WorldWideScience

Sample records for altered phosphatidylserine exposure

  1. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality

    NARCIS (Netherlands)

    Dinkla, S.; Peppelman, M.; Raadt, J. van der; Atsma, F.; Novotny, V.M.J.; Kraaij, M.G.J. van; Joosten, I.; Bosman, G.J.C.G.M.

    2014-01-01

    BACKGROUND: Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibi

  2. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    International Nuclear Information System (INIS)

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well

  3. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    Directory of Open Access Journals (Sweden)

    Chunyan Gao

    2015-10-01

    Full Text Available Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs, the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS and indole-3-acetic acid (IAA on procoagulant activity (PCA of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients. Phosphatidylserine (PS exposure of RBCs and their microparticles (MPs release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+] with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  4. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    Science.gov (United States)

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-11-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  5. A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells.

    Science.gov (United States)

    Gasser, Jean-Philippe; Hehl, Michaela; Millward, Thomas A

    2009-01-01

    A simple, "mix-and-measure" microplate assay for phosphatidylserine (PtdSer) exposure on the surface of apoptotic cells is described. The assay exploits the fact that annexin V, a protein with high affinity and specificity for PtdSer, forms trimers and higher order oligomers on binding to membranes containing PtdSer. The transition from soluble monomer to cell-bound oligomer is detected using time-resolved fluorescence resonance energy transfer from europium chelate-labeled annexin V to Cy5-labeled annexin V. PtdSer detection is achieved by a single addition of a reagent mix containing labeled annexins and calcium ions directly to cell cultures in a 96-well plate, followed by a brief incubation before fluorescence measurement. The assay can be used to quantify PtdSer exposure on both suspension cells and adherent cells in situ. This method is simpler and faster than existing annexin V binding assays based on flow cytometry or microscopy, and it yields precise data with Z' values of 0.6-0.7. PMID:18835236

  6. Measurements of Intracellular Ca2+ Content and Phosphatidylserine Exposure in Human Red Blood Cells: Methodological Issues

    Directory of Open Access Journals (Sweden)

    Mauro C. Wesseling

    2016-06-01

    Full Text Available Background/Aims: The increase of the intracellular Ca2+ content as well as the exposure of phosphatidylserine (PS on the outer cell membrane surface after activation of red blood cells (RBCs by lysophosphatidic acid (LPA has been investigated by a variety of research groups. Carrying out experiments, which we described in several previous publications, we observed some discrepancies when comparing data obtained by different investigators within our research group and also between batches of LPA. In addition, we found differences comparing the results of double and single labelling experiments (for Ca2+ and PS. Furthermore, the results of PS exposure depended on the fluorescent dye used (annexin V-FITC versus annexin V alexa fluor® 647. Therefore, it seems necessary to investigate these methodological approaches in more detail to be able to quantify results and to compare data obtained by different research groups. Methods: The intracellular Ca2+ content and the PS exposure of RBCs separated from whole blood have been investigated after treatment with LPA (2.5 µM obtained from three different companies (Sigma-Aldrich, Cayman Chemical Company, and Santa Cruz Biotechnology Inc.. Fluo-4 and x-rhod-1 have been used to detect intracellular Ca2+ content, annexin V alexa fluor® 647 and annexin V-FITC have been used for PS exposure measurements. Both parameters (Ca2+ content, PS exposure were studied using flow cytometry and fluorescence microscopy. Results: The percentage of RBCs showing increased intracellular Ca2+ content as well as PS exposure changes significantly between different LPA manufacturers as well as on the condition of mixing of LPA with the RBC suspension. Furthermore, the percentage of RBCs showing PS exposure is reduced in double labelling compared to single labelling experiments and depends also on the fluorescent dye used. Finally, data on Ca2+ content are slightly affected whereas PS exposure data are not affected significantly

  7. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes

    OpenAIRE

    1995-01-01

    The appearance of phosphatidylserine (PS) on the cell surface during apoptosis in thymocytes and cytotoxic T lymphocyte cell lines provokes PS-dependent recognition by activated macrophages. Flow cytometric analysis of transbilayer lipid movements in T lymphocytes undergoing apoptosis reveals that downregulation of the adenosine triphosphate- dependent amino-phospholipid translocase and activation of a nonspecific lipid scramblase are responsible for PS reaching the surface from its intracell...

  8. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.

    Directory of Open Access Journals (Sweden)

    Meghan R Riddell

    Full Text Available Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT. Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion

  9. Binding of thrombin-activated platelets to a fibrin scaffold through α(IIbβ₃ evokes phosphatidylserine exposure on their cell surface.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIbβ₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.

  10. Alteration of mitochondrial membrane potential (DELTA_PSI_m and phosphatidylserine translocation as early indicators of heavy metal-induced apoptosis in the earthworm Eisenia hortensis

    Directory of Open Access Journals (Sweden)

    FM Bearoff

    2011-06-01

    Full Text Available The effects of the heavy metals cadmium and copper (50-500 ìM on the apoptotic events involving changes in mitochondrial membrane potential (ÄØm and phosphatidylserine (PS translocation were investigated in the immune cells (celomocytes of the earthworm Eisenia hortensis. Using the fluorescent probe JC-1, loss of membrane potential due to depolarization was detected in a greater proportion of cases when induced by cadmium compared to copper (58.7 % vs. 37 % and at a lower concentration (50 ìM vs. 125ìM. With the use of the general caspase inhibitor Z-VAD-fmk, PS translocation detected by annexin V-FITC was found to be caspase-dependent when induced by cadmium at 125-250 ìM but not at 50 ìM or 500 ìM; a high proportion of earthworms (60 % exhibited inhibitory effects. Additionally, the collapse in membrane potential and PS translocation were found to strongly correlate (r > 0.5 in 89 % of cases when induced by cadmium and copper. Thus, heavy metals appear to induce death in celomocytes of E. hortensis through apoptosis by means of caspase dependent pathways

  11. Piperlongumine-Induced Phosphatidylserine Translocation in the Erythrocyte Membrane

    OpenAIRE

    Rosi Bissinger; Abaid Malik; Jamshed Warsi; Kashif Jilani; Florian Lang

    2014-01-01

    Background: Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surfa...

  12. Alterations in cognitive and psychological functioning after organic solvent exposure

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  13. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  14. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  15. Prenatal corticosteroid exposure alters early developmental seizures and behavior

    OpenAIRE

    Velíšek, Libor

    2011-01-01

    In humans, corticosteroids are often administered prenatally to improve lung development in preterm neonates. Studies in exposed children as well as in children, whose mothers experienced significant stress during pregnancy indicate behavioral problems and possible increased occurrence of epileptic spasms. This study investigated whether prenatal corticosteroid exposure alters early postnatal seizure susceptibility and behaviors. On gestational day 15, pregnant rats were injected i.p. with hy...

  16. Cigarette smoke exposure-associated alterations to noncoding RNA

    Directory of Open Access Journals (Sweden)

    Matthew Alan Maccani

    2012-04-01

    Full Text Available Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of noncoding RNA (ncRNA, important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA, Piwi-interacting RNA (piRNA, and long noncoding RNA (long ncRNA. The best-characterized species of ncRNA are miRNA, the mature forms of which are ~22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of noncoding RNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of

  17. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Irma Pujol-Autonell

    Full Text Available The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes.To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes.A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides.We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion.We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for

  18. Alteration of gene expression by alcohol exposure at early neurulation

    Directory of Open Access Journals (Sweden)

    McClintick Jeanette N

    2011-02-01

    Full Text Available Abstract Background We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Result Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545, adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22, neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg, and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1, and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1. Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO and a closed neural tube (ALC-NTC. Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. Conclusion This study revealed a set of genes vulnerable to alcohol exposure and

  19. Piperlongumine-Induced Phosphatidylserine Translocation in the Erythrocyte Membrane

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2014-10-01

    Full Text Available Background: Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i, formation of ceramide, oxidative stress and activation of p38 kinase. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 48 h exposure to piperlongumine (30 µM was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca2+]i and the effect was not dependent on presence of extracellular Ca2+. Piperlongumine significantly increased ROS formation and ceramide abundance. Conclusions: Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca2+ but at least partially due to ROS and ceramide formation.

  20. Deciphering the plasma membrane hallmarks of apoptotic cells: Phosphatidylserine transverse redistribution and calcium entry

    Directory of Open Access Journals (Sweden)

    Martínez M Carmen

    2001-10-01

    Full Text Available Abstract Background During apoptosis, Ca2+-dependent events participate in the regulation of intracellular and morphological changes including phosphatidylserine exposure in the exoplasmic leaflet of the cell plasma membrane. The occurrence of phosphatidylserine at the surface of specialized cells, such as platelets, is also essential for the assembly of the enzyme complexes of the blood coagulation cascade, as demonstrated by hemorrhages in Scott syndrome, an extremely rare genetic deficiency of phosphatidylserine externalization, without other apparent pathophysiologic consequences. We have recently reported a reduced capacitative Ca2+ entry in Scott cells which may be part of the Scott phenotype. Results Taking advantage of these mutant lymphoblastoid B cells, we have studied the relationship between this mode of Ca2+ entry and phosphatidylserine redistribution during apoptosis. Ca2+ ionophore induced apoptosis in Scott but not in control cells. However, inhibition of store-operated Ca2+ channels led to caspase-independent DNA fragmentation and decrease of mitochondrial membrane potential in both control and Scott cells. Inhibition of cytochrome P450 also reduced capacitative Ca2+ entry and induced apoptosis at comparable extents in control and Scott cells. During the apoptotic process, both control and more markedly Scott cells externalized phosphatidylserine, but in the latter, this membrane feature was however dissociated from several other intracellular changes. Conclusions The present results suggest that different mechanisms account for phosphatidylserine transmembrane migration in cells undergoing stimulation and programmed death. These observations testify to the plasticity of the plasma membrane remodeling process, allowing normal apoptosis even when less fundamental functions are defective.

  1. Mere Exposure Alters Category Learning of Novel Objects

    OpenAIRE

    Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interp...

  2. Mere exposure alters category learning of novel objects

    OpenAIRE

    ThomasJPalmeri

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interp...

  3. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  4. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  5. Alterations in the laryngeal mucosa after exposure to asbestos.

    OpenAIRE

    Kambic, V; Radsel, Z; Gale, N

    1989-01-01

    The laryngeal mucosa of 195 workers in an asbestos cement factory (Salonit Anhovo, Yugoslavia) and in a control group was examined. The factory manufactures asbestos cement products containing about 13% of asbestos (8% amosite, 12% crocidolite, and 80% chrysotile) of different provenance. Alterations in the laryngeal mucosa were more frequent in the factory workers than in the control group. The changes, mostly consistent with chronic laryngitis, were closely related to the degree of workplac...

  6. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  7. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers

    International Nuclear Information System (INIS)

    Our objective was to evaluate alterations in sperm chromatin structure in men occupationally exposed to a mixture of organophosphorus pesticides (OP) because these alterations have been proposed to compromise male fertility and offspring development. Chromatin susceptibility to in situ acid-induced denaturation structure was assessed by the sperm chromatin structure assay (SCSA). Urinary levels of alkylphosphates (DAP) were used to assess exposure. Diethylthiophosphate (DETP) was the most frequent OP metabolite found in urine samples indicating that compounds derived from thiophosphoric acid were mainly used. Chromatin structure was altered in most samples. About 75% of semen samples were classified as having poor fertility potential (>30% of Percentage of DNA Fragmentation Index [DFI%]), whereas individuals without OP occupational exposure showed average DFI% values of 9.9%. Most parameters of conventional semen analysis were within normality except for the presence of immature cells (IGC) in which 82% of the samples were above reference values. There were significant direct associations between urinary DETP concentrations and mean DFI and SD-DFI but marginally (P = 0.079) with DFI%, after adjustment for potential confounders, including IGC. This suggests that OP exposure alters sperm chromatin condensation, which could be reflected in an increased number of cells with greater susceptibility to DNA denaturation. This study showed that human sperm chromatin is a sensitive target to OP exposure and may contribute to adverse reproductive outcomes. Further studies on the relevance of protein phosphorylation as a possible mechanism by which OP alter sperm chromatin are required

  8. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls.

    Directory of Open Access Journals (Sweden)

    Elise Naveau

    Full Text Available Polychlorinated biphenyls (PCBs are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.

  9. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls

    OpenAIRE

    Naveau, Elise; Pinson, Anneline; GERARD, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, Robert Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell...

  10. Chronic alcohol exposure alters behavioral and synaptic plasticity of the rodent prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sven Kroener

    Full Text Available In the present study, we used a mouse model of chronic intermittent ethanol (CIE exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC. In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP showed that CIE exposure was associated with altered expression of long-term potentiation (LTP. Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC.

  11. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    Science.gov (United States)

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  12. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    Science.gov (United States)

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  13. Thymosin α1 Interacts with Exposed Phosphatidylserine in Membrane Models and in Cells and Uses Serum Albumin as a Carrier.

    Science.gov (United States)

    Mandaliti, Walter; Nepravishta, Ridvan; Sinibaldi Vallebona, Paola; Pica, Francesca; Garaci, Enrico; Paci, Maurizio

    2016-03-15

    Thymosin α1 is a peptidic hormone with pleiotropic activity and is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of vesicles by assuming two tracts of helical conformation with a structural break between them. This study reports on Thymosin α1's interaction with mixed phospholipids phosphatidylcholine and phosphatidylserine, the negative component of the membranes, by ¹H and natural abundance ¹⁵N nuclear magnetic resonance (NMR). The results indicate that interaction occurs when the membrane is negatively charged by exposing phosphatidylserine. Moreover, the direct interaction of Thymosin α1 with K562 cells with an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was conducted. Thymosin α1's interaction with human serum albumin was also investigated by NMR spectroscopy. Steady-state saturation transfer, transfer nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy methodologies all reveal that the C-terminal region of Thymosin α1 is involved in the interaction with serum albumin. These results may shed more light on Thymosin α1's mechanism of action by its insertion in negative regions of membranes due to the exposure of phosphatidylserine. Once Thymosin α1's N-terminus has been inserted into the membrane, the rest may interact with nearby proteins and/or receptors acting as effectors and causing a biological signaling cascade, thus exerting thymosin α1's pleiotropy. PMID:26909491

  14. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  15. Subversion of Immunity by Leishmania amazonensis Parasites: Possible Role of Phosphatidylserine as a Main Regulator

    Directory of Open Access Journals (Sweden)

    Joao Luiz Mendes Wanderley

    2012-01-01

    Full Text Available Leishmania amazonensis parasites cause progressive disease in most inbred mouse strains and are associated with the development of diffuse cutaneous leishmaniasis in humans. The poor activation of an effective cellular response is correlated with the ability of these parasites to infect mononuclear phagocytic cells without triggering their activation or actively suppressing innate responses of these cells. Here we discuss the possible role of phosphatidylserine exposure by these parasites as a main regulator of the mechanism underlying subversion of the immune system at different steps during the infection.

  16. Developmental Exposure to Xenoestrogens at Low Doses Alters Femur Length and Tensile Strength in Adult Mice1

    OpenAIRE

    Pelch, Katherine E.; Carleton, Stephanie M.; Phillips, Charlotte L.; Nagel, Susan C.

    2011-01-01

    Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE2) on bone geometry and torsional strength. C57BL/6 mice ...

  17. The Volitional Nature of Nicotine Exposure Alters Anandamide and Oleoylethanolamide Levels in the Ventral Tegmental Area

    Science.gov (United States)

    Buczynski, Matthew W; Polis, Ilham Y; Parsons, Loren H

    2013-01-01

    Cannabinoid-1 receptors (CB1) have an important role in nicotine reward and their function is disrupted by chronic nicotine exposure, suggesting nicotine-induced alterations in endocannabinoid (eCB) signaling. However, the effects of nicotine on brain eCB levels have not been rigorously evaluated. Volitional intake of nicotine produces physiological and behavioral effects distinct from forced drug administration, although the mechanisms underlying these effects are not known. This study compared the effects of volitional nicotine self-administration (SA) and forced nicotine exposure (yoked administration (YA)) on levels of eCBs and related neuroactive lipids in the ventral tegmental area (VTA) and other brain regions. Brain lipid levels were indexed both by in vivo microdialysis in the VTA and lipid extractions from brain tissues. Nicotine SA, but not YA, reduced baseline VTA dialysate oleoylethanolamide (OEA) levels relative to nicotine-naïve controls, and increased anandamide (AEA) release during nicotine intake. In contrast, all nicotine exposure paradigms increased VTA dialysate 2-arachidonoyl glycerol (2-AG) levels. Thus, nicotine differentially modulates brain lipid (2-AG, AEA, and OEA) signaling, and these modulations are influenced by the volitional nature of the drug exposure. Corresponding bulk tissue analysis failed to identify these lipid changes. Nicotine exposure had no effect on fatty acid amide hydrolase activity in the VTA, suggesting that changes in AEA and OEA signaling result from alterations in their nicotine-induced biosynthesis. Both CB1 (by AEA and 2-AG) and non-CB1 (by OEA) targets can alter the excitability and activity of the dopaminergic neurons in the VTA. Collectively, these findings implicate disrupted lipid signaling in the motivational effects of nicotine. PMID:23169348

  18. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. PMID:24604340

  19. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques.

  20. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Anis Rageh Al-Maleki

    Full Text Available Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV] to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk, ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.

  1. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    Science.gov (United States)

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  2. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    Science.gov (United States)

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  3. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    Science.gov (United States)

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  4. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  5. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    International Nuclear Information System (INIS)

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O3) or HDMA/ozone (HDMA + O3) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O3 alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  6. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna.

    Science.gov (United States)

    Ek, Caroline; Gerdes, Zandra; Garbaras, Andrius; Adolfsson-Erici, Margaretha; Gorokhova, Elena

    2016-08-01

    Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF. PMID:27367056

  7. In Vitro Exposure of Harbor Seal Immune Cells to Aroclor 1260 Alters Phocine Distemper Virus Replication.

    Science.gov (United States)

    Bogomolni, Andrea; Frasca, Salvatore; Levin, Milton; Matassa, Keith; Nielsen, Ole; Waring, Gordon; De Guise, Sylvain

    2016-01-01

    In the last 30 years, several large-scale marine mammal mortality events have occurred, often in close association with highly polluted regions, leading to suspicions that contaminant-induced immunosuppression contributed to these epizootics. Some of these recent events also identified morbillivirus as a cause of or contributor to death. The role of contaminant exposures regarding morbillivirus mortality is still unclear. The results of this study aimed to address the potential for a mixture of polychlorinated biphenyls (PCBs), specifically Aroclor 1260, to alter harbor seal T-lymphocyte proliferation and to assess if exposure resulted in increased likelihood of phocine distemper virus (PDV USA 2006) to infect susceptible seals in an in vitro system. Exposure of peripheral blood mononuclear cells to Aroclor 1260 did not significantly alter lymphocyte proliferation (1, 5, 10, and 20 ppm). However, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), lymphocytes exposed to 20 ppm Aroclor 1260 exhibited a significant decrease in PDV replication at day 7 and a significant increase at day 11 compared with unexposed control cells. Similar and significant differences were apparent on exposure to Aroclor 1260 in monocytes and supernatant. The results here indicate that in harbor seals, Aroclor 1260 exposure results in a decrease in virus early during infection and an increase during late infection. The consequences of this contaminant-induced infection pattern in a highly susceptible host could result in a greater potential for systemic infection with greater viral load, which could explain the correlative findings seen in wild populations exposed to a range of persistent contaminants that suffer from morbillivirus epizootics. PMID:26142119

  8. Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars

    Science.gov (United States)

    Amador, Elena S.; Bandfield, Joshua L.

    2016-09-01

    The Nili Fossae region of Mars contains some of the most mineralogically diverse bedrock on the planet. Previous studies have established three main stratigraphic units in the region: a phyllosilicate-bearing basement rock, a variably altered olivine-rich basalt, and a capping rock. Here, we present evidence for the localized alteration of the northeast Nili Fossae capping unit, previously considered to be unaltered. Both near-infrared and thermal-infrared spectral datasets were analyzed, including the application of a method for determining the relative abundance of bulk-silica (SiO2) over surfaces using thermal emission imaging system (THEMIS) images. Elevated bulk-silica exposures are present on surfaces previously defined as unaltered capping rock. Given the lack of spectral evidence for phyllosilicate, hydrated silica, or quartz phases coincident with the newly detected exposures-the elevated bulk-silica may have formed under a number of aqueous scenarios, including as a product of the carbonation of the underlying olivine-rich basalt under moderate water: rock scenarios and temperatures. Regardless of formation mechanism, the detection of elevated bulk-silica exposures in the Nili Fossae capping unit extends the history of aqueous activity in the region to include all three of the main stratigraphic units.

  9. Decreased reelin expression and organophosphate pesticide exposure alters mouse behaviour and brain morphology

    Directory of Open Access Journals (Sweden)

    Cristina A. Ghiani

    2012-02-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders. In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon. Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.

  10. Nuclear and Mitochondrial DNA Alterations in Newborns with Prenatal Exposure to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Francesca Pirini

    2015-01-01

    Full Text Available Newborns exposed to maternal cigarette smoke (CS in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal and assesses how such changes may have consequences for both fetal growth and development.

  11. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  12. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    Science.gov (United States)

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives. PMID:27192480

  13. Alterations in male rats following in utero exposure to betamethasone suggests changes in reproductive programming.

    Science.gov (United States)

    Borges, Cibele S; Dias, Ana Flávia M G; Rosa, Josiane Lima; Silva, Patricia V; Silva, Raquel F; Barros, Aline L; Sanabria, Marciana; Guerra, Marina T; Gregory, Mary; Cyr, Daniel G; De G Kempinas, Wilma

    2016-08-01

    Antenatal betamethasone is used for accelerating fetal lung maturation for women at risk of preterm birth. Altered sperm parameters were reported in adult rats after intrauterine exposure to betamethasone. In this study, male rat offspring were assessed for reproductive development after dam exposure to betamethasone (0.1mg/kg) or vehicle on Days 12, 13, 18 and 19 of pregnancy. The treatment resulted in reduction in the offspring body weight, delay in preputial separation, decreased seminal vesicle weight, testosterone levels and fertility, and increased testicular weight. In the testis, morphologically abnormal seminiferous tubules were observed, characterized by an irregular cell distribution with Sertoli cell that were displaced towards the tubular lumen. These cells expressed both Connexin 43 (Cx43) and Proliferative Nuclear Cell Antigen (PCNA). In conclusion, intrauterine betamethasone treatment appears to promote reproductive programming and impairment of rat sexual development and fertility due to, at least in part, unusual testicular disorders.

  14. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    OpenAIRE

    Wolcott, J A; Zee, Y. C.; Osebold, J W

    1982-01-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in ...

  15. Developmental and lactational exposure to dieldrin alters mammary tumorigenesis in Her2/neu transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heather L Cameron

    Full Text Available Breast cancer is the most common cancer in Western women and while its precise etiology is unknown, environmental factors are thought to play a role. The organochlorine pesticide dieldrin is a persistent environmental toxicant thought to increase the risk of breast cancer and reduce survival in the human population. The objective of this study was to define the effect of developmental exposure to environmentally relevant concentrations of dieldrin, on mammary tumor development in the offspring. Sexually mature FVB-MMTV/neu female mice were treated with vehicle (corn oil, or dieldrin (0.45, 2.25, and 4.5 microg/g body weight daily by gavage for 5 days prior to mating and then once weekly throughout gestation and lactation until weaning. Dieldrin concentrations were selected to produce serum levels representative of human background body burdens, occupational exposure, and overt toxicity. Treatment had no effect on litter size, birth weight or the number of pups surviving to weaning. The highest dose of dieldrin significantly increased the total tumor burden and the volume and number of tumors found in the thoracic mammary glands. Increased mRNA and protein expression of the neurotrophin BDNF and its receptor TrkB was increased in tumors from the offspring of dieldrin treated dams. This study indicates that developmental exposure to the environmental contaminant dieldrin causes increased tumor burden in genetically predisposed mice. Dieldrin exposure also altered the expression of BNDF and TrkB, novel modulators of cancer pathogenesis.

  16. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  17. Prenatal androgen exposure alters girls' responses to information indicating gender-appropriate behaviour.

    Science.gov (United States)

    Hines, Melissa; Pasterski, Vickie; Spencer, Debra; Neufeld, Sharon; Patalay, Praveetha; Hindmarsh, Peter C; Hughes, Ieuan A; Acerini, Carlo L

    2016-02-19

    Individual variability in human gender-related behaviour is influenced by many factors, including androgen exposure prenatally, as well as self-socialization and socialization by others postnatally. Many studies have looked at these types of influences in isolation, but little is known about how they work together. Here, we report that girls exposed to high concentrations of androgens prenatally, because they have the genetic condition congenital adrenal hyperplasia, show changes in processes related to self-socialization of gender-related behaviour. Specifically, they are less responsive than other girls to information that particular objects are for girls and they show reduced imitation of female models choosing particular objects. These findings suggest that prenatal androgen exposure may influence subsequent gender-related behaviours, including object (toy) choices, in part by changing processes involved in the self-socialization of gendered behaviour, rather than only by inducing permanent changes in the brain during early development. In addition, the findings suggest that some of the behavioural effects of prenatal androgen exposure might be subject to alteration by postnatal socialization processes. The findings also suggest a previously unknown influence of early androgen exposure on later processes involved in self-socialization of gender-related behaviour, and thus expand understanding of the developmental systems regulating human gender development. PMID:26833843

  18. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success

    International Nuclear Information System (INIS)

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg2+/l and 10 mg Cd2+/l and hatching rates at 10 mg Hg2+/l and 10 mg Cd2+/l after 4 h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4 h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24 h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility.

  19. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    Science.gov (United States)

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia.

  20. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    Science.gov (United States)

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. PMID:26965573

  1. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides.

    Science.gov (United States)

    Alves, Stênio Nunes; Serrão, José Eduardo; Melo, Alan Lane

    2010-08-01

    This study describes morphological alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. To this end, both third and fourth instars of C. quinquefasciatus larvae were exposed for 30 and 60 min to organophosphate (50 ppb), pyrethroids (20 and 30 ppb), and avermectin derivates (1.5 and 54 ppb). Following incubation, pH measurements of the larvae gut were recorded. The fat body and midgut were also analyzed by light and transmission electron microscopy. These studies demonstrate a decrease in the pH of the larvae anterior midgut following exposure to all of the tested insecticides. Histochemical tests revealed a strong reaction for neutral lipids in the control group and a marked decrease in the group exposed to cypermethrin. Furthermore, a weak reaction with acidic lipids in larvae exposed to deltamethrin, temephos, ivermectin and abamectin was also observed. Insecticide-exposed larvae also exhibited cytoplasm granule differences, relative to control larvae. Finally, we noted a small reduction in microvilli size in the apex of digestive cells, although vesicles were found to be present. The destructive changes in the larvae were very similar regardless of the type of insecticide analyzed. These data suggest that alterations in the fat body and midgut are a common response to cellular intoxication.

  2. Evaluation of biochemical alterations produced by combined exposure of fenvalerate and nitrate in Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    Kamalpreet Kaur Gill

    2014-03-01

    Full Text Available Aim: Evaluation of combined effect of fenvalerate and nitrate on biochemical parameters in buffalo calves. Materials and Methods: Sixteen male buffalo calves were divided into four groups of four calves each. Group I receiving no treatment served as the control. Group II and III animals were orally administered with fenvalerate (1.0 mg/kg/day and sodium nitrate (20 mg/kg/day, respectively, for 21 consecutive days and were kept as positive control. Group IV animals were co-administered with fenvalerate and sodium nitrate at the above dose rates for 21 consecutive days. Biochemical parameters including Aspartate aminotransferase (AST, Alkaline phosphatase (ALP, Gamma-glutamyl transpeptidase (GGT, Lactate dehydrogenase (LDH, Glucose, Total protein, Albumin, Cholesterol, Blood urea nitrogen (BUN and Creatinine were determined on 0, 3, 7, 10, 14, 17 and 21 day of treatment. Estimation of these parameters was also done on 7th day of post-treatment period. Results: Co-administration of fenvalerate and sodium nitrate produced significant increase in the plasma levels of AST, ALP, GGT, LDH, glucose, BUN, cholesterol and creatinine while significant decrease in the plasma levels of total proteins was observed. No significant alteration was observed in albumin levels. Extent of organ damage as evidenced by biochemical alterations was more pronounced in calves exposed to combination of fenvalerate and sodium nitrate as compared to their individual exposures. Conclusion: Fenvalerate and sodium nitrate co-administration potentiates the toxicological injury produced, in comparison to their individual exposure.

  3. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  4. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure.

    Directory of Open Access Journals (Sweden)

    Jenine K Sanzari

    Full Text Available Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC, lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and

  5. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain

    Science.gov (United States)

    Patel, Dhyanesh Arvind; Booze, Rosemarie M.; Mactutus, Charles F.

    2013-01-01

    Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP+ (type B cells) and nestin+(GFAP−) (Type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP+ expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP+ expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin+ expression with females showing approximately 8–13% higher nestin+ expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin+ expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females. PMID:22119286

  6. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    Science.gov (United States)

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  7. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  8. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    Science.gov (United States)

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  9. Sustained alterations in neuroimmune gene expression after daily, but not intermittent, alcohol exposure.

    Science.gov (United States)

    Gano, Anny; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2016-09-01

    Acute ethanol intoxication is associated with Rapid Alterations in Neuroimmune Gene Expression (RANGE), including increased Interleukin (IL)-6 and Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and suppressed IL-1β and Tumor necrosis factor (TNF) α, yet little is known about adaptations in cytokines across the first few ethanol exposures. Thus, the present studies examined central cytokines during intoxication (3h post-ethanol) following 2, 4 or 6 intragastric ethanol challenges (4g/kg) delivered either daily or every-other-day (EOD). Subsequent analyses of blood ethanol concentrations (BECs) and corticosterone were performed to determine whether the schedule of ethanol delivery would alter the pharmacokinetics of, or general sensitivity to, subacute ethanol exposure. As expected, ethanol led to robust increases in IL-6 and IκBα gene expression in hippocampus, amygdala and bed nucleus of the stria terminalis (BNST), whereas IL-1β and TNFα were suppressed, thereby replicating our prior work. Ethanol-dependent increases in IL-6 and IκBα remained significant in all structures - even after 6 days of ethanol. When these doses were administered EOD, modest IL-6 increases in BNST were observed, with TNFα and IL-1β suppressed exclusively in the hippocampus. Analysis of BECs revealed a small but significant reduction in ethanol after 4 EOD exposures - an effect which was not observed when ethanol was delivered after 6 daily intubations. These findings suggest that ethanol-induced RANGE effects are not simply a function of ethanol load per se, and underscore the critical role that ethanol dosing interval plays in determining the neuroimmune consequences of alcohol. PMID:27208497

  10. Postnatal manganese exposure does not alter dopamine autoreceptor sensitivity in adult and adolescent male rats.

    Science.gov (United States)

    McDougall, Sanders A; Mohd-Yusof, Alena; Kaplan, Graham J; Abdulla, Zuhair I; Lee, Ryan J; Crawford, Cynthia A

    2013-04-15

    Administering manganese chloride (Mn) to rats on postnatal day (PD) 1-21 causes long-term reductions in dopamine transporter levels in the dorsal striatum, as well as a persistent increase in D1 and D2 receptor concentrations. Whether dopamine autoreceptors change in number or sensitivity is uncertain, although D2S receptors, which may be presynaptic in origin, are elevated in Mn-exposed rats. The purpose of this study was to determine if early Mn exposure causes long-term changes in dopamine autoreceptor sensitivity that persist into adolescence and adulthood. To this end, male rats were exposed to Mn on PD 1-21 and autoreceptor functioning was tested 7 or 70 days later by measuring (a) dopamine synthesis (i.e., DOPA accumulation) in the dorsal striatum after quinpirole or haloperidol treatment and (b) behavioral responsiveness after low-dose apomorphine treatment. Results showed that low doses (i.e., "autoreceptor" doses) of apomorphine (0.06 and 0.12 mg/kg) decreased the locomotor activity of adolescent and adult rats, while higher doses increased locomotion. The dopamine synthesis experiment also produced classic autoreceptor effects, because quinpirole decreased dorsal striatal DOPA accumulation; whereas, haloperidol increased DOPA levels in control rats, but not in rats given the nerve impulse inhibitor γ-butyrolactone. Importantly, early Mn exposure did not alter autoreceptor sensitivity when assessed in early adolescence or adulthood. The lack of Mn-induced effects was evident in both the dopamine synthesis and behavioral experiments. When considered together with past studies, it is clear that early Mn exposure alters the functioning of various dopaminergic presynaptic mechanisms, while dopamine autoreceptors remain unimpaired. PMID:23458069

  11. Neuroplastic alterations in the limbic system following cocaine or alcohol exposure.

    Science.gov (United States)

    Stuber, Garret D; Hopf, F Woodward; Tye, Kay M; Chen, Billy T; Bonci, Antonello

    2010-01-01

    Neuroplastic changes in the CNS are thought to be a fundamental component of learning and memory. While pioneering studies in the hippocampus and cerebellum have detailed many of the basic mechanisms that can lead to alterations in synaptic transmission based on previous activity, only more recently has synaptic plasticity been monitored after behavioral manipulation or drug exposure. In this chapter, we review evidence that drugs of abuse are powerful modulators of synaptic plasticity. Both the dopaminergic neurons of the ventral tegmental area as well medium spiny neurons in nucleus accumbens show enhanced excitatory synaptic strength following passive or active exposure to drugs such as cocaine and alcohol. In the VTA, both the enhancement of excitatory synaptic strength and the acquisition of drug-related behaviors depend on signaling through the N-methyl-D: -aspartate receptors (NMDARs) which are mechanistically thought to lead to increased synaptic insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Synaptic insertion of AMPARs by drugs of abuse can be long lasting, depending on the route of administration, number of drug exposures, or whether the drugs are received passively or self-administered. PMID:21161748

  12. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases.

    Science.gov (United States)

    Wahlang, Banrida; Petriello, Michael C; Perkins, Jordan T; Shen, Shu; Hennig, Bernhard

    2016-09-01

    Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity. PMID:27288564

  13. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure.

    Directory of Open Access Journals (Sweden)

    Susanna L Lundström

    Full Text Available BACKGROUND: Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. OBJECTIVES: This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. METHODS: Sixty-four oxylipins representing the cyclooxygenase (COX, lipoxygenase (LOX and cytochrome P450 (CYP metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS of bronchoalveolar lavage (BAL-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ. Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. RESULTS: Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2 (PGE(2. Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. CONCLUSIONS: Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.

  14. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones.

    Directory of Open Access Journals (Sweden)

    Po-Chin Huang

    Full Text Available Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy.We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP, mono-(2-ethyl-5-carboxypentyl phthalate (MECPP, mono-(2-ethylhexyl phthalate (MEHP, mono-butyl phthalate (MnBP, of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4, free T4, and thyroid-binding globulin (TBG.Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%, MnBP (81% and MECPP (86%. Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = -5.41; p-value = 0.012; n = 97 in pregnant women using Bonferroni correction.We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations.

  15. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    Science.gov (United States)

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  16. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages

    OpenAIRE

    Geelen Tessa; Yeo Sin; Paulis Leonie EM; Starmans Lucas WE; Nicolay Klaas; Strijkers Gustav J

    2012-01-01

    Abstract Background Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. Thes...

  17. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis

    OpenAIRE

    Maiseyeu, Andrei; Mihai, Georgeta; Kampfrath, Thomas; Simonetti, Orlando P.; Sen, Chandan K.; Roy, Sashwati; Rajagopalan, Sanjay; Parthasarathy, Sampath

    2009-01-01

    Exteriorized phosphatidylserine (PS) residues in apoptotic cells trigger rapid phagocytosis by macrophage scavenger receptor pathways. Mimicking apoptosis with liposomes containing PS may represent an attractive approach for molecular imaging of atherosclerosis. We investigated the utility of paramagnetic gadolinium liposomes enriched with PS (Gd-PS) in imaging atherosclerotic plaque. Gd-PS-containing Gd-conjugated lipids, fluorescent rhodamine, and PS were prepared and characterized. Cellula...

  18. ANTI-PHOSPHATIDYLSERINE ANTIBODIES IN ACUTE MYOCARDIAL INFARCTION

    OpenAIRE

    Abdolreza Sotoodeh Jahromi; Mohammad Shojaei; Mohammad Reza Farjam; Abdolhossien Madani

    2013-01-01

    Acute Myocardial Infarction (AMI) is the combined result of environmental factors and personal predispositions. Many factors play a role in AMI including anti-Phospholipid (aPL) antibodies, that may act in the induction of immunological response leading to the development of AMI. Anti-Phosphatidylserine (PS) antibody is detected in various diseases like rheumatoid arthritis, systemic lupus erythematosus and anti-phospholipid antibody syndrome. The study of anti-PS antibody in AMI might shed l...

  19. Regional alterations of brain biogenic amines in young rats following chronic lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Dubas, T.C.; Stevenson, A.; Singhal, R.L.; Hrdina, P.D.

    1978-02-01

    An examination was made of neurochemical changes that occur in discrete brain regions of rats that have been chronically exposed to low levels of lead from birth, in order to provide further information on the involvement of brain biogenic amines in lead-induced neurotoxicity. Results indicate a relationship between exposure to lead and alterations in the brain levels of various putative neurotransmitters. However, changes in the functional activity of the neurotransmitter may not be adequately reflected in the change of its steady-state levels or may occur even in the absence of any changes in the actual concentrations. Lead may influence central neurotransmitter function by affecting one or several of the processes involved in the synthesis, release and/or disposition of biogenic amines.

