

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2014-10-01

    Full Text Available Background: Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i, formation of ceramide, oxidative stress and activation of p38 kinase. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 48 h exposure to piperlongumine (30 µM was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca2+]i and the effect was not dependent on presence of extracellular Ca2+. Piperlongumine significantly increased ROS formation and ceramide abundance. Conclusions: Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca2+ but at least partially due to ROS and ceramide formation.

  4. Deciphering the plasma membrane hallmarks of apoptotic cells: Phosphatidylserine transverse redistribution and calcium entry

    Directory of Open Access Journals (Sweden)

    Martínez M Carmen

    2001-10-01

    Full Text Available Abstract Background During apoptosis, Ca2+-dependent events participate in the regulation of intracellular and morphological changes including phosphatidylserine exposure in the exoplasmic leaflet of the cell plasma membrane. The occurrence of phosphatidylserine at the surface of specialized cells, such as platelets, is also essential for the assembly of the enzyme complexes of the blood coagulation cascade, as demonstrated by hemorrhages in Scott syndrome, an extremely rare genetic deficiency of phosphatidylserine externalization, without other apparent pathophysiologic consequences. We have recently reported a reduced capacitative Ca2+ entry in Scott cells which may be part of the Scott phenotype. Results Taking advantage of these mutant lymphoblastoid B cells, we have studied the relationship between this mode of Ca2+ entry and phosphatidylserine redistribution during apoptosis. Ca2+ ionophore induced apoptosis in Scott but not in control cells. However, inhibition of store-operated Ca2+ channels led to caspase-independent DNA fragmentation and decrease of mitochondrial membrane potential in both control and Scott cells. Inhibition of cytochrome P450 also reduced capacitative Ca2+ entry and induced apoptosis at comparable extents in control and Scott cells. During the apoptotic process, both control and more markedly Scott cells externalized phosphatidylserine, but in the latter, this membrane feature was however dissociated from several other intracellular changes. Conclusions The present results suggest that different mechanisms account for phosphatidylserine transmembrane migration in cells undergoing stimulation and programmed death. These observations testify to the plasticity of the plasma membrane remodeling process, allowing normal apoptosis even when less fundamental functions are defective.

  5. Mere Exposure Alters Category Learning of Novel Objects

    OpenAIRE

    Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interp...

  6. Mere exposure alters category learning of novel objects

    OpenAIRE

    ThomasJPalmeri

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interp...

  7. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium

    OpenAIRE

    Vallabhapurapu, Subrahmanya D.; Blanco, Víctor M.; Sulaiman, Mahaboob K; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S.; Qi, Xiaoyang

    2015-01-01

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure o...

  8. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs

    International Nuclear Information System (INIS)

    Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with 32Pi and L-[U-14C]serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells

  9. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  10. Alterations in the laryngeal mucosa after exposure to asbestos.

    OpenAIRE

    Kambic, V; Radsel, Z; Gale, N

    1989-01-01

    The laryngeal mucosa of 195 workers in an asbestos cement factory (Salonit Anhovo, Yugoslavia) and in a control group was examined. The factory manufactures asbestos cement products containing about 13% of asbestos (8% amosite, 12% crocidolite, and 80% chrysotile) of different provenance. Alterations in the laryngeal mucosa were more frequent in the factory workers than in the control group. The changes, mostly consistent with chronic laryngitis, were closely related to the degree of workplac...

  11. Altered cortical thickness following prenatal sodium valproate exposure

    OpenAIRE

    Wood, Amanda G; Chen, Jian; Barton, Sarah; Nadebaum, Caroline; Anderson, Vicki A.; Catroppa, Cathy; Reutens, David C.; O'Brien, Terence J.; Vajda, Frank

    2014-01-01

    Prenatal exposure to sodium valproate (VPA) is associated with neurodevelopmental impairments. Cortical thickness was measured in 16 children exposed prenatally to VPA and 16 controls. We found increased left inferior frontal gyrus (IFG; BA45) and left pericalcarine sulcus (BA18) thickness, an association between VPA dose and right IFG thickness, and a close relationship between verbal skills and left IFG thickness. A significant interaction between group and hemispheric IFG thickness showed ...

  12. Occupational exposure alters innate and adaptive immune responses

    OpenAIRE

    Sahlander, Karin

    2010-01-01

    The farming environment is contaminated with high levels of organic dust. Especially pig barn facilities are highly polluted with airborne inhalable organic dust containing high amounts of molecular patterns from bacteria and fungi known to activate cells of the innate immunity through pattern recognition receptors (PRRs). Some hours of exposure in pig barn environment leads to an intensive upper and lower airway inflammation with systemic influences in previously unexposed ...

  13. Prenatal cadmium exposure alters postnatal immune cell development and function

    International Nuclear Information System (INIS)

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl2 (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4+FoxP3+CD25+ (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8+CD223+ T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental

  14. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  15. DEVELOPMENTAL CIGARETTE SMOKE EXPOSURE: LIVER PROTEOME PROFILE ALTERATIONS IN LOW BIRTH WEIGHT PUPS

    OpenAIRE

    Canales, Lorena; Chen, Jing; Kelty, Elizabeth; Musah, Sadiatu; Webb, Cindy; Pisano, M. Michele; Neal, Rachel E.

    2012-01-01

    Cigarette smoke is composed of over 4000 chemicals many of which are strong oxidizing agents and chemical carcinogens. Chronic cigarette smoke exposure (CSE) induces mild alterations in liver histology indicative of toxicity though the molecular pathways underlying these alterations remain to be explored. Utilizing a mouse model of ‘active’ developmental CSE (gestational day (GD) 1 through postnatal day (PD) 21; cotinine > 50 ng/mL) characterized by low birth weight offspring, the impact of d...

  16. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers

    International Nuclear Information System (INIS)

    Our objective was to evaluate alterations in sperm chromatin structure in men occupationally exposed to a mixture of organophosphorus pesticides (OP) because these alterations have been proposed to compromise male fertility and offspring development. Chromatin susceptibility to in situ acid-induced denaturation structure was assessed by the sperm chromatin structure assay (SCSA). Urinary levels of alkylphosphates (DAP) were used to assess exposure. Diethylthiophosphate (DETP) was the most frequent OP metabolite found in urine samples indicating that compounds derived from thiophosphoric acid were mainly used. Chromatin structure was altered in most samples. About 75% of semen samples were classified as having poor fertility potential (>30% of Percentage of DNA Fragmentation Index [DFI%]), whereas individuals without OP occupational exposure showed average DFI% values of 9.9%. Most parameters of conventional semen analysis were within normality except for the presence of immature cells (IGC) in which 82% of the samples were above reference values. There were significant direct associations between urinary DETP concentrations and mean DFI and SD-DFI but marginally (P = 0.079) with DFI%, after adjustment for potential confounders, including IGC. This suggests that OP exposure alters sperm chromatin condensation, which could be reflected in an increased number of cells with greater susceptibility to DNA denaturation. This study showed that human sperm chromatin is a sensitive target to OP exposure and may contribute to adverse reproductive outcomes. Further studies on the relevance of protein phosphorylation as a possible mechanism by which OP alter sperm chromatin are required

  17. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls

    OpenAIRE

    Naveau, Elise; Pinson, Anneline; GERARD, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, Robert Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell...

  18. Manganese Exposure is Cytotoxic and Alters Dopaminergic and GABAergic Neurons within the Basal Ganglia

    OpenAIRE

    Stanwood, Gregg D.; Leitch, Duncan B.; Savchenko, Valentina; Wu, Jane; Fitsanakis, Vanessa A.; Anderson, Douglas J.; Stankowski, Jeannette N.; Aschner, Michael; McLaughlin, BethAnn

    2009-01-01

    Manganese is an essential nutrient, integral to proper metabolism of amino acids, proteins and lipids. Excessive environmental exposure to manganese can produce extrapyramidal symptoms similar to those observed in Parkinson’s disease (PD). We used in vivo and in vitro models to examine cellular and circuitry alterations induced by manganese exposure. Primary mesencephalic cultures were treated with 10–00µM manganese chloride (MnCl2) which resulted in dramatic changes in the neuronal cytoskele...

  19. The effect of phosphatidylserine on golf performance

    Directory of Open Access Journals (Sweden)

    Schröder Lars

    2007-12-01

    Full Text Available Abstract Background A randomized, double-blind, placebo-controlled study was performed to evaluate the effect of oral phosphatidylserine (PS supplementation on golf performance in healthy young golfers with handicaps of 15–40. Methods Perceived stress, heart rate and the quality of the ball flight was evaluated before (pre-test and after (post-test 42 days of 200 mg per day PS (n = 10 or placebo (n = 10 intake in the form of a nutritional bar. Subjects teed-off 20 times aiming at a green 135 meters from the tee area. Results PS supplementation significantly increased (p Conclusion It is concluded that six weeks of PS supplementation shows a statistically not significant tendency (p = 0.07 to improve perceived stress levels in golfers and significantly improves (p

  20. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    Science.gov (United States)

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  1. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    Science.gov (United States)

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  2. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II dependent oxygenase activity

    Directory of Open Access Journals (Sweden)

    Stiening Beate

    2004-06-01

    Full Text Available Abstract Background Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of phosphatidylserine on the outer leaflet. Surface exposure of phosphatidylserine is recognised by a specific receptor (phosphatidylserine receptor, PSR and is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. Results We have cloned the PSR receptor from Hydra in order to investigate its function in this early metazoan. Bioinformatic analysis of the Hydra PSR protein structure revealed the presence of three nuclear localisation signals, an AT-hook like DNA binding motif and a putative 2-oxoglutarate (2OG-and Fe(II-dependent oxygenase activity. All of these features are conserved from human PSR to Hydra PSR. Expression of GFP tagged Hydra PSR in hydra cells revealed clear nuclear localisation. Deletion of one of the three NLS sequences strongly diminished nuclear localisation of the protein. Membrane localisation was never detected. Conclusions Our results suggest that Hydra PSR is a nuclear 2-oxoglutarate (2OG-and Fe(II-dependent oxygenase. This is in contrast with the proposed function of Hydra PSR as a cell surface receptor involved in the recognition of apoptotic cells displaying phosphatidylserine on their surface. The conservation of the protein from Hydra to human infers that our results also apply to PSR from higher animals.

  3. Developmental Exposure to Xenoestrogens at Low Doses Alters Femur Length and Tensile Strength in Adult Mice1

    OpenAIRE

    Pelch, Katherine E.; Carleton, Stephanie M.; Phillips, Charlotte L.; Nagel, Susan C.

    2011-01-01

    Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE2) on bone geometry and torsional strength. C57BL/6 mice ...

  4. The Volitional Nature of Nicotine Exposure Alters Anandamide and Oleoylethanolamide Levels in the Ventral Tegmental Area

    OpenAIRE

    Buczynski, Matthew W.; Polis, Ilham Y; Parsons, Loren H.

    2012-01-01

    Cannabinoid-1 receptors (CB1) have an important role in nicotine reward and their function is disrupted by chronic nicotine exposure, suggesting nicotine-induced alterations in endocannabinoid (eCB) signaling. However, the effects of nicotine on brain eCB levels have not been rigorously evaluated. Volitional intake of nicotine produces physiological and behavioral effects distinct from forced drug administration, although the mechanisms underlying these effects are not known. This study compa...

  5. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FALLS TO ALTER SOMATOSENSORY EVOKED POTENTIALS, COMPOUND NERVE ACTION POTENTIALS, OR NERVE CONDUCTION VELOCITY IN RATS.

    Science.gov (United States)

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in sensory modulation in the cortex and cerebellum, and therefore may be altered following chlorpyrifos (CPF) exposure...

  6. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl Phthalate in Rats

    Directory of Open Access Journals (Sweden)

    Catherine A. Smith

    2015-10-01

    Full Text Available Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl phthalate (DEHP disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females.

  7. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. PMID:24604340

  8. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    Science.gov (United States)

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  9. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    Science.gov (United States)

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  10. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  11. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    International Nuclear Information System (INIS)

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O3) or HDMA/ozone (HDMA + O3) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O3 alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  12. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna.

    Science.gov (United States)

    Ek, Caroline; Gerdes, Zandra; Garbaras, Andrius; Adolfsson-Erici, Margaretha; Gorokhova, Elena

    2016-08-01

    Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF. PMID:27367056

  13. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    Science.gov (United States)

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol. PMID:23454116

  14. In Vitro Exposure of Harbor Seal Immune Cells to Aroclor 1260 Alters Phocine Distemper Virus Replication.

    Science.gov (United States)

    Bogomolni, Andrea; Frasca, Salvatore; Levin, Milton; Matassa, Keith; Nielsen, Ole; Waring, Gordon; De Guise, Sylvain

    2016-01-01

    In the last 30 years, several large-scale marine mammal mortality events have occurred, often in close association with highly polluted regions, leading to suspicions that contaminant-induced immunosuppression contributed to these epizootics. Some of these recent events also identified morbillivirus as a cause of or contributor to death. The role of contaminant exposures regarding morbillivirus mortality is still unclear. The results of this study aimed to address the potential for a mixture of polychlorinated biphenyls (PCBs), specifically Aroclor 1260, to alter harbor seal T-lymphocyte proliferation and to assess if exposure resulted in increased likelihood of phocine distemper virus (PDV USA 2006) to infect susceptible seals in an in vitro system. Exposure of peripheral blood mononuclear cells to Aroclor 1260 did not significantly alter lymphocyte proliferation (1, 5, 10, and 20 ppm). However, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), lymphocytes exposed to 20 ppm Aroclor 1260 exhibited a significant decrease in PDV replication at day 7 and a significant increase at day 11 compared with unexposed control cells. Similar and significant differences were apparent on exposure to Aroclor 1260 in monocytes and supernatant. The results here indicate that in harbor seals, Aroclor 1260 exposure results in a decrease in virus early during infection and an increase during late infection. The consequences of this contaminant-induced infection pattern in a highly susceptible host could result in a greater potential for systemic infection with greater viral load, which could explain the correlative findings seen in wild populations exposed to a range of persistent contaminants that suffer from morbillivirus epizootics. PMID:26142119

  15. Nuclear and mitochondrial DNA alterations in newborns with prenatal exposure to cigarette smoke.

    Science.gov (United States)

    Pirini, Francesca; Guida, Elisa; Lawson, Fahcina; Mancinelli, Andrea; Guerrero-Preston, Rafael

    2015-02-01

    Newborns exposed to maternal cigarette smoke (CS) in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal) and assesses how such changes may have consequences for both fetal growth and development. PMID:25648174

  16. Nuclear and Mitochondrial DNA Alterations in Newborns with Prenatal Exposure to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Francesca Pirini

    2015-01-01

    Full Text Available Newborns exposed to maternal cigarette smoke (CS in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal and assesses how such changes may have consequences for both fetal growth and development.

  17. Decreased reelin expression and organophosphate pesticide exposure alters mouse behaviour and brain morphology

    Directory of Open Access Journals (Sweden)

    Cristina A. Ghiani

    2012-02-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders. In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon. Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.

  18. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  19. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    Science.gov (United States)

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives. PMID:27192480

  20. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    OpenAIRE

    Wolcott, J A; Zee, Y. C.; Osebold, J W

    1982-01-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in ...

  1. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos

    International Nuclear Information System (INIS)

    Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a β-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides

  2. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success.

    Science.gov (United States)

    Dietrich, Grzegorz J; Dietrich, Mariola; Kowalski, R K; Dobosz, Stefan; Karol, Halina; Demianowicz, Wiesław; Glogowski, Jan

    2010-05-10

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg2+/l and 10 mg Cd2+/l and hatching rates at 10 mg Hg2+/l and 10 mg Cd2+/l after 4h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility. PMID:20044150

  3. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Grzegorz J., E-mail: dietrich@pan.olsztyn.pl [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Dietrich, Mariola; Kowalski, R.K. [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Dobosz, Stefan [Department of Salmonid Research, Inland Fisheries Institute, Rutki 83-330 Zukowo (Poland); Karol, Halina; Demianowicz, Wieslaw; Glogowski, Jan [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland)

    2010-05-10

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg{sup 2+}/l and 10 mg Cd{sup 2+}/l and hatching rates at 10 mg Hg{sup 2+}/l and 10 mg Cd{sup 2+}/l after 4 h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4 h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24 h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility.

  4. Prenatal androgen exposure alters girls' responses to information indicating gender-appropriate behaviour.

    Science.gov (United States)

    Hines, Melissa; Pasterski, Vickie; Spencer, Debra; Neufeld, Sharon; Patalay, Praveetha; Hindmarsh, Peter C; Hughes, Ieuan A; Acerini, Carlo L

    2016-02-19

    Individual variability in human gender-related behaviour is influenced by many factors, including androgen exposure prenatally, as well as self-socialization and socialization by others postnatally. Many studies have looked at these types of influences in isolation, but little is known about how they work together. Here, we report that girls exposed to high concentrations of androgens prenatally, because they have the genetic condition congenital adrenal hyperplasia, show changes in processes related to self-socialization of gender-related behaviour. Specifically, they are less responsive than other girls to information that particular objects are for girls and they show reduced imitation of female models choosing particular objects. These findings suggest that prenatal androgen exposure may influence subsequent gender-related behaviours, including object (toy) choices, in part by changing processes involved in the self-socialization of gendered behaviour, rather than only by inducing permanent changes in the brain during early development. In addition, the findings suggest that some of the behavioural effects of prenatal androgen exposure might be subject to alteration by postnatal socialization processes. The findings also suggest a previously unknown influence of early androgen exposure on later processes involved in self-socialization of gender-related behaviour, and thus expand understanding of the developmental systems regulating human gender development. PMID:26833843

  5. Developmental and lactational exposure to dieldrin alters mammary tumorigenesis in Her2/neu transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heather L Cameron

    Full Text Available Breast cancer is the most common cancer in Western women and while its precise etiology is unknown, environmental factors are thought to play a role. The organochlorine pesticide dieldrin is a persistent environmental toxicant thought to increase the risk of breast cancer and reduce survival in the human population. The objective of this study was to define the effect of developmental exposure to environmentally relevant concentrations of dieldrin, on mammary tumor development in the offspring. Sexually mature FVB-MMTV/neu female mice were treated with vehicle (corn oil, or dieldrin (0.45, 2.25, and 4.5 microg/g body weight daily by gavage for 5 days prior to mating and then once weekly throughout gestation and lactation until weaning. Dieldrin concentrations were selected to produce serum levels representative of human background body burdens, occupational exposure, and overt toxicity. Treatment had no effect on litter size, birth weight or the number of pups surviving to weaning. The highest dose of dieldrin significantly increased the total tumor burden and the volume and number of tumors found in the thoracic mammary glands. Increased mRNA and protein expression of the neurotrophin BDNF and its receptor TrkB was increased in tumors from the offspring of dieldrin treated dams. This study indicates that developmental exposure to the environmental contaminant dieldrin causes increased tumor burden in genetically predisposed mice. Dieldrin exposure also altered the expression of BNDF and TrkB, novel modulators of cancer pathogenesis.

  6. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success

    International Nuclear Information System (INIS)

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg2+/l and 10 mg Cd2+/l and hatching rates at 10 mg Hg2+/l and 10 mg Cd2+/l after 4 h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4 h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24 h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility.

  7. Evaluation of biochemical alterations produced by combined exposure of fenvalerate and nitrate in Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    Kamalpreet Kaur Gill

    2014-03-01

    Full Text Available Aim: Evaluation of combined effect of fenvalerate and nitrate on biochemical parameters in buffalo calves. Materials and Methods: Sixteen male buffalo calves were divided into four groups of four calves each. Group I receiving no treatment served as the control. Group II and III animals were orally administered with fenvalerate (1.0 mg/kg/day and sodium nitrate (20 mg/kg/day, respectively, for 21 consecutive days and were kept as positive control. Group IV animals were co-administered with fenvalerate and sodium nitrate at the above dose rates for 21 consecutive days. Biochemical parameters including Aspartate aminotransferase (AST, Alkaline phosphatase (ALP, Gamma-glutamyl transpeptidase (GGT, Lactate dehydrogenase (LDH, Glucose, Total protein, Albumin, Cholesterol, Blood urea nitrogen (BUN and Creatinine were determined on 0, 3, 7, 10, 14, 17 and 21 day of treatment. Estimation of these parameters was also done on 7th day of post-treatment period. Results: Co-administration of fenvalerate and sodium nitrate produced significant increase in the plasma levels of AST, ALP, GGT, LDH, glucose, BUN, cholesterol and creatinine while significant decrease in the plasma levels of total proteins was observed. No significant alteration was observed in albumin levels. Extent of organ damage as evidenced by biochemical alterations was more pronounced in calves exposed to combination of fenvalerate and sodium nitrate as compared to their individual exposures. Conclusion: Fenvalerate and sodium nitrate co-administration potentiates the toxicological injury produced, in comparison to their individual exposure.

  8. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    Science.gov (United States)

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. PMID:26965573

  9. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  10. Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus

    International Nuclear Information System (INIS)

    Highlights: ► Pre- and neonatal Pb exposure decreased the number of hippocampal neurons. ► Lead caused ultrastructural alterations in CA1 region of hippocampus. ► Hippocampus is highly vulnerable to low level perinatal Pb exposure. ► Lead decreased BDNF level in the developing brain. ► Decreased Bax/Bcl2 ratio may protect hippocampus against Pb-induced apoptosis. -- Abstract: The aim of this paper is to examine if pre- and neonatal exposure to lead (Pb) may intensify or inhibit apoptosis or necroptosis in the developing rat brain. Pregnant experimental females received 0.1% lead acetate (PbAc) in drinking water from the first day of gestation until weaning of the offspring; the control group received distilled water. During the feeding of pups, mothers from the experimental group were still receiving PbAc. Pups were weaned at postnatal day 21 and the young rats of both groups then received only distilled water until postnatal day 28. This treatment protocol resulted in a concentration of Pb in rat offspring whole blood (Pb-B) below the threshold of 10 μg/dL, considered safe for humans.We studied Casp-3 activity and expression, AIF nuclear translocation, DNA fragmentation, as well as Bax, Bcl-2 mRNA and protein expression as well as BDNF concentration in selected structures of the rat brain: forebrain cortex (FC), cerebellum (C) and hippocampus (H). The microscopic examinations showed alterations in hippocampal neurons.Our data shows that pre- and neonatal exposure of rats to Pb, leading to Pb-B below 10 μg/dL, can decrease the number of hippocampus neurons, occurring concomitantly with ultrastructural alterations in this region. We observed no morphological or molecular features of severe apoptosis or necrosis (no active Casp-3 and AIF translocation to nucleus) in young brains, despite the reduced levels of BDNF. The potential protective factor against apoptosis was probably the decreased Bax/Bcl-2 ratio, which requires further investigation. Our

  11. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure.

    Directory of Open Access Journals (Sweden)

    Jenine K Sanzari

    Full Text Available Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC, lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and

  12. Chronic 835-MHz radiofrequency exposure to mice hippocampus alters the distribution of calbindin and GFAP immunoreactivity.

    Science.gov (United States)

    Maskey, Dhiraj; Pradhan, Jonu; Aryal, Bijay; Lee, Chang-Min; Choi, In-Young; Park, Ki-Sup; Kim, Seok Bae; Kim, Hyung Gun; Kim, Myeung Ju

    2010-07-30

    Exponential interindividual handling in wireless communication system has raised possible doubts in the biological aspects of radiofrequency (RF) exposure on human brain owing to its close proximity to the mobile phone. In the nervous system, calcium (Ca(2+)) plays a critical role in releasing neurotransmitters, generating action potential and membrane integrity. Alterations in intracellular Ca(2+) concentration trigger aberrant synaptic action or cause neuronal apoptosis, which may exert an influence on the cellular pathology for learning and memory in the hippocampus. Calcium binding proteins like calbindin D28-K (CB) is responsible for the maintaining and controlling Ca(2+) homeostasis. Therefore, in the present study, we investigated the effect of RF exposure on rat hippocampus at 835 MHz with low energy (specific absorption rate: SAR=1.6 W/kg) for 3 months by using both CB and glial fibrillary acidic protein (GFAP) specific antibodies by immunohistochemical method. Decrease in CB immunoreactivity (IR) was noted in exposed (E1.6) group with loss of interneurons and pyramidal cells in CA1 area and loss of granule cells. Also, an overall increase in GFAP IR was observed in the hippocampus of E1.6. By TUNEL assay, apoptotic cells were detected in the CA1, CA3 areas and dentate gyrus of hippocampus, which reflects that chronic RF exposure may affect the cell viability. In addition, the increase of GFAP IR due to RF exposure could be well suited with the feature of reactive astrocytosis, which is an abnormal increase in the number of astrocytes due to the loss of nearby neurons. Chronic RF exposure to the rat brain suggested that the decrease of CB IR accompanying apoptosis and increase of GFAP IR might be morphological parameters in the hippocampus damages. PMID:20546709

  13. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  14. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    Science.gov (United States)

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  15. Sustained alterations in neuroimmune gene expression after daily, but not intermittent, alcohol exposure.

    Science.gov (United States)

    Gano, Anny; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2016-09-01

    Acute ethanol intoxication is associated with Rapid Alterations in Neuroimmune Gene Expression (RANGE), including increased Interleukin (IL)-6 and Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and suppressed IL-1β and Tumor necrosis factor (TNF) α, yet little is known about adaptations in cytokines across the first few ethanol exposures. Thus, the present studies examined central cytokines during intoxication (3h post-ethanol) following 2, 4 or 6 intragastric ethanol challenges (4g/kg) delivered either daily or every-other-day (EOD). Subsequent analyses of blood ethanol concentrations (BECs) and corticosterone were performed to determine whether the schedule of ethanol delivery would alter the pharmacokinetics of, or general sensitivity to, subacute ethanol exposure. As expected, ethanol led to robust increases in IL-6 and IκBα gene expression in hippocampus, amygdala and bed nucleus of the stria terminalis (BNST), whereas IL-1β and TNFα were suppressed, thereby replicating our prior work. Ethanol-dependent increases in IL-6 and IκBα remained significant in all structures - even after 6 days of ethanol. When these doses were administered EOD, modest IL-6 increases in BNST were observed, with TNFα and IL-1β suppressed exclusively in the hippocampus. Analysis of BECs revealed a small but significant reduction in ethanol after 4 EOD exposures - an effect which was not observed when ethanol was delivered after 6 daily intubations. These findings suggest that ethanol-induced RANGE effects are not simply a function of ethanol load per se, and underscore the critical role that ethanol dosing interval plays in determining the neuroimmune consequences of alcohol. PMID:27208497

  16. Postnatal manganese exposure does not alter dopamine autoreceptor sensitivity in adult and adolescent male rats.

    Science.gov (United States)

    McDougall, Sanders A; Mohd-Yusof, Alena; Kaplan, Graham J; Abdulla, Zuhair I; Lee, Ryan J; Crawford, Cynthia A

    2013-04-15

    Administering manganese chloride (Mn) to rats on postnatal day (PD) 1-21 causes long-term reductions in dopamine transporter levels in the dorsal striatum, as well as a persistent increase in D1 and D2 receptor concentrations. Whether dopamine autoreceptors change in number or sensitivity is uncertain, although D2S receptors, which may be presynaptic in origin, are elevated in Mn-exposed rats. The purpose of this study was to determine if early Mn exposure causes long-term changes in dopamine autoreceptor sensitivity that persist into adolescence and adulthood. To this end, male rats were exposed to Mn on PD 1-21 and autoreceptor functioning was tested 7 or 70 days later by measuring (a) dopamine synthesis (i.e., DOPA accumulation) in the dorsal striatum after quinpirole or haloperidol treatment and (b) behavioral responsiveness after low-dose apomorphine treatment. Results showed that low doses (i.e., "autoreceptor" doses) of apomorphine (0.06 and 0.12 mg/kg) decreased the locomotor activity of adolescent and adult rats, while higher doses increased locomotion. The dopamine synthesis experiment also produced classic autoreceptor effects, because quinpirole decreased dorsal striatal DOPA accumulation; whereas, haloperidol increased DOPA levels in control rats, but not in rats given the nerve impulse inhibitor γ-butyrolactone. Importantly, early Mn exposure did not alter autoreceptor sensitivity when assessed in early adolescence or adulthood. The lack of Mn-induced effects was evident in both the dopamine synthesis and behavioral experiments. When considered together with past studies, it is clear that early Mn exposure alters the functioning of various dopaminergic presynaptic mechanisms, while dopamine autoreceptors remain unimpaired. PMID:23458069

  17. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    Science.gov (United States)

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated. PMID:25262075

  18. Neuroplastic alterations in the limbic system following cocaine or alcohol exposure.

    Science.gov (United States)

    Stuber, Garret D; Hopf, F Woodward; Tye, Kay M; Chen, Billy T; Bonci, Antonello

    2010-01-01

    Neuroplastic changes in the CNS are thought to be a fundamental component of learning and memory. While pioneering studies in the hippocampus and cerebellum have detailed many of the basic mechanisms that can lead to alterations in synaptic transmission based on previous activity, only more recently has synaptic plasticity been monitored after behavioral manipulation or drug exposure. In this chapter, we review evidence that drugs of abuse are powerful modulators of synaptic plasticity. Both the dopaminergic neurons of the ventral tegmental area as well medium spiny neurons in nucleus accumbens show enhanced excitatory synaptic strength following passive or active exposure to drugs such as cocaine and alcohol. In the VTA, both the enhancement of excitatory synaptic strength and the acquisition of drug-related behaviors depend on signaling through the N-methyl-D: -aspartate receptors (NMDARs) which are mechanistically thought to lead to increased synaptic insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Synaptic insertion of AMPARs by drugs of abuse can be long lasting, depending on the route of administration, number of drug exposures, or whether the drugs are received passively or self-administered. PMID:21161748

  19. MDMA (ecstasy) delays pubertal development and alters sperm quality after developmental exposure in the rat.

    Science.gov (United States)

    Barenys, M; Gomez-Catalan, J; Camps, L; Teixido, E; de Lapuente, J; Gonzalez-Linares, J; Serret, J; Borras, M; Rodamilans, M; Llobet, J M

    2010-08-16

    3,4-Methylenedioxymethamphetamine, MDMA or "ecstasy" is consumed mainly by young population at childbearing age. Therefore, there may be a risk of exposure of some pregnant women. The effects of the developmental exposure to MDMA on the sexual development and long-term sexual behaviour/fertility were assessed in Sprague-Dawley rats. MDMA was administered subcutaneously at 0 (control), 0.5, 5 and 10 mg/kg to female rats once a day, three consecutive days a week during 10 weeks, including gestation and lactation. The male offspring was evaluated for sexual maturation and mated with untreated sexually receptive females to evaluate the mating and pregnancy rates. Hormonal, haematological, biochemical, histological, genotoxicological and testicular and sperm parameters were also evaluated. A significant higher incidence of DNA damage in sperm and interstitial oedema in testes was found. There was also a significant and dose-related decrease in sperm count and a significant decrease in sperm motility at all doses. A significant delay in preputial separation onset in all treated groups was observed. This study reports by the first time an alteration of spermatogenesis after in utero and lactation MDMA exposure in the rat. PMID:20546852

  20. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases.

    Science.gov (United States)

    Wahlang, Banrida; Petriello, Michael C; Perkins, Jordan T; Shen, Shu; Hennig, Bernhard

    2016-09-01

    Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity. PMID:27288564

  1. Does ozone exposure alter growth and carbon allocation of mycorrhizal plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, L.C.; Gamon, J.A. (California State Univ., Los Angeles, CA (United States)); Andersen, C.P. (Environmental Protection Agency, Corvallis, OR (United States))

    1994-06-01

    Ozone is known to adversely affect plant growth. However, it is less clear how ozone affects belowground processes. This study tests the hypothesis that ozone alters growth and carbon allocation of vesicular arbuscular mycorrhizal (VAM) plants. Two ecotypes of Elymus glaucus (blue wild rye) were exposed to mycorrhizal inoculation and episodic ozone exposures simulating atmospheric conditions in the Los Angeles Basin. Preliminary results show that effects of ozone on growth were subtle. In both ecotypes, growth of aboveground biomass was not affected by ozone while root growth was decreased. In most treatments, mycorrhizal inoculation decreased growth of leaves and stems, but had no significant effect on root growth. Three-way ANOVA tests indicated interactive effects between ecotype, mycorrhiza and ozone. Further experimental work is needed to reveal the biological processes governing these responses.

  2. Regional alterations of brain biogenic amines in young rats following chronic lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Dubas, T.C.; Stevenson, A.; Singhal, R.L.; Hrdina, P.D.

    1978-02-01

    An examination was made of neurochemical changes that occur in discrete brain regions of rats that have been chronically exposed to low levels of lead from birth, in order to provide further information on the involvement of brain biogenic amines in lead-induced neurotoxicity. Results indicate a relationship between exposure to lead and alterations in the brain levels of various putative neurotransmitters. However, changes in the functional activity of the neurotransmitter may not be adequately reflected in the change of its steady-state levels or may occur even in the absence of any changes in the actual concentrations. Lead may influence central neurotransmitter function by affecting one or several of the processes involved in the synthesis, release and/or disposition of biogenic amines.

  3. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  4. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    International Nuclear Information System (INIS)

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  5. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    International Nuclear Information System (INIS)

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26–28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T4), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T4/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T4 treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T4. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  6. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  7. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring.

    Science.gov (United States)

    Souza, Ana Claudia; Souza, Andressa; Medeiros, Liciane Fernandes; De Oliveira, Carla; Scarabelot, Vanessa Leal; Da Silva, Rosane Souza; Bogo, Mauricio Reis; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Bonan, Carla D; Caumo, Wolnei; Torres, Iraci L S

    2015-01-21

    The objective of this study was to evaluate the effects of maternal caffeine intake on the neuromotor development of rat offspring and on acetylcholine degradation and acetylcholinesterase (AChE) expression in the hippocampus of 14-day-old infant rats. Rat dams were treated with caffeine (0.3g/L) throughout gestation and lactation until the pups were 14 days old. The pups were divided into three groups: (1) control, (2) caffeine, and (3) washout caffeine. The washout group received a caffeine solution until the seventh postnatal day (P7). Righting reflex (RR) and negative geotaxis (NG) were assessed to evaluate postural parameters as an index of neuromotor reflexes. An open-field (OF) test was conducted to assess locomotor and exploratory activities as well as anxiety-like behaviors. Caffeine treatment increased both RR and NG latency times. In the OF test, the caffeine group had fewer outer crossings and reduced locomotion compared to control, while the washout group showed increased inner crossings in relation to the other groups and fewer rearings only in comparison to the control group. We found decreased AChE activity in the caffeine group compared to the other groups, with no alteration in AChE transcriptional regulation. Chronic maternal exposure to caffeine promotes important alterations in neuromotor development. These results highlight the ability of maternal caffeine intake to interfere with cholinergic neurotransmission during brain development. PMID:25451122

  8. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    Science.gov (United States)

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  9. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Hanyang Hu

    2014-01-01

    Full Text Available Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice.

  10. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure.

    Science.gov (United States)

    Hollins, Sharon L; Zavitsanou, Katerina; Walker, Frederick Rohan; Cairns, Murray J

    2016-08-01

    Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders. PMID:26923065

  11. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    Science.gov (United States)

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. PMID:24503577

  12. Dietary exposure to the PCB mixture aroclor 1254 may compromise osmoregulation by altering central vasopressin release

    Energy Technology Data Exchange (ETDEWEB)

    Coburn, C.G. [Environmental Toxicology, Univ. of California at Riverside, CA (United States); Gillard, E.; Curras-Collazo, M. [Cell Biology and Neuroscience, Univ. of California at Riverside, CA (United States)

    2004-09-15

    Despite the importance of systemic osmoregulation, the potential deleterious effects of persistent organochlorines, such as polychlorinated biphenyls (PCBs), on body fluid regulation has not been thoroughly investigated. In an effort to ameliorate this deficit, the current study explores the toxic effects of PCBs on osmoregulation, and in particular, on the activity of the magnocellular neuroendocrine cell (MNC) system of the hypothalamus. MNCs of the supraoptic nucleus (SON) release oxytocin (OXY) and vasopressin (VP) from terminals in the neurohypophysis in response to dehydration. The latter is released to effect water conservation in response to dehydration via its action upon the kidney and through extra-renal actions. MNCs also secrete VP from their cell bodies and dendrites locally i.e., into the extracellular space of the SON. Although it has been shown that both intranuclear and systemic release rise in response to dehydration the physiological significance of intranuclear release has not been fully elucidated. We chose to use voluntary ingestion as the route of PCB exposure since it is more reflective of natural exposure compared to ip injection. One unexpected observation that resulted from pilot studies using ip injection of PCBs was the deleterious effects of the vehicle (corn oil) resulting in pooling of lipid within the abdominal cavity, mottling of the liver, fatty liver and general discoloration of all abdominal viscera at time of sacrifice. Therefore, all work described in this series of experiments have employed voluntary ingestion of the toxin. Work described in this paper suggests that PCBs in concentrations reflecting realistic lifetime exposure levels may negatively impact homeostatic mechanisms responsible for body water balance by altering somatodendritic (intranuclear) VP secretion in response to dehydration in vivo. The downstream consequences of such influence is currently under investigation, and preliminary evidence suggests that the

  13. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  14. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees

    Directory of Open Access Journals (Sweden)

    GeraldineAWright

    2013-02-01

    Full Text Available Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioural effects on honeybees of exposure to a selection of pesticides that target cholinergic signalling by inhibiting acetylcholinesterase (AChE. To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behaviour continuously for 15 min. At a 10nM concentration, all the AChE inhibitors caused similar effects on behaviour, notably increased grooming activity and changes in the frequency of bouts of behaviour such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behaviour, and a 1µM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the 4 compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee acetylcholinesterase inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behaviour that could lead to reduced survival.

  15. Alterations in Central Nervous System Serotonergic and Dopaminergic Synaptic Activity in Adulthood after Prenatal or Neonatal Chlorpyrifos Exposure

    OpenAIRE

    Aldridge, Justin E; Meyer, Armando; Seidler, Frederic J; Slotkin, Theodore A.

    2005-01-01

    Exposure to chlorpyrifos (CPF) alters neuronal development of serotonin (5HT) and dopamine systems, and we recently found long-term alterations in behaviors related to 5HT function. To characterize the synaptic mechanisms underlying these effects, we exposed developing rats to CPF regimens below the threshold for systemic toxicity, in three treatment windows: gestational days (GD) 17–20, postnatal days (PN) 1–4, or PN11–14. In early adulthood (PN60), we assessed basal neurotransmitter content...

  16. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages

    OpenAIRE

    Geelen Tessa; Yeo Sin; Paulis Leonie EM; Starmans Lucas WE; Nicolay Klaas; Strijkers Gustav J

    2012-01-01

    Abstract Background Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. Thes...

  17. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis

    OpenAIRE

    Maiseyeu, Andrei; Mihai, Georgeta; Kampfrath, Thomas; Simonetti, Orlando P.; Sen, Chandan K.; Roy, Sashwati; Rajagopalan, Sanjay; Parthasarathy, Sampath

    2009-01-01

    Exteriorized phosphatidylserine (PS) residues in apoptotic cells trigger rapid phagocytosis by macrophage scavenger receptor pathways. Mimicking apoptosis with liposomes containing PS may represent an attractive approach for molecular imaging of atherosclerosis. We investigated the utility of paramagnetic gadolinium liposomes enriched with PS (Gd-PS) in imaging atherosclerotic plaque. Gd-PS-containing Gd-conjugated lipids, fluorescent rhodamine, and PS were prepared and characterized. Cellula...

  18. ANTI-PHOSPHATIDYLSERINE ANTIBODIES IN ACUTE MYOCARDIAL INFARCTION

    OpenAIRE

    Abdolreza Sotoodeh Jahromi; Mohammad Shojaei; Mohammad Reza Farjam; Abdolhossien Madani

    2013-01-01

    Acute Myocardial Infarction (AMI) is the combined result of environmental factors and personal predispositions. Many factors play a role in AMI including anti-Phospholipid (aPL) antibodies, that may act in the induction of immunological response leading to the development of AMI. Anti-Phosphatidylserine (PS) antibody is detected in various diseases like rheumatoid arthritis, systemic lupus erythematosus and anti-phospholipid antibody syndrome. The study of anti-PS antibody in AMI might shed l...

  19. Sucrose exposure in early life alters adult motivation and weight gain.

    Directory of Open Access Journals (Sweden)

    Cristianne R M Frazier

    Full Text Available The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

  20. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Directory of Open Access Journals (Sweden)

    Cody S Sheik

    Full Text Available Extensive use of chromium (Cr and arsenic (As based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI. Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  1. Prenatal Oxycodone Exposure Alters CNS Endothelin Receptor Expression in Neonatal Rats.