  20. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    International Nuclear Information System (INIS)

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26–28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T4), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T4/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T4 treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T4. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  1. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  2. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    International Nuclear Information System (INIS)

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  3. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  4. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    Science.gov (United States)

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  5. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Hanyang Hu

    2014-01-01

    Full Text Available Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice.

  6. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure.

    Science.gov (United States)

    Hollins, Sharon L; Zavitsanou, Katerina; Walker, Frederick Rohan; Cairns, Murray J

    2016-08-01

    Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders. PMID:26923065

  7. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    Science.gov (United States)

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. PMID:24503577

  8. Dietary exposure to the PCB mixture aroclor 1254 may compromise osmoregulation by altering central vasopressin release

    Energy Technology Data Exchange (ETDEWEB)

    Coburn, C.G. [Environmental Toxicology, Univ. of California at Riverside, CA (United States); Gillard, E.; Curras-Collazo, M. [Cell Biology and Neuroscience, Univ. of California at Riverside, CA (United States)

    2004-09-15

    Despite the importance of systemic osmoregulation, the potential deleterious effects of persistent organochlorines, such as polychlorinated biphenyls (PCBs), on body fluid regulation has not been thoroughly investigated. In an effort to ameliorate this deficit, the current study explores the toxic effects of PCBs on osmoregulation, and in particular, on the activity of the magnocellular neuroendocrine cell (MNC) system of the hypothalamus. MNCs of the supraoptic nucleus (SON) release oxytocin (OXY) and vasopressin (VP) from terminals in the neurohypophysis in response to dehydration. The latter is released to effect water conservation in response to dehydration via its action upon the kidney and through extra-renal actions. MNCs also secrete VP from their cell bodies and dendrites locally i.e., into the extracellular space of the SON. Although it has been shown that both intranuclear and systemic release rise in response to dehydration the physiological significance of intranuclear release has not been fully elucidated. We chose to use voluntary ingestion as the route of PCB exposure since it is more reflective of natural exposure compared to ip injection. One unexpected observation that resulted from pilot studies using ip injection of PCBs was the deleterious effects of the vehicle (corn oil) resulting in pooling of lipid within the abdominal cavity, mottling of the liver, fatty liver and general discoloration of all abdominal viscera at time of sacrifice. Therefore, all work described in this series of experiments have employed voluntary ingestion of the toxin. Work described in this paper suggests that PCBs in concentrations reflecting realistic lifetime exposure levels may negatively impact homeostatic mechanisms responsible for body water balance by altering somatodendritic (intranuclear) VP secretion in response to dehydration in vivo. The downstream consequences of such influence is currently under investigation, and preliminary evidence suggests that the

  9. Alteration of Pentylenetetrazol-induced kindling parameters by prenatal chronic Lead exposure in rats

    Directory of Open Access Journals (Sweden)

    Kebriyaei Zadeh A

    2001-08-01

    Full Text Available The effect of prenatal chronic lead exposure on pentylenetetrazol (PTZ-induced kindling parameters (seizure index, seizure latency and seizure stage in rats was studied. Adult female rats with a weight range of 140-180 g were selected and pretreated with lead acetate (0.05% w/v orally, 25 days prior to mating. The control group was given distilled water containing sodium acetate solution (0.05% w/v. After delivery, treatment was ceased, and after lactation, male neonates were separated from the females in both groups. After maturation of male rats, the PTZ-kindling was induced by daily interapritoneally injection of PTZ (30 mg/kg. Kindling parameters in the control and treated groups were determined. The results indicated that animals with prenatal lead exposure have full kindling state with 9-19 (16.87±1.54 injections, whereas this value for control group was 12-23 (18.62±1.48 injections. The seizure latency for the treated group was lower (P<0.05 than the control (2.29±0.44 min versus 3.65±0.45 min. The seizure severity (regarding to seizure index was statistically higher in the treated group (P<0.05. The seizure stages were also different in the treated and control groups (P<0.05. The seizure frequency of first and second stages of kindling in the control group was higher than that of treated one (P<0.05. Also the seizure frequency in the third and fourth kindling stages of case group was higher than controls (P<0.05. It is concluded that prenatal lead exposure alters seizure susceptibility in rat PTZ-Kindling model.

  10. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  11. Motor alterations associated with exposure to manganese in the environment in Mexico.

    Science.gov (United States)

    Rodríguez-Agudelo, Yaneth; Riojas-Rodríguez, Horacio; Ríos, Camilo; Rosas, Irma; Sabido Pedraza, Eva; Miranda, Javier; Siebe, Christina; Texcalac, José Luis; Santos-Burgoa, Carlos

    2006-09-15

    Overexposure to manganese (Mn) causes neurotoxicity (a Parkinson-like syndrome) or psychiatric damage ("manganese madness"). Several studies have shown alterations to motor and neural behavior associated with exposure to Mn in the workplace. However, there are few studies on the effects of environmental exposure of whole populations. We studied the risk of motor alterations in people living in a mining district in Mexico. We studied 288 individual people (168 women and 120 men) from eight communities at various distances from manganese extraction or processing facilities in the district of Molango. We measured manganese concentrations in airborne particles, water, soil and crops and evaluated the possible routes of Mn exposure. We also took samples of people's blood and determined their concentrations of Mn and lead (Pb). We used "Esquema de Diagnóstico Neuropsicológico" Ardila and Ostrosky-Solís's neuropsychological battery to evaluate motor functions. Concentrations of Mn in drinking water and maize grain were less than detection limits at most sampling sites. Manganese extractable by DTPA in soils ranged between 6 and 280 mg kg(-1) and means were largest close to Mn extraction or processing facilities. Air Mn concentration ranged between 0.003 and 5.86 microg/m(3); the mean value was 0.42 microg/m(3) and median was 0.10 microg/m(3), the average value (geometric mean) resulted to be 0.13 microg/m(3). Mean blood manganese concentration was 10.16 microg/l, and geometric mean 9.44 microg/l, ranged between 5.0 and 31.0 mcrog/l. We found no association between concentrations of Mn in blood and motor tests. There was a statistically significant association between Mn concentrations in air and motor tests that assessed the coordination of two movements (OR 3.69; 95% CI 0.9, 15.13) and position changes in hand movements (OR 3.09; CI 95% 1.07, 8.92). An association with tests evaluating conflictive reactions (task that explores verbal regulations of movements) was also

  12. Alterations in Central Nervous System Serotonergic and Dopaminergic Synaptic Activity in Adulthood after Prenatal or Neonatal Chlorpyrifos Exposure

    OpenAIRE

    Aldridge, Justin E; Meyer, Armando; Seidler, Frederic J; Slotkin, Theodore A.

    2005-01-01

    Exposure to chlorpyrifos (CPF) alters neuronal development of serotonin (5HT) and dopamine systems, and we recently found long-term alterations in behaviors related to 5HT function. To characterize the synaptic mechanisms underlying these effects, we exposed developing rats to CPF regimens below the threshold for systemic toxicity, in three treatment windows: gestational days (GD) 17–20, postnatal days (PN) 1–4, or PN11–14. In early adulthood (PN60), we assessed basal neurotransmitter content...

  13. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment.

    Directory of Open Access Journals (Sweden)

    Christina R Tyler

    Full Text Available Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural

  14. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    Science.gov (United States)

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  15. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Directory of Open Access Journals (Sweden)

    Cody S Sheik

    Full Text Available Extensive use of chromium (Cr and arsenic (As based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI. Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  16. Sucrose exposure in early life alters adult motivation and weight gain.

    Directory of Open Access Journals (Sweden)

    Cristianne R M Frazier

    Full Text Available The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

  17. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  18. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    International Nuclear Information System (INIS)

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, 122Sb and 124Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  19. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia], e-mail: samanta@usp.br, e-mail: nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Medicina Tropical de Sao Paulo (IMTSP), Sao Paulo, SP (Brazil)], e-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia], e-mail: jaosso@ipen.br

    2009-07-01

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, {sup 122}Sb and {sup 124}Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  20. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    Science.gov (United States)

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  1. Investigation into the Role of Phosphatidylserine in Modifying the Susceptibility of Human Lymphocytes to Secretory Phospholipase A2 using Cells Deficient in the Expression of Scramblase

    OpenAIRE

    Nelson, Jennifer; Francom, Lyndee L.; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Allan M. Judd; Bell, John D.

    2012-01-01

    Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A2 but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt’s lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells ...

  2. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    International Nuclear Information System (INIS)

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice

  3. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    Energy Technology Data Exchange (ETDEWEB)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M. (Istituto di Psicobiologia e Psicofarmacologia del CNR, Rome (Italy))

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice.

  4. Alteration of the enterohepatic recirculation of bile acids in rats after exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scanff, P.; Souidi, M.; Grison, S.; Griffiths, N.M.; Gourmelon, P. [Inst. de Radioprotection et de Surete Nucleaire, (IRSN), Direction de la RadioProtection de l' Homme, Service de Radiobiologie et d' Epidemiologie, Fontenay-aux-Roses, CEDEX (France)]. E-mail: pascale.scanff@irsn.fr

    2004-02-01

    The aim of this work was to study acute alterations of the enterohepatic recirculation (EHR) of bile acids 3 days after an 8-Gy radiation exposure in vivo in the rat by a washout technique. Using this technique in association with HPLC analysis, the EHR of the major individual bile acids was determined in control and irradiated animals. Ex vivo ileal taurocholate absorption was also studied in Ussing chambers. Major hepatic enzyme activities involved in bile acid synthesis were also measured. Measurements of bile acid intestinal content and intestinal absorption efficiency calculation from washout showed reduced intestinal absorption with significant differences from one bile acid to another: absorption of taurocholate and tauromuricholate was decreased, whereas absorption of the more hydrophobic taurochenodeoxycholate was increased, suggesting that intestinal passive diffusion was enhanced, whereas ileal active transport might be reduced. Basal hepatic secretion was increased only for taurocholate, in accordance with the marked increase of CYP8B1 activity in the liver. The results are clearly demonstrate that concomitantly with radiation-induced intestinal bile acid malabsorption, hepatic bile acid synthesis and secretion are also changed. A current working model for pathophysiological changes in enterohepatic recycling after irradiation is thus proposed. (author)

  5. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Stephen Mason

    2012-01-01

    Full Text Available Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P<0.01, and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function.

  6. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  7. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  8. Alterations in catecholamine turnover in specific regions of the rat brain following acute exposure to nitrous oxide.

    Science.gov (United States)

    Karuri, A R; Kugel, G; Engelking, L R; Kumar, M S

    1998-04-01

    The effects of nitrous oxide (N2O) on steady-state concentrations and turnover rates of catecholamines in the olfactory bulb, hypothalamus, brain stem, hippocampus, striatum, thalamus, cerebral cortex, and spinal cord were determined in rats. Animals were exposed for 2 h to either 60% N2O or air. Immediately following exposure, all animals were injected intraperitoneally with alpha-methylparatyrosine (alphaMPT), a competitive inhibitor of tyrosine hydroxylase, and sacrificed at 0, 30, or 90 min postinjection. Brain catecholamine concentrations were determined using high-performance liquid chromatography coupled with electrochemical detection (HPLC-EC). Results indicate that N2O exposure significantly elevates steady-state concentrations of norepinephrine (NE) in the hypothalamus and striatum yet decreases amine levels in the brain stem region. Steady-state levels of dopamine (DA) were not significantly altered in any region of the CNS by N2O exposure. Acute exposure to N2O also resulted in significant decreases in the turnover rate of NE in the brain stem, yet it increased turnover of this amine in the olfactory bulb, hypothalamus, and striatum. Acute exposure to N2O resulted in a decreased turnover rate of DA in the hippocampus and striatum. In contrast, N2O appears to increase DA turnover in the olfactory bulb. These results indicate that acute exposure to N2O in rats causes region-specific alterations in steady-state levels and turnover rates of DA and NE within the central nervous system.

  9. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish

    International Nuclear Information System (INIS)

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic–pituitary–thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46–0.72 mg kg−1, induced oxidative stress with H2O2 being increased by 1.4–2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3–1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. - Highlights: • 48 h-LC50 value of arsenite (AsIII) was 42 mg L−1 for zebrafish. • AsIII exposure elevated oxidative stress and caused oxidative damage in zebrafish. • AsIII exposure increased the content of thyroid hormone thyroxine. • AsIII exposure altered gene transcription in the HPT axis in zebrafish. - Short-term exposure of arsenite caused oxidative stress, disrupted thyroid endocrine system and altered gene transcription in the HPT axis in Zebrafish

  10. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin.

    Science.gov (United States)

    Qadri, Syed M; Donkor, David A; Bhakta, Varsha; Eltringham-Smith, Louise J; Dwivedi, Dhruva J; Moore, Jane C; Pepler, Laura; Ivetic, Nikola; Nazi, Ishac; Fox-Robichaud, Alison E; Liaw, Patricia C; Sheffield, William P

    2016-04-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis-like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin-elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca(2+) activity as well as Ca(2+) -dependent proteolytic processing of μ-calpain. Pyocyanin further up-regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin-induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl-ester labelling, pyocyanin-treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis-inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection. PMID:26781477

  11. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio Swimming Performance Parameters

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2011-01-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria (blue-green algae, primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501. MC-LR exposure (100 μg/L decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93% in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms.

  12. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters.

    Science.gov (United States)

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  13. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    Science.gov (United States)

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  14. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    Science.gov (United States)

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  15. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2008-02-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  16. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  17. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    OpenAIRE

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood bi...

  18. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    Science.gov (United States)

    Wolcott, J A; Zee, Y C; Osebold, J W

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity. PMID:6182839

  19. In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice.

    Science.gov (United States)

    Ribeiro, André Luiz Teroso; Shimada, Ana Lúcia Borges; Hebeda, Cristina Bichels; de Oliveira, Tiago Franco; de Melo Loureiro, Ana Paula; Filho, Walter Dos Reis Pereira; Santos, Alcinéa Meigikos Dos Anjos; de Lima, Wothan Tavares; Farsky, Sandra Helena Poliselli

    2011-10-01

    Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50ppm HQ (1h/day for 5 days). One hour later, oxidative burst, cell cycle, DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1h later the last exposures, inflammation was induced by LPS inhalation (0.1mg/ml/10min) and 3h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of β(2) and β(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ

  20. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-01

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  1. Sustained Exposure to the Widely Used Herbicide Atrazine: Altered Function and Loss of Neurons in Brain Monoamine Systems

    OpenAIRE

    Rodriguez, Veronica M.; Thiruchelvam, Mona; Cory-Slechta, Deborah A.

    2005-01-01

    The widespread use of atrazine (ATR) and its persistence in the environment have resulted in documented human exposure. Alterations in hypothalamic catecholamines have been suggested as the mechanistic basis of the toxicity of ATR to hormonal systems in females and the reproductive tract in males. Because multiple catecholamine systems are present in the brain, however, ATR could have far broader effects than are currently understood. Catecholaminergic systems such as the two major long-lengt...

  2. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    Science.gov (United States)

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior. PMID:18485605

  3. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J.L.; Castillo, F.J.; Heath, R.L. (Univ. of California, Riverside (USA))

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  4. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    International Nuclear Information System (INIS)

    Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl2 dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3− or NO2−. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation. - Highlights: • Effect of 60 ppm*hr Cl2 gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor. • Alterations in surfactant homeostasis and pulmonary mechanics

  5. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    Science.gov (United States)

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  6. Early Exposure to Intermediate-Frequency Magnetic Fields Alters Brain Biomarkers without Histopathological Changes in Adult Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2015-04-01

    Full Text Available Recently we have reported that intermediate-frequency magnetic field (IF-MF exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have not yet been clarified. In the present study, we investigated the effect of IF-MF exposure during development on neurological and immunological markers in the mouse hippocampus in 3- and 7-week-old male mice. Pregnant C57BL/6J mice were exposed to IF-MF (21 kHz, 3.8 mT for one hour per day from organogenesis period day 7 to 17. At adolescence, some IF-MF-exposed mice were further divided into exposure, recovery, and sham-exposure groups. The adolescent-exposure groups were exposed again to IF-MF from postnatal day 27 to 48. The expression of mRNA in the hippocampi was examined using a real-time RT-PCR method, and microglia activation was examined by immunohistochemical analysis. The expression levels of NR1 and NR2B as well as transcription factors (CaMKIV, CREB1, inflammatory mediators (COX2, IL-1 b,TNF-α, and the oxidative stress marker heme-oxygenase (HO-1 were significantly increased in the IF-MF-exposed mice, compared with the control group, in the 7-week-old mice, but not in the 3-week-old mice. Microglia activation was not different between the control and other groups. This study provides the first evidence that early exposure to IF-MF reversibly affects the NMDA receptor, its related signaling pathways, and inflammatory mediators in the hippocampus of young adult mice; these changes are transient and recover after termination of exposure without histopathological changes.

  7. Identification of neural biomarkers of altered sexual differentiation following gestational exposure###

    Science.gov (United States)

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  8. IDENTIFICATION OF NEURAL BIOMARKERS OF ALTERED SEXUAL DIFFERENTIATION FOLLOWING GESTATIONAL EXPOSURE***

    Science.gov (United States)

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  9. Identification of neural biomarkers of altered sexual differentiation following gestational exposure

    Science.gov (United States)

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) during...

  10. Developmental Exposure to PCBs Differentially Alters Sensitivity to Audiogenic and Kindling-Induced Seizures in Rats

    Science.gov (United States)

    Previously we reported an increased incidence of audiogenic seizures in offspring of pregnant rats exposed to an environmental mixture of polychlorinated biphenyls (PCBs). This study compares the proconvulsant properties of PCB exposure in audiogenic and electrical kindling seizu...

  11. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    Directory of Open Access Journals (Sweden)

    Eugen Dhimolea

    Full Text Available Exposure to environmental estrogens (xenoestrogens may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments, with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50. BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene

  12. Prenatal Exposure to BPA Alters the Epigenome of the Rat Mammary Gland and Increases the Propensity to Neoplastic Development

    Science.gov (United States)

    Dhimolea, Eugen; Wadia, Perinaaz R.; Murray, Tessa J.; Settles, Matthew L.; Treitman, Jo D.; Sonnenschein, Carlos; Shioda, Toshi; Soto, Ana M.

    2014-01-01

    Exposure to environmental estrogens (xenoestrogens) may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA) leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND) 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA) was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments), with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50). BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene expression patterns

  13. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    OpenAIRE

    Calamandrei Gemma; Scattoni Maria; Ricceri Laura; Venerosi Aldina

    2009-01-01

    Abstract Background Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [ges...

  14. Functional Alterations in the Dorsal Raphe Nucleus Following Acute and Chronic Ethanol Exposure

    OpenAIRE

    Lowery-Gionta, Emily G; Marcinkiewcz, Catherine A.; Kash, Thomas L.

    2014-01-01

    Alcoholism is a pervasive disorder perpetuated in part to relieve negative mood states like anxiety experienced during alcohol withdrawal. Emerging evidence demonstrates a role for the serotonin-rich dorsal raphe (DR) in anxiety following ethanol withdrawal. The current study examined the effects of chronic ethanol vapor exposure on the DR using slice electrophysiology in male DBA2/J mice. We found that chronic ethanol exposure resulted in deficits in social approach indicative of increased a...

  15. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation

    OpenAIRE

    Wang, I-Jen; Karmaus, Wilfried JJ; Chen, Su-Lien; Holloway, John W.; Ewart, Susan

    2015-01-01

    Background Phthalates may increase the asthma risk in children. Mechanisms underlying this association remain to be addressed. This study assesses the effect of phthalate exposures on epigenetic changes and the role of epigenetic changes for asthma. In the first step, urine and blood samples from 256 children of the Childhood Environment and Allergic diseases Study (CEAS) were analyzed. Urine 5OH-MEHP levels were quantified as an indicator of exposure, and asthma information was collected. DN...

  16. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    Science.gov (United States)

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission. PMID:26276081

  17. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia.

    Science.gov (United States)

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-02-10

    Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce, resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a "do-not-eat-me" signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late postmalarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia.

  18. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  19. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    Science.gov (United States)

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  20. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    OpenAIRE

    Letts, V A; Henry, S. A.

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. ...

  1. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Science.gov (United States)

    Dowall, S. D.; Graham, V. A.; Corbin-Lickfett, K.; Empig, C.; Schlunegger, K.; Bruce, C. B.; Easterbrook, L.; Hewson, R.

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus. PMID:25815346

  2. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Directory of Open Access Journals (Sweden)

    S. D. Dowall

    2015-01-01

    Full Text Available Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus.

  3. Cloning, Sequencing, and Disruption of the Bacillus subtilis psd Gene Coding for Phosphatidylserine Decarboxylase

    OpenAIRE

    Matsumoto, Kouji; Okada, Masahiro; Horikoshi, Yuko; Matsuzaki, Hiroshi; Kishi, Tsutomu; Itaya, Mitsuhiro; Shibuya, Isao

    1998-01-01

    The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid contain...

  4. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback.

    Science.gov (United States)

    Furin, Christoff G; von Hippel, Frank A; Postlethwait, John H; Buck, C Loren; Cresko, William A; O'Hara, Todd M

    2015-08-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios toward males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  5. Long-term exposure to incense smoke alters metabolism in Wistar albino rats.

    Science.gov (United States)

    Alokail, Majed S; Al-Daghri, Nasser M; Alarifi, Saud A; Draz, Hossam M; Hussain, Tajamul; Yakout, Sobhy M

    2011-03-01

    The burning of incense is an important source of indoor air pollution in Asia. We assessed the effect of long-term exposure to incense smoke on the body weight and levels of circulating glucose, triglycerides, total cholesterol, HDL-cholesterol, insulin, adiponectin and leptin in Wistar albino rats. Two groups of rats were used. First group (n = 12) was exposed daily to incense smoke for 4 months at the rate of 4 g day(-1) in the exposure chamber. Another group of rats (n = 12), was used as non-exposed control. Blood samples were collected from all animals after 4, 8, 12 and 16 weeks of exposure. Serum glucose, triglycerides, total cholesterol and HDL-cholesterol, LDL-cholesterol insulin, adiponectin and leptin were measured. Our results showed that incense smoke exposure was associated with decreased weight gain and the adverse metabolic changes of increased triglycerides and decreased HDL-cholesterol concentrations. Exposure to incense was also associated with a transient increase of leptin levels. Taken together, these data suggest that incense smoke influences metabolism adversely in rats. The effect of incense smoke on human health and the underlying mechanisms need to be studied further.

  6. Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood.

    Science.gov (United States)

    Paul, Kush; Kang, Shuo; Cox, Charles L; Gulley, Joshua M

    2016-08-01

    Behavioral sensitization following repeated amphetamine (AMPH) exposure is associated with changes in GABA function in the medial prefrontal cortex (mPFC). In rats exposed to AMPH during adolescence compared to adulthood, there are unique patterns of sensitization that may reflect age-dependent differences in drug effects on prefrontal GABAergic function. In the current study, we used a sensitizing regimen of repeated AMPH exposure in adolescent and adult rats to determine if a post-withdrawal AMPH challenge would alter inhibitory transmission in the mPFC in a manner that depends on age of exposure. Male Sprague-Dawley rats were treated with saline or 3mg/kg AMPH (i.p.) during adolescence [postnatal day (P) 27-P45] or adulthood (P85- P103) and were sacrificed either at similar ages in adulthood (∼P133; experiment 1) or after similar withdrawal times (3-4 weeks; experiment 2). Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in vitro from deep layer pyramidal cells in the mPFC using the whole-cell configuration. We found no effect of AMPH pre-exposure on baseline sIPSC frequency. Subsequent application of AMPH (25μM) produced a stable increase in sIPSC frequency in controls, suggesting that AMPH increases inhibitory tone in the mPFC. However, AMPH failed to increase sIPSCs in adolescent- or adult-exposed rats. In experiment 2, where withdrawal period was kept similar for both exposure groups, AMPH induced a suppression of sIPSC activity in adolescent-exposed rats. These results suggest that sensitizing treatment with AMPH during adolescence or adulthood dampens inhibitory influences on mPFC pyramidal cells, but potentially through different mechanisms. PMID:27085589

  7. Chronic Exposure to Arsenic in the Drinking Water Alters the Expression of Immune Response Genes in Mouse Lung

    Science.gov (United States)

    Kozul, Courtney D.; Hampton, Thomas H.; Davey, Jennifer C.; Gosse, Julie A.; Nomikos, Athena P.; Eisenhauer, Phillip L.; Weiss, Daniel J.; Thorpe, Jessica E.; Ihnat, Michael A.; Hamilton, Joshua W.

    2009-01-01

    Background Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. Objectives The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. Methods C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Results Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. Conclusions These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung. PMID:19654921

  8. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis.

    Directory of Open Access Journals (Sweden)

    J Christopher States

    Full Text Available The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE(-/- mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE(-/- mice exposed to 49 ppm arsenic in utero from gestational day (GD 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a. Gene ontology (GO annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8 and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes

  9. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages

    Directory of Open Access Journals (Sweden)

    Geelen Tessa

    2012-08-01

    Full Text Available Abstract Background Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS-containing liposomes were developed for magnetic resonance imaging (MRI and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. Results Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. Conclusions Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of targeted drug delivery to inflammatory cells.

  10. Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells.

    Directory of Open Access Journals (Sweden)

    Hadas Keren

    Full Text Available Familial Dysautonomia (FD is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP. The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS, an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.

  11. Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Directory of Open Access Journals (Sweden)

    Herr Caroline EW

    2010-08-01

    Full Text Available Abstract Background Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month. Methods Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3+ cells and their subsets, CD4+ and CD8+, B lymphocytes (CD19+ and natural killer (NK cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH and particulate matter 2.5 were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM2.5 and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births. Results The adjusted models show significant associations between PAHs or PM2.5 during early gestation and increases in CD3+ and CD4+ lymphocytes percentages and decreases in CD19+ and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3+ and CD4+ fractions and increases in CD19+ and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation. Conclusions PAHs and PM2.5 in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.

  12. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    Science.gov (United States)

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  13. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    Directory of Open Access Journals (Sweden)

    Dhiraj Maskey

    2013-01-01

    Full Text Available Calcium binding proteins (CaBPs such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus.

  14. Bisphenol-A (BPA) Exposure Alters Endometrial Progesterone Receptor Expression in the Non-human Primate

    Science.gov (United States)

    Aldad, Tamir S.; Rahmani, Nora; Leranth, Csaba; Taylor, Hugh S.

    2011-01-01

    OBJECTIVE To evaluate the effect of BPA on endometrial PR expression in non-human primates and human cells. BPA is a xenoestrogen endocrine disruptor. Both BPA exposure and diminished progesterone action have been associated with pregnancy loss, endometriosis and endometrial hyperplasia/cancer. DESIGN Controlled trial in primates. SETTING University Animals African green monkeys INTERVENTIONS After oophorectomy, BPA (50μg/kg/day), estradiol, both or vehicle control were administered. . Estradiol and BPA were used in Ishikawa cells. MAIN OUTCOME MEASURES PR expression using IHC and qPCR. RESULTS PR expression was increased in estradiol treated primates compared to controls. Exposure to the combination of estradiol and BPA resulted in decreased PR expression compared to estradiol exposure alone (p<0.01). In Ishikawa cells treated with estradiol, PR expression increased 5.1 fold, however, when Ishikawa cells were simultaneously treated with estradiol and BPA, PR expression was decreased to 0.6 fold that of cells treated with estradiol alone (p<0.05). CONCLUSION BPA alone functions as a weak estrogen. However, when administered with estradiol, BPA diminishes estradiol induced PR expression. The estrogen-like effect of BPA reported in exposed humans may be mediated by PR blockade and a resultant decrease in the estrogen inhibition normally imparted by progesterone. Diminished PR expression may underlie previous reports linking BPA exposure to endometrial dysfunction in humans. PMID:21536273

  15. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    Science.gov (United States)

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer.

  16. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    Science.gov (United States)

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  17. Exposure to hyperoxia in the neonatal period alters bone marrow function

    Science.gov (United States)

    Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...

  18. Occupational exposure to diesel engine exhaust and alterations in lymphocyte subsets

    NARCIS (Netherlands)

    Lan, Qing; Vermeulen, Roel; Dai, Yufei; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Bin, Ping; Kim, Christopher; Bassig, Bryan A; Hosgood, H Dean; Silverman, Debra; Zheng, Yuxin; Rothman, Nathaniel

    2015-01-01

    BACKGROUND: The International Agency for Research on Cancer recently classified diesel engine exhaust (DEE) as a Group I carcinogen based largely on its association with lung cancer. However, the exposure-response relationship is still a subject of debate and the underlying mechanism by which DEE ca

  19. Short GSM mobile phone exposure does not alter human auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Thuróczy György

    2007-11-01

    Full Text Available Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Results Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. Conclusion The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  20. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    Science.gov (United States)

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  1. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  2. Previous exposure of predatory fish to a pesticide alters palatability of larval amphibian prey.

    Science.gov (United States)

    Hanlon, Shane M; Parris, Matthew J

    2013-12-01

    Habitat preferences of organisms are reliant on a variety of factors. For amphibians specifically, preferences can depend on factors such as food availability, water quality, and the presence of potential predators. Because some amphibians breed in permanent bodies of water (e.g., ponds), the threat of predation (e.g., from fish) is constant. Thus, some amphibians are unpalatable to many predators, allowing them to coexist in the same habitats. However, the addition of anthropogenic stressors (i.e., pesticides) may alter the perceived palatability of prey items to predators. The authors tested the hypothesis that bluegill fish (Lepomis macrochirus), previously exposed to the pesticide carbaryl, would consume more unpalatable prey (Fowler's toad [Anaxyrus fowleri] tadpoles) than unexposed predators. Carbaryl is a pesticide that attacks the nervous system and is linked to taste sense in organisms. Moreover, the authors conducted an identical test using palatable prey (gray treefrog [Hyla versicolor] tadpoles) and predicted that no change in preference would be observed. In support of the primary hypothesis, bluegill exposed to the highest concentration of carbaryl consumed more A. fowleri tadpoles compared with those exposed to carbaryl at the lowest concentration or water control. Moreover, an effect of carbaryl on predation success on H. versicolor tadpoles was not observed. The present study shows that an anthropogenic stressor (carbaryl) can alter the perceived palatability of noxious prey to fish predators, potentially altering predator-prey relationships in natural settings. PMID:24383102

  3. Exposure to sublethal chromium and endosulfan alter the diel vertical migration (DVM) in freshwater zooplankton crustaceans.

    Science.gov (United States)

    Gutierrez, María Florencia; Gagneten, Ana María; Paggi, Juan Cesar

    2012-01-01

    Among zooplankton behaviors, diel migrations constitute one of the most effective predator avoidance strategy and confer metabolic and demographic advantages. We aim to examine whether sublethal concentrations of two widespread pollutants (a pesticide with endosulfan and chromium as potassium dichromate) alter the depth selection, vertical migration and grouping of five freshwater species: Argyrodiaptomus falcifer, Notodiaptomus conifer, Pseudosida variabilis, Ceriodaphnia dubia and Daphnia magna. In a series of experimental assays, performed with 150 cm length transparent tubes, we analyzed the ascents and descents movements through periods of 24 h. Among controls, the copepods showed a tendency to remain closest to the surface, however, N. conifer registered a downward movement of 18.14 cm between 06:00 and 12:00. The cladoceran P. variabilis occupied the deeper position (85 cm), C. dubia showed a tendency to hike to the surface at 06:00 (57.7 cm) descending to lower levels at 18:00. D. magna showed a constant movement of ascent between 00:00 and 18:00, making an average travel of 29.4 cm. When subjected to pollutants, these behaviors were altered. It is hypothesized that a reduction in swimming activity and disorientation would be the main cause of such alterations. The high sensitivity of this endpoint sugests it to be adecuate as a complement in future standard toxicity tests.

  4. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    Science.gov (United States)

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  5. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    Science.gov (United States)

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism. PMID:24241535

  6. Does prenatal exposure to vitamin D-fortified margarine and milk alter birth weight?

    DEFF Research Database (Denmark)

    Jensen, Camilla B; Berentzen, Tina L; Gamborg, Michael;

    2014-01-01

    The present study examined whether exposure to vitamin D from fortified margarine and milk during prenatal life influenced mean birth weight and the risk of high or low birth weight. The study was based on the Danish vitamin D fortification programme, which was a societal intervention...... with mandatory fortification of margarine during 1961-1985 and voluntary fortification of low-fat milk between 1972 and 1976. The influence of prenatal vitamin D exposure on birth weight was investigated among 51 883 Danish children, by comparing birth weight among individuals born during 2 years before or after...... the initiation and termination of vitamin D fortification programmes. In total, four sets of analyses were performed. Information on birth weight was available in the Copenhagen School Health Record Register for all school children in Copenhagen. The mean birth weight was lower among the exposed than non...

  7. Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats

    OpenAIRE

    Roysommuti, Sanya; Malila, Pisamai; Lerdweeraphon, Wichaporn; Jirakulsomchok, Dusit; Wyss, J. Michael

    2010-01-01

    Perinatal taurine exposure has long-term effects on the arterial pressure and renal function. This study tests its influence on renal potassium excretion in young adult, conscious rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C), 3% beta-alanine in water (taurine depletion, TD) or 3% taurine in water (taurine supplementation, TS), either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). I...

  8. Traffic pollution exposure is associated with altered brain connectivity in school children.

    Science.gov (United States)

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.

  9. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Qing Liu

    Full Text Available The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb and male (18.04 ppb fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  10. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  11. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides.

    Science.gov (United States)

    Lee, Young S; Lewis, John A; Ippolito, Danielle L; Hussainzada, Naissan; Lein, Pamela J; Jackson, David A; Stallings, Jonathan D

    2016-01-18

    Chlorpyrifos (CPF), an organophosphorus pesticide (OP), is one of the most widely used pesticides in the world. Subchronic exposures to CPF that do not cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits), but the biological mechanism(s) underlying this association remain speculative. To identify potential mechanisms of subchronic CPF neurotoxicity, adult male Long Evans (LE) rats were administered CPF at 3 or 10mg/kg/d (s.c.) for 21 days. We quantified mRNA and non-coding RNA (ncRNA) expression profiles by RNA-seq, microarray analysis and small ncRNA sequencing technology in the CA1 region of the hippocampus. Hippocampal slice immunohistochemistry was used to determine CPF-induced changes in protein expression and localization patterns. Neither dose of CPF caused overt clinical signs of cholinergic toxicity, although after 21 days of exposure, cholinesterase activity was decreased to 58% or 13% of control levels in the hippocampus of rats in the 3 or 10mg/kg/d groups, respectively. Differential gene expression in the CA1 region of the hippocampus was observed only in the 10mg/kg/d dose group relative to controls. Of the 1382 differentially expressed genes identified by RNA-seq and microarray analysis, 67 were common to both approaches. Differential expression of six of these genes (Bdnf, Cort, Crhbp, Nptx2, Npy and Pnoc) was verified in an independent CPF exposure study; immunohistochemistry demonstrated that CRHBP and NPY were elevated in the CA1 region of the hippocampus at 10mg/kg/d CPF. Gene ontology enrichment analysis suggested association of these genes with receptor-mediated cell survival signaling pathways. miR132/212 was also elevated in the CA1 hippocampal region, which may play a role in the disruption of neurotrophin-mediated cognitive processes after CPF administration. These findings identify potential mediators of CPF-induced neurobehavioral deficits following subchronic exposure to CPF at

  12. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  13. Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations.

    Science.gov (United States)

    Nunes, B; Antunes, S C; Gomes, R; Campos, J C; Braga, M R; Ramos, A S; Correia, A T

    2015-02-01

    A large body of evidence was compiled in the recent decades showing a noteworthy increase in the detection of pharmaceutical drugs in aquatic ecosystems. Due to its ubiquitous presence, chemical nature, and practical purpose, this type of contaminant can exert toxic effects in nontarget organisms. Exposure to pharmaceutical drugs can result in adaptive alterations, such as changes in tissues, or in key homeostatic mechanisms, such as antioxidant mechanisms, biochemical/physiological pathways, and cellular damage. These alterations can be monitored to determine the impact of these compounds on exposed aquatic organisms. Among pharmaceutical drugs in the environment, antibiotics are particularly important because they include a variety of substances widely used in medical and veterinary practice, livestock production, and aquaculture. This wide use constitutes a decisive factor contributing for their frequent detection in the aquatic environment. Tetracyclines are the individual antibiotic subclass with the second highest frequency of detection in environmental matrices. The characterization of the potential ecotoxicological effects of tetracycline is a much-required task; to attain this objective, the present study assessed the acute toxic effects of tetracycline in the freshwater fish species Gambusia holbrooki by the determination of histological changes in the gills and liver, changes in antioxidant defense [glutathione S-transferase (GST), catalase (CAT), and lipoperoxidative damage] as well as potential neurotoxicity (acetylcholinesterase activity). The obtained results suggest the existence of a cause-and-effect relationship between the exposure to tetracycline and histological alterations (more specifically in gills) and enzymatic activity (particularly the enzyme CAT in liver and GST in gills) indicating that this compound can exert a pro-oxidative activity. PMID:25475590

  14. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    Science.gov (United States)

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety.

  15. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  16. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    Science.gov (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome. PMID:23934110

  17. Early life exposure to environmental tobacco smoke alters immune response to asbestos via a shift in inflammatory phenotype resulting in increased disease development.