    Science.gov (United States)

    Devarapalli, M; Leonard, M; Briyal, S; Stefanov, G; Puppala, B L; Schweig, L; Gulati, A

    2016-05-01

    Prenatal opioid exposure such as oxycodone is linked to significant adverse effects on the developing brain. Endothelin (ET) and its receptors are involved in normal development of the central nervous system. Opioid tolerance and withdrawal are mediated through ET receptors. It is possible that adverse effect of oxycodone on the developing brain is mediated through ET receptors. We evaluated brain ETA and ETB receptor expression during postnatal development in rats with prenatal oxycodone exposure. Timed pregnant Sprague-Dawley rats received either oxycodone or placebo throughout gestation. After birth, male rat pups were sacrificed on postnatal day (PND) 1, 7, 14 or 28. Brain ETA and ETB receptor expression was determined by Western blot analysis. Oxycodone pups compared to placebo demonstrated congenital malformations of the face, mouth, and vertebrae at the time of birth [4/69 (5.7%) vs. 0/60 (0%); respectively] and intrauterine growth retardation [10/69 (15%) vs. 2/60 (3.3%); respectively]. On PND 28, oxycodone pups compared to placebo had lower body and kidney weight. ETA receptor expression in the oxycodone group was significantly higher compared to placebo on PND 1 (p=0.035), but was similar on PND 7, 14, or 28. ETB receptor expression decreased in oxycodone compared to placebo on PND 1 and 7 (p=0.001); and increased on PND 28 (p=0.002), but was similar on PND 14. Oxycodone-exposed rat pups had lower birth weight and postnatal weight gain and greater congenital malformations. ETB receptor expression is altered in the brain of oxycodone-treated rat pups indicating a possible delay in CNS development. PMID:26676852

  2. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  3. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    International Nuclear Information System (INIS)

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice

  4. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  5. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish

    International Nuclear Information System (INIS)

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic–pituitary–thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46–0.72 mg kg−1, induced oxidative stress with H2O2 being increased by 1.4–2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3–1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. - Highlights: • 48 h-LC50 value of arsenite (AsIII) was 42 mg L−1 for zebrafish. • AsIII exposure elevated oxidative stress and caused oxidative damage in zebrafish. • AsIII exposure increased the content of thyroid hormone thyroxine. • AsIII exposure altered gene transcription in the HPT axis in zebrafish. - Short-term exposure of arsenite caused oxidative stress, disrupted thyroid endocrine system and altered gene transcription in the HPT axis in Zebrafish

  6. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure.

    Science.gov (United States)

    Gonçalves, Rozana Oliveira; de Almeida Melo, Neli; Rêgo, Marco Antônio Vasconcelos

    2016-06-01

    We aimed to investigate the association between chronic exposure to benzene and genotoxicity in the lymphocytes of workers removed from exposure. The study included 20 workers with hematological disorders who had previously worked in the petrochemical industry of Salvador, Bahia, Brazil; 16 workers without occupational exposure to benzene served as the control group. Chromosomal analysis was performed on lymphocytes from peripheral blood, to assess chromosomal breaks and gaps and to identify aneuploidy. The Kruskal-Wallis test was used to compare the mean values between two groups, and Student's t test for comparison of two independent means. The frequency of gaps was statistically higher in and the exposed group than in the controls (2.13 ± 2.86 vs. 0.97 ± 1.27, p = 0.001). The frequency of chromosomal breaks was significantly higher among cases (0.21 ± 0.58) than among controls (0.12 ± 0.4) (p = 0.0002). An association was observed between chromosomal gaps and breaks and occupational exposure to benzene. Our study showed that even when removed from exposure for several years, workers still demonstrated genotoxic damage. Studies are still needed to clarify the long-term genotoxic potential of benzene after removal from exposure. PMID:27155858

  7. Alteration of Bacterial Antibiotic Sensitivity After Short-Term Exposure to Diagnostic Ultrasound

    Science.gov (United States)

    Mortazavi, Seyed Mohammad Javad; Darvish, Leili; Abounajmi, Mohammad; Zarei, Samira; Zare, Tahereh; Taheri, Mohammad; Nematollahi, Samaneh

    2015-01-01

    inhibition zones in exposed and non-exposed samples of Klebsiella pneumonia and Streptococcus. Conclusions This study clearly shows that short-term exposure of microorganisms to diagnostic ultrasonic waves can significantly alter their sensitivity to antibiotics. We believe that this physical method of making the antibiotic-resistant population susceptible can open new horizons in antibiotic therapy of a broad range of diseases, including tuberculosis. PMID:26732124

  8. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Orli Yarom

    2008-01-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  9. Investigation into the Role of Phosphatidylserine in Modifying the Susceptibility of Human Lymphocytes to Secretory Phospholipase A2 using Cells Deficient in the Expression of Scramblase

    OpenAIRE

    Nelson, Jennifer; Francom, Lyndee L.; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Allan M. Judd; Bell, John D.

    2012-01-01

    Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A2 but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt’s lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells ...

  10. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice.

    Science.gov (United States)

    Ricceri, Laura; Markina, Nadja; Valanzano, Angela; Fortuna, Stefano; Cometa, Maria Francesca; Meneguz, Annarita; Calamandrei, Gemma

    2003-09-15

    Neonatal mice were treated daily on postnatal days (pnds) 1 through 4 or 11 through 14 with the organophosphate pesticide chlorpyrifos (CPF), at doses (1 or 3 mg/kg) that do not evoke systemic toxicity. Brain acetylcholinesterase (AChE) activity was evaluated within 24 h from termination of treatments. Pups treated on pnds 1-4 underwent ultrasonic vocalization tests (pnds 5, 8, and 11) and a homing test (orientation to home nest material, pnd 10). Pups in both treatment schedules were then assessed for locomotor activity (pnd 25), novelty-seeking response (pnd 35), social interactions with an unfamiliar conspecific (pnd 45), and passive avoidance learning (pnd 60). AChE activity was reduced by 25% after CPF 1-4 but not after CPF 11-14 treatment. CPF selectively affected only the G(4) (tetramer) molecular isoform of AChE. Behavioral analysis showed that early CPF treatment failed to affect neonatal behaviors. Locomotor activity on pnd 25 was increased in 11-14 CPF-treated mice at both doses, and CPF-treated animals in both treatment schedules were more active when exposed to environmental novelty in the novelty-seeking test. All CPF-treated mice displayed more agonistic responses, and such effect was more marked in male mice exposed to the low CPF dose on pnds 11-14. Passive avoidance learning was not affected by CPF. These data indicate that developmental exposure to CPF induces long-term behavioral alterations in the mouse species and support the involvement of neural systems in addition to the cholinergic system in the delayed behavioral toxicity of CPF. PMID:13678652

  11. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice

    International Nuclear Information System (INIS)

    Neonatal mice were treated daily on postnatal days (pnds) 1 through 4 or 11 through 14 with the organophosphate pesticide chlorpyrifos (CPF), at doses (1 or 3 mg/kg) that do not evoke systemic toxicity. Brain acetylcholinesterase (AChE) activity was evaluated within 24 h from termination of treatments. Pups treated on pnds 1-4 underwent ultrasonic vocalization tests (pnds 5, 8, and 11) and a homing test (orientation to home nest material, pnd 10). Pups in both treatment schedules were then assessed for locomotor activity (pnd 25), novelty-seeking response (pnd 35), social interactions with an unfamiliar conspecific (pnd 45), and passive avoidance learning (pnd 60). AChE activity was reduced by 25% after CPF 1-4 but not after CPF 11-14 treatment. CPF selectively affected only the G4 (tetramer) molecular isoform of AChE. Behavioral analysis showed that early CPF treatment failed to affect neonatal behaviors. Locomotor activity on pnd 25 was increased in 11-14 CPF-treated mice at both doses, and CPF-treated animals in both treatment schedules were more active when exposed to environmental novelty in the novelty-seeking test. All CPF-treated mice displayed more agonistic responses, and such effect was more marked in male mice exposed to the low CPF dose on pnds 11-14. Passive avoidance learning was not affected by CPF. These data indicate that developmental exposure to CPF induces long-term behavioral alterations in the mouse species and support the involvement of neural systems in addition to the cholinergic system in the delayed behavioral toxicity of CPF

  12. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    Science.gov (United States)

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  13. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    Science.gov (United States)

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  14. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    International Nuclear Information System (INIS)

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, 122Sb and 124Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  15. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia], e-mail: samanta@usp.br, e-mail: nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Medicina Tropical de Sao Paulo (IMTSP), Sao Paulo, SP (Brazil)], e-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia], e-mail: jaosso@ipen.br

    2009-07-01

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, {sup 122}Sb and {sup 124}Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  16. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    OpenAIRE

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood bi...

  17. Alteration of blood glucose levels in the rat following exposure to hyperbaric oxygen.

    Science.gov (United States)

    Eynan, Mirit; Mullokandov, Michael; Krinsky, Nitzan; Biram, Adi; Arieli, Yehuda

    2015-09-01

    Findings regarding blood glucose level (BGL) on exposure to hyperbaric oxygen (HBO) are contradictory. We investigated the influence of HBO on BGL, and of BGL on latency to central nervous system oxygen toxicity (CNS-OT). The study was conducted on five groups of rats: Group 1, exposure to oxygen at 2.5 atmospheres absolute (ATA), 90 min/day for 7 days; Group 2, exposure to oxygen once a week from 2 to 6 ATA in increments of 1 ATA/wk, for a period of time calculated as 60% of the latency to CNS-OT (no convulsions); Group 3, exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21; Group 4, received 10 U/kg insulin to induce hypoglycemia before exposure to HBO; Group 5, received 33% glucose to induce hyperglycemia before exposure to HBO. Blood samples were drawn before and after exposures for measurement of BGL. No change was observed in BGL after exposure to oxygen at 2.5 ATA, 90 min/day for 7 days. BGL was significantly elevated after exposure to oxygen at 6 ATA until the appearance of convulsions, and following exposure to 4, 5, and 6 ATA without convulsions (P HBO exposure on elevation of BGL, starting at 4 ATA. This implies that BGL may serve as a marker for the generation of CNS-OT. PMID:26183474

  18. Associations between personal exposures to VOCs and alterations in cardiovascular physiology: Detroit Exposure and Aerosol Research Study (DEARS) - presentation

    Science.gov (United States)

    Introduction: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007...

  19. Associations between Personal Exposures to VOCs and Alterations in Cardiovascular Physiology: Detroit Exposure and Aerosol Research Study (DEARS)

    Science.gov (United States)

    Background: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007 (5 seas...

  20. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    Science.gov (United States)

    Wolcott, J A; Zee, Y C; Osebold, J W

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity. PMID:6182839

  1. In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice.

    Science.gov (United States)

    Ribeiro, André Luiz Teroso; Shimada, Ana Lúcia Borges; Hebeda, Cristina Bichels; de Oliveira, Tiago Franco; de Melo Loureiro, Ana Paula; Filho, Walter Dos Reis Pereira; Santos, Alcinéa Meigikos Dos Anjos; de Lima, Wothan Tavares; Farsky, Sandra Helena Poliselli

    2011-10-01

    Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50ppm HQ (1h/day for 5 days). One hour later, oxidative burst, cell cycle, DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1h later the last exposures, inflammation was induced by LPS inhalation (0.1mg/ml/10min) and 3h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of β(2) and β(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ

  2. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  3. Sustained Exposure to the Widely Used Herbicide Atrazine: Altered Function and Loss of Neurons in Brain Monoamine Systems

    OpenAIRE

    Rodriguez, Veronica M.; Thiruchelvam, Mona; Cory-Slechta, Deborah A.

    2005-01-01

    The widespread use of atrazine (ATR) and its persistence in the environment have resulted in documented human exposure. Alterations in hypothalamic catecholamines have been suggested as the mechanistic basis of the toxicity of ATR to hormonal systems in females and the reproductive tract in males. Because multiple catecholamine systems are present in the brain, however, ATR could have far broader effects than are currently understood. Catecholaminergic systems such as the two major long-lengt...

  4. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin.

    Science.gov (United States)

    Qadri, Syed M; Donkor, David A; Bhakta, Varsha; Eltringham-Smith, Louise J; Dwivedi, Dhruva J; Moore, Jane C; Pepler, Laura; Ivetic, Nikola; Nazi, Ishac; Fox-Robichaud, Alison E; Liaw, Patricia C; Sheffield, William P

    2016-04-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis-like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin-elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca(2+) activity as well as Ca(2+) -dependent proteolytic processing of μ-calpain. Pyocyanin further up-regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin-induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl-ester labelling, pyocyanin-treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis-inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection. PMID:26781477

  5. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    Science.gov (United States)

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior. PMID:18485605

  6. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    International Nuclear Information System (INIS)

    Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl2 dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3− or NO2−. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation. - Highlights: • Effect of 60 ppm*hr Cl2 gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor. • Alterations in surfactant homeostasis and pulmonary mechanics

  7. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    Science.gov (United States)

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  8. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    Directory of Open Access Journals (Sweden)

    Eugen Dhimolea

    Full Text Available Exposure to environmental estrogens (xenoestrogens may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments, with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50. BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene

  9. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    International Nuclear Information System (INIS)

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity. (paper)

  10. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    Science.gov (United States)

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  11. Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos

    Directory of Open Access Journals (Sweden)

    Golam Mohammod Mostakim

    2015-01-01

    Full Text Available Quinalphos (QP is commonly used for pest control in the agricultural fields surrounding freshwater reservoirs. This study was conducted to evaluate the chronic toxicity of this pesticide on blood parameters and some organs of silver barb, Barbonymus gonionotus. Fish were exposed to two sublethal concentrations, 0.47 ppm and 0.94 ppm, of QP for a period of 28 days. All the blood parameters (red blood cell, hematocrit, and hemoglobin and blood glucose except for white blood cells decreased with increasing concentration of toxicant and become significantly lower (p<0.05 at higher concentration when compared with control. The derived hematological indices of mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were equally altered compared to control. Histoarchitectural changes of liver and kidney were observed after exposure to the QP. Hypertrophy of hepatocytes, mild to severe necrosis, ruptured central vein, and vacuolation were observed in the liver of treated groups. Highly degenerated kidney tubules and hematopoietic tissue, degeneration of renal corpuscle, vacuolization, and necrosis were evident in the kidney of treated groups. In conclusion, chronic exposure to QP at sublethal concentrations induced hematological and histological alterations in silver barb and offers a simple tool to evaluate toxicity derived alterations.

  12. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  13. Functional Alterations in the Dorsal Raphe Nucleus Following Acute and Chronic Ethanol Exposure

    OpenAIRE

    Lowery-Gionta, Emily G; Marcinkiewcz, Catherine A.; Kash, Thomas L.

    2014-01-01

    Alcoholism is a pervasive disorder perpetuated in part to relieve negative mood states like anxiety experienced during alcohol withdrawal. Emerging evidence demonstrates a role for the serotonin-rich dorsal raphe (DR) in anxiety following ethanol withdrawal. The current study examined the effects of chronic ethanol vapor exposure on the DR using slice electrophysiology in male DBA2/J mice. We found that chronic ethanol exposure resulted in deficits in social approach indicative of increased a...

  14. Tumor suppressor gene alterations in patients with malignant mesothelioma due to environmental asbestos exposure in Turkey

    OpenAIRE

    Tug Esra; Tug Tuncer; Elyas Halit; Coskunsel Mehmet; Emri Salih

    2006-01-01

    Abstract Background Environmental asbestos exposure can cause the grave lung and pleura malignancies with a high mortality rate, and it is also associated with increased rate of other organ malignancies. Asbestos exposure can develop genotoxic effects and damage in the pleura and lungs. Objective In this study, we aimed to determine tumor suppressor gene (TSG) loss in genomic DNA which was isolated from pleural fluid and blood samples of patients with Malignant Pleural Mesothelioma (MPM) due ...

  15. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    OpenAIRE

    Calamandrei Gemma; Scattoni Maria; Ricceri Laura; Venerosi Aldina

    2009-01-01

    Abstract Background Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [ges...

  16. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation

    OpenAIRE

    Wang, I-Jen; Karmaus, Wilfried JJ; Chen, Su-Lien; Holloway, John W.; Ewart, Susan

    2015-01-01

    Background Phthalates may increase the asthma risk in children. Mechanisms underlying this association remain to be addressed. This study assesses the effect of phthalate exposures on epigenetic changes and the role of epigenetic changes for asthma. In the first step, urine and blood samples from 256 children of the Childhood Environment and Allergic diseases Study (CEAS) were analyzed. Urine 5OH-MEHP levels were quantified as an indicator of exposure, and asthma information was collected. DN...

  17. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    Science.gov (United States)

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  18. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    International Nuclear Information System (INIS)

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with [32P]phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with [32P]phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively

  19. Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood.

    Science.gov (United States)

    Paul, Kush; Kang, Shuo; Cox, Charles L; Gulley, Joshua M

    2016-08-01

    Behavioral sensitization following repeated amphetamine (AMPH) exposure is associated with changes in GABA function in the medial prefrontal cortex (mPFC). In rats exposed to AMPH during adolescence compared to adulthood, there are unique patterns of sensitization that may reflect age-dependent differences in drug effects on prefrontal GABAergic function. In the current study, we used a sensitizing regimen of repeated AMPH exposure in adolescent and adult rats to determine if a post-withdrawal AMPH challenge would alter inhibitory transmission in the mPFC in a manner that depends on age of exposure. Male Sprague-Dawley rats were treated with saline or 3mg/kg AMPH (i.p.) during adolescence [postnatal day (P) 27-P45] or adulthood (P85- P103) and were sacrificed either at similar ages in adulthood (∼P133; experiment 1) or after similar withdrawal times (3-4 weeks; experiment 2). Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in vitro from deep layer pyramidal cells in the mPFC using the whole-cell configuration. We found no effect of AMPH pre-exposure on baseline sIPSC frequency. Subsequent application of AMPH (25μM) produced a stable increase in sIPSC frequency in controls, suggesting that AMPH increases inhibitory tone in the mPFC. However, AMPH failed to increase sIPSCs in adolescent- or adult-exposed rats. In experiment 2, where withdrawal period was kept similar for both exposure groups, AMPH induced a suppression of sIPSC activity in adolescent-exposed rats. These results suggest that sensitizing treatment with AMPH during adolescence or adulthood dampens inhibitory influences on mPFC pyramidal cells, but potentially through different mechanisms. PMID:27085589

  20. Does prenatal exposure to vitamin D-fortified margarine and milk alter birth weight?

    DEFF Research Database (Denmark)

    Jensen, Camilla B; Berentzen, Tina L; Gamborg, Michael;

    2014-01-01

    The present study examined whether exposure to vitamin D from fortified margarine and milk during prenatal life influenced mean birth weight and the risk of high or low birth weight. The study was based on the Danish vitamin D fortification programme, which was a societal intervention with...... mandatory fortification of margarine during 1961-1985 and voluntary fortification of low-fat milk between 1972 and 1976. The influence of prenatal vitamin D exposure on birth weight was investigated among 51 883 Danish children, by comparing birth weight among individuals born during 2 years before or after...... children were heavier than non-exposed children (margarine initiation 27·4 (95 % CI 10·8, 44·0) g). No differences in the odds of high (>4000 g) or low ( < 2500 g) birth weight were observed between the children exposed and non-exposed to vitamin D fortification prenatally. Prenatal exposure to vitamin D...

  1. Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Directory of Open Access Journals (Sweden)

    Herr Caroline EW

    2010-08-01

    Full Text Available Abstract Background Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month. Methods Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3+ cells and their subsets, CD4+ and CD8+, B lymphocytes (CD19+ and natural killer (NK cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH and particulate matter 2.5 were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM2.5 and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births. Results The adjusted models show significant associations between PAHs or PM2.5 during early gestation and increases in CD3+ and CD4+ lymphocytes percentages and decreases in CD19+ and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3+ and CD4+ fractions and increases in CD19+ and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation. Conclusions PAHs and PM2.5 in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.

  2. Developmental neurotoxicity of organophosphorous pesticides: fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice.

    Science.gov (United States)

    Ricceri, Laura; Venerosi, Aldina; Capone, Francesca; Cometa, Maria Francesca; Lorenzini, Paola; Fortuna, Stefano; Calamandrei, Gemma

    2006-09-01

    Developmental exposure to the organophosphorous insecticide chlorpyrifos (CPF) induces long-term effects on brain and behavior in laboratory rodents. We evaluated in adult mice the behavioral effects of either fetal and/or neonatal CPF exposure at doses not inhibiting fetal and neonatal brain cholinesterase. CPF (3 or 6 mg/kg) was given by oral treatment to pregnant females on gestational days 15-18 and offspring were treated sc (1 or 3 mg/kg) on postnatal days (PNDs) 11-14. Serum and brain acetylcholinesterase (AChE) activity was evaluated at birth and 24 h from termination of postnatal treatments. On PND 70, male mice were assessed for spontaneous motor activity in an open-field test and in a socioagonistic encounter with an unfamiliar conspecific. Virgin females underwent a maternal induction test following presentation of foster pups. Both sexes were subjected to a plus-maze test to evaluate exploration and anxiety levels. Gestational and postnatal CPF exposure (higher doses) affected motor activity in the open field and enhanced synergically agonistic behavior. Postnatal CPF exposure increased maternal responsiveness toward pups in females. Mice of both sexes exposed to postnatal CPF showed reduced anxiety response in the plus-maze, an effect greater in females. Altogether, developmental exposure to CPF at doses that do not cause brain AChE inhibition induces long-term alterations in sex-specific behavior patterns of the mouse species. Late neonatal exposure on PNDs 11-14 was the most effective in causing behavioral changes. These findings support the hypothesis that developmental CPF may represent a risk factor for increased vulnerability to neurodevelopmental disorders in humans. PMID:16760416

  3. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    Directory of Open Access Journals (Sweden)

    Dhiraj Maskey

    2013-01-01

    Full Text Available Calcium binding proteins (CaBPs such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus.

  4. Short GSM mobile phone exposure does not alter human auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Thuróczy György

    2007-11-01

    Full Text Available Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Results Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. Conclusion The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  5. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    Science.gov (United States)

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer. PMID:27060830

  6. Exposure to hyperoxia in the neonatal period alters bone marrow function

    Science.gov (United States)

    Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...

  7. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    Science.gov (United States)

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  8. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    OpenAIRE

    GeraldineAWright; ChristopherMoffat

    2013-01-01

    Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony healt...

  9. Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness

    OpenAIRE

    Trevor James Hamilton; Kwan, Garfield T.; Joshua Gallup; Martin Tresguerres

    2016-01-01

    Aggression and responsiveness to noxious stimuli are adaptable traits that are ubiquitous throughout the animal kingdom. Like vertebrate animals, some invertebrates have been shown to exhibit anxiety-like behaviour and altered levels of aggression that are modulated by the neurotransmitter serotonin. To investigate whether this influence of serotonin is conserved in crabs and whether these behaviours are sensitive to human antidepressant drugs; the striped shore crab, Pachygrapsus crassipes, ...

  10. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  11. Previous exposure of predatory fish to a pesticide alters palatability of larval amphibian prey.

    Science.gov (United States)

    Hanlon, Shane M; Parris, Matthew J

    2013-12-01

    Habitat preferences of organisms are reliant on a variety of factors. For amphibians specifically, preferences can depend on factors such as food availability, water quality, and the presence of potential predators. Because some amphibians breed in permanent bodies of water (e.g., ponds), the threat of predation (e.g., from fish) is constant. Thus, some amphibians are unpalatable to many predators, allowing them to coexist in the same habitats. However, the addition of anthropogenic stressors (i.e., pesticides) may alter the perceived palatability of prey items to predators. The authors tested the hypothesis that bluegill fish (Lepomis macrochirus), previously exposed to the pesticide carbaryl, would consume more unpalatable prey (Fowler's toad [Anaxyrus fowleri] tadpoles) than unexposed predators. Carbaryl is a pesticide that attacks the nervous system and is linked to taste sense in organisms. Moreover, the authors conducted an identical test using palatable prey (gray treefrog [Hyla versicolor] tadpoles) and predicted that no change in preference would be observed. In support of the primary hypothesis, bluegill exposed to the highest concentration of carbaryl consumed more A. fowleri tadpoles compared with those exposed to carbaryl at the lowest concentration or water control. Moreover, an effect of carbaryl on predation success on H. versicolor tadpoles was not observed. The present study shows that an anthropogenic stressor (carbaryl) can alter the perceived palatability of noxious prey to fish predators, potentially altering predator-prey relationships in natural settings. PMID:24383102

  12. Association between mitochondrial C-tract alteration and tobacco exposure in oral precancer cases

    OpenAIRE

    Pandey, Rahul; Mehrotra, Divya; Mahdi, Abbas Ali; Sarin, Rajiv; Kowtal, Pradnya; Maurya, Shailendra S.; Parmar, Devendra

    2013-01-01

    Introduction: Tobacco exposure is a known risk factor for oral cancer. India is home to oral cancer epidemic chiefly due to the prevalent use of both smoke and smokeless tobacco. To reduce the related morbidity early detection is required. The key to this is detailing molecular events during early precancer stage. Mitochondrion is an important cellular organelle involved in cell metabolism and apoptosis. Mitochondrial dysfunction is thought to be the key event in oncogenesis. Last decade has ...

  13. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    OpenAIRE

    Mariateresa Maldini; Fausta Natella; Simona Baima; Giorgio Morelli; Cristina Scaccini; James Langridge; Giuseppe Astarita

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response af...

  14. Tumor suppressor gene alterations in patients with malignant mesothelioma due to environmental asbestos exposure in Turkey

    Directory of Open Access Journals (Sweden)

    Emri Salih

    2006-01-01

    Full Text Available Abstract Background Environmental asbestos exposure can cause the grave lung and pleura malignancies with a high mortality rate, and it is also associated with increased rate of other organ malignancies. Asbestos exposure can develop genotoxic effects and damage in the pleura and lungs. Objective In this study, we aimed to determine tumor suppressor gene (TSG loss in genomic DNA which was isolated from pleural fluid and blood samples of patients with Malignant Pleural Mesothelioma (MPM due to environmental asbestos exposure. Design and patients Prospective study of period from 2001 to 2003 in 17 patients with MPM. Methods A total of 12 chromosomal regions were researched by comparing genomic DNA samples isolated from blood and pleural effusion (using PCR, and polyacrilamid gel electrophoresis denaturizing, on 2 different chromosomes which have 9 different polymorphic determinants at 6q and 3 different polymorphic determinants at 9p using molecular genetic methods on 13 patients clinico-pathologically diagnosed MPM. Results Loss of Heterozygosity (LOH was determined at D6S275 in one patient, at D6S301 in another, at D6S474 in 2, at ARG1 in 2, at D6S1038 in 2 and at D6S1008 in 3 patients. In 7 (54% of the13 patients, we found LOH in at least one site. No LOH was determined at any informative loci in 6 patients. Of the 13 patients, no investigated markers were determined at 9p. Conclusion In this study, genomic DNA samples obtained from MPM patients with asbestos exposure revealed that they contained important genotoxic damage. We found no other study on this subject at molecular level in pleural effusion either in Turkey or in the med-line literature. We believe that this study will provide important support for other research into molecular-genetic variations, both on this subject and other malignancies, and may also constitute a base for early diagnosis and gene therapy research in the future.

  15. Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats

    OpenAIRE

    Roysommuti, Sanya; Malila, Pisamai; Lerdweeraphon, Wichaporn; Jirakulsomchok, Dusit; Wyss, J. Michael

    2010-01-01

    Perinatal taurine exposure has long-term effects on the arterial pressure and renal function. This study tests its influence on renal potassium excretion in young adult, conscious rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C), 3% beta-alanine in water (taurine depletion, TD) or 3% taurine in water (taurine supplementation, TS), either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). I...

  16. Prenatal cocaine exposure alters emotional arousal regulation and its effects on working memory

    OpenAIRE

    Li, Zhihao; Coles, Claire D.; Lynch, Mary Ellen; Hamann, Stephan; Peltier, Scott; LaConte, Stephen; Hu, Xiaoping

    2009-01-01

    While prenatal cocaine exposure (PCE) has been associated with arousal dysregulation and attentional impairments in both human and animal studies, the neurobiological bases of these teratogenic effects have not been well characterized. In the current study, we report functional neuroimaging observations of these effects in exposed youth. Using functional magnetic resonance imaging (fMRI), we embedded task-irrelevant emotional distracters in a working memory task to examine the interaction of ...

  17. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Qing Liu

    Full Text Available The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb and male (18.04 ppb fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  18. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio

    Directory of Open Access Journals (Sweden)

    Zidong Liu

    2015-01-01

    Full Text Available Microcystin-LR (MC-LR has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH metabolism. In the present study, juvenile zebrafish (Danio rerio were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4 content but decreased whole-body triiodothyronine (T3 content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH, thyroid-stimulating hormone (TSH, thyroid peroxidase (TPO, and transthyretin (TTR genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs.

  19. Traffic pollution exposure is associated with altered brain connectivity in school children.

    Science.gov (United States)

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. PMID:26825441

  20. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    Science.gov (United States)

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test. PMID:25820756

  1. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  2. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    OpenAIRE

    Dowall, S. D.; Graham, V A; Corbin-Lickfett, K; C. Empig; Schlunegger, K.; Bruce, C B; Easterbrook, L.; Hewson, R.

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity again...

  3. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    OpenAIRE

    Letts, V A; Henry, S. A.

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. ...

  4. Cloning, Sequencing, and Disruption of the Bacillus subtilis psd Gene Coding for Phosphatidylserine Decarboxylase

    OpenAIRE

    Matsumoto, Kouji; Okada, Masahiro; Horikoshi, Yuko; Matsuzaki, Hiroshi; Kishi, Tsutomu; Itaya, Mitsuhiro; Shibuya, Isao

    1998-01-01

    The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid contain...

  5. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  6. Toxoplasma gondii exposes phosphatidylserine inducing a TGF-β1 autocrine effect orchestrating macrophage evasion

    International Nuclear Information System (INIS)

    Toxoplasmosis is a worldwide disease caused by Toxoplasma gondii. Activated macrophages control T. gondii growth by nitric oxide (NO) production. However, T. gondii active invasion inhibits NO production, allowing parasite persistence. Here we show that the mechanism used by T. gondii to inhibit NO production persisting in activated macrophages depends on phosphatidylserine (PS) exposure. Masking PS with annexin-V on parasites or activated macrophages abolished NO production inhibition and parasite persistence. NO production inhibition depended on a transforming growth factor-β1 (TGF-β1) autocrine effect confirmed by the expression of Smad 2 and 3 in infected macrophages. TGF-β1 led to inducible nitric oxide synthase (iNOS) degradation, actin filament (F-actin) depolymerization, and lack of nuclear factor-κB (NF-κB) in the nucleus. All these features were reverted by TGF-β1 neutralizing antibody treatment. Thus, T. gondii mimics the evasion mechanism used by Leishmania amazonensis and also the anti-inflammatory response evoked by apoptotic cells

  7. Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations.

    Science.gov (United States)

    Nunes, B; Antunes, S C; Gomes, R; Campos, J C; Braga, M R; Ramos, A S; Correia, A T

    2015-02-01

    A large body of evidence was compiled in the recent decades showing a noteworthy increase in the detection of pharmaceutical drugs in aquatic ecosystems. Due to its ubiquitous presence, chemical nature, and practical purpose, this type of contaminant can exert toxic effects in nontarget organisms. Exposure to pharmaceutical drugs can result in adaptive alterations, such as changes in tissues, or in key homeostatic mechanisms, such as antioxidant mechanisms, biochemical/physiological pathways, and cellular damage. These alterations can be monitored to determine the impact of these compounds on exposed aquatic organisms. Among pharmaceutical drugs in the environment, antibiotics are particularly important because they include a variety of substances widely used in medical and veterinary practice, livestock production, and aquaculture. This wide use constitutes a decisive factor contributing for their frequent detection in the aquatic environment. Tetracyclines are the individual antibiotic subclass with the second highest frequency of detection in environmental matrices. The characterization of the potential ecotoxicological effects of tetracycline is a much-required task; to attain this objective, the present study assessed the acute toxic effects of tetracycline in the freshwater fish species Gambusia holbrooki by the determination of histological changes in the gills and liver, changes in antioxidant defense [glutathione S-transferase (GST), catalase (CAT), and lipoperoxidative damage] as well as potential neurotoxicity (acetylcholinesterase activity). The obtained results suggest the existence of a cause-and-effect relationship between the exposure to tetracycline and histological alterations (more specifically in gills) and enzymatic activity (particularly the enzyme CAT in liver and GST in gills) indicating that this compound can exert a pro-oxidative activity. PMID:25475590

  8. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    Science.gov (United States)

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety. PMID:26632987

  9. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  10. Biochemical alterations in the rat following exposure to the organophosphorus insecticide cyanox

    International Nuclear Information System (INIS)

    Cyanox is an organophosphorus insecticide with an oral LD50 of 580 mg/kg for male rats. For the assessment of the subacute toxicity, two groups of male rats were treated with 11.6 and 29 mg/kg/day of the pesticide for 28 days. Animals were sacrificed on day 2,4,10,16,22 and 8. The compound significantly altered plasma protein electrophoretic pattern, brain and erythrocytes acetylcholinesterase (AchE), serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), serum alkaline phosphatase (ALP), creatinine, inorganic phosphorus, triiodothyronine (T3) and thyroxine (T4)

  11. Early life exposure to environmental tobacco smoke alters immune response to asbestos via a shift in inflammatory phenotype resulting in increased disease development.

    Science.gov (United States)

    Brown, Traci Ann; Holian, Andrij; Pinkerton, Kent E; Lee, Joong Won; Cho, Yoon Hee

    2016-07-01

    Asbestos in combination with tobacco smoke exposure reportedly leads to more severe physiological consequences than asbestos alone; limited data also show an increased disease risk due to environmental tobacco smoke (ETS) exposure. Environmental influences during gestation and early lung development can result in physiological changes that alter risk for disease development throughout an individual's lifetime. Therefore, maternal lifestyle may impact the ability of offspring to subsequently respond to environmental insults and alter overall disease susceptibility. In this study, we examined the effects of exposure to ETS in utero and during early postnatal development on asbestos-related inflammation and disease in adulthood. ETS exposure in utero appeared to shift inflammation towards a Th2 phenotype, via suppression of Th1 inflammatory cytokine production. This effect was further pronounced in mice exposed to ETS in utero and during early postnatal development. In utero ETS exposure led to increased collagen deposition, a marker of fibrotic disease, when the offspring was later exposed to asbestos, which was further increased with additional ETS exposure during early postnatal development. These data suggest that ETS exposure in utero alters the immune responses and leads to greater disease development after asbestos exposure, which is further exacerbated when exposure to ETS continues during early postnatal development. PMID:27138493

  12. Chronic cigarette smoke exposure adversely alters 14C-arachidonic acid metabolism in rat lungs, aortas and platelets

    International Nuclear Information System (INIS)

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from 14C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from 14C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases

  13. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    Science.gov (United States)

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development. PMID:18804091

  14. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    Science.gov (United States)

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution. PMID:25543075

  15. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    Science.gov (United States)

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  16. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)

    OpenAIRE

    Zidong Liu; Rong Tang; Dapeng Li; Qing Hu; Ying Wang

    2015-01-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct ...

  17. LOWER DOSE OF AMINOGLYCOSIDE OTOTOXIC EXPOSURE CAUSES PRESYNAPTIC ALTERATIONS ASSOICATED WITH HEARING LOSS

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; WANG Xiaoyu; LI Sijun; TANG Siquan; XU Yice; WANG Xuefeng; SUN Jianhe; YANG Weiyan; YANG Shiming

    2014-01-01

    Objective To study presynaptic alternations of cochlear ribbons arising from aminoglycoside ototoxic stimuli in C57BL/6J mice. Methods Animals were injected with low dose gentamicin (100 mg/kg/day) for 14 days, From the 14th to 28th days, the mice were maintained free of gentamicin treatment. Immunohisto-chemistry labeling was employed to trace RIBEYE, a major presynaptic componment of ribbon synapses. RIBEYE/CtBP2 expression levels were assessed and compared with hearing threshold shifts. Auditory func-tion was assessed by auditory brainstem responses. The stereocilia of outer hair cells (OHCs) and IHCs was examined by scanning electron microscopy (SEM). Results Hearing thresholds were elevated with peak hearing loss observed on the 7th day after gentamicin exposure, followed by improvement after the 7th day. RIBEYE/CtBP2 expression directly correlated with observed hearing threshold shifts. Strikingly, we did not see any obvious changes in stereocilia in both OHCs and IHCs until the 28th day. Mild changes in stereocil-ia were only observed in OHCs on the 28th day. Conclusions These findings indicate that presynapse co-chlear ribbons, rather than stereocilia, may be sensitive to aminoglycoside ototoxic exposure in mice cochle-ae. A pattern of RIBEYE/CtBP2 expression changes seems to parallel hearing threshold shifts and suggests presynaptic response properties to lower dosage of aminoglycoside ototoxic stimuli.

  18. Alterations in the heme biosynthetic pathway as an index of exposure to toxins

    Energy Technology Data Exchange (ETDEWEB)

    Marks, G.S.; Zelt, D.T.; Cole, S.P.

    1982-07-01

    Under normal circumstances the heme biosynthetic pathway is carefully controlled and porphyrins are formed in only trace amounts. When control mechanisms are disturbed by xenobiotics, porphyrins may be formed and serve as a signal of the interaction between a xenobiotic and the heme biosynthetic pathway. For example, porphyrinuria was an early manifestation of a hexachlorobenzene-induced porphyria outbreak in Turkey. In humans exposed to polybrominated biphenyls and to 2,3,7,8-tetrachlorodibenzo-p-dioxin the urinary porphyrin pattern was significantly different from normal in a large number of exposed individuals. The question is raised whether measurement of urinary porphyrin profiles by improved methods will enable an estimate to be made of the extent of exposure to haloaromatic hydrocarbons in the human population. A wide variety of xenobiotics interact with the prosthetic heme of cytochrome P-450 forming novel N-alkylporphyrins. Identification of these N-alkylporphyrins in body fluids might provide a means of assessing exposure to a variety of xenobiotics in human populations.

  19. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages

    Directory of Open Access Journals (Sweden)

    Geelen Tessa

    2012-08-01

    Full Text Available Abstract Background Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS-containing liposomes were developed for magnetic resonance imaging (MRI and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. Results Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. Conclusions Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of targeted drug delivery to inflammatory cells.

  20. The phosphatidylserine receptor TIM-4 does not mediate direct signaling.

    Science.gov (United States)

    Park, Daeho; Hochreiter-Hufford, Amelia; Ravichandran, Kodi S

    2009-02-24

    Engulfment of apoptotic cells is an active process coordinated by receptors on phagocytes and ligands on apoptotic cells [1]. Phosphatidylserine (PtdSer) is a key ligand on apoptotic cells, and recently three PtdSer recognition receptors have been identified, namely, TIM-4, BAI1, and Stabilin-2 [1-6]. Whereas BAI1 is dependent on the ELMO1/Dock180/Rac signaling module, and Stablilin-2 appears to use the intracellular adaptor GULP [2, 3, 7], little is known about how TIM-4 transduces signals downstream of PtdSer recognition [8]. To test the role of known engulfment signaling pathways in TIM-4-mediated engulfment, we used a combination of dominant-negative mutants, knockdown of specific signaling proteins, and knockout cell lines. TIM-4 appears to be largely independent of the two known engulfment signaling pathways [7, 9-17], yet the TIM-4-mediated uptake is inhibited by cytoskeleton disrupting drugs. Remarkably, a version of TIM-4 lacking its cytoplasmic tail promoted corpse uptake via PtdSer recognition. Moreover, replacement of the transmembrane region of TIM-4 with a glycophosphatidylinositol anchor still promoted engulfment comparable to wild-type TIM-4. Thus, the transmembrane region and cytoplasmic tail of TIM-4 are dispensable for apoptotic cell engulfment, and we propose that TIM-4 is a PtdSer tethering receptor without any direct signaling of its own. PMID:19217291

  1. Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells.

    Directory of Open Access Journals (Sweden)

    Hadas Keren

    Full Text Available Familial Dysautonomia (FD is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP. The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS, an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.

  2. Sensorimotor learning in children and adults: Exposure to frequency-altered auditory feedback during speech production.