    Science.gov (United States)

    Brown, Traci Ann; Holian, Andrij; Pinkerton, Kent E; Lee, Joong Won; Cho, Yoon Hee

    2016-07-01

    Asbestos in combination with tobacco smoke exposure reportedly leads to more severe physiological consequences than asbestos alone; limited data also show an increased disease risk due to environmental tobacco smoke (ETS) exposure. Environmental influences during gestation and early lung development can result in physiological changes that alter risk for disease development throughout an individual's lifetime. Therefore, maternal lifestyle may impact the ability of offspring to subsequently respond to environmental insults and alter overall disease susceptibility. In this study, we examined the effects of exposure to ETS in utero and during early postnatal development on asbestos-related inflammation and disease in adulthood. ETS exposure in utero appeared to shift inflammation towards a Th2 phenotype, via suppression of Th1 inflammatory cytokine production. This effect was further pronounced in mice exposed to ETS in utero and during early postnatal development. In utero ETS exposure led to increased collagen deposition, a marker of fibrotic disease, when the offspring was later exposed to asbestos, which was further increased with additional ETS exposure during early postnatal development. These data suggest that ETS exposure in utero alters the immune responses and leads to greater disease development after asbestos exposure, which is further exacerbated when exposure to ETS continues during early postnatal development. PMID:27138493

  18. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  19. Chronic cigarette smoke exposure adversely alters 14C-arachidonic acid metabolism in rat lungs, aortas and platelets

    International Nuclear Information System (INIS)

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from 14C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from 14C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases

  20. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    Science.gov (United States)

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development. PMID:18804091

  1. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    Science.gov (United States)

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  2. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    Science.gov (United States)

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution.

  3. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    Science.gov (United States)

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal.

  4. LOWER DOSE OF AMINOGLYCOSIDE OTOTOXIC EXPOSURE CAUSES PRESYNAPTIC ALTERATIONS ASSOICATED WITH HEARING LOSS

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; WANG Xiaoyu; LI Sijun; TANG Siquan; XU Yice; WANG Xuefeng; SUN Jianhe; YANG Weiyan; YANG Shiming

    2014-01-01

    Objective To study presynaptic alternations of cochlear ribbons arising from aminoglycoside ototoxic stimuli in C57BL/6J mice. Methods Animals were injected with low dose gentamicin (100 mg/kg/day) for 14 days, From the 14th to 28th days, the mice were maintained free of gentamicin treatment. Immunohisto-chemistry labeling was employed to trace RIBEYE, a major presynaptic componment of ribbon synapses. RIBEYE/CtBP2 expression levels were assessed and compared with hearing threshold shifts. Auditory func-tion was assessed by auditory brainstem responses. The stereocilia of outer hair cells (OHCs) and IHCs was examined by scanning electron microscopy (SEM). Results Hearing thresholds were elevated with peak hearing loss observed on the 7th day after gentamicin exposure, followed by improvement after the 7th day. RIBEYE/CtBP2 expression directly correlated with observed hearing threshold shifts. Strikingly, we did not see any obvious changes in stereocilia in both OHCs and IHCs until the 28th day. Mild changes in stereocil-ia were only observed in OHCs on the 28th day. Conclusions These findings indicate that presynapse co-chlear ribbons, rather than stereocilia, may be sensitive to aminoglycoside ototoxic exposure in mice cochle-ae. A pattern of RIBEYE/CtBP2 expression changes seems to parallel hearing threshold shifts and suggests presynaptic response properties to lower dosage of aminoglycoside ototoxic stimuli.

  5. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue.

    Directory of Open Access Journals (Sweden)

    Kimberley E Wever

    Full Text Available Renal ischemia/reperfusion injury (IRI frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5 homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo.

  6. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    Science.gov (United States)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  7. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period.

    Science.gov (United States)

    Wang, Tao; Guan, Rui-Li; Liu, Ming-Chao; Shen, Xue-Feng; Chen, Jing Yuan; Zhao, Ming-Gao; Luo, Wen-Jing

    2016-08-01

    Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes. PMID:26141123

  8. Hepatic and intestine alterations in mice after prolonged exposure to low oral doses of Microcystin-LR.

    Science.gov (United States)

    Sedan, Daniela; Laguens, Martín; Copparoni, Guido; Aranda, Jorge Oswaldo; Giannuzzi, Leda; Marra, Carlos Alberto; Andrinolo, Darío

    2015-09-15

    Oral intake of Microcystin-LR (MC-LR) is the principal route of exposure to this toxin, with prolonged exposure leading to liver damage of unspecific symptomatology. The aim of the present paper was therefore to investigate the liver and intestine damage generated by prolonged oral exposure to low MC-LR doses (50 and 100 μg MC-LR/kg body weight, administrated every 48 h during a month) in a murine model. We found alterations in TBARS, SOD activity and glutathione content in liver and intestine of mice exposed to both doses of MC-LR. Furthermore, the presence of MC-LR was detected in both organs. We also found hepatic steatosis (3.6 ± 0.6% and 15.3 ± 1.6%) and a decrease in intraepithelial lymphocytes (28.7 ± 5.0% and 44.2 ± 8.7%) in intestine of 50- and 100-μg MC-LR/kg treated animals, respectively. This result could have important implications for mucosal immunity, since intraepithelial lymphocytes are the principal effectors of this system. Our results indicate that prolonged oral exposure at 50 μg MC-LR/kg every 48 h generates significant damage not only in liver but also in intestine. This finding calls for a re-appraisal of the currently accepted NOAEL (No Observed Adverse Effect Level), 40 μg MC-LR/kg body weight, used to derive the guideline value for MC-LR in drinking water.

  9. Exposure to (12)C particles alters the normal dynamics of brain monoamine metabolism and behaviour in rats.

    Science.gov (United States)

    Belov, Oleg V; Belokopytova, Ksenia V; Bazyan, Ara S; Kudrin, Vladimir S; Narkevich, Viktor B; Ivanov, Aleksandr A; Severiukhin, Yury S; Timoshenko, Gennady N; Krasavin, Eugene A

    2016-09-01

    Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1Gy of 500MeV/u (12)C particles with a relatively moderate linear energy transfer (10.6keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to (12)C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems' functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer. PMID:27544862

  10. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function

    Science.gov (United States)

    Chen, Yichang; Qiu, Zhiqun; Lee, Dong Yeon; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-01-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures. PMID:27472198

  11. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Science.gov (United States)

    Chen, Yichang; Shu, Le; Qiu, Zhiqun; Lee, Dong Yeon; Settle, Sara J; Que Hee, Shane; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-07-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures. PMID:27472198

  12. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure

    DEFF Research Database (Denmark)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H;

    2016-01-01

    similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae......, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota...... of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature....

  13. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Science.gov (United States)

    Chen, Yichang; Shu, Le; Qiu, Zhiqun; Lee, Dong Yeon; Settle, Sara J; Que Hee, Shane; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-07-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.

  14. Chronic cocaine or ethanol exposure during adolescence alters novelty-related behaviors in adulthood.

    Science.gov (United States)

    Stansfield, Kirstie H; Kirstein, Cheryl L

    2007-04-01

    Adolescence is a time of high-risk behavior and increased exploration. This developmental period is marked by a greater probability to initiate drug use and is associated with an increased risk to develop addiction and adulthood dependency and drug use at this time is associated with an increased risk. Human adolescents are predisposed toward an increased likelihood of risk-taking behaviors [Zuckerman M. Sensation seeking and the endogenous deficit theory of drug abuse. NIDA Res Monogr 1986;74:59-70.], including drug use or initiation. In the present study, adolescent animals were exposed to twenty days of either saline (0.9% sodium chloride), cocaine (20 mg/kg) or ethanol (1 g/kg) i.p. followed by a fifteen-day washout period. All animals were tested as adults on several behavioral measures including locomotor activity induced by a novel environment, time spent in the center of an open field, novelty preference and novel object exploration. Animals exposed to cocaine during adolescence and tested as adults exhibited a greater locomotor response in a novel environment, spent less time in the center of the novel open field and spent less time with a novel object, results that are indicative of a stress or anxiogenic response to novelty or a novel situation. Adolescent animals chronically administered ethanol and tested as adults, unlike cocaine-exposed were not different from controls in a novel environment, indicated by locomotor activity or time spent with a novel object. However, ethanol-exposed animals approached the novel object more, suggesting that exposure to ethanol during development may result in less-inhibited behaviors during adulthood. The differences in adult behavioral responses after drug exposure during adolescence are likely due to differences in the mechanisms of action of the drugs and subsequent reward and/or stress responsivity. Future studies are needed to determine the neural substrates of these long lasting drug-induced changes. PMID

  15. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice.

    Directory of Open Access Journals (Sweden)

    Jennifer T Wolstenholme

    Full Text Available Bisphenol A (BPA is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5 because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.

  16. Mainstream cigarette smoke exposure alters cytochrome P4502G1 expression in F344 rat olfactory mucosa

    International Nuclear Information System (INIS)

    Inhalation of mainstream cigarette smoke (MCS) by rats results in multifocal rhinitis, mucous hypersecretion, nasal epithelial hyperplasia and metaplasia, and focal olfactory mucosal atrophy. In humans, cigarette smoking causes long-term, dose-related alterations in olfactory function in both current and former smokers. An olfactory-specific cytochrome P450 has been identified in rabbits and rats. The presence of olfactory-specific P450s, as well as relatively high levels of other biotransformation enzymes, such as NADPH-cytochrome P450 reductase and UDP-glucuronosyl transferase, in the olfactory neuroepithelium suggest that these enzyme systems may play a role in olfaction. This hypothesis is strengthened by the observation that, in rats, the temporal gene activation of P4502G1 coincides with the postnatal increase in the sensitivity of olfactory response to odorants. The purpose of this investigation was to examine the effect of MCS exposure on P4502G1 protein expression

  17. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    International Nuclear Information System (INIS)

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  18. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States); Rise, Matthew L. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Spitsbergen, Jan M. [Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331 (United States); Hori, Tiago S. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Mieritz, Mark; Geis, Steven [Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706 (United States); McGraw, Joseph E. [School of Pharmacy, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097 (United States); Goetz, Giles [School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle, WA 98195 (United States); Larson, Jeremy; Hutz, Reinhold J. [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); Carvan, Michael J., E-mail: carvanmj@uwm.edu [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States)

    2013-09-15

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  19. Developmental Exposure to Aroclor 1254 Alters Migratory Behavior in Juvenile European Starlings (Sturnus vulgaris).

    Science.gov (United States)

    Flahr, Leanne M; Michel, Nicole L; Zahara, Alexander R D; Jones, Paul D; Morrissey, Christy A

    2015-05-19

    Birds exposed to endocrine disrupting chemicals during development could be susceptible to neurological and other physiological changes affecting migratory behaviors. We investigated the effects of ecologically relevant levels of Aroclor 1254, a polychlorinated biphenyl (PCB) mixture, on moult, fattening, migratory activity, and orientation in juvenile European starlings (Sturnus vulgaris). Birds were orally administered 0 (control), 0.35 (low), 0.70 (intermediate), or 1.05 (high) μg Aroclor 1254/g-body weight by gavage from 1 through 18 days posthatch and later exposed in captivity to a photoperiod shift simulating an autumn migration. Migratory activity and orientation were examined using Emlen funnel trials. Across treatments, we found significant increases in mass, fat, and moulting and decreasing plasma thyroid hormones over time. We observed a significant increase in activity as photoperiod was shifted from 13L:11D (light:dark) to 12L:12D, demonstrating that migratory condition was induced in captivity. At 12L:12D, control birds oriented to 155.95° (South-Southeast), while high-dosed birds did not. High-dosed birds showed a delayed orientation to 197.48° (South-Southwest) under 10L:14D, concomitant with apparent delays in moult. These findings demonstrate how subtle contaminant-induced alterations during development could lead to longer-scale effects, including changes in migratory activity and orientation, which could potentially result in deleterious effects on fitness and survival.

  20. Developmental exposure to Passiflora incarnata induces behavioural alterations in the male progeny.

    Science.gov (United States)

    Bacchi, André D; Ponte, Bianca; Vieira, Milene L; de Paula, Jaqueline C C; Mesquita, Suzana F P; Gerardin, Daniela C C; Moreira, Estefânia G

    2013-01-01

    Passiflora incarnata is marketed in many countries as a phytomedicine and is prescribed mainly as a sedative and anxiolytic. Even though the directions of most marketed phytomedicines recommend them to be used under medical supervision, reproductive and developmental studies are sparse and not mandatory for regulatory purposes. To evaluate the reproductive and developmental toxicity of P. incarnata, Wistar female rats were gavaged with 30 or 300 mg kg(-1) of this herb from gestational Day (GD) 0 to postnatal Day (PND) 21. P. incarnata treatment did not influence dams' bodyweight or food intake or their reproductive performance (post-implantation loss, litter size, litter weight). There was also no influence on the physical development of pups (bodyweight gain, day of vaginal opening or preputial separation) or their behaviour in the open-field at PND 22, 35 and 75. Sexual behaviour was disrupted in adult male pups exposed to 300 mg kg(-1) of P. incarnata; in this group, only 3 out of 11 pups were sexually competent. This behavioural disruption was not accompanied by alterations in plasma testosterone levels, reproductive-related organs and glands weights or sperm count. It is hypothesised that aromatase inhibition may be involved in the observed effect.

  1. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    Science.gov (United States)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  2. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash.

    Science.gov (United States)

    Markad, Vijaykumar L; Adav, Sunil S; Ghole, Vikram S; Sze, Siu Kwan; Kodam, Kisan M

    2016-10-01

    Fly ash is toxic and its escalating use as a soil amendment and disposal by dumping into environment is receiving alarming attention due to its impact on environment. Proteomics technology is being used for environmental studies since proteins respond rapidly when an organism is exposed to a toxicant, and hence soil engineers such as earthworms are used as model organisms to assess the toxic effects of soil toxicants. This study adopted proteomics technology and profiled proteome of earthworm Dichogaster curgensis that was exposed to fly ash, with main aim to elucidate fly ash effects on cellular and metabolic pathways. The functional classification of identified proteins revealed carbohydrate metabolism (14.36%), genetic information processing (15.02%), folding, sorting and degradation (10.83%), replication and repair (3.95%); environmental information processing (2.19%), signal transduction (9.61%), transport and catabolism (17.27%), energy metabolism (6.69%), etc. in the proteome. Proteomics data and functional assays revealed that the exposure of earthworm to fly ash induced protein synthesis, up-regulation of gluconeogenesis, disturbed energy metabolism, oxidative and cellular stress, and mis-folding of proteins. The regulation of ubiquitination, proteasome and modified alkaline comet assay in earthworm coelomocytes suggested DNA-protein cross link affecting chromatin remodeling and protein folding. PMID:27371791

  3. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    Science.gov (United States)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. PMID:27304513

  4. Biochemical and histological alterations in liver following sub chronic exposure of arsenic

    Directory of Open Access Journals (Sweden)

    Madhuri Mehta

    2015-07-01

    Full Text Available Objective: Contamination of groundwater with arsenic is of global concern. The present work was aimed to evaluate the biochemical and histological changes in liver of female rats induced by sodium arsenite at doses naturally found in groundwater of Punjab. Method: Twenty four female rats were divided into four groups of 6 animals each. Group I animals received distilled water and served as control; Group II-IV received arsenic at the dose of 10, 30 and 50 ppb (μg/L dissolved in distilled water ad libitum for 30 days. At the end of experiment, animals were sacrificed and liver was collected for biochemical and histological evaluation. Results: Biochemical analysis showed an increase in the activity of hepatic marker enzymes including transferases, phosphatases and lactate dehydrogenase (LDH. Also, the levels of antioxidant enzymes (catalase, reduced glutathione and glutathione-S-transferase decreased significantly (P<0.05 in treated animals when compared to control. A significant (P<0.05 dose dependent increase in the levels of lipid peroxidation and arsenic concentration in liver tissue was observed. Histological examination showed the presence of pyknotic bodies (necrosis and sinusoidal dilation in hepatocytes of treated groups. Conclusion: Sub chronic exposure of arsenic at these doses induces hepatotoxicity leading to oxidative stress.

  5. Alterations of red cell membrane properties in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Claudia Siegl

    Full Text Available Neuroacanthocytosis (NA refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc, McLeod syndrome (MLS, Huntington's disease-like 2 (HDL2 and pantothenate kinase associated neurodegeneration (PKAN, that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation, associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10% and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.

  6. Enhanced Eryptosis Following Exposure to Carnosic Acid

    Directory of Open Access Journals (Sweden)

    Katja Stockinger

    2015-11-01

    Full Text Available Background/Aims: The phenolic abietane diterpene component of rosemary and sage, carnosic acid, may either induce or inhibit apoptosis of nucleated cells. The mechanisms involved in the effects of carnosic acid include altered mitochondrial function and gene expression. Human erythrocytes lack mitochondria and nuclei but are nevertheless able to enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms involved in the stimulation of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i, and ceramide formation. The present study explored, whether and how carnosic acid induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to carnosic acid significantly increased the percentage of annexin-V-binding cells (2.5 µg/ml, significantly decreased forward scatter (10 µg/ml, significantly increased Fluo3 fluorescence (10 µg/ml, significantly increased ceramide abundance (10 µg/ml, significantly increased hemolysis (10 µg/ml, but significantly decreased DCFDA fluorescence (10 µg/ml. The effect of carnosic acid on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Carnosic acid triggers cell shrinkage and phospholipid scrambling of the human erythrocyte cell membrane, an effect paralleled by and/or in part due to Ca2+ entry and increased ceramide abundance.

  7. Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages.

    Science.gov (United States)

    Couture, J J; Holeski, L M; Lindroth, R L

    2014-03-01

    Anthropogenic activities are altering levels of greenhouse gases to the extent that multiple and diverse ecosystem processes are being affected. Two gases that substantially influence forest health are atmospheric carbon dioxide (CO2 ) and tropospheric ozone (O3 ). Plant chemistry will play an important role in regulating ecosystem processes in future environments, but little information exists about the longitudinal effects of elevated CO2 and O3 on phytochemistry, especially for long-lived species such as trees. To address this need, we analysed foliar chemical data from two genotypes of trembling aspen, Populus tremuloides, collected over 10 years of exposure to levels of CO2 and O3 predicted for the year 2050. Elevated CO2 and O3 altered both primary and secondary chemistry, and the magnitude and direction of the responses varied across developmental stages and between aspen genotypes. Our findings suggest that the effects of CO2 and O3 on phytochemical traits that influence forest processes will vary over tree developmental stages, highlighting the need to continue long-term, experimental atmospheric change research.

  8. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  9. Prenatal Hyperandrogenization Induces Metabolic and Endocrine Alterations Which Depend on the Levels of Testosterone Exposure

    Science.gov (United States)

    Amalfi, Sabrina; Velez, Leandro Martín; Heber, María Florencia; Vighi, Susana; Ferreira, Silvana Rocío; Orozco, Adriana Vega; Pignataro, Omar; Motta, Alicia Beatriz

    2012-01-01

    Prenatal hyperandrogenism is able to induce polycystic ovary syndrome (PCOS) in rats. The aim of the present study was to establish if the levels of prenatal testosterone may determine the extent of metabolic and endocrine alterations during the adult life. Pregnant Sprague Dawley rats were prenatally injected with either 2 or 5 mg free testosterone (groups T2 and T5 respectively) from day 16 to day 19 day of gestation. Female offspring from T2 and T5 displayed different phenotype of PCOS during adult life. Offspring from T2 showed hyperandrogenism, ovarian cysts and ovulatory cycles whereas those from T5 displayed hyperandrogenism, ovarian cysts and anovulatory cycles. Both group showed increased circulating glucose levels after the intraperitoneal glucose tolerance test (IPGTT; an evaluation of insulin resistance). IPGTT was higher in T5 rats and directly correlated with body weight at prepubertal age. However, the decrease in the body weight at prepubertal age was compensated during adult life. Although both groups showed enhanced ovarian steroidogenesis, it appears that the molecular mechanisms involved were different. The higher dose of testosterone enhanced the expression of both the protein that regulates cholesterol availability (the steroidogenic acute regulatory protein (StAR)) and the protein expression of the transcriptional factor: peroxisome proliferator-activated receptor gamma (PPAR gamma). Prenatal hyperandrogenization induced an anti-oxidant response that prevented a possible pro-oxidant status. The higher dose of testosterone induced a pro-inflammatory state in ovarian tissue mediated by increased levels of prostaglandin E (PG) and the protein expression of cyclooxygenase 2 (COX2, the limiting enzyme of PGs synthesis). In summary, our data show that the levels of testosterone prenatally injected modulate the uterine environment and that this, in turn, would be responsible for the endocrine and metabolic abnormalities and the phenotype of PCOS

  10. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics.

    Science.gov (United States)

    Caffino, Lucia; Giannotti, Giuseppe; Malpighi, Chiara; Racagni, Giorgio; Fumagalli, Fabio

    2015-10-01

    Although glucocorticoid receptors (GRs) contribute to the action of cocaine, their role following developmental exposure to the psychostimulant is still unknown. To address this issue, we exposed adolescent male rats to cocaine (20mg/kg/day) from post-natal day (PND) 28 to PND 42 and sacrificed them at PND 45 or 90. We studied the medial prefrontal cortex (mPFC), a brain region that is still developing during adolescence. In PND 45 rats we found enhanced GR transcription and translation as well as increased trafficking toward the nucleus of the receptor, with no alteration in plasma corticosterone levels. We also showed reduced expression of the GR co-chaperone FKBP51, that normally keeps the receptor in the cytoplasm, and increased expression of Src1, which cooperates in the activation of GR transcriptional activity, revealing that short withdrawal alters the finely tuned mechanisms regulating GR action. Since activation of GRs regulate dendritic spine morphology, we next investigated spine dynamics in cocaine-withdrawn rats. We found that PSD95, cofilin and F-actin, molecules regulating spine actin network, are reduced in the mPFC of PND 45 rats suggesting reduced spine density, confirmed by confocal imaging. Further, formation of filopodia, i.e. the inactive spines, is enhanced suggesting the formation of non-functional spines. Of note, no changes were found in molecules related to GR machinery or spine dynamics following long-term abstinence, i.e. in adult rats (PND 90). These findings demonstrate that short withdrawal promotes plastic changes in the developing brain via the dysregulation of the GR system and alterations in the spine network. PMID:26004981

  11. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  12. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    Science.gov (United States)

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  13. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    Science.gov (United States)

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species.

  14. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  15. Exposure to a northern contaminant mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Science.gov (United States)

    Mailloux, Ryan J; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G; Jin, Xiaolei

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure

  16. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  17. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    Science.gov (United States)

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  18. The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues Rosa Laura López-Marqués1, Lisbeth Rosager Poulsen1, Katharina Meffert2, Thomas Pomorski2, Michael Gjedde Palmgren1 1Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation...

  19. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  20. Low-Dose BPA Exposure Alters the Mesenchymal and Epithelial Transcriptomes of the Mouse Fetal Mammary Gland

    Science.gov (United States)

    Wadia, Perinaaz R.; Cabaton, Nicolas J.; Borrero, Michael D.; Rubin, Beverly S.; Sonnenschein, Carlos; Shioda, Toshi; Soto, Ana M.

    2013-01-01

    Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA) causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a) associated with changes in mRNA expression reflecting estrogenic actions and/or b) dependent on the estrogen receptor α (ERα), we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2) on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E) 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development. PMID:23704952

  1. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring.

    Science.gov (United States)

    Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco

    2016-07-01

    Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring. PMID:25940002

  2. Vinpocetine and Vitamin E Modulates Some Biochemical Alterations Induced by Exposure to Ionizing Radiation and Chloropyrifos in Rats

    International Nuclear Information System (INIS)

    Acapi-Cav is a well balanced and well tolerated formula containing vinpocetine and vitamin E. The objective of this study was to investigate the effect of vinpocetine and vitamin E on the oxidative stress, electrolytes and monoamines level in rats exposed to ionizing radiation (gamma rays), chloropyrifos (CPF) as well as rats exposed to a combination of gamma rays and CPF. Irradiation was performed by whole body exposure of rats to 8 Gy delivered at 1 Gy every 4 days. CPF was administered to rats by oral gavages at a dose of 3.6 mg/kg body weight ( 1/10 LD50 ) daily for 30 days. Vinpocetine and vitamin E were administered to rats by oral gavages at a dose of 20 mg/kg body weight daily during 7 days before starting the experiment and continued during the period of exposure to gamma rays and/or CPF. The results revealed significant increase of malondialdehyde (MDA) level associated with a significant decrease of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in the blood of rats exposed to gamma rays and/or CPF indicating oxidative stress. The levels of serum electrolytes (sodium Na+, potassium K+, calcium Ca++ and magnesium Mg) showed significant decrease. Serum dopamine (DA) level was decreased and norepinephrine (NE) was increased while epinephrine (EPI) showed non-significant change. The level of serum monoamine oxidase (MAO) showed significant increase. The administration of vinpocetine and vitamin E to rats exposed to gamma rays and/or CPF significantly reduced the amount of MDA which associated with an increase in the level of antioxidants and significant improvement was recorded for electrolytes level. The results demonstrated that vinpocetine and vitamin E significantly attenuated the increase of MAO and induced significant amelioration in the level of monoamines. It could be concluded that vinpocetine and vitamin E might protect the body from oxidative damage and electrolytes and monoamines alterations in rats exposed to gamma rays and

  3. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  4. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  5. Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence.

    Science.gov (United States)

    Schweitzer, Julie B; Riggins, Tracy; Liang, Xia; Gallen, Courtney; Kurup, Pradeep K; Ross, Thomas J; Black, Maureen M; Nair, Prasanna; Salmeron, Betty Jo

    2015-01-01

    The persistence of effects of prenatal drug exposure (PDE) on brain functioning during adolescence is poorly understood. We explored neural activation to a visuospatial working memory (VSWM) versus a control task using functional magnetic resonance imaging (fMRI) in adolescents with PDE and a community comparison group (CC) of non-exposed adolescents. We applied graph theory metrics to resting state data using a network of nodes derived from the VSWM task activation map to further explore connectivity underlying WM functioning. Participants (ages 12-15 years) included 47 adolescents (27 PDE and 20 CC). All analyses controlled for potentially confounding differences in birth characteristics and postnatal environment. Significant group by task differences in brain activation emerged in the left middle frontal gyrus (BA 6) with the CC group, but not the PDE group, activating this region during VSWM. The PDE group deactivated the culmen, whereas the CC group activated it during the VSWM task. The CC group demonstrated a significant relation between reaction time and culmen activation, not present in the PDE group. The network analysis underlying VSWM performance showed that PDE group had lower global efficiency than the CC group and a trend level reduction in local efficiency. The network node corresponding to the BA 6 group by task interaction showed reduced nodal efficiency and fewer direct connections to other nodes in the network. These results suggest that adolescence reveals altered neural functioning related to response planning that may reflect less efficient network functioning in youth with PDE.

  6. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate.

    Science.gov (United States)

    Loutsidou, Ariadni C; Hatzi, Vasiliki I; Chasapis, C T; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2012-12-01

    The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.

  7. Myelin alters the inflammatory phenotype of macrophages by activating PPARs

    OpenAIRE

    Bogie, Jeroen; Jorissen, Winde; Mailleux, Jo; Vanmierlo, Tim; van Horssen, Jack; Hellings, Niels; Stinissen, Piet; Hendriks, J. J. A.; Nijland, Philip G.; Zelcer, Noam

    2013-01-01

    Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitri...

  8. Histological alterations under metal exposure in gills of European perch (Perca fluviatilis L. from Topolnitsa Reservoir (Bulgaria

    Directory of Open Access Journals (Sweden)

    Georgieva Еlenka

    2015-01-01

    Full Text Available Topolnitsa Reservoir is located in a region of Bulgaria rich in copper mines where intensive mining has been ongoing for several decades. General data on the ecological status of the reservoir and the effects of metal on fish is relatively scarce. The first aim of the study was to measure the concentrations of six metals (As, Cd, Cu, Ni, Pb and Zn in water samples and in the gills of European perch (Perca fluviatilis L.. The second objective was to examine gill structure and determine the severity of histological alteration as a result of metal exposure. Surface water and fish gill samples were collected in spring, summer and autumn in 2012 and metal and histological analyses were performed. Metal concentrations in the water samples varied, but only Cu concentrations were determined in all three seasons and they were higher than the maximum permissible levels. The gill metal concentrations were significantly higher (P<0.05 than in the water. Examination of gill structure revealed the presence of proliferative and degenerative changes, as well as changes in the blood vessels. Histological lesions were similar in their severity in all three seasons. This study provides the first information about metal effects on the morphology of European perch gills from Topolnitsa Reservoir. It can be concluded that the metal contamination of the Topolnitsa Reservoir and fish is chronic and that it can negatively affect the structure and function of fish gills. As metals display a tendency to accumulate in fish gills, their effects are expected to become more severe with time, as they affect gill functions.

  9. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    Science.gov (United States)

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring. PMID:18713641

  10. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    OpenAIRE

    Epand, Richard M.; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidy...

  11. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair

    OpenAIRE

    Harel-Adar, Tamar; Mordechai, Tamar Ben; Amsalem, Yoram; Feinberg, Micha S.; Leor, Jonathan; Cohen, Smadar

    2011-01-01

    Herein we investigated a new strategy for the modulation of cardiac macrophages to a reparative state, at a predetermined time after myocardial infarction (MI), in aim to promote resolution of inflammation and elicit infarct repair. The strategy employed intravenous injections of phosphatidylserine (PS)-presenting liposomes, mimicking the anti-inflammatory effects of apoptotic cells. Following PS-liposome uptake by macrophages in vitro and in vivo, the cells secreted high levels of anti-infla...

  12. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    OpenAIRE

    Samanta Etel Treiger Borborema; João Alberto Osso Junior; Heitor Franco de Andrade Junior; Nanci do Nascimento

    2016-01-01

    Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine l...

  13. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells.

    OpenAIRE

    Voelker, D R

    1984-01-01

    Pulse-chase experiments with [3H]serine provide evidence that significant amounts of phosphatidylserine turn over to form phosphatidylethanolamine in mammalian cells in tissue culture. Phospholipase C hydrolysis of [3H]phosphatidylethanolamine synthesized from [3H]serine by baby hamster kidney (BHK-21) cells demonstrates that nearly all of the radiolabel remains in the ethanolamine moiety. Uniform labeling experiments with [3H]serine further demonstrate that the distribution of radiolabel in ...

  14. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

    Directory of Open Access Journals (Sweden)

    Hafner Martin

    2004-08-01

    Full Text Available Abstract Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.

  15. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    OpenAIRE

    Derek A Hamilton; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Rep...

  16. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  17. Lead Exposure during Synaptogenesis Alters Vesicular Proteins and Impairs Vesicular Release: Potential Role of NMDA Receptor–Dependent BDNF Signaling

    OpenAIRE

    Neal, April P.; Stansfield, Kirstie H.; Worley, Paul F.; Thompson, Richard E.; Guilarte, Tomás R.

    2010-01-01

    Lead (Pb2+) exposure is known to affect presynaptic neurotransmitter release in both in vivo and cell culture models. However, the precise mechanism by which Pb2+ impairs neurotransmitter release remains unknown. In the current study, we show that Pb2+ exposure during synaptogenesis in cultured hippocampal neurons produces the loss of synaptophysin (Syn) and synaptobrevin (Syb), two proteins involved in vesicular release. Pb2+ exposure also increased the number of presynaptic contact sites. H...

  18. Multi-generational effects of polybrominated diphenylethers exposure: embryonic exposure of male American kestrels (Falco sparverius) to DE-71 alters reproductive success and behaviors.

    Science.gov (United States)

    Marteinson, Sarah C; Bird, David M; Shutt, J Laird; Letcher, Robert J; Ritchie, Ian J; Fernie, Kim J

    2010-08-01

    Polybrominated diphenylethers (PBDEs) are additive flame-retardants that are environmentally persistent and bioaccumulative compounds of particular concern to species at high trophic levels, including predatory birds. The developmental effects of in ovo exposure to male birds at environmentally relevant levels of the PBDE technical mixture, DE-71, on reproductive success and behaviors using captive American kestrels (Falco sparverius) were determined. Males were exposed in ovo by direct maternal transfer to DE-71 and unintentionally to low concentrations of hexabromocyclododecane (HBCD) at three mean +/- standard error DE-71 concentrations of 288.60 +/- 33.35 ng/g wet weight (low-exposure), 1130.59 +/- 95.34 ng/g wet weight (high-exposure), or background levels of 3.01 +/- 0.46 ng/g wet weight (control). One year following exposure, males were paired with unexposed females. Reproductive success was lower in the high exposure pairs: 43% failed to lay eggs while all other pairs laid complete clutches; they also laid smaller clutches and produced smaller eggs with reduced fertility, parameters that were negatively correlated with paternal in ovo concentrations of all PBDEs, as well as individual congeners and HBCD. Throughout courtship, there were fewer copulations by all in ovo exposed males, fewer mate-calls made by high-exposure males, and decreasing trends in pair-bonding and nest-box behaviors across treatments that continued during brood rearing. The reductions in clutch size and fertility were associated with the reduced frequencies of male courtship behaviors, and were associated with increasing concentrations of the PBDE congeners BDE-47, -99, -100, -53, -138, and HBCD. The results of the present study confirm effects noted in the F(0) generation and demonstrate that exposure to DE-71 affects multiple generations of this predatory avian species at environmentally relevant levels of exposure. PMID:20821627

  19. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  20. In utero and lactational exposure to PCB 118 and PCB 153 alter ovarian follicular dynamics and GnRH-induced luteinizing hormone secretion in female lambs

    DEFF Research Database (Denmark)

    Kraugerud, Marianne; Aleksandersen, Mona; Nyengaard, Jens Randel;

    2012-01-01

    The effects of in utero and lactational exposure to two structurally different polychlorinated biphenyl (PCB) congeners on follicular dynamics and the pituitary-gonadal axis in female lambs were investigated. Pregnant ewes received corn oil, PCB 118, or PCB 153, and offspring was maintained until...... dynamics in lambs and modulate the responsiveness of the pituitary gland to GnRH.The effects of in utero and lactational exposure to two structurally different polychlorinated biphenyl (PCB) congeners on follicular dynamics and the pituitary-gonadal axis in female lambs were investigated. Pregnant ewes...... exposure group. We conclude that PCB 153 and PCB 118 alter follicular dynamics in lambs and modulate the responsiveness of the pituitary gland to GnRH....

  1. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Mandarapu, Rajesh; Prakhya, Balakrishna Murthy

    2016-07-01

    The complex immune system displays a coordinated transcriptional response to xenobiotic exposure by altering expression of designated transcription factors that, in turn, trigger immune responses. Despite the identification of several transcription factors that contribute to regulatory response, very little is known about the specific role of factors that are triggered due to exposure to obnoxious pesticides. Here, for the first time, alterations in human peripheral blood lymphocyte expression of transcriptional factors - thrombospondin-1 (THBS-1), secretory phospho-protein-1 (SPP-1), glycoprotein non-metastatic-β (GPNMB) and fasciculation and elongation factor ζ-1 (FEZ-1), due to in vitro exposure to the crop protection chemicals cypermethrin and mancozeb are reported. Results revealed significant changes in expression profiles due to mancozeb exposure, supporting its immune dysfunction potential; in contrast, cypermethrin exposure did not cause significant changes. Based on these effects on gene expression across the doses tested, it was likely key components of immune mechanisms such as proliferation, cell adhesion, apoptosis and cell activation in human PBMC were affected. Although these data are from in vitro experiments, the results point out the potential role for changes in these factors in the etiology of defective T-cell immune function seen in humans occupationally exposed to crop protection chemicals like mancozeb. These studies suggest the involvement of transcription factors in regulation of pesticide-induced immune dysfunction; these studies also represent a novel approach for identifying potential immune-related dysfunctions due to exposure to pesticides. Further studies are needed to better understand the functional significance of these in vitro findings. PMID:26796295

  2. Combined Inhaled Diesel Exhaust Particles and Allergen Exposure Alter Methylation of T Helper Genes and IgE Production In Vivo

    Science.gov (United States)

    Liu, Jinming; Ballaney, Manisha; Al-alem, Umaima; Quan, Chunli; Jin, Ximei; Perera, Frederica; Chen, Lung-Chi; Miller, Rachel L.

    2008-01-01

    Changes in methylation of CpG sites at the interleukin (IL)-4 and interferon (IFN)-γ promoters are associated with T helper (Th) 2 polarization in vitro. No previous studies have examined whether air pollution or allergen exposure alters methylation of these two genes in vivo. We hypothesized that diesel exhaust particles (DEP) would induce hypermethylation of the IFN-γ promoter and hypomethylation of IL-4 in CD4+ T cells among mice sensitized to the fungus allergen Aspergillus fumigatus.We also hypothesized that DEP-induced methylation changes would affect immunoglobulin (Ig) E regulation. BALB/c mice were exposed to a 3-week course of inhaled DEP exposure while undergoing intranasal sensitization to A. fumigatus. Purified DNA from splenic CD4+ cells underwent bisulfite treatment, PCR amplification, and pyrosequencing. Sera IgE levels were compared with methylation levels at several CpG sites in the IL-4 and IFN-γ promoter. Total IgE production was increased following intranasal sensitization A. fumigatus. IgE production was augmented further following combined exposure to A. fumigatus and DEP exposure. Inhaled DEP exposure and intranasal A. fumigatus induced hypermethylation at CpG−45, CpG−53, CpG−205 sites of the IFN-γ promoter and hypomethylation at CpG−408 of the IL-4 promoter. Altered methylation of promoters of both genes was correlated significantly with changes in IgE levels. This study is the first to demonstrate that inhaled environmental exposures influence methylation of Th genes in vivo, supporting a new paradigm in asthma pathogenesis. PMID:18042818

  3. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    Science.gov (United States)

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...

  4. Enhanced Negative Emotion and Alcohol Craving, and Altered Physiological Responses Following Stress and Cue Exposure in Alcohol Dependent Individuals

    OpenAIRE

    Sinha, Rajita; Fox, Helen C.; Hong, Kwangik A.; Bergquist, Keri; Bhagwagar, Zubin; Siedlarz, Kristen M.

    2008-01-01

    Chronic alcohol abuse is associated with changes in stress and reward pathways that could alter vulnerability to emotional stress and alcohol craving. This study examines whether chronic alcohol abuse is associated with altered stress and alcohol craving responses. Treatment-engaged, 28-day abstinent alcohol-dependent individuals (ADs; 6F/22M), and social drinkers (SDs; 10F/18M) were exposed to a brief guided imagery of a personalized stressful, alcohol-related and neutral-relaxing situation,...

  5. Effect of phosphatidylserine on the basal and GABA-activated Cl- permeation across single nerve membranes from rabbit Deiters' neurons

    Energy Technology Data Exchange (ETDEWEB)

    Rapallino, M.V.; Cupello, A.; Mainardi, P.; Besio, G.; Loeb, C.W. (Centro di Studio per la Neurofisiologia Cerebrale, C.N.R., Genova (Italy))

    1990-06-01

    The permeation of labeled Cl- ions across single plasma membranes from Deiters' neurons has been studied in the presence of various concentrations of phosphatidylserine (PS) on their extracellular side. PS reduces significantly basal Cl- permeation only at 10(-5) M on the membrane exterior. No effect was found at other concentrations. GABA activable 36Cl- permeation is heavily reduced and almost abolished at 10(-11) - 10(-5) M phosphatidylserine. This exogenous phosphatidylserine effect is difficult to interpret in relation to the function of the endogenous phospholipid. However, it may be involved in the epileptogenic effect in vivo of exogenous phosphatidylserine administration to rats.

  6. GESTATIONAL PFOA EXPOSURE OF MICE IS ASSOCIATED WITH ALTERED MAMMARY GLAND DEVELOPMENT IN DAMS AND FEMALE OFFSPRING

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA), with diverse and widespread commercial and industrial applications, has been detected in human and wildlife sera. Previous mouse studies linked prenatal PFOA exposure to decreased neonatal body weights (BWs) and survival in a dose-dependent manner. ...

  7. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    OpenAIRE

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in...

  8. Histomorphological and Histochemical Alterations Following Short-term Inhalation Exposure to Sulfur Mustard on Visceral Organs of Mice

    Institute of Scientific and Technical Information of China (English)

    S. C. PANT; R. VIJAYARAGHAVAN

    1999-01-01

    Toxic effects of inhaled sulfur mustard (SM) on the histology of visceral organs was investigated by exposing mice to 84.6mg/m3 for 1 h duration, using controlled single exposure conditions. A progressive fall in body weight from third day onwards was noticed. Light microscopic examination of the pulmonary tissue of these animals at 6 h post exposure revealed that the tracheobronchial epithelium remained intact, but was infiltrated by inflammatorv cells. By 24 h post exposure, the mucosecretory cells were destroyed. The inflammatory reaction was maximum at 48 h. Bv 7th day post exposure there was swelling and vacuolation of lung parenchymal cells and thrombi formation. In addition SM caused congestion and hemorrhage at alveolar level. SM also caused granulovacuolar degeneration with perinuclear clumping of the cytoplasm of hepatocytes and renal parenchymal cells. Renal lesions were characterized by congestion and hemorrhage. Among visceral tissues, maximum atrophy was observed in spleen. Distribution of lesions increased with post exposure period. The maximum lesions were observed at 7th day post-exposure.

  9. Long-term signal of population disturbance after pulse exposure to an insecticide: rapid recovery of abundance, persistent alteration of structure.

    Science.gov (United States)

    Liess, Matthias; Pieters, Barry Johan; Duquesne, Sabine

    2006-05-01

    Little is known about the effect of pulse exposure to toxicants on populations when density regulation is present. Yet, for a more realistic risk assessment, it is necessary to include effect and recovery at the population level. Here, we investigate the long-term and delayed effects as well as the subsequent recovery of populations of Daphnia magna. A 24-h pulse of the pyrethroid fenvalerate reduced the abundance at a concentration of 1.0 microg/L and higher. However, abundance recovered and reached control levels after one to two generation times (GTs) following reproduction of surviving individuals (GT = 8 d, from birth until first reproduction). At high concentrations above the acute median lethal concentration (3.2 micorg/L), abundance initially decreased even more strongly but was then elevated compared to control values for an extended period of time. Population structure (size distribution) was affected at lower concentrations than abundance (> 0.8 microg/L). In addition, the alteration of population structure lasted for a long time, so that control levels were approached only after approximately six or seven GTs. Our results show that pulse exposure to toxicants may lead to a long-term alteration of population structure even at sublethal concentrations. Possible mechanisms that sustain the effects of toxicants may be delayed life-history effects on the individual level and elevated competition because of altered population structure on the population level. PMID:16704065

  10. Exposure to the Contraceptive Progestin, Gestodene, Alters Reproductive Behavior, Arrests Egg Deposition, and Masculinizes Development in the Fathead Minnow (Pimephales promelas).

    Science.gov (United States)

    Frankel, Tyler E; Meyer, Michael T; Kolpin, Dana W; Gillis, Amanda B; Alvarez, David A; Orlando, Edward F

    2016-06-01

    Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected. PMID:27129041

  11. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick.

    Science.gov (United States)

    Barber, Teresa A; Edris, Edward M; Levinsky, Paul J; Williams, Justin M; Brouwer, Ari R; Gessay, Shawn A

    2016-09-01

    In the one-trial taste-avoidance task in day-old chicks, acetylcholine receptor activation has been shown to be important for memory formation. Injection of scopolamine produces amnesia, which appears to be very similar in type to that of Alzheimer's disease, which is correlated with low levels of acetylcholine in the brain. Traditional pharmacological treatments of Alzheimer's disease, such as cholinesterase inhibitors and glutamate receptor blockers, improve memory and delay the onset of impairments in memory compared with placebo controls. These agents also ameliorate scopolamine-induced amnesia in the day-old chick trained on the one-trial taste-avoidance task. The present experiments examined the ability of two less traditional treatments for Alzheimer's disease, phosphatidylserine and curcumin, to ameliorate scopolamine-induced amnesia in day-old chicks. The results showed that 37.9 mmol/l phosphatidylserine and 2.7 mmol/l curcumin significantly improved retention in chicks administered scopolamine, whereas lower doses were not effective. Scopolamine did not produce state-dependent learning, indicating that this paradigm in day-old chicks might be a useful one to study the effects of possible Alzheimer's treatments. In addition, chicks administered curcumin or phosphatidylserine showed little avoidance of a bead associated with water reward, indicating that these drugs did not produce response inhibition. The current results extend the findings that some nontraditional memory enhancers can ameliorate memory impairment and support the hypothesis that these treatments might be of benefit in the treatment of Alzheimer's disease. PMID:27388114

  12. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    International Nuclear Information System (INIS)

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  13. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression.

    Science.gov (United States)

    Ferris, Jacqueline; Mahboubi, Kiana; MacLusky, Neil; King, W Allan; Favetta, Laura A

    2016-01-01

    Alterations in the oocyte's environment can negatively affect embryo development. Oocyte quality, which can determine embryonic viability, is easily perturbed, thus factors affecting normal oocyte maturation are a concern. Bisphenol A (BPA) is an endocrine disrupting chemical that elicits a variety of reproductive effects. BPA has previously been found to disrupt meiosis, however the embryonic effects in mammals are not well documented. Here, bovine oocytes were matured in vitro with and without BPA treatment. Resulting embryos exhibited decreased embryonic development rates, increased apoptosis, and a skewed sex ratio. Gene expression in blastocysts was not altered, whereas treatment with 15ng/mL BPA resulted in increased expression of several of the genes studies, however this increase was largely due to a vehicle effect. BPA exposure during oocyte maturation in vitro can therefore, in a dose-dependent way, decrease oocyte and embryo quality and developmental potential and affect gene expression of developmentally important transcripts. PMID:26686065

  14. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    Science.gov (United States)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  15. Alterations along the Hypothalamic-Pituitary-Thyroid Axis of the Zebrafish (Danio rerio after Exposure to Propylthiouracil

    Directory of Open Access Journals (Sweden)

    Florian Schmidt

    2011-01-01

    Full Text Available In the past, various approaches have been developed to detect adverse effects of pollutants on the thyroid of vertebrates, most of these with special emphasis on the South African clawed frog, Xenopus laevis. Although fish are primarily affected by thyroid-disrupting chemicals, studies into alterations of the thyroid of fish are scarce. Therefore, effects of the reference compound propylthiouracil on histopathology of the thyroid axis were analyzed in a modified early life-stage test with zebrafish (Danio rerio exposed to propylthiouracil. The test substance induced dose-dependent alterations of thyroidal tissue concomitant with increases in the number of surrounding blood vessels. Despite this massive proliferation of the thyroid, zebrafish were not able to maintain thyroxin concentrations. The pituitary was affected displaying significant alterations in thyroid-stimulating hormone cell counts. Quantitative evaluation of pituitary surface areas revealed a dose-dependent increase of adenohypophyseal tissue. Distinct histopathological effects may contribute to a more easy identification and interpretation of alterations induced by thyroid-disrupting chemicals.

  16. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  17. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  18. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    OpenAIRE

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H.; Giordano., Magda; Rodríguez, Verónica M.

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced h...

  19. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface.

    Directory of Open Access Journals (Sweden)

    Shabbir A Ansari

    Full Text Available Exposure of phosphatidylserine (PS on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF.

  20. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface.

    Science.gov (United States)

    Ansari, Shabbir A; Pendurthi, Usha R; Sen, Prosenjit; Rao, L Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  1. Acute developmental exposure to polybrominated diphenyl ether 47 (PBDE 47) alters dopamine concentration within the brains of male mice.

    Science.gov (United States)

    Polybrominated diphenyl ethers (PBDEs) are commonly used as commercial flame retardants in a variety of products including plastics and textiles. Previous studies in our laboratory and in the literature have shown that exposure to a specific PBDE congener, PBDE 47, during a criti...

  2. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice.

    Science.gov (United States)

    Deshpande, Krutika T; Liu, Shinlan; McCracken, Jennifer M; Jiang, Lu; Gaw, Ta Ehpaw; Kaydo, Lindsey N; Richard, Zachary C; O'Neil, Maura F; Pritchard, Michele T

    2016-01-06

    Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl₄-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl₄ exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl₄ and euthanized 24-96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl₄-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl₄ exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl₄-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl₄. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure.

  3. Modulation of estrogenic exposure effects via alterations in salinity and dissolved oxygen in male fathead minnows, Pimephales promelas

    Science.gov (United States)

    Laboratory exposure data indicate that estrogens and estrogen mimics can cause endocrine disruption in male fathead minnows (Pimephales promelas). In the wild, conditions are not static as is often the case in the laboratory. Changes in water quality parameters, such as salinity influx due to road s...

  4. Gestational exposure to cadmium alters crucial offspring rat brain enzyme activities: the role of cadmium-free lactation.

    Science.gov (United States)

    Liapi, Charis; Stolakis, Vasileios; Zarros, Apostolos; Zissis, Konstantinos M; Botis, John; Al-Humadi, Hussam; Tsakiris, Stylianos

    2013-11-01

    The present study aimed to shed more light on the effects of gestational (in utero) exposure to cadmium (Cd) on crucial brain enzyme activities of Wistar rat offspring, as well as to assess the potential protective/restorative role that a Cd-free lactation might have on these effects. In contrast to earlier findings of ours regarding the pattern of effects that adult-onset exposure to Cd has on brain AChE, Na(+),K(+)- and Mg(2+)-ATPase activities, as well as in contrast to similar experimental approaches implementing the sacrificing mode of anaesthesia, in utero exposure to Cd-chloride results in increased AChE and Na(+),K(+)-ATPase activities in the newborn rat brain homogenates that were ameliorated through a Cd-free lactation (as assessed in the brain of 21-day-old offspring). Mg(2+)-ATPase activity was not found to be significantly modified under the examined experimental conditions. These findings could provide the basis for a further evaluation of the herein discussed neurotoxic effects of in utero exposure to Cd, in a brain region-specific manner.

  5. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed

  6. ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models

    International Nuclear Information System (INIS)

    An immunoPET imaging probe for the detection of phosphatidylserine was developed and tested in animal models of human cancer treated with pro-apoptotic therapy. We hypothesized that the relatively long plasma half-life of a probe based on a full-length antibody coupled with a residualizing radionuclide would be able to catch the wave of drug-induced apoptosis and lead to a specific accumulation in apoptotic tumor tissue. Methods: The imaging probe is based on a 89Zr-labeled monoclonal antibody PGN635 targeting phosphatidylserine. The probe was evaluated pre-clinically in four tumor xenograft models: one studied treatment with paclitaxel to trigger the intrinsic apoptotic pathway, and three others interrogated treatment with an agonistic death-receptor monoclonal antibody to engage the extrinsic apoptotic pathway. Results: High accumulation of 89Zr-PGN635 was observed in treated tumors undergoing apoptosis reaching 30 %ID/g and tumor-to-blood ratios up to 13. The tumor uptake in control groups treated with vehicle or imaged with a non-binding antibody probe was significantly lower. Conclusions: The results demonstrate the ability of 89Zr-PGN635 to image drug-induced apoptosis in animal models and corroborate our hypothesis that radiolabeled antibodies binding to intracellular targets transiently exposed on the cell surface during apoptosis can be employed for detection of tumor response to therapy.

  7. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. PMID:23062277

  8. PHOSPHATIDYLSERINE SYNTHASE1 is Required for Inflorescence Meristem and Organ Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Chengwu Liu; Hengfu Yin; Peng Gao; Xiaohe Hu; Jun Yang; Zhongchi Liu; Xiangdong Fu

    2013-01-01

    Phosphatidylserine (PS),a quantitatively minor membrane phospholipid,is involved in many biological processes besides its role in membrane structure.One PS synthesis gene,PHOSPHATIDYLSERINE SYNTHASE1 (PSS1),has been discovered to be required for microspore development in Arabidopsis thaliana L.but how PSS1 affects postembryonic development is still largely unknown.Here,we show that PSS1 is also required for inflorescence meristem and organ development in Arabidopsis.Disruption of PSS1 causes severe dwarfism,smaller lateral organs and reduced size of inflorescence meristem.Morphological and molecular studies suggest that both cell division and cell elongation are affected in the pss1-1 mutant.RNA in situ hybridization and promoter GUS analysis show that expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) depend on PSS1.Moreover,the defect in meristem maintenance is recovered and the expression of WUS and CLV3 are restored in the pss1-1 clv1-1 double mutant.Both SHOOTSTEMLESS (STM) and BREVIPEDICELLUS (BP) are upregulated,and auxin distribution is disrupted in rosette leaves of pss1-1.However,expression of BP,which is also a regulator of internode development,is lost in the pss1-1 inflorescence stem.Our data suggest that PSS1 plays essential roles in inflorescence meristem maintenance through the WUS-CLV pathway,and in leaf and internode development by differentially regulating the class Ⅰ KNOX genes.

  9. In vivo detection and imaging of phosphatidylserine expression during programmed cell death

    Science.gov (United States)

    Blankenberg, Francis G.; Katsikis, Peter D.; Tait, Jonathan F.; Davis, R. Eric; Naumovski, Louis; Ohtsuki, Katsuichi; Kopiwoda, Susan; Abrams, Michael J.; Darkes, Marilyn; Robbins, Robert C.; Maecker, Holden T.; Strauss, H.W.

    1998-01-01

    One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death. PMID:9600968

  10. Dioxin exposure reduces the steroidogenic capacity of mouse antral follicles mainly at the level of HSD17B1 without altering atresia

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Hannon, Patrick, E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent ovarian toxicant. Previously, we demonstrated that in vitro TCDD (1 nM) exposure decreases production/secretion of the sex steroid hormones progesterone (P4), androstenedione (A4), testosterone (T), and 17β-estradiol (E2) in mouse antral follicles. The purpose of this study was to determine the mechanism by which TCDD inhibits steroidogenesis. Specifically, we examined the effects of TCDD on the steroidogenic enzymes, atresia, and the aryl hydrocarbon receptor (AHR) protein. TCDD exposure for 48 h increased levels of A4, without changing HSD3B1 protein, HSD17B1 protein, estrone (E1), T or E2 levels. Further, TCDD did not alter atresia ratings compared to vehicle at 48 h. TCDD, however, did down regulate the AHR protein at 48 h. TCDD exposure for 96 h decreased transcript levels for Cyp11a1, Cyp17a1, Hsd17b1, and Cyp19a1, but increased Hsd3b1 transcript. TCDD exposure particularly lowered both Hsd17b1 transcript and HSD17B1 protein. However, TCDD exposure did not affect levels of E1 in the media nor atresia ratings at 96 h. TCDD, however, decreased levels of the proapoptotic factor Bax. Collectively, these data suggest that TCDD exposure causes a major block in the steroidogenic enzyme conversion of A4 to T and E1 to E2 and that it regulates apoptotic pathways, favoring survival over death in antral follicles. Finally, the down‐regulation of the AHR protein in TCDD exposed follicles persisted at 96 h, indicating that the activation and proteasomal degradation of this receptor likely plays a central role in the impaired steroidogenic capacity and altered apoptotic pathway of exposed antral follicles. -- Highlights: ► TCDD disrupts steroidogenic enzymes in mouse antral follicles. ► TCDD particularly affects the HSD17B1 enzyme in mouse antral follicles. ► TCDD does not affect atresia ratings in mouse antral follicles. ► TCDD decreases levels of the proapoptitic factor Bax in mouse antral follicles.

  11. Perinatal exposure to benzyl butyl phthalate induces alterations in neuronal development/maturation protein expression, estrogen responses, and fear conditioning in rodents.

    Science.gov (United States)

    DeBartolo, Danielle; Jayatilaka, Sahani; Yan Siu, Nga; Rose, Melissa; Ramos, Raddy L; Betz, Adrienne J

    2016-02-01

    Phthalate exposure has recently been associated with behavioral actions that are linked to its endocrine-disrupting properties. The purpose of this study was to investigate the molecular, anatomical, and behavioral effects of indirect perinatal benzyl butyl phthalate (BBP) exposure in offspring of BBP-treated pregnant dams. In two separate experiments, we administered BBP (10.0 μg/ml) on food pellets to pregnant dams and examined the offspring. The first experiment revealed reproductive anatomical abnormalities linked to BBP's endocrine-disrupting properties, whereas histological analysis revealed preserved hippocampal neuronal migration. The second experiment demonstrated learning and memory impairments accompanied by molecular abnormalities in multiple brain regions. Offspring from BBP-treated dams had altered levels of several proteins important for neuronal circuitry formation, tissue development, and maturation. We suggest that BBP administration disrupts normal learning and that these effects could be related to alterations in brain development and result in a phenotype similar to that observed in neurodevelopmental disorders. PMID:26376073

  12. Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis.

    Science.gov (United States)

    Lu, Yin; Pan, Yitao; Sheng, Nan; Zhao, Allan Z; Dai, Jiayin

    2016-09-01

    Perfluorooctanoic acid (PFOA) is a degradation-resistant compound with a carbon-fluorine bond. Although PFOA emissions have been reduced since 2000, it remains persistent in the environment. Several studies on laboratory animals indicate that PFOA exposure can impact male fertility. Here, adult male mice received either PFOA (1.25, 5 or 20 mg/kg/d) or an equal volume of water for 28 d consecutively. PFOA accumulated in the epididymis in a dose-dependent manner and resulted in reduced epididymis weight, lower levels of triglycerides (TG), cholesterol (CHO), and free fatty acids (FFA), and activated AKT/AMPK signaling in the epididymis. Altered polyunsaturated fatty acid (PUFA) compositions, such as a higher arachidonic acid:linoleic acid (AA:LA) ratio, concomitant with excessive oxidative stress, as demonstrated by increased malonaldehyde (MDA) and decreased glutathione peroxidase (GSH-Px) in the epididymis, were observed in epididymis tissue following treatment with PFOA. These results indicate that the epididymis is a potential target of PFOA. Oxidative stress and PUFA alteration might help explain the sperm injury and male reproductive dysfunction induced by PFOA exposure. PMID:27262104

  13. Alterations in the infrared spectral signature of avian feathers reflect potential chemical exposure: a pilot study comparing two sites in Pakistan.

    Science.gov (United States)

    Llabjani, Valon; Malik, Riffat N; Trevisan, Júlio; Hoti, Valmira; Ukpebor, Justina; Shinwari, Zabta K; Moeckel, Claudia; Jones, Kevin C; Shore, Richard F; Martin, Francis L

    2012-11-01

    Chemical contamination of ecosystems is a global issue with evidence that pollutants impact on living organisms in a harmful fashion. Developing sensor approaches that would allow the derivation of biomarkers or signatures of effect in target sentinel organisms and monitor environmental chemical contamination in a high throughput manner is of utmost importance. As biomolecules absorb infrared (IR), signature vibrational spectra related to structure and function can be derived. In light of this, we tested the notion that IR spectra of bird feathers might reflect environmental chemical contaminant exposure patterns. Feathers were collected from monospecific heronries of cattle egret based in two independent locations (Trimu vs. Mailsi) in the Punjab province of Pakistan; these sites were found to differ in their chemical contamination patterns. Feather samples were chemically analyzed for polychlorinated biphenyls, polybrominated diphenyl ethers, organochlorines and heavy metals. Attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy was employed to derive a spectral signature of individual feathers. Resultant IR spectra were then subjected to canonical correspondence analysis (CAA) to determine whether feather spectral signatures correlate to chemical exposure. Additionally, we explored if principal component analysis (PCA) and linear discriminant analysis (LDA) could be applied to distinguish site-specific differences; linear discriminant function (LDF) was also applied to classify sites. The sampled feathers varied in their chemical exposure patterns depending on whether they were sourced from one site associated with heavy metal exposure or the other which suggested high organic pollutant exposures. CCA of chemical and spectral data showed a correlation between spectral signatures and chemical exposure. PCA-LDA readily distinguished feathers from the two different sites. Discriminating alterations were identified and these were associated with

  14. Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters miRNA Expression Profiles in Human Lung Cells

    OpenAIRE

    Rager, Julia E.; Smeester, Lisa; Jaspers, Ilona; Sexton, Kenneth G.; Fry, Rebecca C.

    2010-01-01

    Background Exposure to formaldehyde, a known air toxic, is associated with cancer and lung disease. Despite the adverse health effects of formaldehyde, the mechanisms underlying formaldehyde-induced disease remain largely unknown. Research has uncovered microRNAs (miRNAs) as key posttranscriptional regulators of gene expression that may influence cellular disease state. Although studies have compared different miRNA expression patterns between diseased and healthy tissue, this is the first st...

  15. Neonatal Exposure to Parathion Alters Lipid Metabolism in Adulthood: Interactions with Dietary Fat Intake and Implications for Neurodevelopmental Deficits

    OpenAIRE

    Lassiter, T. Leon; Ryde, Ian T.; Levin, Edward D.; Seidler, Frederic J; Slotkin, Theodore A.

    2010-01-01

    Organophosphates are developmental neurotoxicants but recent evidence also points to metabolic dysfunction. We determined whether neonatal parathion exposure in rats has long-term effects on regulation of adipokines and lipid peroxidation. We also assessed the interaction of these effects with increased fat intake. Rats were given parathion on postnatal days 1–4 using doses (0.1 or 0.2 mg/kg/day) that straddle the threshold for barely detectable cholinesterase inhibition and the first signs o...

  16. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA) Axis after Subchronic Exposure in Male Rats

    OpenAIRE

    Alya Annabi; Ines El-Bini Dhouib; Houssem Dkhili; Yassine Bdiri; Ines Rejeb; Najoua Gharbi; Saloua El-Fazâa; Mohamed Montassar Lasram

    2015-01-01

    Imidacloprid (IMI) is known to target the nicotinic acetylcholine receptors (nAChRs) in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA) axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA) level. The antioxidant catalase, superoxid...

  17. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex

    OpenAIRE

    Kenet, T; Froemke, R. C.; Schreiner, C. E.; Pessah, I N; Merzenich, M. M.

    2007-01-01

    Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossl...

  18. Adolescent opiate exposure in the female rat induces subtle alterations in maternal care and transgenerational effects on play behavior.

    Directory of Open Access Journals (Sweden)

    Nicole L. Johnson

    2011-06-01

    Full Text Available The non-medical use of prescription opiates, such as Vicodin® and MSContin®, has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females’ spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1 demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e. social grooming and social exploration. Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal-offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring.

  19. Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment.

    Directory of Open Access Journals (Sweden)

    Lucio A Ramos-Chávez

    2015-02-01

    Full Text Available Inorganic arsenic (iAs is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Chronic exposure to iAs has been associated with lower IQ and learning disabilities as well as memory impairment. iAs is methylated in tissues such as the brain generating mono and dimethylated species. iAs methylation requires cellular glutathione (GSH, which is the main antioxidant in the central nervous system. In humans, As species cross the placenta and are found in cord blood. A CD1 mouse model was used to investigate effects of gestational iAs exposure which can lead to oxidative damage, disrupted cysteine/glutamate transport and its putative impact in learning and memory. On postnatal days (PNDs 1, 15 and 90, the expression of membrane transporters related to GSH synthesis and glutamate transport and toxicity, such as xCT, EAAC1, GLAST and GLT1, as well as LAT1, were analyzed. Also, the expression of the glutamate receptor N-methyl-D-aspartate (NMDAR subunits NR2A and B as well as the presence of As species in cortex and hippocampus were investigated. On PND 90, an object location task was performed to associate exposure with memory impairment. Gestational exposure to iAs affected the expression of cysteine/glutamate transporters in cortex and hippocampus and induced a negative modulation of NMDAR NR2B subunit in the hippocampus. Behavioral tasks showed significant spatial memory impairment in males while the effect was marginal in females.

  20. Early-life stress exposure associated with altered prefrontal resting-state fMRI connectivity in young children

    Directory of Open Access Journals (Sweden)

    Özlem Ece Demir-Lira

    2016-06-01

    Full Text Available Early-life stress (ELS exposure is associated with adverse outcomes across the lifespan. We examined the relation of ELS exposure to resting-state fMRI in children ages 4–7 years. ELS in the first years of life, but not concurrent, was associated with higher regional homogeneity of resting-state fMRI in the left lateral frontal cortex. Resting-state fMRI functional connectivity analyses showed that the region of left lateral frontal cortex demonstrating heightened regional homogeneity associated with ELS was negatively correlated with right temporal/parahippocampal areas. Moreover, higher regional homogeneity in the left lateral frontal cortex and its negative coupling with the right middle temporal/parahippocampal areas were associated with poorer performance on a reversal-learning task performed outside the scanner. Association of ELS exposure with regional homogeneity was independent of other early adversities. These findings suggest that ELS may influence the development of cognitive control in the lateral prefrontal cortex and its interactions with temporal cortex.

  1. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (PLLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  2. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes

    International Nuclear Information System (INIS)

    It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection

  3. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes.

    Science.gov (United States)

    Han, Longzhe; Itoh, Kyoko; Yaoi, Takeshi; Moriwaki, Sanzo; Kato, Shingo; Nakamura, Keiko; Fushiki, Shinji

    2011-02-26

    It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection. PMID:21448315

  4. Neonatal exposure to benzo[a]pyrene induces oxidative stress causing altered hippocampal cytomorphometry and behavior during early adolescence period of male Wistar rats.

    Science.gov (United States)

    Patel, Bhupesh; Das, Saroj Kumar; Das, Swagatika; Das, Lipsa; Patri, Manorama

    2016-05-01

    Environmental neurotoxicants like benzo[a]pyrene (B[a]P) have been well documented regarding their potential to induce oxidative stress. However, neonatal exposure to B[a]P and its subsequent effect on anti-oxidant defence system and hippocampal cytomorphometry leading to behavioral changes have not been fully elucidated. We investigated the effect of acute exposure of B[a]P on five days old male Wistar pups administered with single dose of B[a]P (0.2 μg/kg BW) through intracisternal mode. Control group was administered with vehicle i.e., DMSO and a separate group of rats without any treatment was taken as naive group. Behavioral analysis showed anxiolytic-like behavior with significant increase in time spent in open arm in elevated plus maze. Further, significant reduction in fall off time during rotarod test showing B[a]P induced locomotor hyperactivity and impaired motor co-ordination in adolescent rats. B[a]P induced behavioral changes were further associated with altered anti-oxidant defence system involving significant reduction in the total ATPase, Na(+) K(+) ATPase, Mg(2+) ATPase, GR and GPx activity with a significant elevation in the activity of catalase and GST as compared to naive and control groups. Cytomorphometry of hippocampus showed that the number of neurons and glia in B[a]P treated group were significantly reduced as compared to naive and control. Subsequent observation showed that the area and perimeter of hippocampus, hippocampal neurons and neuronal nucleus were significantly reduced in B[a]P treated group as compared to naive and control. The findings of the present study suggest that the alteration in hippocampal cytomorphometry and neuronal population associated with impaired antioxidant signaling and mood in B[a]P treated group could be an outcome of neuromorphological alteration leading to pyknotic cell death or impaired differential migration of neurons during early postnatal brain development. PMID:26946409

  5. Postnatal Manganese Exposure Alters Dopamine Transporter Function in Adult Rats: Potential Impact on Nonassociative and Associative Processes

    OpenAIRE

    McDougall, S. A.; Reichel, C. M.; Farley, C M; Flesher, M. M.; Der-Ghazarian, T.; Cortez, A. M.; Wacan, J. J.; Martinez, C. E.; VARELA, F. A.; Butt, A E; Crawford, C. A.

    2008-01-01

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 μg/day) on postnatal days (PD) 1–21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to ...

  6. The Alterations of Serum Cortisol Level and Blood Cell Count in Male Rats after a Short Term Exposure to Burned Radioactive Lantern Mantle Powder

    Directory of Open Access Journals (Sweden)

    Rezaeian Mohsen

    2010-03-01

    Full Text Available Background: Most lantern mantles contain low levels of radioactive thorium. Although radioactive lantern mantles present a minimal radiation health hazard, it is generally believed when inhaled or ingested, it can be dangerous. The purpose of this study was to assess the effect of short term exposure to radioactive lantern mantle on serum cortisol level and blood count.Materials and Methods: This experimental study was conducted in 2007-2009 in the school of medicine of Rafsanjan University of Medical Sciences. Twenty eight rats were divided randomly into two groups of 14 animals each. The first group was exposed to 600 mg burned radioactive lantern mantle powder (activity of 800Bq for 24 hours and inhaled radon released from mantles. The second group was exposed to non-radioactive lantern mantle powder at the same interval. Paired t-test was used to evaluate the difference in the means of cortisol and blood cell count in both groups. P<0.05 was considered as the significance level.Results: Short term exposure of animals to radioactive lantern mantle powder led to a statistically significant decreased cortisol level, while no statistically significant decrease was found in animals that were exposed to non-radioactive mantle powder. Furthermore, a significant reduction was shown in post-exposure counts of WBC in the case group.Conclusions: Despite alteration of serum cortisol level, this study could not show stimulatory effects in some blood counts

  7. Exposure to the synthetic FXR agonist GW4064 causes alterations in gene expression and sublethal hepatotoxicity in eleutheroembryo medaka (Oryzias latipes)

    International Nuclear Information System (INIS)

    The small freshwater teleost, medaka (Oryzias latipes), has a history of usage in studies of chronic toxicity of liver and biliary system. Recent progress with this model has focused on defining the medaka hepatobiliary system. Here we investigate critical liver function and toxicity by examining the in vivo role and function of the farnesoid X receptor alpha (FXRα, NR1H4), a member of the nuclear receptor superfamily that plays an essential role in the regulation of bile acid homeostasis. Quantitative mRNA analysis of medaka FXRα demonstrates differential expression of two FXRα isoforms designated Fxrα1 and Fxrα2, in both free swimming medaka embryos with remaining yolk (eleutheroembryos, EEs) and adults. Activation of medaka Fxrα in vivo with GW4064 (a strong FXRα agonist) resulted in modification of gene expression for defined FXRα gene targets including the bile salt export protein, small heterodimer partner, and cytochrome P450 7A1. Histological examination of medaka liver subsequent to GW4064 exposure demonstrated significant lipid accumulation, cellular and organelle alterations in both hepatocytes and biliary epithelial cells of the liver. This report of hepatobiliary injury following GW4064 exposure extends previous investigations of the intrahepatic biliary system in medaka, reveals sensitivity to toxicant exposure, and illustrates the need for added resolution in detection and interpretation of toxic responses in this vertebrate.

  8. Prenatal alcohol exposure alters synaptic activity of adult hippocampal dentate granule cells under conditions of enriched environment.

    Science.gov (United States)

    Kajimoto, Kenta; Valenzuela, C Fernando; Allan, Andrea M; Ge, Shaoyu; Gu, Yan; Cunningham, Lee Anna

    2016-08-01

    Prenatal alcohol exposure (PAE) results in fetal alcohol spectrum disorder (FASD), which is characterized by a wide range of cognitive and behavioral deficits that may be linked to impaired hippocampal function and adult neurogenesis. Preclinical studies in mouse models of FASD indicate that PAE markedly attenuates enrichment-mediated increases in the number of adult-generated hippocampal dentate granule cells (aDGCs), but whether synaptic activity is also affected has not been studied. Here, we utilized retroviral birth-dating coupled with whole cell patch electrophysiological recordings to assess the effects of PAE on enrichment-mediated changes in excitatory and inhibitory synaptic activity as a function of DGC age. We found that exposure to an enriched environment (EE) had no effect on baseline synaptic activity of 4- or 8-week-old aDGCs from control mice, but significantly enhanced the excitatory/inhibitory ratio of synaptic activity in 8-week-old aDGCs from PAE mice. In contrast, exposure to EE significantly enhanced the excitatory/inhibitory ratio of synaptic activity in older pre-existing DGCs situated in the outer dentate granule cell layer (i.e., those generated during embryonic development; dDGCs) in control mice, an effect that was blunted in PAE mice. These findings indicate distinct electrophysiological responses of hippocampal DGCs to behavioral challenge based on cellular ontogenetic age, and suggest that PAE disrupts EE-mediated changes in overall hippocampal network activity. These findings may have implications for future therapeutic targeting of hippocampal dentate circuitry in clinical FASD. © 2016 Wiley Periodicals, Inc. PMID:27009742

  9. Altered quantities and in vivo activities of cholinesterase from Daphnia magna in sub-lethal exposure to organophosphorus insecticides.

    Science.gov (United States)

    Liu, Hongcui; Yuan, Bingqiang; Li, Shaonan

    2012-06-01

    For investigating relationship between activity of cholinesterase (ChE) and ambient concentration of anticholinesterases, Daphnia magna had been exposed for 21 day to sub-lethal concentrations, i.e. 1/6 EC(50), 1/36 EC(50), and 1/216 EC(50), of either triazophos or chlorpyrifos. Samples were taken at different points of time for measuring total activity and immunoreactive content of ChE and actual concentrations of the anticholinesterases. A type of antigen formerly developed by immunizing mice with purified ChE was utilized in this study to establish an indirect non-competitive ELISA for measuring immunoreactive content of ChE in Daphnia. Studies showed that for apparent activity, i.e. activity that was scaled with total protein, the insecticides caused 5.2-6.9 percent inhibition and 17.0-17.7 percent inductions during the 21 d exposure, whereas for inherent activity, i.e. activity that was scaled with immunoreactive protein, no induction was detected during the exposure. Accompanied by up to 65.9 percent and 68.0 percent promotion in terms of the immunoreactive content, up to 42.8 percent and 44.6 percent inhibition in terms of the inherent activity was indicated, respectively, for triazophos and chlopyrifos. Judged by measured concentrations, the inherent activity recovered faster than the rate of dissipation of the anticholinesterases. Result of the study suggested that the inherent activity was more sensitive than the apparent one in predicting sub-lethal and/or long-term stress of anticholinesterases. It also suggested that apart from promotion in terms of content of the ChE, the Daphnia developed capacities to block bio-concentration of anticholinesterases, and these capacities would make it liable to underestimate ambient concentration of anticholinesterases along with the time of exposure.

  10. Alterations of the In Vivo Torque-Velocity Relationship of Human Skeletal Muscle Following 30 Days Exposure to Simulated Microgravity

    Science.gov (United States)

    Dudley, Gary A.; Duvoisin, Marc R.; Convertino, Victor A.; Buchanan, Paul

    1989-01-01

    The purpose of this study was to examine the effect of 30 d of 6 deg headdown bedrest (BR) on the in vivo strength of skeletal muscle. Peak angle specific (0.78 rad below horizontal) torque of the knee extensor (KE) and flexor (KF) muscle groups of both limbs was assessed during unilateral efforts at four speeds (0.52, 1.74, 2.97 and 4.19 rad/s) during concentric and at three speeds (0.52, 1.74 and 2.97 rad/s) during eccentric actions. The average decrease (P less than 0.05) of peak angle specific torque directly post-BR for the KE across speeds of concentric and eccentric actions was about 19% (n = 7). Recovery for 30 d following BR markedly improved strength to about 92% (P greater than 0.05) of 'normal'. Strength of the KF was not altered (P greater than 0.05) by BR (about a 6% decrease independent of speed and type of muscle action). Changes of strength were not affected by the type or speed of muscle action. The results indicate that strength of ex-tensor more than of flexor muscle groups of the lower limb is decreased by 30 d of bedrest and that this response does not alter the nature of the in vivo torque-velocity relation.