    Science.gov (United States)

    Scheerer, N E; Jacobson, D S; Jones, J A

    2016-02-01

    Auditory feedback plays an important role in the acquisition of fluent speech; however, this role may change once speech is acquired and individuals no longer experience persistent developmental changes to the brain and vocal tract. For this reason, we investigated whether the role of auditory feedback in sensorimotor learning differs across children and adult speakers. Participants produced vocalizations while they heard their vocal pitch predictably or unpredictably shifted downward one semitone. The participants' vocal pitches were measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback modified subsequent speech motor commands. Sensorimotor learning was observed in both children and adults, with participants' initial vocal pitch increasing following trials where they were exposed to predictable, but not unpredictable, frequency-altered feedback. Participants' vocal pitch was also measured across each vocalization, to index the extent to which the deviant auditory feedback was used to modify ongoing vocalizations. While both children and adults were found to increase their vocal pitch following predictable and unpredictable changes to their auditory feedback, adults produced larger compensatory responses. The results of the current study demonstrate that both children and adults rapidly integrate information derived from their auditory feedback to modify subsequent speech motor commands. However, these results also demonstrate that children and adults differ in their ability to use auditory feedback to generate compensatory vocal responses during ongoing vocalization. Since vocal variability also differed across the children and adult groups, these results also suggest that compensatory vocal responses to frequency-altered feedback manipulations initiated at vocalization onset may be modulated by vocal variability. PMID:26628403

  3. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period.

    Science.gov (United States)

    Wang, Tao; Guan, Rui-Li; Liu, Ming-Chao; Shen, Xue-Feng; Chen, Jing Yuan; Zhao, Ming-Gao; Luo, Wen-Jing

    2016-08-01

    Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes. PMID:26141123

  4. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Science.gov (United States)

    Chen, Yichang; Shu, Le; Qiu, Zhiqun; Lee, Dong Yeon; Settle, Sara J; Que Hee, Shane; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-07-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures. PMID:27472198

  5. Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes.

    Science.gov (United States)

    Gavello, Daniela; Vandael, David H F; Cesa, Roberta; Premoselli, Federica; Marcantoni, Andrea; Cesano, Federico; Scarano, Domenica; Fubini, Bice; Carbone, Emilio; Fenoglio, Ivana; Carabelli, Valentina

    2012-02-01

    We studied the effects of multi-walled carbon nanotubes (MWCNTs) on the electrophysiological properties of cultured mouse chromaffin cells, a model of spontaneously firing cells. The exposure of chromaffin cells to MWCNTs at increasing concentrations (30-263 μg/ml) for 24 h reduced, in a dose-dependent way, both the cell membrane input resistance and the number of spontaneously active cells (from 80-52%). Active cells that survived from the toxic effects of MWCNTs exhibited more positive resting potentials, higher firing frequencies and unaltered voltage-gated Ca(2+), Na(+) and K+ current amplitudes. MWCNTs slowed down the inactivation kinetics of Ca(2+)-dependent BK channels. These electrophysiological effects were accompanied by MWCNTs internalization, as confirmed by transmission electron microscopy, indicating that most of the toxic effects derive from a dose-dependent MWCNTs-cell interaction that damages the spontaneous cell activity. PMID:21322767

  6. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice.

    Directory of Open Access Journals (Sweden)

    Jennifer T Wolstenholme

    Full Text Available Bisphenol A (BPA is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5 because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.

  7. Chronic cocaine or ethanol exposure during adolescence alters novelty-related behaviors in adulthood.

    Science.gov (United States)

    Stansfield, Kirstie H; Kirstein, Cheryl L

    2007-04-01

    Adolescence is a time of high-risk behavior and increased exploration. This developmental period is marked by a greater probability to initiate drug use and is associated with an increased risk to develop addiction and adulthood dependency and drug use at this time is associated with an increased risk. Human adolescents are predisposed toward an increased likelihood of risk-taking behaviors [Zuckerman M. Sensation seeking and the endogenous deficit theory of drug abuse. NIDA Res Monogr 1986;74:59-70.], including drug use or initiation. In the present study, adolescent animals were exposed to twenty days of either saline (0.9% sodium chloride), cocaine (20 mg/kg) or ethanol (1 g/kg) i.p. followed by a fifteen-day washout period. All animals were tested as adults on several behavioral measures including locomotor activity induced by a novel environment, time spent in the center of an open field, novelty preference and novel object exploration. Animals exposed to cocaine during adolescence and tested as adults exhibited a greater locomotor response in a novel environment, spent less time in the center of the novel open field and spent less time with a novel object, results that are indicative of a stress or anxiogenic response to novelty or a novel situation. Adolescent animals chronically administered ethanol and tested as adults, unlike cocaine-exposed were not different from controls in a novel environment, indicated by locomotor activity or time spent with a novel object. However, ethanol-exposed animals approached the novel object more, suggesting that exposure to ethanol during development may result in less-inhibited behaviors during adulthood. The differences in adult behavioral responses after drug exposure during adolescence are likely due to differences in the mechanisms of action of the drugs and subsequent reward and/or stress responsivity. Future studies are needed to determine the neural substrates of these long lasting drug-induced changes. PMID

  8. Mainstream cigarette smoke exposure alters cytochrome P4502G1 expression in F344 rat olfactory mucosa

    International Nuclear Information System (INIS)

    Inhalation of mainstream cigarette smoke (MCS) by rats results in multifocal rhinitis, mucous hypersecretion, nasal epithelial hyperplasia and metaplasia, and focal olfactory mucosal atrophy. In humans, cigarette smoking causes long-term, dose-related alterations in olfactory function in both current and former smokers. An olfactory-specific cytochrome P450 has been identified in rabbits and rats. The presence of olfactory-specific P450s, as well as relatively high levels of other biotransformation enzymes, such as NADPH-cytochrome P450 reductase and UDP-glucuronosyl transferase, in the olfactory neuroepithelium suggest that these enzyme systems may play a role in olfaction. This hypothesis is strengthened by the observation that, in rats, the temporal gene activation of P4502G1 coincides with the postnatal increase in the sensitivity of olfactory response to odorants. The purpose of this investigation was to examine the effect of MCS exposure on P4502G1 protein expression

  9. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    International Nuclear Information System (INIS)

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  10. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States); Rise, Matthew L. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Spitsbergen, Jan M. [Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331 (United States); Hori, Tiago S. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Mieritz, Mark; Geis, Steven [Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706 (United States); McGraw, Joseph E. [School of Pharmacy, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097 (United States); Goetz, Giles [School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle, WA 98195 (United States); Larson, Jeremy; Hutz, Reinhold J. [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); Carvan, Michael J., E-mail: carvanmj@uwm.edu [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States)

    2013-09-15

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  11. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    Science.gov (United States)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  12. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash.

    Science.gov (United States)

    Markad, Vijaykumar L; Adav, Sunil S; Ghole, Vikram S; Sze, Siu Kwan; Kodam, Kisan M

    2016-10-01

    Fly ash is toxic and its escalating use as a soil amendment and disposal by dumping into environment is receiving alarming attention due to its impact on environment. Proteomics technology is being used for environmental studies since proteins respond rapidly when an organism is exposed to a toxicant, and hence soil engineers such as earthworms are used as model organisms to assess the toxic effects of soil toxicants. This study adopted proteomics technology and profiled proteome of earthworm Dichogaster curgensis that was exposed to fly ash, with main aim to elucidate fly ash effects on cellular and metabolic pathways. The functional classification of identified proteins revealed carbohydrate metabolism (14.36%), genetic information processing (15.02%), folding, sorting and degradation (10.83%), replication and repair (3.95%); environmental information processing (2.19%), signal transduction (9.61%), transport and catabolism (17.27%), energy metabolism (6.69%), etc. in the proteome. Proteomics data and functional assays revealed that the exposure of earthworm to fly ash induced protein synthesis, up-regulation of gluconeogenesis, disturbed energy metabolism, oxidative and cellular stress, and mis-folding of proteins. The regulation of ubiquitination, proteasome and modified alkaline comet assay in earthworm coelomocytes suggested DNA-protein cross link affecting chromatin remodeling and protein folding. PMID:27371791

  13. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    Science.gov (United States)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. PMID:27304513

  14. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  15. Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Mykyta Sokolov

    2015-12-01

    Full Text Available Exposure to ionizing radiation (IR is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR compared to those observed after a short-term high-dose IR exposure (HDIR. With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes.

  16. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  17. Experimental exposure of African catfish Clarias Gariepinus (Burchell, 1822 to phenol: Clinical evaluation, tissue alterations and residue assessment

    Directory of Open Access Journals (Sweden)

    Mai D. Ibrahem

    2012-04-01

    Full Text Available There is lack of information regarding; the toxicological and pathological consequences of phenol stressed Clarias gariepinus; as well as; the susceptibility of the stressed fish to disease occurrence. Static renewal bioassay was experimentally conducted to evaluate the toxic effects of phenol on the African catfish C. gariepinus. Ninety-six-hour acute toxicity tests revealed that the median lethal concentration of phenol (LC50 is 35 mg/L by immersion. Four experimental fish groups were assigned for 3 weeks exposure test; three were exposed 20%, 50% and 70% LC50, the fourth control fish group received a vehicle of dechlorinated water. Abnormal signs including cessation of feeding, nervous manifestations; skin expressed perfuses mucous, black patches with skin erosion and ulcerations in the later stages. All observations were correlated to the time and dose of exposure. Post mortem examination revealed adhesion of the internal organs. For tissue alterations; Skin, gills, brain, liver and kidney showed variable degrees of degenerative changes and necrosis. Muscle residues shown in mean ± SE were 4.3 ± 0.05 and 6.65 ± 0.05 ppm in groups that received 20 and 50% LD50, respectively. Infection with Aeromonas hydrophila resulted in high percent of mortalities with a non significant difference between the challenged fish groups. The study cleared that phenol is toxic to C. gariepinus under experimental conditions.

  18. Alterations of red cell membrane properties in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Claudia Siegl

    Full Text Available Neuroacanthocytosis (NA refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc, McLeod syndrome (MLS, Huntington's disease-like 2 (HDL2 and pantothenate kinase associated neurodegeneration (PKAN, that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation, associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10% and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.

  19. Estrogen-induced breast cancer: Alterations in breast morphology and oxidative stress as a function of estrogen exposure

    International Nuclear Information System (INIS)

    Epidemiological evidence indicates that prolonged lifetime exposure to estrogen is associated with elevated breast cancer risk in women. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. In the present study, we investigated changes in breast morphology and oxidative stress following estrogen exposure. Female ACI rats were treated with 17β-estradiol (E2, 3 mg, s.c.) for either 7, 15, 120 or 240 days. Animals were euthanized, tissues were excised, and portions of the tissues were either fixed in 10% buffered formalin or snap-frozen in liquid nitrogen. Paraffin-embedded tissues were examined for histopathologic changes. Proliferative changes appeared in the breast after 7 days of E2 exposure. Atypical ductal proliferation and significant reduction in stromal fat were observed following 120 days of E2 exposure. Both in situ and invasive carcinomas were observed in the majority of the mammary glands from rats treated with E2 for 240 days. Palpable breast tumors were observed in 82% of E2-treated rats after 228 days, with the first palpable tumor appearing after 128 days. No morphological changes were observed in the livers, kidneys, lungs or brains of rats treated with E2 for 240 days compared to controls. Furthermore, 8-isoprostane (8-isoPGF2α) levels as well as the activities of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase, were quantified in the breast tissues of rats treated with E2 for 7, 15, 120 and 240 days and compared to activity levels in age-matched controls. 8-isoPGF2α levels displayed time-dependent increases upon E2 treatment and were significantly higher than control levels at the 15, 120 and 240 day time-points. 8-isoPGF2α observed in E2-induced mammary tumors were significantly higher than levels found in control mammary tissue from age-matched animals. Similarly, alterations in glutathione peroxidase and

  20. Early exposure to dynamic environments alters patterns of motor exploration throughout the lifespan.

    Science.gov (United States)

    Hong, S Lee; Estrada-Sánchez, Ana María; Barton, Scott J; Rebec, George V

    2016-04-01

    We assessed early rearing conditions on aging-related changes in mouse behavior. Two isolated-housing groups, running wheel (IHRW) and empty cage (IHEC), were compared against two enriched environments, static (EEST) and dynamic (EEDY), both of which included toys and other mice. For EEDY, the location of toys and sources of food and water changed daily, but remained constant for EEST. All mice, randomly assigned to one of the four groups at ∼4 weeks of age, remained in their respective environments for 25 weeks followed by single housing in empty cages. Beginning at ∼40 weeks of age, all mice were tested at monthly intervals in a plus-shaped maze in which we measured the number of arm entries and the probability of entering a perpendicular arm. Despite making significantly more arm entries than any other group, IHEC mice also were less likely to turn into the left or right arm, a sign of motor inflexibility. Both EEDY and EEST mice showed enhanced turning relative to IHRW and IHEC groups, but only EEDY mice maintained their turning performance for up to ∼100 weeks of age. EEDY and EEST mice also were unique in showing an increase in expression of the major glutamate transporter (GLT1) in striatum, but a decrease in motor cortex, suggesting a need for further assessment of environmental manipulations on long-term changes in forebrain glutamate transmission. Our behavioral results indicate that early exposure to continually changing environments, rather than socialization or exercise alone, results in life-long changes in patterns of motor exploration. PMID:26778790

  1. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  2. Prenatal fat-rich diet exposure alters responses of embryonic neurons to the chemokine, CCL2, in the hypothalamus.

    Science.gov (United States)

    Poon, K; Abramova, D; Ho, H T; Leibowitz, S

    2016-06-01

    Maternal consumption of a high-fat diet (HFD) during pregnancy is found to stimulate the genesis of hypothalamic orexigenic peptide neurons in the offspring, while HFD intake in adult animals produces a systemic low-grade inflammation which increases neuroimmune factors that may affect neurogenesis and neuronal migration. Building on this evidence and our recent study showing that the inflammatory chemokine, CCL2, stimulates the migration of hypothalamic neurons and expression of orexigenic neuropeptides, we tested here the possibility that prenatal exposure to a HFD in rats affects this chemokine system, both CCL2 and its receptors, CCR2 and CCR4, and alters its actions on hypothalamic neurons, specifically those expressing the neuropeptides, enkephalin (ENK) and galanin (GAL). Using primary dissociated hypothalamic neurons extracted from embryos on embryonic day 19, we found that prenatal HFD exposure compared to chow control actually reduces the expression of CCL2 in these hypothalamic neurons, while increasing CCR2 and CCR4 expression, and also reduces the sensitivity of hypothalamic neurons to CCL2. The HFD abolished the dose-dependent, stimulatory effect of CCL2 on the number of migrated neurons and even shifted its normal stimulatory effect on migrational velocity and distance traveled by control neurons to an inhibition of migration. Further, it abolished the dose-dependent, stimulatory effect of CCL2 on neuronal expression of ENK and GAL. These results demonstrate that prenatal HFD exposure greatly disturbs the functioning of the CCL2 chemokine system in embryonic hypothalamic neurons, reducing its endogenous levels and ability to promote the migration of neurons and their expression of orexigenic peptides. PMID:26979053

  3. Alteration of neutrophil function in BCG-treated and non-treated swine after exposure to Salmonella typhimurium.

    Science.gov (United States)

    Coe, N E; Frank, D E; Wood, R L; Roth, J A

    1992-06-01

    Salmonella typhimurium infection in swine causes an enterocolitis followed by a persistent carrier state, but little is known about the mechanisms that allow this organism to colonize and persist in host tissues. Neutrophils provide a first line of defense against invading pathogens such as Salmonella typhimurium. The purpose of this study was to evaluate porcine neutrophil function after in vivo exposure to Salmonella and to determine if the immunomodulator, bacillus Calmette Guerin (BCG), exerts any effect on neutrophil function or on the colonization and persistence of S. typhimurium in the pig. Compared to negative controls, neutrophils from pigs exposed to S. typhimurium exhibited significantly decreased iodination, cytochrome-C reduction, antibody-dependent cell-mediated cytotoxicity, random migration, and chemotaxis (P less than or equal to 0.05). Neutrophil bactericidal activity against S. typhimurium was significantly enhanced. Most of the significant differences were noted in the first two days after exposure to Salmonella. Often the functional alterations were biphasic, peaking again 7-10 days after exposure. BCG alone significantly depressed random migration and cytochrome-C reduction in unstimulated neutrophils. The clinical course, colonization pattern, and persistence of Salmonella were similar between pigs receiving BCG and untreated pigs. These data suggest that S. typhimurium infection causes a depression in oxidative metabolism and motility, yet an increase in overall bactericidal activity against S. typhimurium in circulating porcine neutrophils. It also appears that BCG treatment, as reported here, does not enhance resistance of pigs to S. typhimurium colonization or reduce the number of persistent organisms in the porcine ileum. PMID:1321531

  4. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    Science.gov (United States)

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. PMID:27038576

  5. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  6. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    Science.gov (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome. PMID:23934110

  7. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue.

    Directory of Open Access Journals (Sweden)

    Kimberley E Wever

    Full Text Available Renal ischemia/reperfusion injury (IRI frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5 homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo.

  8. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  9. Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats: influence of maternal Mg2+ supplementation.

    Science.gov (United States)

    Wold, L E; Norby, F L; Hintz, K K; Colligan, P B; Epstein, P N; Ren, J

    2001-01-01

    Fetal alcohol syndrome (FAS) is often associated with cardiac hypertrophy and impaired ventricular function in a manner similar to postnatal chronic alcohol ingestion. Chronic alcoholism has been shown to lead to hypomagnesemia, and dietary Mg2+ supplementation was shown to ameliorate ethanol- induced cardiovascular dysfunction such as hypertension. However, the role of gestational Mg2+ supplementation on FAS-related cardiac dysfunction is unknown. This study was conducted to examine the influence of gestational dietary Mg2+ supplementation on prenatal ethanol exposure-induced cardiac contractile response at the ventricular myocyte level. Timed-pregnancy female rats were fed from gestation day 2 with liquid diets containing 0.13 g/L Mg2+ supplemented with ethanol (36%) or additional Mg2+ (0.52 g/L), or both. The pups were maintained on standard rat chow through adulthood, and ventricular myocytes were isolated and stimulated to contract at 0.5 Hz. Mechanical properties were evaluated using an IonOptix soft-edge system, and intracellular Ca2+ transients were measured as changes in fura-2 fluorescence intensity (Delta FFI). Offspring from all groups displayed similar growth curves. Myocytes from the ethanol group exhibited reduced cell length, enhanced peak shortening (PS), and shortened time to 90% relengthening (TR90) associated with a normal Delta FFI and time to PS (TPS). Mg2+ reverted the prenatal ethanol-induced alteration in PS and maximal velocity of relengthening. However, it shortened TPS and TR90, and altered the Delta FFI, as well as Ca2+ decay rate by itself. Additionally, myocytes from the ethanol group exhibited impaired responsiveness to increased extracellular Ca2+ or stimulating frequency, which were restored by gestational Mg2+ supplementation. These data suggest that although gestational Mg2+ supplementation may be beneficial to certain cardiac contractile dysfunctions in offspring of alcoholic mothers, caution must be taken, as Mg2

  10. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring.

    Science.gov (United States)

    Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco

    2016-07-01

    Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring. PMID:25940002

  11. Vinpocetine and Vitamin E Modulates Some Biochemical Alterations Induced by Exposure to Ionizing Radiation and Chloropyrifos in Rats

    International Nuclear Information System (INIS)

    Acapi-Cav is a well balanced and well tolerated formula containing vinpocetine and vitamin E. The objective of this study was to investigate the effect of vinpocetine and vitamin E on the oxidative stress, electrolytes and monoamines level in rats exposed to ionizing radiation (gamma rays), chloropyrifos (CPF) as well as rats exposed to a combination of gamma rays and CPF. Irradiation was performed by whole body exposure of rats to 8 Gy delivered at 1 Gy every 4 days. CPF was administered to rats by oral gavages at a dose of 3.6 mg/kg body weight ( 1/10 LD50 ) daily for 30 days. Vinpocetine and vitamin E were administered to rats by oral gavages at a dose of 20 mg/kg body weight daily during 7 days before starting the experiment and continued during the period of exposure to gamma rays and/or CPF. The results revealed significant increase of malondialdehyde (MDA) level associated with a significant decrease of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in the blood of rats exposed to gamma rays and/or CPF indicating oxidative stress. The levels of serum electrolytes (sodium Na+, potassium K+, calcium Ca++ and magnesium Mg) showed significant decrease. Serum dopamine (DA) level was decreased and norepinephrine (NE) was increased while epinephrine (EPI) showed non-significant change. The level of serum monoamine oxidase (MAO) showed significant increase. The administration of vinpocetine and vitamin E to rats exposed to gamma rays and/or CPF significantly reduced the amount of MDA which associated with an increase in the level of antioxidants and significant improvement was recorded for electrolytes level. The results demonstrated that vinpocetine and vitamin E significantly attenuated the increase of MAO and induced significant amelioration in the level of monoamines. It could be concluded that vinpocetine and vitamin E might protect the body from oxidative damage and electrolytes and monoamines alterations in rats exposed to gamma rays and

  12. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  13. Soybean-Derived Phosphatidylserine Improves Memory Function of the Elderly Japanese Subjects with Memory Complaints

    OpenAIRE

    Kato-Kataoka, Akito; Sakai, Masashi; Ebina, Rika; NONAKA, Chiaki; Asano, Tsuguyoshi; Miyamori, Takashi

    2010-01-01

    Soybean-derived phosphatidylserine (Soy-PS) is a phosphatidylserine made from soybean lecithin by enzymatic reaction with L-serine. A double-blind, randomized controlled study was conducted to investigate the effects of Soy-PS on the cognitive functions of the elderly Japanese subjects with memory complaints. Seventy-eight elderly people with mild cognitive impairment (50–69 years old) were randomly allocated to take Soy-PS (100 mg, 300 mg/day) or placebo for 6 months. As a result, there was ...

  14. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  15. Prolonged exposure to (R)-bicalutamide generates a LNCaP subclone with alteration of mitochondrial genome.

    Science.gov (United States)

    Pignatta, Sara; Arienti, Chiara; Zoli, Wainer; Di Donato, Marzia; Castoria, Gabriella; Gabucci, Elisa; Casadio, Valentina; Falconi, Mirella; De Giorgi, Ugo; Silvestrini, Rosella; Tesei, Anna

    2014-01-25

    Advanced prostate cancers, initially sensitive to androgen deprivation therapy, frequently progress to the castration-resistant prostate cancer phenotype (CRPC) through mechanisms not yet fully understood. In this study we investigated mitochondrial involvement in the establishment of refractoriness to hormone therapy. Two human prostate cancer cell lines were used, the parental LNCaP and the resistant LNCaP-Rbic, the latter generated after continuous exposure to 20 μM of (R)-bicalutamide, the active enantiomer of Casodex®. We observed a significant decrease in mtDNA content and a lower expression of 8 mitochondria-encoded gene transcripts involved in respiratory chain complexes in both cell lines. We also found that (R)-bicalutamide differentially modulated dynamin-related protein (Drp-1) expression in LNCaP and LNCaP-Rbic cells. These data seem to indicate that the androgen-independent phenotype in our experimental model was due, at least in part, to alterations in mitochondrial dynamics and to a breakdown in the Drp-1-mediated mitochondrial network. PMID:24397920

  16. Kidney injury and alterations of inflammatory cytokine expressions in mice following long-term exposure to cerium chloride.

    Science.gov (United States)

    Sang, Xuezi; Ze, Xiao; Gui, Suxin; Wang, Xiaochun; Hong, Jie; Ze, Yuguan; Zhao, Xiaoyang; Sheng, Lei; Sun, Qingqing; Yu, Xiaohong; Wang, Ling; Hong, Fashui

    2014-12-01

    It has been demonstrated that the organic damages of animals can be caused by exposure to lanthanide oxides or compounds. However, the molecular mechanism of CeCl3 -induced kidney injury remains unclear. In this study, the mechanism of nephric damage in mice induced by an intragastric administration of CeCl3 was investigated. The results showed that Ce(3+) was accumulated in the kidney, which in turn led to oxidative stress, severe nephric inflammation, and dysfunction in mice. Furthermore, CeCl3 activated nucleic factor κB, which in turn increased the expression levels of tumor necrosis factor α, macrophage migration inhibitory factor, interleukin-2, interleukin-4, interleukin-6, interleukin-8, interleukin-10, interleukin-18, interleukin-1β, cross-reaction protein, transforming growth factor-β, interferon-γ, and CYP1A1, while suppressed heat shock protein 70 expression. These findings implied that Ce(3+) -induced kidney injury of mice might be associated with oxidative stress, alteration of inflammatory cytokine expression, and reduction of detoxification of CeCl3 . PMID:23712967

  17. Myelin alters the inflammatory phenotype of macrophages by activating PPARs

    OpenAIRE

    Bogie, Jeroen; Jorissen, Winde; Mailleux, Jo; Vanmierlo, Tim; van Horssen, Jack; Hellings, Niels; Stinissen, Piet; Hendriks, J. J. A.; Nijland, Philip G.; Zelcer, Noam

    2013-01-01

    Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitri...

  18. The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues Rosa Laura López-Marqués1, Lisbeth Rosager Poulsen1, Katharina Meffert2, Thomas Pomorski2, Michael Gjedde Palmgren1 1Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation...

  19. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    Science.gov (United States)

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring. PMID:18713641

  20. DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: A persistent epigenetic impact on health from maternal lifestyle?

    Science.gov (United States)

    Nielsen, Christina H; Larsen, Agnete; Nielsen, Anders L

    2016-02-01

    Despite increased awareness, maternal cigarette smoking during pregnancy continues to be a common habit causing risk for numerous documented negative health consequences in the exposed children. It has been proposed that epigenetic mechanisms constitute the link between prenatal exposure to maternal cigarette smoking (PEMCS) and the diverse pathologies arising in later life. We here review the current literature, focusing on DNA methylation. Alterations in the global DNA methylation patterns were observed after exposure to maternal smoking during pregnancy in placenta, cord blood and buccal epithelium tissue. Further, a number of specific genes exemplified by CYP1A1, AhRR, FOXP3, TSLP, IGF2, AXL, PTPRO, C11orf52, FRMD4A and BDNF are shown to have altered DNA methylation patterns in at least one of these tissue types due to PEMCS. Investigations showing persistence and indications of trans-generational inheritance of DNA methylation alterations induced by smoking exposure are also described. Further, smoking-induced epigenetic manifestations can be both tissue-dependent and gender-specific which show the importance of addressing the relevant sex, tissue and cell types in the future studies linking specific epigenetic alterations to disease development. Moreover, the effect of paternal cigarette smoking and second-hand smoke exposure is documented and accordingly not to be neglected in future investigations and data evaluations. We also outline possible directions for the future research to address how DNA methylation alterations induced by maternal lifestyle, exemplified by smoking, have direct consequences for fetal development and later in life health and behavior of the child. PMID:25480659

  1. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    OpenAIRE

    Derek A Hamilton; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Rep...

  2. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  3. Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice

    International Nuclear Information System (INIS)

    Arsenic (As) is a toxic metalloid widely present in the environment. Human exposure to As has been associated with the development of skin and internal organ cancers and cardiovascular disorders, among other diseases. A few studies report decreases in intelligence quotient (IQ), and sensory and motor alterations after chronic As exposure in humans. On the other hand, studies of rodents exposed to high doses of As have found alterations in locomotor activity, brain neurochemistry, behavioral tasks, and oxidative stress. In the present study both male and female C57Bl/6J mice were exposed to environmentally relevant doses of As such as 0.05, 0.5, 5.0, or 50 mg As/L of drinking water for 4 months, and locomotor activity was assessed every month. Male mice presented hyperactivity in the group exposed to 0.5 mg As/L and hypoactivity in the group exposed to 50 mg As/L after 4 months of As exposure, whereas female mice exposed to 0.05, 0.5, and 5.0 mg As/L exhibited hyperactivity in every monthly test during As exposure. Furthermore, striatal and hypothalamic dopamine content was decreased only in female mice. Also decreases in tyrosine hydroxylase (TH) and cytosolic thioredoxin (Trx-1) mRNA expression in striatum and nucleus accumbens were observed in male and female mice, respectively. These results indicate that chronic As exposure leads to gender-dependent alterations in dopaminergic markers and spontaneous locomotor activity, and down-regulation of the antioxidant capacity of the brain.

  4. Lead Exposure during Synaptogenesis Alters Vesicular Proteins and Impairs Vesicular Release: Potential Role of NMDA Receptor–Dependent BDNF Signaling

    OpenAIRE

    Neal, April P.; Stansfield, Kirstie H.; Worley, Paul F.; Thompson, Richard E.; Guilarte, Tomás R.

    2010-01-01

    Lead (Pb2+) exposure is known to affect presynaptic neurotransmitter release in both in vivo and cell culture models. However, the precise mechanism by which Pb2+ impairs neurotransmitter release remains unknown. In the current study, we show that Pb2+ exposure during synaptogenesis in cultured hippocampal neurons produces the loss of synaptophysin (Syn) and synaptobrevin (Syb), two proteins involved in vesicular release. Pb2+ exposure also increased the number of presynaptic contact sites. H...

  5. Multi-generational effects of polybrominated diphenylethers exposure: embryonic exposure of male American kestrels (Falco sparverius) to DE-71 alters reproductive success and behaviors.

    Science.gov (United States)

    Marteinson, Sarah C; Bird, David M; Shutt, J Laird; Letcher, Robert J; Ritchie, Ian J; Fernie, Kim J

    2010-08-01

    Polybrominated diphenylethers (PBDEs) are additive flame-retardants that are environmentally persistent and bioaccumulative compounds of particular concern to species at high trophic levels, including predatory birds. The developmental effects of in ovo exposure to male birds at environmentally relevant levels of the PBDE technical mixture, DE-71, on reproductive success and behaviors using captive American kestrels (Falco sparverius) were determined. Males were exposed in ovo by direct maternal transfer to DE-71 and unintentionally to low concentrations of hexabromocyclododecane (HBCD) at three mean +/- standard error DE-71 concentrations of 288.60 +/- 33.35 ng/g wet weight (low-exposure), 1130.59 +/- 95.34 ng/g wet weight (high-exposure), or background levels of 3.01 +/- 0.46 ng/g wet weight (control). One year following exposure, males were paired with unexposed females. Reproductive success was lower in the high exposure pairs: 43% failed to lay eggs while all other pairs laid complete clutches; they also laid smaller clutches and produced smaller eggs with reduced fertility, parameters that were negatively correlated with paternal in ovo concentrations of all PBDEs, as well as individual congeners and HBCD. Throughout courtship, there were fewer copulations by all in ovo exposed males, fewer mate-calls made by high-exposure males, and decreasing trends in pair-bonding and nest-box behaviors across treatments that continued during brood rearing. The reductions in clutch size and fertility were associated with the reduced frequencies of male courtship behaviors, and were associated with increasing concentrations of the PBDE congeners BDE-47, -99, -100, -53, -138, and HBCD. The results of the present study confirm effects noted in the F(0) generation and demonstrate that exposure to DE-71 affects multiple generations of this predatory avian species at environmentally relevant levels of exposure. PMID:20821627

  6. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  7. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Mandarapu, Rajesh; Prakhya, Balakrishna Murthy

    2016-07-01

    The complex immune system displays a coordinated transcriptional response to xenobiotic exposure by altering expression of designated transcription factors that, in turn, trigger immune responses. Despite the identification of several transcription factors that contribute to regulatory response, very little is known about the specific role of factors that are triggered due to exposure to obnoxious pesticides. Here, for the first time, alterations in human peripheral blood lymphocyte expression of transcriptional factors - thrombospondin-1 (THBS-1), secretory phospho-protein-1 (SPP-1), glycoprotein non-metastatic-β (GPNMB) and fasciculation and elongation factor ζ-1 (FEZ-1), due to in vitro exposure to the crop protection chemicals cypermethrin and mancozeb are reported. Results revealed significant changes in expression profiles due to mancozeb exposure, supporting its immune dysfunction potential; in contrast, cypermethrin exposure did not cause significant changes. Based on these effects on gene expression across the doses tested, it was likely key components of immune mechanisms such as proliferation, cell adhesion, apoptosis and cell activation in human PBMC were affected. Although these data are from in vitro experiments, the results point out the potential role for changes in these factors in the etiology of defective T-cell immune function seen in humans occupationally exposed to crop protection chemicals like mancozeb. These studies suggest the involvement of transcription factors in regulation of pesticide-induced immune dysfunction; these studies also represent a novel approach for identifying potential immune-related dysfunctions due to exposure to pesticides. Further studies are needed to better understand the functional significance of these in vitro findings. PMID:26796295

  8. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    OpenAIRE

    Epand, Richard M.; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidy...

  9. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    Science.gov (United States)

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...

  10. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair

    OpenAIRE

    Harel-Adar, Tamar; Mordechai, Tamar Ben; Amsalem, Yoram; Feinberg, Micha S.; Leor, Jonathan; Cohen, Smadar

    2011-01-01

    Herein we investigated a new strategy for the modulation of cardiac macrophages to a reparative state, at a predetermined time after myocardial infarction (MI), in aim to promote resolution of inflammation and elicit infarct repair. The strategy employed intravenous injections of phosphatidylserine (PS)-presenting liposomes, mimicking the anti-inflammatory effects of apoptotic cells. Following PS-liposome uptake by macrophages in vitro and in vivo, the cells secreted high levels of anti-infla...

  11. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    OpenAIRE

    Samanta Etel Treiger Borborema; João Alberto Osso Junior; Heitor Franco de Andrade Junior; Nanci do Nascimento

    2016-01-01

    Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine l...

  12. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells.

    OpenAIRE

    Voelker, D R

    1984-01-01

    Pulse-chase experiments with [3H]serine provide evidence that significant amounts of phosphatidylserine turn over to form phosphatidylethanolamine in mammalian cells in tissue culture. Phospholipase C hydrolysis of [3H]phosphatidylethanolamine synthesized from [3H]serine by baby hamster kidney (BHK-21) cells demonstrates that nearly all of the radiolabel remains in the ethanolamine moiety. Uniform labeling experiments with [3H]serine further demonstrate that the distribution of radiolabel in ...

  13. Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation

    OpenAIRE

    Yeung, Tony; Heit, Bryan; Dubuisson, Jean-Francois; Fairn, Gregory D.; Chiu, Basil; Inman, Robert; Kapus, Andras; Swanson, Michele; Grinstein, Sergio

    2009-01-01

    During phagocytosis, the phosphoinositide content of the activated membrane decreases sharply, as does the associated surface charge, which attracts polycationic proteins. The cytosolic leaflet of the plasma membrane is enriched in phosphatidylserine (PS); however, a lack of suitable probes has precluded investigation of the fate of this phospholipid during phagocytosis. We used a recently developed fluorescent biosensor to monitor the distribution and dynamics of PS during phagosome formatio...

  14. Enhanced Negative Emotion and Alcohol Craving, and Altered Physiological Responses Following Stress and Cue Exposure in Alcohol Dependent Individuals

    OpenAIRE

    Sinha, Rajita; Fox, Helen C.; Hong, Kwangik A.; Bergquist, Keri; Bhagwagar, Zubin; Siedlarz, Kristen M.

    2008-01-01

    Chronic alcohol abuse is associated with changes in stress and reward pathways that could alter vulnerability to emotional stress and alcohol craving. This study examines whether chronic alcohol abuse is associated with altered stress and alcohol craving responses. Treatment-engaged, 28-day abstinent alcohol-dependent individuals (ADs; 6F/22M), and social drinkers (SDs; 10F/18M) were exposed to a brief guided imagery of a personalized stressful, alcohol-related and neutral-relaxing situation,...

  15. Alterations of Thyroid Morphology and Function After Long-Term Exposure to Low Doses of Endocrine Disruptor Dichlorodiphenyltrichloroethane

    Directory of Open Access Journals (Sweden)

    Yaglov V.V.

    2014-12-01

    Full Text Available The aim of the investigation was to evaluate changes in thyroid morphology and function after different long-term exposure to low doses of endocrine disruptor dichlorodiphenyltrichloroethane (DDT under the maximum permissible levels in food products. Materials and Methods. The experiment was performed on adult male Wistar rats (n=62. Drinking water was substituted for water solution of o,p-DDT 20 and 80 μg/L. Mean daily consumption of DDT was 1.89±0.86 and 7.77±0.17 µg/kg body weight, respectively. Rat serum thyroid hormone content and histology of the thyroid glands were studied after 6 and 10 weeks of exposure to DDT. Results. 6-week exposure to DDT caused inhibition of thyroid function followed by reactive increase of thyroid stimulating hormone secretion and triiodothyronine production. These symptoms were similar to those of the early stage of iodine deficiency. Restoration of rat thyroid status after 10 weeks of exposure was achieved due to diffuse microfollicular transformation of thyroid parenchyma. Conclusion. Exposure to low doses of DDT inhibits thyroid function. Reactive increase of thyroid hormone production after exposure to DDT and in iodine deficiency is similar, but early changes in thyroid histology are different. Long-term exposure to DDT is supposed to aggravate iodine deficiency and to be a risk factor of thyroid tumors.

  16. Retinal alterations produced by low level gallium arsenide laser exposure. Interim report, 1 May--31 December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beatrice, E.S.; Lund, D.J.; Talsma, D.M.

    1977-02-01

    The retinas of rhesus monkeys were subjected to irradiation by a prototype gallium arsenide (GaAs) laser training device. The laser device operated at 1600 Hz (pulse repetition frequency mode) or 132 Hz (pulse code mode) with nominal peak pulse power of 1 watt and 10 watts. Exposure durations ranged from 1.0 sec to 90 sec. The tissue reaction at the exposure site was characterized by the development of a pale gray clouding within 10 sec of initiation of the exposure. The nature of the retinal change could not be determined by ophthalmoscopic, histologic, or flourescein leakage techniques.

  17. Long-term signal of population disturbance after pulse exposure to an insecticide: rapid recovery of abundance, persistent alteration of structure.

    Science.gov (United States)

    Liess, Matthias; Pieters, Barry Johan; Duquesne, Sabine

    2006-05-01

    Little is known about the effect of pulse exposure to toxicants on populations when density regulation is present. Yet, for a more realistic risk assessment, it is necessary to include effect and recovery at the population level. Here, we investigate the long-term and delayed effects as well as the subsequent recovery of populations of Daphnia magna. A 24-h pulse of the pyrethroid fenvalerate reduced the abundance at a concentration of 1.0 microg/L and higher. However, abundance recovered and reached control levels after one to two generation times (GTs) following reproduction of surviving individuals (GT = 8 d, from birth until first reproduction). At high concentrations above the acute median lethal concentration (3.2 micorg/L), abundance initially decreased even more strongly but was then elevated compared to control values for an extended period of time. Population structure (size distribution) was affected at lower concentrations than abundance (> 0.8 microg/L). In addition, the alteration of population structure lasted for a long time, so that control levels were approached only after approximately six or seven GTs. Our results show that pulse exposure to toxicants may lead to a long-term alteration of population structure even at sublethal concentrations. Possible mechanisms that sustain the effects of toxicants may be delayed life-history effects on the individual level and elevated competition because of altered population structure on the population level. PMID:16704065

  18. Exposure to the Contraceptive Progestin, Gestodene, Alters Reproductive Behavior, Arrests Egg Deposition, and Masculinizes Development in the Fathead Minnow (Pimephales promelas).

    Science.gov (United States)

    Frankel, Tyler E; Meyer, Michael T; Kolpin, Dana W; Gillis, Amanda B; Alvarez, David A; Orlando, Edward F

    2016-06-01

    Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected. PMID:27129041

  19. Alterations in the oxidative metabolism of Rhipicephalus (Boophilus) microplus ticks in response to exposure to the insect growth regulator fluazuron

    OpenAIRE

    Fabrício Nascimento Gaudêncio; Vinícius Menezes Tunholi-Alves; Mariana Gomes Lima; Patrícia Silva Gôlo; Isabele da Costa Angelo; Rosane Nora Castro; Adivaldo Henrique da Fonseca; Fabio Barbour Scott; Jairo Pinheiro

    2016-01-01

    Abstract Aiming to characterize the potential off-target effects of fluazuron on ticks, biochemical analyses were conducted to evaluate changes in the carbohydrate metabolism of Rhipicephalus (Boophilus) microplus ticks after exposure to fluazuron. Hemolymph and fat body were collected from female ticks before and after (4, 8 and 15 days) exposure to fluazuron. Spectrophotometric analyses were done to quantify glucose concentration and lactate dehydrogenase (LDH) activity in the hemolymph and...

  20. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    OpenAIRE

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in...