  11. Detrimental psychophysiological effects of early maternal deprivation in adolescent and adult rodents: altered responses to cannabinoid exposure.

    Science.gov (United States)

    Marco, Eva M; Adriani, Walter; Llorente, Ricardo; Laviola, Giovanni; Viveros, María-Paz

    2009-04-01

    Environmental rearing conditions during the neonatal period are critical for the establishment of neurobiological factors controlling behavior and stress responsiveness. Early maternal deprivation (MD), consisting of a single 24-h maternal deprivation episode during early neonatal life, has been proposed as an animal model for certain psychopathologies including anxiety, depression and schizophrenic-related disorders. Despite first onset of mental disorders usually occur during adolescence, characterization of MD has been mostly developed in adult animals. We review here a series of experiments that were conducted on rats and mice, in which we analyzed the psychoimmunoendocrine outcomes of MD at both adolescence and adulthood. As a whole our results indicate that MD might promote a depressive-like trait that may be present from adolescence to maturity. Maternally deprived adolescent animals also displayed altered locomotor responses, a reduced interest for social investigation and seemed prone for impulsive behavior. Therefore, MD in rodents is further confirmed as a suitable animal model for the study of neuropsychiatric disorders that might become evident during adolescence. Given the increasing consumption of cannabis derivatives among the juvenile population and the reported comorbidity of neuropsychiatric symptoms with cannabis abuse, we also discuss our results indicating altered responses of maternally deprived adolescent animals to cannabinoid compounds.

  12. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates

    Energy Technology Data Exchange (ETDEWEB)

    Rabovsky, J.; Judy, D.J.; Rodak, D.J.; Petersen, M.

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under conditions of particulate exposure and virus infection, serum IFN levels peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE.

  13. Hepatotoxic Alterations Induced by Subchronic Exposure of Rats to Formulated Fenvalerate (20% EC) by Nose Only Inhalation

    Institute of Scientific and Technical Information of China (English)

    U. MANI; A. K. PRASAD; V. SURESHKUMAR; P. KUMAR; KEWAL LAL; B. K. MAJI; K. K. DUTTA

    2004-01-01

    Fenvalerate (20% EC) is a synthetic pyrethroid, which is commonly used in India by farmers for the protection of many food and vegetable crops against a wide variety of insects. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation exposure was carried out to investigate the hepatotoxic effects. Method Adult male rats were exposed to fen for 4 h/day, 5 days a week for 90 days by using Flow Past Nose Only Inhalation Chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results The results indicated hepatomegaly, increased activities of serum clinical enzymes (indicative of liver damage/dysfunction) along with pronounced histopathological damage of liver. Conclusion The hepatotoxic potential of formulated Fen (20% EC) in rats exposed by nose only inhalation is being reported for the first time and warrant adequate safety measures for human beings exposed to this insecticide, particularly by inhalation route.

  14. Prenatal exposure to alcohol and 3,4-methylenedioxymethamphetamine (ecstasy) alters adult hippocampal neurogenesis and causes enduring memory deficits.

    Science.gov (United States)

    Canales, Juan J; Ferrer-Donato, Agueda

    2014-01-01

    Recreational drug use among pregnant women is a source of concern due to potential harmful effects of drug exposure on prenatal and infant development. The simultaneous abuse of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)] and alcohol is prevalent among young adults, including young expectant mothers. Here, we used a rat model to study the potential risks associated with exposure to alcohol and MDMA during pregnancy. Pregnant rats received alcohol, MDMA, or both alcohol and MDMA by gavage at E13 through E15 twice daily. Female offspring treated prenatally with the combination of alcohol and MDMA, but not those exposed to either drug separately, showed at 3 months of age decreased exploratory activity and impaired working memory function. Prenatal treatment with the combination of alcohol and MDMA decreased proliferation of neuronal precursors in the adult dentate gyrus of the hippocampus, as measured by 5-bromo-2-deoxyuridine labelling, and adult neurogenesis, assessed by quantifying doublecortin expression. These results provide the first evidence that the simultaneous abuse of alcohol and ecstasy during pregnancy, even for short periods of time, may cause significant abnormalities in neurocognitive development.

  15. Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations.

    Science.gov (United States)

    Ahmad, Mohd Anwar; Gupta, Meetu

    2013-11-01

    Arsenic (As) contamination in the environment has attracted considerable attention worldwide. The objective of the present study was to see the comparative effect of As species As(III) and As(V) on accumulation, biochemical responses, and gene expression analysis in Brassica juncea var. Pusa Jaganath (PJn). Hydroponically grown 14-day-old seedlings of B. juncea were treated with different concentrations of As(III) and As(V). Accumulation of total As increased with increasing concentration of both As species and exposure time, mainly in roots. Reduction in seed germination, root-shoot length, chlorophyll, and protein content were observed with increasing concentration and exposure time of both As species, being more in As(III)-treated leaves. PJn variety showed that antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) and stress-related parameters (cysteine, proline, and malondialdehyde (MDA)) were stimulated and allows plant to tolerate both As species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis in leaves showed significant changes in protein profile with more stringent effect with As(III) stress. Semiquantitative RT-PCR analysis showed regulation in expression of phytochelatin synthase (PCS), metallothionine-2 (MT-2), glutathione reductase (GR), and glutathione synthetase (GS) genes under both As(III) and As(V) stresses. Results suggested that accumulation and inhibition on physiological parameters differ according to the As species, while molecular and biochemical parameters showed a combinatorial type of tolerance mechanism against As(III) and As(V) stresses.

  16. Mercury exposure associated with altered plasma thyroid hormones in the declining western pond turtle (Emys marmorata) from California mountain streams

    Science.gov (United States)

    Meyer, Erik; Eagles-Smith, Collin A.; Sparling, Donald; Blumenshine, Steve

    2014-01-01

    Mercury (Hg) is a global threat to wildlife health that can impair many physiological processes. Mercury has well-documented endocrine activity; however, little work on the effects of Hg on the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in aquatic wildlife exists despite the fact that it is a sensitive endpoint of contaminant exposure. An emerging body of evidence points to the toxicological susceptibility of aquatic reptiles to Hg exposure. We examined the endocrine disrupting potential of Hg in the western pond turtle (Emys marmorata), a long-lived reptile that is in decline throughout California and the Pacific Northwest. We measured total Hg (THg) concentrations in red blood cells (RBCs) and plasma T3 and T4 of turtles from several locations in California that have been impacted by historic gold mining. Across all turtles from all sites, the geometric mean and standard error THg concentration was 0.805 ± 0.025 μg/g dry weight. Sampling region and mass were the strongest determinants of RBC THg. Relationships between RBC THg and T3 and T4 were consistent with Hg-induced disruption of T4 deiodination, a mechanism of toxicity that may cause excess T4 levels and depressed concentrations of biologically active T3.

  17. Potential Association of Lead Exposure During Early Development of Mice With Alteration of Hippocampus Nitric Oxide Levels and Learning Memory

    Institute of Scientific and Technical Information of China (English)

    LI SUN; ZHENG-YAN ZHAO; JIAN HU; XIE-LAI ZHOU

    2005-01-01

    Objective Chronic lead (Pb) exposure during development is known to produce learning deficits. Nitric oxide participates in the synaptic mechanisms involved in certain forms of learning and memory. This study was designed to clarify whether Pb-induced impairment in learning and memory was associated with the changes of nitric oxide levels in mice brains.Methods Sixty Balb/c mice aged 10 days were chosen. A model of lead exposure was established by drinking 0.025%, 0.05%,0.075% lead acetate, respectively for 8 weeks. The controls were orally given distilled water. The ability to learn and memorize was examined by open field test, T-water maze test. In parallel with the behavioral data, NO level of hippocampus tissue was detected by biochemical assay. Results Compared with control groups, (1) the weight of 0.075% group was significantly reduced (P<0.05); (2) The number of times in mice attaining the required standards in T-water maze test was lower in 0.075%group (P<0.01). No significant difference was found between experimental and control groups in open field test (P>0.05); (3)NO level of mouse hippocampus tissue was decreased in 0.075% group (P<0.01). Conclusions The findings suggest that decreased hippocampus NO level may contribute to the Pb-induced deficits in learning and memory processes.

  18. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex.

    Science.gov (United States)

    Navarro, A I; Mandyam, C D

    2015-05-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA). Tissue enriched in the mPFC was processed for Western blot analysis and Golgi-Cox staining to investigate the long-lasting effects of CIE on the structure of mPFC neurons and the levels of myelin-associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons. These changes occurred concurrently with hypophosphorylation of the N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels which occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produced hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC.

  19. Uptake of phosphatidylserine-containing liposomes by liver sinusoidal endothelial cells in the serum-free perfused rat liver

    NARCIS (Netherlands)

    Rothkopf, C; Fahr, A; Fricker, G; Scherphof, GL; Kamps, JAAM

    2005-01-01

    We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:43 molar ratio and were radiolabelled with [H-3]cholesteryl oleyl ether. The negatively cha

  20. Risk of prenatal depression and stress treatment: alteration on serotonin system of offspring through exposure to Fluoxetine

    Science.gov (United States)

    Pei, Siran; Liu, Li; Zhong, Zhaomin; Wang, Han; Lin, Shuo; Shang, Jing

    2016-01-01

    Fluoxetine is widely used to treat depression, including depression in pregnant and postpartum women. Studies suggest that fluoxetine may have adverse effects on offspring, presumably through its action on various serotonin receptors (HTRs). However, definitive evidence and the underlying mechanisms are largely unavailable. As initial steps towards establishing a human cellular and animal model, we analyzed the expression patterns of several HTRs through the differentiation of human induced pluripotent stem (hiPS) cells into neuronal cells, and analyzed expression pattern in zebrafish embryos. Treatment of zebrafish embryos with fluoxetine significantly blocked the expression of multiple HTRs. Furthermore, fluoxetine gave rise to a change in neuropsychology. Embryos treated with fluoxetine continued to exhibit abnormal behavior upto 12 days post fertilization due to changes in HTRs. These findings support a possible long-term risk of serotonin pathway alteration, possibly resulting from the “placental drug transfer”. PMID:27703173

  1. Alterations of organ histopathology and metallolhionein mRNA expression in silver barb, Puntius gonionotus during subchronic cadmium exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Common silver barb, Puntius gonionotus exposed to the nominal concentration of 0.06 mg/L Cd for 60 d, were assessed for histopathological alterations (gills, liver and kidney), metal accumulation, and metallothionein (MT) mRNA expression. Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae, vacuolization in hepatocytes, and prominent tubular and glomerular damage in the kidney. In addition, kidney accumulated the highest content of cadmium, more than gills and liver. Expression of MT mRNA was increased in both liver and kidney of treated fish. Hepatic MT levels remained high after fish were removed to Cd-free water. In contrast, MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water. The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.

  2. Sex Specific Estrogen Receptor beta (ERβ) mRNA Expression in the Rat Hypothalamus and Amygdala is Altered by Neonatal Bisphenol A (BPA) Exposure

    Science.gov (United States)

    Cao, Jinyan; Joyner, Linwood; Mickens, Jillian A.; Leyrer, Stephanie M; Patisaul, Heather B

    2014-01-01

    Perinatal life is a critical window for sexually dimorphic brain organization, and profoundly influenced by steroid hormones. Exposure to endocrine disrupting compounds (EDCs) may disrupt this process, resulting in compromised reproductive physiology and behavior. To test the hypothesis that neonatal BPA exposure can alter sex specific postnatal ERβ expression in brain regions fundamental to sociosexual behavior we mapped ERβ mRNA levels in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), paraventricular nucleus (PVN), anterior portion of the medial amygdaloid nucleus (MeA), super optic nucleus (SON), suprachiasmic nucleus (SCN) and lateral habenula (LHb) across postnatal days (PNDs) 0 to 19. Next, rat pups of both sexes were subcutaneously injected over the first three days of life with 10 μg estradiol benzoate (EB), 50 μg/kg BPA (LBPA), or 50 mg/kg BPA (HBPA) and ERβ levels quantified in each region of interest (ROI) on PNDs 4 and 10. EB exposure decreased ERβ signal in most female ROIs, and in the male PVN. In the BNSTp, ERβ expression decreased in LBPA males and HBPA females on PND 10, thereby reversing the sex difference in expression. In the PVN, ERβ mRNA levels were elevated in LBPA females, also resulting in a reversal of sexually dimorphic expression. In the MeA, BPA decreased ERβ expression on PND 4. Collectively, these data demonstrate that region and sex specific ERβ expression is vulnerable to neonatal BPA exposure in regions of the developing rat brain critical to sociosexual behavior. PMID:24352099

  3. Embryonic co-exposure to methoxychlor and Clophen A50 alters sexual behavior in adult male quail.

    Science.gov (United States)

    Halldin, Krister; Axelsson, Jeanette; Brunström, Björn

    2005-04-01

    Embryonic exposure to estrogens and estrogenic pollutants is known to demasculinize sexual behavior in adult male Japanese quail. In the present study, we administered the insecticide methoxychlor to quail eggs at a dose of 150 microg/g egg and then studied sexual behavior and other reproductive variables in adult males. In a second experiment we administered the same dose of methoxychlor together with 10 microg/g egg of the commercial polychlorinated biphenyl (PCB) mixture Clophen A50 (CA50) and also CA50 alone. Neither methoxychlor nor CA50 had any significant effects by themselves, but when they were administered together a significant reduction in male sexual behavior was observed. It seems likely that induction of biotransformation enzymes in the embryos by CA50 resulted in increased conversion of methoxychlor to the more estrogenic metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE).

  4. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure.

    Science.gov (United States)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G J; Mummery, Christine L; Casini, Simona

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.

  5. Bisphenol A exposure during adulthood alters expression of aromatase and 5α-reductase isozymes in rat prostate.

    Directory of Open Access Journals (Sweden)

    Beatriz Castro

    Full Text Available The high incidence of prostate cancer (PCa and benign prostatic hypertrophy (BPH in elderly men is a cause of increasing public health concern. In recent years, various environmental endocrine disruptors, such as bisphenol A (BPA, have been shown to disrupt sexual organs, including the prostate gland. However, the mechanisms underlying these effects remain unclear. Because androgens and estrogens are important factors in prostate physiopathology, our objective was to examine in rat ventral prostate the effects of adult exposure to BPA on 5α-Reductase isozymes (5α-R types 1, 2, and 3 and aromatase, key enzymes in the biosynthesis of dihydrotestosterone and estradiol, respectively. Adult rats were subcutaneously injected for four days with BPA (25, 50, 300, or 600 µg/Kg/d dissolved in vehicle. Quantitative RT-PCR, western blot and immunohistochemical analyses showed lower mRNA and protein levels of 5α-R1 and 5α-R2 in BPA-treated groups versus controls but higher mRNA levels of 5α-R3, recently proposed as a biomarker of malignancy. However, BPA treatment augmented mRNA and protein levels of aromatase, whose increase has been described in prostate diseases. BPA-treated rats also evidenced a higher plasma estradiol/testosterone ratio, which is associated with prostate disease. Our results may offer new insights into the role of BPA in the development of prostate disease and may be of great value for studying the prostate disease risk associated with exposure to BPA in adulthood.

  6. ACSL6 is associated with the number of cigarettes smoked and its expression is altered by chronic nicotine exposure.

    Directory of Open Access Journals (Sweden)

    Jingchun Chen

    Full Text Available Individuals with schizophrenia tend to be heavy smokers and are at high risk for tobacco dependence. However, the nature of the comorbidity is not entirely clear. We previously reported evidence for association of schizophrenia with SNPs and SNP haplotypes in a region of chromosome 5q containing the SPEC2, PDZ-GEF2 and ACSL6 genes. In this current study, analysis of the control subjects of the Molecular Genetics of Schizophrenia (MGS sample showed similar pattern of association with number of cigarettes smoked per day (numCIG for the same region. To further test if this locus is associated with tobacco smoking as measured by numCIG and FTND, we conducted replication and meta-analysis in 12 independent samples (n>16,000 for two markers in ACSL6 reported in our previous schizophrenia study. In the meta-analysis of the replication samples, we found that rs667437 and rs477084 were significantly associated with numCIG (p = 0.00038 and 0.00136 respectively but not with FTND scores. We then used in vitro and in vivo techniques to test if nicotine exposure influences the expression of ACSL6 in brain. Primary cortical culture studies showed that chronic (5-day exposure to nicotine stimulated ACSL6 mRNA expression. Fourteen days of nicotine administration via osmotic mini pump also increased ACSL6 protein levels in the prefrontal cortex and hippocampus of mice. These increases were suppressed by injection of the nicotinic receptor antagonist mecamylamine, suggesting that elevated expression of ACSL6 requires nicotinic receptor activation. These findings suggest that variations in the ACSL6 gene may contribute to the quantity of cigarettes smoked. The independent associations of this locus with schizophrenia and with numCIG in non-schizophrenic subjects suggest that this locus may be a common liability to both conditions.

  7. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    Full Text Available Nayana A Patil,1,2 WN Gade,2 Deepti D Deobagkar1 1Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies, 2Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India Abstract: Titanium dioxide (TiO2 and zinc oxide (ZnO nanoparticles (NPs are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5 cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear

  8. Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole).

    Science.gov (United States)

    Luzio, Ana; Monteiro, Sandra M; Rocha, Eduardo; Fontaínhas-Fernandes, António A; Coimbra, Ana M

    2016-06-01

    Exposure of wildlife to endocrine disrupting chemicals (EDCs) is not necessarily continuous. Due to seasonal changes and variable industrial and agricultural activities it often occurs intermittently. Thus, it is possible that aquatic organisms may be more affected by periodic peak exposure than by chronic exposure. Therefore, an experimental scenario including an exposure from 2h to 90 days post-fertilization (dpf) and a subsequent recovery period until 150 dpf was chosen to assess the potential reversibility of the effects of sex steroids on sexual and gonad development of zebrafish (Danio rerio). The aim of this study was to investigate the persistence of the endocrine effects of an estrogen (EE2-17α-ethinylestradiol, 4ng/L), an inhibitor of estrogen synthesis (Fad-fadrozole, 50μg/L) or their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L). Afterwards, a semi-quantitative histological assessment was used to investigate histopathological changes on gonad differentiation and development. The data showed that fadrozole, alone or in combination with EE2, permanently disrupts the sexual development, inducing masculinization and causing severe pathological alterations in testis, such as intersex associated to the enlargement of sperm ducts, interstitial changes, asynchronous development and detachment of basal membrane. After exposures to both EDCs and their mixture, the gonad histopathology revealed interstitial proteinaceous fluid deposits and, in ovaries, there were atretic oocytes, and presumably degenerative mineralization. On the other hand, the gonadal changes induced by EE2 alone seem to be partially reversible when the exposure regime changed to a recovery period. In addition, EE2 enhanced zebrafish growth in both genders, with male fish presenting signs of early obesity such as the presence of adipocytes in testis. Moreover, sex ratio was slightly skewed toward females, at 90 and 105 dpf, in zebrafish exposed to EE2. The data further indicate that long

  9. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    Science.gov (United States)

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential. PMID:25568918

  10. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    Science.gov (United States)

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.

  11. Leishmania promastigotes lack phosphatidylserine but bind annexin V upon permeabilization or miltefosine treatment.

    Directory of Open Access Journals (Sweden)

    Adrien Weingärtner

    Full Text Available The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and (31P nuclear magnetic resonance (NMR spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining.

  12. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis

    International Nuclear Information System (INIS)

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC50 in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  13. Altered formalin-induced pain and Fos induction in the periaqueductal grey of preadolescent rats following neonatal LPS exposure.

    Directory of Open Access Journals (Sweden)

    Ihssane Zouikr

    Full Text Available Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis during postnatal day (PND 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG as well as rostral and caudal axes of the ventrolateral PAG (VLPAG. Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb as compared to medial habenula (MHb, however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process.

  14. Prenatal exposure to di-n-butyl phthalate (DBP) differentially alters androgen cascade in undeformed versus hypospadiac male rat offspring.

    Science.gov (United States)

    Jiang, Jun-Tao; Zhong, Chen; Zhu, Yi-Ping; Xu, Dong-Liang; Wood, Kristofer; Sun, Wen-Lan; Li, En-Hui; Liu, Zhi-Hong; Zhao, Wei; Ruan, Yuan; Xia, Shu-Jie

    2016-06-01

    This study was to compare the alterations of androgen cascades in di-n-butyl phthalate (DBP)-exposed male offspring without hypospadias (undeformed) versus those with hypospadias. To induce hypospadias in male offspring, pregnant rats received DBP via oral gavage at a dose of 750mg/kg BW/day during gestational days 14-18. The mRNA expression levels of genes downstream of the androgen signaling pathway, such as androgen receptor (AR) and Srd5a2, in testes of undeformed rat pups were similar to those in controls; in hypospadiac rat pups these levels were significantly lower than those of control pups. In contrast, both undeformed and hypospadiac rats had decreased serum testosterone levels, reduced mRNA expression of key enzymes in the androgen synthetic pathway in the testes, and ablated genes of developmental pathways, such as Shh, Bmp4, Fgf8, Fgf10 and Fgfr2, in the genital tubercle (GT) as compared to those in DBP-unexposed controls, albeit hypospadiac rats had a more severe decrement than those of undeformed rats. Although other possibilities cannot be excluded, our findings suggest that the relatively normal levels of testosterone-AR-Srd5a2 may contribute to the resistance to DBP toxicity in undeformed rats. In conclusion, our results showed a potential correlation between decreased testosterone levels, reduced mRNA expression of AR and Srd5a2 and the occurrence of hypospadias in male rat offspring prenatally exposed to DBP. PMID:26948521

  15. Cyto-architectural Alterations in the Corpuscles of Stannius of Stinging Catfish Heteropneustes fossilis after Exposure to a Botanical Pesticide (Nerium indicum

    Directory of Open Access Journals (Sweden)

    ManiRam Prasad

    2014-03-01

    Full Text Available Background: This investigation describes the cyto-architectural alterations observed in the corpuscles of Stannius of stinging catfish Heteropneustes fossilis after treatment with a botanical pesticide Nerium indicum. Methods: Heteropneustes fossilis were subjected to 11.27 and 2.81 mg/L of Nerium indicum leaf extract over short- and long-term exposure periods, respectively. Blood was collected for calcium analysis and corpuscles of Stannius (CS gland were fixed on 24, 48, 72 and 96 h in the short-term experiment and after 7, 14, 21, and 28 days in the long-term experiment. Results: Serum calcium levels decreased from 48 h to 96 h. CS remains unaffected till 72 h. After the 96-hour treatment, increased granulation was observed in AF- positive cells. Nuclear volume of these cells exhibited no change throughout the short-term treatment. Slight increases in nuclear volume of AF-negative cells were recorded after 96 h. Nerium indicum caused decreases in serum calcium levels of H. fossilis from day 14 to 28. CS exhibited no alterations up to 14 days of exposure. AF-positive cells of CS depicted increased granulation after 21 days of treatment. Nuclear volume of these cells exhibited a slight decrease from day 21 to 28. Heavy accumulation of AF-positive granules was observed and few degenerating cells were noticed. Nuclear volume of AF-negative cells increased after 21 and 28 days of treatment. Vacuolization and degeneration occurred in certain places. Conclusion: It is inferred from the present study that the botanical pesticide Nerium indicum induced severe changes in the corpuscles of Stannius of catfish.

  16. Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Bortolotto, Josiane W; Cognato, Giana P; Christoff, Raissa R; Roesler, Laura N; Leite, Carlos E; Kist, Luiza W; Bogo, Mauricio R; Vianna, Monica R; Bonan, Carla D

    2014-04-01

    Chronic exposure to paraquat (Pq), a toxic herbicide, can result in Parkinsonian symptoms. This study evaluated the effect of the systemic administration of Pq on locomotion, learning and memory, social interaction, tyrosine hydroxylase (TH) expression, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, and dopamine transporter (DAT) gene expression in zebrafish. Adult zebrafish received an i.p. injection of either 10 mg/kg (Pq10) or 20 mg/kg (Pq20) of Pq every 3 days for a total of six injections. Locomotion and distance traveled decreased at 24 h after each injection in both treatment doses. In addition, both Pq10- and Pq20-treated animals exhibited differential effects on the absolute turn angle. Nonmotor behaviors were also evaluated, and no changes were observed in anxiety-related behaviors or social interactions in Pq-treated zebrafish. However, Pq-treated animals demonstrated impaired acquisition and consolidation of spatial memory in the Y-maze task. Interestingly, dopamine levels increased while DOPAC levels decreased in the zebrafish brain after both treatments. However, DAT expression decreased in the Pq10-treated group, and there was no change in the Pq20-treated group. The amount of TH protein showed no significant difference in the treated group. Our study establishes a new model to study Parkinson-associated symptoms in zebrafish that have been chronically treated with Pq.

  17. Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues.

    Science.gov (United States)

    Green, Benjamin B; Marsit, Carmen J

    2015-06-01

    Strong evidence implicates maternal environmental exposures in contributing to adverse outcomes during pregnancy and later in life through the developmental origins of health and disease hypothesis. Recent research suggests these effects are mediated through the improper regulation of DNA methylation in offspring tissues, specifically placental tissue, which plays a critical role in fetal development. This article reviews the relevant literature relating DNA methylation in multiple tissues at or near delivery to several prenatal environmental toxicants and stressors, including cigarette smoke, endocrine disruptors, heavy metals, as well as maternal diet. These human studies expand upon previously reported outcomes in animal model interventions and include effects on both imprinted and non-imprinted genes. We have also noted some of the strengths and limitations in the approaches used, and consider the appropriate interpretation of these findings in terms of their effect size and their relationship to differential gene expression and potential health outcomes. The studies suggest an important role of DNA methylation in mediating the effects of the intrauterine environment on children's health and a need for additional research to better clarify the role of this epigenetic mechanism as well as others. PMID:26231362

  18. Differential effects of cocaine exposure on the abundance of phospholipid species in rat brain and blood*

    Science.gov (United States)

    Cummings, Brian S.; Pati, Sumitra; Sahin, Serap; Scholpa, Natalie E.; Monian, Prashant; Trinquero, Paul O.; Clark, Jason K.; Wagner, John J.

    2015-01-01

    Background Lipid profiles in the blood are altered in human cocaine users, suggesting that cocaine-exposure can induce lipid remodeling. Methods Cocaine-induced locomotor sensitization in rats was followed by shotgun lipidomics using electrospray ionization-mass spectrometry (ESI-MS) and determined changes in brain tissues. To determine if any lipidomic changes were also reflected in the blood, we performed principal component analysis (PCA) of lipidomic spectra isolated from cocaine-treated animals. Alterations in the abundance of phospholipid species were correlated with behavioral changes in the magnitude of either the initial response to drug or locomotor sensitization. Results Behavioral sensitization altered the relative abundance of several phospholipid species in the hippocampus and cerebellum, measured one week following the final exposure to cocaine. In contrast, relatively few effects on phospholipids in either the dorsal or the ventral striatum were observed. PCA analysis demonstrated that cocaine altered the relative abundance of several glycerophospholipid species as compared to saline-injected controls. Subsequent MS/MS analysis identified some of these lipids as phosphatidylethanolamines, phosphatidylserines and phosphatidylcholines. The relative abundance of some of these phospholipid species were well correlated (R2 of 0.7 or higher) with either the initial response to cocaine or locomotor sensitization. Conclusion Taken together, these data demonstrate that a cocaine-conditioning experience results in the remodeling of specific phospholipids in rat brain tissue in a region-specific manner and also alters the intensities and types of phospholipid species in rat blood. These results further suggest that such changes may serve as biomarkers to assess the neuroadaptations occurring following repeated exposure to cocaine. PMID:25960140

  19. Exposure to contaminated sediments induces alterations in the gill epithelia in juvenile Solea senegalensis: a comparative in situ and ex situ study

    Directory of Open Access Journals (Sweden)

    Carla Martins

    2014-06-01

    contaminated sediments. Hypertrophied chloride cells are a consequence of a hindered osmotic regulation by the impairment of ionic active transport, leading to loss-of-function and excessive fluid retention in the cytoplasm. On its turn, a reduction in number and size of gill mucous cells likely reduced the protection provided by mucous to these delicate structures. In general, the alterations were more pronounced in the ex situ study than in situ bioassays, which is probably linked to differences in contaminant bioavailability between laboratory and field scenarios. This variation is likely related to, for instance, estuarine hydrodynamics and sediment steady-state parameters. Interestingly, the results suggest that time of exposure is a key factor, since fewer alterations were observed in animals sampled at the end of the assay (28 days compared to the mid-term (14 days, revealing adaptation to toxicological challenge. In conclusion, mixed sediment contamination can cause physiological alterations in fish gill epithelia that can be determined histologically. These subtle changes may affect the health status of animals by impairing key vital functions such as osmotic balance. As such, physiological alterations to fish gill epithelia may reflect, as in the present case, estuarine sediment contamination even when severe gill lesions are reduced or absent, which mandates caution when interpreting histopathological data in fish for the purpose of environmental risk assessment.

  20. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    Science.gov (United States)

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  1. Microcystin-LR acute exposure does not alter in vitro and in vivo ATP, ADP and AMP hydrolysis in adult zebrafish (Danio rerio brain membranes

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2012-10-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria during the blooms that could accumulate in aquatic animals and be relocated to higher trophic levels. Adenosine triphosphate (ATP acts as an excitatory neurotransmitter and/or a neuromodulator in the extracellular space playing important roles in physiological and pathological conditions. The aim of this study was, therefore, to evaluate the acute effects of different concentrations of MC-LR on nucleoside triphosphate diphosphohydrolases and 5’-nucleotidade in adult zebrafish (Danio rerio brain membranes. The results have shown no significant changes in ATP, adenosine diphosphate (ADP and adenosine monophosphate (AMP hydrolysis in zebrafish brain membranes. MC-LR in vitro also did not alter ATP, ADP and AMP hydrolysis in the concentrations tested. These findings show that acute exposure to MC-LR did not modulate ectonucleotidase activity in the conditions tested. However, additional studies including chronic exposure should be performed in order to achieve a better understanding about MC-LR toxicity mechanisms in the central nervous system.

  2. Exposure of C57BL/6J mice to long photoperiod during early life stages increases body weight and alters plasma metabolomic profiles in adulthood.

    Science.gov (United States)

    Uchiwa, Tatsuhiro; Takai, Yusuke; Tashiro, Ayako; Furuse, Mitsuhiro; Yasuo, Shinobu

    2016-09-01

    Perinatal photoperiod is an important regulator of physiological phenotype in adulthood. In this study, we demonstrated that postnatal (0-4 weeks old) exposure of C57BL/6J mice to long photoperiod induced persistent increase in body weight until adulthood, compared with the mice maintained under short photoperiod. The expression of peroxisome proliferator-activated receptor δ, a gene involved in fatty acid metabolism, was decreased in 10-week-old mice exposed to long photoperiod during 0-4 or 4-8 weeks of age. Plasma metabolomic profiles of adult mice exposed to a long photoperiod during the postnatal period (0-4 LD) were compared to those in the mice exposed to short photoperiod during the same period. Cluster analysis revealed that both carbon metabolic pathway and nucleic acid pathway were altered by the postnatal photoperiod. Levels of metabolites involved in glycolysis were significantly upregulated in 0-4 LD, suggesting that the mice in 0-4 LD use the glycolytic pathway for energy expenditure rather than the fatty acid oxidation pathway. In addition, the mice in 0-4 LD exhibited high levels of purine metabolites, which have a role in neuroprotection. In conclusion, postnatal exposure of C57BL/6J mice to long photoperiod induces increase in body weight and various changes in plasma metabolic profiles during adulthood. PMID:27650252

  3. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health. PMID:27291499

  4. Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function and blood pressure in mature male guinea pigs.

    Science.gov (United States)

    Banjanin, Sonja; Kapoor, Amita; Matthews, Stephen G

    2004-07-01

    Pregnant guinea pigs were treated with dexamethasone (1 mg kg(-1)) or vehicle on days 40-41, 50-51 and 60-61 of gestation, after which animals delivered normally. Adult male offspring were catheterized at 145 days of age and subjected to tests of hypothalamic-pituitary-adrenal (HPA) axis function in basal and activated states. Animals exposed to dexamethasone in utero (mat-dex) exhibited increased hippocampus-to-brain weight ratio, increased adrenal-to-body weight ratio and increased mean arterial pressure. There were no effects on gestation length, birth weight and postnatal growth. There were no overall differences in diurnal plasma adrenocorticotropic hormone (ACTH) and cortisol profiles, though there were subtle differences during the subjective afternoon between control and mat-dex offspring. A significant decrease in initial ACTH suppression was observed following dexamethasone injection in mat-dex offspring compared to control offspring. Molecular analysis revealed significantly increased MR mRNA expression in the limbic system and particularly in the dentate gyrus in mat-dex offspring. In the anterior pituitary, both pro-opiomelanocortin (POMC) and glucocorticoid receptor (GR) mRNA levels were significantly elevated in mat-dex offspring. In conclusion, (1) repeated prenatal treatment with synthetic glucocorticoid (sGC) permanently programmes organ growth, blood pressure and HPA regulation in mature male offspring and these changes involve modification of corticosteroid receptor expression in the brain and pituitary; (2) the effects of prenatal sGC exposure on HPA function appear to change as a function of age, indicating the importance of investigating HPA and cardiovascular outcome at multiple time points throughout life.

  5. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.

  6. Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat.

    Science.gov (United States)

    Rodríguez, Verónica Mireya; Limón-Pacheco, Jorge Humberto; Carrizales, Leticia; Mendoza-Trejo, María Soledad; Giordano, Magda

    2010-01-01

    Several studies have associated chronic arsenicism with decreases in IQ and sensory and motor alterations in humans. Likewise, studies of rodents exposed to inorganic arsenic ((i)As) have found changes in locomotor activity, brain neurochemistry, behavioral tasks, oxidative stress, and in sensory and motor nerves. In the current study, male Sprague-Dawley rats were exposed to environmentally relevant doses of (i)As (0.05, 0.5 mg (i)As/L) and to a high dose (50 mg (i)As/L) in drinking water for one year. Hypoactivity and increases in the striatal dopamine content were found in the group treated with 50 mg (i)As/L. Exposure to 0.5 and 50 mg (i)As/L increased the total brain content of As. Furthermore, (i)As exposure produced a dose-dependent up-regulation of mRNA for Mn-SOD and Trx-1 and a down-regulation of DAR-D₂ mRNA levels in the nucleus accumbens. DAR-D₁ and Nrf2 mRNA expression were down-regulated in nucleus accumbens in the group exposed to 50 mg (i)As/L. Trx-1 mRNA levels were up-regulated in the cortex in an (i)As dose-dependent manner, while DAR-D₁ mRNA expression was increased in striatum in the 0.5 mg (i)As/L group. These results show that chronic exposure to low levels of arsenic causes subtle but region-specific changes in the nervous system, especially in antioxidant systems and dopaminergic elements. These changes became behaviorally evident only in the group exposed to 50 mg (i)As/L.

  7. Daily Exposure to Sucrose Impairs Subsequent Learning About Food Cues: A Role for Alterations in Ghrelin Signaling and Dopamine D2 Receptors.

    Science.gov (United States)

    Sharpe, M J; Clemens, K J; Morris, M J; Westbrook, R F

    2016-04-01

    The prevalence of hedonic foods and associated advertising slogans has contributed to the rise of the obesity epidemic in the modern world. Research has shown that intake of these foods disrupt dopaminergic systems. It may be that a disruption of these circuits produces aberrant learning about food-cue relationships. We found that rodents given 28 days of intermittent access to sucrose exhibited a deficit in the ability to block learning about a stimulus when it is paired in compound with food and another stimulus that has already been established as predictive of the food outcome. This deficit was characterized by an approach to a cue signaling food delivery that is usually blocked by prior learning, an effect dependent on dopaminergic prediction-error signaling in the midbrain. Administering the D2 agonist quinpirole during learning restored blocking in animals with a prior history of sucrose exposure. Further, repeated central infusions of ghrelin produced a deficit in blocking in the same manner as sucrose exposure. We argue that changes in dopaminergic systems resulting from sucrose exposure are mediated by a disruption of ghrelin signaling as rodents come to anticipate delivery of the highly palatable sucrose outside of normal feeding schedules. This suggestion is supported by our finding that both sucrose and ghrelin treatments resulted in increases in amphetamine-induced locomotor responding. Thus, for the first time, we have provided evidence of a potential link between alterations in D2 receptors caused by the intake of hedonic foods and aberrant learning about cue-food relationships capable of promoting inappropriate feeding habits. In addition, we have found preliminary evidence to suggest that this is mediated by changes in ghrelin signaling, a finding that should stimulate further research into modulation of ghrelin activity to treat obesity. PMID:26365954

  8. Phytic Acid Exposure Alters AflatoxinB1-induced Reproductive and Oxidative Toxicity in Albino Rats (Rattus norvegicus).

    Science.gov (United States)

    Abu El-Saad, Abdelaziz S; Mahmoud, Hamada M

    2009-09-01

    activities were recorded. The histopathologic alterations revealed a degeneration and highly mitotic division within the spermatogenic nuclei, in addition to some karyomegaly and nuclear pyknosis. It is concluded that the reduction in the toxicity of free radicals by phytic acid might be responsible for the protective influence observed.

  9. Phytic Acid Exposure Alters AflatoxinB1-Induced Reproductive and Oxidative Toxicity in Albino Rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Abdelaziz S. Abu El-Saad

    2009-01-01

    dismutase activities were recorded. The histopathologic alterations revealed a degeneration and highly mitotic division within the spermatogenic nuclei, in addition to some karyomegaly and nuclear pyknosis. It is concluded that the reduction in the toxicity of free radicals by phytic acid might be responsible for the protective influence observed.