  1. Altered expression of epidermal growth factor receptor and estrogen receptor in MCF-7 cells after single and repeated radiation exposures

    International Nuclear Information System (INIS)

    This study focuses on the characterization of expression modulation of two critical growth regulatory genes, estrogen receptor and epidermal growth factor-receptor, in malignant mammary epithelial cells in response to single and repeated ionizing radiation exposures. MCF-7 cells were used for single radiation exposure (2-50 Gy) experiments and MCF-IR-3 cells, generated by exposure to cumulative doses of 60 Gy in 2 Gy fractions, respectively, were used to study the effects of repeated exposures. Steady-state messenger ribonucleic acid levels for estrogen receptor, epidermal growth factor-receptor, and transforming growth factor-α were determined by ribonucleic acid protection experiments. Estrogen receptor and epidermal growth factor-receptor protein expression was quantitated by competitive binding studies with 3H-estradiol and 125I-EGF. MCF-IR-3 cells showed a permanent three-fold down-regulation of the estrogen receptor messenger ribonucleic acid and protein, while epidermal growth factor-receptor was upregulated about nine-fold. Epidermal growth factor-receptor was substantially up-regulated in MCF-7 cells, at both the mRNA and protein levels, within 24 h of a single 2 Gy exposures, while there was a two-fold concomitant increase in transforming growth factor-α messenger ribonucleic acid expression. A decrease in estrogen receptor messenger ribonucleic acid and protein was suggested only after higher doses of single radiation exposures. The inverse expression of estrogen receptor and epidermal growth factor-receptor established for estrogen receptor-positive malignant mammary epithelial cells is maintained in MCF-7 cells after single and repeated exposures, suggesting that radiation acts through common regulatory circuits and may modulate the cellular phenotype. 40 refs., 2 figs., 2 tabs

  2. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    International Nuclear Information System (INIS)

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  3. Effect of end-of-day far-red light exposures on fertility alteration and flowering in photoperiod-sensitive genic male-sterile rice

    International Nuclear Information System (INIS)

    The rice photoperiod-sensitive genic male-sterile mutant (PGMR) is sterile under long days, but fertile in short days. Phytochrome is involved in the photoperiod-induced male-sterile process. To investigate the mechanisms, of phytochrome action in PGMR, end-of-day (EOD) experiments were carried out. Flowering in PGMR was delayed considerably by EOD far-red light exposures following a short day of 10 hr, whereas its fertility decreased to the same extent as the original line. This result suggests that photoperiod response mediating fertility alteration in PGMR somewhat differed from that in flowering,i.e., fertility alteration and flowering might be under the separate phytochrome signaling control. (author)

  4. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  5. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  6. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    OpenAIRE

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H.; Giordano., Magda; Rodríguez, Verónica M.

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced h...

  7. Effect of phosphatidylserine on the basal and GABA-activated Cl- permeation across single nerve membranes from rabbit Deiters' neurons

    Energy Technology Data Exchange (ETDEWEB)

    Rapallino, M.V.; Cupello, A.; Mainardi, P.; Besio, G.; Loeb, C.W. (Centro di Studio per la Neurofisiologia Cerebrale, C.N.R., Genova (Italy))

    1990-06-01

    The permeation of labeled Cl- ions across single plasma membranes from Deiters' neurons has been studied in the presence of various concentrations of phosphatidylserine (PS) on their extracellular side. PS reduces significantly basal Cl- permeation only at 10(-5) M on the membrane exterior. No effect was found at other concentrations. GABA activable 36Cl- permeation is heavily reduced and almost abolished at 10(-11) - 10(-5) M phosphatidylserine. This exogenous phosphatidylserine effect is difficult to interpret in relation to the function of the endogenous phospholipid. However, it may be involved in the epileptogenic effect in vivo of exogenous phosphatidylserine administration to rats.

  8. Acute developmental exposure to polybrominated diphenyl ether 47 (PBDE 47) alters dopamine concentration within the brains of male mice.

    Science.gov (United States)

    Polybrominated diphenyl ethers (PBDEs) are commonly used as commercial flame retardants in a variety of products including plastics and textiles. Previous studies in our laboratory and in the literature have shown that exposure to a specific PBDE congener, PBDE 47, during a criti...

  9. Modulation of estrogenic exposure effects via alterations in salinity and dissolved oxygen in male fathead minnows, Pimephales promelas

    Science.gov (United States)

    Laboratory exposure data indicate that estrogens and estrogen mimics can cause endocrine disruption in male fathead minnows (Pimephales promelas). In the wild, conditions are not static as is often the case in the laboratory. Changes in water quality parameters, such as salinity influx due to road s...

  10. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis.

    OpenAIRE

    Crump, Doug; Werry, Kate; Veldhoen, Nik; Van Aggelen, Graham; Helbing, Caren C.

    2002-01-01

    A growing number of substances released into the environment disrupt normal endocrine mechanisms in a wide range of vertebrates. Little is known about the effects and identities of endocrine-disrupting chemicals (EDCs) that target thyroid hormone (TH) action, particularly at the cellular level. Frog tadpole metamorphosis depends completely on TH, which has led to the suggestion of a metamorphosis-based assay for screening potential EDCs. A major mechanism of TH action is the alteration of gen...

  11. Developmental exposure to endocrine-disrupting chemicals programs for reproductive tract alterations and obesity later in life1234

    OpenAIRE

    Newbold, Retha R.

    2011-01-01

    Many chemicals in the environment, especially those with estrogenic activity, are able to disrupt the programming of endocrine signaling pathways established during development; these chemicals are referred to as endocrine-disrupting chemicals. Altered programming can result in numerous adverse consequences in estrogen-target tissues, some of which may not be apparent until later in life. For example, a wide variety of structural, functional, and cellular effects have been identified in repro...

  12. Dioxin exposure reduces the steroidogenic capacity of mouse antral follicles mainly at the level of HSD17B1 without altering atresia

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Hannon, Patrick, E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent ovarian toxicant. Previously, we demonstrated that in vitro TCDD (1 nM) exposure decreases production/secretion of the sex steroid hormones progesterone (P4), androstenedione (A4), testosterone (T), and 17β-estradiol (E2) in mouse antral follicles. The purpose of this study was to determine the mechanism by which TCDD inhibits steroidogenesis. Specifically, we examined the effects of TCDD on the steroidogenic enzymes, atresia, and the aryl hydrocarbon receptor (AHR) protein. TCDD exposure for 48 h increased levels of A4, without changing HSD3B1 protein, HSD17B1 protein, estrone (E1), T or E2 levels. Further, TCDD did not alter atresia ratings compared to vehicle at 48 h. TCDD, however, did down regulate the AHR protein at 48 h. TCDD exposure for 96 h decreased transcript levels for Cyp11a1, Cyp17a1, Hsd17b1, and Cyp19a1, but increased Hsd3b1 transcript. TCDD exposure particularly lowered both Hsd17b1 transcript and HSD17B1 protein. However, TCDD exposure did not affect levels of E1 in the media nor atresia ratings at 96 h. TCDD, however, decreased levels of the proapoptotic factor Bax. Collectively, these data suggest that TCDD exposure causes a major block in the steroidogenic enzyme conversion of A4 to T and E1 to E2 and that it regulates apoptotic pathways, favoring survival over death in antral follicles. Finally, the down‐regulation of the AHR protein in TCDD exposed follicles persisted at 96 h, indicating that the activation and proteasomal degradation of this receptor likely plays a central role in the impaired steroidogenic capacity and altered apoptotic pathway of exposed antral follicles. -- Highlights: ► TCDD disrupts steroidogenic enzymes in mouse antral follicles. ► TCDD particularly affects the HSD17B1 enzyme in mouse antral follicles. ► TCDD does not affect atresia ratings in mouse antral follicles. ► TCDD decreases levels of the proapoptitic factor Bax in mouse antral follicles.

  13. Perinatal exposure to benzyl butyl phthalate induces alterations in neuronal development/maturation protein expression, estrogen responses, and fear conditioning in rodents.

    Science.gov (United States)

    DeBartolo, Danielle; Jayatilaka, Sahani; Yan Siu, Nga; Rose, Melissa; Ramos, Raddy L; Betz, Adrienne J

    2016-02-01

    Phthalate exposure has recently been associated with behavioral actions that are linked to its endocrine-disrupting properties. The purpose of this study was to investigate the molecular, anatomical, and behavioral effects of indirect perinatal benzyl butyl phthalate (BBP) exposure in offspring of BBP-treated pregnant dams. In two separate experiments, we administered BBP (10.0 μg/ml) on food pellets to pregnant dams and examined the offspring. The first experiment revealed reproductive anatomical abnormalities linked to BBP's endocrine-disrupting properties, whereas histological analysis revealed preserved hippocampal neuronal migration. The second experiment demonstrated learning and memory impairments accompanied by molecular abnormalities in multiple brain regions. Offspring from BBP-treated dams had altered levels of several proteins important for neuronal circuitry formation, tissue development, and maturation. We suggest that BBP administration disrupts normal learning and that these effects could be related to alterations in brain development and result in a phenotype similar to that observed in neurodevelopmental disorders. PMID:26376073

  14. Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis.

    Science.gov (United States)

    Lu, Yin; Pan, Yitao; Sheng, Nan; Zhao, Allan Z; Dai, Jiayin

    2016-09-01

    Perfluorooctanoic acid (PFOA) is a degradation-resistant compound with a carbon-fluorine bond. Although PFOA emissions have been reduced since 2000, it remains persistent in the environment. Several studies on laboratory animals indicate that PFOA exposure can impact male fertility. Here, adult male mice received either PFOA (1.25, 5 or 20 mg/kg/d) or an equal volume of water for 28 d consecutively. PFOA accumulated in the epididymis in a dose-dependent manner and resulted in reduced epididymis weight, lower levels of triglycerides (TG), cholesterol (CHO), and free fatty acids (FFA), and activated AKT/AMPK signaling in the epididymis. Altered polyunsaturated fatty acid (PUFA) compositions, such as a higher arachidonic acid:linoleic acid (AA:LA) ratio, concomitant with excessive oxidative stress, as demonstrated by increased malonaldehyde (MDA) and decreased glutathione peroxidase (GSH-Px) in the epididymis, were observed in epididymis tissue following treatment with PFOA. These results indicate that the epididymis is a potential target of PFOA. Oxidative stress and PUFA alteration might help explain the sperm injury and male reproductive dysfunction induced by PFOA exposure. PMID:27262104

  15. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury.

    Science.gov (United States)

    Krajnak, Kristine; Raju, Sandya G; Miller, G Roger; Johnson, Claud; Waugh, Stacey; Kashon, Michael L; Riley, Danny A

    2016-01-01

    Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury. PMID:26852665

  16. Alterations in the infrared spectral signature of avian feathers reflect potential chemical exposure: a pilot study comparing two sites in Pakistan.

    Science.gov (United States)

    Llabjani, Valon; Malik, Riffat N; Trevisan, Júlio; Hoti, Valmira; Ukpebor, Justina; Shinwari, Zabta K; Moeckel, Claudia; Jones, Kevin C; Shore, Richard F; Martin, Francis L

    2012-11-01

    Chemical contamination of ecosystems is a global issue with evidence that pollutants impact on living organisms in a harmful fashion. Developing sensor approaches that would allow the derivation of biomarkers or signatures of effect in target sentinel organisms and monitor environmental chemical contamination in a high throughput manner is of utmost importance. As biomolecules absorb infrared (IR), signature vibrational spectra related to structure and function can be derived. In light of this, we tested the notion that IR spectra of bird feathers might reflect environmental chemical contaminant exposure patterns. Feathers were collected from monospecific heronries of cattle egret based in two independent locations (Trimu vs. Mailsi) in the Punjab province of Pakistan; these sites were found to differ in their chemical contamination patterns. Feather samples were chemically analyzed for polychlorinated biphenyls, polybrominated diphenyl ethers, organochlorines and heavy metals. Attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy was employed to derive a spectral signature of individual feathers. Resultant IR spectra were then subjected to canonical correspondence analysis (CAA) to determine whether feather spectral signatures correlate to chemical exposure. Additionally, we explored if principal component analysis (PCA) and linear discriminant analysis (LDA) could be applied to distinguish site-specific differences; linear discriminant function (LDF) was also applied to classify sites. The sampled feathers varied in their chemical exposure patterns depending on whether they were sourced from one site associated with heavy metal exposure or the other which suggested high organic pollutant exposures. CCA of chemical and spectral data showed a correlation between spectral signatures and chemical exposure. PCA-LDA readily distinguished feathers from the two different sites. Discriminating alterations were identified and these were associated with

  17. Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters miRNA Expression Profiles in Human Lung Cells

    OpenAIRE

    Rager, Julia E.; Smeester, Lisa; Jaspers, Ilona; Sexton, Kenneth G.; Fry, Rebecca C.

    2010-01-01

    Background Exposure to formaldehyde, a known air toxic, is associated with cancer and lung disease. Despite the adverse health effects of formaldehyde, the mechanisms underlying formaldehyde-induced disease remain largely unknown. Research has uncovered microRNAs (miRNAs) as key posttranscriptional regulators of gene expression that may influence cellular disease state. Although studies have compared different miRNA expression patterns between diseased and healthy tissue, this is the first st...

  18. Neonatal Exposure to Parathion Alters Lipid Metabolism in Adulthood: Interactions with Dietary Fat Intake and Implications for Neurodevelopmental Deficits

    OpenAIRE

    Lassiter, T. Leon; Ryde, Ian T.; Levin, Edward D.; Seidler, Frederic J; Slotkin, Theodore A.

    2010-01-01

    Organophosphates are developmental neurotoxicants but recent evidence also points to metabolic dysfunction. We determined whether neonatal parathion exposure in rats has long-term effects on regulation of adipokines and lipid peroxidation. We also assessed the interaction of these effects with increased fat intake. Rats were given parathion on postnatal days 1–4 using doses (0.1 or 0.2 mg/kg/day) that straddle the threshold for barely detectable cholinesterase inhibition and the first signs o...

  19. Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment.

    Directory of Open Access Journals (Sweden)

    Lucio A Ramos-Chávez

    2015-02-01

    Full Text Available Inorganic arsenic (iAs is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Chronic exposure to iAs has been associated with lower IQ and learning disabilities as well as memory impairment. iAs is methylated in tissues such as the brain generating mono and dimethylated species. iAs methylation requires cellular glutathione (GSH, which is the main antioxidant in the central nervous system. In humans, As species cross the placenta and are found in cord blood. A CD1 mouse model was used to investigate effects of gestational iAs exposure which can lead to oxidative damage, disrupted cysteine/glutamate transport and its putative impact in learning and memory. On postnatal days (PNDs 1, 15 and 90, the expression of membrane transporters related to GSH synthesis and glutamate transport and toxicity, such as xCT, EAAC1, GLAST and GLT1, as well as LAT1, were analyzed. Also, the expression of the glutamate receptor N-methyl-D-aspartate (NMDAR subunits NR2A and B as well as the presence of As species in cortex and hippocampus were investigated. On PND 90, an object location task was performed to associate exposure with memory impairment. Gestational exposure to iAs affected the expression of cysteine/glutamate transporters in cortex and hippocampus and induced a negative modulation of NMDAR NR2B subunit in the hippocampus. Behavioral tasks showed significant spatial memory impairment in males while the effect was marginal in females.

  20. Altered Attention and Prefrontal Cortex Gene Expression in Rats after Binge-Like Exposure to Cocaine during Adolescence

    OpenAIRE

    Black, Yolanda D.; Maclaren, Fair R.; Naydenov, Alipi V.; Carlezon, William A.; Baxter, Mark G.; Konradi, Christine

    2006-01-01

    Illicit use of drugs frequently begins and escalates during adolescence, with long-term adverse consequences. Because it is increasingly accepted that neural development continues through adolescence, addiction research has become more invested in understanding the behavioral and molecular consequences of early exposure to drugs of abuse. In a novel binge administration paradigm designed to model the pattern of human adolescent drug use, we administered ascending doses of cocaine or saline du...

  1. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA) Axis after Subchronic Exposure in Male Rats

    OpenAIRE

    Alya Annabi; Ines El-Bini Dhouib; Houssem Dkhili; Yassine Bdiri; Ines Rejeb; Najoua Gharbi; Saloua El-Fazâa; Mohamed Montassar Lasram

    2015-01-01

    Imidacloprid (IMI) is known to target the nicotinic acetylcholine receptors (nAChRs) in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA) axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA) level. The antioxidant catalase, superoxid...

  2. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex

    OpenAIRE

    Kenet, T; Froemke, R. C.; Schreiner, C. E.; Pessah, I N; Merzenich, M. M.

    2007-01-01

    Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossl...

  3. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring

    OpenAIRE

    Zumbrun, Elizabeth E.; Sido, Jessica M.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2015-01-01

    Use of marijuana during pregnancy is fairly commonplace and can be expected increase in frequency as more states legalize its recreational use. The cannabinoids present in marijuana have been shown to be immunosuppressive, yet the effect of prenatal exposure to cannabinoids on the immune system of the developing fetus, its long term consequences during adult stage of life, and transgenerational effects have not been well characterized. Confounding factors such as coexisting drug use make the ...

  4. Alterations in the oxidative metabolism of Rhipicephalus (Boophilus) microplus ticks in response to exposure to the insect growth regulator fluazuron.

    Science.gov (United States)

    Gaudêncio, Fabrício Nascimento; Tunholi-Alves, Vinícius Menezes; Lima, Mariana Gomes; Gôlo, Patrícia Silva; Angelo, Isabele da Costa; Castro, Rosane Nora; Fonseca, Adivaldo Henrique da; Scott, Fabio Barbour; Pinheiro, Jairo

    2016-03-01

    Aiming to characterize the potential off-target effects of fluazuron on ticks, biochemical analyses were conducted to evaluate changes in the carbohydrate metabolism of Rhipicephalus (Boophilus) microplus ticks after exposure to fluazuron. Hemolymph and fat body were collected from female ticks before and after (4, 8 and 15 days) exposure to fluazuron. Spectrophotometric analyses were done to quantify glucose concentration and lactate dehydrogenase (LDH) activity in the hemolymph and the concentration of glycogen in the tick's fat body. High Performance Liquid Chromatography (HPLC) was employed to determine the concentration of carboxylic acids in the hemolymph and to evaluate changes in intermediary metabolic processes requiring oxygen consumption. Increases in the levels of LDH activity and lactic acid concentration indicated that fluazuron enhanced fermentative metabolism in ticks. Exposure to fluazuron was also found to increase glucose concentrations in the hemolymph over time, although no significant differences were noted daily. In addition to expanding the body of knowledge about the mode of action of fluazuron, investigations into these mechanisms may also be useful in discovering new and as yet unexplored secondary effects. PMID:26982563

  5. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (PLLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  6. Funduscopic alterations in the rhesus monkey induced by exposure to heavy ions /0+8/ 250 MeV/nucleon

    Science.gov (United States)

    Beckman, F. N.; Bonney, C. H.; Hunter, D. M.

    1974-01-01

    A heavy-ion, high-energy beam has been extracted from the Lawrence Radiation Laboratory Bevatron, making controlled exposure of biological systems feasible, and a series of experiments have been undertaken to determine the possible deleterious effects of such irradiation upon the primate retina. The left eyes of 54 rhesus monkeys have been exposed to accelerated 0+8 (250 MeV/nucleon). Beam flux ranged from 1.3 x 10 to the 7th particles/ sq cm (171 rads) to 5.9 x 10 to the 8th particles/sq cm (7740 rads). Fundus photography was performed immediately prior to and immediately following exposure, at 24 to 48 hours postexposure and at 1, 2, and 5 weeks postexposure. Punctate hemorrhages of the retina were visible at 1.3 x 10 to the 7th particles/sq cm (171 rads), the lowest exposure level utilized in this study. Acute radiation retinopathy, consisting of geographic retinal hemorrhage and ischemic necrosis of the retina, was not seen until total flux reached 7.7 x 10 to the 7th particles/sq cm (1000 rads).

  7. Ozone and allergen exposure during postnatal development alters the frequency and airway distribution of CD25+ cells in infant rhesus monkeys

    International Nuclear Information System (INIS)

    The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone + HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air; animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone + HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone + HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone + HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking

  8. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes

    International Nuclear Information System (INIS)

    It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection

  9. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes.

    Science.gov (United States)

    Han, Longzhe; Itoh, Kyoko; Yaoi, Takeshi; Moriwaki, Sanzo; Kato, Shingo; Nakamura, Keiko; Fushiki, Shinji

    2011-02-26

    It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection. PMID:21448315

  10. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick.

    Science.gov (United States)

    Barber, Teresa A; Edris, Edward M; Levinsky, Paul J; Williams, Justin M; Brouwer, Ari R; Gessay, Shawn A

    2016-09-01

    In the one-trial taste-avoidance task in day-old chicks, acetylcholine receptor activation has been shown to be important for memory formation. Injection of scopolamine produces amnesia, which appears to be very similar in type to that of Alzheimer's disease, which is correlated with low levels of acetylcholine in the brain. Traditional pharmacological treatments of Alzheimer's disease, such as cholinesterase inhibitors and glutamate receptor blockers, improve memory and delay the onset of impairments in memory compared with placebo controls. These agents also ameliorate scopolamine-induced amnesia in the day-old chick trained on the one-trial taste-avoidance task. The present experiments examined the ability of two less traditional treatments for Alzheimer's disease, phosphatidylserine and curcumin, to ameliorate scopolamine-induced amnesia in day-old chicks. The results showed that 37.9 mmol/l phosphatidylserine and 2.7 mmol/l curcumin significantly improved retention in chicks administered scopolamine, whereas lower doses were not effective. Scopolamine did not produce state-dependent learning, indicating that this paradigm in day-old chicks might be a useful one to study the effects of possible Alzheimer's treatments. In addition, chicks administered curcumin or phosphatidylserine showed little avoidance of a bead associated with water reward, indicating that these drugs did not produce response inhibition. The current results extend the findings that some nontraditional memory enhancers can ameliorate memory impairment and support the hypothesis that these treatments might be of benefit in the treatment of Alzheimer's disease. PMID:27388114

  11. Neonatal exposure to benzo[a]pyrene induces oxidative stress causing altered hippocampal cytomorphometry and behavior during early adolescence period of male Wistar rats.

    Science.gov (United States)

    Patel, Bhupesh; Das, Saroj Kumar; Das, Swagatika; Das, Lipsa; Patri, Manorama

    2016-05-01

    Environmental neurotoxicants like benzo[a]pyrene (B[a]P) have been well documented regarding their potential to induce oxidative stress. However, neonatal exposure to B[a]P and its subsequent effect on anti-oxidant defence system and hippocampal cytomorphometry leading to behavioral changes have not been fully elucidated. We investigated the effect of acute exposure of B[a]P on five days old male Wistar pups administered with single dose of B[a]P (0.2 μg/kg BW) through intracisternal mode. Control group was administered with vehicle i.e., DMSO and a separate group of rats without any treatment was taken as naive group. Behavioral analysis showed anxiolytic-like behavior with significant increase in time spent in open arm in elevated plus maze. Further, significant reduction in fall off time during rotarod test showing B[a]P induced locomotor hyperactivity and impaired motor co-ordination in adolescent rats. B[a]P induced behavioral changes were further associated with altered anti-oxidant defence system involving significant reduction in the total ATPase, Na(+) K(+) ATPase, Mg(2+) ATPase, GR and GPx activity with a significant elevation in the activity of catalase and GST as compared to naive and control groups. Cytomorphometry of hippocampus showed that the number of neurons and glia in B[a]P treated group were significantly reduced as compared to naive and control. Subsequent observation showed that the area and perimeter of hippocampus, hippocampal neurons and neuronal nucleus were significantly reduced in B[a]P treated group as compared to naive and control. The findings of the present study suggest that the alteration in hippocampal cytomorphometry and neuronal population associated with impaired antioxidant signaling and mood in B[a]P treated group could be an outcome of neuromorphological alteration leading to pyknotic cell death or impaired differential migration of neurons during early postnatal brain development. PMID:26946409

  12. Postnatal Manganese Exposure Alters Dopamine Transporter Function in Adult Rats: Potential Impact on Nonassociative and Associative Processes

    OpenAIRE

    McDougall, S. A.; Reichel, C. M.; Farley, C M; Flesher, M. M.; Der-Ghazarian, T.; Cortez, A. M.; Wacan, J. J.; Martinez, C. E.; VARELA, F. A.; Butt, A E; Crawford, C. A.

    2008-01-01

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 μg/day) on postnatal days (PD) 1–21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to ...

  13. The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces.

    Science.gov (United States)

    Nancollas, G H; Tsortos, A; Zieba, A

    1996-01-01

    The kinetics of calcium phosphate crystal growth at the surfaces of proteins and phospholipids has been investigated using free drift and constant composition methods in supersaturated calcium phosphate solutions (relative supersaturations: with respect to hydroxyapatite, HAP, sigma HAP = 15.0, and with respect to octacalcium phosphate, OCP, sigma OCP = 1.9). Fibrinogen and collagen molecules adsorbed at hydrophobic surfaces as well as uncross-linked collagen fibrils induce ion binding and subsequent nucleation of calcium phosphate. The formation of OCP on phosphatidylserine vesicles introduced to highly supersaturated calcium phosphate solutions probably involves the interaction of the calcium ions with the ionized carboxylic groups of the phospholipid. PMID:9813627

  14. 31P nuclear magnetic resonance studies of the association of basic proteins with multilayers of diacyl phosphatidylserine.

    Science.gov (United States)

    Smith, R; Cornell, B A; Keniry, M A; Separovic, F

    1983-08-10

    Lysozyme, cytochrome c, poly(L-lysine), myelin basic protein and ribonuclease were used to form multilayer dispersions containing about 50% protein (by weight) with bovine brain diacyl phosphatidylserine (PS). 31P nuclear magnetic resonance shift anisotropies, spin-spin (T2) and spin-lattice (T1) relaxation times for the lipid headgroup phosphorus were measured at 36.44 MHz. At pH 7.5, lysozyme, cytochrome c, poly(L-lysine) and ribonuclease were shown to increase the chemical shift anisotropy of PS by between 12-20%. Myelin basic protein altered the shape of the phosphate resonance, suggesting the presence of two lipid components, one of which had a modified headgroup conformation. The presence of cytochrome c led to the formation of a narrow spike at the isotropic shift position of the spectrum. Of the various proteins or peptides we have studied, only poly(L-lysine) and cytochrome c had any effect on the T1 of PS (1050 ms). Both caused a 20-30% decrease in T1 of the lamellar-phase phosphate peak. The narrow peak in the presence of cytochrome c had a very short T1 of 156 ms. The possibility is considered that the cytochrome Fe3+ contributes to the phosphate relaxation in this case. The effect of all proteins on the T2 of the phosphorus resonance was to cause an increase from the value for pure PS (1.6 ms) to between 2 and 5 ms. The results obtained with proteins are compared with the effects of small ions and intrinsic membrane proteins on the order and motion of the headgroups of lipids in bilayers. PMID:6191774

  15. Exposure to the synthetic FXR agonist GW4064 causes alterations in gene expression and sublethal hepatotoxicity in eleutheroembryo medaka (Oryzias latipes)

    International Nuclear Information System (INIS)

    The small freshwater teleost, medaka (Oryzias latipes), has a history of usage in studies of chronic toxicity of liver and biliary system. Recent progress with this model has focused on defining the medaka hepatobiliary system. Here we investigate critical liver function and toxicity by examining the in vivo role and function of the farnesoid X receptor alpha (FXRα, NR1H4), a member of the nuclear receptor superfamily that plays an essential role in the regulation of bile acid homeostasis. Quantitative mRNA analysis of medaka FXRα demonstrates differential expression of two FXRα isoforms designated Fxrα1 and Fxrα2, in both free swimming medaka embryos with remaining yolk (eleutheroembryos, EEs) and adults. Activation of medaka Fxrα in vivo with GW4064 (a strong FXRα agonist) resulted in modification of gene expression for defined FXRα gene targets including the bile salt export protein, small heterodimer partner, and cytochrome P450 7A1. Histological examination of medaka liver subsequent to GW4064 exposure demonstrated significant lipid accumulation, cellular and organelle alterations in both hepatocytes and biliary epithelial cells of the liver. This report of hepatobiliary injury following GW4064 exposure extends previous investigations of the intrahepatic biliary system in medaka, reveals sensitivity to toxicant exposure, and illustrates the need for added resolution in detection and interpretation of toxic responses in this vertebrate.

  16. Alteration of gene expression by exposure to a magnetic field at 23 kHz is not detected in astroglia cells

    International Nuclear Information System (INIS)

    The increasing use of induction heating (IH) cooktops has roused public concern in Japan and Europe regarding potential health effects. The purpose of this study was to evaluate the effects of exposure to a magnetic field at 23 kHz (which is the maximum output power frequency of most IH cooktops) on gene expression in a human-fetus-derived astroglia cell line, SVGp12. The cells were exposed to the magnetic field at 2 mTrms [which is approximately 74 times higher than the reference level in the most recent International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines], for 2, 4 and 6 h, using a previously reported exposure system. Gene expression was evaluated using an Agilent cDNA microarray. We did not detect any significant effects of the magnetic field on the gene expression profile. On the contrary, heat treatment at 43°C for 2 h used as a positive control significantly affected gene expression, including inducing heat shock proteins, which indicated that our protocol for microarray analysis was appropriate. From these results, we conclude that exposure of human-fetus-derived astroglia cells to an intermediate-frequency magnetic field at 23 kHz and 2 mTrms for up to 6 h does not induce detectable alteration of gene expression

  17. Prenatal alcohol exposure alters synaptic activity of adult hippocampal dentate granule cells under conditions of enriched environment.

    Science.gov (United States)

    Kajimoto, Kenta; Valenzuela, C Fernando; Allan, Andrea M; Ge, Shaoyu; Gu, Yan; Cunningham, Lee Anna

    2016-08-01

    Prenatal alcohol exposure (PAE) results in fetal alcohol spectrum disorder (FASD), which is characterized by a wide range of cognitive and behavioral deficits that may be linked to impaired hippocampal function and adult neurogenesis. Preclinical studies in mouse models of FASD indicate that PAE markedly attenuates enrichment-mediated increases in the number of adult-generated hippocampal dentate granule cells (aDGCs), but whether synaptic activity is also affected has not been studied. Here, we utilized retroviral birth-dating coupled with whole cell patch electrophysiological recordings to assess the effects of PAE on enrichment-mediated changes in excitatory and inhibitory synaptic activity as a function of DGC age. We found that exposure to an enriched environment (EE) had no effect on baseline synaptic activity of 4- or 8-week-old aDGCs from control mice, but significantly enhanced the excitatory/inhibitory ratio of synaptic activity in 8-week-old aDGCs from PAE mice. In contrast, exposure to EE significantly enhanced the excitatory/inhibitory ratio of synaptic activity in older pre-existing DGCs situated in the outer dentate granule cell layer (i.e., those generated during embryonic development; dDGCs) in control mice, an effect that was blunted in PAE mice. These findings indicate distinct electrophysiological responses of hippocampal DGCs to behavioral challenge based on cellular ontogenetic age, and suggest that PAE disrupts EE-mediated changes in overall hippocampal network activity. These findings may have implications for future therapeutic targeting of hippocampal dentate circuitry in clinical FASD. © 2016 Wiley Periodicals, Inc. PMID:27009742

  18. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr

    Energy Technology Data Exchange (ETDEWEB)

    Berntssen, Marc H.G.; Aatland, Aase; Handy, Richard D

    2003-10-08

    Atlantic salmon (Salmo salar L.) parr were fed for 4 months on fish meal based diets supplemented with mercuric chloride (0, 10, or 100 mg Hg kg{sup -1} DW) or methylmercury chloride (0, 5, or 10 mg Hg kg{sup -1} DW) to assess the effects of inorganic (Hg) and organic dietary mercury on brain lipid peroxidation and neurotoxicity. Lipid peroxidative products, endogenous anti oxidant enzymes, brain histopathology, and overall behaviour were measured. Methylmercury accumulated significantly in the brain of fish fed 5 or 10 mg kg{sup -1} by the end of the experiment, and inorganic mercury accumulated significantly in the brain only at 100 mg kg{sup -1} exposure levels. No mortality or growth reduction was observed in any of the exposure groups. Fish fed 5 mg kg{sup -1} methylmercury had a significant increase (2-fold) in the antioxidant enzyme super oxide dismutase (SOD) in the brain. At dietary levels of 10 mg kg{sup -1} methylmercury, a significant increase (7-fold) was observed in lipid peroxidative products (thiobarbituric acid reactive substances, TBARS) and a subsequently decrease (1.5-fold) in anti oxidant enzyme activity (SOD and glutathione peroxidase, GSH-Px). Fish fed 10 mg kg{sup -1} methylmercury also had pathological damage (vacoulation and necrosis), significantly reduced neural enzyme activity (5-fold reduced monoamine oxidase, MAO, activity), and reduced overall post-feeding activity behaviour. Pathological injury started in the brain stem and became more widespread in other areas of the brain at higher exposure levels. Fish fed 100 mg Hg kg{sup -1} inorganic mercury had significant reduced neural MAO activity and pathological changes (astrocyte proliferation) in the brain, however, neural SOD and GSH-Px enzyme activity, lipid peroxidative products (TBARS), and post feeding behaviour did not differ from controls. Compared with other organs, the brain is particular susceptible for dietary methylmercury induced lipid peroxidative stress at relative low

  19. Alterations of Thyroid Morphology and Function After Long-Term Exposure to Low Doses of Endocrine Disruptor Dichlorodiphenyltrichloroethane

    OpenAIRE

    Yaglov V.V.; Yaglova N.V.

    2014-01-01

    The aim of the investigation was to evaluate changes in thyroid morphology and function after different long-term exposure to low doses of endocrine disruptor dichlorodiphenyltrichloroethane (DDT) under the maximum permissible levels in food products. Materials and Methods. The experiment was performed on adult male Wistar rats (n=62). Drinking water was substituted for water solution of o,p-DDT 20 and 80 μg/L. Mean daily consumption of DDT was 1.89±0.86 and 7.77±0.17 µg/kg body weight, r...

  20. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface.

    Directory of Open Access Journals (Sweden)

    Shabbir A Ansari

    Full Text Available Exposure of phosphatidylserine (PS on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF.

  1. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface.

    Science.gov (United States)

    Ansari, Shabbir A; Pendurthi, Usha R; Sen, Prosenjit; Rao, L Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  2. Histopathological alterations, biochemical responses and acetylcholinesterase levels in Clarias gariepinus as biomarkers of exposure to organophosphates pesticides.

    Science.gov (United States)

    Doherty, V F; Ladipo, M K; Aneyo, I A; Adeola, A; Odulele, W Y

    2016-05-01

    Organophosphate pesticides, commonly used in large scale farming, have been found to be major contaminants in aquatic environment. Clarias gariepinus was exposed to acute and sublethal concentrations of phostoxin and DD Force to evaluate single and joint action toxicity of the organophosphates. Effects of phostoxin and DD force on antioxidant enzymes, fish organs and acetylcholinesterase levels in fingerlings and juveniles of C. gariepinus were also investigated. The lethal concentrations (96 h LC50) for phostoxin and DD Force were 0.631 and 1.759 mg/l, respectively. The results obtained from the bioassay showed that phostoxin was 2.8× more toxic than DD Force after exposure of C. gariepinus. Joint action toxicity evaluations of phostoxin and DD Force showed that the interaction between the chemicals was synergistic (RTU >1). The biochemical responses in the exposed fish differed significantly (P toxicity studies, respiratory stress, erratic swimming and instant death of fish were observed in the exposed fish. This study reveals that changes in histopathology and acetylcholinesterase level are good biomarkers and can be successfully used to detect exposure to organophosphates pesticides in fish. PMID:27121169

  3. Mercury exposure associated with altered plasma thyroid hormones in the declining western pond turtle (Emys marmorata) from California mountain streams

    Science.gov (United States)

    Meyer, Erik; Eagles-Smith, Collin A.; Sparling, Donald; Blumenshine, Steve

    2014-01-01

    Mercury (Hg) is a global threat to wildlife health that can impair many physiological processes. Mercury has well-documented endocrine activity; however, little work on the effects of Hg on the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in aquatic wildlife exists despite the fact that it is a sensitive endpoint of contaminant exposure. An emerging body of evidence points to the toxicological susceptibility of aquatic reptiles to Hg exposure. We examined the endocrine disrupting potential of Hg in the western pond turtle (Emys marmorata), a long-lived reptile that is in decline throughout California and the Pacific Northwest. We measured total Hg (THg) concentrations in red blood cells (RBCs) and plasma T3 and T4 of turtles from several locations in California that have been impacted by historic gold mining. Across all turtles from all sites, the geometric mean and standard error THg concentration was 0.805 ± 0.025 μg/g dry weight. Sampling region and mass were the strongest determinants of RBC THg. Relationships between RBC THg and T3 and T4 were consistent with Hg-induced disruption of T4 deiodination, a mechanism of toxicity that may cause excess T4 levels and depressed concentrations of biologically active T3.

  4. Hepatotoxic Alterations Induced by Subchronic Exposure of Rats to Formulated Fenvalerate (20% EC) by Nose Only Inhalation

    Institute of Scientific and Technical Information of China (English)

    U. MANI; A. K. PRASAD; V. SURESHKUMAR; P. KUMAR; KEWAL LAL; B. K. MAJI; K. K. DUTTA

    2004-01-01

    Fenvalerate (20% EC) is a synthetic pyrethroid, which is commonly used in India by farmers for the protection of many food and vegetable crops against a wide variety of insects. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation exposure was carried out to investigate the hepatotoxic effects. Method Adult male rats were exposed to fen for 4 h/day, 5 days a week for 90 days by using Flow Past Nose Only Inhalation Chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results The results indicated hepatomegaly, increased activities of serum clinical enzymes (indicative of liver damage/dysfunction) along with pronounced histopathological damage of liver. Conclusion The hepatotoxic potential of formulated Fen (20% EC) in rats exposed by nose only inhalation is being reported for the first time and warrant adequate safety measures for human beings exposed to this insecticide, particularly by inhalation route.

  5. Potential Association of Lead Exposure During Early Development of Mice With Alteration of Hippocampus Nitric Oxide Levels and Learning Memory

    Institute of Scientific and Technical Information of China (English)

    LI SUN; ZHENG-YAN ZHAO; JIAN HU; XIE-LAI ZHOU

    2005-01-01

    Objective Chronic lead (Pb) exposure during development is known to produce learning deficits. Nitric oxide participates in the synaptic mechanisms involved in certain forms of learning and memory. This study was designed to clarify whether Pb-induced impairment in learning and memory was associated with the changes of nitric oxide levels in mice brains.Methods Sixty Balb/c mice aged 10 days were chosen. A model of lead exposure was established by drinking 0.025%, 0.05%,0.075% lead acetate, respectively for 8 weeks. The controls were orally given distilled water. The ability to learn and memorize was examined by open field test, T-water maze test. In parallel with the behavioral data, NO level of hippocampus tissue was detected by biochemical assay. Results Compared with control groups, (1) the weight of 0.075% group was significantly reduced (P<0.05); (2) The number of times in mice attaining the required standards in T-water maze test was lower in 0.075%group (P<0.01). No significant difference was found between experimental and control groups in open field test (P>0.05); (3)NO level of mouse hippocampus tissue was decreased in 0.075% group (P<0.01). Conclusions The findings suggest that decreased hippocampus NO level may contribute to the Pb-induced deficits in learning and memory processes.

  6. Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of Acephate

    Directory of Open Access Journals (Sweden)

    Rajak Prem

    2015-06-01

    Full Text Available Acephate, an organophosphate (OP pesticide, was used to investigate the effects of its chronic exposure on hemocyte abundance in a non-target dipteran insect Drosophila melanogaster. For this purpose, six graded concentrations ranging from 1 to 6 μg/ml were selected, which are below the reported residual values (up to 14 μg/ml of the chemical. 1st instar larvae were fed with these concentrations up to the 3rd instar stage and accordingly hemolymph smears from these larvae were prepared for differential hemocyte count. Three types of cells are found in Drosophila hemolymph, namely, plasmatocytes, lamellocytes and crystal cells. Plasmatocyte count was found to decrease with successive increase in treatment concentrations. Crystal cells showed an increasing trend in their number. Though the number of lamellocytes was very low, a bimodal response was noticed. Lamellocyte number was found to increase with the initial three concentrations, followed by a dose dependent reduction in their number. As hemocytes are directly linked to the immune system of fruit flies, fluctuations in normal titer of these cells may affect insect immunity. Hemocytes share homologies in their origin and mode of action with the immune cells of higher organisms including man. Thus the present findings suggest that immune cells of humans and other organisms may be affected adversely under chronic exposure to Acephate.

  7. Alterations of organ histopathology and metallolhionein mRNA expression in silver barb, Puntius gonionotus during subchronic cadmium exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Common silver barb, Puntius gonionotus exposed to the nominal concentration of 0.06 mg/L Cd for 60 d, were assessed for histopathological alterations (gills, liver and kidney), metal accumulation, and metallothionein (MT) mRNA expression. Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae, vacuolization in hepatocytes, and prominent tubular and glomerular damage in the kidney. In addition, kidney accumulated the highest content of cadmium, more than gills and liver. Expression of MT mRNA was increased in both liver and kidney of treated fish. Hepatic MT levels remained high after fish were removed to Cd-free water. In contrast, MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water. The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.

  8. Altered expression of the CCN genes in the lungs of mice in response to cigarette smoke exposure and viral and bacterial infections.