  10. Acute exposure to ergot alkaloids from endophyte-infected tall fescue does not alter absorptive or barrier function of the isolated bovine ruminal epithelium.

    Science.gov (United States)

    Foote, A P; Penner, G B; Walpole, M E; Klotz, J L; Brown, K R; Bush, L P; Harmon, D L

    2014-07-01

    Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in volatile fatty acids (VFA) absorption from the washed rumen of steers. Previous data also indicates that incubating an extract of endophyte-infected tall fescue seed causes an increase in the amount of VFA absorbed per unit of blood flow, which could result from an alteration in the absorptive or barrier function of the rumen epithelium. An experiment was conducted to determine the acute effects of an endophyte-infected tall fescue seed extract (EXT) on total, passive or facilitated acetate and butyrate flux across the isolated bovine rumen as well as the barrier function measured by inulin flux and tissue conductance (G t ). Flux of ergovaline across the rumen epithelium was also evaluated. Rumen tissue from the caudal dorsal sac of Holstein steers (n=6), fed a common diet, was collected and isolated shortly after slaughter and mounted between two halves of Ussing chambers. In vitro treatments included vehicle control (80% methanol, 0.5% of total volume), Low EXT (50 ng ergovaline/ml) and High EXT (250 ng ergovaline/ml). Results indicate that there is no effect of acute exposure to ergot alkaloids on total, passive or facilitated flux of acetate or butyrate across the isolate bovine rumen epithelium (P>0.51). Inulin flux (P=0.16) and G t (P>0.17) were not affected by EXT treatment, indicating no alteration in barrier function due to acute ergot alkaloid exposure. Ergovaline was detected in the serosal buffer of the High EXT treatment indicating that the flux rate is ~0.25 to 0.44 ng/cm2 per hour. Data indicate that specific pathways for VFA absorption and barrier function of the rumen epithelium are not affected by acute exposure to ergot alkaloids from tall fescue at the concentrations tested. Ergovaline has the potential to be absorbed from the rumen of cattle that

  11. Biochemical and genetic alterations in the freshwater neotropical fish Prochilodus lineatus after acute exposure to Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Cylene Zambrozi Garcia

    2012-09-01

    Full Text Available Microcystins are secondary metabolites produced by different species of cyanobacteria, such as Microcystis aeruginosa (MA. In this study, the biochemical and genetic effects of lyophilized MA were evaluated in the neotropical fish Prochilodus lineatus exposed to 1 or 2 mg L-1 lyophilized MA (treated group or only water (control group in static toxicity tests for 24 and 96 h. The gills and liver were used in the analysis of biotransformation enzymes and antioxidant defenses, blood and gill cells in genetic analysis and in brain and muscle it was determined the activity of acetylcholinesterase (AChE. The results showed the biotransformation pathway activation due to the increase in hepatic CYP1A and in branchial and hepatic glutathione S-transferase (GST. The antioxidant defense proved to be greatly affected by MA exposure leading to changes, both in gills and liver, in the activities of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione reductase (GR and in the content of tripeptide glutathione (GSH. Lipid peroxidation was not detected, but damage to DNA molecule was observed in blood cells. In conclusion, it can be state the lyophilized MA is able to promote changes in the biochemical and genetic parameters of P. lineatus.As microcistinas são metabólitos secundários produzidos por diferentes espécies de cianobactérias, como a Microcystis aeruginosa (MA. Neste estudo, os efeitos bioquímicos e genéticos de liofilizado de MA foram avaliados para juvenis da espécie de peixe Neotropical Prochilodus lineatus expostos a 1 ou 2 mg L-1 de liofilizado de MA (grupo tratado ou apenas à água (grupo controle, em testes de toxicidade estáticos, durante 24 e 96 h. As brânquias e o fígado foram usados para as análises das enzimas de biotransformação e defesas antioxidantes, células do sangue e das brânquias para análises genéticas e no cérebro e músculo foi determinada a atividade da acetilcolinesterase (ACh

  12. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Desplats Paula

    2012-09-01

    Full Text Available Abstract Background Parkinson's disease (PD is a multifactorial disease where environmental factors act on genetically predisposed individuals. Although only 5% of PD manifestations are associated with specific mutations, majority of PD cases are of idiopathic origin, where environment plays a prominent role. Concurrent exposure to Paraquat (PQ and Maneb (MB in rural workers increases the risk for PD and exposure of adult mice to MB/PQ results in dopamine fiber loss and decreased locomotor activity. While PD is characterized by neuronal loss in the substantia nigra, we previously showed that accumulation of α-synuclein in the limbic system contributes to neurodegeneration by interfering with adult neurogenesis. Results We investigated the effect of pesticides on adult hippocampal neurogenesis in two transgenic models: Line 61, expressing the human wild type SNCA gene and Line LRRK2(G2019S, expressing the human LRRK2 gene with the mutation G2019S. Combined exposure to MB/PQ resulted in significant reduction of neuronal precursors and proliferating cells in non-transgenic animals, and this effect was increased in transgenic mice, in particular for Line 61, suggesting that α-synuclein accumulation and environmental toxins have a synergistic effect. We further investigated the transcription of 84 genes with direct function on neurogenesis. Overexpresion of α-synuclein resulted in the downregulation of 12% of target genes, most of which were functionally related to cell differentiation, while LRRK2 mutation had a minor impact on gene expression. MB/PQ also affected transcription in non-transgenic backgrounds, but when transgenic mice were exposed to the pesticides, profound alterations in gene expression affecting 27% of the studied targets were observed in both transgenic lines. Gene enrichment analysis showed that 1:3 of those genes were under the regulation of FoxF2 and FoxO3A, suggesting a primary role of these proteins in the response to

  13. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    Science.gov (United States)

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  14. Glycation of the muscle-specific enolase by reactive carbonyls: effect of temperature and the protection role of carnosine, pyridoxamine and phosphatidylserine.

    Science.gov (United States)

    Pietkiewicz, Jadwiga; Bronowicka-Szydełko, Agnieszka; Dzierzba, Katarzyna; Danielewicz, Regina; Gamian, Andrzej

    2011-03-01

    Reactive carbonyls such as 4-hydroxy-2-nonenal (4-HNE), trans-2-nonenal (T2 N), acrolein (ACR) can react readily with nucleophilic protein sites forming of advanced glycation end-products (AGE). In this study, the human and pig muscle-specific enolase was used as a protein model for in vitro modification by 4-HNE, T2 N and ACR. While the human enolase interaction with reactive α-oxoaldehyde methylglyoxal (MOG) was demonstrated previously, the effect of 4-HNE, T2N and ACR has not been identified yet. Altering in catalytic function were observed after the enzyme incubation with these active compounds for 1-24 h at 25, 37 and 45 °C. The inhibition degree of enolase activity occurred in following order: 4-HNE > ACR > MOG > T2N and inactivation of pig muscle-specific enolase was more effective relatively to human enzyme. The efficiency of AGE formation depends on time and incubation temperature with glycating agent. More amounts of insoluble AGE were formed at 45 °C. We found that pyridoxamine and natural dipeptide carnosine counteracted AGE formation and protected enolase against the total loss of catalytic activity. Moreover, we demonstrated for the first time that phosphatidylserine may significantly protect enolase against decrease of catalytic activity in spite of AGE production. PMID:21347838

  15. Sex differences in the adult HPA axis and affective behaviors are altered by perinatal exposure to a low dose of bisphenol A.

    Science.gov (United States)

    Chen, Fang; Zhou, Libin; Bai, Yinyang; Zhou, Rong; Chen, Ling

    2014-07-01

    Bisphenol A (BPA), an estrogen-mimicking endocrine disrupter, when administered perinatally can affect affective behaviors in adult rodents, however the underlying mechanisms remain largely unclear. Postnatal day (PND) 80 vehicle-injected control female rats showed more obvious depression- and anxiety-like behaviors than males, indicative of sexually dimorphic affective behaviors. When female breeders were subcutaneously injected with BPA (2µg/kg) from gestation day 10 to lactation day 7, sex difference of affective behaviors was impaired in their offspring (PND80 BPA-rats), as results that female BPA-rats showed a visible "antianxiety-like" behavior, and male BPA-rats increased depression-like behavior compared to vehicle-injected controls. Notably, basal levels of serum corticosterone and adrenocorticotropin (ACTH), and corticotropin-releasing hormone mRNA were increased in male BPA-rats, but not in female BPA-rats, in comparison with vehicle-injected controls. Following mild-stressor the elevation of corticosterone or ACTH levels was higher in male BPA-rats, whereas it was lower in female BPA-rats than vehicle-injected controls. In comparison with vehicle-injected controls, the level of glucocorticoid receptor (GR) mRNA in hippocampus or hypothalamic paraventricular nucleus was increased in female BPA-rats, while decreased in male BPA-rats. In addition, the levels of hippocampal mineralocorticoid receptor (MR) mRNA, neuronal nitric oxide synthase (nNOS) and phospho-cAMP response element binding protein (p-CREB) were increased in female BPA-rats, but were decreased in male BPA-rats. Furthermore, the testosterone level was reduced in male BPA-rats. The results indicate that the perinatal exposure to BPA through altering the GR and MR expression disrupts the GR-mediated feedback of hypothalamic-pituitary-adrenal (HPA) axis and MR-induced nNOS-CREB signaling, which alters sex difference in affective behaviors. PMID:24857958

  16. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study

    OpenAIRE

    Richter Y; Herzog Y; Lifshitz Y; Hayun R; Zchut S

    2013-01-01

    Yael Richter, Yael Herzog, Yael Lifshitz, Rami Hayun, Sigalit ZchutEnzymotec Ltd, K’far Baruch, IsraelObjective: To evaluate the efficacy and safety of soybean-derived phosphatidylserine (SB-PS) (300 mg/day) in improving cognitive performance in elderly with memory complaints, following a short duration of 12 weeks’ SB-PS administration.Methods: SB-PS was administered daily for 12 weeks to 30 elderly volunteers with memory complaints (age range 50–90 years). Cogn...

  17. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    OpenAIRE

    Daniela Rieger; Alice Assinger; Katrin Einfinger; Barbora Sokolikova; Margarethe Geiger

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marke...

  18. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    Science.gov (United States)

    Hamilton, Derek A.; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24 hours of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior

  19. In Utero Exposure to a Cardiac Teratogen Causes Reversible Deficits in Postnatal Cardiovascular Function, But Altered Adaptation to the Burden of Pregnancy.

    Science.gov (United States)

    Aasa, Kristiina L; Maciver, Rebecca D; Ramchandani, Shyamlal; Adams, Michael A; Ozolinš, Terence R S

    2015-11-01

    Congenital heart defects (CHD) are the most common birth anomaly and while many resolve spontaneously by 1 year of age, the lifelong burden on survivors is poorly understood. Using a rat model of chemically induced CHD that resolve postnatally, we sought to characterize the postnatal changes in cardiac function, and to investigate whether resolved CHD affects the ability to adapt to the increased the cardiovascular (CV) burden of pregnancy. To generate rats with resolved CHD, pregnant rats were administered distilled water or dimethadione (DMO) [300 mg/kg b.i.d. on gestation day (gd) 9 and 10] and pups delivered naturally. To characterize structural and functional changes in the heart, treated and control offspring were scanned by echocardiography on postnatal day 4, 21, and 10-12 weeks. Radiotelemeters were implanted for continuous monitoring of hemodynamics. Females were mated and scanned by echocardiography on gd12 and gd18 during pregnancy. On gd18, maternal hearts were collected for structural and molecular assessment. Postnatal echocardiography revealed numerous structural and functional differences in treated offspring compared with control; however, these resolved by 10-12 weeks of age. The CV demand of pregnancy revealed differences between treated and control offspring with respect to mean arterial pressure, CV function, cardiac strain, and left ventricular gene expression. In utero exposure to DMO also affected the subsequent generation. Gd18 fetal and placental weights were increased in treated F2 offspring. This study demonstrates that in utero chemical exposure may permanently alter the capacity of the postnatal heart to adapt to pregnancy and this may have transgenerational effects.

  20. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  1. Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Nagarjun V Konduru

    Full Text Available Broad applications of single-walled carbon nanotubes (SWCNT dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid "eat-me" signal, phosphatidylserine (PS, makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells.

  2. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine.

    Science.gov (United States)

    Gilbert, Gary E; Novakovic, Valerie A; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W

    2015-09-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  3. Phosphatidylserine-positive particles in the apical domain of sensory hair cells

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-rui; Alfred Nuttall

    2006-01-01

    Apical membrane recycling has been proposed to be important for normal hair cell function. The current study reports an in vitro work that demonstrates the presence of phosphatidylserine (PS) and PS-positive vesicles labeled by Annexin V in the apical portion of hair cells. The following characteristics of the PS-positive vesicles were noticed using scanning confocal fluorescence microscopy: (1) variable sizes around 200 nm; (2)variable distribution patterns (either uniformly along individual stereocilia in the hair bundle or irregular) in the stereocilia from cell to cell; (3) variable sizes and numbers at locations along the border of the cuticular plate (CP),with a large number of them located at the vestigal kinocilial location; (4) motility with some of the vesicles during the observation period; (5) increase in PS labeling and the number of PS-positive vesicles after loud sound stimulation; and (6) decreased PS labeling and PS-positive vesicle numbers following treatment with LY-294002, a PI3 -kinase inhibitor. These results suggest that the presence of PS-positive vesicles at the apical area of hair cells may be indicative of vesicle shedding or transportation of a protein or rafts.

  4. The effects of phosphatidylserine on endocrine response to moderate intensity exercise

    Directory of Open Access Journals (Sweden)

    Purpura Martin

    2008-07-01

    Full Text Available Abstract Background Previous research has indicated that phosphatidylserine (PS supplementation has the potential to attenuate the serum cortisol response to acute exercise stress. Equivocal findings suggest that this effect might be dose dependent. This study aimed to examine the influence of short-term supplementation with a moderate dose of PS (600 mg per day on plasma concentrations of cortisol, lactate, growth hormone and testosterone before, during, and following moderate intensity exercise in healthy males. Methods 10 healthy male subjects participated in the study. Each subject was assigned to ingest 600 mg PS or placebo per day for 10 days using a double-blind, placebo-controlled, crossover design. Serial venous blood samples were taken at rest, after a 15 minute moderate intensity exercise protocol on a cycle ergometer that consisted of five 3-minute incremental stages beginning at 65% and ending at 85% VO2 max, and during a 65 minute passive recovery. Plasma samples were assessed for cortisol, growth hormone, testosterone, lactate and testosterone to cortisol ratio for treatment (PS or placebo. Results Mean peak cortisol concentrations and area under the curve (AUC were lower following PS (39 ± 1% and 35 ± 0%, respectively when compared to placebo (p Conclusion The findings suggest that PS is an effective supplement for combating exercise-induced stress and preventing the physiological deterioration that can accompany too much exercise. PS supplementation promotes a desired hormonal status for athletes by blunting increases in cortisol levels.

  5. Antibodies to Phosphatidylserine/Prothrombin Complex in Antiphospholipid Syndrome: Analytical and Clinical Perspectives.

    Science.gov (United States)

    Peterson, Lisa K; Willis, Rohan; Harris, E Nigel; Branch, Ware D; Tebo, Anne E

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy-related morbidity accompanied by persistently positive antiphospholipid antibodies (aPL). Current laboratory criteria for APS classification recommend testing for lupus anticoagulant as well as IgG and IgM anticardiolipin, and beta-2 glycoprotein I (anti-β2GPI) antibodies. However, there appears to be a subset of patients with classical APS manifestations who test negative for the recommended criteria aPL tests. While acknowledging that such patients may have clinical features that are not of an autoimmune etiology, experts also speculate that these "seronegative" patients may test negative for relevant autoantibodies as a result of a lack of harmonization and/or standardization. Alternatively, they may have aPL that target other antigens involved in the pathogenesis of APS. In the latter, autoantibodies that recognize a phosphatidylserine/prothrombin (PS/PT) complex have been reported to be associated with APS and may have diagnostic relevance. This review highlights analytical and clinical attributes associated with PS/PT antibodies, taking into consideration the performance characteristics of criteria aPL tests in APS with specific recommendations for harmonization and standardization efforts. PMID:26975968

  6. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    Science.gov (United States)

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD. PMID:26769675

  7. Exposure of human JEG-3 cell line to TCDD alters progesterone secretion but does not act on their viability and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Augustowska, K.; Gregoraszczuk, E.L. [Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds are lipophilic and difficult to metabolize. Any environmental exposure of living organisms to these congeners results in their accumulation in fat tissue and bioconcentration in humans via the food chain. TCDD acts as an endocrine disrupter to alter differentiation and function of the reproductive system. Therefore, these compounds represent a serious health risk, especially to the fetus and infants, whose enzymatic and metabolic systems are not yet mature. Our previous data showed high accumulation of TCDD in cultured human placental tissue which caused a decrease in hormone secretion. However, the mechanism of this action is still unclear. JEG-3 cell line from malignant placental tissue has been used as an in vitro model for investigation of the effects of xenobiotics on placenta toxicity. These cells are morphologically similar to their origin, the trophoblast of the normal first trimester placenta, and produce many peptides and steroid hormones found in normal trophoblast cells, such as hCG, GhRH, progesterone. The aim of the present study was firstly, to show dose- and time-dependent effects of TCDD on progesterone production by JEG-3 cells and secondly, to examine mechanism of its action on cell viability and apoptosis.

  8. Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures.

    Science.gov (United States)

    Karami, Ali; Karbalaei, Samaneh; Zad Bagher, Fariba; Ismail, Amin; Simpson, Stuart L; Courtenay, Simon C

    2016-08-01

    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure. PMID:27182978

  9. Histopathological alterations and induction of hsp70 in ramshorn snail (Marisa cornuarietis) and zebrafish (Danio rerio) embryos after exposure to PtCl(2).

    Science.gov (United States)

    Osterauer, Raphaela; Köhler, Heinz-R; Triebskorn, Rita

    2010-08-01

    The platinum group metals (PGMs) platinum (Pt), palladium (Pd), and rhodium (Rh) are used in automobile catalytic converters, from which they have been emitted into the environment to an increasing degree during the last 20 years. Despite the bioavailability of these metals to plants and animals, studies determining the effects of PGMs on organisms are extremely rare. In the present study, effects of various concentrations of PtCl(2) (0.1, 1, 10, 50 and 100 microg/L) were investigated with respect to the induction of hsp70 and histopathological alterations in the zebrafish, Danio rerio and the ramshorn snail, Marisa cornuarietis. Histopathological investigations revealed effects of Pt on both species, which varied between slight and strong cellular reactions, depending on the PtCl(2) concentration. The hsp70 level in M. cornuarietis did not show an increase following Pt exposure whereas it was significantly elevated at 100 micorg/L PtCl(2) in D. rerio. PMID:20444508

  10. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice

    Directory of Open Access Journals (Sweden)

    Samantha L. Goggin

    2014-01-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are the number one cause of preventable mental retardation. An estimated 2–5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE, specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.

  11. Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures.

    Science.gov (United States)

    Karami, Ali; Karbalaei, Samaneh; Zad Bagher, Fariba; Ismail, Amin; Simpson, Stuart L; Courtenay, Simon C

    2016-08-01

    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.

  12. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells.

    Science.gov (United States)

    Koty, Patrick P; Tyurina, Yulia Y; Tyurin, Vladimir A; Li, Shang-Xi; Kagan, Valerian E

    2002-01-01

    Oxidant-induced apoptosis involves oxidation of many different and essential molecules including phospholipids. As a result of this non-specific oxidation, any signaling role of a particular phospholipid-class of molecules is difficult to elucidate. To determine whether preferential oxidation of phosphatidylserine (PS) is an early event in apoptotic signaling related to PS externalization and is independent of direct oxidant exposure, we chose a genetic-based induction of apoptosis. Apoptosis was induced in the lung cancer cell line NCI-H226 by decreasing the amount of Bcl-2 protein expression by preventing the translation of bcl-2 mRNA using an antisense bcl-2 oligonucleotide. Peroxidation of phospholipids was assayed using a fluorescent technique based on metabolic integration of an oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid (PnA), into cellular phospholipids and subsequent HPLC separation of cis-PnA-labeled phospholipids. We found a decrease in Bcl-2 was associated with a selective oxidation of PS in a sub-population of the cells with externalized PS. No significant difference in oxidation of cis-PnA-labeled phospholipids was observed in cells treated with medium alone or a nonsense oligonucleotide. Treatment with either nonsensc or antisense bcl-2 oligonucleotides was not associated with changes in the pattern of individual phospholipid classes as determined by HPTLC. These metabolic and topographical changes in PS arrangement in plasma membrane appear to be early responses to antisense bcl-2 exposure that trigger a PS-dependent apoptotic signaling pathway. This observed externalization of PS may facilitate the 'labeling' of apoptotic cells for recognition by macrophage scavenger receptors and subsequent phagocytic clearance. PMID:12162425

  13. Long-term abstinence from developmental cocaine exposure alters Arc/Arg3.1 modulation in the rat medial prefrontal cortex.

    Science.gov (United States)

    Caffino, Lucia; Giannotti, Giuseppe; Malpighi, Chiara; Racagni, Giorgio; Filip, Malgorzata; Fumagalli, Fabio

    2014-10-01

    Cocaine is a psychostimulant whose abuse causes a social and economic burden for our society. Most of the published literature deals with acute effects of cocaine or short-term abstinence in adult animals but much less information exists on neuroplastic changes following long-term abstinence. We have recently shown that the long-term abstinence following developmental exposure to cocaine results in increased Activity-Regulated Cytoskeletal-associated protein (Arc/Arg3.1) expression in the crude synaptosomal fraction (Giannotti et al. Int J Neuropsychopharmacology 7(4):625-634, 2014). Given that Arc/Arg3.1 localizes not only at active synapse but also in the nucleus (Okuno et al. Cell 149:886-898, 2012; Korb et al. Nat Neurosci 16:874-883 2013; Bloomer et al. Brain Res 1153:20-33 2007), we investigated Arc/Arg3.1 protein levels in the whole homogenate and the nuclear fraction of animals exposed to cocaine during adolescence. We observed the increased expression of Arc/Arg3.1 in both the fractions, suggesting that up-regulation of Arc/Arg3.1 protein may be partly due to the increased nuclear expression of Arc/Arg3.1 in the medial prefrontal cortex (mPFC) of rats sacrificed at postnatal day 90, following 48 days of abstinence. This effect seems to cause reduced Gria1 transcription. We also found reduced expression of fragile X mental retardation gene (FMR1) which normally inhibits Arc/Arg3.1 translation together with reduced expression of Ubiquitin-protein ligase E3A (Ube3a) that normally causes Arc/Arg3.1 protein degradation via ubiquitination. Further, we found increased expression of metabotropic glutamate receptor 5 (GRM5) which is also involved in the regulation of Arc/Arg3.1 expression. Taken together, our findings show that abstinence from developmental exposure to cocaine is associated with alterations in the finely tuned mechanisms that regulate Arc/Arg3.1 expression. PMID:24810662

  14. Occupational exposure to 50 Hz magnetic fields does not alter responses of inflammatory genes and activation of splenic lymphocytes in mice

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2016-04-01

    Full Text Available Objectives: The objective of the present study was to observe the effects of 50 Hz magnetic fields (MFs on the immune function of splenic lymphocytes in mice. Material and Methods: Twenty male Kunming mice (6 weeks old, weighing 18– 25 g, were randomly divided into sham exposure (N = 10 and 500 μT MFs (N = 10 groups. The mice in the MFs group were exposed to 500 μT MFs for 8 h daily (5 days/week for up to 60 days. In vitro study was carried out to examine the effects of 50 Hz MFs on the expression of inflammatory factor genes and a cluster of differentiation 69 (CD69 in mouse prime splenic lymphocytes activated by para-Methoxyamphetamine (PMA and ionomycin. In the in vitro experiments, lymphocytes were isolated from the spleen of 10 healthy Kunming mice, the cells were cultured in the Roswell Park Memorial Institute 1640 medium (RPMI-1640 and exposed to 0 μT, 250 μT, 500 μT, or 1 mT MFs in an incubator under 5% carbon dioxide (CO2 at 37°C for 6 h. The levels of interleukin-2 (IL-2, IL-4, interferon-gamma (IFN-γ, GATA binding protein 3 (GATA-3 and T cell-specific T-box transcription factor (T-bet were assessed by the real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR, respectively. The expression of CD69 was checked using the flow cytometry. Results: Under our experimental conditions, body weight of the mice exposed to occupational, extremely low frequency- electromagnetic fields (ELF-EMFs significantly decreased on day 20 and day 30. There were no significant changes observed in vivo in spleen weight, splenic coefficient, splenic histology profile and cytokine production in spleen tissues. Our in vitro experiments showed that 50 Hz MFs had no effect on the expression of these genes and CD69 to primary splenic cells. Conclusions: In conclusion, under the applied experimental conditions, occupational exposure to 50 Hz magnetic field did not alter responses of inflammatory genes and activation of splenic

  15. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2016-04-01

    Full Text Available Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA or pentavalent antimony salt (Sb were obtained through filter extrusion (FEL and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay. The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50 of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.

  16. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    International Nuclear Information System (INIS)

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with [3H]serine, and the synthesis of phosphatidyl[3H]ethanolamine from phosphatidyl[3H]serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 μg of saponin per ml, there was no significant turnover of nascent phosphatidyl[3H]serine to form phosphatidyl[3H]ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl[3H]ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl[3H]serine during a subsequent 2-hr chase. Phosphatidyl[3H]ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl[3H]ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl[3H]serine to phosphatidyl[3H]ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5'-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl[3H]ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins

  17. The effects of phosphatidylserine and omega-3 fatty acid-containing supplement on late life depression

    Directory of Open Access Journals (Sweden)

    Teruhisa Komori

    2015-04-01

    Full Text Available Late life depression is often associated with a poor response to antidepressants; therefore an alternative strategy for therapy is required. Although several studies have reported that phosphatidylserine (PS may be effective for late life depression and that omega-3 fatty acids DHA and EPA have also proven beneficial for many higher mental functions, including depression, no concrete conclusion has been reached. This study was performed to clarify the effect of PS and omega-3 fatty acid-containing supplement for late life depression by not only clinical evaluation but also salivary cortisol levels. Eighteen elderly subjects with major depression were selected for the study. In all, insufficient improvement had been obtained by antidepressant therapy for at least 6 months. The exclusion criteria from prior brain magnetic resonance images (MRI included the presence of structural MRI findings compatible with stroke or other gross brain lesions or malformations, but not white matter hypersensitivities. They took a supplement containing PS 100 mg, DHA 119 mg and EPA 70 mg three times a day for 12 weeks. The effects of the supplement were assessed using the 17-item Hamilton depression scale (HAM-D17 and the basal levels and circadian rhythm of salivary cortisol. The study adopted them as indices because: salivary cortisol levels are high in patients with depression, their circadian rhythm related to salivary cortisol is often irregular, and these symptoms are alleviated as depression improves. The mean HAM-D17 in all subjects taking the supplement was significantly improved after 12 weeks of taking the supplement. These subjects were divided into 10 non-responders and 8 responders. The basal levels and circadian rhythm of salivary cortisol were normalized in the responders while not in non-responders. PS and omega-3 fatty acids, or other elements of the supplement, may be effective for late life depression, associated with the correction of basal

  18. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India.

    Science.gov (United States)

    Chatterjee, Debmita; Bhattacharjee, Pritha; Sau, Tanmoy J; Das, Jayanta K; Sarma, Nilendu; Bandyopadhyay, Apurba K; Roy, Sib Sankar; Giri, Ashok K

    2015-09-01

    Arsenic (As) induces pre-malignant and malignant dermatological lesions, non-dermatological health effects and cancers in humans. Senescence involves telomere length changes and acquisition of senescence-associated secretory phenotype (SASP), which promotes carcinogenesis. Though in vitro studies have shown that As induces senescence, population based studies are lacking. We investigated the arsenic-induced senescence, telomere length alteration and its contribution towards development of As-induced skin cancer. The study participants included 60 each of As-exposed individuals with skin lesion (WSL), without skin lesions (WOSL) and 60 unexposed controls. Exposure assessment of drinking water and urine was done. SA β-gal activity, ELISA, and quantification of senescence proteins, alternative lengthening of telomere (ALT) associated proteins and telomerase activity were performed. Relative telomere length (RTL) was determined by qPCR. A significantly higher number of senescent cells, over-expression of p53 and p21 were observed in the As-exposed individuals when compared to unexposed. SASP markers, MMP-1/MMP-3 were significantly higher in the WSL but not IL-6/IL-8. A significant increase of RTL was observed in the WSL group, which was telomerase-independent but exhibited an over-expression of ALT associated proteins TRF-1 and TRF-2 with higher increase in TRF-2. An increased risk for developing As-induced skin lesions was found for individuals having RTL greater than 0.827 (odds ratio, 13.75; 95% CI: 5.66-33.41; P telomere length might be useful for predicting the risk of development of As-induced skin lesions. PMID:24665044

  19. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    Directory of Open Access Journals (Sweden)

    Bas ter Braak

    Full Text Available Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  20. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India.

    Science.gov (United States)

    Chatterjee, Debmita; Bhattacharjee, Pritha; Sau, Tanmoy J; Das, Jayanta K; Sarma, Nilendu; Bandyopadhyay, Apurba K; Roy, Sib Sankar; Giri, Ashok K

    2015-09-01

    Arsenic (As) induces pre-malignant and malignant dermatological lesions, non-dermatological health effects and cancers in humans. Senescence involves telomere length changes and acquisition of senescence-associated secretory phenotype (SASP), which promotes carcinogenesis. Though in vitro studies have shown that As induces senescence, population based studies are lacking. We investigated the arsenic-induced senescence, telomere length alteration and its contribution towards development of As-induced skin cancer. The study participants included 60 each of As-exposed individuals with skin lesion (WSL), without skin lesions (WOSL) and 60 unexposed controls. Exposure assessment of drinking water and urine was done. SA β-gal activity, ELISA, and quantification of senescence proteins, alternative lengthening of telomere (ALT) associated proteins and telomerase activity were performed. Relative telomere length (RTL) was determined by qPCR. A significantly higher number of senescent cells, over-expression of p53 and p21 were observed in the As-exposed individuals when compared to unexposed. SASP markers, MMP-1/MMP-3 were significantly higher in the WSL but not IL-6/IL-8. A significant increase of RTL was observed in the WSL group, which was telomerase-independent but exhibited an over-expression of ALT associated proteins TRF-1 and TRF-2 with higher increase in TRF-2. An increased risk for developing As-induced skin lesions was found for individuals having RTL greater than 0.827 (odds ratio, 13.75; 95% CI: 5.66-33.41; P telomere length might be useful for predicting the risk of development of As-induced skin lesions.

  1. Enhanced Eryptosis Following Gramicidin Exposure

    Directory of Open Access Journals (Sweden)

    Abaid Malik

    2015-04-01

    Full Text Available The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i, and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW from electronic particle counting, reactive oxidant species (ROS from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL, forward scatter (≥0.5 µg/mL and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD.

  2. Enhanced eryptosis following gramicidin exposure.

    Science.gov (United States)

    Malik, Abaid; Bissinger, Rosi; Liu, Guoxing; Liu, Guilai; Lang, Florian

    2015-05-01

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD. PMID:25915718

  3. Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-03-01

    Full Text Available Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2 cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 μg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 ± 0.6 μg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 μg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0

  4. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study

    Directory of Open Access Journals (Sweden)

    Richter Y

    2013-05-01

    Full Text Available Yael Richter, Yael Herzog, Yael Lifshitz, Rami Hayun, Sigalit ZchutEnzymotec Ltd, K’far Baruch, IsraelObjective: To evaluate the efficacy and safety of soybean-derived phosphatidylserine (SB-PS (300 mg/day in improving cognitive performance in elderly with memory complaints, following a short duration of 12 weeks’ SB-PS administration.Methods: SB-PS was administered daily for 12 weeks to 30 elderly volunteers with memory complaints (age range 50–90 years. Cognitive performance was determined by a computerized test battery and by the Rey Auditory Verbal Learning Test (Rey-AVLT. Physical examination and blood safety parameters were part of the extensive safety analysis of PS that was performed.Results: The computerized test results showed that SB-PS supplementation significantly increased the following cognitive parameters: memory recognition (P = 0.004, memory recall (P = 0.006, executive functions (P = 0.004, and mental flexibility (P = 0.01. The Rey-AVLT indicated that, following SB-PS administration, total learning and immediate recall improved significantly (P = 0.013 and P = 0.007, respectively. Unexpected results from the safety tests suggested that SB-PS significantly reduces both systolic (P = 0.043 and diastolic (P = 0.003 blood pressure. SB-PS consumption was well tolerated and no serious adverse events were reported during the study.Conclusion: This exploratory study demonstrates that SB-PS may have favorable effects on cognitive function in elderly with memory complaints. In addition, the study suggests that SB-PS is safe for human consumption and may serve as a safe alternative to phosphatidylserine extracted from bovine cortex. These results encourage further extended studies in order to establish the safety and efficacy of SB-PS treatment.Keywords: learning, AAMI, memory, cognitive, phosphatidylserine

  5. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    Science.gov (United States)

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation.

  6. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    Directory of Open Access Journals (Sweden)

    Carolina Varela Chavez

    2016-03-01

    Full Text Available Clostridium sordellii lethal toxin (TcsL is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases.

  7. Developmental Exposure to Second-Hand Smoke Increases Adult Atherogenesis and Alters Mitochondrial DNA Copy Number and Deletions in apoE−/− Mice

    OpenAIRE

    Fetterman, Jessica L.; Melissa Pompilius; Westbrook, David G.; Dale Uyeminami; Jamelle Brown; Pinkerton, Kent E.; Ballinger, Scott W.

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in...

  8. Exposure to the three structurally different PCB congeners (PCB 118, 153, and 126) results in decreased protein expression and altered steroidogenesis in the human adrenocortical carcinoma cell line H295R.

    Science.gov (United States)

    Tremoen, Nina Hårdnes; Fowler, Paul A; Ropstad, Erik; Verhaegen, Steven; Krogenæs, Anette

    2014-01-01

    Polychlorinated biphenyls (PCB), synthetic, persistent organic pollutants (POP), are detected ubiquitously, in water, soil, air, and sediments, as well as in animals and humans. PCB are associated with range of adverse health effects, such as interference with the immune system and nervous system, reproductive abnormalities, fetotoxicity, carcinogenicity, and endocrine disruption. Our objective was to determine the effects of three structurally different PCB congeners, PCB118, PCB 126, and PCB 153, each at two concentrations, on the steroidogenic capacity and proteome of human adrenocortical carcinoma cell line cultures (H295R) . After 48 h of exposure, cell viability was monitored and estradiol, testosterone, cortisol and progesterone secretion measured to quantify steroidogenic capacity of the cells. Two-dimensional (2D) gel-based proteomics was used to screen for proteome alterations in H295R cells in response to the PCB. Exposure to PCB 118 increased estradiol and cortisol secretion, while exposure to PCB 153 elevated estradiol secretion. PCB 126 was the most potent congener, increasing estradiol, cortisol, and progesterone secretion in exposed H295R cells. Seventy-three of the 711 spots analyzed showed a significant difference in normalized spot volumes between controls (vehicle only) and at least one exposure group. Fourteen of these protein spots were identified by liquid chromatography with mass spectroscopy (LC-MS/MS). Exposure to three PCB congeners with different chemical structure perturbed steroidogenesis and protein expression in the H295R in vitro model. This study represents an initial analysis of the effects on proteins and hormones in the H295R cell model, and additional studies are required in order to obtain a more complete understanding of the pathways disturbed by PCB congeners in H295R cells. Overall, alterations in protein regulation and steroid hormone synthesis suggest that exposure to PCB disturbs several cellular processes, including

  9. INDUCTION OF CHRONIC KIDNEY FAILURE IN A LONG-TERM PERITONEAL EXPOSURE MODEL IN THE RAT: EFFECTS ON FUNCTIONAL AND STRUCTURAL PERITONEAL ALTERATIONS

    NARCIS (Netherlands)

    F. Vrtovsnik; A. Coester; D. Lopes-Barreto; D.R. de Waart; A. van der Wal; D.G. Struijk; R. Krediet; M. Zweers

    2010-01-01

    Background: A long-term peritoneal exposure model has been developed in Wistar rats. Chronic daily exposure to 3.86% glucose based, lactate buffered, conventional dialysis solutions is possible for up to 20 weeks and induces morphological abnormalities similar to those in long-term peritoneal dialys

  10. PERINATAL EXPOSURE TO THE PHTHALATES DEHP, BBP AND DINP, BUT NOT DEP, DMP OR DOTP ALTERS SEXUAL DIFFERENTIATION OF THE MALE RAT

    Science.gov (United States)

    In mammals, exposure to antiandrogenic chemicals during sexual differentiation can produce malformations of the reproductive tract. Perinatal administration of AR antagonists like vinclozolin and procymidone or chemicals like di (2-bis) ethylhexyl phthalate (DEHP), that inhibit ...

  11. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    Directory of Open Access Journals (Sweden)

    Claudia Leticia Moreno Ávila

    2016-01-01

    Full Text Available Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.

  12. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice.

    Science.gov (United States)

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H; Giordano, Magda; Rodríguez, Verónica M

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system. PMID:27375740

  13. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    Science.gov (United States)

    Moreno Ávila, Claudia Leticia

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system. PMID:27375740

  14. The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues

    DEFF Research Database (Denmark)

    Poulsen, Lisbeth Rosager

      The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues Rosa Laura López-Marqués1, Lisbeth Rosager Poulsen1, Katharina Meffert2, Thomas Pomorski2, Michael Gjedde Palmgren1 1Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation...