    Science.gov (United States)

    Gueugnon, Fabien; Thibault, Virginie C; Kearley, Jennifer; Petit-Courty, Agnès; Vallet, Amandine; Guillon, Antoine; Si-Tahar, Mustapha; Humbles, Alison A; Courty, Yves

    2016-07-15

    The CCN proteins are key signaling and regulatory molecules involved in many biological functions and contribute to malignant and non-malignant lung diseases. Despite the high morbidity and mortality of the lung respiratory infectious diseases, there is very little data related to the expression of the CCNs during infection. We investigated in mice the pulmonary mRNA expression levels of five CCNs (1 to 5) in response to influenza A virus (IAV) and bacterial agents (Nontypeable Haemophilus influenzae (NTHi), lipopolysaccharide (LPS) and lipoteichoic acid (LTA)). IAV, NTHi, LPS or LTA were instilled intranasally into mice. Mice were also exposed for 4days or 8weeks to cigarette smoke alone or prior infection to IAV in order to determine if CS modifies the CCN response to a viral infection. All challenges induced a robust inflammation. The mRNA expression of CCN1, CCN2 and CCN3 was decreased after short exposure to CS whereas prolonged exposure altered the expression of CCN1, CCN3 and CCN4. Influenza A virus infection increased CCN1, 2, 4 and 5 mRNA levels but expression of CCN3 was significantly decreased. Acute CS exposure prior infection had little effect on the expression of CCN genes but prolonged exposure abolished the IAV-dependent induction. Treatment with LPS or LTA and infection with NTHi revealed that both Gram-positive and Gram-negative bacteria rapidly modulate the expression of the CCN genes. Our findings reveal that several triggers of lung inflammation influence differently the CCN genes. CCN3 deserves special attention since its mRNA expression is decreased by all the triggers studied. PMID:27080955

  9. Prenatal binge-like alcohol exposure alters brain and systemic responses to reach sodium and water balance.

    Science.gov (United States)

    Godino, A; Abate, P; Amigone, J L; Vivas, L; Molina, J C

    2015-12-17

    The aim of the present work is to analyze how prenatal binge-like ethanol exposure to a moderate dose (2.0 g/kg; group Pre-EtOH) during gestational days (GD) 17-20 affects hydroelectrolyte regulatory responses. This type of exposure has been observed to increase ethanol consumption during adolescence (postnatal day 30-32). In this study we analyzed basal brain neural activity and basal-induced sodium appetite (SA) and renal response stimulated by sodium depletion (SD) as well as voluntary ethanol consumption as a function of vehicle or ethanol during late pregnancy. In adolescent offspring, SD was induced by furosemide and a low-sodium diet treatment (FURO+LSD). Other animals were analyzed in terms of immunohistochemical detection of Fra-like (Fra-LI-ir) protein and serotonin (5HT) and/or vasopressin (AVP). The Pre-EtOH group exhibited heightened voluntary ethanol intake and a reduction in sodium and water intake induced by SD relative to controls. Basal Na and K concentrations in urine were also reduced in Pre-EtOH animals while the induced renal response after FURO treatment was similar across prenatal treatments. However, the correlation between urine volume and water intake induced by FURO significantly varied across these treatments. At the brain level of analysis, the number of basal Fra-LI-ir was significantly increased in AVP magnocellular neurons of the paraventricular nucleus (PVN) and in 5HT neurons in the dorsal raphe nucleus (DRN) in Pre-EtOH pups. In the experimental group, we also observed a significant increase in Fra-LI along the nucleus of the solitary tract (NTS) and in the central extended amygdala nuclei. In summary, moderate Pre-EtOH exposure produces long-lasting changes in brain organization, affecting basal activity of central extended amygdala nuclei, AVP neurons and the inhibitory areas of SA such as the NTS and the 5HT-DRN. These changes possibly modulate the above described variations in basal-induced drinking behaviors and renal

  10. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed

  11. ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models

    International Nuclear Information System (INIS)

    An immunoPET imaging probe for the detection of phosphatidylserine was developed and tested in animal models of human cancer treated with pro-apoptotic therapy. We hypothesized that the relatively long plasma half-life of a probe based on a full-length antibody coupled with a residualizing radionuclide would be able to catch the wave of drug-induced apoptosis and lead to a specific accumulation in apoptotic tumor tissue. Methods: The imaging probe is based on a 89Zr-labeled monoclonal antibody PGN635 targeting phosphatidylserine. The probe was evaluated pre-clinically in four tumor xenograft models: one studied treatment with paclitaxel to trigger the intrinsic apoptotic pathway, and three others interrogated treatment with an agonistic death-receptor monoclonal antibody to engage the extrinsic apoptotic pathway. Results: High accumulation of 89Zr-PGN635 was observed in treated tumors undergoing apoptosis reaching 30 %ID/g and tumor-to-blood ratios up to 13. The tumor uptake in control groups treated with vehicle or imaged with a non-binding antibody probe was significantly lower. Conclusions: The results demonstrate the ability of 89Zr-PGN635 to image drug-induced apoptosis in animal models and corroborate our hypothesis that radiolabeled antibodies binding to intracellular targets transiently exposed on the cell surface during apoptosis can be employed for detection of tumor response to therapy.

  12. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. PMID:23062277

  13. In vivo detection and imaging of phosphatidylserine expression during programmed cell death

    Science.gov (United States)

    Blankenberg, Francis G.; Katsikis, Peter D.; Tait, Jonathan F.; Davis, R. Eric; Naumovski, Louis; Ohtsuki, Katsuichi; Kopiwoda, Susan; Abrams, Michael J.; Darkes, Marilyn; Robbins, Robert C.; Maecker, Holden T.; Strauss, H.W.

    1998-01-01

    One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death. PMID:9600968

  14. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure.

    Science.gov (United States)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G J; Mummery, Christine L; Casini, Simona

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. PMID:26456652

  15. ACSL6 is associated with the number of cigarettes smoked and its expression is altered by chronic nicotine exposure.

    Directory of Open Access Journals (Sweden)

    Jingchun Chen

    Full Text Available Individuals with schizophrenia tend to be heavy smokers and are at high risk for tobacco dependence. However, the nature of the comorbidity is not entirely clear. We previously reported evidence for association of schizophrenia with SNPs and SNP haplotypes in a region of chromosome 5q containing the SPEC2, PDZ-GEF2 and ACSL6 genes. In this current study, analysis of the control subjects of the Molecular Genetics of Schizophrenia (MGS sample showed similar pattern of association with number of cigarettes smoked per day (numCIG for the same region. To further test if this locus is associated with tobacco smoking as measured by numCIG and FTND, we conducted replication and meta-analysis in 12 independent samples (n>16,000 for two markers in ACSL6 reported in our previous schizophrenia study. In the meta-analysis of the replication samples, we found that rs667437 and rs477084 were significantly associated with numCIG (p = 0.00038 and 0.00136 respectively but not with FTND scores. We then used in vitro and in vivo techniques to test if nicotine exposure influences the expression of ACSL6 in brain. Primary cortical culture studies showed that chronic (5-day exposure to nicotine stimulated ACSL6 mRNA expression. Fourteen days of nicotine administration via osmotic mini pump also increased ACSL6 protein levels in the prefrontal cortex and hippocampus of mice. These increases were suppressed by injection of the nicotinic receptor antagonist mecamylamine, suggesting that elevated expression of ACSL6 requires nicotinic receptor activation. These findings suggest that variations in the ACSL6 gene may contribute to the quantity of cigarettes smoked. The independent associations of this locus with schizophrenia and with numCIG in non-schizophrenic subjects suggest that this locus may be a common liability to both conditions.

  16. Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors.

    Directory of Open Access Journals (Sweden)

    Dafna Willner

    Full Text Available Chronic morphine treatment inhibits neural progenitor cell (NPC progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.Cell cultures from 14-day mouse embryos were exposed to different concentrations of morphine and its antagonist naloxone for 24 hours and proliferation, differentiation and apoptosis were studied. Proliferating cells were labeled with bromodeoxyuridine (BrdU and cell fate was studied with immunocytochemistry.Cells treated with morphine demonstrated decreased BrdU expression with increased morphine concentrations. Analysis of double-labeled cells showed a decrease in cells co-stained for BrdU with nestin and an increase in cells co-stained with BrdU and neuron-specific class III β-tubuline (TUJ1 in a dose dependent manner. Furthermore, a significant increase in caspase-3 activity was observed in the nestin- positive cells. Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.Short term morphine exposure induced inhibition of NPC proliferation and increased active caspase-3 expression in a dose dependent manner. Morphine induces neuronal and glial differentiation and decreases the expression of nestin- positive cells. These effects were reversed with the addition of the opioid antagonist naloxone. Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.

  17. Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole).

    Science.gov (United States)

    Luzio, Ana; Monteiro, Sandra M; Rocha, Eduardo; Fontaínhas-Fernandes, António A; Coimbra, Ana M

    2016-06-01

    Exposure of wildlife to endocrine disrupting chemicals (EDCs) is not necessarily continuous. Due to seasonal changes and variable industrial and agricultural activities it often occurs intermittently. Thus, it is possible that aquatic organisms may be more affected by periodic peak exposure than by chronic exposure. Therefore, an experimental scenario including an exposure from 2h to 90 days post-fertilization (dpf) and a subsequent recovery period until 150 dpf was chosen to assess the potential reversibility of the effects of sex steroids on sexual and gonad development of zebrafish (Danio rerio). The aim of this study was to investigate the persistence of the endocrine effects of an estrogen (EE2-17α-ethinylestradiol, 4ng/L), an inhibitor of estrogen synthesis (Fad-fadrozole, 50μg/L) or their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L). Afterwards, a semi-quantitative histological assessment was used to investigate histopathological changes on gonad differentiation and development. The data showed that fadrozole, alone or in combination with EE2, permanently disrupts the sexual development, inducing masculinization and causing severe pathological alterations in testis, such as intersex associated to the enlargement of sperm ducts, interstitial changes, asynchronous development and detachment of basal membrane. After exposures to both EDCs and their mixture, the gonad histopathology revealed interstitial proteinaceous fluid deposits and, in ovaries, there were atretic oocytes, and presumably degenerative mineralization. On the other hand, the gonadal changes induced by EE2 alone seem to be partially reversible when the exposure regime changed to a recovery period. In addition, EE2 enhanced zebrafish growth in both genders, with male fish presenting signs of early obesity such as the presence of adipocytes in testis. Moreover, sex ratio was slightly skewed toward females, at 90 and 105 dpf, in zebrafish exposed to EE2. The data further indicate that long

  18. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    Full Text Available Nayana A Patil,1,2 WN Gade,2 Deepti D Deobagkar1 1Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies, 2Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India Abstract: Titanium dioxide (TiO2 and zinc oxide (ZnO nanoparticles (NPs are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5 cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear

  19. Prenatal exposure to di-n-butyl phthalate (DBP) differentially alters androgen cascade in undeformed versus hypospadiac male rat offspring.

    Science.gov (United States)

    Jiang, Jun-Tao; Zhong, Chen; Zhu, Yi-Ping; Xu, Dong-Liang; Wood, Kristofer; Sun, Wen-Lan; Li, En-Hui; Liu, Zhi-Hong; Zhao, Wei; Ruan, Yuan; Xia, Shu-Jie

    2016-06-01

    This study was to compare the alterations of androgen cascades in di-n-butyl phthalate (DBP)-exposed male offspring without hypospadias (undeformed) versus those with hypospadias. To induce hypospadias in male offspring, pregnant rats received DBP via oral gavage at a dose of 750mg/kg BW/day during gestational days 14-18. The mRNA expression levels of genes downstream of the androgen signaling pathway, such as androgen receptor (AR) and Srd5a2, in testes of undeformed rat pups were similar to those in controls; in hypospadiac rat pups these levels were significantly lower than those of control pups. In contrast, both undeformed and hypospadiac rats had decreased serum testosterone levels, reduced mRNA expression of key enzymes in the androgen synthetic pathway in the testes, and ablated genes of developmental pathways, such as Shh, Bmp4, Fgf8, Fgf10 and Fgfr2, in the genital tubercle (GT) as compared to those in DBP-unexposed controls, albeit hypospadiac rats had a more severe decrement than those of undeformed rats. Although other possibilities cannot be excluded, our findings suggest that the relatively normal levels of testosterone-AR-Srd5a2 may contribute to the resistance to DBP toxicity in undeformed rats. In conclusion, our results showed a potential correlation between decreased testosterone levels, reduced mRNA expression of AR and Srd5a2 and the occurrence of hypospadias in male rat offspring prenatally exposed to DBP. PMID:26948521

  20. Cyto-architectural Alterations in the Corpuscles of Stannius of Stinging Catfish Heteropneustes fossilis after Exposure to a Botanical Pesticide (Nerium indicum

    Directory of Open Access Journals (Sweden)

    ManiRam Prasad

    2014-03-01

    Full Text Available Background: This investigation describes the cyto-architectural alterations observed in the corpuscles of Stannius of stinging catfish Heteropneustes fossilis after treatment with a botanical pesticide Nerium indicum. Methods: Heteropneustes fossilis were subjected to 11.27 and 2.81 mg/L of Nerium indicum leaf extract over short- and long-term exposure periods, respectively. Blood was collected for calcium analysis and corpuscles of Stannius (CS gland were fixed on 24, 48, 72 and 96 h in the short-term experiment and after 7, 14, 21, and 28 days in the long-term experiment. Results: Serum calcium levels decreased from 48 h to 96 h. CS remains unaffected till 72 h. After the 96-hour treatment, increased granulation was observed in AF- positive cells. Nuclear volume of these cells exhibited no change throughout the short-term treatment. Slight increases in nuclear volume of AF-negative cells were recorded after 96 h. Nerium indicum caused decreases in serum calcium levels of H. fossilis from day 14 to 28. CS exhibited no alterations up to 14 days of exposure. AF-positive cells of CS depicted increased granulation after 21 days of treatment. Nuclear volume of these cells exhibited a slight decrease from day 21 to 28. Heavy accumulation of AF-positive granules was observed and few degenerating cells were noticed. Nuclear volume of AF-negative cells increased after 21 and 28 days of treatment. Vacuolization and degeneration occurred in certain places. Conclusion: It is inferred from the present study that the botanical pesticide Nerium indicum induced severe changes in the corpuscles of Stannius of catfish.

  1. Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the role of minerals on lead-induced effect on the liver. Differentiation of minerals and heavy metals pose an inherent problem due to certain common properties shared by them. With this approach to the problem of heavy metal toxicity, in the present study two groups of male Wistar albino rats, one group (well-nourished) fed on mineral rich diet and other group (undernourished) fed on diet without mineral supplements were used. Both the groups of rats were subjected to long-term lead exposure. The diet of well-nourished group was supplemented with calcium (Ca); 1.2%, phosphorous (P); 0.6%, iron (Fe); 90 mg/kg, zinc (Zn); 50 mg/kg, magnesium (Mg); 0.08%, manganese (Mn); 70 mg/kg, selenium (Se); 0.2 mg/kg, copper (Cu); 5 mg/kg, molybdenum (Mo); 0.8 mg/kg, iodine (I); 0.6 mg/kg, cobalt (Co); 3.0 mg/kg. Their blood lead and parameters of liver function were monitored periodically. Results of the study showed a very high statistically significant increase (p < 0.001) in the blood lead (PbB) levels and liver function test parameters in the undernourished subjects compared to the well-nourished subjects. Nutritional management of lead poisoning is of importance since essential elements and toxic heavy metals may interact to minimize the absorption of lead.

  2. Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Bortolotto, Josiane W; Cognato, Giana P; Christoff, Raissa R; Roesler, Laura N; Leite, Carlos E; Kist, Luiza W; Bogo, Mauricio R; Vianna, Monica R; Bonan, Carla D

    2014-04-01

    Chronic exposure to paraquat (Pq), a toxic herbicide, can result in Parkinsonian symptoms. This study evaluated the effect of the systemic administration of Pq on locomotion, learning and memory, social interaction, tyrosine hydroxylase (TH) expression, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, and dopamine transporter (DAT) gene expression in zebrafish. Adult zebrafish received an i.p. injection of either 10 mg/kg (Pq10) or 20 mg/kg (Pq20) of Pq every 3 days for a total of six injections. Locomotion and distance traveled decreased at 24 h after each injection in both treatment doses. In addition, both Pq10- and Pq20-treated animals exhibited differential effects on the absolute turn angle. Nonmotor behaviors were also evaluated, and no changes were observed in anxiety-related behaviors or social interactions in Pq-treated zebrafish. However, Pq-treated animals demonstrated impaired acquisition and consolidation of spatial memory in the Y-maze task. Interestingly, dopamine levels increased while DOPAC levels decreased in the zebrafish brain after both treatments. However, DAT expression decreased in the Pq10-treated group, and there was no change in the Pq20-treated group. The amount of TH protein showed no significant difference in the treated group. Our study establishes a new model to study Parkinson-associated symptoms in zebrafish that have been chronically treated with Pq. PMID:24568596

  3. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    Science.gov (United States)

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. PMID:26683261

  4. Exposure to contaminated sediments induces alterations in the gill epithelia in juvenile Solea senegalensis: a comparative in situ and ex situ study

    Directory of Open Access Journals (Sweden)

    Carla Martins

    2014-06-01

    contaminated sediments. Hypertrophied chloride cells are a consequence of a hindered osmotic regulation by the impairment of ionic active transport, leading to loss-of-function and excessive fluid retention in the cytoplasm. On its turn, a reduction in number and size of gill mucous cells likely reduced the protection provided by mucous to these delicate structures. In general, the alterations were more pronounced in the ex situ study than in situ bioassays, which is probably linked to differences in contaminant bioavailability between laboratory and field scenarios. This variation is likely related to, for instance, estuarine hydrodynamics and sediment steady-state parameters. Interestingly, the results suggest that time of exposure is a key factor, since fewer alterations were observed in animals sampled at the end of the assay (28 days compared to the mid-term (14 days, revealing adaptation to toxicological challenge. In conclusion, mixed sediment contamination can cause physiological alterations in fish gill epithelia that can be determined histologically. These subtle changes may affect the health status of animals by impairing key vital functions such as osmotic balance. As such, physiological alterations to fish gill epithelia may reflect, as in the present case, estuarine sediment contamination even when severe gill lesions are reduced or absent, which mandates caution when interpreting histopathological data in fish for the purpose of environmental risk assessment.

  5. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    Science.gov (United States)

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  6. Cigarette smoke exposure alters [14C]arachidonic acid metabolism in aortas and platelets of rats fed various levels of selenium and vitamin E

    International Nuclear Information System (INIS)

    Rats were placed on a basal diet supplemented with 0, 0.03, or 3 ppm selenium and 0 or 20 ppm vitamin E for 41-43 wk. Selenium deficiency decreased hepatic glutathione peroxidase activity and lowered both aortic prostacyclin (PGI2) and platelet thromboxane (TXA2) production compared to selenium- and vitamin E-supplemented animals. Vitamin E deficiency increased hepatic lipid peroxidation and decreased aortic PGI2 synthesis. Rats exposed daily for 31-32 wk to fresh smoke from a UK 2R1 reference cigarette had carboxyhemoglobin levels of 0.75 +/- 0.12 and 4.73 +/- 0.12% in sham- and smoke-exposed groups, respectively. Animals chronically exposed to cigarette smoke displayed a nearly twofold increase in pulmonary arylhydrocarbon hydroxylase activity. Smoke exposure produced a 26-33% decrease in aortic PGI2 synthesis compared to shams in the Se3E20, Se0.03E20, and Se3E0 groups. Smoking also increased platelet thromboxane 91% and 98% in the Se3E20 and Se3E0 groups compared to shams. It is concluded that cigarette-smoke exposure and selenium or vitamin E deficiency alter aortic PGI2 and platelet TXA2 production

  7. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health. PMID:27291499

  8. Daily Exposure to Sucrose Impairs Subsequent Learning About Food Cues: A Role for Alterations in Ghrelin Signaling and Dopamine D2 Receptors.

    Science.gov (United States)

    Sharpe, M J; Clemens, K J; Morris, M J; Westbrook, R F

    2016-04-01

    The prevalence of hedonic foods and associated advertising slogans has contributed to the rise of the obesity epidemic in the modern world. Research has shown that intake of these foods disrupt dopaminergic systems. It may be that a disruption of these circuits produces aberrant learning about food-cue relationships. We found that rodents given 28 days of intermittent access to sucrose exhibited a deficit in the ability to block learning about a stimulus when it is paired in compound with food and another stimulus that has already been established as predictive of the food outcome. This deficit was characterized by an approach to a cue signaling food delivery that is usually blocked by prior learning, an effect dependent on dopaminergic prediction-error signaling in the midbrain. Administering the D2 agonist quinpirole during learning restored blocking in animals with a prior history of sucrose exposure. Further, repeated central infusions of ghrelin produced a deficit in blocking in the same manner as sucrose exposure. We argue that changes in dopaminergic systems resulting from sucrose exposure are mediated by a disruption of ghrelin signaling as rodents come to anticipate delivery of the highly palatable sucrose outside of normal feeding schedules. This suggestion is supported by our finding that both sucrose and ghrelin treatments resulted in increases in amphetamine-induced locomotor responding. Thus, for the first time, we have provided evidence of a potential link between alterations in D2 receptors caused by the intake of hedonic foods and aberrant learning about cue-food relationships capable of promoting inappropriate feeding habits. In addition, we have found preliminary evidence to suggest that this is mediated by changes in ghrelin signaling, a finding that should stimulate further research into modulation of ghrelin activity to treat obesity. PMID:26365954

  9. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    Science.gov (United States)

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential. PMID:25568918

  10. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    Science.gov (United States)

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  11. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis

    International Nuclear Information System (INIS)

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC50 in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  12. Sex differences in the adult HPA axis and affective behaviors are altered by perinatal exposure to a low dose of bisphenol A.

    Science.gov (United States)

    Chen, Fang; Zhou, Libin; Bai, Yinyang; Zhou, Rong; Chen, Ling

    2014-07-01

    Bisphenol A (BPA), an estrogen-mimicking endocrine disrupter, when administered perinatally can affect affective behaviors in adult rodents, however the underlying mechanisms remain largely unclear. Postnatal day (PND) 80 vehicle-injected control female rats showed more obvious depression- and anxiety-like behaviors than males, indicative of sexually dimorphic affective behaviors. When female breeders were subcutaneously injected with BPA (2µg/kg) from gestation day 10 to lactation day 7, sex difference of affective behaviors was impaired in their offspring (PND80 BPA-rats), as results that female BPA-rats showed a visible "antianxiety-like" behavior, and male BPA-rats increased depression-like behavior compared to vehicle-injected controls. Notably, basal levels of serum corticosterone and adrenocorticotropin (ACTH), and corticotropin-releasing hormone mRNA were increased in male BPA-rats, but not in female BPA-rats, in comparison with vehicle-injected controls. Following mild-stressor the elevation of corticosterone or ACTH levels was higher in male BPA-rats, whereas it was lower in female BPA-rats than vehicle-injected controls. In comparison with vehicle-injected controls, the level of glucocorticoid receptor (GR) mRNA in hippocampus or hypothalamic paraventricular nucleus was increased in female BPA-rats, while decreased in male BPA-rats. In addition, the levels of hippocampal mineralocorticoid receptor (MR) mRNA, neuronal nitric oxide synthase (nNOS) and phospho-cAMP response element binding protein (p-CREB) were increased in female BPA-rats, but were decreased in male BPA-rats. Furthermore, the testosterone level was reduced in male BPA-rats. The results indicate that the perinatal exposure to BPA through altering the GR and MR expression disrupts the GR-mediated feedback of hypothalamic-pituitary-adrenal (HPA) axis and MR-induced nNOS-CREB signaling, which alters sex difference in affective behaviors. PMID:24857958

  13. Prepubertal ethanol exposure alters hypothalamic transforming growth factor-α and erbB1 receptor signaling in the female rat.

    Science.gov (United States)

    Srivastava, Vinod K; Hiney, Jill K; Dees, W Les

    2011-03-01

    Glial-derived transforming growth factor alpha (TGFα) activates the erbB1/erbB2 receptor complex on adjacent glial cells in the medial basal hypothalamus (MBH). This receptor activation stimulates the synthesis and release of prostaglandin-E(2) (PGE(2)) from the glial cells, which then induces the release of prepubertal luteinizing hormone-releasing hormone (LHRH) secretion from nearby nerve terminals; thus, showing the importance of glial-neuronal communications at the time of puberty. Ethanol (EtOH) is known to cause depressed prepubertal LHRH secretion and delayed pubertal development. In this study, we assessed whether short-term EtOH exposure could alter the hypothalamic glial to glial signaling components involved in prepubertal PGE(2) secretion. Immature female rats began receiving control or EtOH diets beginning when 27 days old. The animals were killed by decapitation after 4 and 6 days of treatment and confirmed to be in the late juvenile stage of development. Blood and brain tissues were collected for gene, protein, and hormonal assessments. Real-time polymerase chain reaction (PCR) analysis demonstrated that EtOH did not affect basal levels of erbB1 gene expression in the MBH. Expression of total erbB1 protein was also unaffected; however, the EtOH caused suppressed phosphorylation of erbB1 protein in the MBH at both 4 and 6 days (P<.01) as revealed by Western blotting. Phosphorylation and total protein levels of erbB2 receptor were not affected by EtOH exposure. Because this receptor is critical for PGE(2) synthesis/release, which mediates the secretion of LHRH, we assessed whether in vivo EtOH exposure could affect the release of PGE(2). EtOH exposure for 6 days suppressed (P<.01) basal levels of PGE(2) released into the medium. The effects of 4- and 6-day EtOH exposure on gene and protein expressions of TGFα, an upstream component in the activation of erbB1/erbB2, were also studied. The levels of TGFα mRNA were increased markedly at 4 days (P<.001

  14. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    Science.gov (United States)

    Hamilton, Derek A.; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24 hours of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior

  15. Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures.

    Science.gov (United States)

    Karami, Ali; Karbalaei, Samaneh; Zad Bagher, Fariba; Ismail, Amin; Simpson, Stuart L; Courtenay, Simon C

    2016-08-01

    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure. PMID:27182978

  16. Histopathological alterations and induction of hsp70 in ramshorn snail (Marisa cornuarietis) and zebrafish (Danio rerio) embryos after exposure to PtCl(2).

    Science.gov (United States)

    Osterauer, Raphaela; Köhler, Heinz-R; Triebskorn, Rita

    2010-08-01

    The platinum group metals (PGMs) platinum (Pt), palladium (Pd), and rhodium (Rh) are used in automobile catalytic converters, from which they have been emitted into the environment to an increasing degree during the last 20 years. Despite the bioavailability of these metals to plants and animals, studies determining the effects of PGMs on organisms are extremely rare. In the present study, effects of various concentrations of PtCl(2) (0.1, 1, 10, 50 and 100 microg/L) were investigated with respect to the induction of hsp70 and histopathological alterations in the zebrafish, Danio rerio and the ramshorn snail, Marisa cornuarietis. Histopathological investigations revealed effects of Pt on both species, which varied between slight and strong cellular reactions, depending on the PtCl(2) concentration. The hsp70 level in M. cornuarietis did not show an increase following Pt exposure whereas it was significantly elevated at 100 micorg/L PtCl(2) in D. rerio. PMID:20444508

  17. Exposure of human JEG-3 cell line to TCDD alters progesterone secretion but does not act on their viability and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Augustowska, K.; Gregoraszczuk, E.L. [Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds are lipophilic and difficult to metabolize. Any environmental exposure of living organisms to these congeners results in their accumulation in fat tissue and bioconcentration in humans via the food chain. TCDD acts as an endocrine disrupter to alter differentiation and function of the reproductive system. Therefore, these compounds represent a serious health risk, especially to the fetus and infants, whose enzymatic and metabolic systems are not yet mature. Our previous data showed high accumulation of TCDD in cultured human placental tissue which caused a decrease in hormone secretion. However, the mechanism of this action is still unclear. JEG-3 cell line from malignant placental tissue has been used as an in vitro model for investigation of the effects of xenobiotics on placenta toxicity. These cells are morphologically similar to their origin, the trophoblast of the normal first trimester placenta, and produce many peptides and steroid hormones found in normal trophoblast cells, such as hCG, GhRH, progesterone. The aim of the present study was firstly, to show dose- and time-dependent effects of TCDD on progesterone production by JEG-3 cells and secondly, to examine mechanism of its action on cell viability and apoptosis.

  18. Glycation of the muscle-specific enolase by reactive carbonyls: effect of temperature and the protection role of carnosine, pyridoxamine and phosphatidylserine.

    Science.gov (United States)

    Pietkiewicz, Jadwiga; Bronowicka-Szydełko, Agnieszka; Dzierzba, Katarzyna; Danielewicz, Regina; Gamian, Andrzej

    2011-03-01

    Reactive carbonyls such as 4-hydroxy-2-nonenal (4-HNE), trans-2-nonenal (T2 N), acrolein (ACR) can react readily with nucleophilic protein sites forming of advanced glycation end-products (AGE). In this study, the human and pig muscle-specific enolase was used as a protein model for in vitro modification by 4-HNE, T2 N and ACR. While the human enolase interaction with reactive α-oxoaldehyde methylglyoxal (MOG) was demonstrated previously, the effect of 4-HNE, T2N and ACR has not been identified yet. Altering in catalytic function were observed after the enzyme incubation with these active compounds for 1-24 h at 25, 37 and 45 °C. The inhibition degree of enolase activity occurred in following order: 4-HNE > ACR > MOG > T2N and inactivation of pig muscle-specific enolase was more effective relatively to human enzyme. The efficiency of AGE formation depends on time and incubation temperature with glycating agent. More amounts of insoluble AGE were formed at 45 °C. We found that pyridoxamine and natural dipeptide carnosine counteracted AGE formation and protected enolase against the total loss of catalytic activity. Moreover, we demonstrated for the first time that phosphatidylserine may significantly protect enolase against decrease of catalytic activity in spite of AGE production. PMID:21347838

  19. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    OpenAIRE

    Daniela Rieger; Alice Assinger; Katrin Einfinger; Barbora Sokolikova; Margarethe Geiger

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marke...

  20. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study

    OpenAIRE

    Richter Y; Herzog Y; Lifshitz Y; Hayun R; Zchut S

    2013-01-01

    Yael Richter, Yael Herzog, Yael Lifshitz, Rami Hayun, Sigalit ZchutEnzymotec Ltd, K’far Baruch, IsraelObjective: To evaluate the efficacy and safety of soybean-derived phosphatidylserine (SB-PS) (300 mg/day) in improving cognitive performance in elderly with memory complaints, following a short duration of 12 weeks’ SB-PS administration.Methods: SB-PS was administered daily for 12 weeks to 30 elderly volunteers with memory complaints (age range 50–90 years). Cogn...

  1. Occupational exposure to 50 Hz magnetic fields does not alter responses of inflammatory genes and activation of splenic lymphocytes in mice

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2016-04-01

    Full Text Available Objectives: The objective of the present study was to observe the effects of 50 Hz magnetic fields (MFs on the immune function of splenic lymphocytes in mice. Material and Methods: Twenty male Kunming mice (6 weeks old, weighing 18– 25 g, were randomly divided into sham exposure (N = 10 and 500 μT MFs (N = 10 groups. The mice in the MFs group were exposed to 500 μT MFs for 8 h daily (5 days/week for up to 60 days. In vitro study was carried out to examine the effects of 50 Hz MFs on the expression of inflammatory factor genes and a cluster of differentiation 69 (CD69 in mouse prime splenic lymphocytes activated by para-Methoxyamphetamine (PMA and ionomycin. In the in vitro experiments, lymphocytes were isolated from the spleen of 10 healthy Kunming mice, the cells were cultured in the Roswell Park Memorial Institute 1640 medium (RPMI-1640 and exposed to 0 μT, 250 μT, 500 μT, or 1 mT MFs in an incubator under 5% carbon dioxide (CO2 at 37°C for 6 h. The levels of interleukin-2 (IL-2, IL-4, interferon-gamma (IFN-γ, GATA binding protein 3 (GATA-3 and T cell-specific T-box transcription factor (T-bet were assessed by the real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR, respectively. The expression of CD69 was checked using the flow cytometry. Results: Under our experimental conditions, body weight of the mice exposed to occupational, extremely low frequency- electromagnetic fields (ELF-EMFs significantly decreased on day 20 and day 30. There were no significant changes observed in vivo in spleen weight, splenic coefficient, splenic histology profile and cytokine production in spleen tissues. Our in vitro experiments showed that 50 Hz MFs had no effect on the expression of these genes and CD69 to primary splenic cells. Conclusions: In conclusion, under the applied experimental conditions, occupational exposure to 50 Hz magnetic field did not alter responses of inflammatory genes and activation of splenic

  2. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India.

    Science.gov (United States)

    Chatterjee, Debmita; Bhattacharjee, Pritha; Sau, Tanmoy J; Das, Jayanta K; Sarma, Nilendu; Bandyopadhyay, Apurba K; Roy, Sib Sankar; Giri, Ashok K

    2015-09-01

    Arsenic (As) induces pre-malignant and malignant dermatological lesions, non-dermatological health effects and cancers in humans. Senescence involves telomere length changes and acquisition of senescence-associated secretory phenotype (SASP), which promotes carcinogenesis. Though in vitro studies have shown that As induces senescence, population based studies are lacking. We investigated the arsenic-induced senescence, telomere length alteration and its contribution towards development of As-induced skin cancer. The study participants included 60 each of As-exposed individuals with skin lesion (WSL), without skin lesions (WOSL) and 60 unexposed controls. Exposure assessment of drinking water and urine was done. SA β-gal activity, ELISA, and quantification of senescence proteins, alternative lengthening of telomere (ALT) associated proteins and telomerase activity were performed. Relative telomere length (RTL) was determined by qPCR. A significantly higher number of senescent cells, over-expression of p53 and p21 were observed in the As-exposed individuals when compared to unexposed. SASP markers, MMP-1/MMP-3 were significantly higher in the WSL but not IL-6/IL-8. A significant increase of RTL was observed in the WSL group, which was telomerase-independent but exhibited an over-expression of ALT associated proteins TRF-1 and TRF-2 with higher increase in TRF-2. An increased risk for developing As-induced skin lesions was found for individuals having RTL greater than 0.827 (odds ratio, 13.75; 95% CI: 5.66-33.41; P telomere length might be useful for predicting the risk of development of As-induced skin lesions. PMID:24665044

  3. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    Directory of Open Access Journals (Sweden)

    Bas ter Braak

    Full Text Available Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  4. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer.

    Science.gov (United States)

    Birge, R B; Boeltz, S; Kumar, S; Carlson, J; Wanderley, J; Calianese, D; Barcinski, M; Brekken, R A; Huang, X; Hutchins, J T; Freimark, B; Empig, C; Mercer, J; Schroit, A J; Schett, G; Herrmann, M

    2016-06-01

    Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics. PMID:26915293

  5. Phosphatidylserine-positive particles in the apical domain of sensory hair cells

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-rui; Alfred Nuttall

    2006-01-01

    Apical membrane recycling has been proposed to be important for normal hair cell function. The current study reports an in vitro work that demonstrates the presence of phosphatidylserine (PS) and PS-positive vesicles labeled by Annexin V in the apical portion of hair cells. The following characteristics of the PS-positive vesicles were noticed using scanning confocal fluorescence microscopy: (1) variable sizes around 200 nm; (2)variable distribution patterns (either uniformly along individual stereocilia in the hair bundle or irregular) in the stereocilia from cell to cell; (3) variable sizes and numbers at locations along the border of the cuticular plate (CP),with a large number of them located at the vestigal kinocilial location; (4) motility with some of the vesicles during the observation period; (5) increase in PS labeling and the number of PS-positive vesicles after loud sound stimulation; and (6) decreased PS labeling and PS-positive vesicle numbers following treatment with LY-294002, a PI3 -kinase inhibitor. These results suggest that the presence of PS-positive vesicles at the apical area of hair cells may be indicative of vesicle shedding or transportation of a protein or rafts.

  6. Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Nagarjun V Konduru

    Full Text Available Broad applications of single-walled carbon nanotubes (SWCNT dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid "eat-me" signal, phosphatidylserine (PS, makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells.

  7. The effects of phosphatidylserine on endocrine response to moderate intensity exercise

    Directory of Open Access Journals (Sweden)

    Purpura Martin

    2008-07-01

    Full Text Available Abstract Background Previous research has indicated that phosphatidylserine (PS supplementation has the potential to attenuate the serum cortisol response to acute exercise stress. Equivocal findings suggest that this effect might be dose dependent. This study aimed to examine the influence of short-term supplementation with a moderate dose of PS (600 mg per day on plasma concentrations of cortisol, lactate, growth hormone and testosterone before, during, and following moderate intensity exercise in healthy males. Methods 10 healthy male subjects participated in the study. Each subject was assigned to ingest 600 mg PS or placebo per day for 10 days using a double-blind, placebo-controlled, crossover design. Serial venous blood samples were taken at rest, after a 15 minute moderate intensity exercise protocol on a cycle ergometer that consisted of five 3-minute incremental stages beginning at 65% and ending at 85% VO2 max, and during a 65 minute passive recovery. Plasma samples were assessed for cortisol, growth hormone, testosterone, lactate and testosterone to cortisol ratio for treatment (PS or placebo. Results Mean peak cortisol concentrations and area under the curve (AUC were lower following PS (39 ± 1% and 35 ± 0%, respectively when compared to placebo (p Conclusion The findings suggest that PS is an effective supplement for combating exercise-induced stress and preventing the physiological deterioration that can accompany too much exercise. PS supplementation promotes a desired hormonal status for athletes by blunting increases in cortisol levels.

  8. Antibodies to Phosphatidylserine/Prothrombin Complex in Antiphospholipid Syndrome: Analytical and Clinical Perspectives.

    Science.gov (United States)

    Peterson, Lisa K; Willis, Rohan; Harris, E Nigel; Branch, Ware D; Tebo, Anne E

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy-related morbidity accompanied by persistently positive antiphospholipid antibodies (aPL). Current laboratory criteria for APS classification recommend testing for lupus anticoagulant as well as IgG and IgM anticardiolipin, and beta-2 glycoprotein I (anti-β2GPI) antibodies. However, there appears to be a subset of patients with classical APS manifestations who test negative for the recommended criteria aPL tests. While acknowledging that such patients may have clinical features that are not of an autoimmune etiology, experts also speculate that these "seronegative" patients may test negative for relevant autoantibodies as a result of a lack of harmonization and/or standardization. Alternatively, they may have aPL that target other antigens involved in the pathogenesis of APS. In the latter, autoantibodies that recognize a phosphatidylserine/prothrombin (PS/PT) complex have been reported to be associated with APS and may have diagnostic relevance. This review highlights analytical and clinical attributes associated with PS/PT antibodies, taking into consideration the performance characteristics of criteria aPL tests in APS with specific recommendations for harmonization and standardization efforts. PMID:26975968

  9. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    Science.gov (United States)

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD. PMID:26769675

  10. Enhanced Eryptosis Following Gramicidin Exposure

    Directory of Open Access Journals (Sweden)

    Abaid Malik

    2015-04-01

    Full Text Available The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i, and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW from electronic particle counting, reactive oxidant species (ROS from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL, forward scatter (≥0.5 µg/mL and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD.

  11. Enhanced eryptosis following gramicidin exposure.

    Science.gov (United States)

    Malik, Abaid; Bissinger, Rosi; Liu, Guoxing; Liu, Guilai; Lang, Florian

    2015-05-01

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD. PMID:25915718

  12. Radiation-induced breast cancer: Influence of age at exposure, latency period, age, and genetic predisposition; Strahleninduziertes Mammakarzinom: Einfluss von Alter bei Exposition, Latenzzeit, erreichtem Lebensalter und genetischer Praedisposition

    Energy Technology Data Exchange (ETDEWEB)

    Kuni, H. [Klinische Nuklearmedizin, Marburg Univ. (Germany)

    2001-07-01

    Radiation induced breast cancer: Influence of age at exposure, time since exposure, attained age and genetic predisposition. The amount of undesirable effects of screening with mammography was estimated from mortality studies after radiation exposure. Newer incidence studies demonstrate, however, an underestimation of the health detriment by mortality studies, in particular with increasing age at exposure, which amounts about five- to sixfold after an exposure in an age of 45-50y. The multidimensional analysis of the discrete values of incidence after radiation exposure respecting age at exposure, time since exposure and attained age instead of calculating a steady function simply depending from age at exposure results in an increasing relative and absolute risk of cancer incidence (and mortality) with growing age after an exposure at an age above 40y. Some genes seems to be correlated with an predisposition of breast cancer. In women carrying BRCA-1 the radiosensitivity for induction of breast cancer may exceed the risk in the normal population by about two orders of magnitude. The resulting doubling dose amounts in the order of the natural and medical radiation exposure. At least in part the genetic predisposition is associated with an early onset of the cancer after an additional radiation exposure. This kind of health detriment was not considered in the former discussion of radiation hazards. (orig.) [German] Das Ausmass unerwuenschter Folgen eines Mammographie-Screenings war bisher aus Mortalitaetsstatistiken nach einer Strahlenbelastung abgeleitet worden. Neuere Inzidenzstatistiken zeigen, dass besonders mit zunehmendem Lebensalter die Mortalitaetsstatistiken die Gefaehrdung durch ein strahleninduziertes Mammakarzinom erheblich unterschaetzen, nach einer Strahlenbelastung im Alter um 45-50 Jahre um etwa das Fuenf- bis Siebenfache. Werden zur Beschreibung der strahleninduzierten Inzidinz aus den Statistiken keine kontinuierlichen mathematischen Funktionen

  13. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells.

    Science.gov (United States)

    Koty, Patrick P; Tyurina, Yulia Y; Tyurin, Vladimir A; Li, Shang-Xi; Kagan, Valerian E

    2002-01-01

    Oxidant-induced apoptosis involves oxidation of many different and essential molecules including phospholipids. As a result of this non-specific oxidation, any signaling role of a particular phospholipid-class of molecules is difficult to elucidate. To determine whether preferential oxidation of phosphatidylserine (PS) is an early event in apoptotic signaling related to PS externalization and is independent of direct oxidant exposure, we chose a genetic-based induction of apoptosis. Apoptosis was induced in the lung cancer cell line NCI-H226 by decreasing the amount of Bcl-2 protein expression by preventing the translation of bcl-2 mRNA using an antisense bcl-2 oligonucleotide. Peroxidation of phospholipids was assayed using a fluorescent technique based on metabolic integration of an oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid (PnA), into cellular phospholipids and subsequent HPLC separation of cis-PnA-labeled phospholipids. We found a decrease in Bcl-2 was associated with a selective oxidation of PS in a sub-population of the cells with externalized PS. No significant difference in oxidation of cis-PnA-labeled phospholipids was observed in cells treated with medium alone or a nonsense oligonucleotide. Treatment with either nonsensc or antisense bcl-2 oligonucleotides was not associated with changes in the pattern of individual phospholipid classes as determined by HPTLC. These metabolic and topographical changes in PS arrangement in plasma membrane appear to be early responses to antisense bcl-2 exposure that trigger a PS-dependent apoptotic signaling pathway. This observed externalization of PS may facilitate the 'labeling' of apoptotic cells for recognition by macrophage scavenger receptors and subsequent phagocytic clearance. PMID:12162425

  14. Developmental Exposure to Second-Hand Smoke Increases Adult Atherogenesis and Alters Mitochondrial DNA Copy Number and Deletions in apoE−/− Mice

    OpenAIRE

    Fetterman, Jessica L.; Melissa Pompilius; Westbrook, David G.; Dale Uyeminami; Jamelle Brown; Pinkerton, Kent E.; Ballinger, Scott W.

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in...

  15. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2016-04-01

    Full Text Available Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA or pentavalent antimony salt (Sb were obtained through filter extrusion (FEL and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay. The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50 of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.

  16. The effects of phosphatidylserine and omega-3 fatty acid-containing supplement on late life depression

    Directory of Open Access Journals (Sweden)

    Teruhisa Komori

    2015-04-01

    Full Text Available Late life depression is often associated with a poor response to antidepressants; therefore an alternative strategy for therapy is required. Although several studies have reported that phosphatidylserine (PS may be effective for late life depression and that omega-3 fatty acids DHA and EPA have also proven beneficial for many higher mental functions, including depression, no concrete conclusion has been reached. This study was performed to clarify the effect of PS and omega-3 fatty acid-containing supplement for late life depression by not only clinical evaluation but also salivary cortisol levels. Eighteen elderly subjects with major depression were selected for the study. In all, insufficient improvement had been obtained by antidepressant therapy for at least 6 months. The exclusion criteria from prior brain magnetic resonance images (MRI included the presence of structural MRI findings compatible with stroke or other gross brain lesions or malformations, but not white matter hypersensitivities. They took a supplement containing PS 100 mg, DHA 119 mg and EPA 70 mg three times a day for 12 weeks. The effects of the supplement were assessed using the 17-item Hamilton depression scale (HAM-D17 and the basal levels and circadian rhythm of salivary cortisol. The study adopted them as indices because: salivary cortisol levels are high in patients with depression, their circadian rhythm related to salivary cortisol is often irregular, and these symptoms are alleviated as depression improves. The mean HAM-D17 in all subjects taking the supplement was significantly improved after 12 weeks of taking the supplement. These subjects were divided into 10 non-responders and 8 responders. The basal levels and circadian rhythm of salivary cortisol were normalized in the responders while not in non-responders. PS and omega-3 fatty acids, or other elements of the supplement, may be effective for late life depression, associated with the correction of basal

  17. Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide.

    Science.gov (United States)

    Tarafdar, Pradip K; Chakraborty, Hirak; Bruno, Michael J; Lentz, Barry R

    2015-11-01

    Although the importance of a SNARE complex in neurotransmitter release is widely accepted, there exist different views on how the complex promotes fusion. One hypothesis is that the SNARE complex's ability to bring membranes into contact is sufficient for fusion, another points to possible roles of juxtamembrane regions (JMRs) and transmembrane domains (TMDs) in catalyzing lipid rearrangement, and another notes the complex's presumed ability to bend membranes near the point of contact. Here, we performed experiments with highly curved vesicles brought into contact using low concentrations of polyethylene glycol (PEG) to investigate the influence of the synaptobrevin (SB) TMD with an attached JMR (SB-JMR-TMD) on the rates of stalk and pore formation during vesicle fusion. SB-JMR-TMD enhanced the rates of stalk and fusion pore (FP) formation in a sharply sigmoidal fashion. We observed an optimal influence at an average of three peptides per vesicle, but only with phosphatidylserine (PS)-containing vesicles. Approximately three SB-JMR-TMDs per vesicle optimally ordered the bilayer interior and excluded water in a similar sigmoidal fashion. The catalytic influences of hexadecane and SB-JMR-TMD on fusion kinetics showed little in common, suggesting different mechanisms. Both kinetic and membrane structure measurements support the hypotheses that SB-JMR-TMD 1) catalyzes initial intermediate formation as a result of its basic JMR disrupting ordered interbilayer water and permitting closer interbilayer approach, and 2) catalyzes pore formation by forming a membrane-spanning complex that increases curvature stress at the circumference of the hemifused diaphragm of the prepore intermediate state. PMID:26536263

  18. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    International Nuclear Information System (INIS)

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with [3H]serine, and the synthesis of phosphatidyl[3H]ethanolamine from phosphatidyl[3H]serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 μg of saponin per ml, there was no significant turnover of nascent phosphatidyl[3H]serine to form phosphatidyl[3H]ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl[3H]ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl[3H]serine during a subsequent 2-hr chase. Phosphatidyl[3H]ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl[3H]ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl[3H]serine to phosphatidyl[3H]ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5'-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl[3H]ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins

  19. A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers.

    Science.gov (United States)

    Dacaranhe, C D; Terao, J

    2001-10-01

    The relationship between the antioxidant effect of acidic phospholipids, phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylserine (PS), on iron-induced lipid peroxidation of phospholipid bilayers and their abilities to bind iron ion was examined in egg yolk phosphatidylcholine large unilamellar vesicles (EYPC LUV). The effect of each acidic phospholipid added to the vesicles at 10 mol% was assessed by measuring phosphatidylcholine hydroperoxides (PC-OOH) and thiobarbituric acid-reactive substances. The addition of dipalmitoyl PS (DPPS) showed a significant inhibitory effect, although the other two acidic phospholipids, dipalmitoyl PA (DPPA) and dipalmitoyl PG (DPPG), did not exert the inhibition. Neither dipalmitoyl PC (DPPC) nor dipalmitoyl phophatidylethanolamine (DPPE) showed any remarkable inhibition on this system. None of the tested phospholipids affected the lipid peroxidation rate remarkably when the vesicles were exposed to a water-soluble radical generator. The iron-binding ability of each phospholipid was estimated on the basis of the amounts of iron recovered in the chloroform/methanol phase after separation of the vesicle solution to water/methanol and chloroform/methanol phases. EYPC LUV containing DPPS, DPPA, and DPPG had higher amounts of bound iron than those containing DPPC and DPPE, indicating that these three acidic phospholipids possess an iron-binding ability at a similar level. Nevertheless, only DPPS suppressed iron-dependent decomposition of PC-OOH significantly. Therefore, it is likely that these three acidic phospholipids possess a significant iron-binding ability, although this ability per se does not warrant them antioxidative activities. The ability to suppress the iron-dependent decomposition of PC-OOH may explain the unique antioxidant activity of PS. PMID:11768154

  20. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, D.R. (National Jewish Center for Immunology and Respiratory Medicine, Denver, CO (USA))

    1989-12-01

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with ({sup 3}H)serine, and the synthesis of phosphatidyl({sup 3}H)ethanolamine from phosphatidyl({sup 3}H)serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 {mu}g of saponin per ml, there was no significant turnover of nascent phosphatidyl({sup 3}H)serine to form phosphatidyl({sup 3}H)ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl({sup 3}H)ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl({sup 3}H)serine during a subsequent 2-hr chase. Phosphatidyl({sup 3}H)ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl({sup 3}H)serine to phosphatidyl({sup 3}H)ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5{prime}-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins.

  1. Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-03-01

    Full Text Available Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2 cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 μg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 ± 0.6 μg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 μg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0

  2. Exposure to the three structurally different PCB congeners (PCB 118, 153, and 126) results in decreased protein expression and altered steroidogenesis in the human adrenocortical carcinoma cell line H295R.

    Science.gov (United States)

    Tremoen, Nina Hårdnes; Fowler, Paul A; Ropstad, Erik; Verhaegen, Steven; Krogenæs, Anette

    2014-01-01

    Polychlorinated biphenyls (PCB), synthetic, persistent organic pollutants (POP), are detected ubiquitously, in water, soil, air, and sediments, as well as in animals and humans. PCB are associated with range of adverse health effects, such as interference with the immune system and nervous system, reproductive abnormalities, fetotoxicity, carcinogenicity, and endocrine disruption. Our objective was to determine the effects of three structurally different PCB congeners, PCB118, PCB 126, and PCB 153, each at two concentrations, on the steroidogenic capacity and proteome of human adrenocortical carcinoma cell line cultures (H295R) . After 48 h of exposure, cell viability was monitored and estradiol, testosterone, cortisol and progesterone secretion measured to quantify steroidogenic capacity of the cells. Two-dimensional (2D) gel-based proteomics was used to screen for proteome alterations in H295R cells in response to the PCB. Exposure to PCB 118 increased estradiol and cortisol secretion, while exposure to PCB 153 elevated estradiol secretion. PCB 126 was the most potent congener, increasing estradiol, cortisol, and progesterone secretion in exposed H295R cells. Seventy-three of the 711 spots analyzed showed a significant difference in normalized spot volumes between controls (vehicle only) and at least one exposure group. Fourteen of these protein spots were identified by liquid chromatography with mass spectroscopy (LC-MS/MS). Exposure to three PCB congeners with different chemical structure perturbed steroidogenesis and protein expression in the H295R in vitro model. This study represents an initial analysis of the effects on proteins and hormones in the H295R cell model, and additional studies are required in order to obtain a more complete understanding of the pathways disturbed by PCB congeners in H295R cells. Overall, alterations in protein regulation and steroid hormone synthesis suggest that exposure to PCB disturbs several cellular processes, including

  3. INDUCTION OF CHRONIC KIDNEY FAILURE IN A LONG-TERM PERITONEAL EXPOSURE MODEL IN THE RAT: EFFECTS ON FUNCTIONAL AND STRUCTURAL PERITONEAL ALTERATIONS

    NARCIS (Netherlands)

    F. Vrtovsnik; A. Coester; D. Lopes-Barreto; D.R. de Waart; A. van der Wal; D.G. Struijk; R. Krediet; M. Zweers

    2010-01-01

    Background: A long-term peritoneal exposure model has been developed in Wistar rats. Chronic daily exposure to 3.86% glucose based, lactate buffered, conventional dialysis solutions is possible for up to 20 weeks and induces morphological abnormalities similar to those in long-term peritoneal dialys

  4. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study

    Directory of Open Access Journals (Sweden)

    Richter Y

    2013-05-01

    Full Text Available Yael Richter, Yael Herzog, Yael Lifshitz, Rami Hayun, Sigalit ZchutEnzymotec Ltd, K’far Baruch, IsraelObjective: To evaluate the efficacy and safety of soybean-derived phosphatidylserine (SB-PS (300 mg/day in improving cognitive performance in elderly with memory complaints, following a short duration of 12 weeks’ SB-PS administration.Methods: SB-PS was administered daily for 12 weeks to 30 elderly volunteers with memory complaints (age range 50–90 years. Cognitive performance was determined by a computerized test battery and by the Rey Auditory Verbal Learning Test (Rey-AVLT. Physical examination and blood safety parameters were part of the extensive safety analysis of PS that was performed.Results: The computerized test results showed that SB-PS supplementation significantly increased the following cognitive parameters: memory recognition (P = 0.004, memory recall (P = 0.006, executive functions (P = 0.004, and mental flexibility (P = 0.01. The Rey-AVLT indicated that, following SB-PS administration, total learning and immediate recall improved significantly (P = 0.013 and P = 0.007, respectively. Unexpected results from the safety tests suggested that SB-PS significantly reduces both systolic (P = 0.043 and diastolic (P = 0.003 blood pressure. SB-PS consumption was well tolerated and no serious adverse events were reported during the study.Conclusion: This exploratory study demonstrates that SB-PS may have favorable effects on cognitive function in elderly with memory complaints. In addition, the study suggests that SB-PS is safe for human consumption and may serve as a safe alternative to phosphatidylserine extracted from bovine cortex. These results encourage further extended studies in order to establish the safety and efficacy of SB-PS treatment.Keywords: learning, AAMI, memory, cognitive, phosphatidylserine

  5. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    Directory of Open Access Journals (Sweden)

    Carolina Varela Chavez

    2016-03-01

    Full Text Available Clostridium sordellii lethal toxin (TcsL is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases.

  6. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation.

    Science.gov (United States)

    Varela Chavez, Carolina; Haustant, Georges Michel; Baron, Bruno; England, Patrick; Chenal, Alexandre; Pauillac, Serge; Blondel, Arnaud; Popoff, Michel-Robert

    2016-01-01

    Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1-93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases. PMID:27023605

  7. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    Science.gov (United States)

    Varela Chavez, Carolina; Haustant, Georges Michel; Baron, Bruno; England, Patrick; Chenal, Alexandre; Pauillac, Serge; Blondel, Arnaud; Popoff, Michel-Robert

    2016-01-01

    Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases. PMID:27023605

  8. Expression of Glutamatergic Genes in Healthy Humans across 16 Brain Regions; Altered Expression in the Hippocampus after Chronic Exposure to Alcohol or Cocaine

    OpenAIRE

    Enoch, Mary-Anne; Rosser, Alexandra A.; Zhou, Zhifeng; Mash, Deborah C; Yuan, Qiaoping; Goldman, David

    2014-01-01

    We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus.

  9. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    Directory of Open Access Journals (Sweden)

    Claudia Leticia Moreno Ávila

    2016-01-01

    Full Text Available Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.

  10. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice.

    Science.gov (United States)

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H; Giordano, Magda; Rodríguez, Verónica M

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system. PMID:27375740

  11. Perinatal Exposure to Purity-Controlled Polychlorinated Biphenyl 52, 138, or 180 Alters Toxicogenomic Profiles in Peripheral Blood of Rats after 4 Months

    OpenAIRE

    De Boever, Patrick; Wens, Britt; Boix, Jordi; Felipo, Vicente; Schoeters, Greet

    2013-01-01

    It is known from controlled animal experiments and human epidemiologic studies that early life exposure to mixtures of polychlorinated biphenyls (PCBs) is a risk factor for developmental neurotoxicity. The importance of non-dioxin-like PCBs in the context of the observed effect is uncertain because of the blending with the more potent dioxin-like PCBs. Previously, a controlled rat perinatal exposure study with individual, purity-controlled, non-dioxin-like congeners (PCB52, PCB138, or PCB180)...

  12. In utero and lactational exposure to PCB 118 and PCB 153 alter ovarian follicular dynamics and GnRH-induced luteinizing hormone secretion in female lambs

    DEFF Research Database (Denmark)

    Kraugerud, Marianne; Aleksandersen, Mona; Nyengaard, Jens Randel;

    2012-01-01

    The effects of in utero and lactational exposure to two structurally different polychlorinated biphenyl (PCB) congeners on follicular dynamics and the pituitary-gonadal axis in female lambs were investigated. Pregnant ewes received corn oil, PCB 118, or PCB 153, and offspring was maintained until...... dynamics in lambs and modulate the responsiveness of the pituitary gland to GnRH.The effects of in utero and lactational exposure to two structurally different polychlorinated biphenyl (PCB) congeners on follicular dynamics and the pituitary-gonadal axis in female lambs were investigated. Pregnant ewes...... 60 days postpartum. Ovarian follicles were quantified using stereology. Plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured using radioimmunoassay before and after administration of a gonadotropin releasing hormone (GnRH) analog. PCB 118 exposure increased numbers of...

  13. Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2015-08-01

    Full Text Available Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs. Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage- sca-1+ c-kit+ (LSK cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity.

  14. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  15. Acrolein Exposure Blocks Down-Regulation of Cytokines and IgE Antibody in a Mucosal Tolerance Model but does not Alter Phenotypic Markers of Allergic Lung Disease

    Science.gov (United States)

    Acrolein (ACR) is a highly reactive upper airway toxicant that humans are exposed in a variety of environmental situations. Here we examined the effect of ACR exposure on development of immune tolerance in mice. To induce tolerance, female BALB/C mice were intranasally inoculate...

  16. Perinatal exposure to purity-controlled polychlorinated biphenyl 52, 138, or 180 alters toxicogenomic profiles in peripheral blood of rats after 4 months.

    Science.gov (United States)

    De Boever, Patrick; Wens, Britt; Boix, Jordi; Felipo, Vicente; Schoeters, Greet

    2013-08-19

    It is known from controlled animal experiments and human epidemiologic studies that early life exposure to mixtures of polychlorinated biphenyls (PCBs) is a risk factor for developmental neurotoxicity. The importance of non-dioxin-like PCBs in the context of the observed effect is uncertain because of the blending with the more potent dioxin-like PCBs. Previously, a controlled rat perinatal exposure study with individual, purity-controlled, non-dioxin-like congeners (PCB52, PCB138, or PCB180) was set up. Impaired motor coordination, motor activity, and learning has been reported for the offspring at an age of approximately 4 months. Here, we report on the gene expression responses that have been observed in the blood of the same animals. ANOVA analysis called 1412 genes differentially expressed 4 months after the PCB treatment was stopped. Subsequently, each PCB exposure condition was compared to the corresponding vehicle control using a fold change analysis. The gene lists contained between 82 and 348 differentially expressed genes. Expression patterns were complex with sets of differentially expressed genes being specific for a particular PCB exposure and other sets in common between several exposure conditions. Thirty-two genes were differentially expressed under all conditions. Bioinformatic overrepresentation analysis identified enriched biological terms such as lipid metabolism, molecular transport, small molecule biochemistry, and cell signaling and proliferation. Gene lists were particularly enriched for nervous system development and function ontology. In conclusion, we have documented for the first time differential gene expression in a well-controlled animal study that reported behavioral effects of purity-controlled individual non-dioxin-like PCBs. PMID:23829299

  17. Altered growth and polyamine catabolism following exposure of the chocolate spot pathogen Botrytis fabae to the essential oil of Ocimum basilicum.

    Science.gov (United States)

    Oxenham, Senga K; Svoboda, Katja P; Walters, Dale R

    2005-01-01

    Biomass of the fungal pathogen Botrytis fabae in liquid culture amended with two chemotypes of the essential oil of basil, Ocimum basilicum, was reduced significantly at concentrations of 50 ppm or less. The methyl chavicol chemotype oil increased the activity of the polyamine biosynthetic enzyme S-adenosylmethionine decarboxylase (AdoMetDC), but polyamine concentrations were not significantly altered. In contrast, the linalol chemotype oil decreased AdoMetDC activity in B. fabae, although again polyamine concentrations were not altered significantly. However activities of the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO) were increased significantly in B. fabae grown in the presence of the essential oil of the two chemotypes. It is suggested that the elevated activities of DAO and PAO may be responsible, in part, for the antifungal effects of the basil oil, possibly via the generation of hydrogen peroxide and the subsequent triggering of programmed cell death. PMID:16392245

  18. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. Methods: C57BL/6 and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. Results: The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE−/− mice. In ApoE−/−, no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. Conclusion: This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle

  19. Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a

    International Nuclear Information System (INIS)

    Highlights: •We examined time-dependent metabolic changes in C. demersum exposed to anatoxin-a. •Biotransformation and antioxidative defense mechanisms responded positively to anatoxin-a. •Decline in chlorophylls contents was detected in company with irreversible plant growth inhibition during exposure to anatoxin-a. •Anatoxin-a exhibits phytotoxic allelopathy by provoking oxidative stress. •Macrophytes may have interactions with anatoxin-a in aquatic environments. -- Abstract: Recently, aquatic macrophytes have been considered as promising tools for eco-friendly water management with a low running cost. However, only little information is available thus far regarding the metabolic capacity of macrophytes for coping with cyanobacterial toxins (cyanotoxins) in the aquatic environment. Cyanotoxins have become emerging contaminants of great concern due to the high proliferation of cyanobacteria (cyanobacterial bloom) accelerated by eutrophication and climate change. Anatoxin-a, one of the common and major cyanotoxins, is suggested as a high priority water pollutant for regulatory consideration owing to its notoriously rapid mode of action as a neurotoxin. In this study, the time-course metabolic regulation of the submerged macrophyte Ceratophyllum demersum (C. demersum) was investigated during exposure to anatoxin-a at an environmentally relevant concentration (15 μg/L). Biotransformation and antioxidative systems in C. demersum responded positively to anatoxin-a through the promoted synthesis of most of the involved enzymes within 8 h. Maximum enzyme activities were exhibited after 24 or 48 h of exposure to anatoxin-a. However, an apparent decline in enzyme activities was also observed at longer exposure duration (168 and 336 h) in company with high steady-state levels of cell internal H2O2, which showed its highest level after 48 h. Meanwhile, irreversible inhibitory influence on chlorophyll content (vitality) was noticed, whereas the ratio of carotenoids

  20. Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Mi-Hee; Pflugmacher, Stephan, E-mail: stephan.pflugmacher@tu-berlin.de

    2013-08-15

    Highlights: •We examined time-dependent metabolic changes in C. demersum exposed to anatoxin-a. •Biotransformation and antioxidative defense mechanisms responded positively to anatoxin-a. •Decline in chlorophylls contents was detected in company with irreversible plant growth inhibition during exposure to anatoxin-a. •Anatoxin-a exhibits phytotoxic allelopathy by provoking oxidative stress. •Macrophytes may have interactions with anatoxin-a in aquatic environments. -- Abstract: Recently, aquatic macrophytes have been considered as promising tools for eco-friendly water management with a low running cost. However, only little information is available thus far regarding the metabolic capacity of macrophytes for coping with cyanobacterial toxins (cyanotoxins) in the aquatic environment. Cyanotoxins have become emerging contaminants of great concern due to the high proliferation of cyanobacteria (cyanobacterial bloom) accelerated by eutrophication and climate change. Anatoxin-a, one of the common and major cyanotoxins, is suggested as a high priority water pollutant for regulatory consideration owing to its notoriously rapid mode of action as a neurotoxin. In this study, the time-course metabolic regulation of the submerged macrophyte Ceratophyllum demersum (C. demersum) was investigated during exposure to anatoxin-a at an environmentally relevant concentration (15 μg/L). Biotransformation and antioxidative systems in C. demersum responded positively to anatoxin-a through the promoted synthesis of most of the involved enzymes within 8 h. Maximum enzyme activities were exhibited after 24 or 48 h of exposure to anatoxin-a. However, an apparent decline in enzyme activities was also observed at longer exposure duration (168 and 336 h) in company with high steady-state levels of cell internal H{sub 2}O{sub 2}, which showed its highest level after 48 h. Meanwhile, irreversible inhibitory influence on chlorophyll content (vitality) was noticed, whereas the ratio of

  1. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    International Nuclear Information System (INIS)

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h−1). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h−1 increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h−1 in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h−1 in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h−1 in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h−1 in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days) and from F0 to F2 (0.070 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h−1 and DNA alterations significant at highest dose rates only. The study improved our understanding of long term

  2. Antennal structure of male and female Aphidius rhopalosiphi DeStefani-Peres (Hymenoptera:Braconidae): description and morphological alterations after cold storage or heat exposure.

    Science.gov (United States)

    Bourdais, Delphine; Vernon, Philippe; Krespi, Liliane; Le Lannic, Jo; Van Baaren, Joan

    2006-12-01

    Several species of the genus Aphidius are used in biological control programs against aphid pests throughout the world and their behavior and physiology are well studied. But despite knowing the importance of sensory organs in their behavior, their antennal structure has never been described. We describe here the types and distribution of antennal sensilla in Aphidius rhopalosiphi, a larval parasitoid of several aphid species and observe how this antennal structure is modified after cold storage or heat exposure. Six types of sensilla were found on both male and female antennae. Male and female antennae differed in the total number of antennomeres (16 in males, 14 in females) and in the number and distribution of three of the six types of sensilla. After cold storage or heat exposure, we observed the appearance of a small number of abnormal sensilla. PMID:17019677

  3. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. PMID:25535268

  4. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure

    OpenAIRE

    Hollins, S L; Zavitsanou, K; Walker, F R; Cairns, M J

    2014-01-01

    A significant feature of the cortical neuropathology of schizophrenia is a disturbance in the biogenesis of short non-coding microRNA (miRNA) that regulate translation and stability of mRNA. While the biological origin of this phenomenon has not been defined, it is plausible that it relates to major environmental risk factors associated with the disorder such as exposure to maternal immune activation (MIA) and adolescent cannabis use. To explore this hypothesis, we administered the viral mimi...

  5. Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors

    OpenAIRE

    SOTO, ANA M.; Brisken, Cathrin; Schaeberle, Cheryl; Sonnenschein, Carlos

    2013-01-01

    We are now witnessing a resurgence of theories of development and carcinogenesis in which the environment is again being accepted as a major player in phenotype determination. Perturbations in the fetal environment predispose an individual to disease that only becomes apparent in adulthood. For example, gestational exposure to diethylstilbestrol resulted in clear cell carcinoma of the vagina and breast cancer. In this review the effects of the endocrine disruptor bisphenol-A (BPA) on mammary ...

  6. Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring.

    Directory of Open Access Journals (Sweden)

    Henriikka Salomäki

    Full Text Available AIMS: Despite the wide use of metformin in metabolically challenged pregnancies, the long-term effects on the metabolism of the offspring are not known. We studied the long-term effects of prenatal metformin exposure during metabolically challenged pregnancy in mice. MATERIALS AND METHODS: Female mice were on a high fat diet (HFD prior to and during the gestation. Metformin was administered during gestation from E0.5 to E17.5. Male and female offspring were weaned to a regular diet (RD and subjected to HFD at adulthood (10-11 weeks. Body weight and several metabolic parameters (e.g. body composition and glucose tolerance were measured during the study. Microarray and subsequent pathway analyses on the liver and subcutaneous adipose tissue of the male offspring were performed at postnatal day 4 in a separate experiment. RESULTS: Prenatal metformin exposure changed the offspring's response to HFD. Metformin exposed offspring gained less body weight and adipose tissue during the HFD phase. Additionally, prenatal metformin exposure prevented HFD-induced impairment in glucose tolerance. Microarray and annotation analyses revealed metformin-induced changes in several metabolic pathways from which electron transport chain (ETC was prominently affected both in the neonatal liver and adipose tissue. CONCLUSION: This study shows the beneficial effects of prenatal metformin exposure on the offspring's glucose tolerance and fat mass accumulation during HFD. The transcriptome data obtained at neonatal age indicates major effects on the genes involved in mitochondrial ATP production and adipocyte differentiation suggesting the mechanistic routes to improved metabolic phenotype at adulthood.

  7. Exposure in utero to 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring

    International Nuclear Information System (INIS)

    Toxicity of the polychlorinated biphenyls (PCBs) depends on their molecular structure. Mechanisms by prenatal exposure to a non-dioxin-like PCB, 2,2',3,4',5',6-hexachlorobiphenyl (PCB 132) that may act on reproductive pathways in male offspring are relatively unknown. The purpose was to determine whether epididymal sperm function and expression of apoptosis-related genes were induced or inhibited by prenatal exposure to PCB 132. Pregnant rats were treated with a single dose of PCB 132 at 1 or 10 mg/kg on gestational day 15. Male offspring were killed and the epididymal sperm counts, motility, velocity, reactive oxygen species (ROS) generation, sperm-oocyte penetration rate (SOPR), testicular histopathology, apoptosis-related gene expression and caspase activation were assessed on postnatal day 84. Prenatal exposure to PCB 132 with a single dose of 1 or 10 mg/kg decreased cauda epididymal weight, epididymal sperm count and motile epididymal sperm count in adult offspring. The spermatozoa of PCB 132-exposed offspring produced significantly higher levels of ROS than the controls; ROS induction and SOPR reduction were dose-related. In the low-dose PCB 132 group, p53 was significantly induced and caspase-3 was inhibited. In the high-dose group, activation of caspase-3 and -9 was significantly increased, while the expressions of Fas, Bax, bcl-2, and p53 genes were significantly decreased. Gene expression and caspase activation data may provide insight into the mechanisms by which exposure to low-dose or high-dose PCB 132 affects reproduction in male offspring in rats. Because the doses of PCB 132 administered to the dams were approximately 625-fold in low-dose group and 6250-fold higher in high-dose group than the concentration in human tissue levels, the concentrations are not biologically or environmentally relevant. Further studies using environmentally relevant doses are needed for hazard identification

  8. Extracellular Norepinephrine, Norepinephrine Receptor and Transporter Protein and mRNA Levels Are Differentially Altered in the Developing Rat Brain Due to Dietary Iron Deficiency and Manganese Exposure

    OpenAIRE

    Anderson, Joel G.; Fordahl, Steven C.; Cooney, Paula T.; Weaver, Tara L.; Colyer, Christa L.; Erikson, Keith M.

    2009-01-01

    Manganese (Mn) is an essential trace element, but overexposure is characterized by Parkinson’s like symptoms in extreme cases. Previous studies have shown Mn accumulation is exacerbated by dietary iron deficiency (ID) and disturbances in norepinephrine (NE) have been reported. Because behaviors associated with Mn neurotoxicity are complex, the goal of this study was to examine the effects of Mn exposure and ID-associated Mn accumulation on NE uptake in synaptosomes, extracellular NE concentra...

  9. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain.

    Science.gov (United States)

    Hahn, Yun K; Paris, Jason J; Lichtman, Aron H; Hauser, Kurt F; Sim-Selley, Laura J; Selley, Dana E; Knapp, Pamela E

    2016-08-01

    Co-exposure to opiates and HIV/HIV proteins results in enhanced CNS morphological and behavioral deficits in HIV(+) individuals and in animal models. Opiates with abuse liability, such as heroin and morphine, bind preferentially to and have pharmacological actions through μ-opioid-receptors (MORs). The mechanisms underlying opiate-HIV interactions are not understood. Exposure to the HIV-1 transactivator of transcription (Tat) protein causes neurodegenerative outcomes that parallel many aspects of the human disease. We have also observed that in vivo exposure to Tat results in apparent changes in morphine efficacy, and thus have hypothesized that HIV proteins might alter MOR activation. To test our hypothesis, MOR-mediated G-protein activation was determined in neuroAIDS-relevant forebrain regions of transgenic mice with inducible CNS expression of HIV-1 Tat. G-protein activation was assessed by MOR agonist-stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPγS) autoradiography in brain sections, and in concentration-effect curves of MOR agonist-stimulated [(35)S]GTPγS binding in membranes isolated from specific brain regions. Comparative studies were done using the MOR-selective agonist DAMGO ([D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin) and a more clinically relevant agonist, morphine. Tat exposure reduced MOR-mediated G-protein activation in an agonist, time, and regionally dependent manner. Levels of the GPCR regulatory protein β-arrestin-2, which is involved in MOR desensitization, were found to be elevated in only one affected brain region, the amygdala; amygdalar β-arrestin-2 also showed a significantly increased association with MOR by co-immunoprecipitation, suggesting decreased availability of MOR. Interestingly, this correlated with changes in anxiety and fear-conditioned extinction, behaviors that have substantial amygdalar input. We propose that HIV-1 Tat alters the intrinsic capacity of MOR to signal in response to agonist binding

  10. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Science.gov (United States)

    Foley, Kelly A; Ossenkopp, Klaus-Peter; Kavaliers, Martin; Macfabe, Derrick F

    2014-01-01

    Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12-16, LPS (50 µg/kg) on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders. PMID:24466331

  11. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization

    OpenAIRE

    Wang Min; Pei Lin; Fletcher Paul J; Kapur Shitij; Seeman Philip; Liu Fang

    2010-01-01

    Abstract Background All antipsychotics work via dopamine D2 receptors (D2Rs), suggesting a critical role for D2Rs in psychosis; however, there is little evidence for a change in receptor number or pharmacological nature of D2Rs. Recent data suggest that D2Rs form dimers in-vitro and in-vivo, and we hypothesized that schizophrenia, as well as preclinical models of schizophrenia, would demonstrate altered dimerization of D2Rs, even though the overall number of D2Rs was unaltered. Methods We mea...

  12. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus.

    Science.gov (United States)

    Del Pino Sans, Javier; Clements, Kelsey J; Suvorov, Alexander; Krishnan, Sudha; Adams, Hillary L; Petersen, Sandra L

    2016-08-01

    Developmental exposure to arylhydrocarbon receptor (AhR) ligands abolishes sex differences in a wide range of neural structures and functions. A well-studied example is the anteroventral periventricular nucleus (AVPV), a structure that controls sex-specific luteinizing hormone (LH) release. In the male, testosterone (T) secreted by the developing testes defeminizes LH release mechanisms; conversely, perinatal AhR activation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) blocks defeminization. To better understand developmental mechanisms altered by TCDD exposure, we first verified that neonatal TCDD exposure in male rats prevented the loss of AVPV GABA/glutamate neurons that are critical for female-typical LH surge release. We then used whole genome arrays and quantitative real-time polymerase chain reaction (QPCR) to compare AVPV transcriptomes of males treated neonatally with TCDD or vehicle. Our bioinformatics analyses showed that TCDD enriched gene sets important for neuron development, synaptic transmission, ion homeostasis, and cholesterol biosynthesis. In addition, upstream regulatory analysis suggests that both estrogen receptors (ER) and androgen receptors (AR) regulate genes targeted by TCDD. Of the 23 mRNAs found to be changed by TCDD at least 2-fold (pbrain. These findings provide new insights into how TCDD may interfere with defeminization of LH release patterns. PMID:27185484

  13. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    Science.gov (United States)

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; de Oliveira Rios, Alessandro; de Oliveira Salvi, Aguisson; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Fonseca Moreira, José Cláudio

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile. PMID:26970882

  14. β-N-Methylamino-L-alanine exposure alters defense against oxidative stress in aquatic plants Lomariopsis lineata, Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri.

    Science.gov (United States)

    Contardo-Jara, Valeska; Funke, Marc Sebastian; Peuthert, Anja; Pflugmacher, Stephan

    2013-02-01

    Four different aquatic plants, the Pteridophyte Lomariopsis lineata and the Bryophytes Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri, were tested for their capacity to absorb the neurotoxin β-N-Methylamino-L-alanine (BMAA) from water and thus their possible applicability in a "Green Liver System". After exposure to 10 and 100 μg L(-1) BMAA for 1, 3, 7 and 14 days exposure concentration of medium and tissue were analyzed by LC-MS/MS. The amount removed by the plants within only 1 day was equal to the biological degradation of 14 days. Comparing the "BMAA-removal" capacity of the 4 tested aquatic plants R. fluitans, L. lineata and T. barbieri turned out to be most effective in cleaning the water from this cyanobacterial toxin by up to 97% within 14 days. Activity of the antioxidant enzymes peroxidase (POD) and catalase (CAT), as well as biotransformation enzyme glutathione S-transferase (GST) was compared between exposed and control plants to determine possible harmful effects induced by BMAA. Whereas the Bryophytes displayed increased POD activity and subsequent adaptation when exposed to the lower concentration, as well as partly inhibited antioxidant response at the higher applied BMAA concentration, the Pteridophyte L. lineata reacted with increased POD activity during the whole experiment and increased GST activity after longer exposure for 14 days. To give a recommendation of the suitability of an aquatic plant to be used for sustainable phytoremediation of contaminated water, testing of removal capacity of specific contaminants as well as studying general physiological parameters giving hint on survivability in such environments has to be combined. PMID:23177931

  15. Low dose exposure to Bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese Medaka.

    Science.gov (United States)

    Inagaki, T; Smith, N; Lee, E K; Ramakrishnan, S

    2016-01-01

    Accumulating evidence indicates that chronic low dose exposure to Bisphenol A (BPA), an endocrine disruptor, may disrupt normal brain development and behavior mediated by the gonadotropin-releasing hormone (GnRH) pathways. While it is known that GnRH neurons in the hypothalamus regulate reproductive physiology and behavior, functional roles of extra-hypothalamic GnRH neurons remain unclear. Furthermore, little is known whether BPA interacts with extra-hypothalamic GnRH3 neural systems in vulnerable developing brains. Here we examined the impact of low dose BPA exposure on the developing GnRH3 neural system, eye and brain growth, and locomotor activity in transgenic medaka embryos and larvae with GnRH3 neurons tagged with GFP. Fertilized eggs were collected daily and embryos/larvae were chronically exposed to 200ng/ml of BPA, starting at 1 day post fertilization (dpf). BPA significantly increased fluorescence intensity of the GnRH3-GFP neural population in the terminal nerve (TN) of the forebrain at 3dpf, but decreased the intensity at 5dpf, compared with controls. BPA advanced eye pigmentation without affecting eye and brain size development, and accelerated times to hatch. Following chronic BPA exposure, 20dpf larvae showed suppression of locomotion, both in distance covered and speed of movement (47% and 43% reduction, respectively). BPA-induced hypoactivity was accompanied by decreased cell body sizes of individual TN-GnRH3 neurons (14% smaller than those of controls), but not of non-GnRH3 neurons. These novel data demonstrate complex neurobehavioral effects of BPA on the development of extra-hypothalamic GnRH3 neurons in teleost fish. PMID:26687398

  16. Exposure to2,2',4,4'-tetrabromodiphenyl ether (BDE-47) alters thyroid hormone levels and thyroid hormone-regulated gene transcription in manila clam Ruditapes philippinarum.

    Science.gov (United States)

    Song, Ying; Miao, Jingjing; Pan, Luqing; Wang, Xin

    2016-06-01

    Polybrominated diphenyl ethers (PBDEs) have the potential to disturb the thyroid endocrine system in vertebrates, but little is known about the disruptive effects of PBDEs on marine bivalves. In this study, we first examined the effects of BDE-47 exposure on growth of juvenile manila clams Ruditapes philippinarum. The result showed that 1.0 and 10 μg L(-1) BDE-47 had adverse effects on 14-d shell-length growth of juvenile clams. Then, one-year-old adult clams were exposed to 0, 0.1 and 1 μg L(-1) BDE-47 for 15 d. BDE-47 (1 μg L(-1)) exposure caused significant decreases of total T4 (thyroxine) by 40% and T3 (3,5,3'-triiodothyronine) by 75% concentrations in haemolymph of the clams. Transcription of genes involved in thyroid hormone synthesis and metabolism were also studied by quantitative RT-PCR. Gene expression levels of sodium iodide symporter (rp-NIS), iodothyronine deiodinase (rp-Deio) and thyroid peroxidase (rp-TPO) were increased in a dose-dependent manner at day 5 and day 10, while monocarboxylate transporter 8 (rp-Mct8) was downregulated at day 5, day 10 and day 15. The effect and preliminary mechanism observed in the present study were consistent with the results from previous studies on rodent and fish, implying that exposure to BDE-47 may pose threat to thyroid hormone homeostasis in bivalves through thyroid synthesis and metabolism pathways. This study may provide a first step towards understanding of the thyroid function disruptive effects of PBDEs on marine bivalves and the underlying mechanism across taxonomic groups and phyla. PMID:26943874

  17. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, Florian [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Bourdineaud, Jean-Paul [UMR 5805 EPOC – OASU, Station marine d’Arcachon, Université Bordeaux 1, Arcachon 33120 (France); Plaire, Delphine; Adam-Guillermin, Christelle [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Alonzo, Frédéric, E-mail: frederic.alonzo@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France)

    2015-06-15

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h{sup −1}). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h{sup −1} increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h{sup −1} in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h{sup −1} in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h{sup −1} in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h{sup −1} in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days) and from F0 to F2 (0.070 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h{sup −1} and DNA alterations significant at highest

  18. Exposure to Bisphenol-A during Pregnancy Partially Mimics the Effects of a High-Fat Diet Altering Glucose Homeostasis and Gene Expression in Adult Male Mice

    OpenAIRE

    Marta García-Arevalo; Paloma Alonso-Magdalena; Junia Rebelo Dos Santos; Ivan Quesada; Carneiro, Everardo M.; Angel Nadal

    2014-01-01

    Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injec...

  19. Prenatal Exposure of Cypermethrin Induces Similar Alterations in Xenobiotic-Metabolizing Cytochrome P450s and Rate-Limiting Enzymes of Neurotransmitter Synthesis in Brain Regions of Rat Offsprings During Postnatal Development.

    Science.gov (United States)

    Singh, Anshuman; Mudawal, Anubha; Maurya, Pratibha; Jain, Rajeev; Nair, Saumya; Shukla, Rajendra K; Yadav, Sanjay; Singh, Dhirendra; Khanna, Vinay Kumar; Chaturvedi, Rajnish Kumar; Mudiam, Mohana K R; Sethumadhavan, Rao; Siddiqi, Mohammad Imran; Parmar, Devendra

    2016-08-01

    Oral administration of low doses of cypermethrin to pregnant Wistar rats led to a dose-dependent differences in the induction of xenobiotic-metabolizing cytochrome P450s (CYPs) messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood. Similar alterations were observed in the expression of rate-limiting enzymes of neurotransmitter synthesis in brain regions of rat offsprings. These persistent changes were associated with alterations in circulating levels of growth hormone (GH), cognitive functions, and accumulation of cypermethrin and its metabolites in brain regions of exposed offsprings. Though molecular docking studies failed to identify similarities between the docked conformations of cypermethrin with CYPs and neurotransmitter receptors, in silico analysis identified regulatory sequences of CYPs in the promoter region of rate-limiting enzymes of neurotransmitter synthesis. Further, rechallenge of the prenatally exposed offsprings at adulthood with cypermethrin (p.o. 10 mg/kg × 6 days) led to a greater magnitude of alterations in the expression of CYPs and rate-limiting enzymes of neurotransmitter synthesis in different brain regions. These alterations were associated with a greater magnitude of decrease in the circulating levels of GH and cognitive functions in rechallenged offsprings. Our data has led us to suggest that due to the immaturity of CYPs in fetus or during early development, even the low-level exposure of cypermethrin may be sufficient to interact with the CYPs, which in turn affect the neurotransmission processes and may help in explaining the developmental neurotoxicity of cypermethrin. PMID:26115703

  20. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles.

    Science.gov (United States)

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-Young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10-200μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. PMID:26551752

  1. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    International Nuclear Information System (INIS)

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. (author)

  2. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations.

    Science.gov (United States)

    Parisot, Florian; Bourdineaud, Jean-Paul; Plaire, Delphine; Adam-Guillermin, Christelle; Alonzo, Frédéric

    2015-06-01

    This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h(-1)). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h(-1) increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h(-1) in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h(-1) in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h(-1) in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h(-1) in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days) and from F0 to F2 (0.070 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h(-1) and DNA alterations significant at highest dose rates only. The study improved our understanding of long term responses to low doses of radiation at the molecular and organismic levels in a non-human species for a better radioprotection of aquatic ecosystems. PMID:25840277

  3. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring.

    Science.gov (United States)

    Short, A K; Fennell, K A; Perreau, V M; Fox, A; O'Bryan, M K; Kim, J H; Bredy, T W; Pang, T Y; Hannan, A J

    2016-01-01

    Recent studies have suggested that physiological and behavioral traits may be transgenerationally inherited through the paternal lineage, possibly via non-genomic signals derived from the sperm. To investigate how paternal stress might influence offspring behavioral phenotypes, a model of hypothalamic-pituitary-adrenal (HPA) axis dysregulation was used. Male breeders were administered water supplemented with corticosterone (CORT) for 4 weeks before mating with untreated female mice. Female, but not male, F1 offspring of CORT-treated fathers displayed altered fear extinction at 2 weeks of age. Only male F1 offspring exhibited altered patterns of ultrasonic vocalization at postnatal day 3 and, as adults, showed decreased time in open on the elevated-plus maze and time in light on the light-dark apparatus, suggesting a hyperanxiety-like behavioral phenotype due to paternal CORT treatment. Interestingly, expression of the paternally imprinted gene Igf2 was increased in the hippocampus of F1 male offspring but downregulated in female offspring. Male and female F2 offspring displayed increased time spent in the open arm of the elevated-plus maze, suggesting lower levels of anxiety compared with control animals. Only male F2 offspring showed increased immobility time on the forced-swim test and increased latency to feed on the novelty-supressed feeding test, suggesting a depression-like phenotype in these animals. Collectively, these data provide evidence that paternal CORT treatment alters anxiety and depression-related behaviors across multiple generations. Analysis of the small RNA profile in sperm from CORT-treated males revealed marked effects on the expression of small noncoding RNAs. Sperm from CORT-treated males contained elevated levels of three microRNAs, miR-98, miR-144 and miR-190b, which are predicted to interact with multiple growth factors, including Igf2 and Bdnf. Sustained elevation of glucocorticoids is therefore involved in the transmission of paternal

  4. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    Directory of Open Access Journals (Sweden)

    Baskin Laurence S

    2006-02-01

    Full Text Available Abstract Background Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. Methods We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors α and β, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females, we measured the lengths of the casts and performed ANOVA analysis on these data. Results Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias and masculinizing females (longer urethras. Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen α and β, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor α mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor α and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl

  5. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    Science.gov (United States)

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  6. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide.

    Science.gov (United States)

    Zhang, Si-Ming; Buddenborg, Sarah K; Adema, Coen M; Sullivan, John T; Loker, Eric S

    2015-01-01

    In view of the call by the World Health Organization (WHO) for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy-based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transporters, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx transporter). Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated. Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein (CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide's lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and has been

  7. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide.

    Directory of Open Access Journals (Sweden)

    Si-Ming Zhang

    Full Text Available In view of the call by the World Health Organization (WHO for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy-based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP, glutathione S-transferases (GST, and drug transporters, notably multi-drug resistance protein (efflux transporter and solute linked carrier (influx transporter. Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP genes from three super-families (HSP20, HSP40 and HSP70 were upregulated. Genes encoding ADP-ribosylation factor (ARF, cAMP response element-binding protein (CREB and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide's lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and

  8. Lipid Peroxidative Damage on Cisplatin Exposure and Alterations in Antioxidant Defense System in Rat Kidneys: A Possible Protective Effect of Selenium

    Directory of Open Access Journals (Sweden)

    Branka I. Ognjanović

    2012-02-01

    Full Text Available Cisplatin (Cis-diamminedichloroplatinum II, CP is an important chemotherapeutic agent, useful in the treatment of several cancers, but with several side effects such as nephrotoxicity. The present study investigated the possible protective effect of selenium (Se against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p. and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p., alone or in combination. The obtained results showed that CP increased lipid peroxidation (LPO and decreased reduced glutathione (GSH concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed this change to control values. Acute intoxication of rats with CP was followed by statistically significant decreased activity of antioxidant defense enzymes: superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and glutathione-S-transferase (GST. Treatment with Se reversed CP-induced alterations of antioxidant defense enzyme activities and significantly prevented the CP-induced kidney damage.

  9. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    Science.gov (United States)

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  10. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization

    Directory of Open Access Journals (Sweden)

    Wang Min

    2010-09-01

    Full Text Available Abstract Background All antipsychotics work via dopamine D2 receptors (D2Rs, suggesting a critical role for D2Rs in psychosis; however, there is little evidence for a change in receptor number or pharmacological nature of D2Rs. Recent data suggest that D2Rs form dimers in-vitro and in-vivo, and we hypothesized that schizophrenia, as well as preclinical models of schizophrenia, would demonstrate altered dimerization of D2Rs, even though the overall number of D2Rs was unaltered. Methods We measured the expression of D2Rs dimers and monomers in patients with schizophrenia using Western blots, and then in striatal tissue from rats exhibiting the amphetamine-induced sensitized state (AISS. We further examined the interaction between D2Rs and the dopamine transporter (DAT by co-immunoprecipitation, and measured the expression of dopamine D2High receptors with ligand binding assays in rat striatum slices with or without acute amphetamine pre-treatment. Results We observed significantly enhanced expression of D2Rs dimers (277.7 ± 33.6% and decreased expression of D2Rs monomers in post-mortem striatal tissue of schizophrenia patients. We found that amphetamine facilitated D2Rs dimerization in both the striatum of AISS rats and in rat striatal neurons. Furthermore, amphetamine-induced D2Rs dimerization may be associated with the D2R-DAT protein-protein interaction as an interfering peptide that disrupts the D2R-DAT coupling, blocked amphetamine-induced up-regulation of D2Rs dimerization. Conclusions Given the fact that amphetamine induces psychosis and that the AISS rat is a widely accepted animal model of psychosis, our data suggest that D2R dimerization may be important in the pathophysiology of schizophrenia and may be a promising new target for novel antipsychotic drugs.

  11. Lactational exposure of phthalate causes long-term disruption in testicular architecture by altering tight junctional and apoptotic protein expression in Sertoli cells of first filial generation pubertal Wistar rats.

    Science.gov (United States)

    Sekaran, S; Balaganapathy, P; Parsanathan, R; Elangovan, S; Gunashekar, J; Bhat, F A; Jagadeesan, A

    2015-06-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant and a well-known endocrine disruptor (ED) that interferes with the reproductive function in both humans and animals. This study aimed to find out the impact of lactational exposure of DEHP in testes of first filial generation (F1) progeny male rat postnatal day (PND)-60. Lactating dams were orally treated with DEHP (0, 1, 10 and 100 mg/kg body weight/day, respectively) from the PND-1 to PND-21. Rats were killed at PND 60. Testes were removed and used for histological analysis and for isolation of Sertoli cells (SCs). The histoarchitecture of DEHP-treated rats showed disturbed testicular structure. DEHP-treated rats also showed increased oxidative stress by decreasing antioxidant levels in the SCs; it disrupted SC tight junctional proteins occludin, claudin, junctional adhesion molecule, zona occludens protein-1 (ZO-1), zona occludens protein-2 (ZO-2), and afadin-6 (AF-6), increased apoptosis by altering the apoptotic genes Bax, cytochrome c, caspase-8, -9, -3 and antiapoptotic gene Bcl-2. It is concluded that early postnatal exposure to DEHP disturbs histoarchitecture of testis and SC function in pubertal Wistar rats. PMID:25352649

  12. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Bradley D. (University of Notre Dame, Notre Dame, Indiana); Lambert, Timothy N.; Lakshmi, C. (University of Notre Dame, Notre Dame, Indiana); Hanshaw, Roger, G. (University of Notre Dame, Notre Dame, Indiana)

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  13. Exposure to childhood trauma is associated with altered n-back activation and performance in healthy adults: implications for a commonly used working memory task.

    Science.gov (United States)

    Philip, Noah S; Sweet, Lawrence H; Tyrka, Audrey R; Carpenter, S Louisa; Albright, Sarah E; Price, Lawrence H; Carpenter, Linda L

    2016-03-01

    Previous research suggests that a history of early life stress (ELS) impacts working memory (WM) in adulthood. Despite the widespread use of WM paradigms, few studies have evaluated whether ELS exposure, in the absence of psychiatric illness, also impacts WM-associated brain activity in ways that might improve sensitivity to these ELS effects or provide insights into the mechanisms of these effects. This study evaluated whether ELS affects WM behavioral performance and task-associated activity by acquiring 3T functional images from 27 medication-free healthy adults (14 with ELS) during an N-back WM task that included 0- and 2-back components. Whole brain voxel-wise analysis was performed to evaluate WM activation, followed by region of interest analyses to evaluate relationships between activation and clinical variables. ELS was associated with poorer accuracy during the 2-back (79 % ± 19 vs. 92 % ± 9, p = 0.049); accuracy and response time otherwise did not differ between groups. During the 0-back, ELS participants demonstrated increased activation in the superior temporal gyrus/insula, left inferior parietal lobule (IPL) (both corrected p IPL, MTG/PHG and inferior frontal gyrus (corrected p < 0.001), with a trend towards precuneus activation (p = 0.080). These findings support previous research showing that ELS is associated with impaired neurobehavioral performance and changes in brain activation, suggesting recruitment of additional cognitive resources during WM in ELS. Based on these findings, ELS screening in future WM imaging studies appears warranted. PMID:25804310

  14. Expression of glutamatergic genes in healthy humans across 16 brain regions; altered expression in the hippocampus after chronic exposure to alcohol or cocaine.

    Science.gov (United States)

    Enoch, M-A; Rosser, A A; Zhou, Z; Mash, D C; Yuan, Q; Goldman, D

    2014-11-01

    We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from 'BrainSpan' was obtained across 16 brain regions from nine control adults. We also generated RNA-Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up-regulated in both alcoholics and cocaine addicts (FDR corrected P = 0.008). Alcoholics showed up-regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up-regulated in alcoholics and down-regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up-regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit. PMID:25262781

  15. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure.

    Science.gov (United States)

    Hollins, S L; Zavitsanou, K; Walker, F R; Cairns, M J

    2014-01-01

    A significant feature of the cortical neuropathology of schizophrenia is a disturbance in the biogenesis of short non-coding microRNA (miRNA) that regulate translation and stability of mRNA. While the biological origin of this phenomenon has not been defined, it is plausible that it relates to major environmental risk factors associated with the disorder such as exposure to maternal immune activation (MIA) and adolescent cannabis use. To explore this hypothesis, we administered the viral mimic poly I:C to pregnant rats and further exposed some of their maturing offsprings to daily injections of the synthetic cannabinoid HU210 for 14 days starting on postnatal day 35. Whole-genome miRNA expression analysis was then performed on the left and right hemispheres of the entorhinal cortex (EC), a region strongly associated with schizophrenia. Animals exposed to either treatment alone or in combination exhibited significant differences in the expression of miRNA in the left hemisphere, whereas the right hemisphere was less responsive. Hemisphere-associated differences in miRNA expression were greatest in the combined treatment and highly over-represented in a single imprinted locus on chromosome 6q32. This observation was significant as the syntenic 14q32 locus in humans encodes a large proportion of miRNAs differentially expressed in peripheral blood lymphocytes from patients with schizophrenia, suggesting that interaction of early and late environmental insults may affect miRNA expression, in a manner that is relevant to schizophrenia. PMID:25268256

  16. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice.

    Directory of Open Access Journals (Sweden)

    Marta García-Arevalo

    Full Text Available Bisphenol-A (BPA is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT, the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group; BPA treated mice that also ate a normal chow diet (BPA; vehicle treated animals that had a high fat diet (HFD and BPA treated animals that were fed HFD (HFD-BPA. The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.

  17. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine

    OpenAIRE

    Araujo, Joseph A.; Landsberg, Gary M.; Milgram, Norton W.; Miolo, Alda

    2008-01-01

    Aged dogs demonstrate cognitive decline that is linked to brain aging. The purpose of the present study was to examine if a commercially available nutraceutical supplement that may be neuroprotective and contains phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine could improve cognitive function in aged beagles. Nine aged beagles were tested on performance on a delayed-non-matching-to-position task, which is a neuropsychological test of short-term visuospatial memory. All subjects w...

  18. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

    OpenAIRE

    M. Roux; Beswick, V; Coïc, Y M; Huynh-Dinh, T.; Sanson, A.; Neumann, J M

    2000-01-01

    PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserine...

  19. Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study

    OpenAIRE

    Zanotta D; Puricelli S; Bonoldi G

    2014-01-01

    Danilo Zanotta, Silvana Puricelli, Guido Bonoldi Unità Operativa di Medicina 2, Ospedale di Circolo di Busto Arsizio, Varese, Italy Abstract: A prospective cohort, noncomparative, multicenter trial was conducted to explore the potential of a phytotherapeutic compound, available as a dietary supplement and containing extracts of Bacopa monnieri and Haematococcus pluvialis (astaxanthin) plus phosphatidylserine and vitamin E, in improving cognition in subjects diagnosed with mild cog...

  20. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts

    OpenAIRE

    Gerber, David E.; Hao, Guiyang; Watkins, Linda; Jason H. Stafford; Anderson, Jon; Holbein, Blair; Öz, Orhan K.; Mathews, Dana; Thorpe, Philip E; Hassan, Gedaa; Kumar, Amit; Brekken, Rolf A.; Sun, Xiankai

    2015-01-01

    Bavituximab is a chimeric monoclonal antibody with immune modulating and tumor-associated vascular disrupting properties demonstrated in models of non-small cell lung cancer (NSCLC). The molecular target of Bavituximab, phosphatidylserine (PS), is exposed on the outer leaflet of the membrane bi-layer of malignant vascular endothelial cells and tumor cells to a greater extent than on normal tissues. We evaluated the tumor-targeting properties of Bavituximab for imaging of NSCLC xenografts when...

  1. Urinary amino acid alterations in 3-year-old children with neurodevelopmental effects due to perinatal dioxin exposure in Vietnam: a nested case-control study for neurobiomarker discovery.

    Directory of Open Access Journals (Sweden)

    Muneko Nishijo

    Full Text Available In our previous study of 3-year-old children in a dioxin contamination hot spot in Vietnam, the high total dioxin toxic equivalent (TEQ-PCDDs/Fs-exposed group during the perinatal period displayed lower Bayley III neurodevelopmental scores, whereas the high 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD-exposed group displayed increased autistic traits. In autistic children, urinary amino acid profiles have revealed metabolic alterations in the amino acids that serve as neurotransmitters in the developing brain. Therefore, our present study aimed to investigate the use of alterations in urinary amino acid excretion as biomarkers of dioxin exposure-induced neurodevelopmental deficits in highly exposed 3-year-old children in Vietnam. A nested case-control study of urinary analyses was performed for 26 children who were selected from 111 3-year-old children whose perinatal dioxin exposure levels and neurodevelopmental status were examined in follow-up surveys conducted in a dioxin contaminated hot spot. We compared urinary amino acid levels between the following 4 groups: (1 a high TEQ-PCDDs/Fs and high TCDD-exposed group; (2 a high TEQ-PCDDs/Fs but low TCDD-exposed group; (3 a low TEQ-PCDDs/Fs exposed and poorly developed group; and (4 a low TEQ-PCDDs/Fs exposed and well-developed group. Urinary levels of histidine and tryptophan were significantly decreased in the high TEQ-PCDDs/Fs and high TCDD group, as well as in the high TEQ-PCDDs/Fs but low TCDD group, compared with the low TEQ-PCDDs/Fs and well-developed group. However, the ratio of histidine to glycine was significantly lower only in the high TEQ-PCDDs/Fs and high TCDD group. Furthermore, urinary histidine levels and the ratio of histidine to glycine were significantly correlated with neurodevelopmental scores, particularly for language and fine motor skills. These results indicate that urinary histidine is specifically associated with dioxin exposure-induced neurodevelopmental deficits

  2. Chronic exposure to MDMA (ecstasyinduces DNA damage, impairs functional antioxidant cellular defenses, enhances the lipid peroxidation process and alters testes histopathology in male rat

    Directory of Open Access Journals (Sweden)

    Nadia Gamal Zaki, ** Laila Abdel Kawy

    2013-04-01

    Full Text Available Background : 3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy" is consumed mainly by young population. For this reason, it is especially relevant to take into consideration the effects on the reproductive system. The influence of MDMA on the fertility and reproduction of the male rat was assessed in this study. Material and methods: MDMA was administered orally at 0 mg/kg (control, 10 and 30 mg/kg to male rats for 15,30,45 consecutive days followed by 15 days withdrawal. Hormonal, biochemical, histological and testicular were evaluated in the rats. The present study aimed to investigate if daily oral administration of ecstasy at low doses(10mg for 45 days has any deleterious effects on reproductive functions of male rats. Animals were randomly divided into four groups of ten rats each, assigned as control rats, or(0mg ecstasy, rats treated with 10mg ecstasy for, (15,30,45 days, rats treated with 30mg/kg body weight ecstasy for(,15,30,45days by oral gavage. The third group(45 days was followed by 15 withdrawal period(W15. Results: The activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in testicular homogenate were decreased while the levels of lipid peroxidation increased significantly in the treated rats as compared with the corresponding group of control animals. In group 30mg, only, arachidonic acid was significantly elevated in the testicular homogenate while linoleic acid was decresed when compared to control. Testis DNA fragmentation was observed in 30mg group, but not 10.mg. It is concluded that low doses of ecstasy exposure(10 mg/Kg had moderate detrimental effects on reproductive organ system and more severe effects are likely to be observed at higher dose levels. These results indicate that ecstasy is directly toxic to primary Leydig cells, and that the decreased percentage of normal cells and the increased level of DNA damage in ecstasy -exposed Leydig cells may be responsible for

  3. Research advance in extraction and separation of phosphatidylserine%磷脂酰丝氨酸的提取分离研究进展

    Institute of Scientific and Technical Information of China (English)

    李阅兵; 刘承初; 谢晶; 李应森; 李家乐; 陈苏

    2011-01-01

    Phosphatidylserine, as the nootropics substances of human brain, has been concerned widely.The extraction and purification methods of phosphatidylserine were introduced.The extraction methods included chloroform -methanol method, tert -butyl methyl ether method and ethyl acetate -ethanol method.Purification methods included thin layer chromatography,column chromatography and HPLC.The extraction technics of phosphatidylserine were complicated, and abundant organic solvent was consumed, so the optimization of them should be enhanced.%磷脂酰丝氨酸作为人类大脑的益智物质,已经得到了广泛关注.主要对磷脂酰丝氨酸的提取和纯化方法进行介绍.提取方法包括氛仿-甲醉法、叔丁基甲醚法、乙酸乙酯-乙醇法等.纯化的方法涉及薄层色谱法、柱色谱法、高效液相色谱法等.磷脂酰丝氨酸提取工艺复杂,需使用大量有机溶剂,今后需加强提取工艺的优化.

  4. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.

    Science.gov (United States)

    Cífková, Eva; Hájek, Roman; Lísa, Miroslav; Holčapek, Michal

    2016-03-25

    The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts. PMID:26858118

  5. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice.

    Science.gov (United States)

    Ding, Lin; Wang, Dan; Zhou, Miaomiao; Du, Lei; Xu, Jie; Xue, Changhu; Wang, Yuming

    2016-07-01

    Recent studies have shown that EPA enriched PLs have beneficial effects on lipid metabolism. Our previous study has demonstrated that the anti-obesity and hypolipidemic effects of EPA-PL were superior to DHA-PL. In the present study, we comparatively evaluated the effects of EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylserine (EPA-PS) on lipid metabolism in mice. Both 2% dietary EPA-PC and EPA-PS significantly improved serum and hepatic lipid levels in mice. The HDL-c level in mice on EPA-PC diet was significantly higher than the other two groups. The level of DHA in hepatic TG and PL were significantly increased in both EPA-PC and EPA-PS fed groups (98.3 and 117.8%, respectively; p DHA in EPA-PS group was significantly higher than the EPA-PC group. EPA-PC and EPA-PS suppressed hepatic SREBP-1c mediated lipogenesis and activated PPARα mediated fatty acid β-oxidation in the liver. These data are the first to indicate that EPA-PS has beneficial effects on lipid metabolism. PMID:27321119

  6. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa.

    Science.gov (United States)

    Wang, Che; Chen, Yin-Wang; Zhang, Liang; Gong, Xian-Ge; Zhou, Yang; Shang, De-Jing

    2016-07-01

    We have previously reported that temporin-1CEa, a cationic antimicrobial peptide, exerts preferential cytotoxicity toward cancer cells. However, the exact molecular mechanism for this cancer-selectivity is still largely unknown. Here, we found that the negatively charged phosphatidylserine (PS) expressed on cancer cell surface serves as a target for temporin-1CEa. Our results indicate that human A375 melanoma cells express 50-fold more PS than non-cancerous HaCaT cells. The expression of cell surface PS in various cancer cell lines closely correlated with their ability to be recognized, bound and killed by temporin-1CEa. Additionally, the cytotoxicity of temporin-1CEa against A375 cells can be ameliorated by annexin V, which binds to cell surface PS with high affinity. Moreover, the data of isothermal titration calorimetry assay further confirmed a direct binding of temporin-1CEa to PS, at a ratio of 1:5 (temporin-1CEa:PS). Interestingly, the circular dichroism spectra analysis using artificial biomembrane revealed that PS not only provides electrostatic attractive sites for temporin-1CEa but also confers the membrane-bound temporin-1CEa to form α-helical structure, therefore, enhances the affinity and membrane disrupting ability of temporin-1CEa. In summary, these findings suggested that the melanoma cells expressed PS may serve as a promising target for temporin-1CEa or other cationic anticancer peptides. PMID:26596643

  7. Protein C inhibitor (PCI binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Directory of Open Access Journals (Sweden)

    Daniela Rieger

    Full Text Available Protein C Inhibitor (PCI is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells. PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.

  8. Caspase-dependent and -independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak1-1 and A-498 cells

    International Nuclear Information System (INIS)

    Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Cak i-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Cak i-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A2 inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Cak i-1 renal cancer cells primarily through a caspase-dependent mechanism and that externalization

  9. Pulmonary mitochondrial alterations and oxidative stress in response to ozone exposure: Effects of age and an omega-3 enriched diet; Alterations mitochondriales et stress oxydant pulmonaire en reponse a l'ozone: effets de l'age et d'une supplementation en omega-3

    Energy Technology Data Exchange (ETDEWEB)

    Servais, St.

    2004-04-15

    Ozone (O{sub 3}) is one of the molecular species most reactive to which are exposed living species. O{sub 3} acts primarily on the pulmonary system by inducing oxidative stress. Because susceptibility to oxidative stress varies with age, we studied alterations of pulmonary balance between production of reactive oxygen species (ROS) and their elimination, in immature (21 days), adult (6 months) and old rats (20 months) during O{sub 3} exposure (0,5 ppm, 12 h/day for 7 days). For this purpose we have specifically studied pulmonary mitochondria as ROS source, main antioxidant enzyme activities, contents in stress protein (HSP72), 8-oxodGuo and DNA adducts resulting from lipid peroxidation. These works have shown that our protocol of O{sub 3} exposure did not induce lung oxidative stress in adult rats. We confirmed that immature and old rats were more sensitive during O{sub 3} challenge than adults. Indeed, O{sub 3} generates oxidative stress which leads to modification of ventilatory function and pulmonary DNA oxidation in these two populations. Parameters which take part in greatest susceptibility to O{sub 3} differ according to the age. We concluded that the mitochondria is not a major source of pulmonary ROS in our model of O{sub 3} exposure. Secondly, with the sights of anti-inflammatory properties of polyunsaturated fatty acids {omega}3, we studied the effect of a {omega}3 supplementation in immature and old rats exposed to O{sub 3}. The supplementation in {omega}3 limits the pulmonary DNA oxidation in immature and old rats. Paradoxically, in old rats this supplementation provokes an increase in lipid peroxidation susceptibility. (author)

  10. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma

    International Nuclear Information System (INIS)

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-indcued point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens.

  11. Unquenchable Surface Potential Dramatically Enhances Cu(2+) Binding to Phosphatidylserine Lipids.

    Science.gov (United States)

    Cong, Xiao; Poyton, Matthew F; Baxter, Alexis J; Pullanchery, Saranya; Cremer, Paul S

    2015-06-24

    Herein, the apparent equilibrium dissociation constant, K(Dapp), between Cu(2+) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), a negatively charged phospholipid, was measured as a function of PS concentrations in supported lipid bilayers (SLBs). The results indicated that K(Dapp) for Cu(2+) binding to PS-containing SLBs was enhanced by a factor of 17,000 from 110 nM to 6.4 pM as the PS density in the membrane was increased from 1.0 to 20 mol %. Although Cu(2+) bound bivalently to POPS at higher PS concentrations, this was not the dominant factor in increasing the binding affinity. Rather, the higher concentration of Cu(2+) within the double layer above the membrane was largely responsible for the tightening. Unlike the binding of other divalent metal ions such as Ca(2+) and Mg(2+) to PS, Cu(2+) binding does not alter the net negative charge on the membrane as the Cu(PS)2 complex forms. As such, the Cu(2+) concentration within the double layer region was greatly amplified relative to its concentration in bulk solution as the PS density was increased. This created a far larger enhancement to the apparent binding affinity than is observed by standard multivalent effects. These findings should help provide an understanding on the extent of Cu(2+)-PS binding in cell membranes, which may be relevant to biological processes such as amyloid-β peptide toxicity and lipid oxidation. PMID:26065920

  12. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast

    International Nuclear Information System (INIS)

    The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. R/sub P/ and S/sub P/ isomers of 1,2-dipalmitoyl-sn-glycero-3-[17O, 18O]phosphoethanolamine ([17O, 18O]DPPE) were synthesized and converted to (R/sub P/)- and (S/sub P/)-1,2-dipalmitoyl-sn-glycero-3-[16O, 17O, 18O]DPPA), respectively, by incubating with phospholipase D. Condensation of [16O, 17O, 18O]DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, [17O, 18O]cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ([17O,18O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [17O, 18O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [17O, 18O] CDP-DPG with a mixture of L-serine, PS synthase and PS decarboxylase gave [17O, 18O]DPPE. The configuration and isotopic enrichments of the starting [17O, 18O]DPPE and the product were analyzed by 31P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments

  13. The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues

    DEFF Research Database (Denmark)

    Poulsen, Lisbeth Rosager

    (for Aminophospholipid ATPase). So far, two isoforms have been characterized (ALA1 and ALA3) and shown to be involved in translocation of phospholipid analogues (1, 2). At least ALA3, located to the Golgi, has been shown to be important for membrane trafficking within the secretory pathway (1......  The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues Rosa Laura López-Marqués1, Lisbeth Rosager Poulsen1, Katharina Meffert2, Thomas Pomorski2, Michael Gjedde Palmgren1 1Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation...

  14. The effect of phosphatidylserine-containing omega-3 fatty acids on memory abilities in subjects with subjective memory complaints: a pilot study

    OpenAIRE

    Yael Richter; Yael Herzog; Tzafra Cohen; et al.

    2010-01-01

    Yael Richter1, Yael Herzog1, Tzafra Cohen1, Yael Steinhart21Enzymotec LTD, Migdal-HaEmeq, Israel; 2Department of Marketing, Haifa Graduate School of Management, University of Haifa, IsraelObjective: To evaluate for the first time the efficacy of safe-sourced phosphatidylserine-containing omega-3 long chain polyunsaturated fatty acid (PS-omega-3) in improving memory abilities.Methods: PS-omega-3 was administered daily for 6 weeks to eight elderly volunteers with subjective memory complaints. T...

  15. Cytologic alterations in the oral mucosa after chronic exposure to ethanol Alterações citológicas na mucosa bucal após exposição crônica ao etanol

    Directory of Open Access Journals (Sweden)

    Sílvia Regina de Almeida Reis

    2006-04-01

    Full Text Available The effects of ethanol alone on the oral mucosa are still poorly understood, especially because there are few non-smoking chronic consumers of alcoholic beverages. The aim of this study was to evaluate the frequency of micronucleus, abnormal nucleus/cytoplasm ratio, pyknosis, karyorrhexis and karyolysis in exfoliated cells from the buccal mucosa and from the lateral border of the tongue in 36 non-smoker alcoholics (ethanol group and 18 non-smokers and non-drinkers (control group. The Papanicolaou method was used. Since alcoholics generally have hepatobiliary involvement, the association between serum gamma-glutamyl transpeptidase (GGT and some of the analyzed oral mucosa alterations was also investigated. The ethanol group showed a significant increase in the frequency of all alterations analyzed in the tongue cells when compared with the control group (p 0.05; Mann-Whitney. In the ethanol group, the correlation between serum GGT and the frequency of micronucleus and abnormal nucleus/cytoplasm ratio in oral mucosa cells was not significant (p > 0.05; Spearman. In conclusion, chronic exposure to ethanol may be associated with carcinogenic cytologic changes in the oral mucosa, even in the absence of tobacco smoking. These alterations were not correlated with hepatobiliary injury.Os efeitos do etanol isoladamente sobre a mucosa bucal permanecem pouco esclarecidos, sobretudo devido ao baixo número de não-fumantes consumidores crônicos de bebidas alcoólicas. O objetivo deste estudo foi avaliar as freqüências de micronúcleo, relação núcleo/citoplasma anormal, picnose, cariorrexe e cariólise em células esfoliadas da mucosa jugal e do bordo lateral da língua de 36 alcoólatras não-fumantes (grupo etanol e 18 abstêmios de álcool e fumo (grupo controle. O método de Papanicolaou foi utilizado. Uma vez que indivíduos alcoólatras geralmente apresentam comprometimento hepatobiliar, a associação entre gama-glutamil transpeptidase (GGT s

  16. Smectite alteration

    International Nuclear Information System (INIS)

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  17. Escherichia coli α-hemolysin triggers shrinkage of erythrocytes via K(Ca)3.1 and TMEM16A channels with subsequent phosphatidylserine exposure

    DEFF Research Database (Denmark)

    Skals, Marianne Gerberg; Jensen, Uffe Birk; Ousingsawat, Jiraporn;

    2010-01-01

    alpha-Hemolysin from Escherichia coli (HlyA) readily lyse erythrocytes from various species. We have recently demonstrated that this pore-forming toxin provokes distinct shrinkage and crenation before it finally leads to swelling and lysis of erythrocytes. The present study documents the underlying...... mechanism for this severe volume reduction. We show that HlyA-induced shrinkage and crenation of human erythrocytes occur subsequent to a significant rise in [Ca(2+)](i). The Ca(2+)-activated K(+) channel K(Ca)3.1 (or Gardos channel) is essential for the initial shrinkage, because both clotrimazole and TRAM......-34 prevent the shrinkage and potentiate hemolysis produced by HlyA. Notably, the recently described Ca(2+)-activated Cl(-) channel TMEM16A contributes substantially to HlyA-induced cell volume reduction. Erythrocytes isolated from TMEM16A(-/-) mice showed significantly attenuated crenation and...

  18. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.

    Science.gov (United States)

    Del Rosso, James Q; Webster, Guy F; Rosen, Ted; Thiboutot, Diane; Leyden, James J; Gallo, Richard; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-04-01

    Oral and topical antibiotics are commonly prescribed in dermatologie practice, often for noninfectious disorders, such as acne vulgaris and rosacea. Concerns related to antibiotic exposure from both medical and nonmedical sources require that clinicians consider in each case why and how antibiotics are being used and to make appropriate adjustments to limit antibiotic exposure whenever possible. This first article of a three-part series discusses prescribing patterns in dermatology, provides an overview of sources of antibiotic exposure, reviews the relative correlations between the magnitude of antibiotic consumption and emergence of antibiotic resistance patterns, evaluates the impact of alterations in antibiotic prescribing, and discusses the potential relevance and clinical sequelae of antibiotic use, with emphasis on how antibiotics are used in dermatology. PMID:27462384

  19. A exposição ao chumbo como fator de risco para alterações no desenvolvimento da linguagem Lead exposure as a risk factor for alterations in language development

    Directory of Open Access Journals (Sweden)

    Mariana San Jorge

    2008-06-01

    Full Text Available OBJETIVO: Verificar a ocorrência de alterações no desenvolvimento, em particular, o desenvolvimento da linguagem, em crianças com histórico de exposição ao metal chumbo, e a existência ou não de correlação entre índice de contaminação e desenvolvimento de linguagem. MÉTODOS: Cinqüenta e oito crianças entre 12 e 36 meses foram submetidas à triagem fonoaudiológica; destas, 15 compareceram para avaliação específica por meio da Escala de Desenvolvimento Comportamental de Gesell e Amatruda por terem falhado na triagem. A correlação entre índice de chumbo e o grau de defasagem na linguagem foi verificada. RESULTADOS: Seis crianças apresentaram defasagem na área da linguagem da Escala, sendo que, uma delas apresentou defasagem em todos os campos. CONCLUSÃO: Não foi encontrada correlação negativa significante entre a concentração de chumbo e o grau de defasagem no desenvolvimento de linguagem dos indivíduos participantes, entretanto, o estudo sugere que a contaminação pelo chumbo tornou-se fator de risco para alterações no desenvolvimento da linguagem destas crianças. Dessa forma, mais estudos são necessários para verificar o grau de prejuízo que este metal pode ocasionar às pessoas, principalmente quando estão em desenvolvimento.PURPOSE: To verify the occurrence of alterations in the development, in particular language development, in children with history of metal lead exposure, and whether there is a correlation between index of contamination and language development. METHODS: Fifty eight children with ages between 12 and 36 months were submitted to speech-language pathology screening; 15 of these children failed the screening, and were referred to specific evaluation using the Behavioral Development Scale by Gesell and Amatruda (Escala de Desenvolvimento Comportamental de Gesell e Amatruda. The correlation between lead index and the degree of language deficits was verified. RESULTS: Six children presented

  20. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  1. Does a more refined assessment of exposure to bitumen fume and confounders alter risk estimates from a nested case-control study of lung cancer among European asphalt workers?

    DEFF Research Database (Denmark)

    Agostini, Michela; Ferro, Gilles; Burstyn, Igor;

    2013-01-01

    To investigate whether a refined assessment of exposure to bitumen fume among workers in the European asphalt industry within a nested case-control study resulted in a different interpretation pertaining to risk of lung cancer mortality compared with the cohort study.......To investigate whether a refined assessment of exposure to bitumen fume among workers in the European asphalt industry within a nested case-control study resulted in a different interpretation pertaining to risk of lung cancer mortality compared with the cohort study....

  2. Synergy between phenotypic modulation and ROS neutralization in reduction of inflammatory response of hypoxic microglia by using phosphatidylserine and antioxidant containing liposomes.

    Science.gov (United States)

    Hosain, Md Zahangir; Mori, Takeshi; Kishimura, Akihiro; Katayama, Yoshiki

    2016-01-01

    Neuroinflammation caused by microglial activation is a key contributing factor in neurological disorders such as those involving ischaemia. Excess production of reactive oxygen species (ROS) and nitric oxide (NO) stimulates the inflammatory response during ischaemia, significantly damaging cells. Inhibition of inflammatory activation of microglia is a promising potential treatment approach for neurological diseases. In this study, we introduce α-tocopherol and phosphatidylserine (PS) containing liposomes (PST-liposomes) to inhibit the microglial inflammatory response. PS is known to have anti-inflammatory effects on microglia by modulating the microglial phenotype, while α-tocopherol is an antioxidant, known to neutralize ROS. We found that both PS-containing liposomes (PS-liposomes) and PST-liposomes, as compared with phosphatidylcholine containing liposomes, significantly increased viability of hypoxia-treated microglia. The PST-liposomes functioned better than the PS-liposomes and we attribute this superior effect to a synergy between PS and α-tocopherol. This synergic action of PST-liposomes was illustrated in their ability, when incubated with microglia, to reduce NO and pro-inflammatory cytokine (TNF-α) production and increase anti-inflammatory cytokine (TGF-β1) production. Thus, the improved viability of hypoxia-treated microglia when treated with PST-liposomes involved anti-inflammatory effects, including ROS neutralization, as well as induction of a microglial phenotypic change. Our results suggest that PST-liposomes represent a potential therapeutic approach to reducing ischaemic injury in the brain. PMID:26689775

  3. Non-invasive detection of macrophages in atheroma using a radiocontrast-loaded phosphatidylserine-containing liposomal contrast agent for computed tomography

    Science.gov (United States)

    Kee, Patrick; Bagalkot, Vaishali; Johnson, Evan; Danila, Delia

    2014-01-01

    Purpose Macrophage plays an important role in plaque destabilization in atherosclerosis. By harnessing the affinity of macrophages to certain phospholipid species, a liposomal contrast agent containing phosphatidylserine (PS) and computed tomographic (CT) contrast agent was prepared and evaluated for CT imaging of plaque-associated macrophages in rabbit models of atherosclerosis. Procedures Liposomes containing PS and iodixanol were evaluated for their physicochemical characteristics, in vitro macrophage uptake, in vivo blood pool clearance and organ distribution. Plaque enhancement in the aorta was imaged with computed tomography (CT) in two atherosclerotic rabbit models. Results In vitro macrophage uptake of PS-liposomes increased with increasing amount of PS in the liposomes. Overall clearance of PS-liposomes was more rapid than control liposomes. Smaller PS-liposomes (d = 112 ± 4 nm) were more effective than control liposomes of similar size or larger control and PS-liposomes (d = 172 ± 17 nm) in enhancing aortic plaques in both rabbit models. Conclusions Proper liposomal surface modification and appropriate sizing are important determinant for CT-based molecular imaging of macrophages in atheroma. PMID:25301703

  4. Differences in intracellular calcium dynamics cause differences in α-granule secretion and phosphatidylserine expression in platelets adhering on glass and TiO2.