  15. Prolonged manganese exposure induces severe deficits in lifespan,development and reproduction possibly by altering oxidative stress response in Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    XIAO Jing; RUI Qi; GUO Yuling; CHANG Xingya; WANG Dayong

    2009-01-01

    We examined the possible multiple defects induced by acute and prolonged exposure to high levels of manganese (Mn) solution by monitoring the endpoints of lifespan,development,reproduction,and stress response.Our data suggest that acute exposure (6 h) to Mn did not cause severe defects of life span,development,and reproduction.Similarly,no significant defects could be found for the life span,development,and reproduction in animals exposed to a low concentration of Mn (2.5 μmol/L) for 48 h.In contrast,prolonged exposure (48-h) to high concentrations of Mn (75 and 200 μmol/L) resulted in significant defects of life span,development,and reproduction,as well as the increase of the percentage of population with hsp-16.2::gfp expression indicating the obvious induction of stress responses in exposed animals.Moreover,prolonged exposure (48-h) to high concentrations (75 and 200 μmol/L) of Mn decreased the expression levels of antioxidant genes of sod-1,sod-2,sod-3,and sod-4 compared to control.Therefore,prolonged exposure to high concentrations of Mn will induce the severe defects of life span,development,and reproduction in nematodes possibly by affecting the stress response and expression of antioxidant genes in Caenorhabditis elegans.

  16. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts.

    Science.gov (United States)

    Chung, Jeeyun; Torta, Federico; Masai, Kaori; Lucast, Louise; Czapla, Heather; Tanner, Lukas B; Narayanaswamy, Pradeep; Wenk, Markus R; Nakatsu, Fubito; De Camilli, Pietro

    2015-07-24

    Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.

  17. Gem1 and ERMES Do Not Directly Affect Phosphatidylserine Transport from ER to Mitochondria or Mitochondrial Inheritance

    DEFF Research Database (Denmark)

    Nguyen, Tammy T; Lewandowska, Agnieszka; Choi, Jae-Yeon;

    2012-01-01

    In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin......, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from...... the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against...

  18. In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats.

    Science.gov (United States)

    Many chemicals released into the environment display estrogenic activity including the oral contraceptive ethinyl estradiol (EE2) and the plastic monomer bisphenol A (BPA). EE2 is present in some aquatic systems at concentrations sufficient to alter reproductive function of fishe...

  19. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  20. Acrolein Exposure Blocks Down-Regulation of Cytokines and IgE Antibody in a Mucosal Tolerance Model but does not Alter Phenotypic Markers of Allergic Lung Disease

    Science.gov (United States)

    Acrolein (ACR) is a highly reactive upper airway toxicant that humans are exposed in a variety of environmental situations. Here we examined the effect of ACR exposure on development of immune tolerance in mice. To induce tolerance, female BALB/C mice were intranasally inoculate...

  1. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. Methods: C57BL/6 and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. Results: The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE−/− mice. In ApoE−/−, no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. Conclusion: This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle

  2. Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Mi-Hee; Pflugmacher, Stephan, E-mail: stephan.pflugmacher@tu-berlin.de

    2013-08-15

    Highlights: •We examined time-dependent metabolic changes in C. demersum exposed to anatoxin-a. •Biotransformation and antioxidative defense mechanisms responded positively to anatoxin-a. •Decline in chlorophylls contents was detected in company with irreversible plant growth inhibition during exposure to anatoxin-a. •Anatoxin-a exhibits phytotoxic allelopathy by provoking oxidative stress. •Macrophytes may have interactions with anatoxin-a in aquatic environments. -- Abstract: Recently, aquatic macrophytes have been considered as promising tools for eco-friendly water management with a low running cost. However, only little information is available thus far regarding the metabolic capacity of macrophytes for coping with cyanobacterial toxins (cyanotoxins) in the aquatic environment. Cyanotoxins have become emerging contaminants of great concern due to the high proliferation of cyanobacteria (cyanobacterial bloom) accelerated by eutrophication and climate change. Anatoxin-a, one of the common and major cyanotoxins, is suggested as a high priority water pollutant for regulatory consideration owing to its notoriously rapid mode of action as a neurotoxin. In this study, the time-course metabolic regulation of the submerged macrophyte Ceratophyllum demersum (C. demersum) was investigated during exposure to anatoxin-a at an environmentally relevant concentration (15 μg/L). Biotransformation and antioxidative systems in C. demersum responded positively to anatoxin-a through the promoted synthesis of most of the involved enzymes within 8 h. Maximum enzyme activities were exhibited after 24 or 48 h of exposure to anatoxin-a. However, an apparent decline in enzyme activities was also observed at longer exposure duration (168 and 336 h) in company with high steady-state levels of cell internal H{sub 2}O{sub 2}, which showed its highest level after 48 h. Meanwhile, irreversible inhibitory influence on chlorophyll content (vitality) was noticed, whereas the ratio of

  3. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    International Nuclear Information System (INIS)

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h−1). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h−1 increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h−1 in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h−1 in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h−1 in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h−1 in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days) and from F0 to F2 (0.070 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h−1 and DNA alterations significant at highest dose rates only. The study improved our understanding of long term

  4. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.

  5. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. PMID:25535268

  6. Chronic intermittent ethanol exposure alters stress effects on (3α,5α-3-hydroxy-pregnan-20-one (3α,5α-THP immunolabeling of amygdala neurons in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antoniette M Maldonado-Devincci

    2016-03-01

    Full Text Available The GABAergic neuroactive steroid (3α,5α-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone is decreased in various brain regions of C57BL/6J mice following exposure to an acute stressor or chronic intermittent ethanol (CIE exposure and withdrawal. It is well established that there are complex interactions between stress and ethanol drinking, with mixed literature regarding the effects of stress on ethanol intake. However, there is little research examining how chronic ethanol exposure alters stress responses. The present work examined the impact of CIE exposure and withdrawal on changes in brain levels of 3α,5α-THP, hormonal, and behavioral responses to forced swim stress (FSS. Adult male C57BL/6J mice were exposed to four cycles of CIE to induce ethanol dependence. Following 8 or 72 hr withdrawal, mice were subjected to FSS for 10 min, and 50 min later brains were collected for immunohistochemical analysis of cellular 3α,5α-THP. Behavioral and circulating corticosterone responses to the FSS were quantified. Following 8 hr withdrawal, ethanol exposure potentiated the corticosterone response to FSS. Following 72 hr withdrawal, this difference was no longer observed. Following 8 hr withdrawal, stress-exposed mice showed no differences in immobility, swimming or struggling behavior. However, following 72 hr withdrawal, ethanol-exposed mice showed less immobility and greater swimming behavior compared to air-exposed mice. Interestingly, cellular 3α,5α-THP levels were increased in the lateral amygdala 8 hr and 72 hr post-withdrawal in stressed ethanol-exposed mice compared to ethanol-exposed/non-stressed mice. In the paraventricular nucleus of the hypothalamus, stress exposure decreased 3α,5α-THP levels compared to controls following 72 hr withdrawal, but no differences were observed 8 hr post-withdrawal. There were no differences in cellular 3α,5α-THP levels in the nucleus accumbens shell at either withdrawal time point. These data

  7. Exposure in utero to 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring

    International Nuclear Information System (INIS)

    Toxicity of the polychlorinated biphenyls (PCBs) depends on their molecular structure. Mechanisms by prenatal exposure to a non-dioxin-like PCB, 2,2',3,4',5',6-hexachlorobiphenyl (PCB 132) that may act on reproductive pathways in male offspring are relatively unknown. The purpose was to determine whether epididymal sperm function and expression of apoptosis-related genes were induced or inhibited by prenatal exposure to PCB 132. Pregnant rats were treated with a single dose of PCB 132 at 1 or 10 mg/kg on gestational day 15. Male offspring were killed and the epididymal sperm counts, motility, velocity, reactive oxygen species (ROS) generation, sperm-oocyte penetration rate (SOPR), testicular histopathology, apoptosis-related gene expression and caspase activation were assessed on postnatal day 84. Prenatal exposure to PCB 132 with a single dose of 1 or 10 mg/kg decreased cauda epididymal weight, epididymal sperm count and motile epididymal sperm count in adult offspring. The spermatozoa of PCB 132-exposed offspring produced significantly higher levels of ROS than the controls; ROS induction and SOPR reduction were dose-related. In the low-dose PCB 132 group, p53 was significantly induced and caspase-3 was inhibited. In the high-dose group, activation of caspase-3 and -9 was significantly increased, while the expressions of Fas, Bax, bcl-2, and p53 genes were significantly decreased. Gene expression and caspase activation data may provide insight into the mechanisms by which exposure to low-dose or high-dose PCB 132 affects reproduction in male offspring in rats. Because the doses of PCB 132 administered to the dams were approximately 625-fold in low-dose group and 6250-fold higher in high-dose group than the concentration in human tissue levels, the concentrations are not biologically or environmentally relevant. Further studies using environmentally relevant doses are needed for hazard identification

  8. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    Science.gov (United States)

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  9. Brief maternal exposure of rats to the xenobiotics dibutyl phthalate or diethylstilbestrol alters adult-type Leydig cell development in male offspring

    Institute of Scientific and Technical Information of China (English)

    Richard Ivell; Kee Heng; Helen Nicholson; Ravinder Anand-Ivell

    2013-01-01

    Maternal exposure to estrogenic xenobiotics or phthalates has been implicated in the distortion of early male reproductive development,referred to in humans as the testicular dysgenesis syndrome.It is not known,however,whether such early gestational and/or lactational exposure can influence the later adult-type Leydig cell phenotype.In this study,Sprague-Dawley rats were exposed to dibutyl phthalate (DBP; from gestational day (GD) 14.5 to postnatal day (PND) 6) or diethylstilbestrol (DES; from GD14.5 to GD16.5) during a short gestational/lactational window,and male offspring subsequently analysed for various postnatal testicular parameters.All offspring remained in good health throughout the study.Maternal xenobiotic treatment appeared to modify specific Leydig cell gene expression in male offspring,particularly during the dynamic phase of mid-puberty,with serum INSL3 concentrations showing that these compounds led to a faster attainment of peak values,and a modest acceleration of the pubertal trajectory.Part of this effect appeared to be due to a treatment-specific impact on Leydig cell proliferation during puberty for both xenobiotics.Taken together,these results support the notion that maternal exposure to certain xenobiotics can also influence the development of the adult-type Leydig cell population,possibly through an effect on the Leydig stem cell population.

  10. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain.

    Science.gov (United States)

    Hahn, Yun K; Paris, Jason J; Lichtman, Aron H; Hauser, Kurt F; Sim-Selley, Laura J; Selley, Dana E; Knapp, Pamela E

    2016-08-01

    Co-exposure to opiates and HIV/HIV proteins results in enhanced CNS morphological and behavioral deficits in HIV(+) individuals and in animal models. Opiates with abuse liability, such as heroin and morphine, bind preferentially to and have pharmacological actions through μ-opioid-receptors (MORs). The mechanisms underlying opiate-HIV interactions are not understood. Exposure to the HIV-1 transactivator of transcription (Tat) protein causes neurodegenerative outcomes that parallel many aspects of the human disease. We have also observed that in vivo exposure to Tat results in apparent changes in morphine efficacy, and thus have hypothesized that HIV proteins might alter MOR activation. To test our hypothesis, MOR-mediated G-protein activation was determined in neuroAIDS-relevant forebrain regions of transgenic mice with inducible CNS expression of HIV-1 Tat. G-protein activation was assessed by MOR agonist-stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPγS) autoradiography in brain sections, and in concentration-effect curves of MOR agonist-stimulated [(35)S]GTPγS binding in membranes isolated from specific brain regions. Comparative studies were done using the MOR-selective agonist DAMGO ([D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin) and a more clinically relevant agonist, morphine. Tat exposure reduced MOR-mediated G-protein activation in an agonist, time, and regionally dependent manner. Levels of the GPCR regulatory protein β-arrestin-2, which is involved in MOR desensitization, were found to be elevated in only one affected brain region, the amygdala; amygdalar β-arrestin-2 also showed a significantly increased association with MOR by co-immunoprecipitation, suggesting decreased availability of MOR. Interestingly, this correlated with changes in anxiety and fear-conditioned extinction, behaviors that have substantial amygdalar input. We propose that HIV-1 Tat alters the intrinsic capacity of MOR to signal in response to agonist binding

  11. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Directory of Open Access Journals (Sweden)

    Kelly A Foley

    Full Text Available Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD. The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS, a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA, a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg on gestation days G12-16, LPS (50 µg/kg on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg or vehicle twice a day, every second day from postnatal days (P 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42 in the elevated plus maze (EPM and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  12. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Science.gov (United States)

    Foley, Kelly A; Ossenkopp, Klaus-Peter; Kavaliers, Martin; Macfabe, Derrick F

    2014-01-01

    Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12-16, LPS (50 µg/kg) on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  13. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization

    OpenAIRE

    Wang Min; Pei Lin; Fletcher Paul J; Kapur Shitij; Seeman Philip; Liu Fang

    2010-01-01

    Abstract Background All antipsychotics work via dopamine D2 receptors (D2Rs), suggesting a critical role for D2Rs in psychosis; however, there is little evidence for a change in receptor number or pharmacological nature of D2Rs. Recent data suggest that D2Rs form dimers in-vitro and in-vivo, and we hypothesized that schizophrenia, as well as preclinical models of schizophrenia, would demonstrate altered dimerization of D2Rs, even though the overall number of D2Rs was unaltered. Methods We mea...

  14. Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring

    Science.gov (United States)

    Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M.

    2014-01-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams’ cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. PMID:24913803

  15. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus.

    Science.gov (United States)

    Del Pino Sans, Javier; Clements, Kelsey J; Suvorov, Alexander; Krishnan, Sudha; Adams, Hillary L; Petersen, Sandra L

    2016-08-01

    Developmental exposure to arylhydrocarbon receptor (AhR) ligands abolishes sex differences in a wide range of neural structures and functions. A well-studied example is the anteroventral periventricular nucleus (AVPV), a structure that controls sex-specific luteinizing hormone (LH) release. In the male, testosterone (T) secreted by the developing testes defeminizes LH release mechanisms; conversely, perinatal AhR activation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) blocks defeminization. To better understand developmental mechanisms altered by TCDD exposure, we first verified that neonatal TCDD exposure in male rats prevented the loss of AVPV GABA/glutamate neurons that are critical for female-typical LH surge release. We then used whole genome arrays and quantitative real-time polymerase chain reaction (QPCR) to compare AVPV transcriptomes of males treated neonatally with TCDD or vehicle. Our bioinformatics analyses showed that TCDD enriched gene sets important for neuron development, synaptic transmission, ion homeostasis, and cholesterol biosynthesis. In addition, upstream regulatory analysis suggests that both estrogen receptors (ER) and androgen receptors (AR) regulate genes targeted by TCDD. Of the 23 mRNAs found to be changed by TCDD at least 2-fold (pbrain. These findings provide new insights into how TCDD may interfere with defeminization of LH release patterns. PMID:27185484

  16. Low dose exposure to Bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese Medaka.

    Science.gov (United States)

    Inagaki, T; Smith, N; Lee, E K; Ramakrishnan, S

    2016-01-01

    Accumulating evidence indicates that chronic low dose exposure to Bisphenol A (BPA), an endocrine disruptor, may disrupt normal brain development and behavior mediated by the gonadotropin-releasing hormone (GnRH) pathways. While it is known that GnRH neurons in the hypothalamus regulate reproductive physiology and behavior, functional roles of extra-hypothalamic GnRH neurons remain unclear. Furthermore, little is known whether BPA interacts with extra-hypothalamic GnRH3 neural systems in vulnerable developing brains. Here we examined the impact of low dose BPA exposure on the developing GnRH3 neural system, eye and brain growth, and locomotor activity in transgenic medaka embryos and larvae with GnRH3 neurons tagged with GFP. Fertilized eggs were collected daily and embryos/larvae were chronically exposed to 200ng/ml of BPA, starting at 1 day post fertilization (dpf). BPA significantly increased fluorescence intensity of the GnRH3-GFP neural population in the terminal nerve (TN) of the forebrain at 3dpf, but decreased the intensity at 5dpf, compared with controls. BPA advanced eye pigmentation without affecting eye and brain size development, and accelerated times to hatch. Following chronic BPA exposure, 20dpf larvae showed suppression of locomotion, both in distance covered and speed of movement (47% and 43% reduction, respectively). BPA-induced hypoactivity was accompanied by decreased cell body sizes of individual TN-GnRH3 neurons (14% smaller than those of controls), but not of non-GnRH3 neurons. These novel data demonstrate complex neurobehavioral effects of BPA on the development of extra-hypothalamic GnRH3 neurons in teleost fish. PMID:26687398

  17. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    Science.gov (United States)

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; de Oliveira Rios, Alessandro; de Oliveira Salvi, Aguisson; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Fonseca Moreira, José Cláudio

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile. PMID:26970882

  18. Exposure to Bisphenol-A during Pregnancy Partially Mimics the Effects of a High-Fat Diet Altering Glucose Homeostasis and Gene Expression in Adult Male Mice

    OpenAIRE

    Marta García-Arevalo; Paloma Alonso-Magdalena; Junia Rebelo Dos Santos; Ivan Quesada; Carneiro, Everardo M.; Angel Nadal

    2014-01-01

    Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injec...

  19. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, Florian [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Bourdineaud, Jean-Paul [UMR 5805 EPOC – OASU, Station marine d’Arcachon, Université Bordeaux 1, Arcachon 33120 (France); Plaire, Delphine; Adam-Guillermin, Christelle [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Alonzo, Frédéric, E-mail: frederic.alonzo@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France)

    2015-06-15

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h{sup −1}). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h{sup −1} increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h{sup −1} in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h{sup −1} in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h{sup −1} in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h{sup −1} in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days) and from F0 to F2 (0.070 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h{sup −1} and DNA alterations significant at highest

  20. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles.

    Science.gov (United States)

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-Young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10-200μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. PMID:26551752

  1. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    International Nuclear Information System (INIS)

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. (author)

  2. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults.

    Science.gov (United States)

    Chikahisa, Sachiko; Sei, Hiroyoshi; Morishima, Masaki; Sano, Atsuko; Kitaoka, Kazuyoshi; Nakaya, Yutaka; Morita, Yusuke

    2006-05-15

    Music has been suggested to have a beneficial effect on various types of performance in humans. However, the physiological and molecular mechanism of this effect remains unclear. We examined the effect of music exposure during the perinatal period on learning behavior in adult mice, and measured the levels of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), which play critical roles in synaptic plasticity. In addition, we measured the levels of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and mitogen-activated protein kinase (MAPK), downstream targets of two main pathways in BDNF/TrkB signaling. Music-exposed mice completed a maze learning task with fewer errors than the white noise-exposed mice and had lower levels of BDNF and higher levels of TrkB and PDK1 in the cortex. MAPK levels were unchanged. Furthermore, TrkB and PDK1 protein levels in the cortex showed a significant negative correlation with the number of errors on the maze. These results suggest that perinatal exposure of mice to music has an influence on BDNF/TrkB signaling and its intracellular signaling pathway targets, including PDK1, and thus may induce improved learning and memory functions.

  3. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles.

    Science.gov (United States)

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-Young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10-200μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans.

  4. Prenatal Exposure of Cypermethrin Induces Similar Alterations in Xenobiotic-Metabolizing Cytochrome P450s and Rate-Limiting Enzymes of Neurotransmitter Synthesis in Brain Regions of Rat Offsprings During Postnatal Development.

    Science.gov (United States)

    Singh, Anshuman; Mudawal, Anubha; Maurya, Pratibha; Jain, Rajeev; Nair, Saumya; Shukla, Rajendra K; Yadav, Sanjay; Singh, Dhirendra; Khanna, Vinay Kumar; Chaturvedi, Rajnish Kumar; Mudiam, Mohana K R; Sethumadhavan, Rao; Siddiqi, Mohammad Imran; Parmar, Devendra

    2016-08-01

    Oral administration of low doses of cypermethrin to pregnant Wistar rats led to a dose-dependent differences in the induction of xenobiotic-metabolizing cytochrome P450s (CYPs) messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood. Similar alterations were observed in the expression of rate-limiting enzymes of neurotransmitter synthesis in brain regions of rat offsprings. These persistent changes were associated with alterations in circulating levels of growth hormone (GH), cognitive functions, and accumulation of cypermethrin and its metabolites in brain regions of exposed offsprings. Though molecular docking studies failed to identify similarities between the docked conformations of cypermethrin with CYPs and neurotransmitter receptors, in silico analysis identified regulatory sequences of CYPs in the promoter region of rate-limiting enzymes of neurotransmitter synthesis. Further, rechallenge of the prenatally exposed offsprings at adulthood with cypermethrin (p.o. 10 mg/kg × 6 days) led to a greater magnitude of alterations in the expression of CYPs and rate-limiting enzymes of neurotransmitter synthesis in different brain regions. These alterations were associated with a greater magnitude of decrease in the circulating levels of GH and cognitive functions in rechallenged offsprings. Our data has led us to suggest that due to the immaturity of CYPs in fetus or during early development, even the low-level exposure of cypermethrin may be sufficient to interact with the CYPs, which in turn affect the neurotransmission processes and may help in explaining the developmental neurotoxicity of cypermethrin. PMID:26115703

  5. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations.

    Science.gov (United States)

    Parisot, Florian; Bourdineaud, Jean-Paul; Plaire, Delphine; Adam-Guillermin, Christelle; Alonzo, Frédéric

    2015-06-01

    This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h(-1)). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h(-1) increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h(-1) in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h(-1) in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h(-1) in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h(-1) in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days) and from F0 to F2 (0.070 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h(-1) and DNA alterations significant at highest dose rates only. The study improved our understanding of long term responses to low doses of radiation at the molecular and organismic levels in a non-human species for a better radioprotection of aquatic ecosystems. PMID:25840277

  6. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring.

    Science.gov (United States)

    Short, A K; Fennell, K A; Perreau, V M; Fox, A; O'Bryan, M K; Kim, J H; Bredy, T W; Pang, T Y; Hannan, A J

    2016-01-01

    Recent studies have suggested that physiological and behavioral traits may be transgenerationally inherited through the paternal lineage, possibly via non-genomic signals derived from the sperm. To investigate how paternal stress might influence offspring behavioral phenotypes, a model of hypothalamic-pituitary-adrenal (HPA) axis dysregulation was used. Male breeders were administered water supplemented with corticosterone (CORT) for 4 weeks before mating with untreated female mice. Female, but not male, F1 offspring of CORT-treated fathers displayed altered fear extinction at 2 weeks of age. Only male F1 offspring exhibited altered patterns of ultrasonic vocalization at postnatal day 3 and, as adults, showed decreased time in open on the elevated-plus maze and time in light on the light-dark apparatus, suggesting a hyperanxiety-like behavioral phenotype due to paternal CORT treatment. Interestingly, expression of the paternally imprinted gene Igf2 was increased in the hippocampus of F1 male offspring but downregulated in female offspring. Male and female F2 offspring displayed increased time spent in the open arm of the elevated-plus maze, suggesting lower levels of anxiety compared with control animals. Only male F2 offspring showed increased immobility time on the forced-swim test and increased latency to feed on the novelty-supressed feeding test, suggesting a depression-like phenotype in these animals. Collectively, these data provide evidence that paternal CORT treatment alters anxiety and depression-related behaviors across multiple generations. Analysis of the small RNA profile in sperm from CORT-treated males revealed marked effects on the expression of small noncoding RNAs. Sperm from CORT-treated males contained elevated levels of three microRNAs, miR-98, miR-144 and miR-190b, which are predicted to interact with multiple growth factors, including Igf2 and Bdnf. Sustained elevation of glucocorticoids is therefore involved in the transmission of paternal

  7. Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study

    OpenAIRE

    Zanotta D; Puricelli S; Bonoldi G

    2014-01-01

    Danilo Zanotta, Silvana Puricelli, Guido Bonoldi Unità Operativa di Medicina 2, Ospedale di Circolo di Busto Arsizio, Varese, Italy Abstract: A prospective cohort, noncomparative, multicenter trial was conducted to explore the potential of a phytotherapeutic compound, available as a dietary supplement and containing extracts of Bacopa monnieri and Haematococcus pluvialis (astaxanthin) plus phosphatidylserine and vitamin E, in improving cognition in subjects diagnosed with mild cog...

  8. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine

    OpenAIRE

    Araujo, Joseph A.; Landsberg, Gary M.; Milgram, Norton W.; Miolo, Alda

    2008-01-01

    Aged dogs demonstrate cognitive decline that is linked to brain aging. The purpose of the present study was to examine if a commercially available nutraceutical supplement that may be neuroprotective and contains phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine could improve cognitive function in aged beagles. Nine aged beagles were tested on performance on a delayed-non-matching-to-position task, which is a neuropsychological test of short-term visuospatial memory. All subjects w...

  9. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    Directory of Open Access Journals (Sweden)

    Baskin Laurence S

    2006-02-01

    Full Text Available Abstract Background Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. Methods We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors α and β, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females, we measured the lengths of the casts and performed ANOVA analysis on these data. Results Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias and masculinizing females (longer urethras. Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen α and β, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor α mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor α and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl

  10. Research advance in extraction and separation of phosphatidylserine%磷脂酰丝氨酸的提取分离研究进展

    Institute of Scientific and Technical Information of China (English)

    李阅兵; 刘承初; 谢晶; 李应森; 李家乐; 陈苏

    2011-01-01

    Phosphatidylserine, as the nootropics substances of human brain, has been concerned widely.The extraction and purification methods of phosphatidylserine were introduced.The extraction methods included chloroform -methanol method, tert -butyl methyl ether method and ethyl acetate -ethanol method.Purification methods included thin layer chromatography,column chromatography and HPLC.The extraction technics of phosphatidylserine were complicated, and abundant organic solvent was consumed, so the optimization of them should be enhanced.%磷脂酰丝氨酸作为人类大脑的益智物质,已经得到了广泛关注.主要对磷脂酰丝氨酸的提取和纯化方法进行介绍.提取方法包括氛仿-甲醉法、叔丁基甲醚法、乙酸乙酯-乙醇法等.纯化的方法涉及薄层色谱法、柱色谱法、高效液相色谱法等.磷脂酰丝氨酸提取工艺复杂,需使用大量有机溶剂,今后需加强提取工艺的优化.

  11. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide.

    Science.gov (United States)

    Zhang, Si-Ming; Buddenborg, Sarah K; Adema, Coen M; Sullivan, John T; Loker, Eric S

    2015-01-01

    In view of the call by the World Health Organization (WHO) for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy-based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transporters, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx transporter). Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated. Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein (CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide's lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and has been

  12. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide.

    Directory of Open Access Journals (Sweden)

    Si-Ming Zhang

    Full Text Available In view of the call by the World Health Organization (WHO for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy-based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP, glutathione S-transferases (GST, and drug transporters, notably multi-drug resistance protein (efflux transporter and solute linked carrier (influx transporter. Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP genes from three super-families (HSP20, HSP40 and HSP70 were upregulated. Genes encoding ADP-ribosylation factor (ARF, cAMP response element-binding protein (CREB and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide's lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and

  13. Protein C inhibitor (PCI binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Directory of Open Access Journals (Sweden)

    Daniela Rieger

    Full Text Available Protein C Inhibitor (PCI is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells. PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.

  14. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    Science.gov (United States)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  15. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice.

    Science.gov (United States)

    Ding, Lin; Wang, Dan; Zhou, Miaomiao; Du, Lei; Xu, Jie; Xue, Changhu; Wang, Yuming

    2016-07-01

    Recent studies have shown that EPA enriched PLs have beneficial effects on lipid metabolism. Our previous study has demonstrated that the anti-obesity and hypolipidemic effects of EPA-PL were superior to DHA-PL. In the present study, we comparatively evaluated the effects of EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylserine (EPA-PS) on lipid metabolism in mice. Both 2% dietary EPA-PC and EPA-PS significantly improved serum and hepatic lipid levels in mice. The HDL-c level in mice on EPA-PC diet was significantly higher than the other two groups. The level of DHA in hepatic TG and PL were significantly increased in both EPA-PC and EPA-PS fed groups (98.3 and 117.8%, respectively; p DHA in EPA-PS group was significantly higher than the EPA-PC group. EPA-PC and EPA-PS suppressed hepatic SREBP-1c mediated lipogenesis and activated PPARα mediated fatty acid β-oxidation in the liver. These data are the first to indicate that EPA-PS has beneficial effects on lipid metabolism. PMID:27321119

  16. The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions.

    Science.gov (United States)

    Shen, Hsin-Hui; Crowston, Jonathan G; Huber, Florian; Saubern, Simon; McLean, Keith M; Hartley, Patrick G

    2010-12-01

    Lyotropic liquid crystalline nanoparticles (cubosomes) have the potential to act as amphiphilic scaffolds for the presentation of lipids and subsequent application in, for example, bioseparations and therapeutic delivery. In this work we have formulated lyotropic liquid crystalline systems based on the synthetic amphiphile 1,2,3-trihydroxy-3,7,11,15-tetramethylhexadecane (phytantriol) and containing the lipid dipalmitoyl phosphatidylserine (DPPS). We have prepared a range of DPPS-containing phytantriol cubosome formulations and characterized them using Small Angle X-ray Scattering and Cryo-transmission electron microscopy. These techniques show that increased DPPS content induces marked changes in lyotropic liquid crystalline phase behaviour, characterized by changes in crystallographic dimensions and increases in vesicle content. Furthermore, in vitro cell culture studies indicate that these changes correlate with lipid/surfactant cellular uptake and cytotoxicity. A model cell membrane based on a surface supported phospholipid bilayer was used to gain insights into cubosome-bilayer interactions using Quartz Crystal Microgravimetry. The data show that mass uptake at the supported bilayer increased with DPPS content. We propose that the cytotoxicity of the DPPS-containing dispersions results from changes in lipid/surfactant phase behaviour and the preferential attachment and fusion of vesicles at the cell membrane.

  17. Eight week exposure to a high sugar high fat diet results in adiposity gain and alterations in metabolic biomarkers in baboons (Papio hamadryas sp.

    Directory of Open Access Journals (Sweden)

    Tejero M Elizabeth

    2010-10-01

    Full Text Available Abstract Background Baboons (Papio hamadryas Sp. develop features of the cardiometabolic syndrome and represent a clinically-relevant animal model in which to study the aetiology of the disorder. To further evaluate the baboon as a model for the study of the cardiometabolic syndrome, we developed a high sugar high fat diet and hypothesized that it could be used to induce adiposity gain and affect associated circulating biomarkers. Methods We developed a diet enriched with monosaccharides and saturated fatty acids that was composed of solid and liquid energy sources. We provided a group of baboons (n = 9 ad libitum access to this diet for 8 weeks. Concurrently, a control group (n = 6 was maintained with ad libitum access to a low sugar low fat baseline diet and normal water for 8 weeks. Body composition was determined by dual-energy X-ray absorptiometry and circulating metabolic biomarkers were measured using standard methodology before and after the 8 week study period. Results Neither body composition nor circulating biomarkers changed in the control group. Following the 8 weeks, the intervention group had a significant increase in fat mass (1.71 ± 0.98 vs. 3.23 ± 1.70 kg, p = 0.004, triglyceride (55 ± 13 vs. 109 ± 67 mg/dL, p = 0.006,, and leptin (1.19 ± 1.40 vs. 3.29 ± 2.32 ng/mL, p = 0.001 and a decline in adiponectin concentrations (33530 ± 9744 vs. 23330 ± 7863 ng/mL, p = 0.002. Percentage haemoglobin A1C (4.0 ± 0.3 vs. 6.0 ± 1.4, p = 0.002 also increased in the intervention group. Conclusions Our findings indicate that when exposed to a high sugar high fat diet, young adult male baboons develop increased body fat and triglyceride concentrations, altered adipokine concentrations, and evidence of altered glucose metabolism. Our findings are in keeping with observations in humans and further demonstrate the potential utility of this highly clinically-relevant animal model for studying diet-induced metabolic dysregulation.

  18. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Franzaring, J.; Brouwer, G.; Metselaar, K.; Dueck, Th.A

    2004-09-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l{sup -1} ozone (CF + 25), non-filtered air (NF), non-filtered air plus 25 nl l{sup -1} ozone (NF + 25) and non-filtered air plus 50 nl l{sup -1} ozone (NF + 50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.

  19. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    Science.gov (United States)

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-01

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  20. Fetal alcohol exposure alters proopiomelanocortin gene expression and hypothalamic-pituitary-adrenal axis function via increasing MeCP2 expression in the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Omkaram Gangisetty

    Full Text Available Proopiomelanocortin (POMC is a precursor gene of the neuropeptide β-endorphin in the hypothalamus and is known to regulate various physiological functions including stress response. Several recent reports showed that fetal alcohol exposure programs the hypothalamus to produce lower levels of POMC gene transcripts and to elevate the hypothalamic-pituitary-adrenal (HPA axis response to stressful stimuli. We investigated the role of methyl CpG binding protein (MeCP2 in the effects of prenatal ethanol on POMC gene expression and hypothalamic-pituitary-adrenal (HPA axis function. Pregnant Sprague Dawley rats were fed between GD 7 and 21 with a liquid diet containing 6.7% alcohol, pair-fed with isocaloric liquid diet, or fed ad libitum with rat chow, and their male offsprings were used at 60 days after birth in this study. Fetal alcohol exposure reduced the level of POMC mRNA, but increased the level of DNA methylation of this gene in the arcuate nucleus (ARC of the hypothalamus where the POMC neuronal cell bodies are located. Fetal alcohol exposed rats showed a significant increase in MeCP2 protein levels in POMC cells, MeCP2 gene transcript levels as well as increased MeCP2 protein binding on the POMC promoter in the arcuate nucleus. Lentiviral delivery of MeCP2 shRNA into the third ventricle efficiently reduced MeCP2 expression and prevented the effect of prenatal ethanol on POMC gene expression in the arcuate nucleus. MeCP2-shRNA treatment also normalized the prenatal ethanol-induced increase in corticotropin releasing hormone (CRH gene expression in the hypothalamus and elevated plasma adrenocorticotrophic hormone (ACTH and corticosterone hormone responses to lipopolysaccharide (LPS challenge. These results suggest that fetal alcohol programming of POMC gene may involve recruitment of MeCP2 on to the methylated promoter of the POMC gene to suppress POMC transcript levels and contribute to HPA axis dysregulation.

  1. The alteration of the structural properties and photocatalytic activity of TiO{sub 2} following exposure to non-linear irradiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo-Keun; Mills, Andrew; Elliott, N. [Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 (United Kingdom); Robertson, Peter K.J. [Centre for Environmental Engineering and Sustainable Energy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR (United Kingdom); McStay, Daniel [Applied Photonics Centre Ltd., Redshank House, Alness Point Business Park, Alness IV17 OIJ (United Kingdom); McPhail, Donald [The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB (United Kingdom)

    2003-08-20

    When TiO{sub 2} powder was irradiated with a laser light (>0.8MW peak pulse power (PPP) at 355nm) a visible change in its colour from white to dark blue was observed. The initial rate of change of the total colour difference was related to the laser light intensity and the longer the irradiation time the more substantial the colour change. The result of X-ray diffraction (XRD) studies showed that the crystal structure of the TiO{sub 2} developed a more rutile form after laser exposure. ESR studies indicated that the colour change was associated with the generation of Ti(III) species in the photocatalyst. Electron microscopic studies showed that more spherical shaped particles of TiO{sub 2} were observed after laser treatment although the average particle size remained largely unchanged. No significant changes in the band gap or the surface area of the laser modified TiO{sub 2} were observed. The laser modified photocatalyst showed no enhancement in activity for the destruction of methylene blue, rhodamine B and stearic acids, indicating that the rutile/anatase ratio is unimportant in the destruction of the test pollutants used in this work, via TiO{sub 2} photocatalysis.

  2. Chronic exposure to cigarette smoke during gestation results in altered cholinesterase enzyme activity and behavioral deficits in adult rat offspring: potential relevance to schizophrenia.

    Science.gov (United States)

    Zugno, Alexandra I; Fraga, Daiane B; De Luca, Renata D; Ghedim, Fernando V; Deroza, Pedro F; Cipriano, Andreza L; Oliveira, Mariana B; Heylmann, Alexandra S A; Budni, Josiane; Souza, Renan P; Quevedo, João

    2013-06-01

    Prenatal cigarette smoke exposure (PCSE) has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. The present study investigated locomotor activity and cholinesterase enzyme activity in rats, following PCSE and/or ketamine treatment in adulthood. Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day for a period of 28 days. We evaluated motor activity and cholinesterase activity in the brain and serum of adult male offspring that were administered acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg), which serves as an animal model of schizophrenia. To determine locomotor activity, we used the open field test. Cholinesterase activity was assessed by hydrolysis monitored spectrophotometrically. Our results show that both PCSE and ketamine treatment in the adult offspring induced increase of locomotor activity. Additionally, it was observed increase of acetylcholinesterase and butyrylcholinesterase activity in the brain and serum, respectively. We demonstrated that animals exposed to cigarettes in the prenatal period had increased the risk for psychotic symptoms in adulthood. This also occurs in a dose-dependent manner. These changes provoke molecular events that are not completely understood and may result in abnormal behavioral responses found in neuropsychiatric disorders, such as schizophrenia.