    Science.gov (United States)

    Gupta, Swati; Donati, Alessia; Reviakine, Ilya

    2016-06-01

    In this study, the activation of purified human platelets due to their adhesion on glass and TiO2 in the absence of extracellular calcium was investigated. Differences in α-granule secretion between platelets adhering on the two surfaces were detected by examining the expression and secretion of the α-granule markers P-selectin (CD62P) and β-thromboglobulin. Similarly, differences in the expression of phosphatidylserine (PS), and in the activation of the major integrin GPIIb/IIIa, on the surfaces of the adhering platelets, were also observed. While all of these activation markers were expressed in platelets adhering on glass, the surface markers were not expressed in platelets adhering on TiO2, and β-thromboglobulin secretion levels were substantially reduced. Differences in marker expression and secretion correlated with differences in the intracellular calcium dynamics. Calcium ionophore treatment triggered α-granule secretion and PS expression in TiO2-adhering platelets but had no effect on the activation of GPIIb/IIIa. These results demonstrate specificity in the way surfaces of artificial materials activate platelets, link differences in the intracellular calcium dynamics observed in the platelets adhering on the two surfaces to the differences in some of the platelet responses (α-granule secretion and PS expression), but also highlight the involvement of synergistic, calcium-independent pathways in platelet activation. The ability to control activation in surface-adhering platelets makes this an attractive model system for studying platelet signaling pathways and for tissue engineering applications. PMID:27124595

  5. Chronic Treatment with Squid Phosphatidylserine Activates Glucose Uptake and Ameliorates TMT-Induced Cognitive Deficit in Rats via Activation of Cholinergic Systems

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2012-01-01

    Full Text Available The present study examined the effects of squid phosphatidylserine (Squid-PS on the learning and memory function and the neural activity in rats with TMT-induced memory deficits. The rats were administered saline or squid derived Squid-PS (Squid-PS 50 mg kg−1, p.o. daily for 21 days. The cognitive improving efficacy of Squid-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the passive avoidance task and by performing choline acetyltransferase (ChAT and acetylcholinesterase (AchE immunohistochemistry. 18F-Fluorodeoxyglucose and performed a positron emission tomography (PET scan was also performed. In the passive avoidance test, the control group which were injected with TMT showed a markedly lower latency time than the non-treated normal group (P<0.05. However, treatment of Squid-PS significantly recovered the impairment of memory compared to the control group (P<0.05. Consistent with the behavioral data, Squid-PS significantly alleviated the loss of ChAT immunoreactive neurons in the hippocampal CA3 compared to that of the control group (P<0.01. Also, Squid-PS significantly increased the AchE positive neurons in the hippocampal CA1 and CA3. In the PET analysis, Squid-PS treatment increased the glucose uptake more than twofold in the frontal lobe and the hippocampus (P<0.05, resp.. These results suggest that Squid-PS may be useful for improving the cognitive function via regulation of cholinergic enzyme activity and neural activity.

  6. Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle

    Directory of Open Access Journals (Sweden)

    Sara eMaatta

    2012-03-01

    Full Text Available Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole mass spectrometry indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD is a family of enzymes that hydrolyzes phospholipids to produce phosphatidic acid. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of phosphatidic acid. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  7. Altered DNA methylation in PAH deficient phenylketonuria.

    Science.gov (United States)

    Dobrowolski, Steven F; Lyons-Weiler, James; Spridik, Kayla; Biery, Amy; Breck, Jane; Vockley, Jerry; Yatsenko, Svetlana; Sultana, Tamanna

    2015-01-01

    While phenylalanine (PHE) is the toxic insult in phenylketonuria (PKU), mechanisms underlying PHE toxicity remain ill-defined. Altered DNA methylation in response to toxic exposures is well-recognized. DNA methylation patterns were assessed in blood and brain from PKU patients to determine if PHE toxicity impacts methylation. Methylome assessment, utilizing methylated DNA immunoprecipitation and paired-end sequencing, was performed in DNA obtained from brain tissue of classical PKU patients, leukocytes from poorly controlled PKU patients, leukocytes from well controlled PKU patients, and appropriate control tissues. In PKU brain tissue, expression analysis determined the impact of methylation on gene function. Differential methylation was observed in brain tissue of PKU patients and expression studies identified downstream impact on gene expression. Altered patterns of methylation were observed in leukocytes of well controlled and poorly controlled patients with more extensive methylation in patients with high PHE exposure. Differential methylation of noncoding RNA genes was extensive in patients with high PHE exposure but minimal in well controlled patients. Methylome repatterning leading to altered gene expression was present in brain tissue of PKU patients, suggesting a role in neuropathology. Aberrant methylation is observed in leukocytes of PKU patients and is influenced by PHE exposure. DNA methylation may provide a biomarker relating to historic PHE exposure. PMID:25990862

  8. Combined Insulin Deficiency and Endotoxin Exposure Stimulate Lipid Mobilization and Alter Adipose Tissue Signaling in an Experimental Model of Ketoacidosis in Subjects With Type 1 Diabetes: A Randomized Controlled Crossover Trial.

    Science.gov (United States)

    Svart, Mads; Kampmann, Ulla; Voss, Thomas; Pedersen, Steen B; Johannsen, Mogens; Rittig, Nikolaj; Poulsen, Per L; Nielsen, Thomas S; Jessen, Niels; Møller, Niels

    2016-05-01

    Most often, diabetic ketoacidosis (DKA) in adults results from insufficient insulin administration and acute infection. DKA is assumed to release proinflammatory cytokines and stress hormones that stimulate lipolysis and ketogenesis. We tested whether this perception of DKA can be reproduced in an experimental human model by using combined insulin deficiency and acute inflammation and tested which intracellular mediators of lipolysis are affected in adipose tissue. Nine subjects with type 1 diabetes were studied twice: 1) insulin-controlled euglycemia and 2) insulin deprivation and endotoxin administration (KET). During KET, serum tumor necrosis factor-α, cortisol, glucagon, and growth hormone levels increased, and free fatty acids and 3-hydroxybutyrate concentrations and the rate of lipolysis rose markedly. Serum bicarbonate and pH decreased. Adipose tissue mRNA contents of comparative gene identification-58 (CGI-58) increased and G0/G1 switch 2 gene (G0S2) mRNA decreased robustly. Neither protein levels of adipose triglyceride lipase (ATGL) nor phosphorylations of hormone-sensitive lipase were altered. The clinical picture of incipient DKA in adults can be reproduced by combined insulin deficiency and endotoxin-induced acute inflammation. The precipitating steps involve the release of proinflammatory cytokines and stress hormones, increased lipolysis, and decreased G0S2 and increased CGI-58 mRNA contents in adipose tissue, compatible with latent ATGL stimulation. PMID:26884439

  9. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC.

    Science.gov (United States)

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2012-08-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction). PMID:22473973

  10. SU-E-I-34: Intermittent Low- and High-Dose Ethanol Exposure Alters Neurochemical Responses in Adult Rat Brain: An Ex Vivo 1H NMR Spectroscopy at 11.7 T

    International Nuclear Information System (INIS)

    Purpose: The first goal of this study was to determine the influence of the dose-dependent effects of intermittent ethanol intoxication on cerebral neurochemical responses among sham controls and low- and high-dose-ethanol-exposed rats with ex vivo high-resolution spectra. The second goal of this study was to determine the correlations between the metabolite-metabolite levels (pairs-of-metabolite levels) from all of the individual data from the frontal cortex of the intermittent ethanol-intoxicated rats. Methods: Eight-week-old male Wistar rats were divided into 3 groups. Twenty rats in the LDE (n = 10) and the HDE (n = 10) groups received ethanol doses of 1.5 g/kg and 2.5 g/kg, respectively, through oral gavage every 8-h for 4 days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz proton nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the 3 groups). Results: Normalized total-N-acetylaspartate (tNAA: NAA + NAAG [N-acetylaspartyl-glutamate]), gamma-aminobutyric acid (GABA), and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The 6 pairs of normalized metabolite levels were positively (+) or negatively (−) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and Aspartate (Asp) (−), myo-Inositol (mIns) and Asp (−), mIns and Alanine (+), mIns and Taurine (+), and mIns and tNAA (−). Conclusion: Our results suggested that repeated intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo 1H high-resolution-magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose

  11. SU-E-I-34: Intermittent Low- and High-Dose Ethanol Exposure Alters Neurochemical Responses in Adult Rat Brain: An Ex Vivo 1H NMR Spectroscopy at 11.7 T

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do-Wan; Kim, Sang-Young; Song, Kyu-Ho; Choe, Bo-Young [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The first goal of this study was to determine the influence of the dose-dependent effects of intermittent ethanol intoxication on cerebral neurochemical responses among sham controls and low- and high-dose-ethanol-exposed rats with ex vivo high-resolution spectra. The second goal of this study was to determine the correlations between the metabolite-metabolite levels (pairs-of-metabolite levels) from all of the individual data from the frontal cortex of the intermittent ethanol-intoxicated rats. Methods: Eight-week-old male Wistar rats were divided into 3 groups. Twenty rats in the LDE (n = 10) and the HDE (n = 10) groups received ethanol doses of 1.5 g/kg and 2.5 g/kg, respectively, through oral gavage every 8-h for 4 days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz proton nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the 3 groups). Results: Normalized total-N-acetylaspartate (tNAA: NAA + NAAG [N-acetylaspartyl-glutamate]), gamma-aminobutyric acid (GABA), and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The 6 pairs of normalized metabolite levels were positively (+) or negatively (−) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and Aspartate (Asp) (−), myo-Inositol (mIns) and Asp (−), mIns and Alanine (+), mIns and Taurine (+), and mIns and tNAA (−). Conclusion: Our results suggested that repeated intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo 1H high-resolution-magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose

  12. Laboratory evaluation of anti-phospholipid syndrome: a preliminary prospective study of phosphatidylserine/prothrombin antibodies in an at-risk patient cohort.

    Science.gov (United States)

    Heikal, N M; Jaskowski, T D; Malmberg, E; Lakos, G; Branch, D W; Tebo, A E

    2015-05-01

    Immunoglobulin (Ig)G/IgM autoantibodies to phosphatidylserine/prothrombin (aPS/PT) were evaluated individually and in combination with criteria anti-phospholipid (aPL) tests in a prospectively ascertained cohort of patients at risk for anti-phospholipid syndrome (APS). One hundred and sixty (160) consecutive requests for lupus anti-coagulant (LAC) from the University of Utah Health Sciences Center were identified during 8 weeks. Of these, 104 unique patients had additional requests for cardiolipin (aCL) and/or beta2 glycoprotein I (aβ2 GPI) IgG and/or IgM; samples were retained and analysed for aPS/PT, aCL and/or aβ2 GPI IgG and IgM antibodies. Following testing, a comprehensive chart review was performed and patients categorized according to their clinical diagnosis. Individual and combined sensitivities, specificities, odd ratios (OR), diagnostic accuracy for specific tests or combinations by receiver operating characteristic (ROC), area under the curve (AUC) analyses and correlations between test results were determined. The sensitivities of aPS/PT IgG/IgM (54·6/45·5%) were lower than LAC (81·8%) but higher relative to aCL IgG/IgM (27·3/0%) or aβ2 GPI IgG/IgM (27·3/0%). The best correlation between LAC and any aPL test was observed with aPS/PT (P = 0·002). There was no significant difference in the diagnostic accuracies for any panel with LAC: LAC/aβ2 GPI IgG/aCL IgG [AUC 0·979, OR 475·4, 95% confidence interval (CI) 23·1-9056·5, P = 0·0001 and LAC/aβ2 GPI IgG/aPS/PT IgG or LAC/aPS/PT IgG/aCL IgG (AUC 0·962, OR 265·3, 14·2-4958·2, P = 0·0001). The high correlation between LAC and aPS/PT IgG/IgM in this preliminary study suggest that this marker may be useful in the evaluation of APS. More studies to determine the optimal aPL antibody tests combination are needed. PMID:25522978

  13. Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study

    Directory of Open Access Journals (Sweden)

    Zanotta D

    2014-02-01

    Full Text Available Danilo Zanotta, Silvana Puricelli, Guido Bonoldi Unità Operativa di Medicina 2, Ospedale di Circolo di Busto Arsizio, Varese, Italy Abstract: A prospective cohort, noncomparative, multicenter trial was conducted to explore the potential of a phytotherapeutic compound, available as a dietary supplement and containing extracts of Bacopa monnieri and Haematococcus pluvialis (astaxanthin plus phosphatidylserine and vitamin E, in improving cognition in subjects diagnosed with mild cognitive impairment. Enrolled subjects (n=104 were aged 71.2±9.9 years and had a mini-mental state examination score of 26.0±2.0 (mean ± standard deviation. They underwent the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog test and the clock drawing test at baseline and upon completion of a 60-day period of dietary supplementation with one tablet daily of the tested compound. In 102 assessable subjects, total ADAS-cog scores improved from 13.7±5.8 at baseline to 9.7±4.9 on day 60, and the clock drawing test scores improved from 8.5±2.3 to 9.1±1.9. Both changes were statistically significant (P<0.001. Memory tasks were the individual components of ADAS-cog showing the largest improvements. In a multivariate analysis, larger improvements in total ADAS-cog score were associated with less compromised baseline mini-mental state examination scores. Perceived efficacy was rated as excellent or good by 62% of study subjects. The tested compound was well tolerated; one nonserious adverse event was reported in the overall study population, and perceived tolerability was rated excellent or good by 99% of the subjects. In conclusion, dietary supplementation with the tested compound shows potential for counteracting cognitive impairment in subjects with mild cognitive impairment and warrants further investigation in adequately controlled, longer-term studies. Keywords: mild cognitive impairment, Bacopa monnieri, astaxanthin, ADAS-cog test, clock drawing

  14. Surgical Exposure

    OpenAIRE

    Hendra Chandra

    2015-01-01

    Surgical exposure is a surgical method to expose mucous or bone which prevent delayed or unerupted permanent crown teeth, in order to provide normal eruption and to prevent malocclusion. Surgical exposure is usually carried out on maxillary caninces as they have higher incidence of delayed eruption. Nevertheless, this procedure can also be performed on other teeth. For patient management, this procedure need cooperation betweent oral surgeon and orthodontist.

  15. Cocaine triggers epigenetic alterations in the corticostriatal circuit.

    Science.gov (United States)

    Sadri-Vakili, Ghazaleh

    2015-12-01

    Acute and repeated exposure to cocaine induces long-lasting alterations in neural networks that underlie compulsive drug seeking and taking. Cocaine exposure triggers complex adaptations in the brain that are mediated by dynamic patterns of gene expression that are translated into enduring changes. Recently, epigenetic modifications have been unveiled as critical mechanisms underlying addiction that contribute to drug-induced plasticity by regulating gene expression. These alterations are also now linked to the heritability of cocaine-induced phenotypes. This review focuses on how changes in the epigenome, such as altered DNA methylation, histone modifications, and microRNAs, regulate transcription of specific genes that contribute to cocaine addiction. PMID:25301690

  16. Enhanced Eryptosis Following Gramicidin Exposure

    OpenAIRE

    Abaid Malik; Rosi Bissinger; Guoxing Liu; Guilai Liu; Florian Lang

    2015-01-01

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+] i ), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end ...

  17. PERINATAL DIMETHYLTIN EXPOSURE ALTERS SPATIAL LEARNING ABILITY IN ADULT RATS.

    Science.gov (United States)

    Dimethyltin (DMT) is widely used as a heat and light stabilizer in PVC and CPVC piping, and has been detected in domestic water supplies. Due to the lack of developmental neurotoxicity data on DMT, we initiated studies to evaluate long-term neurobehavioral changes in offspring fo...

  18. Exposure to seismic survey alters blue whale acoustic communication

    OpenAIRE

    Di Iorio, Lucia; Clark, Christopher W.

    2009-01-01

    The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey th...

  19. Exposure to seismic survey alters blue whale acoustic communication.

    Science.gov (United States)

    Di Iorio, Lucia; Clark, Christopher W

    2010-02-23

    The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey that deployed a low-medium power technology (sparker). We found that blue whales called consistently more on seismic exploration days than on non-exploration days as well as during periods within a seismic survey day when the sparker was operating. This increase was observed for the discrete, audible calls that are emitted during social encounters and feeding. This response presumably represents a compensatory behaviour to the elevated ambient noise from seismic survey operations. PMID:19776059

  20. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  1. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis; Desenvolvimento e farmacocinetica de antimonio encapsulado em lipossomas de fosfatidilserina utilizando radioisotopos em leishmaniose experimental

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger

    2010-07-01

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC{sub 50} in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  2. Attention Alters Perceived Attractiveness.

    Science.gov (United States)

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another. PMID:26966228

  3. Radiation exposure during equine radiography

    International Nuclear Information System (INIS)

    All personnel present in the X-ray examination room during equine radiography were monitored using low energy direct reading ionization chambers (pockets dosimeters) worn outside the lead apron at neck level. The individuals' task and dosimeter readings were recorded after each examination. Average doses ranged from 0 to 6 mrad per study. The greatest exposures were associated with radiography of the shoulder and averaged less than 4 mrad. The individual extending the horse's limb was at greatest risk although the individual holding the horse's halter and the one making the X-ray exposure received similar exposures. A survey of the overhead tube assembly used for some of the X-ray examinations also was performed. Meter readings obtained indicated an asymetric dose distribution around the tube assembly, with the highest dose occurring on the side to which the exposure cord was attached. Although the exposures observed were within acceptable limits for occupational workers, we have altered our protocol and no longer radiograph the equine shoulder unless the horse is anesthetized. Continued use of the pocket dosimeters and maintenance of a case record of radiation exposure appears to make the technologists more aware of radiation hazards

  4. Intermittent heat exposure and thirst in rats.

    Science.gov (United States)

    Barney, Christopher C; Kuhrt, David M

    2016-04-01

    Adequate water intake, supporting both cardiovascular function and evaporative cooling, is a critical factor in mitigating the effects of heat waves, which are expected to increase with global warming. However, the regulation of water intake during periods of intermittent heat exposure is not well understood. In this study, the effects of access to water or no access during intermittent heat exposure were assessed using male Sprague-Dawley rats exposed to 37.5°C for 4 h/day. After 7 days of intermittent heat exposure, reductions in evaporative water loss were observed in all animals and reductions in water intake following heat exposure occurred as the days of heat exposure increased. Rats that were not allowed water during the 7 days of exposure had decreased rehydration levels, however, rats allowed access to water increased water intake during exposure and exhibited higher overall rehydration levels over the same time period. Peripheral administration of angiotensinII, mimicking activation of volemic thirst, or hypertonic saline solution, activating intracellular thirst, did not result in alteration of water intake in rats exposed to heat with access to water compared to control rats. In contrast, rats exposed to heat without access to water had reduced water intake after administration of hypertonic saline and increased water intake after administration of angiotensinIIcompared to control rats. These experiments demonstrate that thirst responses to intermittent heat exposure are altered by providing water during heat exposure and that intermittent heat exposure without access to water alters drinking responses to both intracellular and extracellular thirst challenges. PMID:27095836

  5. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    Science.gov (United States)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  6. Epigenetic: a molecular link between testicular cancer and environmental exposures?

    Directory of Open Access Journals (Sweden)

    DavidHVOLLE

    2012-11-01

    Here we will review chromatin modifications which can affect testicular physiology leading to the development of testicular cancer; and highlight potential molecular pathways involved in these alterations in the context of environmental exposures.

  7. 抑郁模型大鼠再应激后海马细胞支架蛋白的改变%Cytoskeletal alterations in rat hippocampus following chronic unpredictable mild stress and re-exposure to acute and chronic unpredictable mild stress

    Institute of Scientific and Technical Information of China (English)

    杨灿; 王高华; 王惠玲; 刘忠纯; 王晓萍; 朱志先

    2011-01-01

    目的 研究抑郁模型大鼠接受再次急性和慢性应激后细胞支架微管系统的动态性改变,并探讨可能的机制.方法 将40只大鼠按随机数字表法分为5组:对照组(空白对照+生理盐水),CUMS组(CUMS+生理盐水),氟西汀组(CUMS+氟西汀),急性再应激组(CUMS+氟西汀+药物清洗期+急性游泳应激),CUMS再应激组(CUMS+氟西汀+药物清洗期+CUMS).实验结束后进行行为学观察,并使用免疫印迹法( western blotting)检测大鼠海马乙酰化微管蛋白(Acet-Tub),酪氨酸化微管蛋白(Tyr-Tub),微管结合蛋白2(MAP-2)及磷酸化微管结合蛋白2(phospho-MAP-2).结果 (1)CUMS再应激组糖水偏好[ (43.38±7.84)%],总行程[(859.21±653.62)cm],运动平均速度[(2.05±0.60)cm/s]及直立次数[(0.12±0.30)次]均减少,与对照组及CUMS组相比均差异有显著性(P<0.01).急性再应激组行为与对照组比较差异无显著性.氟西汀组糖水偏好和旷场实验相关指标与对照组差异无显著性,与CUMS组差异有显著性(P<0.01).(2) CUMS再应激组Acet-Tub表达升高[(244.24±8.90)%],Tyr-Tub表达降低[ (30.92±11.00)%],与对照组及CUMS组差异均有显著性(P<0.01).MAP-2的表达与对照组及CUMS组比较差异无显著性,phospho-M AP-2的表达减少[(24.75±8.83)%],与对照组及CUMS组均差异有显著性(P<0.01).急性再应激组各蛋白水平与对照组比较差异无显著性.氟西汀组各蛋白的表达与对照组比较差异无显著性(P>0.05),与CUMS组比较差异有显著性(P<0.01).结论 动物再次暴露于CUMS后,其行为和微管动态性损害更严重,同时伴随微管相关蛋白磷酸化的变化,提示临床抑郁症的发生以及复发的町能机制.%Objective To investigate behavior and hippocampal cytoskeletal alterations following re-exposure to chronic unpredictable mild stress(CUMS) and acute swimming stress,and explore the possible mechanism.Methods 40 Male Sprague-Dawley (SD) rats were

  8. Estudo comparativo de sintomas respiratórios e função pulmonar em pacientes com doença pulmonar obstrutiva crônica relacionada à exposição à fumaça de lenha e de tabaco Comparative study of respiratory symptoms and lung function alterations in patients with chronic obstructive pulmonary disease related to the exposure to wood and tobacco smoke

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora Carmo Moreira

    2008-09-01

    Full Text Available OBJETIVO: Descrever e analisar sintomas respiratórios e alterações espirométricas em pacientes portadores de doença pulmonar obstrutiva crônica (DPOC, com história de exposição à fumaça de lenha e de tabaco. MÉTODOS: Foram avaliados retrospectivamente dados de 170 pacientes distribuídos em 3 grupos: 34 pacientes expostos somente à fumaça de lenha, 59 pacientes, somente à de tabaco e 77 pacientes expostos a ambas. RESULTADOS: Os grupos não diferiram quanto a idade (p = 0,225 e grau de exposição, considerando cada tipo de exposição isoladamente ou em associação (p = 0,164 e p = 0,220, respectivamente. No grupo exposto à fumaça de lenha predominou o sexo feminino.Não houve diferença entre os grupos quanto à freqüência dos sintomas respiratórios (p > 0,05, e houve predominância de grau moderado de dispnéia nos três grupos (p = 0,141. O grupo exposto à fumaça de lenha apresentou melhores percentuais da relação volume expiratório forçado no primeiro segundo/capacidade vital forçada e de volume expiratório forçado no primeiro segundo (p OBJECTIVE: To describe and analyze clinical symptoms and spirometric alterations of patients with chronic obstructive pulmonary disease (COPD and history of exposure to wood and tobacco smoke. METHODS: We retrospectively evaluated data related to 170 patients distributed into 3 groups: 34 exposed only to wood smoke, 59 patients exposed only to tobacco smoke and 77 patients exposed to both. RESULTS: The groups did not differ significantly in terms of age (p = 0.225 or degree of exposure, considering each type of exposure in isolation or in combination (p = 0.164 and p = 0.220, respectively. Females predominated in the group exposed to wood smoke. There were no differences among the groups regarding respiratory symptoms (p > 0.05, and moderate dyspnea predominated in the three groups (p = 0.141. The group exposed to wood smoke presented higher percentages of forced expiratory

  9. Exposure Due to Interacting Air flows Between Two Persons

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    The contaminant concentration inhaled by an occupant (ie. the personal exposure) is usually less than the return concentration in displacement ventilated rooms. Two main questions are investigated: 1) Does the exhalation from one person penetrate the breathing zone of another person placed nearby......, thus leading to larger personal exposure? 2) When two persons are placed close to each other, do the convective boundary layer flows interact so that the personal exposure to an ambient concentration field is altered?...

  10. Altered fingerprints: analysis and detection.

    Science.gov (United States)

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem. PMID:21808092

  11. Regression calibration for classical exposure measurement error in environmental epidemiology studies using multiple local surrogate exposures.

    Science.gov (United States)

    Bateson, Thomas F; Wright, J Michael

    2010-08-01

    Environmental epidemiologic studies are often hierarchical in nature if they estimate individuals' personal exposures using ambient metrics. Local samples are indirect surrogate measures of true local pollutant concentrations which estimate true personal exposures. These ambient metrics include classical-type nondifferential measurement error. The authors simulated subjects' true exposures and their corresponding surrogate exposures as the mean of local samples and assessed the amount of bias attributable to classical and Berkson measurement error on odds ratios, assuming that the logit of risk depends on true individual-level exposure. The authors calibrated surrogate exposures using scalar transformation functions based on observed within- and between-locality variances and compared regression-calibrated results with naive results using surrogate exposures. The authors further assessed the performance of regression calibration in the presence of Berkson-type error. Following calibration, bias due to classical-type measurement error, resulting in as much as 50% attenuation in naive regression estimates, was eliminated. Berkson-type error appeared to attenuate logistic regression results less than 1%. This regression calibration method reduces effects of classical measurement error that are typical of epidemiologic studies using multiple local surrogate exposures as indirect surrogate exposures for unobserved individual exposures. Berkson-type error did not alter the performance of regression calibration. This regression calibration method does not require a supplemental validation study to compute an attenuation factor. PMID:20573838

  12. Patient-based radiographic exposure factor selection: a systematic review

    International Nuclear Information System (INIS)

    Digital technology has wider exposure latitude and post-processing algorithms which can mask the evidence of underexposure and overexposure. Underexposure produces noisy, grainy images which can impede diagnosis and overexposure results in a greater radiation dose to the patient. These exposure errors can result from inaccurate adjustment of exposure factors in response to changes in patient thickness. This study aims to identify all published radiographic exposure adaptation systems which have been, or are being, used in general radiography and discuss their applicability to digital systems. Studies in EMBASE, MEDLINE, CINAHL and SCOPUS were systematically reviewed. Some of the search terms used were exposure adaptation, exposure selection, exposure technique, 25% rule, 15% rule, DuPont™ Bit System and radiography. A manual journal-specific search was also conducted in The Radiographer and Radiologic Technology. Studies were included if they demonstrated a system of altering exposure factors to compensate for variations in patients for general radiography. Studies were excluded if they focused on finding optimal exposures for an ‘average’ patient or focused on the relationship between exposure factors and dose. The database search uncovered 11 articles and the journal-specific search uncovered 13 articles discussing systems of exposure adaptation. They can be categorised as simple one-step guidelines, comprehensive charts and computer programs. Only two papers assessed the efficacy of exposure adjustment systems. No literature compares the efficacy of exposure adaptations system for film/screen radiography with digital radiography technology nor is there literature on a digital specific exposure adaptation system

  13. Irradiation exposure modulates central opioid functions

    International Nuclear Information System (INIS)

    Exposure to low doses of gamma irradiation results in the modification of both the antinociceptive properties of morphine and the severity of naloxone-precipitated withdrawal in morphine-dependent rats. To better define the interactions between gamma irradiation and these opiate-mediated phenomena, dose-response studies were undertaken of the effect of irradiation on morphine-induced antinociception, and on the naloxone-precipitated withdrawal syndrome of morphine-dependent rats. In addition, electrophysiologic studies were conducted in rats after irradiation exposure and morphine treatment correlating with the behavioral studies. The observations obtained demonstrated that the antinociceptive effects of morphine as well as naloxone-precipitated withdrawal were modified in a dose-dependent manner by irradiation exposure. In addition, irradiation-induced changes in the evoked responses obtained from four different brain regions demonstrated transient alterations in both baseline and morphine-treated responses that may reflect the alterations observed in the behavioral paradigms. These results suggest that the effects of irradiation on opiate activities resulted from physiologic alterations of central endogenous opioid systems due to alterations manifested within peripheral targets

  14. Irradiation exposure modulates central opioid functions

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, P.M.; Dafny, N.

    1987-11-01

    Exposure to low doses of gamma irradiation results in the modification of both the antinociceptive properties of morphine and the severity of naloxone-precipitated withdrawal in morphine-dependent rats. To better define the interactions between gamma irradiation and these opiate-mediated phenomena, dose-response studies were undertaken of the effect of irradiation on morphine-induced antinociception, and on the naloxone-precipitated withdrawal syndrome of morphine-dependent rats. In addition, electrophysiologic studies were conducted in rats after irradiation exposure and morphine treatment correlating with the behavioral studies. The observations obtained demonstrated that the antinociceptive effects of morphine as well as naloxone-precipitated withdrawal were modified in a dose-dependent manner by irradiation exposure. In addition, irradiation-induced changes in the evoked responses obtained from four different brain regions demonstrated transient alterations in both baseline and morphine-treated responses that may reflect the alterations observed in the behavioral paradigms. These results suggest that the effects of irradiation on opiate activities resulted from physiologic alterations of central endogenous opioid systems due to alterations manifested within peripheral targets.

  15. Music alters visual perception.

    Directory of Open Access Journals (Sweden)

    Jacob Jolij

    Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  16. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  17. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  18. Medium wave exposure characterisation using exposure quotients.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Pinar, Iván

    2010-06-01

    One of the aspects considered in the International Commission on Non-Ionizing Radiation Protection guidelines is that, in situations of simultaneous exposure to fields of different frequencies, exposure quotients for thermal and electrical stimulation effects should be examined. The aim of the present work was to analyse the electromagnetic radiation levels and exposure quotients for exposure to multiple-frequency sources in the vicinity of medium wave radio broadcasting antennas. The measurements were made with a spectrum analyser and a monopole antenna. Kriging interpolation was used to prepare contour maps and to estimate the levels in the towns and villages of the zone. The results showed that the exposure quotient criterion based on electrical stimulation effects to be more stringent than those based on thermal effects or power density levels. Improvement of dosimetry evaluations requires the spectral components of the radiation to be quantified, followed by application of the criteria for exposure to multiple-frequency sources. PMID:20159912

  19. Medium wave exposure characterisation using exposure quotients

    International Nuclear Information System (INIS)

    One of the aspects considered in the International Commission on Non-Ionizing Radiation Protection guidelines is that, in situations of simultaneous exposure to fields of different frequencies, exposure quotients for thermal and electrical stimulation effects should be examined. The aim of the present work was to analyse the electromagnetic radiation levels and exposure quotients for exposure to multiple-frequency sources in the vicinity of medium wave radio broadcasting antennas. The measurements were made with a spectrum analyser and a monopole antenna. Kriging interpolation was used to prepare contour maps and to estimate the levels in the towns and villages of the zone. The results showed that the exposure quotient criterion based on electrical stimulation effects to be more stringent than those based on thermal effects or power density levels. Improvement of dosimetry evaluations requires the spectral components of the radiation to be quantified, followed by application of the criteria for exposure to multiple-frequency sources. (authors)

  20. Peripheral blood signatures of lead exposure.

    Directory of Open Access Journals (Sweden)

    Heather G LaBreche

    Full Text Available BACKGROUND: Current evidence indicates that even low-level lead (Pb exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway.

  1. Cocaine alters BDNF expression and neuronal migration in the embryonic mouse forebin

    OpenAIRE

    McCarthy, Deirdre M.; Sadri-Vakili, Ghazaleh; Zhang, Xuan; Darnell, Shayna B.; Sangrey, Gavin R.; Yanagawa, Yuchio; Bhide, Pradeep G.

    2011-01-01

    Prenatal cocaine exposure impairs brain development and produces lasting alterations in cognitive function. In a prenatal cocaine exposure mouse model, we found that tangential migration of GABA neurons from the basal to the dorsal forebrain and radial neuron migration within the dorsal forebrain were significantly decreased in the embryonic period. The decrease in the tangential migration occurred early in gestation and normalized by late gestation, despite ongoing cocaine exposure. The decr...

  2. Does Early-Life Exposure to Organophosphate Insecticides Lead to Prediabetes and Obesity?

    OpenAIRE

    Slotkin, Theodore A.

    2010-01-01

    Human exposures to organophosphate insecticides are ubiquitous. Although regarded as neurotoxicants, increasing evidence points toward lasting metabolic disruption from early-life organophosphate exposures. We gave neonatal rats chlorpyrifos, diazinon or parathion in doses devoid of any acute signs of toxicity, straddling the threshold for barely-detectable cholinesterase inhibition. Organophosphate exposure during a critical developmental window altered the trajectory of hepatic adenylyl cyc...

  3. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  4. Understanding existing exposure situations.

    Science.gov (United States)

    Lecomte, J-F

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 removed the distinction between practices and interventions, and introduced three types of exposure situation: existing, planned, and emergency. It also emphasised the optimisation principle in connection with individual dose restrictions for all controllable exposure situations. Existing exposure situations are those resulting from sources, natural or man-made, that already exist when a decision on control has to be taken. They have common features to be taken into account when implementing general recommendations, such as: the source may be difficult to control; all exposures cannot be anticipated; protective actions can only be implemented after characterisation of the exposure situation; time may be needed to reduce exposure below the reference level; levels of exposure are highly dependent on individual behaviour and present a wide spread of individual dose distribution; exposures at work may be adventitious and not considered as occupational exposure; there is generally no potential for accident; many stakeholders have to be involved; and many factors need to be considered. ICRP is currently developing a series of reports related to the practical implementation of Publication 103 to various existing exposure situations, including exposure from radon, exposure from cosmic radiation in aviation, exposure from processes using naturally occurring radioactive material, and exposure from contaminated sites due to past activities. PMID:26975365

  5. Bisphenol A: Human exposure and neurobehavior.

    Science.gov (United States)

    Mustieles, Vicente; Pérez-Lobato, Rocío; Olea, Nicolás; Fernández, Mariana F

    2015-07-01

    The effect of bisphenol A (BPA) exposure on human brain and behavior is a relatively new issue, and particular concerns have been raised about its potential impact on children. The primary objective of this review was to analyze the current state of knowledge on the association of environmental BPA exposure during pregnancy and/or childhood with child cognitive and/or behavior outcomes. All scientific publications until March 2015 that include examination of this relationship have been reviewed using the MEDLINE/PubMed database. Although research on this issue has not been abundant, an association with altered neurobehavior was reported by eight out of the twelve available articles, including aggressive behavior, attention deficit, hyperactivity disorder, depression and anxiety impairments, mostly in children exposed in utero, indicating disruption of the brain during this critical window of development. Despite the reduced number of studies and their heterogeneity, the results suggest that prenatal BPA exposure may have a negative impact on neurobehavioral functioning in children and that the effects may be sex-dependent. It is therefore necessary to be vigilant towards the potential adverse effects of ubiquitous low-level BPA exposure, although more studies in humans are required to convincingly confirm or rule out the association between BPA exposure and health. Meanwhile, it is desirable to inform women planning or undergoing pregnancy about measures to reduce or avoid exposure to BPA. We discuss some key aspects of the relationship between exposure and neurobehavioral outcomes. PMID:26121921

  6. Environmental exposure measurement in cancer epidemiology

    Science.gov (United States)

    2009-01-01

    Environmental exposures, used in the broadest sense of lifestyle, infections, radiation, natural and man-made chemicals and occupation, are a major cause of human cancer. However, the precise contribution of specific risk factors and their interaction, both with each other and with genotype, continues to be difficult to elucidate. This is partially due to limitations in accurately measuring exposure with the subsequent risk of misclassification. One of the primary challenges of molecular cancer epidemiology therefore is to improve exposure assessment. Progress has been made with biomarkers such as carcinogens and their metabolites, DNA and protein adducts and mutations measured in various tissues and body fluids. Nevertheless, much remains to be accomplished in order to establish aetiology and provide the evidence base for public health decisions. This review considers some of the principles behind the application of exposure biomarkers in cancer epidemiology. It also demonstrates how the same biomarkers can contribute both to establishing the biological plausibility of associations between exposure and disease and be valuable endpoints in intervention studies. The potential of new technologies such as transcriptomics, proteomics and metabonomics to provide a step change in environmental exposure assessment is discussed. An increasing recognition of the role of epigenetic changes in carcinogenesis presents a fresh challenge as alterations in DNA methylation, histone modification and microRNA in response to environmental exposures demand a new generation of exposure biomarker. The overall importance of this area of research is brought into sharp relief by the large prospective cohort studies (e.g. UK Biobank) which need accurate exposure measurement in order to shed light on the complex gene:environment interactions underlying common chronic disorders including cancer. It is suggested that a concerted effort is now required, with appropriate funding, to develop and

  7. Functional alterations in macrophages after hypoxia selection.

    Science.gov (United States)

    Degrossoli, Adriana; Giorgio, Selma

    2007-01-01

    Regions of low oxygen tension are common features of inflamed and infected tissues and provide physiologic selective pressure for the expansion of cells with enhanced hypoxia tolerance. The aim of this study was to investigate whether macrophages resistant to death induced by hypoxia were accompanied by functional alterations. A mouse macrophage cell line (J774 cells) was used to obtain subpopulations of death-resistant macrophages induced by long-term exposure to severe hypoxia (J774 macrophages to periods of severe hypoxia results in the selection of cells with phenotypes associated with the modulation of heat-shock protein 70 kDa (HSP70) expression, tumor necrosis factor-alpha (TNF-alpha), and nitric oxide (NO) production and reduced susceptibility to parasite Leishmania infection. Thus, we suggest that hypoxia-selected macrophages may influence the outcome of inflammation and infection. PMID:17202589

  8. Heavy metals and epigenetic alterations in brain tumors.

    Science.gov (United States)

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-12-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  9. Pupillary Light Reaction during High Altitude Exposure

    OpenAIRE

    Schultheiss, Maximilian; Schommer, Kai; Schatz, Andreas; Wilhelm, Barbara; Peters, Tobias; Fischer, M. Dominik; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian; Willmann, Gabriel, 1977-

    2014-01-01

    Purpose This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP) and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Methods Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity) were quantified in 14...

  10. Blood coagulation and its alterations in hemorrhagic and thrombotic disorders.

    OpenAIRE

    Rapaport, S I

    1993-01-01

    Clinical observations have added to the understanding of basic mechanisms of blood coagulation and its alterations in certain hemorrhagic and thrombotic states. Much clinical evidence exists for concluding that the exposure of blood to tissue factor (thromboplastin) on tissue cells represents the key event initiating fibrin clot formation after tissue injury. This then results in the formation of activated factor VII (VIIa)-tissue factor complexes, which must activate both factor X and factor...

  11. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  12. Exposure scenarios for workers

    NARCIS (Netherlands)

    Marquart, H.; Northage, C.; Money, C.

    2007-01-01

    The new European chemicals legislation REACH (Registration, Evaluation, Authorisation and restriction of Chemicals) requires the development of Exposure Scenarios describing the conditions and risk management measures needed for the safe use of chemicals. Such Exposure Scenarios should integrate con

  13. Virtual reality exposure therapy

    OpenAIRE

    Rothbaum, BO; Hodges, L; Kooper, R

    1997-01-01

    It has been proposed that virtual reality (VR) exposure may be an alternative to standard in vivo exposure. Virtual reality integrates real-time computer graphics, body tracking devices, visual displays, and other sensory input devices to immerse a participant in a computer- generated virtual environment. Virtual reality exposure is potentially an efficient and cost-effective treatment of anxiety disorders. VR exposure therapy reduced the fear of heights in the first control...

  14. A Technique: Exposure Therapy

    Directory of Open Access Journals (Sweden)

    Serkan AKKOYUNLU

    2013-07-01

    Full Text Available Introduction: Exposure with response prevention is an effective treatment for all anxiety disorders. According to the behavioral learning theories, fears which are conditioned via classical conditioning are reinforced by respondent conditioning. Avoidance and safety seeking behaviors prevent disconfirmation of anxious beliefs. In exposure client faces stimulates or cues that elicit fear or distress, by this avoidance is inhibited. Clients are also encouraged to resists performing safety seeking behaviors or rituals that