  3. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  4. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization

    Directory of Open Access Journals (Sweden)

    Wang Min

    2010-09-01

    Full Text Available Abstract Background All antipsychotics work via dopamine D2 receptors (D2Rs, suggesting a critical role for D2Rs in psychosis; however, there is little evidence for a change in receptor number or pharmacological nature of D2Rs. Recent data suggest that D2Rs form dimers in-vitro and in-vivo, and we hypothesized that schizophrenia, as well as preclinical models of schizophrenia, would demonstrate altered dimerization of D2Rs, even though the overall number of D2Rs was unaltered. Methods We measured the expression of D2Rs dimers and monomers in patients with schizophrenia using Western blots, and then in striatal tissue from rats exhibiting the amphetamine-induced sensitized state (AISS. We further examined the interaction between D2Rs and the dopamine transporter (DAT by co-immunoprecipitation, and measured the expression of dopamine D2High receptors with ligand binding assays in rat striatum slices with or without acute amphetamine pre-treatment. Results We observed significantly enhanced expression of D2Rs dimers (277.7 ± 33.6% and decreased expression of D2Rs monomers in post-mortem striatal tissue of schizophrenia patients. We found that amphetamine facilitated D2Rs dimerization in both the striatum of AISS rats and in rat striatal neurons. Furthermore, amphetamine-induced D2Rs dimerization may be associated with the D2R-DAT protein-protein interaction as an interfering peptide that disrupts the D2R-DAT coupling, blocked amphetamine-induced up-regulation of D2Rs dimerization. Conclusions Given the fact that amphetamine induces psychosis and that the AISS rat is a widely accepted animal model of psychosis, our data suggest that D2R dimerization may be important in the pathophysiology of schizophrenia and may be a promising new target for novel antipsychotic drugs.

  5. Lactational exposure of phthalate causes long-term disruption in testicular architecture by altering tight junctional and apoptotic protein expression in Sertoli cells of first filial generation pubertal Wistar rats.

    Science.gov (United States)

    Sekaran, S; Balaganapathy, P; Parsanathan, R; Elangovan, S; Gunashekar, J; Bhat, F A; Jagadeesan, A

    2015-06-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant and a well-known endocrine disruptor (ED) that interferes with the reproductive function in both humans and animals. This study aimed to find out the impact of lactational exposure of DEHP in testes of first filial generation (F1) progeny male rat postnatal day (PND)-60. Lactating dams were orally treated with DEHP (0, 1, 10 and 100 mg/kg body weight/day, respectively) from the PND-1 to PND-21. Rats were killed at PND 60. Testes were removed and used for histological analysis and for isolation of Sertoli cells (SCs). The histoarchitecture of DEHP-treated rats showed disturbed testicular structure. DEHP-treated rats also showed increased oxidative stress by decreasing antioxidant levels in the SCs; it disrupted SC tight junctional proteins occludin, claudin, junctional adhesion molecule, zona occludens protein-1 (ZO-1), zona occludens protein-2 (ZO-2), and afadin-6 (AF-6), increased apoptosis by altering the apoptotic genes Bax, cytochrome c, caspase-8, -9, -3 and antiapoptotic gene Bcl-2. It is concluded that early postnatal exposure to DEHP disturbs histoarchitecture of testis and SC function in pubertal Wistar rats. PMID:25352649

  6. Expression of glutamatergic genes in healthy humans across 16 brain regions; altered expression in the hippocampus after chronic exposure to alcohol or cocaine.

    Science.gov (United States)

    Enoch, M-A; Rosser, A A; Zhou, Z; Mash, D C; Yuan, Q; Goldman, D

    2014-11-01

    We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from 'BrainSpan' was obtained across 16 brain regions from nine control adults. We also generated RNA-Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up-regulated in both alcoholics and cocaine addicts (FDR corrected P = 0.008). Alcoholics showed up-regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up-regulated in alcoholics and down-regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up-regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit. PMID:25262781

  7. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice.

    Directory of Open Access Journals (Sweden)

    Marta García-Arevalo

    Full Text Available Bisphenol-A (BPA is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT, the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group; BPA treated mice that also ate a normal chow diet (BPA; vehicle treated animals that had a high fat diet (HFD and BPA treated animals that were fed HFD (HFD-BPA. The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.

  8. Urinary amino acid alterations in 3-year-old children with neurodevelopmental effects due to perinatal dioxin exposure in Vietnam: a nested case-control study for neurobiomarker discovery.

    Directory of Open Access Journals (Sweden)

    Muneko Nishijo

    Full Text Available In our previous study of 3-year-old children in a dioxin contamination hot spot in Vietnam, the high total dioxin toxic equivalent (TEQ-PCDDs/Fs-exposed group during the perinatal period displayed lower Bayley III neurodevelopmental scores, whereas the high 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD-exposed group displayed increased autistic traits. In autistic children, urinary amino acid profiles have revealed metabolic alterations in the amino acids that serve as neurotransmitters in the developing brain. Therefore, our present study aimed to investigate the use of alterations in urinary amino acid excretion as biomarkers of dioxin exposure-induced neurodevelopmental deficits in highly exposed 3-year-old children in Vietnam. A nested case-control study of urinary analyses was performed for 26 children who were selected from 111 3-year-old children whose perinatal dioxin exposure levels and neurodevelopmental status were examined in follow-up surveys conducted in a dioxin contaminated hot spot. We compared urinary amino acid levels between the following 4 groups: (1 a high TEQ-PCDDs/Fs and high TCDD-exposed group; (2 a high TEQ-PCDDs/Fs but low TCDD-exposed group; (3 a low TEQ-PCDDs/Fs exposed and poorly developed group; and (4 a low TEQ-PCDDs/Fs exposed and well-developed group. Urinary levels of histidine and tryptophan were significantly decreased in the high TEQ-PCDDs/Fs and high TCDD group, as well as in the high TEQ-PCDDs/Fs but low TCDD group, compared with the low TEQ-PCDDs/Fs and well-developed group. However, the ratio of histidine to glycine was significantly lower only in the high TEQ-PCDDs/Fs and high TCDD group. Furthermore, urinary histidine levels and the ratio of histidine to glycine were significantly correlated with neurodevelopmental scores, particularly for language and fine motor skills. These results indicate that urinary histidine is specifically associated with dioxin exposure-induced neurodevelopmental deficits

  9. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine.

    Science.gov (United States)

    Improta-Brears, T; Ghosh, S; Bell, R M

    1999-08-01

    Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.

  10. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets.

    Science.gov (United States)

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2016-02-15

    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  11. Pulmonary mitochondrial alterations and oxidative stress in response to ozone exposure: Effects of age and an omega-3 enriched diet; Alterations mitochondriales et stress oxydant pulmonaire en reponse a l'ozone: effets de l'age et d'une supplementation en omega-3

    Energy Technology Data Exchange (ETDEWEB)

    Servais, St.

    2004-04-15

    Ozone (O{sub 3}) is one of the molecular species most reactive to which are exposed living species. O{sub 3} acts primarily on the pulmonary system by inducing oxidative stress. Because susceptibility to oxidative stress varies with age, we studied alterations of pulmonary balance between production of reactive oxygen species (ROS) and their elimination, in immature (21 days), adult (6 months) and old rats (20 months) during O{sub 3} exposure (0,5 ppm, 12 h/day for 7 days). For this purpose we have specifically studied pulmonary mitochondria as ROS source, main antioxidant enzyme activities, contents in stress protein (HSP72), 8-oxodGuo and DNA adducts resulting from lipid peroxidation. These works have shown that our protocol of O{sub 3} exposure did not induce lung oxidative stress in adult rats. We confirmed that immature and old rats were more sensitive during O{sub 3} challenge than adults. Indeed, O{sub 3} generates oxidative stress which leads to modification of ventilatory function and pulmonary DNA oxidation in these two populations. Parameters which take part in greatest susceptibility to O{sub 3} differ according to the age. We concluded that the mitochondria is not a major source of pulmonary ROS in our model of O{sub 3} exposure. Secondly, with the sights of anti-inflammatory properties of polyunsaturated fatty acids {omega}3, we studied the effect of a {omega}3 supplementation in immature and old rats exposed to O{sub 3}. The supplementation in {omega}3 limits the pulmonary DNA oxidation in immature and old rats. Paradoxically, in old rats this supplementation provokes an increase in lipid peroxidation susceptibility. (author)

  12. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kakinuma, Shizuko, E-mail: skakinum@nirs.go.jp [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Amasaki, Yoshiko; Takada, Mayumi; Yamauchi, Kazumi; Sudo, Satomi; Shang, Yi [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Doi, Kazutaka; Yoshinaga, Shinji [Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shimada, Yoshiya [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2012-09-01

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-indcued point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens.

  13. Cytologic alterations in the oral mucosa after chronic exposure to ethanol Alterações citológicas na mucosa bucal após exposição crônica ao etanol

    Directory of Open Access Journals (Sweden)

    Sílvia Regina de Almeida Reis

    2006-04-01

    Full Text Available The effects of ethanol alone on the oral mucosa are still poorly understood, especially because there are few non-smoking chronic consumers of alcoholic beverages. The aim of this study was to evaluate the frequency of micronucleus, abnormal nucleus/cytoplasm ratio, pyknosis, karyorrhexis and karyolysis in exfoliated cells from the buccal mucosa and from the lateral border of the tongue in 36 non-smoker alcoholics (ethanol group and 18 non-smokers and non-drinkers (control group. The Papanicolaou method was used. Since alcoholics generally have hepatobiliary involvement, the association between serum gamma-glutamyl transpeptidase (GGT and some of the analyzed oral mucosa alterations was also investigated. The ethanol group showed a significant increase in the frequency of all alterations analyzed in the tongue cells when compared with the control group (p 0.05; Mann-Whitney. In the ethanol group, the correlation between serum GGT and the frequency of micronucleus and abnormal nucleus/cytoplasm ratio in oral mucosa cells was not significant (p > 0.05; Spearman. In conclusion, chronic exposure to ethanol may be associated with carcinogenic cytologic changes in the oral mucosa, even in the absence of tobacco smoking. These alterations were not correlated with hepatobiliary injury.Os efeitos do etanol isoladamente sobre a mucosa bucal permanecem pouco esclarecidos, sobretudo devido ao baixo número de não-fumantes consumidores crônicos de bebidas alcoólicas. O objetivo deste estudo foi avaliar as freqüências de micronúcleo, relação núcleo/citoplasma anormal, picnose, cariorrexe e cariólise em células esfoliadas da mucosa jugal e do bordo lateral da língua de 36 alcoólatras não-fumantes (grupo etanol e 18 abstêmios de álcool e fumo (grupo controle. O método de Papanicolaou foi utilizado. Uma vez que indivíduos alcoólatras geralmente apresentam comprometimento hepatobiliar, a associação entre gama-glutamil transpeptidase (GGT s

  14. Taxol®-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor® EL

    DEFF Research Database (Denmark)

    Vader, Pieter; Fens, Marcel HAM; Sachini, Nikoleta;

    2013-01-01

    The conventional clinical formulation of paclitaxel (PTX), Taxol®, consists of Cremophor® EL (CrEL) and ethanol. CrEL-formulated PTX is associated with acute hypersensitivity reactions, anemia and cardiovascular events. In this study, the authors investigated the effects of CrEL-PTX on red blood......: These results offer new insights into the side effect profile of Taxol, which is likely to have implications for patients with erythrocyte disorders. Abraxane did not induce any of these effects on RBCs, indicating that the choice of excipients can have a pronounced influence on the efficacy and side effects...

  15. Taxol (R)-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor (R) EL

    NARCIS (Netherlands)

    Vader, Pieter; Fens, Marcel H. A. M.; Sachini, Nikoleta; van Oirschot, Brigitte A.; Andringa, Grietje; Egberts, Antoine C. G.; Gaillard, Carlo A. J. M.; Rasmussen, Jan T.; van Wijk, Richard; van Solinge, Wouter W.; Schiffelers, Raymond M.

    2013-01-01

    The conventional clinical formulation of paclitaxel (PTX), Taxol (R), consists of Cremophor (R) EL (CrEL) and ethanol. CrEL-formulated PTX is associated with acute hypersensitivity reactions, anemia and cardiovascular events. In this study, the authors investigated the effects of CrEL-PTX on red blo

  16. Escherichia coli α-hemolysin triggers shrinkage of erythrocytes via K(Ca)3.1 and TMEM16A channels with subsequent phosphatidylserine exposure

    DEFF Research Database (Denmark)

    Skals, Marianne Gerberg; Jensen, Uffe Birk; Ousingsawat, Jiraporn;

    2010-01-01

    alpha-Hemolysin from Escherichia coli (HlyA) readily lyse erythrocytes from various species. We have recently demonstrated that this pore-forming toxin provokes distinct shrinkage and crenation before it finally leads to swelling and lysis of erythrocytes. The present study documents the underlying...... mechanism for this severe volume reduction. We show that HlyA-induced shrinkage and crenation of human erythrocytes occur subsequent to a significant rise in [Ca(2+)](i). The Ca(2+)-activated K(+) channel K(Ca)3.1 (or Gardos channel) is essential for the initial shrinkage, because both clotrimazole and TRAM......-34 prevent the shrinkage and potentiate hemolysis produced by HlyA. Notably, the recently described Ca(2+)-activated Cl(-) channel TMEM16A contributes substantially to HlyA-induced cell volume reduction. Erythrocytes isolated from TMEM16A(-/-) mice showed significantly attenuated crenation and...

  17. Smectite alteration

    International Nuclear Information System (INIS)

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  18. Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts.

    Science.gov (United States)

    Hekman, Mirko; Hamm, Heike; Villar, Ana V; Bader, Benjamin; Kuhlmann, Jurgen; Nickel, Joachim; Rapp, Ulf R

    2002-07-01

    The serine/threonine kinase C-Raf is a key mediator in cellular signaling. Translocation of Raf to membranes has been proposed to be facilitated by Ras proteins in their GTP-bound state. In this study we provide evidence that both purified B- and C-Raf kinases possess lipophilic properties and associate with phospholipid membranes. In the presence of phosphatidylserine and lipid second messengers such as phosphatidic acid and ceramides these associations were very specific with affinity constants (K(D)) in the range of 0.5-50 nm. Raf association with liposomes was accompanied by displacement of 14-3-3 proteins and inhibition of Raf kinase activities. Interactions of Raf with cholesterol are of particular interest, since cholesterol has been shown to be involved, together with sphingomyelin and glycerophospholipids in the formation of specialized lipid microdomains called rafts. We demonstrate here that purified Raf proteins have moderate binding affinity for cholesterol. However, under conditions of lipid raft formation, Raf association with cholesterol (or rafts) increased dramatically. Since ceramides also support formation of rafts and interact with Raf we propose that Raf may be present at the plasma membrane in two distinct microdomains: in raft regions via association with cholesterol and ceramides and in non-raft regions due to interaction with phosphatidylserine and phosphatidic acid. At either location Raf kinase activity was inhibited by lipid binding in the absence or presence of Ras. Ras-Raf interactions with full-length C-Raf were studied both in solution and in phospholipid environment. Ras association with Raf was GTP dependent as previously demonstrated for C-Raf-RBD fragments. In the presence of liposomes the recruitment of C-Raf by reconstituted Ras-farnesyl was only marginal, since almost 70% of added C-Raf was bound by the lipids alone. Thus Ras-Raf binding in response to activation of Ras-coupled receptors may utilize Raf protein that is

  19. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential

    Directory of Open Access Journals (Sweden)

    de Agostini Ariane

    2009-01-01

    Full Text Available Abstract Background Externalization of phosphatidylserine (EPS occurs in apoptotic-like spermatozoa and could be used to remove them from sperm preparations to enhance sperm quality for assisted medical procreation. We first characterized EPS in sperms from infertile patients in terms of frequency of EPS spermatozoa as well as localization of phosphatidylserine (PS on spermatozoa. Subsequently, we determined the impact of depleting EPS spermatozoa on sperm quality. Methods EPS were visualized by fluorescently-labeled annexin V binding assay. Double staining with annexin V and Hoechst differentiates apoptotic from necrotic spermatozoa. We used magnetic-activated cell sorting using annexin V-conjugated microbeads (MACS-ANMB technique to remove EPS spermatozoa from sperm prepared by density gradient centrifugation (DGC. The impact of this technique on sperm quality was evaluated by measuring progressive motility, viability, and the integrity of the mitochondrial membrane potential (MMP by Rhodamine 123. Results Mean percentages of EPS spermatozoa were 14% in DGC sperm. Four subpopulations of spermatozoa were identified: 70% alive, 3% early apoptotic, 16% necrotic and 11% late apoptotic or necrotic. PS were localized on head and/or midpiece or on the whole spermatozoa. MACS efficiently eliminates EPS spermatozoa. MACS combined with DGC allows a mean reduction of 70% in EPS and of 60% in MMP-disrupted spermatozoa with a mean increase of 50% in sperm survival at 24 h. Conclusion Human ejaculates contain EPS spermatozoa which can mostly be eliminated by DGC plus MACS resulting in improved sperm long term viability, motility and MMP integrity. EPS may be used as an indicator of sperm quality and removal of EPS spermatozoa may enhance fertility potential in assisted medical procreation.

  20. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.

    Science.gov (United States)

    Del Rosso, James Q; Webster, Guy F; Rosen, Ted; Thiboutot, Diane; Leyden, James J; Gallo, Richard; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-04-01

    Oral and topical antibiotics are commonly prescribed in dermatologie practice, often for noninfectious disorders, such as acne vulgaris and rosacea. Concerns related to antibiotic exposure from both medical and nonmedical sources require that clinicians consider in each case why and how antibiotics are being used and to make appropriate adjustments to limit antibiotic exposure whenever possible. This first article of a three-part series discusses prescribing patterns in dermatology, provides an overview of sources of antibiotic exposure, reviews the relative correlations between the magnitude of antibiotic consumption and emergence of antibiotic resistance patterns, evaluates the impact of alterations in antibiotic prescribing, and discusses the potential relevance and clinical sequelae of antibiotic use, with emphasis on how antibiotics are used in dermatology. PMID:27462384

  1. A exposição ao chumbo como fator de risco para alterações no desenvolvimento da linguagem Lead exposure as a risk factor for alterations in language development

    Directory of Open Access Journals (Sweden)

    Mariana San Jorge

    2008-06-01

    Full Text Available OBJETIVO: Verificar a ocorrência de alterações no desenvolvimento, em particular, o desenvolvimento da linguagem, em crianças com histórico de exposição ao metal chumbo, e a existência ou não de correlação entre índice de contaminação e desenvolvimento de linguagem. MÉTODOS: Cinqüenta e oito crianças entre 12 e 36 meses foram submetidas à triagem fonoaudiológica; destas, 15 compareceram para avaliação específica por meio da Escala de Desenvolvimento Comportamental de Gesell e Amatruda por terem falhado na triagem. A correlação entre índice de chumbo e o grau de defasagem na linguagem foi verificada. RESULTADOS: Seis crianças apresentaram defasagem na área da linguagem da Escala, sendo que, uma delas apresentou defasagem em todos os campos. CONCLUSÃO: Não foi encontrada correlação negativa significante entre a concentração de chumbo e o grau de defasagem no desenvolvimento de linguagem dos indivíduos participantes, entretanto, o estudo sugere que a contaminação pelo chumbo tornou-se fator de risco para alterações no desenvolvimento da linguagem destas crianças. Dessa forma, mais estudos são necessários para verificar o grau de prejuízo que este metal pode ocasionar às pessoas, principalmente quando estão em desenvolvimento.PURPOSE: To verify the occurrence of alterations in the development, in particular language development, in children with history of metal lead exposure, and whether there is a correlation between index of contamination and language development. METHODS: Fifty eight children with ages between 12 and 36 months were submitted to speech-language pathology screening; 15 of these children failed the screening, and were referred to specific evaluation using the Behavioral Development Scale by Gesell and Amatruda (Escala de Desenvolvimento Comportamental de Gesell e Amatruda. The correlation between lead index and the degree of language deficits was verified. RESULTS: Six children presented

  2. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  3. Mechanism of Action of Thymosinα1: Does It Interact with Membrane by Recognition of Exposed Phosphatidylserine on Cell Surface? A Structural Approach.

    Science.gov (United States)

    Nepravishta, R; Mandaliti, W; Vallebona, P S; Pica, F; Garaci, E; Paci, M

    2016-01-01

    Thymosinα1 is a peptidic hormone with pleiotropic activity, which is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of micelles and vesicles assuming two tracts of helical conformation with a structural flexible break in between. The studies of the interaction of Thymosinα1 with micelles of mixed dipalmitoylphosphatidylcholine and sodium dodecylsulfate and vesicles with mixed dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylserine, the latter the negative component of the membranes, by (1)H and natural abundance (15)N NMR are herewith reported, reviewed, and discussed. The results indicate that the preferred interactions are those where the surface is negatively charged due to sodium dodecylsulfate or due to the presence of dipalmitoylphosphatidylserine exposed on the surface. In fact the unbalance of dipalmitoylphosphatidylserine on the cellular surface is an important phenomenon present in pathological conditions of cells. Moreover, the direct interaction of Thymosinα1 with K562 cells presenting an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was carried out. PMID:27450732

  4. Analysis of Amino Acid Residues of Potential Importance for Phosphati-dylserine Specificity of P4-type ATPase ATP8A2

    DEFF Research Database (Denmark)

    Mogensen, Louise; Vestergaard, Anna Lindeløv; Mikkelsen, Stine;

    The asymmetric structure of the plasma membrane is maintained through internalization of phos-pholipids by the family of P4-ATPases by a poorly characterized mechanism. Studies in yeast point towards a non-classical pathway involving important residues of a two-gate mechanism [1]. Glycine-230...... 302 of ATP8A2 with alanine (N302A), tyrosine (N302Y) and serine (N302S). Furthermore, a triple mutant of ATP8A2 (Q95GQ96AN302S) was studied to reveal any cooperativity between the two gates, as observed in yeast [1]. The affinities of the mutants for phosphatidylserine and phosphatidylethanolamine...... and differences between ATP8A2 and the yeast flippases. The results supplement recent studies of the ATP8A2 flippase revealing a hydro-phobic gate that facilitates the transport along a water-filled pathway in the protein transmembrane domain[2]. 1. Baldridge, R.D. and T.R. Graham, Proceedings of the National...

  5. Does a more refined assessment of exposure to bitumen fume and confounders alter risk estimates from a nested case-control study of lung cancer among European asphalt workers?

    DEFF Research Database (Denmark)

    Agostini, Michela; Ferro, Gilles; Burstyn, Igor;

    2013-01-01

    To investigate whether a refined assessment of exposure to bitumen fume among workers in the European asphalt industry within a nested case-control study resulted in a different interpretation pertaining to risk of lung cancer mortality compared with the cohort study.......To investigate whether a refined assessment of exposure to bitumen fume among workers in the European asphalt industry within a nested case-control study resulted in a different interpretation pertaining to risk of lung cancer mortality compared with the cohort study....

  6. Differences in intracellular calcium dynamics cause differences in α-granule secretion and phosphatidylserine expression in platelets adhering on glass and TiO2.

    Science.gov (United States)

    Gupta, Swati; Donati, Alessia; Reviakine, Ilya

    2016-06-01

    In this study, the activation of purified human platelets due to their adhesion on glass and TiO2 in the absence of extracellular calcium was investigated. Differences in α-granule secretion between platelets adhering on the two surfaces were detected by examining the expression and secretion of the α-granule markers P-selectin (CD62P) and β-thromboglobulin. Similarly, differences in the expression of phosphatidylserine (PS), and in the activation of the major integrin GPIIb/IIIa, on the surfaces of the adhering platelets, were also observed. While all of these activation markers were expressed in platelets adhering on glass, the surface markers were not expressed in platelets adhering on TiO2, and β-thromboglobulin secretion levels were substantially reduced. Differences in marker expression and secretion correlated with differences in the intracellular calcium dynamics. Calcium ionophore treatment triggered α-granule secretion and PS expression in TiO2-adhering platelets but had no effect on the activation of GPIIb/IIIa. These results demonstrate specificity in the way surfaces of artificial materials activate platelets, link differences in the intracellular calcium dynamics observed in the platelets adhering on the two surfaces to the differences in some of the platelet responses (α-granule secretion and PS expression), but also highlight the involvement of synergistic, calcium-independent pathways in platelet activation. The ability to control activation in surface-adhering platelets makes this an attractive model system for studying platelet signaling pathways and for tissue engineering applications. PMID:27124595

  7. Vibrio cholerae proteome-wide screen for immunostimulatory proteins identifies phosphatidylserine decarboxylase as a novel Toll-like receptor 4 agonist.

    Directory of Open Access Journals (Sweden)

    Ann Thanawastien

    2009-08-01

    Full Text Available Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called "EPSIA", Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFalpha and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced approximately 40% and approximately 15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant.

  8. Chronic Treatment with Squid Phosphatidylserine Activates Glucose Uptake and Ameliorates TMT-Induced Cognitive Deficit in Rats via Activation of Cholinergic Systems

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2012-01-01

    Full Text Available The present study examined the effects of squid phosphatidylserine (Squid-PS on the learning and memory function and the neural activity in rats with TMT-induced memory deficits. The rats were administered saline or squid derived Squid-PS (Squid-PS 50 mg kg−1, p.o. daily for 21 days. The cognitive improving efficacy of Squid-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the passive avoidance task and by performing choline acetyltransferase (ChAT and acetylcholinesterase (AchE immunohistochemistry. 18F-Fluorodeoxyglucose and performed a positron emission tomography (PET scan was also performed. In the passive avoidance test, the control group which were injected with TMT showed a markedly lower latency time than the non-treated normal group (P<0.05. However, treatment of Squid-PS significantly recovered the impairment of memory compared to the control group (P<0.05. Consistent with the behavioral data, Squid-PS significantly alleviated the loss of ChAT immunoreactive neurons in the hippocampal CA3 compared to that of the control group (P<0.01. Also, Squid-PS significantly increased the AchE positive neurons in the hippocampal CA1 and CA3. In the PET analysis, Squid-PS treatment increased the glucose uptake more than twofold in the frontal lobe and the hippocampus (P<0.05, resp.. These results suggest that Squid-PS may be useful for improving the cognitive function via regulation of cholinergic enzyme activity and neural activity.

  9. Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle

    Directory of Open Access Journals (Sweden)

    Sara eMaatta

    2012-03-01

    Full Text Available Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole mass spectrometry indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD is a family of enzymes that hydrolyzes phospholipids to produce phosphatidic acid. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of phosphatidic acid. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  10. A Pilot Study of Mindfulness-Based Exposure Therapy in OEF/OIF Combat Veterans with PTSD: Altered Medial Frontal Cortex and Amygdala Responses in Social–Emotional Processing

    Science.gov (United States)

    King, Anthony P.; Block, Stefanie R.; Sripada, Rebecca K.; Rauch, Sheila A. M.; Porter, Katherine E.; Favorite, Todd K.; Giardino, Nicholas; Liberzon, Israel

    2016-01-01

    Combat-related posttraumatic stress disorder (PTSD) is common among returning veterans, and is a serious and debilitating disorder. While highly effective treatments involving trauma exposure exist, difficulties with engagement and early drop may lead to sub-optimal outcomes. Mindfulness training may provide a method for increasing emotional regulation skills that may improve engagement in trauma-focused therapy. Here, we examine potential neural correlates of mindfulness training and in vivo exposure (non-trauma focused) using a novel group therapy [mindfulness-based exposure therapy (MBET)] in Afghanistan (OEF) or Iraq (OIF) combat veterans with PTSD. OEF/OIF combat veterans with PTSD (N = 23) were treated with MBET (N = 14) or a comparison group therapy [Present-centered group therapy (PCGT), N = 9]. PTSD symptoms were assessed at pre- and post-therapy with Clinician Administered PTSD scale. Functional neuroimaging (3-T fMRI) before and after therapy examined responses to emotional faces (angry, fearful, and neutral faces). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.43). Improvement in PTSD symptoms from pre- to post-treatment in both treatment groups was correlated with increased activity in rostral anterior cingulate cortex, dorsal medial prefrontal cortex (mPFC), and left amygdala. The MBET group showed greater increases in amygdala and fusiform gyrus responses to Angry faces, as well as increased response in left mPFC to Fearful faces. These preliminary findings provide intriguing evidence that MBET group therapy for PTSD may lead to changes in neural processing of social–emotional threat related to symptom reduction. PMID:27703434

  11. SODIUM FLUORIDE ALTERATION OF PROTEIN CONTENT VIS-À-VIS ELECTROPHORETIC PATTERN OF MUSCLE ESTERASES (E.C.3.1.1.1 IN POECILIA RETICULATA PETERS ON CHRONIC EXPOSURE

    Directory of Open Access Journals (Sweden)

    HITESH U. SHINGADIA AND **E.R. AGHARIA

    2014-12-01

    Full Text Available ABSTRACT: A progressive reduction in protein content observed in the muscle of fish in present study was both as a function of time as well as increase in the concentration of fluoride. During chronic exposure to sodium fluoride, the banding pattern of esterase diminished in the treated group of fish viz.  lowest (5.75 ppm, lower intermediate (7.18 ppm, higher intermediate (9.58 ppm and highest (14.37 ppm concentration of the 24 hrs. LC50 (115 ppm value when compared with the control group. SDS-PAGE and staining of the gel revealed that esterase in muscle of fish from control group resolved into six bands (lane-1. Exposure of fluoride to all the four concentrations showed significantly faint and diffused banding pattern of esterases and complete loss of esterase band-1 (Lane 2-5, probably due to chronic stress induced by fluoride. The esterase from band-1 might be sensitive to fluoride intoxication, thus completely vanished during chronic treatment. However in the higher intermediate (9.58 ppm and highest (14.37 ppm sodium fluoride treatment groups, sixth band of esterase (lane 4-5 was found to be very faintly visible on staining. Decrement in protein content & diminution of certain esterase bands in the muscle tissue of the treated group suggest soft tissue (non-skeletal fluorosis induced by sodium fluoride during chronic exposure period, probably could be due to inhibition of biosynthetic mechanism of proteins vis-à-vis esterases. The study of esterase in fish calls attention to sensitive indicator of the environmental pollutants and can be used as contrivance in study of environmental dilapidations. KEY WORDS: Protein, Esterase isozymes, Electrophoresis, Sodium fluoride, Poecilia reticulata.

  12. Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study

    Directory of Open Access Journals (Sweden)

    Zanotta D

    2014-02-01

    Full Text Available Danilo Zanotta, Silvana Puricelli, Guido Bonoldi Unità Operativa di Medicina 2, Ospedale di Circolo di Busto Arsizio, Varese, Italy Abstract: A prospective cohort, noncomparative, multicenter trial was conducted to explore the potential of a phytotherapeutic compound, available as a dietary supplement and containing extracts of Bacopa monnieri and Haematococcus pluvialis (astaxanthin plus phosphatidylserine and vitamin E, in improving cognition in subjects diagnosed with mild cognitive impairment. Enrolled subjects (n=104 were aged 71.2±9.9 years and had a mini-mental state examination score of 26.0±2.0 (mean ± standard deviation. They underwent the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog test and the clock drawing test at baseline and upon completion of a 60-day period of dietary supplementation with one tablet daily of the tested compound. In 102 assessable subjects, total ADAS-cog scores improved from 13.7±5.8 at baseline to 9.7±4.9 on day 60, and the clock drawing test scores improved from 8.5±2.3 to 9.1±1.9. Both changes were statistically significant (P<0.001. Memory tasks were the individual components of ADAS-cog showing the largest improvements. In a multivariate analysis, larger improvements in total ADAS-cog score were associated with less compromised baseline mini-mental state examination scores. Perceived efficacy was rated as excellent or good by 62% of study subjects. The tested compound was well tolerated; one nonserious adverse event was reported in the overall study population, and perceived tolerability was rated excellent or good by 99% of the subjects. In conclusion, dietary supplementation with the tested compound shows potential for counteracting cognitive impairment in subjects with mild cognitive impairment and warrants further investigation in adequately controlled, longer-term studies. Keywords: mild cognitive impairment, Bacopa monnieri, astaxanthin, ADAS-cog test, clock drawing

  13. Combined Insulin Deficiency and Endotoxin Exposure Stimulate Lipid Mobilization and Alter Adipose Tissue Signaling in an Experimental Model of Ketoacidosis in Subjects With Type 1 Diabetes: A Randomized Controlled Crossover Trial.

    Science.gov (United States)

    Svart, Mads; Kampmann, Ulla; Voss, Thomas; Pedersen, Steen B; Johannsen, Mogens; Rittig, Nikolaj; Poulsen, Per L; Nielsen, Thomas S; Jessen, Niels; Møller, Niels

    2016-05-01

    Most often, diabetic ketoacidosis (DKA) in adults results from insufficient insulin administration and acute infection. DKA is assumed to release proinflammatory cytokines and stress hormones that stimulate lipolysis and ketogenesis. We tested whether this perception of DKA can be reproduced in an experimental human model by using combined insulin deficiency and acute inflammation and tested which intracellular mediators of lipolysis are affected in adipose tissue. Nine subjects with type 1 diabetes were studied twice: 1) insulin-controlled euglycemia and 2) insulin deprivation and endotoxin administration (KET). During KET, serum tumor necrosis factor-α, cortisol, glucagon, and growth hormone levels increased, and free fatty acids and 3-hydroxybutyrate concentrations and the rate of lipolysis rose markedly. Serum bicarbonate and pH decreased. Adipose tissue mRNA contents of comparative gene identification-58 (CGI-58) increased and G0/G1 switch 2 gene (G0S2) mRNA decreased robustly. Neither protein levels of adipose triglyceride lipase (ATGL) nor phosphorylations of hormone-sensitive lipase were altered. The clinical picture of incipient DKA in adults can be reproduced by combined insulin deficiency and endotoxin-induced acute inflammation. The precipitating steps involve the release of proinflammatory cytokines and stress hormones, increased lipolysis, and decreased G0S2 and increased CGI-58 mRNA contents in adipose tissue, compatible with latent ATGL stimulation. PMID:26884439

  14. Exposures that may affect sperm DNA integrity

    DEFF Research Database (Denmark)

    Håkonsen, L B; Spano, M; Bonde, J P;

    2012-01-01

    Prenatal lifestyle exposures are linked to alterations in conventional semen characteristics. Sperm DNA integrity is another marker of semen quality shown to be altered in mice prenatally exposed to chemicals. From a Danish pregnancy cohort established in 1984-1987, sons were selected for a follo...

  15. SU-E-I-34: Intermittent Low- and High-Dose Ethanol Exposure Alters Neurochemical Responses in Adult Rat Brain: An Ex Vivo 1H NMR Spectroscopy at 11.7 T

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do-Wan; Kim, Sang-Young; Song, Kyu-Ho; Choe, Bo-Young [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The first goal of this study was to determine the influence of the dose-dependent effects of intermittent ethanol intoxication on cerebral neurochemical responses among sham controls and low- and high-dose-ethanol-exposed rats with ex vivo high-resolution spectra. The second goal of this study was to determine the correlations between the metabolite-metabolite levels (pairs-of-metabolite levels) from all of the individual data from the frontal cortex of the intermittent ethanol-intoxicated rats. Methods: Eight-week-old male Wistar rats were divided into 3 groups. Twenty rats in the LDE (n = 10) and the HDE (n = 10) groups received ethanol doses of 1.5 g/kg and 2.5 g/kg, respectively, through oral gavage every 8-h for 4 days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz proton nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the 3 groups). Results: Normalized total-N-acetylaspartate (tNAA: NAA + NAAG [N-acetylaspartyl-glutamate]), gamma-aminobutyric acid (GABA), and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The 6 pairs of normalized metabolite levels were positively (+) or negatively (−) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and Aspartate (Asp) (−), myo-Inositol (mIns) and Asp (−), mIns and Alanine (+), mIns and Taurine (+), and mIns and tNAA (−). Conclusion: Our results suggested that repeated intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo 1H high-resolution-magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose

  16. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells.

    Science.gov (United States)

    Ghosh, S; Strum, J C; Sciorra, V A; Daniel, L; Bell, R M

    1996-04-01

    Previous studies demonstrated that the cysteine-rich amino-terminal domain of Raf-1 kinase interacts selectively with phosphatidylserine (Ghosh, S., Xie, W. Q., Quest, A. F. G., Mabrouk, G. M., Strum, J. C., and Bell, R. M. (1994) J. Biol. Chem. 269, 10000-10007). Further analysis showed that full-length Raf-1 bound to both phosphatidylserine and phosphatidic acid (PA). Specifically, a carboxyl-terminal domain of Raf-1 kinase (RafC; residues 295 648 of human Raf-1) interacted strongly with phosphatidic acid. The binding of RafC to PA displayed positive cooperativity with Hill numbers between 3.3 and 6.2; the apparent Kd ranged from 4.9 +/- 0.6 to 7.8 +/- 0.9 mol % PA. The interaction of RafC with PA displayed a pH dependence distinct from the interaction between the cysteine-rich domain of Raf-1 and PA. Also, the RafC-PA interaction was unaffected at high ionic strength. Of all the lipids tested, only PA and cardiolipin exhibited high affinity binding; other acidic lipids were either ineffective or weakly effective. By deletion mutagenesis, the PA binding site within RafC was narrowed down to a 35-amino acid segment between residues 389 and 423. RafC did not bind phosphatidyl alcohols; also, inhibition of PA formation in Madin-Darby canine kidney cells by treatment with 1% ethanol significantly reduced the translocation of Raf-1 from the cytosol to the membrane following stimulation with 12-O-tetradecanoylphorbol-13-acetate. These results suggest a potential role of the lipid second messenger, PA, in the regulation of translocation and subsequent activation of Raf-1 in vivo.

  17. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis; Desenvolvimento e farmacocinetica de antimonio encapsulado em lipossomas de fosfatidilserina utilizando radioisotopos em leishmaniose experimental

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger

    2010-07-01

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimon