WorldWideScience

Sample records for altered microrna expression

  1. Environmental Contaminants and microRNA Regulation: Transcription Factors as Regulators of Toxicant-Altered microRNA Expression

    Science.gov (United States)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA transcripts and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized in silico bioinformatic analysis to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n=847) were identified and promoter regions were defined as −1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n=128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. PMID:27292125

  2. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna [Department of Health Sciences, University of Genoa, Genoa (Italy); Steele, Vernon E. [National Cancer Institute (NCI), Rockville, MD (United States); De Flora, Silvio, E-mail: sdf@unige.it [Department of Health Sciences, University of Genoa, Genoa (Italy)

    2011-12-01

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m{sup 3} of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodGuo) were measured by {sup 32}P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  3. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  4. Fluorescence-Based Codetection with Protein Markers Reveals Distinct Cellular Compartments for Altered MicroRNA Expression in Solid Tumors

    DEFF Research Database (Denmark)

    Sempere, Lorenzo F.; Preis, Meir; Yezefski, Todd;

    2010-01-01

    Purpose: High-throughput profiling experiments have linked altered expression of microRNAs (miRNA) to different types of cancer. Tumor tissues are a heterogeneous mixture of not only cancer cells, but also supportive and reactive tumor microenvironment elements. To clarify the clinical significan...

  5. Matrine alters microRNA expression profiles in SGC-7901 human gastric cancer cells.

    Science.gov (United States)

    Li, Hailong; Xie, Shoupin; Liu, Xiaojun; Wu, Hongyan; Lin, Xingyao; Gu, Jing; Wang, Huping; Duan, Yongqiang

    2014-11-01

    Matrine, a major alkaloid extracted from Sophora flavescens, has been reported to possess antitumor properties in several types of cancers, including gastric cancer. However, its mechanisms of action on gastric cancer remain poorly understood. Dysregulation of microRNAs, a class of small, non-coding, regulatory RNA molecules involved in gene expression, is strongly correlated with cancer. The aim of the present study was to demonstrate that matrine treatment altered miRNA expression in SGC7901 cells. Using miRCURY™ microarray analysis, we identified 128 miRNAs substantially exhibiting >2-fold expression changes in matrine-treated cells relative to their expression levels in untreated cells. RT-qPCR was used to show that the levels of 8 miRNAs whose target genes were clustered in the cell cycle pathway increased, while levels of 14 miRNAs whose target genes were clustered in the MAPK signaling pathway decreased. These results were consistent with those from the miRNA microarray experiment. Bioinformatical analysis revealed that the majority of 57 identified enrichment pathways were highly involved in tumorigenesis. In conclusion, the results demonstrated that matrine induces considerable changes in the miRNA expression profiles of SGC7901 cells, suggesting miRNA microarray combined with RT-qPCR validation and bioinformatical analysis provide a novel and promising approach to identify anticancer targets and the mechanisms of matrine involved.

  6. Altered microRNA expression in bovine skeletal muscle with age

    Science.gov (United States)

    Age dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. Therefore, we performed a comprehensive investigation for miRNAs from 5 differe...

  7. Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential.

    Science.gov (United States)

    Ng, Tsz Kin; Carballosa, Carlos M; Pelaez, Daniel; Wong, Hoi Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S

    2013-03-01

    Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.

  8. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    Directory of Open Access Journals (Sweden)

    Jingcheng Zhang

    Full Text Available Retinoic acid (RA is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs. Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  9. Alteration of microRNA expression in cerebrospinal fluid of unconscious patients after traumatic brain injury and a bioinformatic analysis of related single nucleotide polymorphisms

    Institute of Scientific and Technical Information of China (English)

    Wen-Dong You; Qi-Lin Tang; Lei Wang; Jin Lei; Jun-Feng Feng; Qing Mao; Guo-Yi Gao

    2016-01-01

    Purpose:It is becoming increasingly clear that genetic factors play a role in traumatic brain injury (TBI),whether in modifying clinical outcome after TBI or determining susceptibility to it.MicroRNAs are small RNA molecules involved in various pathophysiological processes by repressing target genes at the posttranscriptional level,and TBI alters microRNA expression levels in the hippocampus and cortex.This study was designed to detect differentially expressed microRNAs in the cerebrospinal fluid (CSF) of TBI patients remaining unconscious two weeks after initial injury and to explore related single nucleotide polymorphisms (SNPs).Methods:We used a microarray platform to detect differential microRNA expression levels in CSF samples from patients with post-traumatic coma compared with samples from controls.A bioinformatic scan was performed covering microRNA gene promoter regions to identify potential functional SNPs.Results:Totally 26 coma patients and 21 controls were included in this study,with similar distribution of age and gender between the two groups.Microarray showed that fourteen microRNAs were differentially expressed,ten at higher and four at lower expression levels in CSF of traumatic coma patients compared with controls (p < 0.05).One SNP (rs11851174 allele:C/T) was identified in the motif area of the microRNA hsa-miR-431-3P gene promoter region.Conclusion:The altered microRNA expression levels in CSF after brain injury together with SNP identified within the microRNA gene promoter area provide a new perspective on the mechanism of impaired consciousness after TBI.Further studies are needed to explore the association between the specific microRNAs and their related SNPs with post-traumatic unconsciousness.

  10. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Directory of Open Access Journals (Sweden)

    Steven W Paugh

    2016-02-01

    Full Text Available MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16 for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.

  11. Altered microRNA expression proifles in a rat model of spina biifda

    Institute of Scientific and Technical Information of China (English)

    Pan Qin; Lin Li; Da Zhang; Qiu-liang Liu; Xin-rang Chen; He-ying Yang; Ying-zhong Fan; Jia-xiang Wang

    2016-01-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina biifda. In this study, we used an established fetal rat model of spina biifda induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression proifle in the amniotic lfuid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Com-pared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was signiifcantly decreased (> 2-fold), whereas the expression of miRNA-134 was signiifcantly increased (> 4-fold) in the amniotic lfuid of rats with fetuses modeling spina biifda. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina biifda from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, in-cluding a nervous system development signaling pathway. These ifndings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina biifda. Such studies may provide novel targets for the early diagnosis and treatment of spina biifda.

  12. Altered microRNA expression profiles in a rat model of spina bifida.

    Science.gov (United States)

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-Liang; Chen, Xin-Rang; Yang, He-Ying; Fan, Ying-Zhong; Wang, Jia-Xiang

    2016-03-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida.

  13. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  14. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    Science.gov (United States)

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  15. The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th 17 differentiation in patients with acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    Rui Yao; Hong Xiao; Yuhua Liao; Yulan Ma; Youyou Du; Mengyang Liao; Huanhuan Li; Wei Liang; Jing Yuan; Zhijun Ma; Xian Yu

    2011-01-01

    MicroRNAs (miRNAs) are a novel class of small,non-coding RNAs that play a significant role in both inflammatory and cardiovascular diseases.Immune cells,especially T helper (Th) cells,are critical in the development of atherosclerosis and the onset of acute coronary syndrome (ACS).To assess whether inflammation-related miRNAs (such as miR-155,146a,21,125a-5p,125b,31) are involved in the imbalance of Th cell subsets in patients with ACS,we measured the expression of related miRNAs in patients with acute myocardial infarction (AMI),unstable angina (UA),stable angina (SA) and chest pain syndrome (CPS);analyzed the relationship between miRNA expression and the frequency of Th cell subsets;and observed the co-expression of miR-155 and IL-17A in peripheral blood mononuclear cells (PBMCs) of patients with ACS.The results showed that the expression of miR-155 in the PBMCs of patients with ACS was decreased by approximately 60%,while the expression of both miR-21 and miR-146a was increased by approximately twofold.The expression patterns of miRNAs in plasma correlated with those in PBMCs,except for miR-21,which was increased by approximately sixfold in the AMI group and showed no significant difference between the UA group and the CPS group.We also found that the expression of miR-155 inversely correlated with the frequency of Th17 cells (r=-0.896,P<0.01) and that miR-155 was co-expressed with IL-17A in patients with ACS.In conclusion,our study revealed the expression patterns of inflammation-related miRNAs in patients with ACS and found that miR-155 may be associated with Th17 cell differentiation.

  16. Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; ZHAO Jian-Jun; WANG Chun-mei; LI Mian-yang; HAN Ping; WANG Lin; CHENG Yong-qian; Fabien Zoulim; MA Xu; XU Dong-ping

    2009-01-01

    Background MicroRNAs (miRNAs) are highly conserved small non-coding RNAs of 18-25 nucleotides (nt) that mediate post-transcriptional gene regulation. Hepatitis B virus (HBV) can cause either acute or chronic hepatitis B, and is a high risk factor for liver cirrhosis and hepatocellular carcinoma. Some mammalian viruses have been shown to modulate the expression of host cellular miRNAs. However, interactions between the HBV and the host cellular miRNAs are largely unknown. Methods miRNA microarray and Northern blotting analysis were used to compare the expression profile of cellular miRNAs of a stable HBV-expressing cell line HepG2.2.15 and its parent cell line HepG2. mRNA microarray assay and the miRanda program were used to predict the miRNA targets. A flow cytometric assay was further used to investigate the expression of human leukocyte antigen (HLA)-A. Results Eighteen miRNAs were differentially expressed between the two cell lines. Among them, eleven were up-regulated and seven were down-regulated in HepG2.2.15 cells. Northern blotting analysis confirmed that the expression of miR-181a, miR-181b, miR-200b and miR-146a were up-regulated and the expression of miR-15a was down-regulated, which was in consistent with the results of the microarray analysis. Furthermore, some putative miRNA targets were predicted and verified to be linked with mRNA expression. The 3'-UTR of HLA-A gene had one partially complementary site for miR-181a and miR-181a might down-regulate the expression of HLA-A. Conclusion HBV replication modulates the expression of host cellular miRNAs, which may play a role in the pathogenesis of HBV-related liver diseases.

  17. MicroRNA buffering and altered variance of gene expression in response to Salmonella infection.

    Science.gov (United States)

    Bao, Hua; Kommadath, Arun; Plastow, Graham S; Tuggle, Christopher K; Guan, Le Luo; Stothard, Paul

    2014-01-01

    One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.

  18. MicroRNA buffering and altered variance of gene expression in response to Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Hua Bao

    Full Text Available One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.

  19. Early life ozone exposure results in dysregulated innate immune function and altered microRNA expression in airway epithelium.

    Science.gov (United States)

    Clay, Candice C; Maniar-Hew, Kinjal; Gerriets, Joan E; Wang, Theodore T; Postlethwait, Edward M; Evans, Michael J; Fontaine, Justin H; Miller, Lisa A

    2014-01-01

    Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate

  20. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells

    Science.gov (United States)

    Shin, Shanghun; Kim, Karam; Lee, Myung Joo; Lee, Jeongju; Choi, Sungjin; Kim, Kyung-Suk; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Youn, Hae Jeong; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2016-01-01

    Background Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. Objective We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. Methods We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. Results EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. Conclusion Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs. PMID:27274631

  1. Alteration of microRNA expressions in the pons and medulla in rats after 3,3'-iminodipropionitrile administration.

    Science.gov (United States)

    Ogata, Keiko; Kushida, Masahiko; Miyata, Kaori; Sumida, Kayo; Takeda, Shuji; Izawa, Takeshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2016-10-01

    Although 3,3'-iminodipropionitrile (IDPN) is widely used as a neurotoxicant to cause axonopathy due to accumulation of neurofilaments in several rodent models, its mechanism of neurotoxicity has not been fully understood. In particular, no information regarding microRNA (miRNA) alteration associated with IDPN is available. This study was conducted to reveal miRNA alteration related to IDPN-induced neurotoxicity. Rats were administered IDPN (20, 50, or 125 mg/kg/day) orally for 3, 7, and 14 days. Histopathological features were investigated using immunohistochemistry for neurofilaments and glial cells, and miRNA alterations were analyzed by microarray and reverse transcription polymerase chain reaction. Nervous symptoms such as ataxic gait and head bobbing were observed from Day 9 at 125 mg/kg. Axonal swelling due to accumulation of neurofilaments was observed especially in the pons, medulla, and spinal cord on Day 7 at 125 mg/kg and on Day 14 at 50 and 125 mg/kg. Furthermore, significant upregulation of miR-547* was observed in the pons and medulla in treated animals only on Day 14 at 125 mg/kg. This is the first report indicating that miR-547* is associated with IDPN-induced neurotoxicity, especially in an advanced stage of axonopathy.

  2. Altered microRNA Expression and Immunosuppressive Cytokine Production by Regulatory T Cells of Ulcerative Colitis Patients.

    Science.gov (United States)

    Mohammadnia-Afrouzi, Mousa; Hosseini, Ahmad Zavaran; Khalili, Ali; Abediankenari, Saeid; Amari, Afshin; Aghili, Babak; Nataj, Hadi Hossein

    2016-01-01

    Regulatory T (Treg) cells are essential for maintenance of peripheral tolerance and prevention of autoimmune diseases in part by producing immunosuppressive cytokines. Recently, microRNAs (miRNAs) have also been involved in autoimmune disorders, not least for their crucial role in the regulation of Treg biology and function. We simultaneously investigated the concentration of IL-35, IL-10, TGF-β, and sCD25 in supernatant of cell culture and the expression patterns of several miRNAs in CD4(+)CD25(+) CD127(-/low) FoxP3(+) Tregs of ulcerative colitis (UC) patients. Significantly lower levels of IL-10 and IL-35 were observed in Treg cultures of UC patients. miR-21, miR-146a, and miR-155 levels were downregulated and miR-31 level was upregulated in Tregs of patients. Our results suggest that microRNAs may serve as a novel regulator in function and homoeostasis of UC Treg cells, providing a key role for them in pathophysiology of UC.

  3. Increase of microRNA-210, decrease of raptor gene expression and alteration of mammalian target of rapamycin regulated proteins following mithramycin treatment of human erythroid cells.

    Directory of Open Access Journals (Sweden)

    Nicoletta Bianchi

    Full Text Available Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3'-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells.

  4. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  5. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309

  6. A preliminary analysis of association between plasma microRNA expression alteration and symptomatology improvement in Major Depressive Disorder (MDD patients before and after antidepressant treatment

    Directory of Open Access Journals (Sweden)

    Zhang Qiao-li

    2014-12-01

    Full Text Available Background and Objectives: Currently, there is a serious need to find practical biomarker(s for Major Depressive Disorder (MDD therapeutic target(s. This study aimed to investigate the association between microRNA (miRNA, miR expression level in Peripheral Blood Mononuclear Cells (PBMCs and symptomatology improvement in MDD patients before and after six-week antidepressant treatment. Methods: By using an Affymetrix array that covers 723 human miRNAs, 26 miRNAs were identified with significantly altered expression in PBMCs in MDD patients, of which 10 miRNAs were selected for quantitative real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR study. Twenty out of all the 81 MDD patients were selected for miRNA expression levels testing and symptomatology assessments before and after six-week treatment. Results: Compared with the control group, the expression levels of miR-26b, miR-4743, miR-4498, miR-4485 and miR-1972 of the MDD group were significantly higher (P < 0.05; the changes of expression levels of miR-4743, miR-4498, miR-4485 and miR-1972 were positively related to retardation improvement (P < 0.05, and the change of expression level of miR-26b negatively to the improvement of day and night change (P < 0.05; regression analysis result demonstrated that the alteration of miR-4485 expression accounted for 28.8% of retardation improvement (P < 0.05. Conclusions: These five miRNAs (miR-4743, miR-4498, miR-4485, miR-1972 and miR-26b may serve as biomarker for MDD diagnosis and therapeutic targets for MDD treatment.

  7. Identification of Candidate Target Cyp Genes for microRNAs Whose Expression Is Altered by PCN and TCPOBOP, Representative Ligands of PXR and CAR.

    Science.gov (United States)

    Moriya, Nozomu; Kataoka, Hiromi; Nishikawa, Jun-Ichi; Kugawa, Fumihiko

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mRNA post-transcriptional regulation. The deregulation of miRNAs affects the expression of drug-metabolizing enzymes, drug transporters, and nuclear receptors, all of which are important in regulating drug metabolism. miRNA expression can be altered by several endogenous or exogenous agents, such as steroid hormones, carcinogens, and therapeutic drugs. However, it is unclear whether hepatic miRNA expression is regulated by nuclear receptors, such as pregnane X receptor (PXR) and constitutive androstane receptor (CAR), which are indispensable for the expression of the CYPs. Here we investigated the effects of the mouse PXR and CAR ligands pregnenolone-16α-carbonitrile (PCN) and 1,4-bis[(3,5-dichloropyridin-2-yl)oxy]benzene (TCPOBOP) on hepatic miRNA expression in mice. We found that the expression of 9 miRNAs was increased (>2-fold) and of 4 miRNAs was decreased (>50%) in response to PCN, while TCPOBOP treatment led to the up-regulation of 8 miRNAs and down-regulation of 6 miRNAs. Using several miRNA target prediction algorithms, we found that the predicted target genes included several lesser known Cyp genes (Cyp1a1, Cyp1b1, Cyp2b10, Cyp2c38, Cyp2u1, Cyp4a12a/b, Cyp4v3, Cyp17a1, Cyp39a1, and Cyp51). We analyzed the expression of these genes in response to PCN and TCPOBOP and found changes in their mRNA levels, some of which were negatively correlated with the expression of their corresponding miRNAs, suggesting that miRNAs may play a role in regulating Cyp enzyme expression. Further studies will be required to fully elucidate the miRNA regulatory mechanisms that contribute to modulating CYP expression.

  8. Troxerutin induces protective effects against ultraviolet B radiation through the alteration of microRNA expression in human HaCaT keratinocyte cells.

    Science.gov (United States)

    Lee, Kwang Sik; Cha, Hwa Jun; Lee, Ghang Tai; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-04-01

    Ultraviolet light B (UVB), contained in sunlight, induces damaging effects on skin by impairing cells in the epidermis and dermis. In particular, keratinocytes in the epidermis are those cells which are mainly affected by UVB light. UVB radiation induces cell death, growth arrest, DNA damage and restricts cell migration. Various phytochemicals have been shown to alleviate UVB-induced cellular damage. Troxerutin is a natural flavonoid rutin mainly found in extracts of Sophora japonica, and is a well-known antioxidant and anti-inflammatory compound used in experimental mouse models. In this study, we examined the effects of troxerutin on UVB-induced damage in HaCaT cells. HaCaT cells were pre-treated with troxerutin (0-10 µM) and then exposed to UVB radiation (50 mJ/cm2). Cell viability, cell cycle and migration assays were performed to determine the protective effects of troxerutin on the cells. DNA repair activity was also measured. Troxerutin protected the cells against UVB-induced damage, such as cell death, growth arrest, restriction of cell migration and decreased DNA repair activity in HaCaT cells. Analyses of microRNA (miRNA) expression demonstrated that the protective effects of troxerutin correlated with alterations in miRNA expression, as indicated by Gene Ontology analyses of putative target genes. Overall, our data demonstrate that troxerutin exerts protective effects against UVB-induced damage by regulating miRNA expression.

  9. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  10. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren's syndrome

    Science.gov (United States)

    Póliska, Szilárd; Szabó, Krisztina; Tarr, Tünde; Bálint, Bálint László; Szodoray, Péter

    2017-01-01

    The discovery of microRNAs (miRNAs) and their critical role in genetic control opened new avenues in understanding of various biological processes including immune cell lineage commitment, differentiation, proliferation and apoptosis. However, a given miRNA may have hundreds of different mRNA targets and a target might be regulated by multiple miRNAs, thus the characterisation of dysregulated miRNA expression profiles could give a better insight into the development of immunological disturbances in autoimmune diseases. The aim of our study was to examine the changes in miRNA expression profiles in patients with systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS). Eight SLE patients, 8 pSS patients and 7 healthy subjects were enrolled in the investigation. MiRNAs were isolated from peripheral blood mononuclear cells, and expression patterns were determined with Illumina next-generation sequencing technology. Since the immunopathogenesis of pSS and SLE encompasses pronounced B cell hyperactivity along with specific autoantibody production, we paid a special attention on the association between miRNA expression levels and altered peripheral B cell distribution. In SLE patients 135, while in pSS patients 26 miRNAs showed altered expression. Interestingly, the 25 miRNAs including miR-146a, miR-16 and miR-21, which were over-expressed in pSS patients, were found to be elevated in SLE group, as well. On the contrary, we observed the down-regulation of miR-150-5p, which is a novel and unique finding in pSS. Levels of several miRNAs over-expressed in SLE, were not changed in pSS, such as miR-148a-3p, miR-152, miR-155, miR-223, miR-224, miR-326 and miR-342. Expression levels of miR-223-5p, miR-150-5p, miR-155-5p and miR-342-3p, which miRNAs are potentially linked to B cell functions, showed associations with the B cell proportions within peripheral blood mononuclear cells. The observed differences in miRNA expression profiles and the better understanding

  11. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways.

    Directory of Open Access Journals (Sweden)

    Verónica M Borgonio Cuadra

    Full Text Available OBJECTIVE: To analyze a set of circulating microRNA (miRNA in plasma from patients with primary Osteoarthritis (OA and describe the biological significance of altered miRNA in OA based on an in silico analysis of their target genes. METHODS: miRNA expression was analyzed using TaqMan Low Density Arrays and independent assays. The search for potential messenger RNA (mRNA targets of the differentially expressed miRNA was performed by means of the miRWalk and miRecords database; we conducted the biological relevance of the predicted miRNA targets by pathway analysis with the Reactome and DAVID databases. RESULTS: We measured the expression of 380 miRNA in OA; 12 miRNA were overexpressed under the OA condition (p value, ≤0.05; fold change, >2. These results were validated by the detection of some selected miRNA by quantitative PCR (qPCR. In silico analysis showed that target messenger RNA (mRNA were potentially regulated by these miRNA, including genes such as SMAD1, IL-1B, COL3A, VEGFA, and FGFR1, important in chondrocyte maintenance and differentiation. Some metabolic pathways affected by the miRNA: mRNA ratio are signaling Bone morphogenetic proteins (BMP, Platelet-derived growth factor (PDGF, and Nerve growth factor (NGF, these latter two involved in the process of pain. CONCLUSIONS: We identified 12 miRNA in the plasma of patients with primary OA. Specific miRNA that are altered in the disease could be released into plasma, either due to cartilage damage or to an inherent cellular mechanism. Several miRNA could regulate genes and pathways related with development of the disease; eight of these circulating miRNA are described, to our knowledge, for first time in OA.

  12. TGF-β and iron differently alter HBV replication in human hepatocytes through TGF-β/BMP signaling and cellular microRNA expression.

    Directory of Open Access Journals (Sweden)

    Sun O Park

    Full Text Available The nature of host-virus interactions in hepatitis B virus infection is incompletely understood. Since soluble factors, e.g., cytokines and metals, may exacerbate liver injury in chronic hepatitis, we considered that defining the effects of receptor-mediated signaling upon viral replication will be significant. Consequently, we studied effects of iron or TGF-β-induced TGF-β/BMP signaling in the HepG2 2.2.15 cell model of hepatitis B virus replication. We found iron and TGF-β increased hepcidin mRNA expression or TGF-β receptor kinase activity, respectively, which indicated that 2.2.15 cells responded appropriately to these substances. However, iron increased but TGF-β decreased hepatitis B virus mRNA and DNA expression. TGF-β induced expression at the mRNA level of multiple TGF-β/BMP pathway genes. This change was not observed in iron-treated cells. On the other hand, presence of SMAD proteins in iron or TGF-β-treated cells, including of SMAD4, did confirm convergence of TGF-β/BMP signaling pathways under these conditions. Since transcription factors in TGF-β/BMP signaling pathways could not have directly targeted hepatitis B virus itself, we studied whether iron or TGF-β exerted their effects through alternative mechanisms, such as by involvement of antiviral cellular microRNAs. We discovered cellular microRNA expression profiles were significantly different in iron or TGF-β-treated cells compared with untreated control cells. In many cases, exposure to iron or TGF-β changed microRNA expression in opposite directions. Introduction in cells of sequences representing such differentially expressed microRNAs, e.g., hsa-miR-125a-5p and -151-5p, even reproduced effects on virus replication of iron- or TGF-β. We surmised that TGF-β/BMP pathway members, i.e., SMADs, likely governed iron or TGF-β-induced microRNA expression. Iron may have mediated Drosha/DGCR8/heme-mediated processing of microRNAs. In turn, cellular microRNAs regulated

  13. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression.

    Science.gov (United States)

    Cui, Yazhou; Luan, Jing; Li, Haiying; Zhou, Xiaoyan; Han, Jinxiang

    2016-01-01

    Mineralizing osteoblasts (MOBs) can release exosomes, although the functional significance remains unclear. In the present study, we demonstrate that exosomes derived from mineralizing pre-osteoblast MC3T3-E1 cells can promote bone marrow stromal cell (ST2) differentiation to osteoblasts. We reveal that MOB-derived exosomes significantly influence miRNA profiles in recipient ST2 cells, and these changes tend to activate the Wnt signaling pathway by inhibiting Axin1 expression and increasing β-catenin expression. We also suggest that MOB derived-exosomes partly induce the variation in miRNA expression in recipient ST2 cells by exosomal miRNA transfer. These findings suggest an exosome-mediated mode of cell-to-cell communication in the osteogenic microenvironment, and also indicate the potential of MOB exosomes in bone tissue engineering.

  14. Altered MicroRNA Expression Is Associated with Tumor Grade, Molecular Background and Outcome in Childhood Infratentorial Ependymoma.

    Directory of Open Access Journals (Sweden)

    Magdalena Zakrzewska

    Full Text Available Ependymal tumors are the third most common group of brain tumors in children, accounting for about 10% of all primary brain neoplasms. According to the current WHO classification, they comprise four entities with the most frequent ependymoma and anaplastic ependymoma. The most of pediatric tumors are located within the posterior fossa, with a tendency to infiltrate the vital brain structures. This limits surgical resection and poses a considerable clinical problem. Moreover, there are no appropriate outcome prognostic factors besides the extent of surgical resection. Despite definition of molecular subgroups, the majority of childhood ependymomas present a balanced genome, which makes it difficult to establish molecular prognostic factors.The purpose of our study was to explore whether miRNA expression could be used as prognostic markers in pediatric infratentorial ependymomas. We also performed a mRNA expression pattern analysis of NELL2 and LAMA2 genes, with immunohistochemical illustrations of representative cases. The miRNA and mRNA expression was measured in 53 pediatric infratentorial ependymomas using a real-time quantitative PCR.Three miRNAs were shown to efficiently differentiate between grade II and III ependymomas: miR-17-5p, miR-19a-3p, and miR-106b-5p. Survival analysis showed that the probabilities of overall (p = 0.036 and event-free survival (p = 0.002 were reduced with higher than median miRNA expression levels of miR-17-5p. Using multivariate analysis adjusted for patient's age, sex, tumor grade and localization, we showed statistically significant associations with event-free survival (p = 0004 and borderline statistical significance with overall survival (p = 0.057 for miR-17-5p. Correlation analysis of miR-19a, miR-17-5p, miR-106b revealed that their expression levels were significantly correlated with EZH2 expression, suggested marker of PFA ependymomas. Furthermore, lower expression level of LAMA2 mRNA was shown to be

  15. MicroRNA Expression in Alzheimer Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2007-01-01

    Full Text Available Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC of patients with sporadic Alzheimer disease (AD. Noncoding microRNAs (miRNA regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated whether peripheral miRNA expression is altered in this condition. MicroRNA levels were assessed using the microRNA microarray (MMChip containing 462 human miRNA, and the results validated by real time PCR. Sixteen AD patients and sixteen normal elderly controls (NEC were matched for ethnicity, age, gender and education. The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles. As compared to NEC, miRNAs signifi cantly upregulated in AD subjects and confi rmed by qPCR were miR-34a and 181b. Predicted target genes downregulated in Alzheimer BMC that correlated with the upregulated miRNAs were largely represented in the functional categories of Transcription/Translation and Synaptic Activity. Several miRNAs targeting the same genes were within the functional category of Injury response/Redox homeostasis. Taken together, induction of microRNA expression in BMC may contribute to the aberrant systemic decline in mRNA levels in sporadic AD.

  16. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring's Sperm.

    Science.gov (United States)

    Fullston, Tod; Ohlsson-Teague, E Maria C; Print, Cristin G; Sandeman, Lauren Y; Lane, Michelle

    2016-01-01

    The prevalence of obesity is increasing worldwide and has tripled in men of reproductive age since the 1970s. Concerningly, obesity is not only comorbid with other chronic diseases, but there is mounting evidence that it increases the non-communicable disease load in their children (eg mortality, obesity, autism). Animal studies have demonstrated that paternal obesity increases the risk of metabolic (eg glucose metabolism defects, obesity) and reproductive disorders in offspring. Epigenetic changes within sperm are clear mechanistic candidates that are associated with both changes to the father's environment and offspring phenotype. Specifically there is emerging evidence that a father's sperm microRNA content both responds to paternal environmental cues and alters the gene expression profile and subsequent development of the early embryo. We used a mouse model of high fat diet (HFD) induced obesity to investigate whether male obesity could modulate sperm microRNA content. We also investigated whether this alteration to a father's sperm microRNA content lead to a similar change in the sperm of male offspring. Our investigations were initially guided by a Taqman PCR array, which indicated the differential abundance of 28 sperm borne microRNAs in HFD mice. qPCR confirmation in a much larger cohort of founder males demonstrated that 13 of these microRNAs were differentially abundant (11 up-regulated; 2 down-regulated) due to HFD feeding. Despite metabolic and reproductive phenotypes also being observed in grand-offspring fathered via the male offspring lineage, there was no evidence that any of the 13 microRNAs were also dysregulated in male offspring sperm. This was presumably due to the variation seen within both groups of offspring and suggests other mechanisms might act between offspring and grand-offspring. Thus 13 sperm borne microRNAs are modulated by a father's HFD and the presumed transfer of this altered microRNA payload to the embryo at fertilisation

  17. Constitutive Expression of Rice MicroRNA528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass.

    Science.gov (United States)

    Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Yuan, Ning; Hu, Qian; Luo, Hong

    2015-09-01

    MicroRNA528 (miR528) is a conserved monocot-specific small RNA that has the potential of mediating multiple stress responses. So far, however, experimental functional studies of miR528 are lacking. Here, we report that overexpression of a rice (Oryza sativa) miR528 (Osa-miR528) in transgenic creeping bentgrass (Agrostis stolonifera) alters plant development and improves plant salt stress and nitrogen (N) deficiency tolerance. Morphologically, miR528-overexpressing transgenic plants display shortened internodes, increased tiller number, and upright growth. Improved salt stress resistance is associated with increased water retention, cell membrane integrity, chlorophyll content, capacity for maintaining potassium homeostasis, CATALASE activity, and reduced ASCORBIC ACID OXIDASE (AAO) activity; while enhanced tolerance to N deficiency is associated with increased biomass, total N accumulation and chlorophyll synthesis, nitrite reductase activity, and reduced AAO activity. In addition, AsAAO and COPPER ION BINDING PROTEIN1 are identified as two putative targets of miR528 in creeping bentgrass. Both of them respond to salinity and N starvation and are significantly down-regulated in miR528-overexpressing transgenics. Our data establish a key role that miR528 plays in modulating plant growth and development and in the plant response to salinity and N deficiency and indicate the potential of manipulating miR528 in improving plant abiotic stress resistance.

  18. Expression profiling identifies microRNA signature in pancreatic cancer

    OpenAIRE

    Lee, Eun Joo; Gusev, Yuriy; Jiang, Jinmai; Gerard J Nuovo; Lerner, Megan R; Frankel, Wendy L.; Morgan, Daniel L.; Postier, Russell G.; Brackett, Daniel J; Schmittgen, Thomas D.

    2007-01-01

    microRNAs are functional, 22 nt, noncoding RNAs that negatively regulate gene expression. Disturbance of microRNA expression may play a role in the initiation and progression of certain diseases. A microRNA expression signature has been identified that is associated with pancreatic cancer. This has been accomplished with the application of real-time PCR profiling of over 200 microRNA precursors on specimens of human pancreatic adenocarcinoma, paired benign tissue, normal pancreas, chronic pan...

  19. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues.

    Science.gov (United States)

    Kim, Yeon Jeong; Hwang, Soo Hyun; Cho, Hyun Hwa; Shin, Keun Koo; Bae, Yong Chan; Jung, Jin Sup

    2012-01-01

    A better understanding of the molecular mechanisms that govern human adipose tissue-derived mesenchymal stem cells (hASCs) differentiation could provide new insights into a number of diseases including obesity. Our previous study demonstrated that microRNA-21 (miR-21) controls the adipogenic differentiation of hASCs. In this study, we determined the expression of miR-21 in white adipose tissues in a high-fat diet (HFD)-induced obesity mouse model to examine the relationship between miR-21 and obesity and the effect of miR-21 on hASCs proliferation. Our study showed biphasic changes of miR-21 expression and a correlation between miR-21 level and adipocyte number in the epididymal fat of HFD mice. Over-expression of miR-21 decreased cell proliferation, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased it. Over-expression of miR-21 decreased both protein and mRNA levels of STAT3, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased these levels. The activity of a luciferase construct containing the miR-21 target site from the STAT3 3'UTR was lower in LV-miR21-infected hASCs than in LV-miLacZ infected cells. RNA interference-mediated down-regulation of STAT3 decreased cell proliferation without affecting adipogenic differentiation. These findings provide the evidence of the correlation between miR-21 level and adipocyte number in the white adipose tissue of HFD-induced obese mice, which provides new insights into the mechanisms of obesity.

  20. Genetic and epigenetic alterations of microRNAs and implications for human cancers and other diseases.

    Science.gov (United States)

    Tuna, Musaffe; Machado, Andreia S; Calin, George A

    2016-03-01

    MicroRNAs (miRNAs) are a well-studied group of noncoding RNAs that control gene expression by interacting mainly with messenger RNA. It is known that miRNAs and their biogenesis regulatory machineries have crucial roles in multiple cell processes; thus, alterations in these genes often lead to disease, such as cancer. Disruption of these genes can occur through epigenetic and genetic alterations, resulting in aberrant expression of miRNAs and subsequently of their target genes. This review focuses on the disruption of miRNAs and their key regulatory machineries by genetic alterations, with emphasis on mutations and epigenetic changes in cancer and other diseases.

  1. MicroRNA Expression Profiling of the Porcine Developing Brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most microRNA...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  2. Differences in Circulating microRNAs between Grazing and Grain-Fed Wagyu Cattle Are Associated with Altered Expression of Intramuscular microRNA, the Potential Target PTEN, and Lipogenic Genes.

    Science.gov (United States)

    Muroya, Susumu; Shibata, Masahiro; Hayashi, Masayuki; Oe, Mika; Ojima, Koichi

    2016-01-01

    We aimed to understand the roles of miRNAs in the muscle tissue maturation and those of circulating microRNAs (c-miRNAs) in beef production of Japanese Black (JB) cattle (Wagyu), a breed with genetically background of superior intermuscular fat depot, by comparing different feeding conditions (indoor grain-feeding vs. grazing on pasture). The cattle at 18 months old were assigned to pasture feeding or conventional indoor grain feeding conditions for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions. Validation of the microarray results by qPCR showed that the circulating miR-10b level in the grazing cattle was upregulated compared to that of the grain-fed cattle. In contrast, the levels of miR-17-5p, miR-19b, miR-29b, miR-30b-5p, miR-98, miR-142-5p, miR-301a, miR-374b, miR-425-5p, and miR-652 were lower in the grazing cattle than in the grain-fed cattle. Bioinformatic analysis indicated that the predicted target genes of those c-miRNAs were enriched in gene ontology terms associated with blood vessel morphogenesis, plasma membrane, focal adhesion, endocytosis, collagen, ECM-receptor interaction, and phosphorylation. In the grazing cattle, the elevation of miR-10b expression in the plasma was coincident with its elevation in the longissimus lumborum (LL) muscle. Expression of bovine-specific miR-2478, the most plasma-enriched miRNA, tended to be also upregulated in the muscle but not in the plasma. Furthermore, grazing caused the downregulated mRNA expression of predicted miR-10b and/or miR-2478 target genes, such as DNAJB2, PTEN, and SCD1. Thus, the feeding system used for JB cattle affected the c-miRNAs that could be indicators of grain feeding. Among these, miR-10b expression was especially associated with feeding-induced changes and with the expression of the potential target genes responsible for

  3. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints.

    Science.gov (United States)

    Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong

    2013-12-01

    The objective of this study was to examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery, and sensitivity was sustained for the remainder of the 8-week experimental period (F = 341, p MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly regenerating peripheral knee joint cartilage.

  4. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target

    Directory of Open Access Journals (Sweden)

    Foster Paul S

    2011-05-01

    Full Text Available Abstract Background The role of microRNAs (miRNAs in regulating gene expression is currently an area of intense interest. Relatively little is known, however, about the role of miRNAs in inflammatory and immunologically-driven disorders. In a mouse model, we have previously shown that miRNAs are potentially important therapeutic targets in allergic asthma, because inhibition of miR-126, one of a small subset of miRNAs upregulated in the airway wall, effectively suppressed Th2-driven airway inflammation and other features of asthma. In the present study, we extended investigation of the therapeutic potential of miRNA inhibition to our well-established model of chronic asthma. Methods Female BALB/c mice were systemically sensitised with ovalbumin (OVA and chronically challenged with low mass concentrations of aerosolised OVA for up to 6 weeks. Airway tissue was obtained by blunt dissection and RNA was isolated for miRNA profiling. On the basis of the results obtained, animals were subsequently treated with either an antagomir to miR-126 (ant-miR-126 or a scrambled control antagomir once weekly during the 6 weeks of chronic challenge, and the effects on airway inflammation and remodelling were assessed using established morphometric techniques. Results Compared to naïve mice, there was selective upregulation of a modest number of miRNAs, notably miR-126, in the airway wall tissue of chronically challenged animals. The relative increase was maximal after 2 weeks of inhalational challenge and subsequently declined to baseline levels. Compared to treatment with the scrambled control, ant-miR-126 significantly reduced recruitment of intraepithelial eosinophils, but had no effect on the chronic inflammatory response, or on changes of airway remodelling. Conclusions In this model of chronic asthma, there was an initial increase in expression of a small number of miRNAs in the airway wall, notably miR-126. However, this later declined to baseline levels

  5. Expression patterns of micro-RNAs 146a, 181a, and 155 in subacute sclerosing panencephalitis.

    Science.gov (United States)

    Yiş, Uluç; Tüfekçi, Uğur Kemal; Genç, Şermin; Çarman, Kürşat Bora; Bayram, Erhan; Topçu, Yasemin; Kurul, Semra Hız

    2015-01-01

    Subacute sclerosing panencephalitis is caused by persistent brain infection of mutated virus, showing inflammation, neurodegeneration, and demyelination. Although many factors are emphasized in the pathogenesis of subacute sclerosing panencephalitis, the exact mechanism of neurodegeneration remains unknown. Micro-RNAs are small, noncoding RNAs that regulate gene expression at the posttranscriptional levels. Micro-RNAs are essential for normal immune system development; besides they are also implicated in the pathogenesis of many chronic inflammatory disorders. The aim of this study is to investigate the expression patterns of micro-RNAs 146a, 181a, and 155 in peripheral blood mononuclear cells of patients with subacute sclerosing panencephalitis. We enrolled 39 patients with subacute sclerosing panencephalitis and 41 healthy controls. Quantitative analysis of micro-RNAs 146a, 181a, and 155 were performed using specific stem-loop primers followed by real-time polymerase chain reaction. All of 3 micro-RNAs were upregulated in subacute sclerosing panencephalitis patients. In addition, the level of micro-RNA 155 expression was higher in stage 3 patients. But, micro-RNA 146a and 181a expression levels showed no association or correlation with clinically relevant data. Alteration of peripheral blood mononuclear cell micro-RNAs in subacute sclerosing panencephalitis may shed new light on the pathogenesis of disease and may contribute to the aberrant systemic rise in mRNA levels in subacute sclerosing panencephalitis.

  6. MicroRNA Expression in Cystic Fibrosis Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Catherine M. Greene

    2013-02-01

    Full Text Available MicroRNAs (miRs have emerged as major regulators of the protein content of a cell. In the most part, miRs negatively regulate target mRNA expression, with sets of miRs predicted to regulate certain signaling pathways. The miR expression profile of endobronchial brushings is altered in people with cystic fibrosis (CF compared to those without CF. How this impacts on CF has important implications for our growing understanding of the pathophysiology of CF lung disease and the development of new therapeutics to treat its pulmonary manifestations. Herein we discuss the potential consequences of altered miR expression in CF airway epithelium particularly with respect to cystic fibrosis transmembrane conductance regulator (CFTR expression, innate immunity and toll-like receptor signalling and explore how best to exploit these changes for therapeutic benefit.

  7. RNA degradation compromises the reliability of microRNA expression profiling

    Directory of Open Access Journals (Sweden)

    Muckenthaler Martina U

    2009-12-01

    Full Text Available Abstract Background MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression and their expression is frequently altered in human diseases, including cancer. To correlate clinically relevant parameters with microRNA expression, total RNA is frequently prepared from samples that were archived for various time periods in frozen tissue banks but, unfortunately, RNA integrity is not always preserved in these frozen tissues. Here, we investigate whether experimentally induced RNA degradation affects microRNA expression profiles. Results Tissue samples were maintained on ice for defined time periods prior to total RNA extraction, which resulted in different degrees of RNA degradation. MicroRNA expression was then analyzed by microarray analysis (miCHIP or microRNA-specific real-time quantitative PCR (miQPCR. Our results demonstrate that the loss of RNA integrity leads to in unpredictability of microRNA expression profiles for both, array-based and miQPCR assays. Conclusion MicroRNA expression cannot be reliably profiled in degraded total RNA. For the profiling of microRNAs we recommend use of RNA samples with a RNA integrity number equal to or above seven.

  8. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp;

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  9. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi; Nawa, Takatoshi; Kodama, Takahiro; Shimizu, Satoshi; Hikita, Hayato; Hiramatsu, Naoki; Kanto, Tatsuya [Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita 565-0871 (Japan); Hayashi, Norio [Kansai Rosai Hospital, 3-1-69, Inabaso, Amagasaki 660-8511 (Japan); Takehara, Tetsuo, E-mail: takehara@gh.med.osaka-u.ac.jp [Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita 565-0871 (Japan)

    2011-08-19

    Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV replicon as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.

  10. Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle.

    Science.gov (United States)

    Khayrullin, Andrew; Smith, Lauren; Mistry, Dhwani; Dukes, Amy; Pan, Y Albert; Hamrick, Mark W

    2016-10-21

    Muscle wasting is estimated to affect 40-60% of alcoholics, and is more common than cirrhosis among chronic alcohol abusers. The molecular and cellular mechanisms underlying alcohol-related musculoskeletal dysfunction are, however, poorly understood. Muscle-specific microRNAs (miRNAs) referred to as myoMirs are now known to play a key role in both myogenesis and muscle atrophy. Yet, no studies have investigated a role for myoMirs in alcohol-related skeletal muscle damage. We developed a zebrafish model of chronic ethanol exposure to better define the mechanisms mediating alcohol-induced muscle atrophy. Adult fish maintained at 0.5% ethanol for eight weeks demonstrated significantly reduced muscle fiber cross-sectional area (∼12%, P < 0.05) compared to fish housed in normal water. Zebrafish miRNA microarray revealed marked changes in several miRNAs with ethanol treatment. Importantly, miR-140, a miRNA that shows 100% sequence homology with miR-140 from both mouse and human, is decreased 10-fold in ethanol treated fish. miR-140 targets several members of the Notch signaling pathway such as DNER, JAG1, and Hey1, and PCR data show that both Hey1 and Notch 1 are significantly up-related (3-fold) in muscle of ethanol treated fish. In addition, miR-146a, which targets the Notch antagonist Numb, is elevated in muscle from ethanol-treated fish. Upregulation of Notch signaling suppresses myogenesis and maintains muscle satellite cell quiescence. These data suggest that miRNAs targeting Notch are likely to play important roles in alcohol-related myopathy. Furthermore, zebrafish may serve as a useful model for better understanding the role of microRNAs in alcohol-related tissue damage.

  11. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman; Gao, Shan; Hulf, Toby;

    2011-01-01

    MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC....

  12. Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line

    DEFF Research Database (Denmark)

    Jacobsen, Kari Stougaard; Nielsen, Kirstine Overgaard; Nordmann Winther, Thilde;

    2016-01-01

    BACKGROUND: MicroRNAs are regulatory molecules and suggested as non-invasive biomarkers for molecular diagnostics and prognostics. Altered expression levels of specific microRNAs are associated with hepatitis B virus infection and hepatocellular carcinoma. We previously identified differentially...... of hepatitis B virus expression vectors. RT-qPCR is the preferred method for microRNA studies, and a careful normalisation strategy, verifying the optimal set of reference genes, is decisive for correctly evaluating microRNA expression levels. The aim of this study was to provide valid reference genes...... identified miR-24-3p, miR-151a-5p, and miR-425-5p as the most valid combination of reference genes for microRNA RT-qPCR studies in our hepatitis B virus replicating HepG2 cell model....

  13. Integrated analysis of microRNA and mRNA expression: Adding biological significance to microRNA target predictions

    NARCIS (Netherlands)

    M. van Iterson (Mat); S. Bervoets (Sander); E.J. de Meijer (Emile); H.P. Buermans (Henk); P.A.C. 't Hoen (Peter); R.X. Menezes (Renée); J.M. Boer (Judith)

    2013-01-01

    textabstractCurrent microRNA target predictions are based on sequence information and empirically derived rules but do not make use of the expression of microRNAs and their targets. This study aimed to improve microRNA target predictions in a given biological context, using in silico predictions, mi

  14. MicroRNA expression profiles and functions in the brain

    Institute of Scientific and Technical Information of China (English)

    Yanting Qi; Yu Zhao; Zhuyin Chen; Xiaona Chen; Marie C. Lin; Xiangfu Kong; Lihui Lai

    2008-01-01

    MicroRNAs are abundant in the brains of vertebrates and some show a brain-specific or brain-enriched expression pattern. Because microRNAs regulate the expression of hundreds of target genes, it is not surprising that they have profoundly important functions in brain development and pathological processes. For example, miR-124 plays an important role in inducing and maintaining neuronal identity through targeting at least two anti-neural factors. MicroRNAs have also been implicated in brain disorders, including brain tumors and neurodegenerative diseases. This review aims to present an overview of the expression profiles and functions of microRNAs in the developing brains of vertebrates.

  15. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens.

    Science.gov (United States)

    Ilhan-Mutlu, Aysegül; Wöhrer, Adelheid; Berghoff, Anna Sophie; Widhalm, Georg; Marosi, Christine; Wagner, Ludwig; Preusser, Matthias

    2013-05-01

    Glioblastoma is the most frequent primary brain tumour in adults. Recent therapeutic advances increased patient's survival, but tumour recurrence inevitably occurs. The pathobiological mechanisms involved in glioblastoma recurrence are still unclear. MicroRNAs are small RNAs proposed o have important roles for cancer including proliferation, aggressiveness and metastases development. There exist only few data on the involvement of microRNAs in glioblastoma recurrence. We selected the following 7 microRNAs with potential relevance for glioblastoma pathobiology by means of a comprehensive literature search: microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222. We further selected 15 primary glioblastoma patients, of whom formalin fixed and paraffin embedded tissue (FFPE) of the initial and recurrence surgery were available. All patients had received first line treatment consisting of postoperative combined radiochemotherapy with temozolomide (n = 15). Non-neoplastic brain tissue samples from 3 patients with temporal lobe epilepsy served as control. The expression of the microRNAs were analysed by RT-qPCR. These were correlated with each other and with clinical parameters. All microRNAs showed detectable levels of expressions in glioblastoma group, whereas microRNA-10b was not detectable in epilepsy patients. MicroRNAs except microRNA-21 showed significantly higher levels in epilepsy patients when compared to the levels of first resection of glioblastoma. Comparison of microRNA levels between first and second resections revealed no significant change. Cox regression analyses showed no significant association of microRNA expression levels in the tumor tissue with progression free survival times. Expression levels of microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222 do not differ significantly between initial and recurrent glioblastoma.

  16. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma.

    Science.gov (United States)

    Sandoval, Juan; Díaz-Lagares, Angel; Salgado, Rocío; Servitje, Octavio; Climent, Fina; Ortiz-Romero, Pablo L; Pérez-Ferriols, Amparo; Garcia-Muret, Maria P; Estrach, Teresa; Garcia, Mar; Nonell, Lara; Esteller, Manel; Pujol, Ramon M; Espinet, Blanca; Gallardo, Fernando

    2015-04-01

    MicroRNAs usually regulate gene expression negatively, and aberrant expression has been involved in the development of several types of cancers. Microarray profiling of microRNA expression was performed to define a microRNA signature in a series of mycosis fungoides tumor stage (MFt, n=21) and CD30+ primary cutaneous anaplastic large cell lymphoma (CD30+ cALCL, n=11) samples in comparison with inflammatory dermatoses (ID, n=5). Supervised clustering confirmed a distinctive microRNA profile for cutaneous T-cell lymphoma (CTCL) with respect to ID. A 40 microRNA signature was found in MFt including upregulated onco-microRNAs (miR-146a, miR-142-3p/5p, miR-21, miR-181a/b, and miR-155) and downregulated tumor-suppressor microRNAs (miR-200ab/429 cluster, miR-10b, miR-193b, miR-141/200c, and miR-23b/27b). Regarding CD30+ cALCL, 39 differentially expressed microRNAs were identified. Particularly, overexpression of miR-155, miR-21, or miR-142-3p/5p and downregulation of the miR-141/200c clusters were observed. DNA methylation in microRNA gene promoters, as expression regulatory mechanism for deregulated microRNAs, was analyzed using Infinium 450K array and approximately one-third of the differentially expressed microRNAs showed significant DNA methylation differences. Two different microRNA methylation signatures for MFt and CD30+ cALCL were found. Correlation analysis showed an inverse relationship for microRNA promoter methylation and microRNA expression. These results reveal a subgroup-specific epigenetically regulated microRNA signatures for MFt and CD30+ cALCL patients.

  17. MicroRNA gene expression in malignant lymphoproliferative disorders

    Institute of Scientific and Technical Information of China (English)

    XU Wei; LI Jian-yong

    2007-01-01

    Objective To review the recent studies about microRNAs and advances in malignant lymphoproliferative disorders.Data sources Published articles (2001-2006) about microRNAs and malignant iymphoproliferative disorders were selected using MEDLINE.Study selection After independent review by two observers, 43 of 421 originally identified articles were selected that specifically addressed the stated purpose.Results Two observers independently assessed studies using explicit methodological criteria for evaluating microRNAs in malignant lymphoproliferative disorders. Recent work has revealed a class of small noncoding RNA species,microRNAs, which affect various biological processes. MicroRNAs inhibit the expression of protein encoding genes at the posttranscriptional level in a variety of eukaryotic organisms. In this review, we focused on the biogenetic pathways of microRNAs (miR-15a, miR-16-1, miR-155, miR-17-92 cluster, miR-142) and discussed the implications for human malignant lymphoproliferative disorders.Conclusions microRNAs are involved in tumorigenesis and mediate gene regulation as a fundamental genetic program at the posttranscriptional level. Further study of microRNAs may lead to novel concepts in the diagnosis and treatment of malignant lymphoproliferative disorders.

  18. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma

    DEFF Research Database (Denmark)

    Schultz, Nicolai A; Werner, Jens; Willenbrock, Hanni;

    2012-01-01

    MicroRNAs have potential as diagnostic cancer biomarkers. The aim of this study was (1) to define microRNA expression patterns in formalin-fixed parafin-embedded tissue from pancreatic ductal adenocarcinoma, ampullary adenocarcinoma, normal pancreas and chronic pancreatitis without using micro......, normal pancreas and duodenal adenocarcinoma. In all, 43 microRNAs had higher and 41 microRNAs reduced expression in pancreatic cancer compared with normal pancreas. In all, 32 microRNAs were differently expressed in pancreatic adenocarcinoma compared with chronic pancreatitis (17 higher; 15 reduced......-dissection and (2) to discover new diagnostic microRNAs and combinations of microRNAs in cancer tissue. The expression of 664 microRNAs in tissue from 170 pancreatic adenocarcinomas and 107 ampullary adenocarcinomas were analyzed using a commercial microRNA assay. Results were compared with chronic pancreatitis...

  19. Differential microRNA expression in blood in multiple sclerosis

    DEFF Research Database (Denmark)

    Søndergaard, Helle Bach; Hesse, Dan; Krakauer, Martin

    2013-01-01

    microRNAs (miRNAs) regulate the expression of the genome at the post-transcriptional level. They play a role in autoimmunity and inflammation, and show potential for use as therapeutic targets in many diseases. With the recent detection of miRNAs in body fluids, the possibility for using miRNAs...

  20. MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression

    NARCIS (Netherlands)

    Aschrafi, A.; Verheijen, J.M.; Gordebeke, P.M.; Olde Loohuis, N.F.M.; Menting, K.; Jager, A.; Palkovits, M.; Geenen, B.; Kos, A.; Martens, G.J.M.; Glennon, J.C.; Kaplan, B.B.; Gaszner, B.; Kozicz, T.

    2016-01-01

    BACKGROUND: Altered levels of urocortin 1 (Ucn1) in the centrally projecting Edinger-Westphal nucleus (EWcp) of depressed suicide attempters or completers mediate the brain's response to stress, while the mechanism regulating Ucn1 expression is unknown. We tested the hypothesis that microRNAs (miRNA

  1. Human papillomavirus 16 E5 modulates the expression of host microRNAs.

    Directory of Open Access Journals (Sweden)

    Dario Greco

    Full Text Available Human papillomavirus (HPV infection is a prerequisite of developing cervical cancer, approximately half of which are associated with HPV type 16. HPV 16 encodes three oncogenes, E5, E6, and E7, of which E5 is the least studied so far. Its roles in regulating replication and pathogenesis of HPV are not fully understood. Here we utilize high-throughput screening to coordinately investigate the effect of E5 on the expression of host protein-coding and microRNA genes. MicroRNAs form a class of 22nt long noncoding RNAs with regulatory activity. Among the altered cellular microRNAs we focus on the alteration in the expression of miR-146a, miR-203 and miR-324-5p and their target genes in a time interval of 96 hours of E5 induction. Our results indicate that HPV infection and subsequent transformation take place through complex regulatory patterns of gene expression in the host cells, part of which are regulated by the E5 protein.

  2. A custom microarray platform for analysis of microRNA gene expression.

    Science.gov (United States)

    Thomson, J Michael; Parker, Joel; Perou, Charles M; Hammond, Scott M

    2004-10-01

    MicroRNAs are short, noncoding RNA transcripts that post-transcriptionally regulate gene expression. Several hundred microRNA genes have been identified in Caenorhabditis elegans, Drosophila, plants and mammals. MicroRNAs have been linked to developmental processes in C. elegans, plants and humans and to cell growth and apoptosis in Drosophila. A major impediment in the study of microRNA function is the lack of quantitative expression profiling methods. To close this technological gap, we have designed dual-channel microarrays that monitor expression levels of 124 mammalian microRNAs. Using these tools, we observed distinct patterns of expression among adult mouse tissues and embryonic stem cells. Expression profiles of staged embryos demonstrate temporal regulation of a large class of microRNAs, including members of the let-7 family. This microarray technology enables comprehensive investigation of microRNA expression, and furthers our understanding of this class of recently discovered noncoding RNAs.

  3. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review.

    Science.gov (United States)

    Saito, Yoshimasa; Saito, Hidetsugu; Liang, Gangning; Friedman, Jeffrey M

    2014-10-01

    Epigenetic markers such as DNA methylation and histone modifications around promoter regions modify chromatin structure and regulate expression of downstream genes. In fact, aberrant epigenetic modifications are common events in human disease including tumorigenesis and autoimmunity. Small non-coding RNAs named microRNAs (miRNAs) are modulators of gene expression and play critical roles in various cellular processes. Several miRNAs have been characterized as tumor suppressors or oncogenes in cancer, and recent reports implicate certain miRNAs in the pathogenesis of autoimmune diseases. Epigenetic investigations have shown that distinct miRNAs are directly regulated by DNA methylation and histone modifications at their promoters. Moreover, miRNAs themselves are key participants in regulating the chromatin modifying machinery. Chromatin-modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown efficacy in human malignancies and there is some evidence that these drugs may be useful in autoimmune disease. The benefits of these drugs are at least partially mediated by restoring expression of epigenetically silenced tumor suppressor genes, including miRNAs. The complex layers regulating gene expression have yet to be fully elucidated, but it is clear that epigenetic alterations and miRNA misexpression are essential events in pathologic processes, especially cancer and autoimmune disease, and represent promising therapeutic targets.

  4. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms.

    Science.gov (United States)

    Figueroa-Romero, Claudia; Hur, Junguk; Lunn, J Simon; Paez-Colasante, Ximena; Bender, Diane E; Yung, Raymond; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis.

  5. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Naoto [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakagama, Hitoshi, E-mail: hnakagam@ncc.go.jp [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Early Oncogenesis Research Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2010-11-10

    Post-transcriptional regulation of gene expression by microRNA (miRNA) has recently attracted major interest in relation to its involvement in cancer development. miRNA is a member of small non-coding RNA, consists of 22-24 nucleotides and regulates expression of target mRNA species in a post-transcriptional manner by being incorporated with RNA-induced silencing complex (RISC). Staphylococcal nuclease homology domain containing 1 (SND1), a component of RISC, is frequently up-regulated in human colon cancers and also chemically induced colon cancers in animals. We here showed that SDN1 is involved in miRNA-mediated gene suppression and overexpression of SND1 in colon cancer cells causes down-regulation of APC without altering APC mRNA levels. As for the miRNA expression profile in human colon cancer, miR-34a was among the list of down-regulated miRNA. Expression of miR-34a is tightly regulated by p53, and ectopic expression of miR-34a in colon cancer cells causes remarkable reduction of cell proliferation and induces senescence-like phenotypes. MiR-34a also participates in the positive feedback loop of the p53 tumor suppressor network. This circuitry mechanism for p53 activation is of interest in understanding the tumor suppressive function of miR-34a in colon carcinogenesis. miRNA should also be considered as novel anti-cancer agents in tumor suppressive therapeutic applications.

  6. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors....... Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation....

  7. Differentially expressed plasma microRNAs and the potential regulatory function of Let-7b in chronic thromboembolic pulmonary hypertension.

    Science.gov (United States)

    Guo, Lijuan; Yang, Yuanhua; Liu, Jie; Wang, Lei; Li, Jifeng; Wang, Ying; Liu, Yan; Gu, Song; Gan, Huili; Cai, Jun; Yuan, Jason X-J; Wang, Jun; Wang, Chen

    2014-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a progressive disease characterized by misguided thrombolysis and remodeling of pulmonary arteries. MicroRNAs are small non-coding RNAs involved in multiple cell processes and functions. During CTEPH, circulating microRNA profile endued with characteristics of diseased cells could be identified as a biomarker, and might help in recognition of pathogenesis. Thus, in this study, we compared the differentially expressed microRNAs in plasma of CTEPH patients and healthy controls and investigated their potential functions. Microarray was used to identify microRNA expression profile and qRT-PCR for validation. The targets of differentially expressed microRNAs were identified in silico, and the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes pathway database were used for functional investigation of target gene profile. Targets of let-7b were validated by fluorescence reporter assay. Protein expression of target genes was determined by ELISA or western blotting. Cell migration was evaluated by wound healing assay. The results showed that 1) thirty five microRNAs were differentially expressed in CTEPH patients, among which, a signature of 17 microRNAs, which was shown to be related to the disease pathogenesis by in silico analysis, gave diagnostic efficacy of both sensitivity and specificity >0.9. 2) Let-7b, one of the down-regulated anti-oncogenic microRNAs in the signature, was validated to decrease to about 0.25 fold in CTEPH patients. 3) ET-1 and TGFBR1 were direct targets of let-7b. Altering let-7b level influenced ET-1 and TGFBR1 expression in pulmonary arterial endothelial cells (PAECs) as well as the migration of PAECs and pulmonary arterial smooth muscle cells (PASMCs). These results suggested that CTEPH patients had aberrant microRNA signature which might provide some clue for pathogenesis study and biomarker screening. Reduced let-7b might be involved in the pathogenesis of CTEPH by

  8. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum.

    Science.gov (United States)

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2016-01-01

    MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3' end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.

  9. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Jenny, Matthew J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 (United States); Aluru, Neelakanteswar [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Hahn, Mark E., E-mail: mhahn@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2012-10-15

    Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ∼ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular

  10. Effects of Simulated Microgravity on the Expression Profile of Microrna in Human Lymphoblastoid Cells

    Science.gov (United States)

    Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda

    2012-07-01

    EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15

  11. Expression profiles of microRNAs after focal cerebral ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Fengguo Zhai; Xiuping Zhang; Yue Guan; Xudong Yang; Yang Li; Gaochen Song; Lixin Guan

    2012-01-01

    Rat models of focal cerebral ischemia/reperfusion injury were established by occlusion of the middle cerebral artery. Microarray analysis showed that 24 hours after cerebral ischemia, there were nine up-regulated and 27 down-regulated microRNA genes in cortical tissue. Bioinformatic analysis showed that bcl-2 was the target gene of microRNA-384-5p and microRNA-494, and caspase-3 was the target gene of microRNA-129, microRNA-320 and microRNA-326. Real-time PCR and western blot analyses showed that 24 hours after cerebral ischemia, bcl-2 mRNA and protein levels in brain tissue were significantly decreased, while caspase-3 mRNA and protein levels were significantly increased. This suggests that following cerebral ischemia, differentially expressed microRNA-384-5p, microRNA-494, microRNA-320, microRNA-129 and microRNA-326 can regulate bcl-2 and caspase-3 expression in brain tissue.

  12. 宫内生长受限对胎猪肝脏microRNA表达谱的影响%Intrauterine Growth Restriction Alters the Hepatic MicroRNA Expression in Fetal Pigs

    Institute of Scientific and Technical Information of China (English)

    刘闯; 曹中明; 林刚; 朱玉华; 王军军

    2012-01-01

    The present experiment was conducted to reveal the affect of IUGR on hepatic microRNA (miRNA) expression in 110-days-pregnant-fetal pig by using miRNA microarray analysis, in order to advance our knowledge about metabolic programming of intrauterine growth restriction (IUGR) piglet. In this study, six primiparous Dalland sows fed corn and soybean meal-based diet were used. At 110 days of gestation, sows were killed and the whole uterus was removed. For each sow, one IUGR fetus (with a body weight that is two standard deviations less than the average litter body weight) and one normal-weight fetus were obtained and the left lobe of liver was rapidly sampled and stored at -80℃. Two color miRNA array technology was used to detect the differentially expressed miRNA in the liver between I-UGR and normal fetal pig. Our results indicated that, IUGR has significant affect on hepatic miRNA expression in fetal pig. There are totally 41 differentially expressed miRNA (27 up regulated and 14 down regulated). These miRNAs' targeted genes are involved in the absorption and metabolism of nutrient, hepatic detoxification, hepatic cell growth and proliferation. The disturbed effects of the absorption and metabolism of glucose, the metabolism of lipid, protein synthesis; the decreased ability of hepatic detoxification; and the inhibition of hepatocyte's proliferation may be an important reason responsible for postnatal inefficient nutrient utilization, higher morbidity and mortality, as well as retarded growth in IUGR piglet.%本试验旨在分析宫内生长受限(IUGR)和正常胎猪肝脏microRNA (miRNA)表达的差异,以揭示IUGR对胎猪肝脏miRNA表达谱的影响.试验选用6头达兰(Dalland)母猪,在孕110 d左右致死,剖腹并取出整个子宫.在每窝中选取1头IUGR胎猪和1头正常胎猪,分别取出肝脏备用.利用双荧光标记miRNA芯片技术对IUGR和正常胎猪肝脏进行分析.结果表明:IUGR对胎猪肝脏miRNA的表达产生显著

  13. Synaptic adaptations by alcohol and drugs of abuse: changes in microRNA expression and mRNA regulation

    Directory of Open Access Journals (Sweden)

    Dana eMost

    2014-12-01

    Full Text Available Local translation of mRNAs is a mechanism by which cells can rapidly remodel synaptic structure and function. There is ample evidence for a role of synaptic translation in the neuroadaptations resulting from chronic drug use and abuse. Persistent and coordinated changes of many mRNAs, globally and locally, may have a causal role in complex disorders such as addiction. In this review we examine the evidence that translational regulation by microRNAs drives synaptic remodeling and mRNA expression, which may regulate the transition from recreational to compulsive drug use.MicroRNAs are small, non-coding RNAs that control the translation of mRNAs in the cell and within spatially restricted sites such as the synapse. MicroRNAs typically repress the translation of mRNAs into protein by binding to the 3’UTR of their targets. As ‘master regulators’ of many mRNAs, changes in microRNAs could account for the systemic alterations in mRNA and protein expression observed with drug abuse and dependence. Recent studies indicate that manipulation of microRNAs affects addiction-related behaviors such as the rewarding properties of cocaine, cocaine-seeking behavior and self-administration rates of alcohol. There is limited evidence, however, regarding how synaptic microRNAs control local mRNA translation during chronic drug exposure and how this contributes to the development of dependence.Here, we discuss research supporting microRNA regulation of local mRNA translation and how drugs of abuse may target this process. The ability of synaptic microRNAs to rapidly regulate mRNAs provides a discrete, localized system that could potentially be used as diagnostic and treatment tools for alcohol and other addiction disorders.

  14. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia

    NARCIS (Netherlands)

    M. Jongen-Lavrencic (Mojca); S.M. Sun; M.K. Dijkstra; P.J.M. Valk (Peter); B. Löwenberg (Bob)

    2008-01-01

    textabstractAcute myeloid leukemia (AML) is a highly diverse disease characterized by various cytogenetic and molecular abnormalities. MicroRNAs are small noncoding RNAs that show variable expression during myeloid differentiation. MicroRNA expression in marrow blasts in 215 cases of newly diagnosed

  15. MicroRNA expression profiles in avian haemopoietic cells

    Directory of Open Access Journals (Sweden)

    Yongxiu eYao

    2013-08-01

    Full Text Available MicroRNAs (miRNAs are small, abundant, non-coding RNAs that modulate gene expression by interfering with translation or stability of mRNA transcripts in a sequence-specific manner. A total of 734 precursor and 996 mature miRNAs have so far been identified in the chicken genome. A number of these miRNAs are expressed in a cell type-specific manner, and understanding their function requires detailed examination of their expression in different cell types. We carried out deep sequencing of small RNA populations isolated from stimulated or transformed avian haemopoietic cell lines to determine the changes in the expression profiles of these important regulatory molecules during these biological events. There were significant changes in the expression of a number of miRNAs, including miR-155, in chicken B cells stimulated with CD40 ligand. Similarly, avian leukosis virus (ALV-transformed DT40 cells also showed changes in miRNA expression in relation to the naïve cells. Embryonic stem cell line BP25 demonstrated a distinct cluster of upregulated miRNAs, many of which were shown previously to be involved in embryonic stem cell development. Finally, chicken macrophage cell line HD11 showed changes in miRNA profiles, some of which are thought to be related to the transformation by v-myc transduced by the virus. This work represents the first publication of a catalog of microRNA expression in a range of important avian cells and provides insights into the potential roles of miRNAs in the hematopoietic lineages of cells in a model non-mammalian species.

  16. Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Anjie Lu; Zufa Huang; Chaoyue Zhang; Xianfang Zhang; Jiuhong Zhao; Haiying Zhang; Quanpeng Zhang; Song Wu; Xinan Yi

    2014-01-01

    This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiifed whose expression was signiifcantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3′-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization veriifed that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a com-bination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neu-rons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that mi-croRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.

  17. Comparison of microRNA expression using different preservation methods of matched psoriatic skin samples

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Zibert, John R; Hagedorn, Peter H

    2012-01-01

    contains high levels of RNases. As microRNAs are 19-23 nucleotides long and lack a poly-A tail, they may be less prone to RNA degradation than mRNAs. We investigated whether microRNAs in psoriatic (FFPE) samples reliably reflect microRNA expression in samples less prone to RNA degradation such as fresh......-frozen (FS) and Tissue-Tek-embedding (OCT). We found a strong correlation of the microRNA expression levels between all preservation methods of matched psoriatic skin samples (r(s) ranging from 0.91 to 0.95 (P ... that microRNA detection in human skin is robust irrespective of preservation method; thus, microRNAs offer an appropriate and flexible approach in clinical practices and for diagnostic purposes in skin disorders....

  18. Aberrant microRNA expression in multiple myeloma

    DEFF Research Database (Denmark)

    Dimopoulos, Konstantinos; Gimsing, Peter; Grønbæk, Kirsten

    2013-01-01

    Multiple myeloma (MM) is a devastating disease with a complex biology, and in spite of improved survivability by novel treatment strategies over the last decade, MM is still incurable by current therapy. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post......-transcriptional level. More than half of all protein coding genes are estimated to be controlled by miRNAs, and their expression is frequently deregulated in many diseases, including cancer. Recent studies have reported aberrant miRNA expression patterns in MM, and the function of individual miRNAs in MM has been...... investigated in detail in cell culture and animal models. Here, we review the current knowledge on the role of miRNAs in MM pathogenesis and discuss their potential as prognostic biomarkers and targets for treatment....

  19. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection

    Directory of Open Access Journals (Sweden)

    Qi Yuhua

    2012-12-01

    Full Text Available Abstract Background Pulmonary tuberculosis (TB is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs as potential biomarkers for the early diagnosis of pulmonary TB infection. Methods Using TaqMan Low-Density Array (TLDA analysis followed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR validation, expression levels of miRNAs in serum samples from 30 patients with active tuberculosis and 60 patients with Bordetella pertussis (BP, varicella-zoster virus (VZV and enterovirus (EV were analyzed. Results The Low-Density Array data showed that 97 miRNAs were differentially expressed in pulmonary TB patient sera compared with healthy controls (90 up-regulated and 7 down-regulated. Following qRT-PCR confirmation and receiver operational curve (ROC analysis, three miRNAs (miR-361-5p, miR-889 and miR-576-3p were shown to distinguish TB infected patients from healthy controls and other microbial infections with moderate sensitivity and specificity (area under curve (AUC value range, 0.711-0.848. Multiple logistic regression analysis of a combination of these three miRNAs showed an enhanced ability to discriminate between these two groups with an AUC value of 0.863. Conclusions Our study suggests that altered levels of serum miRNAs have great potential to serve as non-invasive biomarkers for early detection of pulmonary TB infection.

  20. Peripheral whole blood microRNA alterations in major depression and bipolar disorder.

    Science.gov (United States)

    Maffioletti, Elisabetta; Cattaneo, Annamaria; Rosso, Gianluca; Maina, Giuseppe; Maj, Carlo; Gennarelli, Massimo; Tardito, Daniela; Bocchio-Chiavetto, Luisella

    2016-08-01

    Major depression (MD) and bipolar disorder (BD) are severe and potentially life-threating mood disorders whose etiology is to date not completely understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein synthesis post-transcriptionally by base-pairing to target gene mRNAs. Growing evidence indicated that miRNAs might play a key role in the pathogenesis of neuropsychiatric disorders and in the action of psychotropic drugs. On these bases, in this study we evaluated the expression levels of 1733 mature miRNAs annotated in miRBase v.17, through a microarray technique, in the blood of 20 MD and 20 BD patients and 20 healthy controls, in order to identify putative miRNA signatures associated with mood disorders. We found that 5 miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7f-5p, hsa-miR-24-3p and hsa-miR-425-3p) were specifically altered in MD patients and 5 (hsa-miR-140-3p, hsa-miR-30d-5p, hsa-miR-330-5p, hsa-miR-378a-5p and hsa-miR-21-3p) in BD patients, whereas 2 miRNAs (hsa-miR-330-3p and hsa-miR-345-5p) were dysregulated in both the diseases. The bioinformatic prediction of the genes targeted by the altered miRNAs revealed the possible involvement of neural pathways relevant for psychiatric disorders. In conclusion, the observed results indicate a dysregulation of miRNA blood expression in mood disorders and could indicate new avenues for a better understanding of their pathogenetic mechanisms. The identified alterations may represent potential peripheral biomarkers to be complemented with other clinical and biological features for the improvement of diagnostic accuracy.

  1. Regulation of Pancreatic microRNA-7 Expression

    Directory of Open Access Journals (Sweden)

    Sharon Kredo-Russo

    2012-01-01

    Full Text Available Genome-encoded microRNAs (miRNAs provide a posttranscriptional regulatory layer, which is important for pancreas development. Differentiation of endocrine cells is controlled by a network of pancreatic transcription factors including Ngn3 and NeuroD/Beta2. However, how specific miRNAs are intertwined into this transcriptional network is not well understood. Here, we characterize the regulation of microRNA-7 (miR-7 by endocrine-specific transcription factors. Our data reveal that three independent miR-7 genes are coexpressed in the pancreas. We have identified conserved blocks upstream of pre-miR-7a-2 and pre-miR-7b and demonstrated by functional assays that they possess promoter activity, which is increased by the expression of NeuroD/Beta2. These data suggest that the endocrine specificity of miR-7 expression is governed by transcriptional mechanisms and involves members of the pancreatic endocrine network of transcription factors.

  2. Changes in microRNAs expression profile of olive flounder (Paralichthys olivaceus) in response to viral hemorrhagic septicemia virus (VHSV) infection.

    Science.gov (United States)

    Najib, Abdellaoui; Kim, Min Sun; Choi, Seung Hyuk; Kang, Yue Jai; Kim, Ki Hong

    2016-04-01

    To know the effect of viral hemorrhagic septicemia virus (VHSV) infection on the cellular microRNA expression profile in olive flounder (Paralichthys olivaceus), fish were infected with VHSV, and cellular microRNAs expression was analyzed at 0 (control), 6, 12, 24, 48 and 72 h post-infection (h.p.i.) by the high-throughput sequencing. A total of 372 mature miRNAs were identified, and, among them, 63 miRNAs were differentially expressed during VHSV infection. The differentially expressed microRNAs number was greatly increased from 24 h.p.i. compared to the number at 6 and 12 h.p.i., suggesting that the alteration of microRNAs expression by VHSV infection may be related to the progression of VHSV disease. The target prediction analysis, the GO enrichment analysis, and the KEGG pathway analysis of the predicted target genes showed that various biological pathways could be affected by VHSV infection through the down-regulation or up-regulation of host miRNAs. The present results provide a basic information on the microRNAs related to VHSV infection in olive flounder. Considering broad effects of microRNAs on various biological pathways, data in this study can be used to interpret the mechanism of VHSV pathogenesis, which, vice versa, can be used to develop control measures against VHSV.

  3. Expression and survival prediction of microRNA-155 in hepatocellular carcinoma after liver transplantation

    Institute of Scientific and Technical Information of China (English)

    韩中博

    2013-01-01

    Objective To explore the expression of microRNA-155in hepatocellular carcinoma(HCC)and its contribution to recurrence and prognosis of HCC after liver transplantation(LT).Methods The expression levels

  4. Expression and survival prediction of microRNA-155 in hepatocellular carcinoma after liver transplantation

    Institute of Scientific and Technical Information of China (English)

    韩中博

    2013-01-01

    Objective To explore the expression of microRNA-155in hepatocellular carcinoma(HCC)and its contribution to recurrence and prognosis of HCC after liver transplantation(LT).Methods The expression levels of

  5. MicroRNA Expression Analyses in Preoperative Pancreatic Juice Samples of Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Yoshihiko Sadakari

    2010-11-01

    Full Text Available Context Cytological assessment of pancreatic juice is commonly used to diagnose pancreatic ductal adenocarcinoma; however, the sensitivity of cytological assessment has been reported to be low. MicroRNAs are small RNAs regulating various cellular processes and have recently been identified as possible markers of malignant diseases including pancreatic ductal adenocarcinoma. Objective The purposes of this study were to prove the existence of microRNAs in pancreatic juice and to determine whether specific microRNAs in pancreatic juice could be used for detecting pancreatic ductal adenocarcinoma. Methods Relative expression levels of microRNA-21 and microRNA-155 in formalin-fixed paraffin-embedded tissues of resected specimens (no. 13 and pancreatic juice samples collected using preoperative endoscopic retrograde cholangiopancreatography (no. 21 were quantified and their expression levels were then compared to pancreatic ductal adenocarcinoma and chronic pancreatitis. Results Relative expression levels of microRNA-21 in tissue and pancreatic juice samples were significantly higher in pancreatic ductal adenocarcinoma than those in chronic pancreatitis (P=0.009 and P=0.021, respectively. The same results were obtained in the expression levels of microRNA-155 in tissue and pancreatic juice between pancreatic ductal adenocarcinoma and chronic pancreatitis (P=0.014 and P=0.021, respectively. Expression levels of microRNA-21 and microRNA-155 did not correlate with the preoperative cytological results of pancreatic juice. Conclusion MicroRNA-21 and microRNA-155 in pancreatic juice have the potential of becoming biomarkers for diagnosing pancreatic ductal adenocarcinoma.

  6. Plant microRNAs: master regulator of gene expression mechanism.

    Science.gov (United States)

    Datta, Riddhi; Paul, Soumitra

    2015-11-01

    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.

  7. microRNA expression in the aging mouse lung

    Directory of Open Access Journals (Sweden)

    Moschos Sterghios A

    2007-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a novel class of short double stranded RNA that mediate the post-transcriptional regulation of gene expression. Previous studies have implicated changes in miRNA expression in the regulation of development and the induction of diseases such as cancer. However, although miRNAs have been implicated in the process of aging in C. elegans, nothing is known of their role in mammalian tissues. Results To address this question, we have used a highly-sensitive, semi-quantitative RT-PCR based approach to measure the expression profile of 256 of the 493 currently identified miRNAs in the lungs from 6 month (adult and 18 month (aged old female BALB/c mice. We show that, despite the characteristic changes in anatomy and gene expression associated with lung aging, there were no significant changes in the expression of 256 miRNAs. Conclusion Overall, these results show that miRNA transcription is unchanged during lung aging and suggests that stable expression of miRNAs might instead buffer age related changes in the expression of protein-encoding genes.

  8. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells

    Indian Academy of Sciences (India)

    Jung Ah Cho; Ho Park; Eun Hye Lim; Kyo Won Lee

    2011-04-01

    Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.

  9. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses.

    Science.gov (United States)

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species.

  10. Circulating microRNA expression profiles associated with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Carlsen, Anting Liu; Schetter, Aaron J; Nielsen, Christoffer

    2013-01-01

    OBJECTIVE: To evaluate the specificity of expression patterns of cell-free, circulating microRNAs in systemic lupus erythematosus (SLE). METHODS: Total RNA was purified from plasma and 45 different specific mature microRNAs were determined using quantitative reverse transcription polymerase chain...

  11. The expression and function of microRNAs in vertebrate embryonic development

    NARCIS (Netherlands)

    Kloosterman, W.P.

    2007-01-01

    MicroRNAs regulate gene expression at the posttranscriptional level by binding to the 3'UTR of mRNAs. These small RNA molecules (~22 bases in length) are processed from long primary transcripts (pri-miRNA). In animals, microRNAs bind with imperfect complementarity to their target mRNA. This leads to

  12. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  13. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  14. Kaposi's sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity.

    Science.gov (United States)

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf; Whitby, Denise

    2013-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645-659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies.

  15. MicroRNA-30b-mediated regulation of catalase expression in human ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Rashidul Haque

    Full Text Available BACKGROUND: Oxidative injury to retinal pigment epithelium (RPE and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD. Reactive oxygen species (ROS-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19 that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H(2O(2 radicals. Exposure to several stress-inducing agents including H(2O(2 has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H(2O(2 (200 µM up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment. CONCLUSIONS/SIGNIFICANCE: We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system.

  16. Fluctuating expression of microRNAs in adenovirus infected cells.

    Science.gov (United States)

    Zhao, Hongxing; Chen, Maoshan; Tellgren-Roth, Christian; Pettersson, Ulf

    2015-04-01

    The changes in cellular microRNA (miRNA) expression during the course of an adenovirus type 2 infection in human lung fibroblast were studied by deep RNA sequencing. Expressions of 175 miRNAs with over 100 transcripts per million nucleotides were changed more than 1.5-fold. The expression patterns of these miRNAs changed dramatically during the course of the infection, from upregulation of the miRNAs known as tumor suppressors (such as miR-22, miR-320, let-7, miR-181b, and miR-155) and down-regulation of oncogenic miRNAs (such as miR-21 and miR-31) early to downregulation of tumor suppressor miRNAs (such as let-7 family, mir-30 family, 23/27 cluster) and upregulation of oncogenic miRNAs (include miR-125, miR-27, miR-191) late after infection. The switch in miRNA expression pattern occurred when adenovirus DNA replication started. Furthermore, deregulation of cellular miRNA expression was a step-wise and special sets of miRNAs were deregulated in different phases of infection.

  17. MicroRNAs Expression Profiles in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Elsa Bronze-da-Rocha

    2014-01-01

    Full Text Available The current search for new markers of cardiovascular diseases (CVDs is explained by the high morbidity and mortality still observed in developed and developing countries due to cardiovascular events. Recently, microRNAs (miRNAs or miRs have emerged as potential new biomarkers and are small sequences of RNAs that regulate gene expression at posttranscriptional level by inhibiting translation or inducing degradation of the target mRNAs. Circulating miRNAs are involved in the regulation of signaling pathways associated to aging and can be used as novel diagnostic markers for acute and chronic diseases such as cardiovascular pathologies. This review summarizes the biogenesis, maturation, and stability of miRNAs and their use as potential biomarkers for coronary artery disease (CAD, myocardial infarction (MI, and heart failure (HF.

  18. MicroRNA expression variability in human cervical tissues.

    Directory of Open Access Journals (Sweden)

    Patrícia M Pereira

    Full Text Available MicroRNAs (miRNAs are short (approximately 22 nt non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. Cervical cancer is one of the most common cancers in women worldwide and there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform containing probes for mature miRNAs. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL and 9 low-grade squamous intraepithelial lesion (LSIL samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, deregulated miRNAs were identified in malignant and pre-malignant cervical tissues after tackling the high expression variability observed. We were also able to identify putative target genes of relevant candidate miRNAs. Our results show that miRNA expression shows natural variability among human samples, which complicates miRNA data profiling analysis. However, such expression noise can be filtered and does not prevent the identification of deregulated miRNAs that play a role in the malignant transformation of cervical squamous cells. Deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of this tumour type.

  19. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia.

    Science.gov (United States)

    Biggar, Kyle K; Kornfeld, Samantha F; Maistrovski, Yulia; Storey, Kenneth B

    2012-10-01

    Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at -6 °C for 24 h (P<0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P<0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia.

  20. MicroRNA Expression Patterns in Human Astrocytes in Relation to Anatomical Location and Age.

    Science.gov (United States)

    Rao, Vijayaraghava T S; Ludwin, Samuel K; Fuh, Shih-Chieh; Sawaya, Robin; Moore, Craig S; Ho, Ming-Kai; Bedell, Barry J; Sarnat, Harvey B; Bar-Or, Amit; Antel, Jack P

    2016-02-01

    Anatomic distribution and age are variables linked to functions of astrocytes under physiologic and pathologic conditions. We measured the relative expression of a panel of microRNAs (miRNAs) in astrocytes captured by laser micro-dissection from normal human adult white and grey matter, human fetal white matter and germinal matrix samples. Although expression of most miRNAs was comparable between adult and fetal samples, regional differences were observed. In the adult cerebral cortex, expression of miRNAs in morphologically distinct inter-laminar astrocytes underlying the glial limitans differed from those in deeper cortical layers, suggesting functional specialization possibly related to structural stability and defense from potentially harmful factors in the cerebrospinal fluid. Differences between adult white and grey matter miRNA expression included higher expression of pro-inflammatory miRNAs in the former, potentially contributing to differences in inflammation between grey and white matter plaques in multiple sclerosis. Lower expression of miRNAs in fetal versus adult white matter astrocytes likely reflects the immaturity of these migrating cells. Highly expressed miRNAs in the fetal germinal matrix are probably relevant in development and also recapitulate some responses to injury. Future studies can address regional alterations of miRNA expression in pathological conditions.

  1. MicroRNA Expression Profile in Conjunctival Melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Mikkelsen, Lauge H.; Borup, Rehannah

    2016-01-01

    -specific and prognostic microRNA (miRNA) in CM and to compare the miRNA profile with that of MM. Methods: Using microarray analysis (Affymetrix) we determined the miRNA expression profile in 40 CMs compared with 7 normal conjunctival samples. Changes in miRNA expression were associated with T stage, local recurrence......, metastasis, and mortality. Furthermore, the expression of six fresh frozen tissue samples of CM was compared with that of four laryngeal and sinonasal MM. Results: Our analysis revealed 24 upregulated and 1 downregulated miRNA in CM; several of these miRNAs have key functions in the pathogenesis...... and progression of cutaneous melanoma. Additionally, we identified seven upregulated miRNAs specific for stage-T1 and stage-T2 CM, whose expression was associated with increased tumor thickness (P = 0.007), and two upregulated miRNAs (miR-3687 and miR-3916) associated with an increased risk of local recurrence...

  2. Identification and Expression Profiles of microRNA in Dolphin.

    Science.gov (United States)

    Segawa, Takao; Kobayashi, Yuki; Inamoto, Satoko; Suzuki, Miwa; Endoh, Tomoko; Itou, Takuya

    2016-02-01

    Recently, microRNAs (miRNAs) are focused on the role of biomarker because they are stable in serum and plasma, and some of them express in the specific organs and increase with the organ injury. Thus miRNAs may be very useful as biomarkers for monitoring the health and condition of dolphins and for detecting disorders in aquariums. Here, a small RNA library was made from dolphin lung, liver and spleen, and miRNA expression patterns were then determined for 15 different tissues. We identified 62 conserved miRNA homologs in the dolphin small RNA library and found high expression miRNAs in specific tissues: miR-125b and miR-221 were highly expressed in brain, miR-23b in heart, miR-199a and miR-223 in lung, and miR-122-5p in liver. Some of these tissue-enriched miRNAs may be useful as specific and sensitive diagnostic blood biomarkers for organ injury in dolphins.

  3. MicroRNA expression in the aging mouse thymus.

    Science.gov (United States)

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (pthymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  4. MicroRNA expression profiling of cat and dog kidneys.

    Science.gov (United States)

    Ichii, Osamu; Otsuka, Saori; Ohta, Hiroshi; Yabuki, Akira; Horino, Taro; Kon, Yasuhiro

    2014-04-01

    MicroRNAs (miRNAs) play a role in the pathogenesis of certain diseases and may serve as biomarkers. Here, we present the first analysis of miRNA expression in the kidneys of healthy cats and dogs. Kidneys were divided into renal cortex (CO) and medulla (MD), and RNA sequence analysis was performed using the mouse genome as a reference. A total of 277, 276, 295, and 297 miRNAs were detected in cat CO, cat MD, dog CO, and dog MD, respectively. By comparing the expression ratio of CO to MD, we identified highly expressed miRNAs in each tissue as follows: 41 miRNAs including miR-192-5p in cat CO; 45 miRNAs including miR-323-3p in dog CO; 78 miRNAs including miR-20a-5p in cat MD; and 11 miRNAs including miR-132-5p in dog MD. Further, the target mRNAs of these miRNAs were identified. These data provide veterinary medicine critical information regarding renal miRNA expression.

  5. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression.

    Science.gov (United States)

    Song, Yuwen; Mu, Luyan; Han, Xuezhe; Li, Qingla; Dong, Baijing; Li, Hulun; Liu, Xiaoqian

    2013-12-01

    The purpose of this study was to investigate the functions of microRNA-9, which is a tissue-specific microRNA in central nervous system, in the vasculogenic mimicry (VM) of glioma cell lines in vitro and in vivo. Glioma cell lines U87MG, U251 and SHG44 were transfected with microRNA-9 mimic, microRNA-9 inhibitor or scramble sequences. The amount of microRNA-9 and Stathmin (STMN1) mRNA was determined by quantitative real-time PCR, and the protein expression of STMN1 was determined by western blot. Cell proliferation and apoptosis were assessed. The interactions between the 3'UTR of STMN1 and miR-9 was determined by luciferase reporter assay. The VM capacity in vitro was evaluated using VM formation assay, and the rescue experiment of STMN1 was carried out in U251 cells. The in vivo experiment was applied with animal models implanted with U87MG cells.MicroRNA-9 mimic transfection reduced proliferation and increased apoptosis in glioma cell lines (p < 0.05). MicroRNA-9 mimic up-regulated STMN1 mRNA levels but reduced its protein levels (p < 0.05), and luciferase activity of STMN1 was suppressed by microRNA-9 mimic transfection (p < 0.05). Furthermore, microRNA-9 mimic transfection suppressed tumor volume growth, as well as VM both in vitro and in vivo. The cell viability and microtube density were upregulated in U251 cells after STMN1 up-regulation (p < 0.05). STMN1 is a target of microRNA-9, and microRNA-9 could modulate cell proliferation, VM and tumor volume growth through controlling STMN1 expression. MicroRNA-9 and its targets may represent a novel panel of molecules for the development of glioma treatment.

  6. The expression profile of microRNAs in mouse embryos.

    Science.gov (United States)

    Mineno, Junichi; Okamoto, Sachiko; Ando, Tatsuya; Sato, Masahiro; Chono, Hideto; Izu, Hiroyuki; Takayama, Masanori; Asada, Kiyozo; Mirochnitchenko, Oleg; Inouye, Masayori; Kato, Ikunoshin

    2006-01-01

    MicroRNAs (miRNAs), which are non-coding RNAs 18-25 nt in length, regulate a variety of biological processes, including vertebrate development. To identify new species of miRNA and to simultaneously obtain a comprehensive quantitative profile of small RNA expression in mouse embryos, we used the massively parallel signature sequencing technology that potentially identifies virtually all of the small RNAs in a sample. This approach allowed us to detect a total of 390 miRNAs, including 195 known miRNAs covering approximately 80% of previously registered mouse miRNAs as well as 195 new miRNAs, which are so far unknown in mouse. Some of these miRNAs showed temporal expression profiles during prenatal development (E9.5, E10.5 and E11.5). Several miRNAs were positioned in polycistron clusters, including one particular large transcription unit consisting of 16 known and 23 new miRNAs. Our results indicate existence of a significant number of new miRNAs expressed at specific stages of mammalian embryonic development and which were not detected by earlier methods.

  7. MicroRNAs and deregulated gene expression networks in neurodegeneration.

    Science.gov (United States)

    Sonntag, Kai-Christian

    2010-06-18

    Neurodegeneration is characterized by the progressive loss of neuronal cell types in the nervous system. Although the main cause of cell dysfunction and death in many neurodegenerative diseases is not known, there is increasing evidence that their demise is a result of a combination of genetic and environmental factors which affect key signaling pathways in cell function. This view is supported by recent observations that disease-compromised cells in late-stage neurodegeneration exhibit profound dysregulation of gene expression. MicroRNAs (miRNAs) introduce a novel concept of regulatory control over gene expression and there is increasing evidence that they play a profound role in neuronal cell identity as well as multiple aspects of disease pathogenesis. Here, we review the molecular properties of brain cells derived from patients with neurodegenerative diseases, and discuss how deregulated miRNA/mRNA expression networks could be a mechanism in neurodegeneration. In addition, we emphasize that the dysfunction of these regulatory networks might overlap between different cell systems and suggest that miRNA functions might be common between neurodegeneration and other disease entities.

  8. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    Science.gov (United States)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  9. microRNAs and the mammary gland: a new understanding of gene expression

    Directory of Open Access Journals (Sweden)

    Isabel Gigli

    2013-01-01

    Full Text Available MicroRNAs (miRNAs have been identified in cells as well as in exosomes in biological fluids such as milk. In mammary gland, most of the miRNAs studied have functions related to immunity and show alterations in their pattern of expression during lactation. In mastitis, the inflammatory response caused by Streptococcus uberis alters the expression of miRNAs that may regulate the innate immune system. These small RNAs are stable at room temperature and are resistant to repeated freeze/thaw cycles, acidic conditions and degradation by RNAse, making them resistant to industrial procedures. These properties mean that miRNAs could have multiple applications in veterinary medicine and biotechnology. Indeed, lactoglobulin-free milk has been produced in transgenic cows expressing specific miRNAs. Although plant and animal miRNAs have undergone independent evolutionary adaptation recent studies have demonstrated a cross-kingdom passage in which rice miRNA was isolated from human serum. This finding raises questions about the possible effect that miRNAs present in foods consumed by humans could have on human gene regulation. Further studies are needed before applying miRNA biotechnology to the milk industry. New discoveries and a greater knowledge of gene expression will lead to a better understanding of the role of miRNAs in physiology, nutrition and evolution.

  10. Inverse correlation of expression of microRNA-140-5p with progression of multiple sclerosis and differentiation of encephalitogenic T helper type 1 cells.

    Science.gov (United States)

    Guan, Hongbing; Singh, Udai P; Rao, Roshni; Mrelashvili, Davit; Sen, Souvik; Hao, Haiping; Zumbrun, Elizabeth E; Singh, Narendra P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-04-01

    The role of microRNA in the regulation of encephalitogenic T-cell development is of interest in understanding the pathogenesis of multiple sclerosis (MS). Direct binding of microRNAs to their target mRNAs usually suppresses gene expression and facilitates mRNA degradation. In this study, we observed that the expression of several microRNAs was significantly altered in patients with MS. Interestingly, the expression of miR-140-5p, among other microRNAs, was significantly decreased in the peripheral blood mononuclear cells of patients with MS, and this microRNA may regulate encephalitogenic T helper type 1 (Th1) cell differentiation. The expression level of miR-140-5p was inversely correlated with disease severity with greater reduction in relapsing disease compared with remitting disease. Transfection of synthetic miR-140-5p in peripheral blood mononuclear cells suppressed encephalitogenic Th1 differentiation. Signal transducer and activator of transcription 1 (STAT1) was the functional target of miR-140-5p - transfection of the synthetic miR-140-5p suppressed activation of STAT1 and the expression of its downstream target, T-bet. Our results suggested that miR-140-5p is probably involved in the regulation of encephalitogenic T cells in the pathogenesis of MS.

  11. Differential Expression of MicroRNAs in Response to Drought Stress in Maize

    Institute of Scientific and Technical Information of China (English)

    LI Jing-sheng; FU Feng-ling; AN Ming; ZHOU Shu-feng; SHE Yue-hui; LI Wan-chen

    2013-01-01

    Drought is one of the major abiotic stresses that limit maize productivity. Apart from the principal transcriptional regulation, post-transcriptional regulation mediated by microRNAs appears to be the prevalent response of plants to abiotic stress. In this study, the differential expression of microRNAs in the previously evaluated drought-tolerant inbred lines R09 under drought stress was detected by microarray hybridization. The target genes of the differentially-expressed microRNAs were predicted by bioinformatics software WMD3 for plant target gene prediction. The possible regulation of the differentially-expressed microRNAs as well as their target genes in maize response to drought stress was analysed according to Gene Ontology. Sixty-eight microRNAs in 29 microRNA families were detected to be differentially expressed in the seedling of the drought-tolerant inbred line R09, accounting for 5.97% of the total number of the probes. The expression profiles were different between the two time points of the drought stress. The functions of the genes targeted by the differentially-expressed microRNAs involve multiple physiological and biochemical pathways of response to abiotic stress, such as transcription regulation, metabolism, signal transduction, hormone stimulation, and transmembrane transport. Under drought stress, the differential expression of microRNAs regulates the expression of their target genes, resulting in multiple responses of physiological and biochemical pathways relative to drought tolerance of maize. miR156, miR159 and miR319 families may play more important roles. The different members of the same family may play similar regulation effects in most cases.

  12. MicroRNA Expression Signatures During Malignant Progression From Barrett's Esophagus.

    Science.gov (United States)

    Bansal, Ajay; Gupta, Vijayalaxmi; Wang, Kenneth

    2016-06-01

    The rapid increase and poor survival of esophageal adenocarcinoma (EAC) have led to significant efforts to promote early detection. Given that the premalignant lesion of Barrett's esophagus (BE) is the major known risk factor for EAC, multiple investigators have studied biomarker signatures that can predict malignant progression of BE to EAC. MicroRNAs, a novel class of gene regulators, are small non-coding RNAs and have been associated with carcinogenesis. MicroRNAs are ideal biomarkers because of their remarkable stability in fixed tissues, a common method for collection of clinical specimens, and in blood either within exosomes or as microRNA-protein complexes. Multiple studies show potential of microRNAs as tissue and blood biomarkers for diagnosis and prognosis of EAC but the results need confirmation in prospective studies. Although head-to-head comparisons are lacking, microRNA panels require less genes than messenger RNA panels for diagnosis of EAC in BE. MicroRNA diagnostic panels will need to be compared for accuracy against global measures of genome instability that were recently shown to be good predictors of progression but require sophisticated analytic techniques. Early studies on blood microRNA panels are promising but have found microRNA markers to be inconsistent among studies. MicroRNA expression in blood is different between various microRNA sub-compartments such as exosomes and microRNA-protein complexes and could affect blood microRNA measurements. Further standardization is needed to yield consistent results. We have summarized the current understanding of the tissue and blood microRNA signatures that may predict the development and progression of EAC.

  13. Myogenic factors that regulate expression of muscle-specific microRNAs.

    Science.gov (United States)

    Rao, Prakash K; Kumar, Roshan M; Farkhondeh, Mina; Baskerville, Scott; Lodish, Harvey F

    2006-06-01

    Since their discovery as key regulators of early animal development, microRNAs now are recognized as widespread regulators of gene expression. Despite their abundance, little is known regarding the regulation of microRNA biogenesis. We show that three highly conserved muscle-specific microRNAs, miR-1, miR-133 and miR-206, are robustly induced during the myoblast-myotube transition, both in primary human myoblasts and in the mouse mesenchymal C2C12 stem cell line. These microRNAs were not induced during osteogenic conversion of C2C12 cells. Moreover, both loci encoding miR-1, miR-1-1, and miR-1-2, and two of the three encoding miR-133, miR-133a-1 and miR-133a-2, are strongly induced during myogenesis. Some of the induced microRNAs are in intergenic regions, whereas two are transcribed in the opposite direction to the nonmuscle-specific gene in which they are embedded. By using CHIP analysis, we demonstrate that the myogenic factors Myogenin and MyoD bind to regions upstream of these microRNAs and, therefore, are likely to regulate their expression. Because miR-1 and miR-206 are predicted to repress similar mRNA targets, our work suggests that induction of these microRNAs is important in regulating the expression of muscle-specific proteins.

  14. Intratumoral heterogeneity of microRNA expression in breast cancer.

    Science.gov (United States)

    Raychaudhuri, Mithu; Schuster, Tibor; Buchner, Theresa; Malinowsky, Katharina; Bronger, Holger; Schwarz-Boeger, Ulrike; Höfler, Heinz; Avril, Stefanie

    2012-07-01

    Profiling studies have identified specific microRNA (miRNA) signatures in malignant tumors including breast cancer. Our aim was to assess intratumoral heterogeneity in miRNA expression levels within primary breast cancers and between axillary lymph node metastases from the same patient. Specimens of 16 primary breast cancers were sampled in 8-10 distinct locations including the peripheral, intermediate, and central tumor zones, as well as two to five axillary lymph node metastases (n = 9). Total RNA was extracted from 132 paraffin-embedded samples, and the expression of miR-10b, miR-210, miR-31, and miR-335 was assessed as well as the reproducibility of RNA extraction and miRNA analysis by quantitative RT-PCR. Considerable intratumoral heterogeneity existed for all four miRNAs within primary breast cancers (CV 40%). No significant differences within (CV 34%) or between different tumor zones (CV 33%) were found. A similar variation in miRNA expression was observed between corresponding lymph node metastases (mean CV 40%). In comparison, the variation among different patients showed a CV of 80% for primary tumors and 103% for lymph node metastases. Both miRNA extraction procedures and quantitative RT-PCR showed high reproducibility (CV ≤ 2%). Thus, the intratumoral heterogeneity of miRNA expression in breast cancers can lead to significant sampling bias. Assessment of breast cancer miRNA profiles may require sampling at several different tumor locations and of several tumor-involved lymph nodes when deriving miRNA expression profiles of metastases.

  15. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    DEFF Research Database (Denmark)

    Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Nielsen, Boye Schnack

    2016-01-01

    INTRODUCTION: An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present...... study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. MATERIALS AND METHODS: The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH...... using Spearman's correlation. RESULTS: ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH...

  16. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization

    Directory of Open Access Journals (Sweden)

    Graham C. Gilchrist

    2016-03-01

    Full Text Available Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV oocytes, metaphase II (MII oocytes, and presumptive zygotes (PZ. Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR. Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05. To determine whether changes in specific primary miRNA (pri-miRNA transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo.

  17. MicroRNA expression in canine mammary cancer.

    Science.gov (United States)

    Boggs, R Michelle; Wright, Zachary M; Stickney, Mark J; Porter, Weston W; Murphy, Keith E

    2008-08-01

    MicroRNAs (miRNAs) are 18-22-nt noncoding RNAs that are involved in post-transcriptional regulation of genes. Oncomirs, a subclass of miRNAs, include genes whose expression, or lack thereof, are associated with cancers. Until the last decade, the domestic dog was an underused model for the study of various human diseases that have genetic components. The dog exhibits marked genetic and physiologic similarity to the human, thereby making it an excellent model for study and treatment of various hereditary diseases. Furthermore, because the dog presents with distinct, spontaneously occurring mammary tumors, it may serve as a model for genetic analysis and treatments of humans with malignant breast tumors. Because miRNAs have been found to act as both tumor suppressors and oncogenes in several different cancers, expression patterns of ten miRNAs (miR-15a, miR-16, miR-17-5p, miR-21, miR-29b, miR-125b, miR-145, miR-155, miR-181b, let-7f) known to be associated with human breast cancers were compared to malignant canine mammary tumors (n = 6) and normal canine mammary tissue (n = 10). Resulting data revealed miR-29b and miR-21 to have a statistically significant (p pattern of expression as in the human, except for miR-145 which does not show a difference in expression between the normal and cancerous canine samples. In addition, when analyzed according to specific cancer phenotypes, miR-15a and miR-16 show a significant downregulation in canine ductal carcinomas while miRsR-181b, -21, -29b, and let-7f show a significant upregulation in canine tubular papillary carcinomas.

  18. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains.

    Science.gov (United States)

    Satoh, Jun-ichi

    2010-01-01

    MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate translational repression of multiple target mRNAs. The miRNAs in a whole cell regulate greater than 30% of all protein-coding genes. The vast majority of presently identified miRNAs are expressed in the brain in a spatially and temporally controlled manner. They play a key role in neuronal development, differentiation, and synaptic plasticity. However, at present, the pathological implications of deregulated miRNA expression in neurodegenerative diseases remain largely unknown. This review will briefly summarize recent studies that focus attention on aberrant miRNA expression in Alzheimer's disease brains.

  19. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alyson A. Fiorillo

    2015-09-01

    Full Text Available The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31. microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  20. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  1. Genome-Wide Expression of MicroRNAs Is Regulated by DNA Methylation in Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2015-01-01

    Full Text Available Background. Previous studies, including ours, have examined the regulation of microRNAs (miRNAs by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC is unclear. Subjects/Methods. Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation. Results. We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6% showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells. Conclusion. These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis.

  2. Analysis of microRNA expression in the prepubertal testis.

    Science.gov (United States)

    Buchold, Gregory M; Coarfa, Cristian; Kim, Jong; Milosavljevic, Aleksandar; Gunaratne, Preethi H; Matzuk, Martin M

    2010-12-29

    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5' heterogeneity, editing, and 3' nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis.

  3. Analysis of microRNA expression in the prepubertal testis.

    Directory of Open Access Journals (Sweden)

    Gregory M Buchold

    Full Text Available Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5' heterogeneity, editing, and 3' nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis.

  4. Analysis of MicroRNA Expression in the Prepubertal Testis

    Science.gov (United States)

    Kim, Jong; Milosavljevic, Aleksandar; Gunaratne, Preethi H.; Matzuk, Martin M.

    2010-01-01

    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5′ heterogeneity, editing, and 3′ nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis. PMID:21206922

  5. A MicroRNA Expression Signature for Cervical Cancer Prognosis

    Science.gov (United States)

    Hu, Xiaoxia; Schwarz, Julie K.; Lewis, James S.; Huettner, Phyllis C.; Rader, Janet S.; Deasy, Joseph O.; Grigsby, Perry W.; Wang, Xiaowei

    2010-01-01

    Invasive cervical cancer is a leading cause of cancer death in women worldwide, resulting in about 300,000 deaths each year. The clinical outcomes of cervical cancer vary significantly and are difficult to predict. Thus, a method to reliably predict disease outcome would be important for individualized therapy by identifying patients with high-risk of treatment failures prior to therapy. In this study, we have identified a microRNA-based signature for the prediction of cervical cancer survival. MicroRNAs (miRNAs) are a newly identified family of small non-coding RNAs that are extensively involved in human cancers. Using our recently established PCR-based miRNA assays, we have analyzed 102 cervical cancers and identified two miRNAs (miR-200a and miR-9) that are likely to predict patient survival. A logistic regression model was developed based on these two miRNAs and the prognostic value of the model was subsequently validated with 42 independent cervical cancers. Furthermore, functional studies were performed to characterize the effect of miRNAs in cervical cancer cells. Our results suggest that both miR-200a and miR-9 could play important regulatory roles in cervical cancer control. In particular, miR-200a is likely to affect the metastatic potential of cervical cancer cells by simultaneously suppressing the expression of multiple genes that are important to cell motility. PMID:20124485

  6. microRNA expression profile of peripheral blood mononuclear cells of Klinefelter syndrome.

    Science.gov (United States)

    Sui, Weiguo; Ou, Minglin; Chen, Jiejing; Li, Huan; Lin, Hua; Zhang, Yue; Li, Wuxian; Xue, Wen; Tang, Donge; Gong, Weiwei; Zhang, Ruohan; Li, Fengyan; Dai, Yong

    2012-11-01

    microRNAs are a type of small non-coding RNAs which play important roles in post-transcriptional gene regulation, and the characterization of microRNA expression profiling in peripheral blood mononuclear cells (PBMCs) from patients with Klinefelter syndrome requires further investigation. In this study, PBMCs were obtained from patients with Klinefelter syndrome and normal controls. After preparation of small RNA libraries, the two groups of samples were sequenced simultaneously using next generation high-throughput sequencing technology, and novel and known microRNAs were analyzed. A total of 9,772,392 and 9,717,633 small RNA reads were obtained; 8,014,466 (82.01%) and 8,104,423 (83.40%) genome-matched reads, 64 and 49 novel microRNAs were identified in the library of Klinefelter syndrome and the library of healthy controls, respectively. There were 71 known microRNAs with differential expression levels between the two libraries. Clustering of over-represented gene ontology (GO) classes in predicted targets of novel microRNAs in the Klinefelter syndrome library showed that the most significant GO terms were genes involved in the endomembrane system, nucleotide binding and kinase activity. Our data revealed that there are a large number of microRNAs deregulated in PBMCs taken from patients with Klinefelter syndrome, of which certain novel and known microRNAs may be involved in the pathological process of Klinefelter syndrome. Further studies are necessary to determine the roles of microRNAs in the pathological process of Klinefelter syndrome in the future.

  7. Preliminary studies: differences in microRNA expression in asthma and chronic obstructive pulmonary disease

    OpenAIRE

    Pietrusińska, Małgorzata; Pająk, Aneta; Górski, Paweł; Kuna, Piotr; Szemraj, Janusz; Goździńska-Nielepkowicz, Agnieszka; Pietras, Tadeusz

    2016-01-01

    Introduction The asthma- and chronic obstructive pulmonary disease (COPD)-related morbidity has been increasing during the recent years. Both asthma and COPD are diseases of inflammatory etiology. The increasing interest in the pathomechanisms involved in the development of obstructive pulmonary diseases seems to be fully justified. Recent research has attempted to determine the associations of microRNA with the pathogenesis of pulmonary diseases. Aim To assess the expression of microRNA in t...

  8. Functional microRNA screening using a comprehensive lentiviral human microRNA expression library

    NARCIS (Netherlands)

    Poell, J.B.; van Haastert, R.J.; Cerisoli, F.; Bolijn, A.S.; Timmer, L.M.; Diosdado-Calvo, B.; Meijer, G.A.; van Puijenbroek, A.A.; Berezikov, E.; Schaapveld, R.Q.; Cuppen, E.

    2011-01-01

    ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of small regulatory RNAs that target sequences in messenger RNAs (mRNAs) to inhibit their protein output. Dissecting the complexities of miRNA function continues to prove challenging as miRNAs are predicted to have thousands of targets, and mRNAs

  9. Conjunctival MicroRNA expression in inflammatory trachomatous scarring.

    Directory of Open Access Journals (Sweden)

    Tamsyn Derrick

    Full Text Available PURPOSE: Trachoma is a fibrotic disease of the conjunctiva initiated by Chlamydia trachomatis infection. This blinding disease affects over 40 million people worldwide yet the mechanisms underlying its pathogenesis remain poorly understood. We have investigated host microRNA (miR expression in health (N and disease (conjunctival scarring with (TSI and without (TS inflammation to determine if these epigenetic differences are associated with pathology. METHODS: We collected two independent samples of human conjunctival swab specimens from individuals living in The Gambia (n = 63 & 194. miR was extracted, and we investigated the expression of 754 miR in the first sample of 63 specimens (23 N, 17 TS, 23 TSI using Taqman qPCR array human miRNA genecards. Network and pathway analysis was performed on this dataset. Seven miR that were significantly differentially expressed between different phenotypic groups were then selected for validation by qPCR in the second sample of 194 specimens (93 N, 74 TS, 22 TSI. RESULTS: Array screening revealed differential expression of 82 miR between N, TS and TSI phenotypes (fold change >3, p<0.05. Predicted mRNA targets of these miR were enriched in pathways involved in fibrosis and epithelial cell differentiation. Two miR were confirmed as being differentially expressed upon validation by qPCR. miR-147b is significantly up-regulated in TSI versus N (fold change = 2.3, p = 0.03 and miR-1285 is up-regulated in TSI versus TS (fold change = 4.6, p = 0.005, which was consistent with the results of the qPCR array. CONCLUSIONS: miR-147b and miR-1285 are up-regulated in inflammatory trachomatous scarring. Further investigation of the function of these miR will aid our understanding of the pathogenesis of trachoma.

  10. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles.

    Science.gov (United States)

    Shiiyama, Rie; Fukushima, Satoshi; Jinnin, Masatoshi; Yamashita, Junji; Miyashita, Azusa; Nakahara, Satoshi; Kogi, Ai; Aoi, Jun; Masuguchi, Shinichi; Inoue, Yuji; Ihn, Hironobu

    2013-10-01

    Numerous studies have indicated that the serum levels of microRNAs are useful for the diagnosis or evaluation of activity in human diseases. However, determining the level of only one of the nearly 2000 microRNAs identified so far may be less significant. Accordingly, we examined the possibility that the expression pattern of multiple microRNAs in each patient may be a more reliable disease marker for melanoma, especially metastatic disease, focusing on the interaction among microRNAs. Six microRNAs (miR-9, miR-145, miR-150, miR-155, miR-203, and miR-205) were evaluated using real-time PCR in 11 patients with metastatic melanoma and in 16 patients without melanoma. The expression of the six microRNAs was significantly different between the patients with metastasis and those without it. MiR-9 and miR-205 and miR-203 and miR-205 showed significant correlations, and the combination of miR-9, miR-145, miR-150, miR-155, and miR-205 was more sensitive than when each miR was used individually to distinguish the patients with metastasis from those without it. This is the first report demonstrating the expression profiles of multiple microRNAs in melanoma patients. Clarifying the involvement of the microRNA network in the pathogenesis of melanoma may contribute to the development of new diagnostic tools and to advancing the understanding of this disease.

  11. Identification of novel and differentially expressed MicroRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics.

    Directory of Open Access Journals (Sweden)

    Zhibin Ji

    Full Text Available MicroRNAs are small, noncoding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although most microRNAs expression profiles studies have been performed in humans or rodents, relatively limited knowledge also exists in other mammalian species. The identification of the full repertoire of microRNAs expressed in the lactating mammary gland of Capra hircus would significantly increase our understanding of the physiology of lactating mammary glands. In this study, two libraries were constructed using the lactating mammary gland tissues of Laoshan dairy goats (Capra hircus during peak and late lactation. Solexa high-throughput sequencing technique and bioinformatics were used to determine the abundance and differential expression of the microRNAs between peak and late lactation. As a result, 19,044,002 and 7,385,833 clean reads were obtained, respectively, and 1,113 conserved known microRNAs and 31 potential novel microRNA candidates were identified. A total of 697 conserved microRNAs were significantly differentially expressed with a P-value<0.01, 272 microRNAs were up-regulated and 425 microRNAs were down-regulated during peak lactation. The results were validated using real-time quantitative RT-PCR. 762,557 annotated mRNA transcripts were predicted as putative target gene candidates. The GO annotation and KEGG pathway analysis suggested that differentially expressed microRNAs were involved in mammary gland physiology, including signal transduction, and cell-cell and cell-extracellular communications. This study provided the first global of the microRNA in Capra hircus and expanded the repertoire of microRNAs. Our results have great significance and value for the elucidation of complex regulatory networks between microRNAs and mRNAs and for the study of mammary gland physiology and lactation.

  12. Rare cytogenetic abnormalities and alteration of microRNAs in acute myeloid leukemia and response to therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Shahjahani

    2015-03-01

    Full Text Available Acute myeloid leukemia (AML is the most common acute leukemia in adults, which is heterogeneous in terms of morphological, cytogenetic and clinical features. Cytogenetic abnormalities, including karyotype aberrations, gene mutations and gene expression abnormalities are the most important diagnostic tools in diagnosis, classification and prognosis in acute myeloid leukemias. Based on World Health Organization (WHO classification, acute myeloid leukemias can be divided to four groups. Due to the heterogeneous nature of AML and since most therapeutic protocols in AML are based on genetic alterations, gathering further information in the field of rare disorders as well as common cytogenetic abnormalities would be helpful in determining the prognosis and treatment in this group of diseases. Recently, the role of microRNAs (miRNAs in both normal hematopoiesis and myeloid leukemic cell differentiation in myeloid lineage has been specified. miRNAs can be used instead of genes for AML diagnosis and classification in the future, and can also play a decisive role in the evaluation of relapse as well as response to treatment in the patients. Therefore, their use in clinical trials can affect treatment protocols and play a role in therapeutic strategies for these patients. In this review, we have examined rare cytogenetic abnormalities in different groups of acute myeloid leukemias according to WHO classification, and the role of miRNA expression in classification, diagnosis and response to treatment of these disorders has also been dealt with.

  13. A comparative review of microRNA expression patterns in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Frank A Middleton

    2016-11-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by a wide spectrum of deficits in social interaction, communication, and behavior. There is a significant genetic component to ASD, yet no single gene variant accounts for greater than one percent of incidence. Post-transcriptional mechanisms such as microRNAs (miRNAs regulate gene expression without altering the genetic code. They are abundant in the developing brain and are dysregulated in children with ASD. Patterns of miRNA expression are altered in the brain, blood, saliva, and olfactory precursor cells of ASD subjects. The ability of miRNAs to regulate broad molecular pathways in response to environmental stimuli makes them an intriguing player in ASD, a disorder characterized by genetic predisposition with ill-defined environmental triggers. In addition, the availability and extracellular stability of miRNAs make them an ideal candidate for biomarker discovery. Here we discuss 27 miRNAs with overlap across ASD studies, including three miRNAs identified in 3 or more studies (miR-23a, miR-146a, and miR-106b. Together these 27 miRNAs have 1245 high-confidence mRNA targets, a significant number of which are expressed in the brain. Furthermore, these mRNA targets demonstrate over-representation of autism-related genes with enrichment of neurotrophic signaling molecules. Brain-derived neurotrophic factor (BDNF, a molecule involved in hippocampal neurogenesis and altered in ASD, is targeted by 6 of the 27 miRNAs of interest. This neurotrophic pathway represents one intriguing mechanism by which perturbations in miRNA signaling might influence CNS development in children with ASD.

  14. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome.

    Science.gov (United States)

    de la Morena, M Teresa; Eitson, Jennifer L; Dozmorov, Igor M; Belkaya, Serkan; Hoover, Ashley R; Anguiano, Esperanza; Pascual, M Virginia; van Oers, Nicolai S C

    2013-04-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance.

  15. Altered Micro-RNA Degradation Promotes Tumor Heterogeneity: A Result from Boolean Network Modeling.

    Science.gov (United States)

    Wu, Yunyi; Krueger, Gerhard R F; Wang, Guanyu

    2016-02-01

    Cancer heterogeneity may reflect differential dynamical outcomes of the regulatory network encompassing biomolecules at both transcriptional and post-transcriptional levels. In other words, differential gene-expression profiles may correspond to different stable steady states of a mathematical model for simulation of biomolecular networks. To test this hypothesis, we simplified a regulatory network that is important for soft-tissue sarcoma metastasis and heterogeneity, comprising of transcription factors, micro-RNAs, and signaling components of the NOTCH pathway. We then used a Boolean network model to simulate the dynamics of this network, and particularly investigated the consequences of differential miRNA degradation modes. We found that efficient miRNA degradation is crucial for sustaining a homogenous and healthy phenotype, while defective miRNA degradation may lead to multiple stable steady states and ultimately to carcinogenesis and heterogeneity.

  16. Effects of β4 integrin expression on microRNA patterns in breast cancer

    Directory of Open Access Journals (Sweden)

    Kristin D. Gerson

    2012-05-01

    The integrin α6β4 is defined as an adhesion receptor for laminins. Referred to as ‘β4’, this integrin plays a key role in the progression of various carcinomas through its ability to orchestrate key signal transduction events and promote cell motility. To identify novel downstream effectors of β4 function in breast cancer, microRNAs (miRNAs were examined because of their extensive links to tumorigenesis and their ability to regulate gene expression globally. Two breast carcinoma cell lines and a collection of invasive breast carcinomas with varying β4 expression were used to assess the effect of this integrin on miRNA expression. A novel miRNA microarray analysis termed quantitative Nuclease Protection Assay (qNPA revealed that β4 expression can significantly alter miRNA expression and identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by expression of this integrin. Analysis of published Affymetrix GeneChip data identified 54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated mRNAs, revealing several genes known to be key components of β4-regulated signaling cascades and effectors of cell motility. Gene ontology classification identified an enrichment in genes associated with cell migration within this population. Finally, gene set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets belonging to distinct miRNA families, including miR-92ab and others identified by our initial array analyses. The results obtained in this study provide the first example of an integrin globally impacting miRNA expression and provide evidence that select miRNA families collectively target genes important in executing β4-mediated cell motility.

  17. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes.

    Science.gov (United States)

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2016-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set.

  18. 重症肌无力患者胸腺组织中microRNA-27a-3p的表达水平及其临床意义%Altered expression of microRNA-27a-3p in the thymus tissue of patients with myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    李千; 王丽华; 王健健; 张荟雪; 单雪; 孔晓彤

    2016-01-01

    目的 探讨microRNA-27a-3p在重症肌无力(myasthenia gravis,MG)患者胸腺组织中的表达水平并分析其临床意义.方法 收集2004年12月至2015年2月于哈尔滨医科大学附属第二医院胸外科经手术治疗的19例MG患者的胸腺组织标本作为病例组,17例经手术治疗的非MG患者胸腺组织及心外科先天性心脏病患者手术时切取的胸腺组织标本作为对照组,通过实时荧光定量PCR方法检测,采用Wilcoxon秩和检验分析两组标本中microRNA-27 a-3p的表达情况.采用Spearman秩相关分析方法分析MG组胸腺中microRNA-27a-3p的表达水平与定量重症肌无力评分(Quantitative Myasthenia Gravis Score,QMGS)之间的相关性.结果 (1)MG患者胸腺中microRNA-27a-3p的表达水平[0.195(0.049,0.714)]显著高于对照组[0.045 (0.004,0.088);Z=-2.646,P=0.008];(2)19例MG患者中,眼肌型MG(ocular myasthenia gravis,OMG)7例,全身型MG(generalized myasthenia gravis,GMG) 12例,与OMG[0.035(0.008,0.103)]相比,GMG患者胸腺中microRNA-27a-3p的表达[0.493(0.157,1.123)]显著上调(Z=-2.620,P=0.009);(3)microRNA-27a-3p的表达水平与QMGS之间具有正相关性(r=0.576,P=0.010).结论 microRNA-27 a-3p在MG患者胸腺中异常高表达,可能与肌无力的严重程度呈正相关,并与其临床类型有关,但与发病年龄、性别、胸腺病理无明显关联.%Objective To investigate the expression level of thymus microRNA-27a-3p in patients with myasthenia gravis (MG) and to explore the pathogenesis of MG.Methods Thymus tissue samples from 36 cases were collected from December 2014 to February 2015 in the Second Affiliated Hospital of Harbin Medical University.Nineteen thymus tissue samples of MG group were collected from department of chest surgery,17 thymus tissue samples of control group were collected from department of chest surgery or congenital heart disease patients from department of cardiac surgery.The expression of microRNA-27a-3p in the thymus from 36 patients

  19. Preliminary analysis of microRNA transcriptome altered by vaccine and Marek’s disease virus in chickens

    Science.gov (United States)

    MicroRNAs are a class of small, non-coding RNAs that regulate gene expression at the post-transcriptional level and play important roles in many biological processes such as development, cell signaling and immune response. Mature miRNAs are about 22 nucleotides in length. Reportedly, the growth of v...

  20. MicroRNA expression and clinical outcome of small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Jih-Hsiang Lee

    Full Text Available The role of microRNAs in small-cell lung carcinoma (SCLC is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53. We investigated the expression of a panel of 7 microRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a in 31 SCLC tumors, 14 SCLC cell lines, and 26 NSCLC cell lines. We observed significantly lower miR-21, miR-29b, and miR-34a expression in SCLC cell lines than in NSCLC cell lines. The expression of the 7 microRNAs was unrelated to SCLC patients' clinical characteristics and was neither prognostic in term of overall survival or progression-free survival nor predictive of treatment response. Overexpression or downregulation of miR-34a did not influence SCLC cell viability. The expression of these 7 microRNAs also did not predict in vitro sensitivity to cisplatin or etoposide in SCLC cell lines. Overexpression or downregulation of miR-34a did not influence sensitivity to cisplatin or etoposide in SCLC cell lines. In contrast to downregulation of the miR-34a target genes cMET and Axl by overexpression of miR-34a in NSCLC cell lines, the intrinsic expression of cMET and Axl was low in SCLC cell lines and was not influenced by overexpression of miR-34a. Our results suggest that the expression of the 7 selected microRNAs are not prognostic in SCLC patients, and miR-34a is unrelated to the malignant behavior of SCLC cells and is unlikely to be a therapeutic target.

  1. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  2. Ultra-deep sequencing reveals the microRNA expression pattern of the human stomach.

    Directory of Open Access Journals (Sweden)

    Ândrea Ribeiro-dos-Santos

    Full Text Available BACKGROUND: While microRNAs (miRNAs play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia. METHODOLOGY/PRINCIPAL FINDINGS: A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05. Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451 and could be considered part of the expression pattern of the healthy gastric tissue. CONCLUSIONS/SIGNIFICANCE: This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.

  3. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten;

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors...

  4. MicroRNA expression in Sézary syndrome: identification, function, and diagnostic potential

    OpenAIRE

    Ballabio, Erica; Mitchell, Tracey; van Kester, Marloes S.; Taylor, Stephen; Dunlop, Heather M.; Chi, Jianxiang; Tosi, Isabella; Vermeer, Maarten H.; Tramonti, Daniela; Saunders, Nigel J.; Boultwood, Jacqueline; Wainscoat, James S.; Pezzella, Francesco; Whittaker, Sean J; Tensen, Cornelius P

    2010-01-01

    MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4+) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4+ T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-ass...

  5. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki, E-mail: nmiki@p.kanazawa-u.ac.jp

    2013-10-01

    Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases.

  6. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction.

    Science.gov (United States)

    Sattar, Sampurna; Song, Yan; Anstead, James A; Sunkar, Ramanjulu; Thompson, Gary A

    2012-06-01

    Aphis gossypii resistance in melon (Cucumis melo) is due to the presence of a single dominant virus aphid transmission (Vat) gene belonging to the nucleotide-binding site leucine-rich repeat family of resistance genes. Significant transcriptional reprogramming occurs in Vat(+) plants during aphid infestation as metabolism shifts to respond to this biotic stress. MicroRNAs (miRNAs) are involved in the regulation of many biotic stress responses. The role of miRNAs was investigated in response to aphid herbivory during both resistant and susceptible interactions. Small RNA (smRNA) libraries were constructed from bulked leaf tissues of a Vat(+) melon line following early and late aphid infestations. Sequence analysis indicated that the expression profiles of conserved and newly identified miRNAs were altered during different stages of aphid herbivory. These results were verified by quantitative polymerase chain reaction experiments in both resistant Vat(+) and susceptible Vat(-) interactions. The comparative analyses revealed that most of the conserved miRNA families were differentially regulated during the early stages of aphid infestation in the resistant and susceptible interactions. Along with the conserved miRNA families, 18 cucurbit-specific miRNAs were expressed during the different stages of aphid herbivory. The comparison of the miRNA profiles in the resistant and susceptible interactions provides insight into the miRNA-dependent post-transcriptional gene regulation in Vat-mediated resistance.

  7. Regulation of tubulin expression by micro-RNAs: implications for drug resistance.

    Science.gov (United States)

    Lobert, Sharon; Graichen, Mary E

    2013-01-01

    In this chapter, we provide an overview of methods for studying micro-RNA regulation of tubulin isotypes. In clinical studies, β-tubulin isotypes were found to be biomarkers for tumor formation. In addition, because changes in the levels of specific β-tubulin isotypes alter the stability of microtubules in mitotic spindles in vitro, it has been hypothesized that changes in microtubule protein levels could contribute to chemotherapy resistance. Over the past 15 years, micro-RNAs have been shown to target mRNAs in signaling pathways involved in tumor suppression, as well as tumorigenesis. Investigating micro-RNA regulation of tubulin isotypes will shed light on the mechanisms underlying the processes that implicate tubulin isotypes as biomarkers for aggressive tumors or chemotherapy resistance. The methods discussed in this chapter include the use of micro-RNA superarrays, next-generation sequencing, real-time PCR experiments, upregulation of micro-RNAs, and immunoprecipitation of RNA-induced silencing complex. We will show examples of data collected using these methods and how these data contribute to understanding paclitaxel resistance.

  8. MicroRNA expression profile in human macrophages in response to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Julien Lemaire

    Full Text Available BACKGROUND: Leishmania (L. are intracellular protozoan parasites able to survive and replicate in the hostile phagolysosomal environment of infected macrophages. They cause leishmaniasis, a heterogeneous group of worldwide-distributed affections, representing a paradigm of neglected diseases that are mainly embedded in impoverished populations. To establish successful infection and ensure their own survival, Leishmania have developed sophisticated strategies to subvert the host macrophage responses. Despite a wealth of gained crucial information, these strategies still remain poorly understood. MicroRNAs (miRNAs, an evolutionarily conserved class of endogenous 22-nucleotide non-coding RNAs, are described to participate in the regulation of almost every cellular process investigated so far. They regulate the expression of target genes both at the levels of mRNA stability and translation; changes in their expression have a profound effect on their target transcripts. METHODOLOGY/PRINCIPAL FINDINGS: We report in this study a comprehensive analysis of miRNA expression profiles in L. major-infected human primary macrophages of three healthy donors assessed at different time-points post-infection (three to 24 h. We show that expression of 64 out of 365 analyzed miRNAs was consistently deregulated upon infection with the same trends in all donors. Among these, several are known to be induced by TLR-dependent responses. GO enrichment analysis of experimentally validated miRNA-targeted genes revealed that several pathways and molecular functions were disturbed upon parasite infection. Finally, following parasite infection, miR-210 abundance was enhanced in HIF-1α-dependent manner, though it did not contribute to inhibiting anti-apoptotic pathways through pro-apoptotic caspase-3 regulation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that alteration in miRNA levels likely plays an important role in regulating macrophage functions following L. major

  9. MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori

    Directory of Open Access Journals (Sweden)

    Xiang Zhonghuai

    2010-02-01

    Full Text Available Abstract Background MicroRNAs (miRNAs repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Tissue-specific expression of miRNAs is highly relevant to their physiological roles in the corresponding tissues. However, to date, few miRNAs have been spatially identified in the silkworm. Results We establish for the first time the spatial expression patterns of nearly 100 miRNAs in multiple normal tissues (organs of Bombyx mori females and males using microarray and Northern-blotting analyses. In all, only 10 miRNAs were universally distributed (including bmo-let-7 and bmo-bantam, while the majority were expressed exclusively or preferentially in specific tissue types (e.g., bmo-miR-275 and bmo-miR-1. Additionally, we examined the developmental patterns of miRNA expression during metamorphosis of the body wall, silk glands, midgut and fat body. In total, 63 miRNAs displayed significant alterations in abundance in at least 1 tissue during the developmental transition from larvae to pupae (e.g., bmo-miR-263b and bmo-miR-124. Expression patterns of five miRNAs were significantly increased during metamorphosis in all four tissues (e.g., bmo-miR-275 and bmo-miR-305, and two miRNA pairs, bmo-miR-10b-3p/5p and bmo-miR-281-3p/5p, showed coordinate expression. Conclusions In this study, we conducted preliminary spatial measurements of several miRNAs in the silkworm. Periods of rapid morphological change were associated with alterations in miRNA expression patterns in the body wall, silk glands, midgut and fat body during metamorphosis. Accordingly, we propose that corresponding ubiquitous or tissue-specific expression of miRNAs supports their critical roles in tissue specification. These results should facilitate future functional analyses.

  10. Global MicroRNA Expression Profiling of Mouse Livers following Ischemia-Reperfusion Injury at Different Stages.

    Directory of Open Access Journals (Sweden)

    Weisheng Zheng

    Full Text Available Hepatic ischemia-reperfusion injury is a dynamic process consisting of two stages: ischemia and reperfusion, and triggers a cascade of physiological and biochemical events. Given the important role of microRNAs in regulating gene expression, we analyzed gene expression changes in mouse livers at sham control, ischemia stage, and reperfusion stage. We generated global expression profiles of microRNA and mRNA genes in mouse livers subjected to ischemia-reperfusion injury at the three stages, respectively. Comparison analysis showed that reperfusion injury had a distinct expression profile whereas the ischemia sample and the sham control were clustered together. Consistently, there are 69 differentially expressed microRNAs between the reperfusion sample and the sham control whereas 28 differentially expressed microRNAs between the ischemia sample and the sham control. We further identified two modes of microRNA expression changes in ischemia-reperfusion injury. Functional analysis of both the differentially expressed microRNAs in the two modes and their target mRNAs revealed that ischemia injury impaired mitochondrial function, nutrient consumption, and metabolism process. In contrast, reperfusion injury led to severe tissue inflammation that is predominantly an innate-immune response in the ischemia-reperfusion process. Our staged analysis of gene expression profiles provides new insights into regulatory mechanisms of microRNAs in mouse hepatic IR injury.

  11. MicroRNA expression profiles in umbilical cord blood cell lineages.

    Science.gov (United States)

    Merkerova, Michaela; Vasikova, Alzbeta; Belickova, Monika; Bruchova, Hana

    2010-01-01

    MicroRNAs (miRNAs), important regulators of cellular processes, show specific expression signatures in different blood cell lineages and stages of hematopoietic stem cell (HSC) differentiation, indicating their role in the control of hematopoiesis. Because neonatal blood displays various features of immaturity, we might expect differential miRNA regulation. Herein, we determined miRNA expression profiles of umbilical cord blood (UCB) cell lineages and compared them to those of bone marrow (BM) and peripheral blood (PB) cell counterparts. Further, we determined mRNA expression profiles using whole-genome microarrays. An approach combining bioinformatic prediction of miRNA targets with mRNA expression profiling was used to search for putative targets of miRNAs with potential functions in UCB. We pointed out several differentially expressed miRNAs and associated their expression with the target transcript levels. miR-148a expression was suppressed in HSCs and its level inversely correlated with the previously verified target, DNA methyltransferase 3B, suggesting dependence of de novo DNA methylation in HSCs on miR-148a. Prolonged cell survival of UCB HSCs may be associated with low expression of miR-143 and miR-145 and up-regulation of their downstream targets (high expression of c-MYC and miR-17-92 and following repression of TGFBR2). In HSCs, we monitored significant up-regulation of eight miRNAs, which were previously verified as regulators of HOX genes. Further, miR-146b may be associated with immaturity of neonatal immune system because it is strongly up-regulated in UCB granulocytes and T lymphocytes compared to PB cell counterparts. Comparative analysis revealed 13 miRNAs significantly altered between UCB and BM CD34(+) cells. In UCB CD34(+) cells, we monitored up-regulation of miR-520h, promoting differentiation of HSCs into progenitor cells, and reduction of miR-214, whose expression might support HSC survival. In conclusion, UCB cells show specific mi

  12. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2015-01-01

    Full Text Available Background: Sevoflurane and propofol are widely used anesthetics for surgery. Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid. MicroRNAs (miRNAs regulate neural function by altering protein expression. We hypothesize that sevoflurane and propofol affect miRNA expression profiles in the brain, expect to understand the mechanism of anesthetic agents. Methods: Rats were randomly assigned to a 2% sevoflurane group, 600 μg·kg − 1·min − 1 propofol group, and a control group without anesthesia (n = 4, respectively. Treatment group was under anesthesia for 6 h, and all rats breathed spontaneously with continuous monitoring of respiration and blood gases. Changes in rat cortex miRNA expression profiles were analyzed by miRNA microarrays and validated by quantitative real-time polymerase chain reaction (qRT-PCR. Differential expression of miRNA using qRT-PCR among the control, sevoflurane, and propofol groups were compared using one-way analysis of variance (ANOVA. Results: Of 677 preloaded rat miRNAs, the microarray detected the expression of 277 miRNAs in rat cortex (40.9%, of which 9 were regulated by propofol and (or sevoflurane. Expression levels of three miRNAs (rno-miR-339-3p, rno-miR-448, rno-miR-466b-1FNx01 were significantly increased following sevoflurane and six (rno-miR-339-3p, rno-miR-347, rno-miR-378FNx01, rno-miR-412FNx01, rno-miR-702-3p, and rno-miR-7a-2FNx01 following propofol. Three miRNAs (rno-miR-466b-1FNx01, rno-miR-3584-5p and rno-miR-702-3p were differentially expressed by the two anesthetic treatment groups. Conclusions: Sevoflurane and propofol anesthesia induced distinct changes in brain miRNA expression patterns, suggesting differential regulation of protein expression. Determining the targets of these differentially expressed miRNAs may help reveal both the common and agent-specific actions of anesthetics on neurological and physiological

  13. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients

    Science.gov (United States)

    Singh, Prashant K.; Preus, Leah; Hu, Qiang; Yan, Li; Long, Mark D.; Morrison, Carl D.; Nesline, Mary; Johnson, Candace S.; Koochekpour, Shahriar; Kohli, Manish; Liu, Song; Trump, Donald L.

    2014-01-01

    We aimed to identify microRNA (miRNA) expression patterns in the serum of prostate cancer (CaP) patients that predict the risk of early treatment failure following radical prostatectomy (RP). Microarray and Q-RT-PCR analyses identified 43 miRNAs as differentiating disease stages within 14 prostate cell lines and reflectedpublically available patient data. 34 of these miRNA were detectable in the serum of CaP patients. Association with time to biochemical progression was examined in a cohort of CaP patients following RP. A greater than two-fold increase in hazard of biochemical progression associated with altered expression of miR-103, miR-125b and miR-222 (p <.0008) in the serum of CaP patients. Prediction models based on penalized regression analyses showed that the levels of the miRNAs and PSA together were better at detecting false positives than models without miRNAs, for similar level of sensitivity. Analyses of publically available data revealed significant and reciprocal relationships between changes in CpG methylation and miRNA expression patterns suggesting a role for CpG methylation to regulate miRNA. Exploratory validation supported roles for miR-222 and miR-125b to predict progression risk in CaP. The current study established that expression patterns of serum-detectable miRNAs taken at the time of RP are prognostic for men who are at risk of experiencing subsequent early biochemical progression. These non-invasive approaches could be used to augment treatment decisions. PMID:24583788

  14. Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy.

    Science.gov (United States)

    Catapano, Francesco; Zaharieva, Irina; Scoto, Mariacristina; Marrosu, Elena; Morgan, Jennifer; Muntoni, Francesco; Zhou, Haiyan

    2016-07-05

    The identification of noninvasive biomarkers to monitor the disease progression in spinal muscular atrophy (SMA) is becoming increasingly important. MicroRNAs (miRNAs) regulate gene expression and are implicated in the pathogenesis of neuromuscular diseases, including motor neuron degeneration. In this study, we selectively characterized the expression of miR-9, miR-206, and miR-132 in spinal cord, skeletal muscle, and serum from SMA transgenic mice, and in serum from SMA patients. A systematic analysis of miRNA expression was conducted in SMA mice with different disease severities (severe type I-like and mild type III-like) at different disease stages (pre-, mid-, and late-symptomatic stages), and in morpholino antisense oligonucleotide-treated mice. There was differential expression of all three miRNAs in spinal cord, skeletal muscle and serum samples in SMA mice. Serum miRNAs were altered prior to the changes in spinal cord and skeletal muscle at the presymptomatic stage. The altered miR-132 levels in spinal cord, muscle, and serum transiently reversed to normal level after a single-dose morpholino antisense oligomer PMO25 treatment in SMA mice. We also confirmed a significant alteration of miR-9 and miR-132 level in serum samples from SMA patients. Our study indicates the potential of developing miRNAs as noninvasive biomarkers in SMA.

  15. Shadows alter facial expressions of Noh masks.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. CONCLUSIONS/SIGNIFICANCE: Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety", which highly appreciates subtle emotional expressions in the darkness.

  16. Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas

    NARCIS (Netherlands)

    A.S. Prabowo; J. van Scheppingen; A.M. Iyer; J.J. Anink; W.G.M. Spliet; P.C. van Rijen; A.Y.N. Schouten-van Meeteren; E. Aronica

    2015-01-01

    PURPOSE: miR21, miR146, and miR155 represent a trio of microRNAs which has been shown to play a key role in the regulation of immune and inflammatory responses. In the present study, we investigated the differential expression and clinical significance of these three miRNAs in glioneuronal tumors (g

  17. MicroRNA Expression Profiling Identifies Molecular Diagnostic Signatures for Anaplastic Large Cell Lymphoma

    DEFF Research Database (Denmark)

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie

    2013-01-01

    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[-]) ALCLs, 9 angioimm...

  18. Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas

    NARCIS (Netherlands)

    Prabowo, A. S.; van Scheppingen, J.; Iyer, A. M.; Anink, J. J.; Spliet, W. G M; van Rijen, P. C.; Meeteren, A. Y N Schouten van; Aronica, E.

    2015-01-01

    Purpose: miR21, miR146, and miR155 represent a trio of microRNAs which has been shown to play a key role in the regulation of immune and inflammatory responses. In the present study, we investigated the differential expression and clinical significance of these three miRNAs in glioneuronal tumors (g

  19. Expression and its Clinical significance of microRNA-10a in inflammatory bowl disease

    Institute of Scientific and Technical Information of China (English)

    刘嫦钦

    2013-01-01

    Objective To investigate the expression of microRNA (miRNA) -10a in the intestinal mucosa,serum and peripheral blood mononuclear cell (PBMC) of patients with inflammatory bowel disease (IBD) and explore its role and relevance in the pathogenesis of the disease.

  20. MicroRNA expression and regulation in human ovarian carcinoma cells by luteinizing hormone.

    Directory of Open Access Journals (Sweden)

    Juan Cui

    Full Text Available BACKGROUND: MicroRNAs have been widely-studied with regard to their aberrant expression and high correlation with tumorigenesis and progression in various solid tumors. With the major goal of assessing gonadotropin (luteinizing hormone, LH contributions to LH receptor (LHR-positive ovarian cancer cells, we have conducted a genome-wide transcriptomic analysis on human epithelial ovarian cancer cells to identify the microRNA-associated cellular response to LH-mediated activation of LHR. METHODS: Human ovarian cancer cells (SKOV3 were chosen as negative control (LHR- and stably transfected to express functional LHR (LHR+, followed by incubation with LH (0-20 h. At different times of LH-mediated activation of LHR the cancer cells were analyzed by a high-density Ovarian Cancer Disease-Specific-Array (DSA, ALMAC™, which profiled ∼ 100,000 transcripts with ∼ 400 non-coding microRNAs. FINDINGS: In total, 65 microRNAs were identified to exhibit differential expression in either LHR expressing SKOV3 cells or LH-treated cells, a few of which have been found in the genomic fragile regions that are associated with abnormal deletion or amplification in cancer, such as miR-21, miR-101-1, miR-210 and miR-301a. By incorporating the dramatic expression changes observed in mRNAs, strong microRNA/mRNA regulatory pairs were predicted through statistical analyses coupled with collective computational prediction. The role of each microRNA was then determined through a functional analysis based on the highly-confident microRNA/mRNA pairs. CONCLUSION: The overall impact on the transcriptome-level expression indicates that LH may regulate apoptosis and cell growth of LHR+ SKOV3 cells, particularly by reducing cancer cell proliferation, with some microRNAs involved in regulatory roles.

  1. Regulation of MicroRNA Biogenesis: A miRiad of mechanisms

    OpenAIRE

    2009-01-01

    Abstract microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which gov...

  2. Seasonal variation of urinary microRNA expression in male goats (Capra hircus) as assessed by next generation sequencing.

    Science.gov (United States)

    Longpre, Kristy M; Kinstlinger, Noah S; Mead, Edward A; Wang, Yongping; Thekkumthala, Austin P; Carreno, Katherine A; Hot, Azra; Keefer, Jennifer M; Tully, Luke; Katz, Larry S; Pietrzykowski, Andrzej Z

    2014-04-01

    Testosterone plays a key role in preparation of a male domesticated goat (Capra hircus) to breeding season including changes in the urogenital tract of a male goat (buck). microRNAs are important regulators of cellular metabolism, differentiation and function. They are powerful intermediaries of hormonal activity in the body, including the urogenital tract. We investigated seasonal changes in expression of microRNAs in goat buck urine and their potential consequences using next generation sequencing (microRNA-Seq). We determined the location of each microRNA gene in the goat genome. Testosterone was measured by radioimmunoassay and the androgen receptor binding sites (ARBS) in the promoters of the microRNA genes were determined by MatInspector. The overall impact of regulated microRNAs on cellular physiology was assessed by mirPath. We observed high testosterone levels during the breeding season and changes in the expression of forty microRNAs. Nineteen microRNAs were upregulated, while twenty-one were downregulated. We identified several ARBS in the promoters of regulated microRNAs. Notably, the mostly inhibited microRNA, miR-1246, has a unique set of several gene copy variants associated with a cluster of androgen receptor binding sites. Concomitant changes in regulated microRNA expression could promote transcription, proliferation and differentiation of urogenital tract cells. Together, these findings indicate that in a domesticated goat (Capra hircus), there are specific changes in the microRNA expression profile in buck urine during breeding season, which could be attributable to high testosterone levels during breeding, and could help in preparation of the urogenital tract for high metabolic demands of that season.

  3. Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Wu

    2014-12-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT and white adipose tissue (WAT during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P < 0.05, which was 16%–54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%–70% of control, while only expression of miR-138 was significantly upregulated (2.91 ± 0.8-fold of the control, P < 0.05. Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may

  4. Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels

    Institute of Scientific and Technical Information of China (English)

    Cheng-Wei Wu; Kyle K. Biggar; Kenneth B. Storey

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P < 0.05), which was 16%–54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR- 107, miR-125b, miR-21, miR-221 and miR-31 (48%–70% of control), while only expression of miR-138 was significantly upregulated (2.91 ± 0.8-fold of the control, P <0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial b-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen- activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor b (TGFb) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to

  5. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential.

    Science.gov (United States)

    Ballabio, Erica; Mitchell, Tracey; van Kester, Marloes S; Taylor, Stephen; Dunlop, Heather M; Chi, Jianxiang; Tosi, Isabella; Vermeer, Maarten H; Tramonti, Daniela; Saunders, Nigel J; Boultwood, Jacqueline; Wainscoat, James S; Pezzella, Francesco; Whittaker, Sean J; Tensen, Cornelius P; Hatton, Christian S R; Lawrie, Charles H

    2010-08-19

    MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4(+)) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4(+) T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells.

  6. MicroRNA expression in Sézary syndrome: identification, function, and diagnostic potential

    Science.gov (United States)

    Ballabio, Erica; Mitchell, Tracey; van Kester, Marloes S.; Taylor, Stephen; Dunlop, Heather M.; Chi, Jianxiang; Tosi, Isabella; Vermeer, Maarten H.; Tramonti, Daniela; Saunders, Nigel J.; Boultwood, Jacqueline; Wainscoat, James S.; Pezzella, Francesco; Whittaker, Sean J.; Tensen, Cornelius P.; Hatton, Christian S. R.

    2010-01-01

    MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4+) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4+ T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells. PMID:20448109

  7. Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression

    Directory of Open Access Journals (Sweden)

    Farruk M. Lutful Kabir

    2015-12-01

    Full Text Available Breast cancer represents the second most frequent neoplasm in humans and sexually intact female dogs after lung and skin cancers, respectively. Many similar features in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression and response to conventional therapies have supported development of this comparative model as an alternative to mice. The highly conserved similarities between canine and human genomes are also key to this comparative analysis, especially when compared to the murine genome. Studies with canine mammary tumor (CMT models have shown a strong genetic correlation with their human counterparts, particularly in terms of altered expression profiles of cell cycle regulatory genes, tumor suppressor and oncogenes and also a large group of non-coding RNAs or microRNAs (miRNAs. Because CMTs are considered predictive intermediate models for human breast cancer, similarities in genetic alterations and cancer predisposition between humans and dogs have raised further interest. Many cancer-associated genetic defects critical to mammary tumor development and oncogenic determinants of metastasis have been reported and appear to be similar in both species. Comparative analysis of deregulated gene sets or cancer signaling pathways has shown that a significant proportion of orthologous genes are comparably up- or down-regulated in both human and dog breast tumors. Particularly, a group of cell cycle regulators called cyclin-dependent kinase inhibitors (CKIs acting as potent tumor suppressors are frequently defective in CMTs. Interestingly, comparative analysis of coding sequences has also shown that these genes are highly conserved in mammals in terms of their evolutionary divergence from a common ancestor. Moreover, co-deletion and/or homozygous loss of the INK4A/ARF/INK4B (CDKN2A/B locus, encoding three members of the CKI tumor suppressor gene families (p16/INK4A, p14ARF and p15

  8. Microarray analysis of microRNA expression during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Edna C Holman

    Full Text Available Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex" miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  9. Microarray analysis of microRNA expression during axolotl limb regeneration.

    Science.gov (United States)

    Holman, Edna C; Campbell, Leah J; Hines, John; Crews, Craig M

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex") miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  10. Arctiin induces an UVB protective effect in human dermal fibroblast cells through microRNA expression changes.

    Science.gov (United States)

    Lee, Ghang Tai; Cha, Hwa Jun; Lee, Kwang Sik; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-03-01

    Ultraviolet (UV) radiation induces severe alterations in the molecular and cellular components of normal human dermal fibroblast (NHDF) cells by disrupting many intracellular transduction cascades. Although UV responses have been well documented at the genome and proteome levels, UV protective effects have not been elucidated at these levels. The aim of the present study was to demonstrate that arctiin, a phytochemical isolated from the plant Arctium lappa, induced a protective effect against UVB radiation by changing microRNA (miRNA) expression profiles. Using flow cytometry, and water-soluble tetrazolium salt (WST-1)-based cell viability, wound healing, and DNA repair assays we showed that pretreatment with arctiin prior to UVB irradiation reduced UVB-induced apoptosis, cell migration defects, and DNA damage in NHDF cells. It was also found that arctiin‑induced UVB protection is associated with altered miRNA expression profiles. Bioinformatic analysis revealed that the deregulated miRNAs were functionally involved in mitogen-activated protein kinase (MAPK) signaling and cancer signaling pathways. The results suggest that arctiin acts as a UVB protective agent by altering specific miRNA expression in NHDF cells.

  11. MicroRNA Expression Profiling of Human Respiratory Epithelium Affected by Invasive Candida Infection.

    Directory of Open Access Journals (Sweden)

    Syed Aun Muhammad

    Full Text Available Invasive candidiasis is potentially life-threatening systemic fungal infection caused by Candida albicans (C. albicans. Candida enters the blood stream and disseminate throughout the body and it is often observed in hospitalized patients, immunocompromised individuals or those with chronic diseases. This infection is opportunistic and risk starts with the colonization of C. albicans on mucocutaneous surfaces and respiratory epithelium. MicroRNAs (miRNAs are small non-coding RNAs which are involved in the regulation of virtually every cellular process. They regulate and control the levels of mRNA stability and post-transcriptional gene expression. Aberrant expression of miRNAs has been associated in many disease states, and miRNA-based therapies are in progress. In this study, we investigated possible variations of miRNA expression profiles of respiratory epithelial cells infected by invasive Candida species. For this purpose, respiratory epithelial tissues of infected individuals from hospital laboratory were accessed before their treatment. Invasive Candida infection was confirmed by isolation of Candia albicans from the blood cultures of the same infected individuals. The purity of epithelial tissues was assessed by flow cytometry (FACSCalibur cytometer; BD Biosciences, Heidelberg, Germany using statin antibody (S-44. TaqMan quantitative real-time PCR (in a TaqMan Low Density Array format was used for miRNA expression profiling. MiRNAs investigated, the levels of expression of 55 miRNA were significantly altered in infected tissues. Some miRNAs showed dramatic increase (miR-16-1 or decrease of expression (miR-17-3p as compared to control. Gene ontology enrichment analysis of these miRNA-targeted genes suggests that Candidal infection affect many important biological pathways. In summary, disturbance in miRNA expression levels indicated the change in cascade of pathological processes and the regulation of respiratory epithelial functions

  12. Integrative analysis of micro-RNA, gene expression, and survival of glioblastoma multiforme.

    Science.gov (United States)

    Huang, Yen-Tsung; Hsu, Thomas; Kelsey, Karl T; Lin, Chien-Ling

    2015-02-01

    Glioblastoma multiforme (GBM), the most common type of malignant brain tumor, is highly fatal. Limited understanding of its rapid progression necessitates additional approaches that integrate what is known about the genomics of this cancer. Using a discovery set (n = 348) and a validation set (n = 174) of GBM patients, we performed genome-wide analyses that integrated mRNA and micro-RNA expression data from GBM as well as associated survival information, assessing coordinated variability in each as this reflects their known mechanistic functions. Cox proportional hazards models were used for the survival analyses, and nonparametric permutation tests were performed for the micro-RNAs to investigate the association between the number of associated genes and its prognostication. We also utilized mediation analyses for micro-RNA-gene pairs to identify their mediation effects. Genome-wide analyses revealed a novel pattern: micro-RNAs related to more gene expressions are more likely to be associated with GBM survival (P = 4.8 × 10(-5)). Genome-wide mediation analyses for the 32,660 micro-RNA-gene pairs with strong association (false discovery rate [FDR] micro-RNAs and mediated their prognostic effects as well. We further constructed a gene signature using the 16 genes, which was highly associated with GBM survival in both the discovery and validation sets (P = 9.8 × 10(-6)). This comprehensive study discovered mediation effects of micro-RNA to gene expression and GBM survival and provided a new analytic framework for integrative genomics.

  13. Laser Capture Microdissection Assisted Identification of Epithelial MicroRNA Expression Signatures for Prognosis of Stage I NSCLC

    Science.gov (United States)

    2014-12-01

    microRNA expression atlas based on small RNA library sequencing. Cell 129:1401-14, 2007 13. Sica A, Mantovani A: Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787-95, 2012 18

  14. Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure.

    Science.gov (United States)

    Yan, Hualin; Li, Yifei; Wang, Chuan; Zhang, Yi; Liu, Cong; Zhou, Kaiyu; Hua, Yimin

    2016-08-10

    microRNAs (miRNAs) belong to a class of non-coding RNAs that regulate post-transcriptional gene expression during development and disease. Growing evidence indicates abundant miRNA expression changes and their important role in cardiac hypertrophy and failure. However, the role of miRNAs in fetal cardiac remodeling is little known. Here, we investigated the altered expression of fifteen miRNAs in rat fetal cardiac remodeling compared with adult cardiac remodeling. Among fifteen tested miRNAs, eleven and five miRNAs (miR-199a-5p, miR-214-3p, miR-155-3p, miR-155-5p and miR-499-5p) are significantly differentially expressed in fetal and adult cardiac remodeling, respectively. After comparison of miRNA expression in fetal and adult cardiac remodeling, we find that miRNA expression returns to the fetal level in adult cardiac failure and is activated in advance of the adult level in fetal failure. The current study highlights the contrary expression pattern between fetal and adult cardiac remodeling and that supports a novel potential therapeutic approach to treating heart failure.

  15. Impact of gastro-oesophageal reflux on microRNA expression, location and function

    Directory of Open Access Journals (Sweden)

    Smith Cameron M

    2013-01-01

    Full Text Available Abstract Background Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett’s oesophagus. Barrett’s oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett’s oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett’s oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Methods Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A. Results miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Conclusions Elevated miR-143, miR-145 and miR-205 expression was observed in

  16. MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression

    Directory of Open Access Journals (Sweden)

    Pedro M. Costa

    2013-09-01

    Full Text Available The discovery of small RNA molecules with the capacity to regulate messenger RNA (mRNA stability and translation (and consequently protein synthesis has revealed an additional level of post-transcriptional gene control. MicroRNAs (miRNAs, an evolutionarily conserved class of small noncoding RNAs that regulate gene expression post-transcriptionally by base pairing to complementary sequences in the 3' untranslated regions of target mRNAs, are part of this modulatory RNA network playing a pivotal role in cell fate. Functional studies indicate that miRNAs are involved in the regulation of almost every biological pathway, while changes in miRNA expression are associated with several human pathologies, including cancer. By targeting oncogenes and tumor suppressors, miRNAs have the ability to modulate key cellular processes that define the cell phenotype, making them highly promising therapeutic targets. Over the last few years, miRNA-based anti-cancer therapeutic approaches have been exploited, either alone or in combination with standard targeted therapies, aiming at enhancing tumor cell killing and, ideally, promoting tumor regression and disease remission. Here we provide an overview on the involvement of miRNAs in cancer pathology, emphasizing the mechanisms of miRNA regulation. Strategies for modulating miRNA expression are presented and illustrated with representative examples of their application in a therapeutic context.

  17. Expression of microRNA and microRNA processing machinery genes during early quail (Coturnix japonica) embryo development.

    Science.gov (United States)

    Kocamis, H; Hossain, M; Cinar, M U; Salilew-Wondim, D; Mohammadi-Sangcheshmeh, A; Tesfaye, D; Hölker, M; Schellander, K

    2013-03-01

    MicroRNA (miRNA) are small regulatory RNA molecules that are implicated in regulating and controlling a wide range of physiological processes including cell division, differentiation, migration, apoptosis, morphogenesis, and organogenesis. The aim of this study was to determine the expression pattern of 32 miRNA and 18 miRNA processing machinery genes during somite formation in quail embryos. The embryos were collected at stages HH (Hamburger and Hamilton) 4, 6, and 9 of embryo development (19, 24, and 30 h of incubation, respectively). Total RNA including miRNA was isolated from 4 groups of embryos (each group consisting of 6 to 8 embryos) were collected at each of the 3 stages (19, 24, and 30 h). The expression pattern of candidate miRNA and miRNA processing machinery genes was performed using quantitative real-time PCR. The results demonstrated that 7 miRNA (let-7a, mir-122, mir-125b, mir-10b, P machinery genes was not significantly increased at 30 h of incubation compared with both 19 and 24 h. Our results suggest that machinery genes for miRNA biogenetic pathways are functional, and hence, miRNA may be involved in the regulation of early quail development. These 7 differentially expressed miRNA are suggested to play critical roles in quail embryo somite formation.

  18. Change of MicroRNA-134, CREB and p-CREB expression in epileptic rat

    Institute of Scientific and Technical Information of China (English)

    Yan Zhu; Cheng-Shan Li; Yuan-Ye Wang; Sheng-Nian Zhou

    2015-01-01

    Objective: To To investigate the changes of MicroRNA-134, CREB and p-CREB expression in epileptic rat brains in order to elucidate the molecular mechanisms of epilepsy, providing new ideas for clinical treatment. Methods: Sixty-four Spraque-Dawley (SD) rats were divided into groups randomly, including control group, six hours after seizure group, 24-hour group, three-day group, one-week group, two-week group, four-week group, and eight-week group. All groups were placed under a pilocarpine-induced epilepsy model except the control group, and all rats were decapitated in different points of time. Brain specimens were taken for quantitative PCR experiments, immunohistochemistry and Western blot experiments. The results of the epilepsy model groups and the control group were compared. Results: There were no significant differences between the six hours after seizure group, the 24-hour group and the control group about the MicroRNA-134 levels. MicroRNA-134 in the hippocampus tissue of the three-day group significantly reduced compared with the control group; same result was observed with the one-week, two-week, four-week and eight-week groups. The CREB and p-CREB levels in the three-day group’s rat hippocampus significantly increased compared with the control group; and the high levels of CREB and p-CREB were constantly maintained in the one-week, two-week, four-week and eight-week groups. Conclusions: The MicroRNA-134 level of the epileptic rat hippocampus is significantly lower than normal after three days, and continues to maintain a low level; while CREB and p-CREB levels are rsignificantly increased after three days, and continue to remain at a high level. MicroRNA-134 plays a role in inhibiting synaptic plasticity by inhibiting CREB and p-CREB expressions.

  19. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs.

    Science.gov (United States)

    Vincenti, Sara; Brillante, Nadia; Lanza, Vincenzo; Bozzoni, Irene; Presutti, Carlo; Chiani, Francesco; Etna, Marilena Paola; Negri, Rodolfo

    2011-05-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either repression of translation or RNA degradation. They have been shown to be involved in a variety of biological processes such as development, differentiation and cell cycle control, but little is known about their involvement in the response to irradiation. We showed here that in human umbilical vein endothelial cells (HUVEC) some miRNAs previously shown to have a crucial role in vascular biology are transiently modulated in response to a clinically relevant dose of ionizing radiation. In particular we identified an early transcriptional induction of several members of the microRNA cluster 17-92 and other microRNAs already known to be related to angiogenesis. At the same time we observed a peculiar behavior of the miR-221/222 cluster, suggesting an important role of these microRNAs in HUVEC homeostasis. We observed an increased efficiency in the formation of capillary-like structures in irradiated HUVEC. These results could lead to a new interpretation of the effect of ionizing radiation on endothelial cells and on the response of tumor endothelial bed cells to radiotherapy.

  20. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Directory of Open Access Journals (Sweden)

    Tong-Shuai Guo

    2014-06-01

    Full Text Available Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS rats and Sprague-Dawley (SD rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW and left ventricular mass index (LVMI of the salt-sensitive high salt (SHS group were obviously higher than those of the salt-sensitive low salt (SLS group. However, the difference between the Sprague-Dawley high salt (DHS group and the Sprague-Dawley low salt (DLS group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension.

  1. Characterisation of microRNA expression in post-natal mouse mammary gland development

    Directory of Open Access Journals (Sweden)

    Karagavriilidou Konstantina

    2009-11-01

    Full Text Available Abstract Background The differential expression pattern of microRNAs (miRNAs during mammary gland development might provide insights into their role in regulating the homeostasis of the mammary epithelium. Our aim was to analyse these regulatory functions by deriving a comprehensive tissue-specific combined miRNA and mRNA expression profile of post-natal mouse mammary gland development. We measured the expression of 318 individual murine miRNAs by bead-based flow-cytometric profiling of whole mouse mammary glands throughout a 16-point developmental time course, including juvenile, puberty, mature virgin, gestation, lactation, and involution stages. In parallel whole-genome mRNA expression data were obtained. Results One third (n = 102 of all murine miRNAs analysed were detected during mammary gland development. MicroRNAs were represented in seven temporally co-expressed clusters, which were enriched for both miRNAs belonging to the same family and breast cancer-associated miRNAs. Global miRNA and mRNA expression was significantly reduced during lactation and the early stages of involution after weaning. For most detected miRNA families we did not observe systematic changes in the expression of predicted targets. For miRNA families whose targets did show changes, we observed inverse patterns of miRNA and target expression. The data sets are made publicly available and the combined expression profiles represent an important community resource for mammary gland biology research. Conclusion MicroRNAs were expressed in likely co-regulated clusters during mammary gland development. Breast cancer-associated miRNAs were significantly enriched in these clusters. The mechanism and functional consequences of this miRNA co-regulation provide new avenues for research into mammary gland biology and generate candidates for functional validation.

  2. Expression of NMDA receptor and microRNA-219 in rats submitted to cerebral ischemia associated with alcoholism

    Directory of Open Access Journals (Sweden)

    Cristiane Iozzi Silva

    Full Text Available ABSTRACT Alcohol consumption aggravates injuries caused by ischemia. Many molecular mechanisms are involved in the pathophysiology of cerebral ischemia, including neurotransmitter expression, which is regulated by microRNAs. Objective: To evaluate the microRNA-219 and NMDA expression in brain tissue and blood of animals subjected to cerebral ischemia associated with alcoholism. Methods: Fifty Wistar rats were divided into groups: control, sham, ischemic, alcoholic, and ischemic plus alcoholic. The expression of microRNA-219 and NMDA were analyzed by real-time PCR. Results: When compared to the control group, the microRNA-219 in brain tissue was less expressed in the ischemic, alcoholic, and ischemic plus alcoholic groups. In the blood, this microRNA had lower expression in alcoholic and ischemic plus alcoholic groups. In the brain tissue the NMDA gene expression was greater in the ischemic, alcoholic, and ischemic plus alcoholic groups. Conclusion: A possible modulation of NMDA by microRNA-219 was observed with an inverse correlation between them.

  3. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses.

    Science.gov (United States)

    Shen, Jianqiang; Xie, Kabin; Xiong, Lizhong

    2010-12-01

    MicroRNAs are a class of endogenous small RNA molecules (20-24 nucleotides) that have pivotal roles in regulating gene expression mostly at posttranscriptional levels in plants. Plant microRNAs have been implicated in the regulation of diverse biological processes including growth and stress responses. However, the information about microRNAs in regulating abiotic stress responses in rice is limited. We optimized a one-tube stem-loop reverse transcription quantitative PCR (ST-RT qPCR) for high-throughput expression profiling analysis of microRNAs in rice under normal and stress conditions. The optimized ST-RT qPCR method was as accurate as small RNA gel blotting and was more convenient and time-saving than other methods in quantifying microRNAs. With this method, 41 rice microRNAs were quantified for their relative expression levels after drought, salt, cold, and abscisic acid (ABA) treatments. Thirty-two microRNAs showed induced or suppressed expression after stress or ABA treatment. Further analysis suggested that stress-responsive cis-elements were enriched in the promoters of stress-responsive microRNA genes. The expressions of five and seven microRNAs were significantly affected in the rice plant with defects in stress tolerance regulatory genes OsSKIPa and OsbZIP23, respectively. Some of the predicted target genes of these microRNAs were also related to abiotic stresses. We conclude that ST-RT qPCR is an efficient and reliable method for expression profiling of microRNAs and a significant portion of rice microRNAs participate in abiotic stress response and regulation.

  4. Differentially expressed microRNAs at different stages of atherosclerosis in ApoE-deficient mice

    Institute of Scientific and Technical Information of China (English)

    SHAN Zhen; YAO Chen; LI Zi-lun; TENG Yuan; LI Wen; WANG Jin-song; YE Cai-sheng

    2013-01-01

    Background Atherosclerosis is the primary cause of cardiovascular disease,carotid artery disease,and peripheral vascular disease.However,it is hard to obtain human arterial tissue at different stages of atherosclerosis for a systematic study.The ApoE-deficient (ApoE 1-) mice predictably develop spontaneous atherosclerotic plaques with numerous features similar to the human lesions and contain nearly the entire spectrum of lesions observed during atherogenesis in humans.MicroRNA expression profiles at different stages of atherosclerosis in ApoE-deficient mice were screened to find out the differentially expressed microRNAs.Methods ApoE-deficient mice were euthanized at 4,8,and 20 weeks of age and divided into three groups according to the three time points,including groups A4 (fed a Western-type diet for 0 week),A8 (fed a Western-type diet for 4 weeks),and A20 (fed a Western-type diet for 16 weeks).Atherosclerotic lesions were analyzed.Fifteen aortas were collected and combined into three pools (five aortas in one pool) in each group.MicroRNA microarray analysis was replicated thrice in each group.The threshold of fold change ≥2.0 was used to screen up or down-regulated microRNAs.Differentially expressed microRNAs were subsequently verified with quantitative real-time polymerase chain reaction.Those increasingly up or down-regulated microRNAs during the progression of atherosclerosis were selected.Results Atherosclerotic lesions first appeared in the aortic arch in group A8.Severe atherosclerotic lesions were observed in group A20.In group A8,seven MicroRNAs were up-regulated while two were down-regulated.In group A20,15 microRNAs were up-regulated while two were down-regulated.miR-34a-Sp and miR-497-5p were increasingly up-regulated,while miR-434-3p was progressively down-regulated when atherosclerosis progressed.Conclusions In this study,we described that microRNAs are differentially expressed at different stages of atherosclerosis in ApoE-deficient mice

  5. Comparison of Two MicroRNA Quantification Methods for Assaying MicroRNA Expression Proifles in Wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    HAN Ran; YAN Yan; ZHOU Peng; ZHAO Hui-xian

    2014-01-01

    Two microRNA (miRNA) quantification methods, namely, poly(A) reverse transcription (RT)-quantitative real-time polymerase chain reaction (qPCR) and stem-loop RT-qPCR, have been developed for quantifying miRNA expression. In the present study, ifve miRNAs, including miR166, miR167, miR168, miR159, and miR396, with different sequence frequencies, were selected as targets to compare their expression proifles in ifve wheat tissues by applying the two methods and deep sequencing. The study aimed to determine a simple, reliable and high-throughput method for detecting miRNA expressions in wheat tissues. Results showed that the miRNA expression proifles determined by poly(A) RT-qPCR were more consistent with those obtained by deep sequencing. Further analysis indicated that the correlation coefifcients of the data obtained by poly(A) RT-qPCR and deep sequencing (0.739, P 0.01) were higher than those obtained by stem-loop RT-qPCR and deep sequencing (0.535, P 0.01). The protocol used for poly(A) RT-qPCR is simpler than that for stem-loop RT-qPCR. Thus, poly(A) RT-qPCR was a more suitable high-throughput assay for detecting miRNA expression proifles. To the best of our knowledge, this study was the ifrst to compare these two miRNA quantiifcation methods. We also provided useful information for quantifying miRNA in wheat or other plant species.

  6. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression.

    Science.gov (United States)

    Tayebi, Behnoosh; Abrishami, Fatemeh; Alizadeh, Shaban; Minayi, Neda; Mohammadian, Mozhdeh; Soleimani, Masoud; Dehghanifard, Ali; Atwan, Hossein; Ajami, Monireh; Ajami, Mansoureh

    2017-02-01

    Context Inherited hemoglobin diseases are the most common single-gene disorders. Induction of fetal hemoglobin in beta hemoglobin disorders compensate for abnormal chain and ameliorate the clinical complications. Sodium butyrate is used conventionally for fetal hemoglobin induction; it can be replaced by safer therapeutic tools like microRNAs, small non-coding RNAs that control number of epigenetic mechanisms. Objective In this study, we compared the changes in the microRNAs of differentiated erythroid cells between control and sodium butyrate treated groups. The objective is to find significant association between these changes and gamma chain up regulation. Materials and methods First, CD133(+ ) hematopoietic stem cells were isolated from cord blood by magnetic cell sorting (MACS) technique. After proliferation, the cells were differentiated to erythroid lineage in culture medium by EPO, SCF, and IL3. Meanwhile, the test group was treated with sodium butyrate. Then, gamma chain upregulation was verified by qPCR technique. Finally, microRNA profiling was performed through microarray assay and some of them confirmed by qPCR. Result Results demonstrated that gamma chain was 5.9-fold upregulated in the treated group. Significant changes were observed at 76 microRNAs, in which 20 were up-regulated and 56 were down-regulated. Discussion Five of these microRNAs including U101, hsa-miR-4726-5p, hsa-miR7109 5p, hsa-miR3663, and hsa-miR940 had significant changes in expression and volume. Conclusion In conclusion, it can be assumed that sodium butyrate can up-regulate gamma chain gene, and change miRNAs expression. These results can be profitable in future studies to find therapeutic goal suitable for such disorders.

  7. Identification and characterization of the expression profile of microRNAs in Anopheles anthropophagus

    OpenAIRE

    Liu, Wenquan; Huang, Huicong; Xing, Cuicui; Li, Chunxiang; TAN, FENG; Liang, Shaohui

    2014-01-01

    Background Anopheles anthropophagus, one of the most important mosquito-borne disease vectors in Asia, mainly takes blood meals from humans and transmits both malaria and filariae. MicroRNAs (miRNAs) are small non-coding RNAs, and play a critical role in many cellular processes, including development, differentiation, apoptosis and innate immunity. Methods We investigated the global miRNA expression profile of male and female adults of A. anthropophagus using illumina Hiseq2000 sequencing com...

  8. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    Science.gov (United States)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  9. MicroRNA Expression Profiling of Human Induced Pluripotent and Embryonic Stem Cells

    OpenAIRE

    Sharma, Amit; Wu, Joseph C.

    2013-01-01

    Clinical implications of induced pluripotent stem (iPS) cell technology are enormous for personalized medicine. However, extensive use of viral approach for ectopic expression of reprogramming factors is a major hurdle in realization of its true potential. Non-viral methods for making iPS cells, although plausible, are impractical because of high cost. MicroRNAs are important cellular modulators that have been shown to rival transcription factors and are important players in embryonic develop...

  10. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection

    DEFF Research Database (Denmark)

    Hamam, Rimi; Ali, Arwa M.; Alsaleh, Khalid A.;

    2016-01-01

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and mana......Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification...... and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples...... of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal...

  11. Expression and Localization of microRNAs in Perinatal Rat Pancreas

    DEFF Research Database (Denmark)

    Larsen, Louise; Rosenstierne, Maiken Worsøe; Gaarn, Louise Winkel;

    2011-01-01

    OBJECTIVE: To investigate the expression of pancreatic microRNAs (miRNAs) during the period of perinatal beta-cell expansion and maturation in rats, determine the localization of these miRNAs and perform a pathway analysis with predicted target mRNAs expressed in perinatal pancreas. RESEARCH DESIGN...... AND METHODS: RNA was extracted from whole pancreas at embryonic day 20 (E20), on the day of birth (P0) and two days after birth (P2) and hybridized to miRNA microarrays. Differentially expressed miRNAs were verified by northern blotting and their pancreatic localization determined by in situ hybridization...

  12. Prenatal Evaluation of MicroRNA Expressions in Pregnancies with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Biray Erturk

    2016-01-01

    Full Text Available Background. Currently, the data available on the utility of miRNAs in noninvasive prenatal testing is insufficient in the literature. We evaluated the expression levels of 14 miRNAs located on chromosome 21 in maternal plasma and their utility in noninvasive prenatal testing of Down Syndrome. Method. A total of 56 patients underwent invasive prenatal testing; 23 cases were carrying Down Syndrome affected fetuses, and 33 control cases carrying unaffected, normal karyotype fetuses were included for comparison. Indications for invasive prenatal testing were advanced maternal age, increased risk of Down Syndrome in screening tests, and abnormal finding in the sonographic examination. In both the study and control groups, all the pregnant women were at 17th and 18th week of gestation. miRNA expression levels were measured using real-time RT-PCR. Results. Significantly increased maternal plasma levels of miR-3156 and miR-99a were found in the women carrying a fetus with Down Syndrome. Conclusion. Our results provide a basis for multicenter studies with larger sample groups and microRNA profiles, particularly with the microRNAs which were found to be variably expressed in our study. Through this clinical research, the utility of microRNAs in noninvasive prenatal testing can be better explored in future studies.

  13. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation.

    Science.gov (United States)

    Stallings, Raymond L; Foley, Niamh H; Bray, Isabella M; Das, Sudipto; Buckley, Patrick G

    2011-10-01

    Many neuroblastoma cell lines can be induced to differentiate into a mature neuronal cell type with retinoic acid and other compounds, providing an important model system for elucidating signalling pathways involved in this highly complex process. Recently, it has become apparent that miRNAs, which act as regulators of gene expression at a post-transcriptional level, are differentially expressed in differentiating cells and play important roles governing many aspects of this process. This includes the down-regulation of DNA methyltransferases that cause the de-methylation and transcriptional activation of numerous protein coding gene sequences. The purpose of this article is to review involvement of miRNAs and DNA methylation alterations in the process of neuroblastoma cell differentiation. A thorough understanding of miRNA and genetic pathways regulating neuroblastoma cell differentiation potentially could lead to targeted therapies for this disease.

  14. The different morphologies of urachal adenocarcinoma do not discriminate genomically by micro-RNA expression profiling.

    Science.gov (United States)

    Bissonnette, Mei Lin Z; Kocherginsky, Masha; Tretiakova, Maria; Jimenez, Rafael E; Barkan, Güliz A; Mehta, Vikas; Sirintrapun, Sahussapont Joseph; Steinberg, Gary D; White, Kevin P; Stricker, Thomas; Paner, Gladell P

    2013-08-01

    Urachal adenocarcinoma has several morphologic presentations that include mucinous, enteric, signet ring cell, and not otherwise specified. Mixtures of these morphologies can occur, and percentage cut-offs are used for classification. The clinical significance of these morphologic types is currently unknown, and genetic analysis that could elucidate possible intertumoral differences has not been performed. In this study, we analyzed the micro-RNA expression profiles of 12 urachal adenocarcinomas classified using strict morphologic criteria (3 pure enteric, 3 pure mucinous, 2 signet ring cell [both 90% signet ring cell], 2 pure not otherwise specified, and 2 mixed cell types). Of 598 unique human micro-RNAs, 333 were expressed in more than 50% of the samples. Hierarchal clustering showed no distinct patterns in the genetic profiles of the morphologic types. However, there were individual micro-RNA differences when the different types were compared individually or grouped together, either by intracellular mucin production or by grouping enteric and signet ring cell together. In the later group, 13 messenger RNA species were differentially expressed (adjusted P value of ≤.05). However, these micro-RNA differences were small, suggesting more biologic similarity than differences among these entities. Thus, this study suggests that the different morphological subtypes may represent patterns of differentiation or a continuum of a single biological tumor type rather than several distinct types that arose from the urachal remnant epithelium. This finding, if further validated in larger studies, may have implications in future clinical therapeutic trials for urachal adenocarcinoma with regard to patient grouping and choice of therapy.

  15. Differential Expression of microRNAs in the Ovaries from Letrozole-Induced Rat Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Li, Dandan; Li, Chunjin; Xu, Ying; Xu, Duo; Li, Hongjiao; Gao, Liwei; Chen, Shuxiong; Fu, Lulu; Xu, Xin; Liu, Yongzheng; Zhang, Xueying; Zhang, Jingshun; Ming, Hao; Zheng, Lianwen

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder. To understand the pathogenesis of PCOS, we established rat models of PCOS induced by letrozole and employed deep sequencing to screen the differential expression of microRNAs (miRNAs) in PCOS rats and control rats. We observed vaginal smear and detected ovarian pathological alteration and hormone level changes in PCOS rats. Deep sequencing showed that a total of 129 miRNAs were differentially expressed in the ovaries from letrozole-induced rat model compared with the control, including 49 miRNAs upregulated and 80 miRNAs downregulated. Furthermore, the differential expression of miR-201-5p, miR-34b-5p, miR-141-3p, and miR-200a-3p were confirmed by real-time polymerase chain reaction. Bioinformatic analysis revealed that these four miRNAs were predicted to target a large set of genes with different functions. Pathway analysis supported that the miRNAs regulate oocyte meiosis, mitogen-activated protein kinase (MAPK) signaling, phosphoinositide 3-kinase/Akt (PI3K-Akt) signaling, Rap1 signaling, and Notch signaling. These data indicate that miRNAs are differentially expressed in rat PCOS model and the differentially expressed miRNA are involved in the etiology and pathophysiology of PCOS. Our findings will help identify miRNAs as novel diagnostic markers and therapeutic targets for PCOS.

  16. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle.

    Science.gov (United States)

    Mardaryev, Andrei N; Ahmed, Mohammed I; Vlahov, Nikola V; Fessing, Michael Y; Gill, Jason H; Sharov, Andrey A; Botchkareva, Natalia V

    2010-10-01

    The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and midanagen phases of the hair cycle results in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signaling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes, both in vitro and in vivo. Using luciferase reporter assay, we show that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. Thus, by targeting a number of growth regulatory molecules and cytoskeletal proteins, miR-31 is involved in establishing an optimal balance of gene expression in the hair follicle required for its proper growth and hair fiber formation.

  17. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer.

    Science.gov (United States)

    Heegaard, Niels H H; Schetter, Aaron J; Welsh, Judith A; Yoneda, Mitsuhiro; Bowman, Elise D; Harris, Curtis C

    2012-03-15

    Circulating micro-RNA (miR) profiles have been proposed as promising diagnostic and prognostic biomarkers for cancer, including lung cancer. We have developed methods to accurately and reproducibly measure micro-RNA levels in serum and plasma. Here, we study paired serum and plasma samples from 220 patients with early stage nonsmall cell lung cancer (NSCLC) and 220 matched controls. We use qRT-PCR to measure the circulating levels of 30 different miRs that have previously been reported to be differently expressed in lung cancer tissue. Duplicate RNA extractions were performed for 10% of all samples, and micro-RNA measurements were highly correlated among those duplicates. This demonstrates high reproducibility of our assay. The expressions of miR-146b, miR-221, let-7a, miR-155, miR-17-5p, miR-27a and miR-106a were significantly reduced in the serum of NSCLC cases, while miR-29c was significantly increased. No significant differences were observed in plasma of patients compared with controls. Overall, expression levels in serum did not correlate well with levels in plasma. In secondary analyses, reduced plasma expression of let-7b was modestly associated with worse cancer-specific mortality in all patients, and reduced serum expression of miR-223 was modestly associated with cancer-specific mortality in stage IA/B patients. MiR profiles also showed considerable differences comparing African American and European Americans. In summary, we found significant differences in miR expression when comparing cases and controls and find evidence that expression of let-7b is associated with prognosis in NSCLC.

  18. Expression of circulating microRNA-1 and microRNA-133 in pediatric patients with tachycardia.

    Science.gov (United States)

    Sun, Ling; Sun, Shuo; Zeng, Shaoying; Li, Yufen; Pan, Wei; Zhang, Zhiwei

    2015-06-01

    Paroxysmal or persistent tachycardia in pediatric patients is a common disease. Certain circulating microRNAs (miRNAs) have been associated with arrhythmia. The present study investigated miRNAs in the plasma of pediatric patients with tachycardia. Forty pediatric subjects were included retrospectively: 24 with recurrent sustained tachycardia [seven cases of ventricular tachycardia (VT) and 17 cases of supraventricular tachycardia (SVT)] and 16 healthy controls. Circulating miR‑1 and miR‑133 in the plasma were detected by fluorescent quantitative polymerase chain reaction. miR‑1 levels were significantly decreased in the arrhythmia group compared with those in the controls (P=0.004) whilst miR‑133 expression levels were not significantly different between the two groups (P=0.456). Both miR‑1 and miR‑133 levels showed significant differences between the SVT and VT groups (P=0.004 and P=0.046, respectively), and a significant decrease in miR‑1 levels was observed in the SVT group as compared with the controls (Ptachycardia. Additionally, miR‑1 produced enhanced sensitivity and specificity for the evaluation of SVT compared with miR‑133, whereas miR‑133 was a better marker to assess VT. This study demonstrated that miRNAs may be appropriate markers for pediatric tachycardia; miR‑1 levels were decreased in the arrhythmia group compared with those in the healthy controls. Furthermore, patients with SVT had lower miR‑1 expression levels while those with VT had higher miR‑133 expression levels.

  19. Evaluation of microRNA Expression in Patients with Herpes Zoster

    Directory of Open Access Journals (Sweden)

    Xihan Li

    2016-12-01

    Full Text Available Reactivated varicella-zoster virus (VZV, which lies latent in the dorsal root ganglions and cranial nerves before its reactivation, is capable of causing herpes zoster (HZ, but the specific mechanism of virus reactivation and latency remains unknown. It was proposed that circulating microRNAs (miRNAs in body fluids could potentially indicate infection. However, the connection between herpes zoster and circulating miRNAs has not been demonstrated. In this study, 41 HZ patients without superinfection were selected. The serum miRNA levels were analyzed by TaqMan low density array (TLDA and confirmed individually by quantitative reverse transcription PCR (RT-qPCR analysis. Thirty-five age-matched subjects without any infectious diseases or inflammation were selected as controls. The results showed that the serum miRNA expression profiles in 41 HZ patients were different from those of control subjects. Specifically, 18 miRNAs were up-regulated and 126 were down-regulated more than two-fold in HZ patients compared with controls. The subsequent confirmation of these results by qRT-PCR, as well as receiver operating characteristic (ROC curve analysis, revealed that six kinds of miRNAs, including miR-190b, miR-571, miR-1276, miR-1303, miR-943, and miR-661, exhibited statistically significant enhanced expression levels (more than four-fold in HZ patients, compared with those of healthy controls and herpes simplex virus (HSV patients. Subsequently, it is proposed that these circulating miRNAs are capable of regulating numerous pathways and some may even participate in the inflammatory response or nervous system activity. This study has initially demonstrated that the serum miRNA expression profiles in HZ patients were different from those of uninfected individuals. Additionally, these findings also suggest that six of the altered miRNA could be potentially used as biomarkers to test for latent HZ infection.

  20. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qiang [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhao, Zhi-Ning [Clinical Laboratory, 451 Hospital of Chinese PLA, Xi' an 710054 (China); Cheng, Jing-Tao [Department of Special Dentistry, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhang, Bin [Department of Orthodontics, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Xu, Jie [Department of Periodontology, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Huang, Fei; Zhao, Rui-Ni [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Chen, Yong-Jin, E-mail: cyj1229@fmmu.edu.cn [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  1. Changes in microRNAs expression are involved in age-related atrial structural remodeling and atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    XU Guo-jun; GAN Tian-yi; TANG Bao-peng; CHEN Zu-heng; Mahemuti Ailiman; ZHOU Xian-hui; JIANG Tao

    2013-01-01

    Background Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of extracellular matrix proteins.However,their role in age-related cardiac remodeling and atrial fibrillation (AF) was not well understood.The present study was designed to decipher molecular mechanisms underlying age-related atrial structural remodeling and AF.Methods Three groups of dogs were studied:adult and aged dogs in sinus rhythm and with persistent AF induced by rapid atrial pacing.The expressions of microRNAs were measured by quantitative real-time polymerase chain reaction.Pathohistological and ultrastructural changes were tested by light and electron microscopy.Apoptosis index of myocytes was detected by TUNEL.Results Samples of atrial tissue showed the abnormal pathohistological and ultrastructural changes,the accelerated fibrosis,and apoptosis with aging and/or in AF dogs.Compared to the adult group,the expressions of microRNAs-21 and -29 were significantly increased,whereas the expressions of microRNAs-1 and-133 showed obvious downregulation tendency in the aged group.Compared to the aged group,the expressions of microRNAs-1,-21,and-29 was significantly increased in the old group in AF; contrastingly,the expressions of microRNA-133 showed obvious downregulation tendency.Conclusion These multiple aberrantly expressed microRNAs may be responsible for modulating the transition from adaptation to pathological atrial remodeling with aging and/or in AF.

  2. MicroRNA-223 Expression Is Upregulated in Insulin Resistant Human Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Tung-Yueh Chuang

    2015-01-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNAs involved in posttranscriptional regulation of gene expression and influence many cellular functions including glucose and lipid metabolism. We previously reported that adipose tissue (AT from women with polycystic ovary syndrome (PCOS or controls with insulin resistance (IR revealed a differentially expressed microRNA (miRNA profile, including upregulated miR-93 in PCOS patients and in non-PCOS women with IR. Overexpressed miR-93 directly inhibited glucose transporter isoform 4 (GLUT4 expression, thereby influencing glucose metabolism. We have now studied the role of miR-223, which is also abnormally expressed in the AT of IR subjects. Our data indicates that miR-223 is significantly overexpressed in the AT of IR women, regardless of whether they had PCOS or not. miR-223 expression in AT was positively correlated with HOMA-IR. Unlike what is reported in cardiomyocytes, overexpression of miR-223 in human differentiated adipocytes was associated with a reduction in GLUT4 protein content and insulin-stimulated glucose uptake. In addition, our data suggests miR-223 regulates GLUT4 expression by direct binding to its 3′ untranslated region (3′UTR. In conclusion, in AT miR-223 is an IR-related miRNA that may serve as a potential therapeutic target for the treatment of IR-related disorders.

  3. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13.

    Science.gov (United States)

    Sankaran, Vijay G; Menne, Tobias F; Šćepanović, Danilo; Vergilio, Jo-Anne; Ji, Peng; Kim, Jinkuk; Thiru, Prathapan; Orkin, Stuart H; Lander, Eric S; Lodish, Harvey F

    2011-01-25

    Many human aneuploidy syndromes have unique phenotypic consequences, but in most instances it is unclear whether these phenotypes are attributable to alterations in the dosage of specific genes. In human trisomy 13, there is delayed switching and persistence of fetal hemoglobin (HbF) and elevation of embryonic hemoglobin in newborns. Using partial trisomy cases, we mapped this trait to chromosomal band 13q14; by examining the genes in this region, two microRNAs, miR-15a and -16-1, appear as top candidates for the elevated HbF levels. Indeed, increased expression of these microRNAs in primary human erythroid progenitor cells results in elevated fetal and embryonic hemoglobin gene expression. Moreover, we show that a direct target of these microRNAs, MYB, plays an important role in silencing the fetal and embryonic hemoglobin genes. Thus we demonstrate how the developmental regulation of a clinically important human trait can be better understood through the genetic and functional study of aneuploidy syndromes and suggest that miR-15a, -16-1, and MYB may be important therapeutic targets to increase HbF levels in patients with sickle cell disease and β-thalassemia.

  4. Microarray profiling of microRNAs expressed in testis tissues of developing primates

    DEFF Research Database (Denmark)

    Yan, Naihong; Lu, Yilu; Sun, Huaqin

    2009-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that have been identified as potent regulators of gene expression. Recent studies indicate that miRNAs are involved in mammalian spermatogenesis but the mechanism of regulation is largely unknown.......MicroRNAs (miRNAs) are small non-coding RNA molecules that have been identified as potent regulators of gene expression. Recent studies indicate that miRNAs are involved in mammalian spermatogenesis but the mechanism of regulation is largely unknown....

  5. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available The glassy-winged sharpshooter (GWSS Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs.

  6. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training.

    Science.gov (United States)

    Ogasawara, Riki; Akimoto, Takayuki; Umeno, Tokushi; Sawada, Shuji; Hamaoka, Takafumi; Fujita, Satoshi

    2016-04-01

    Large variability exists in muscle adaptive response to resistance exercise (RE) training between individuals. Recent studies have revealed a significant role for microRNAs (miRNAs) in skeletal muscle plasticity. In this study, we investigated how RE affects miRNA expression and whether the variability of muscle hypertrophy to RE training may be attributed to differential miRNA regulation in the skeletal muscle. To screen high and low responders to RE, we had 18 young men perform arm curl exercise training. After screening, all the men performed 12 wk of lower body RE training, but only the high or low responders participated in the acute RE test before training. Muscle biopsies were obtained from the vastus lateralis muscle at baseline, 3 h after acute RE, and after the training period. Total RNA was extracted from the skeletal muscle, and miRNA expression (800 miRNAs) was analyzed. RE training increased the cross-sectional area of the biceps brachii (-1.7-26.1%), quadriceps (2.2-16.8%), and hamstrings (1.6-18.4%). Eighty-five and 102 miRNAs were differentially expressed after acute and chronic RE, respectively (P muscle between high and low responders, indicating that the expression patterns of several miRNAs are altered by acute or chronic RE, and that miRNAs are involved in skeletal muscle adaptation to RE training.

  7. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    Science.gov (United States)

    Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui

    2015-02-01

    Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.

  8. Proanthocyanidins modulate microRNA expression in human HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Anna Arola-Arnal

    Full Text Available Mi(croRNAs are small non-coding RNAs of 18-25 nucleotides in length that modulate gene expression at the post-transcriptional level. These RNAs have been shown to be involved in a several biological processes, human diseases and metabolic disorders. Proanthocyanidins, which are the most abundant polyphenol class in the human diet, have positive health effects on a variety of metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. The present study aimed to evaluate whether proanthocyanidin-rich natural extracts modulate miRNA expression. Using microarray analysis and Q-PCR, we investigated miRNA expression in HepG2 cells treated with proanthocyanidins. Our results showed that when HepG2 cells were treated with grape seed proanthocyanidin extract (GSPE, cocoa proanthocyanidin extract (CPE or pure epigallocatechin gallate isolated from green tea (EGCG, fifteen, six and five differentially expressed miRNAs, respectively, were identified out of 904 mRNAs. Specifically, miR-30b* was downregulated by the three treatments, and treatment with GSPE or CPE upregulated miR-1224-3p, miR-197 and miR-532-3p. Therefore, these results provide evidence of the capacity of dietary proanthocyanidins to influence microRNA expression, suggesting a new mechanism of action of proanthocyanidins.

  9. MicroRNAs: Emerging Novel Clinical Biomarkers for Hepatocellular Carcinomas

    Directory of Open Access Journals (Sweden)

    Sumadi Lukman Anwar

    2015-08-01

    Full Text Available The discovery of small non-coding RNAs known as microRNAs has refined our view of the complexity of gene expression regulation. In hepatocellular carcinoma (HCC, the fifth most frequent cancer and the third leading cause of cancer death worldwide, dysregulation of microRNAs has been implicated in all aspects of hepatocarcinogenesis. In addition, alterations of microRNA expression have also been reported in non-cancerous liver diseases including chronic hepatitis and liver cirrhosis. MicroRNAs have been proposed as clinically useful diagnostic biomarkers to differentiate HCC from different liver pathologies and healthy controls. Unique patterns of microRNA expression have also been implicated as biomarkers for prognosis as well as to predict and monitor therapeutic responses in HCC. Since dysregulation has been detected in various specimens including primary liver cancer tissues, serum, plasma, and urine, microRNAs represent novel non-invasive markers for HCC screening and predicting therapeutic responses. However, despite a significant number of studies, a consensus on which microRNA panels, sample types, and methodologies for microRNA expression analysis have to be used has not yet been established. This review focuses on potential values, benefits, and limitations of microRNAs as new clinical markers for diagnosis, prognosis, prediction, and therapeutic monitoring in HCC.

  10. Can the microRNA expression profile help to identify novel targets for zoledronic acid in breast cancer?

    Science.gov (United States)

    Insalaco, Lavinia; Incorvaia, Lorena; Barraco, Nadia; Castiglia, Marta; Rizzo, Sergio; Santini, Daniele; Giordano, Antonio; Castorina, Sergio; Russo, Antonio

    2016-01-01

    Zoledronic acid (ZOL), belonging to third generation bisphosphonate family, is a potent inhibitor of osteoclast-mediated bone resorption, widely used to effectively prevent osteolysis in breast cancer patients who develop bone metastases. Low doses of ZOL have been shown to exhibit a direct anticancer role, by inhibiting cell adhesion, invasion, cytoskeleton remodelling and proliferation in MCF-7 breast cancer cells. In order to identify the molecular mechanisms and signaling pathways underlying the anticancer activity exerted by ZOL, we analyzed for the first time the microRNA expression profile in breast cancer cells. A large-scale microarray analysis of 377 miRNAs was performed on MCF7 cells treated with 10 μM ZOL for 24 h compared to untreated cells. Furthermore, the expression of specific ZOL-induced miRNAs was analyzed in MCF-7 and SkBr3 cells through Real-time PCR. Low-dose treatment with ZOL significantly altered expression of 54 miRNAs. Nine upregulated and twelve downregulated miRNAs have been identified after 24 h of treatment. Also, ZOL induced expression of 11 specific miRNAs and silenced expression of 22 miRNAs. MiRNA data analysis revealed the involvement of differentially expressed miRNAs in PI3K/Akt, MAPK, Wnt, TGF-β, Jak-STAT and mTOR signaling pathways, and regulation of actin cytoskeleton. Our results have been shown to be perfectly coherent with the recent findings reported in literature concerning changes in expression of some miRNAs involved in bone metastasis formation, progression, therapy resistance in breast cancer. In conclusion, this data supports the hypothesis that ZOL-induced modification of the miRNA expression profile contributes to the anticancer efficacy of this agent. PMID:27081088

  11. MicroRNA Expression Profiling to Identify and Validate Reference Genes for the Relative Quantification of microRNA in Rectal Cancer

    OpenAIRE

    Anne Haahr Mellergaard Eriksen; Rikke Fredslund Andersen; Niels Pallisgaard; Flemming Brandt Sørensen; Anders Jakobsen; Torben Frøstrup Hansen

    2016-01-01

    Introduction MicroRNAs (miRNAs) play important roles in regulating biological processes at the post-transcriptional level. Deregulation of miRNAs has been observed in cancer, and miRNAs are being investigated as potential biomarkers regarding diagnosis, prognosis and prediction in cancer management. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used, when measuring miRNA expression. Appropriate normalisation of RT-qPCR data is important to ensure reliable results. The...

  12. Aberrant brain microRNA target and miRISC gene expression in the anx/anx anorexia mouse model

    DEFF Research Database (Denmark)

    Mercader, Josep M; González, Juan R; Lozano, Juan José

    2012-01-01

    The anorexia mouse model, anx/anx, carries a spontaneous mutation not yet identified and homozygous mutants are characterized by anorexia-cachexia, hyperactivity, and ataxia. In order to test if the microRNA function was altered in these mice, hypothalamus and cortex transcriptomes were evaluated...

  13. Prospective Evaluation of Whole Genome MicroRNA Expression Profiling in Childhood Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Muhterem Duyu

    2014-01-01

    Full Text Available Dysregulation of microRNA (miRNA expression contributes to the pathogenesis of several clinical conditions. The aim of this study is to evaluate the associations between miRNAs and childhood acute lymphoblastic leukemia (ALL to discover their role in the course of the disease. Forty-three children with ALL and 14 age-matched healthy controls were included in the study. MicroRNA microarray expression profiling was used for peripheral blood and bone marrow samples. Aberrant miRNA expressions associated with the diagnosis and outcome were prospectively evaluated. Confirmation analysis was performed by real time RT-PCR. miR-128, miR-146a, miR-155, miR-181a, and miR-195 were significantly dysregulated in ALL patients at day 0. Following a six-month treatment period, the change in miRNA levels was determined by real time RT-PCR and expression of miR-146a, miR-155, miR-181a, and miR-195 significantly decreased. To conclude, these miRNAs not only may be used as biomarkers in diagnosis of ALL and monitoring the disease but also provide new insights into the potential roles of them in leukemogenesis.

  14. Role of microRNAs on HLA-G expression in human tumors.

    Science.gov (United States)

    Seliger, Barbara

    2016-09-01

    The non-classical human leukocyte antigen G (HLA-G) known to protect the embryo from immune cell destruction leading to fetal maternal tolerance is often overexpressed in human tumors of distinct origin thereby leading to an escape from T and NK cell-mediated immune response. The molecular mechanisms controlling HLA-G expression are complex and involve deregulation at the transcriptional, epigenetic and posttranscriptional level. Using bioinformatics and high through put analyses a number of microRNAs (miRs) have been identified, which were able to bind to the 3' UTR of HLA-G with distinct efficacy. This caused by a downregulation of HLA-G surface expression, which was associated with an increased immune response thereby overcoming the HLA-G-mediated immune tolerance. Reduced expression of HLA-G-specific miRs was associated with tumor progression and metastases and appear to affect directly or indirectly tumor characteristics, such as cell proliferation, apoptosis and resistance to chemotherapy. Recently, an interaction between long non-coding RNAs, such as HOTAIR, and HLA-G-specific miRs has also been demonstrated. This review summarizes the control of HLA-G expression and function by microRNAs as well as its clinical significance.

  15. Comprehensive Analysis of MicroRNA and mRNA Expression in Normal and Tumorous Human Esophageal Squamous Cell Lines Using Microarray Datasets

    Directory of Open Access Journals (Sweden)

    Ichiro Akagi

    2014-01-01

    Full Text Available Despite the undisputed importance of altered microRNA (miRNA expression in various cancers, there is limited information on the clinicopathologic significance of cancer-related miRNAs in esophageal squamous cell carcinoma (ESCC. Previously, it was reported that the expression of several miRNAs was dysregulated in ESCC. However, the target genes of these miRNAs have not been identified. Furthermore, additional miRNAs in humans have been discovered recently, indicating that revised miRNA and gene expression profiling for ESCC are necessary. Here, we provide datasets from microarray analyses to identify miRNA and mRNA expression comprehensively in Het-1A, a normal human esophageal squamous cell line, and three human ESCC cell lines.

  16. Optimal consistency in microRNA expression analysis using reference-gene-based normalization.

    Science.gov (United States)

    Wang, Xi; Gardiner, Erin J; Cairns, Murray J

    2015-05-01

    Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.

  17. Comparison of microRNA expression profiles in K562-cells-derived microvesicles and parental cells, and analysis of their roles in leukemia.

    Science.gov (United States)

    Chen, Xiaomei; Xiong, Wei; Li, Huiyu

    2016-12-01

    Microvesicles (MVs) are 30-1,000-nm extracellular vesicles that are released from a multitude of cell types and perform diverse cellular functions, including intercellular communication, antigen presentation, and transfer of proteins, messenger RNA and microRNA (also known as miR). MicroRNAs have been demonstrated to be aberrantly expressed in leukemia, and the overall microRNA expression profile may differentiate normal blood cells vs. leukemia cells. MVs containing microRNAs may enable intercellular cross-talk in vivo. This prompted us to investigate specific variations of microRNA expression patterns in MVs derived from leukemia cells. The present study examined the microRNA expression profile of MVs from chronic myeloid leukemia K562 cells and that of MVs from normal human volunteers' peripheral blood cells. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were performed for further evaluation. The present study analyzed microRNAs of MVs derived from leukemia and normal cells, and characterized specific microRNAs expression. The results revealed that MVs derived from K562 cells expressed 181 microRNAs of the 888 microRNAs assessed. Further analysis revealed that 16 microRNAs were downregulated, while 7 were upregulated in these MVs. In addition, significant differences in microRNA expression profiles between MVs derived from K562 cells and K562 cells were identified. The present results revealed that 77 and 122 microRNAs were only expressed in MVs derived from K562 cells and in K562 cells, respectively. There were 104 microRNAs co-expressed in MVs derived from K562 cells and in K562 cells. Target gene-related pathway analyses demonstrated that the majority of the dysregulated microRNAs were involved in pathways associated with leukemia, particularly the mitogen-activated protein kinase (MAPK) and the p53 signaling pathways. By further conducting

  18. Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor.

    Science.gov (United States)

    Zhou, Yunlei; Wang, Mo; Xu, Zhenning; Ni, Cailing; Yin, Huanshun; Ai, Shiyun

    2014-04-15

    MicroRNAs (miRNAs) play very important roles in plant growth and development as well as phytohormones. More importantly, microRNAs were recently found to be a new growth regulator involved in plant hormone signaling. Therefore, for investigating the expression change of microRNAs in plants exposed to phytohormones and understanding the effect of phytohormones on microRNAs expression, we developed a simple, sensitive, and label-free method for microRNAs biosensing based on mimic enzyme catalysis signal amplification, where carboxylic graphene-hemin hybrid nanosheets was synthesized and used to catalyze the oxidation reaction of hydroquinone in the presence of H2O2 due to the intrinsic peroxidase-like activity of hemin on the carboxylic graphene surface. The electrochemical reduction current of the oxidative product of benzoquinone was depended on the hybridization amount of microRNAs and used to monitor the microRNAs hybridization event. Under optimal detection conditions, the current response was proportional to the logarithm concentration of microRNA-159a from 0.5 pM to 1.0 nM with the detection limit of 0.17 pM (S/N=3). The fabricated biosensor showed highly reproducible (Relative standard deviation (RSD) was 3.53% for 10 biosensors fabricated independently) and detection selectivity (Even discriminating single-base mismatched microRNA sequence). We also found that abscisic acid, a kind of phytohormone, had greatly influence on microRNA-159a expression in Arabidopsis thaliana seedlings. With increasing abscisic acid concentration and prolonging incubation time, both the expression level of microRNA-159a increased. This graphene-hemin-based approach provides a novel avenue to detect microRNA with high sensitivity and selectivity while avoiding laborious label, disadvantages of bio-enzymes and complex operations for microRNAs separation and enrichment, which might be attractive for genetic analysis and clinic biomedical application.

  19. Effect of culture conditions on microRNA expression in primary adult control and COPD lung fibroblasts in vitro.

    Science.gov (United States)

    Ikari, Jun; Smith, Lynette M; Nelson, Amy J; Iwasawa, Shunichiro; Gunji, Yoko; Farid, Maha; Wang, Xingqi; Basma, Hesham; Feghali-Bostwick, Carol; Liu, Xiangde; DeMeo, Dawn L; Rennard, Stephen I

    2015-04-01

    In vitro cell cultures, including lung fibroblasts, have been used to identify microRNAs (miRNAs) associated with chronic obstructive pulmonary disease (COPD) pathogenesis. However, culture conditions may affect miRNA expression. We examined whether miRNA expression in primary adult lung fibroblasts varies with cell density or passage in vitro and whether culture conditions confound the identification of altered miRNA expression in COPD lung fibroblasts. Primary adult control and COPD lung fibroblasts were cultured until passage 3 or 8, after which cells were further cultured for 3 or 7 d (low vs. high density). Then, cells at low density were cultured with serum-free media, and those at high density were cultured with serum-free media in the absence or presence of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) for 24 h. RNA was extracted to perform miRNA microarray from which 1.25-fold differential expression and 10% false discovery rate were applied to identify "invariant" and "variant" miRNA for the various culture conditions. Of the 2226 miRNAs evaluated, 39.0% for cell density, 40.7% for cell passage, and 29.4% for both conditions were identified as "invariant" miRNAs. Furthermore, 38.1% of the evaluated miRNAs were "invariant" for cell passage with IL-1β and TNF-α. Differentially expressed miRNAs between control and COPD lung fibroblasts were identified with and without IL-1β and TNF-α, and of these, 32 out of the 34 top-ranked miRNAs exceeded the differences due to culture conditions. Thus, culture conditions may affect miRNA expression of adult human lung fibroblasts. Nevertheless, in vitro cultures can be used to assess differential miRNA expression in COPD lung fibroblasts.

  20. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression.

    Science.gov (United States)

    Liu, Feng; Liu, Yang; Shen, Jingling; Zhang, Guoqiang; Han, Jiguang

    2016-08-02

    The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24- cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of Frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to Frizzled 5 and inhibited proliferation and migration of breast cancer cells.

  1. Expression and Localization of microRNAs in Perinatal Rat Pancreas

    DEFF Research Database (Denmark)

    Larsen, Louise; Rosenstierne, Maiken Worsøe; Gaarn, Louise Winkel

    2011-01-01

    OBJECTIVE: To investigate the expression of pancreatic microRNAs (miRNAs) during the period of perinatal beta-cell expansion and maturation in rats, determine the localization of these miRNAs and perform a pathway analysis with predicted target mRNAs expressed in perinatal pancreas. RESEARCH DESIGN...... AND METHODS: RNA was extracted from whole pancreas at embryonic day 20 (E20), on the day of birth (P0) and two days after birth (P2) and hybridized to miRNA microarrays. Differentially expressed miRNAs were verified by northern blotting and their pancreatic localization determined by in situ hybridization....... Pathway analysis was done using regulated sets of mRNAs predicted as targets of the miRNAs. Possible target genes were tested using reporter-gene analysis in INS-1E cells. RESULTS: Nine miRNAs were differentially expressed perinatally, seven were confirmed to be regulated at the level of the mature miRNA...

  2. Expression and localization of microRNAs in perinatal rat pancreas

    DEFF Research Database (Denmark)

    Larsen, Louise; Rosenstierne, Maiken Worsøe; Gaarn, Louise;

    2011-01-01

    ABSTRACT Objective: To investigate the expression of pancreatic microRNAs (miRNAs) during the period of perinatal beta-cell expansion and maturation in rats, determine the localization of these miRNAs and perform a pathway analysis with predicted target mRNAs expressed in perinatal pancreas....... Research design and methods: RNA was extracted from whole pancreas at embryonic day 20 (E20), on the day of birth (P0) and two days after birth (P2) and hybridized to miRNA microarrays. Differentially expressed miRNAs were verified by northern blotting and their pancreatic localization determined...... by in situ hybridization. Pathway analysis was done using regulated sets of mRNAs predicted as targets of the miRNAs. Possible target genes were tested using reporter-gene analysis in INS-1E cells. Results: Nine miRNAs were differentially expressed perinatally, seven were confirmed to be regulated...

  3. Expression levels of microRNAs are not associated with their regulatory activities

    Directory of Open Access Journals (Sweden)

    Wu Jiarui

    2011-09-01

    Full Text Available Abstract MicroRNAs (miRNAs regulate their targets by triggering mRNA degradation or translational repression. The negative relationship between miRNAs and their targets suggests that the regulatory effect of a miRNA could be determined from the expression levels of its targets. Here, we investigated the relationship between miRNA activities determined by computational programs and miRNA expression levels by using data in which both mRNA and miRNA expression from the same samples were measured. We found that different from the intuitive expectation one might have, miRNA activity shows very weak correlation with miRNA expression, which indicates complex regulating mechanisms between miRNAs and their target genes. Reviewers This manuscript was reviewed by an anonymous reviewer and Dr Yuriy Gusev.

  4. microRNA Expression Profiling of Side Population Cells in Human Lung Cancer and Preliminary Analysis

    OpenAIRE

    XU, XIAOTAO; Xiao LU; Sun, Jing; Shu, Yongqian

    2010-01-01

    Background and objective Recent studies indicate that the side population (SP) which is an enriched source of cancer stem cells (CSCs) is the root cause of tumor growth and development. SP appears to be highly resistant to chemo- and radio-therapy which becomes an important factor in tumor recurrence and metastasis. The aim of this study is to determine the difference of microRNA expression profiles between SP cells and non-SP cells so as to lay necessary basis for research on the function of...

  5. Discordant Expression of Circulating microRNA from Cellular and Extracellular Sources.

    Directory of Open Access Journals (Sweden)

    Ravi Shah

    Full Text Available MicroRNA (miRNA expression has rapidly grown into one of the largest fields for disease characterization and development of clinical biomarkers. Consensus is lacking in regards to the optimal sample source or if different circulating sources are concordant. Here, using miRNA measurements from contemporaneously obtained whole blood- and plasma-derived RNA from 2391 individuals, we demonstrate that plasma and blood miRNA levels are divergent and may reflect different biological processes and disease associations.

  6. Retracted: Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids.

    Science.gov (United States)

    2015-10-01

    The above article, published online on 20 December 2007 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Professor L Popescu and John Wiley and Sons Ltd. The retraction has been requested by the University of Florida, Office of Research, in response to their investigation which concluded fabrication of data in Figures 2, 3 and 4. Reference Pan Q, Luo X, Chegini N. Retracted: differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 12: 227-240. Doi: 10.1111/j.1582-4934.2007.00207.x.

  7. MicroRNA-33 suppresses CCL2 expression in chondrocytes.

    Science.gov (United States)

    Wei, Meng; Xie, Qingyun; Zhu, Jun; Wang, Tao; Zhang, Fan; Cheng, Yue; Guo, Dongyang; Wang, Ying; Mo, Liweng; Wang, Shuai

    2016-06-01

    CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3'UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3'UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA.

  8. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions

    Science.gov (United States)

    Creighton, Chad J.; Nagaraja, Ankur K.; Hanash, Samir M.; Matzuk, Martin M.; Gunaratne, Preethi H.

    2008-01-01

    MicroRNAs are short (∼22 nucleotides) noncoding RNAs that regulate the stability and translation of mRNA targets. A number of computational algorithms have been developed to help predict which microRNAs are likely to regulate which genes. Gene expression profiling of biological systems where microRNAs might be active can yield hundreds of differentially expressed genes. The commonly used public microRNA target prediction databases facilitate gene-by-gene searches. However, integration of microRNA–mRNA target predictions with gene expression data on a large scale using these databases is currently cumbersome and time consuming for many researchers. We have developed a desktop software application which, for a given target prediction database, retrieves all microRNA:mRNA functional pairs represented by an experimentally derived set of genes. Furthermore, for each microRNA, the software computes an enrichment statistic for overrepresentation of predicted targets within the gene set, which could help to implicate roles for specific microRNAs and microRNA-regulated genes in the system under study. Currently, the software supports searching of results from PicTar, TargetScan, and miRanda algorithms. In addition, the software can accept any user-defined set of gene-to-class associations for searching, which can include the results of other target prediction algorithms, as well as gene annotation or gene-to-pathway associations. A search (using our software) of genes transcriptionally regulated in vitro by estrogen in breast cancer uncovered numerous targeting associations for specific microRNAs—above what could be observed in randomly generated gene lists—suggesting a role for microRNAs in mediating the estrogen response. The software and Excel VBA source code are freely available at http://sigterms.sourceforge.net. PMID:18812437

  9. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions.

    Science.gov (United States)

    Creighton, Chad J; Nagaraja, Ankur K; Hanash, Samir M; Matzuk, Martin M; Gunaratne, Preethi H

    2008-11-01

    MicroRNAs are short (approximately 22 nucleotides) noncoding RNAs that regulate the stability and translation of mRNA targets. A number of computational algorithms have been developed to help predict which microRNAs are likely to regulate which genes. Gene expression profiling of biological systems where microRNAs might be active can yield hundreds of differentially expressed genes. The commonly used public microRNA target prediction databases facilitate gene-by-gene searches. However, integration of microRNA-mRNA target predictions with gene expression data on a large scale using these databases is currently cumbersome and time consuming for many researchers. We have developed a desktop software application which, for a given target prediction database, retrieves all microRNA:mRNA functional pairs represented by an experimentally derived set of genes. Furthermore, for each microRNA, the software computes an enrichment statistic for overrepresentation of predicted targets within the gene set, which could help to implicate roles for specific microRNAs and microRNA-regulated genes in the system under study. Currently, the software supports searching of results from PicTar, TargetScan, and miRanda algorithms. In addition, the software can accept any user-defined set of gene-to-class associations for searching, which can include the results of other target prediction algorithms, as well as gene annotation or gene-to-pathway associations. A search (using our software) of genes transcriptionally regulated in vitro by estrogen in breast cancer uncovered numerous targeting associations for specific microRNAs-above what could be observed in randomly generated gene lists-suggesting a role for microRNAs in mediating the estrogen response. The software and Excel VBA source code are freely available at http://sigterms.sourceforge.net.

  10. Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis.

    Directory of Open Access Journals (Sweden)

    Raj Vuppalanchi

    Full Text Available BACKGROUND AND AIM: Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA are associated with decreased hepatic CYP3A activity in cirrhosis. METHODS: Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28 and normal (n=12 liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. RESULTS: Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min(-1*mg protein(-1 (mean ± SEM, P=0.02. Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500 had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05. Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08 and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017. The relative expression (2(-ΔΔCt mean ± SEM of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07 but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08. CONCLUSION: The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity.

  11. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    2013-03-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  12. Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Sellier, Chantal; Freyermuth, Fernande; Tabet, Ricardos; Tran, Tuan; He, Fang; Ruffenach, Frank; Alunni, Violaine; Moine, Herve; Thibault, Christelle; Page, Adeline; Tassone, Flora; Willemsen, Rob; Disney, Matthew D; Hagerman, Paul J; Todd, Peter K; Charlet-Berguerand, Nicolas

    2013-03-28

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55-200 CGG repeats in the 5' UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs) is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  13. Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues.

    Directory of Open Access Journals (Sweden)

    Christopher P Kolbert

    Full Text Available MicroRNAs play a role in regulating diverse biological processes and have considerable utility as molecular markers for diagnosis and monitoring of human disease. Several technologies are available commercially for measuring microRNA expression. However, cross-platform comparisons do not necessarily correlate well, making it difficult to determine which platform most closely represents the true microRNA expression level in a tissue. To address this issue, we have analyzed RNA derived from cell lines, as well as fresh frozen and formalin-fixed paraffin embedded tissues, using Affymetrix, Agilent, and Illumina microRNA arrays, NanoString counting, and Illumina Next Generation Sequencing. We compared the performance within- and between the different platforms, and then verified these results with those of quantitative PCR data. Our results demonstrate that the within-platform reproducibility for each method is consistently high and although the gene expression profiles from each platform show unique traits, comparison of genes that were commonly detectable showed that detection of microRNA transcripts was similar across multiple platforms.

  14. Inhibition of hepatitis B virus gene expression and replication by artificial microRNA

    Institute of Scientific and Technical Information of China (English)

    Yu-Feng Gao; Li Yu; Wei Wei; Jia-Bin Li; Qing-Li Luo; Ji-Long Shen

    2008-01-01

    AIM: To investigate the inhibitory effects of hepatitis B virus (HBV) replication and expression by transfecting artificial microRNA (amiRNA) into HepG2.2.15 cells.METHODS: Three amiRNA-HBV plasmids were constructed and transfected into HepG2.2.15 cells.HBV antigen secretion was detected in the cells with transient and stable transfection by time-resolved fluoroimmunoassays (TRFIA). HBV DNA replication was examined by fluorescence quantitative PCR, and the level of HBV S mRNA was measured by semi-quantitative RT-PCR.RESULTS: The efficiency of transient transfection of the vectors into 2.2.15 cells was 55%-60%. All the vectors had significant inhibition effects on HBsAg and HBeAg at 72 h and 96 h after transfection (P< 0.01 for all). The secretion of HBsAg and HBeAginto the supernatant was in hibited by 49.8% + 4.7%and 39.9% ± 6.7%, respectively, at 72 h in amiRNA-HBV-S608 plasmid transfection group. The copy of HBVDNA within culture supernatant was also significantlydecreased at 72 h and 96 h after transfection (P <0.01 for all). In the cells with stable transfection, the secretion of HBsAg and HBeAg into the supernatant was significantly inhibited in all three transfection groups (P < 0.01 for all, vs negative control). The copies of HBV DNA were inhibited by 33.4% ± 3.0%,60.8% ± 2.3% and 70.1% ± 3.3%, respectively.CONCLUSION: In HepG2.2.15 cells, HBV replication and expression could be inhibited by artificial microRNA targeting the HBV S coding region. Vector-based artificial microRNA could be a promising therapeutic approach for chronic HBV infection.

  15. MicroRNAs Expression in the Ileal Pouch of Patients with Ulcerative Colitis Is Robustly Up-Regulated and Correlates with Disease Phenotypes

    Science.gov (United States)

    Sherman Horev, Hadas; Elad, Hofit; Baram, Liran; Issakov, Ofer; Tulchinsky, Hagit; Pasmanik-Chor, Metsada; Shomron, Noam; Dotan, Iris

    2016-01-01

    Background Gene expression alterations are associated with disease behavior in inflammatory bowel disease (IBD). microRNAs (miRNAs) are dominant in the regulation of gene expression, and may affect IBD phenotype. Our aim was to assess mucosal miRNA expression in IBD and the correlation with intestinal inflammation. Methods We performed a large-scale analysis of ileal mucosal miRNA. Biopsies were retrieved from patients with ileal Crohn’s disease (CD), unoperated ulcerative colitis (UC) patients, UC patients after pouch surgery, and normal controls (NC). Pouch UC patients were classified as having a normal pouch (NP), chronic pouchitis (CP), and Crohn’s-like disease of the pouch (CLDP). miRNA expression was analyzed by parallel massive (next-generation) sequencing (NGS). Bioinformatics tools were applied for clustering and the detection of potential targets. Results Sixty-one subjects were recruited. The ileum of unoperated UC patients was comparable with NC. There were significant miRNA expression alterations (fold change ≥2, corrected P ≤.05) in NP (n = 6), CP (n = 40) and CLDP (n = 139), but only two expression alterations were noted in CD. More than 90% of the altered miRNAs were up-regulated, and many were predicted to be associated with significantly decreased transcripts. miRNAs alterations were generally clustered with disease phenotypes. Conclusions Ileal inflammation causes increased miRNA expression. miRNA alterations correlate with IBD phenotype, apparently by controlling the down-regulation of specific mRNAs. PMID:27536783

  16. A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment.

    Science.gov (United States)

    Song, Hong-tao; Sun, Xin-yang; Zhang, Liang; Zhao, Lin; Guo, Zhong-min; Fan, Hui-min; Zhong, Ai-fang; Niu, Wei; Dai, Yun-hua; Zhang, Li-yi; Shi, Zheng; Liu, Xiao-ping; Lu, Jim

    2014-07-01

    Despite the growing evidences on the relation of altered expression of miRNAs and schizophrenia, most schizophrenia subjects have an extensive antipsychotic treatment history and the pharmacological effects on miRNA expression are largely unknown. This study aimed to investigate the change of plasma microRNA-181b level and improvement of symptomatology before and after six-week antipsychotic treatment in schizophrenia patients, and explore their association. A total of 20 schizophrenia patients absent of antipsychotics and 20 age-and gender-matched normal controls were enrolled, and tested for 9 schizophrenia-associated microRNA (miR-30e, miR-34a, miR-181b, miR-195, miR-346, miR-432, miR-7, miR-132 and miR-212) expression levels in plasma using quantitative RT-PCR and for symptomatology improvement using Positive And Negative Syndrome Scale (PANSS) before and after treatment (olanzapine, quetiapine, ziprasidone and risperidone) for the patients only. Compared with the normal control group, the expression levels of miRNA-181b, miRNA-30e, miRNA-34a and miRNA-7 of the patients group were significantly higher (p treatment in the patient group, the symptomatology scores were significantly lower (p treatment (p treatment, and thus can serve as a potential plasmamolecular marker for antipsychotic responses.

  17. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines

    Directory of Open Access Journals (Sweden)

    Meineke Viktor

    2011-05-01

    Full Text Available Abstract Background We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Methods Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP. Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738 known microRNA species of human origin. Results Altogether 72 of 738 (9.8% microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15 of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%. The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79% and NCCIT-R/NCCIT (64%, and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%. Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency, as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21 were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up

  18. Altered aquaporin expression in glaucoma eyes.

    Science.gov (United States)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten; Nielsen, Søren; Prause, Jan Ulrik; Hamann, Steffen; Heegaard, Steffen

    2014-09-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased intensity (p = 0.037). No difference in AQP1, AQP4 and AQP9 expression was found in the optic nerve fibres. This study is the first investigating AQPs in human glaucoma eyes. We found a reduced expression of AQP9 in the retinal ganglion cells of glaucoma eyes. Glaucoma also induced increased AQP7 expression in the Müller cell endfeet. In the ciliary body of glaucoma eyes, the expression of AQP7 and AQP9 was reduced. Therefore, the expression of AQPs seems to play a role in glaucoma.

  19. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    Science.gov (United States)

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease.

  20. MicroRNA Expression Profiles Related to Early Stage Murine Concanavalin A-Induced Hepatitis

    Directory of Open Access Journals (Sweden)

    Hong-Yu Jia

    2014-06-01

    Full Text Available Background: Fulminant hepatitis is a severe liver disease characterized by massive hepatocyte necrosis and clinical signs of liver failure. This study explores the expression profile of microRNAs, which are regulators of a number of pathophysiological processes, during the early stage of concanavalin A (Con A-induced hepatitis. Methods: Balb/c mice were given ConA injections to induce fulminant hepatitis. miRNA expression profiling in liver tissues was carried out by microarray analysis. The differentially expressed miRNAs were subjected to time sequence profile analysis, gene-miRNA regulatory network analysis, and gene ontology-miRNA regulatory network analysis. Results: Eleven miRNAs among multiClass were found to be significantly differentially expressed between liver tissue in early stage fulminant hepatitis and normal control liver tissue. Mmu-miR-133a was the most differentially expressed with the strongest regulatory ability, regulating 47 mRNAs. Mmu-miR-10a was the most highly expressed in the microRNA-GO-Network and also exerted a strong regulatory ability. The expression profiles of miR-133a and miR-10a were verified by RT-PCR. Conclusions: These results show that, in the early stage, ConA-induced fulminant hepatitis induces a distinct miRNA expression profile. This differential miRNA expression profile may provide pathogenic clues and potential diagnostic and prognostic markers in acute and severe liver disease.

  1. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  2. Effects of vitamin E on expressions of eight microRNAs in the liver of Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Tang, Xue-Lian; Xu, Min-Jun; Li, Zhi-Hua; Pan, Qing; Fu, Jing-Hua

    2013-06-01

    Currently, microRNAs (miRNAs) are known to regulate cellular processes such as apoptosis, differentiation, cell cycle, and immune functions, and their expression can be altered by distinct stress conditions, such as oxidative stress. In immune systems of fish, vitamin E (VE) has a defined role as an antioxidant. In order to understand the molecular mechanism of vitamin E defending from oxidative stress, three groups of juvenile Nile tilapia (Oreochromis niloticus) (initial weight 3.25 ± 0.02 g) were fed to satiation with 3 semi-purified diets containing VE (DL-α-tocopherol acetate) of 0, 50, and 2500 mg/kg supplementation, respectively, with the expressions of eight miRNAs (miR-21, miR-223, miR-146a, miR-125b, miR-181a, miR-16, miR-155 and miR-122) in the liver of tilapia subsequently detected after 8-week growth experiment. Results showed that VE-deficient (0 mg/kg supplementation) decreased the activity of superoxide dismutase (SOD), and decreased the expressions of miR-223, miR-146a, miR-16 and miR-122, while excessive supplementation of VE (2500 mg/kg) decreased SOD activity and increased the expressions of all the eight miRNAs. The targets of the eight miRNAs were further predicated with bioinformatic approach and the possible regulating mechanisms of VE via miRNAs were analyzed. The present study confirmed that the differences in dietary VE affected expression of hepatic miRNAs which may partly demonstrate the molecular mechanism of VE, and the new idea of introducing miRNAs into research will provide the basic data for researches of molecular nutrition.

  3. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    Directory of Open Access Journals (Sweden)

    Chia-Hui Wang

    Full Text Available Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  4. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress.

    Science.gov (United States)

    Jacometo, Carolina B; Osorio, Johan S; Socha, Michael; Corrêa, Marcio N; Piccioli-Cappelli, Fiorenzo; Trevisi, Erminio; Loor, Juan J

    2015-11-01

    Organic trace mineral (ORG) supplementation to dairy cows in substitution of sulfate (INO) sources has been associated with improvement in immune function during stressful states such as the peripartal period. However, the effect of supplemental ORG during pregnancy on the neonatal calf is unknown. Therefore, our aim was to investigate the effects of ORG supplementation during late pregnancy on the immune system and growth of the neonatal calf. Of specific interest was the evaluation of inflammation-related microRNA (miRNA) and target gene expression in blood neutrophils as indicators of possible nutritional programming. Forty multiparous cows were supplemented for 30d prepartum with 40 mg/kg of Zn, 20 mg/kg of Mn, 5 mg/kg of Cu, and 1mg/kg of Co from either organic (ORG) or sulfate (INO) sources (total diet contained supplemental 75 mg/kg of Zn, 65 mg/kg of Mn, 11 mg/kg of Cu, and 1 mg/kg of Co, and additional Zn, Mn, and Co provided by sulfates), and a subset of calves (n=8/treatment) was used for blood immunometabolic marker and polymorphonuclear leukocyte (PMNL) gene and miRNA expression analyses. Samples were collected at birth (before colostrum feeding), 1d (24 h after colostrum intake), and 7 and 21d of age. Data were analyzed as a factorial design with the PROC MIXED procedure of SAS. No differences were detected in BW, but maternal ORG tended to increase calf withers height. Calves from INO-fed cows had greater concentrations of blood glucose, GOT, paraoxonase, myeloperoxidase, and reactive oxygen metabolites. Antioxidant capacity also was greater in INO calves. The PMNL expression of toll-like receptor pathway genes indicated a pro-inflammatory state in INO calves, with greater expression of the inflammatory mediators MYD88, IRAK1, TRAF6, NFKB, and NFKBIA. The lower expression of miR-155 and miR-125b in ORG calves indicated the potential for maternal organic trace minerals in regulating the PMNL inflammatory response at least via alterations in mRNA and

  5. Prenatal exposure to TCDD triggers significant modulation of microRNA expression profile in the thymus that affects consequent gene expression.

    Directory of Open Access Journals (Sweden)

    Narendra P Singh

    Full Text Available BACKGROUND: MicroRNAs (miRs are a class of small RNAs that regulate gene expression. There are over 700 miRs encoded in the mouse genome and modulate most of the cellular pathways and functions by controlling gene expression. However, there is not much known about the pathophysiological role of miRs. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, an environmental contaminant is well known to induce severe toxicity (acute and chronic with long-term effects. Also, in utero exposure of fetus to TCDD has been shown to cause thymic atrophy and alterations in T cell differentiation. It is also relevant to understand "the fetal basis of adult disease" hypothesis, which proposes that prenatal exposure to certain forms of nutritional and environmental stress can cause increased susceptibility to clinical disorders later in life. In the current study, therefore, we investigated the effects of prenatal exposure to TCDD on miR profile in fetal thymocytes and searched for their possible role in causing thymic atrophy and alterations in the expression of apoptotic genes. METHODOLOGY/PRINCIPAL FINDINGS: miR arrays of fetal thymocytes post exposure to TCDD and vehicle were performed. Of the 608 mouse miRs screened, 78 miRs were altered more than 1.5 fold and 28 miRs were changed more than 2 fold in fetal thymocytes post-TCDD exposure when compared to vehicle controls. We validated the expression of several of the miRs using RT-PCR. Furthermore, several of the miRs that were downregulated contained highly complementary sequence to the 3'-UTR region of AhR, CYP1A1, Fas and FasL. Also, the Ingenuity Pathway Analysis software and database was used to analyze the 78 miRs that exhibited significant expression changes and revealed that as many as 15 pathways may be affected. CONCLUSIONS/SIGNIFICANCE: These studies revealed that TCDD-mediated alterations in miR expression may be involved in the regulation of its toxicity including cancer, hepatic injury, apoptosis, and

  6. MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy.

    Science.gov (United States)

    Yuasa, Katsutoshi; Hagiwara, Yasuko; Ando, Masanori; Nakamura, Akinori; Takeda, Shin'ichi; Hijikata, Takao

    2008-01-01

    miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.

  7. A conformation-induced fluorescence method for microRNA detection

    DEFF Research Database (Denmark)

    Aw, Sherry S; Tang, Melissa Xm; Teo, Yin Nah

    2016-01-01

    MicroRNAs play important roles in a large variety of biological systems and processes through their regulation of target mRNA expression, and show promise as clinical biomarkers. However, their small size presents challenges for tagging or direct detection. Innovation in techniques to sense...... and quantify microRNAs may aid research into novel aspects of microRNA biology and contribute to the development of diagnostics. By introducing an additional stem loop into the fluorescent RNA Spinach and altering its 3' and 5' ends, we have generated a new RNA, Pandan, that functions as the basis for a microRNA...... sensor. Pandan contains two sequence-variable stem loops that encode complementary sequence for a target microRNA of interest. In its sensor form, it requires the binding of a target microRNA in order to reconstitute the RNA scaffold for fluorophore binding and fluorescence. Binding of the target microRNA...

  8. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Caitlin E Burklew

    Full Text Available Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al(2O(3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum plants (an important cash crop as well as a model organism to 0%, 0.1%, 0.5%, and 1% Al(2O(3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al(2O(3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al(2O(3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al(2O(3 nanoparticles in the environment.

  9. Gender and obesity specific MicroRNA expression in adipose tissue from lean and obese pigs

    DEFF Research Database (Denmark)

    Mentzel, Caroline M. Junker; Anthon, Christian; Jacobsen, Mette Juul

    2015-01-01

    and treatment plans. MicroRNAs (miRNAs) are short non-coding RNAs regulating target mRNA by binding to their 3'UTR. They are involved in numerous biological processes and diseases, including obesity. In this study we use a mixed breed pig model designed for obesity studies to investigate differentially......Obesity is a complex condition that increases the risk of life threatening diseases such as cardiovascular disease and diabetes. Studying the gene regulation of obesity is important for understanding the molecular mechanisms behind the obesity derived diseases and may lead to better intervention...... expressed miRNAs in subcutaneous adipose tissue by RNA sequencing (RNAseq). Both male and female pigs are included to explore gender differences. The RNAseq study shows that the most highly expressed miRNAs are in accordance with comparable studies in pigs and humans. A total of six mi...

  10. Investigating the Expression of Oncogenic and Tumor Suppressive MicroRNA in DLBCL.

    Science.gov (United States)

    Handal, Brian; Enlow, Rossanna; Lara, Daniel; Bailey, Mark; Vega, Francisco; Hu, Peter; Lennon, Alan

    2013-01-01

    Diffuse Large B-cell Lymphoma (DLBCL) is the most common form of lymphoma, accounting for 40 percent of newly diagnosed cases each year. DLBCL is an aggressive abnormal growth of tissue characterized by the accumulation of abnormal B-lymphocytes in the lymphatics of affected individuals. The goal of this study was to analyze microRNA (miRNA) as an alternative method of diagnosis and treatment for patients affected with the observed cancer. MiRNAs are small, non-coding, endogenous RNA that control gene expression at the post-transcriptional level. Emerging evidence suggests that miRNA-mediated gene regulation has a functional role in cancer and could prove to be crucial targets for therapeutic intervention. Here, we provide a quantitative study on the expression of a diverse class of oncogenic and tumor suppressive miRNA that have shown to regulate oncoproteins involved in differentiation, proliferation, and/or apoptosis.

  11. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression

    DEFF Research Database (Denmark)

    Davidsen, Peter K; Gallagher, Iain J; Hartman, Joseph W

    2011-01-01

    MicroRNAs (miRNA), small noncoding RNA molecules, may regulate protein synthesis, while resistance exercise training (RT) is an efficient strategy for stimulating muscle protein synthesis in vivo. However, RT increases muscle mass, with a very wide range of effectiveness in humans. We therefore...... determined the expression level of 21 abundant miRNAs to determine whether variation in these miRNAs was able to explain the variation in RT-induced gains in muscle mass. Vastus lateralis biopsies were obtained from the top and bottom ~20% of responders from 56 young men who undertook a 5 day/wk RT program...... for 12 wk. Training-induced muscle mass gain was determined by dual-energy X-ray absorptiometry, and fiber size was evaluated by histochemistry. The expression level of each miRNA was quantified using TaqMan-based quantitative PCR, with the analysis carried out in a blinded manner. Gene ontology...

  12. Altered aquaporin expression in glaucoma eyes

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten

    2014-01-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5......, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure...... of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased...

  13. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.

    Science.gov (United States)

    Deo, Monika; Yu, Jenn-Yah; Chung, Kwan-Ho; Tippens, Melissa; Turner, David L

    2006-09-01

    We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.

  14. Chronological changes in microRNA expression in the developing human brain.

    Directory of Open Access Journals (Sweden)

    Michael P Moreau

    Full Text Available MicroRNAs (miRNAs are endogenously expressed noncoding RNA molecules that are believed to regulate multiple neurobiological processes. Expression studies have revealed distinct temporal expression patterns in the developing rodent and porcine brain, but comprehensive profiling in the developing human brain has not been previously reported.We performed microarray and TaqMan-based expression analysis of all annotated mature miRNAs (miRBase 10.0 as well as 373 novel, predicted miRNAs. Expression levels were measured in 48 post-mortem brain tissue samples, representing gestational ages 14-24 weeks, as well as early postnatal and adult time points.Expression levels of 312 miRNAs changed significantly between at least two of the broad age categories, defined as fetal, young, and adult.We have constructed a miRNA expression atlas of the developing human brain, and we propose a classification scheme to guide future studies of neurobiological function.

  15. Increased Expression of microRNA-17 Predicts Poor Prognosis in Human Glioma

    Directory of Open Access Journals (Sweden)

    Shengkui Lu

    2012-01-01

    Full Text Available Aim. To investigate the clinical significance of microRNA-17 (miR-17 expression in human gliomas. Methods. Quantitative real-time polymerase chain reaction (qRT-PCR analysis was used to characterize the expression patterns of miR-17 in 108 glioma and 20 normal brain tissues. The associations of miR-17 expression with clinicopathological factors and prognosis of glioma patients were also statistically analyzed. Results. Compared with normal brain tissues, miR-17 expression was significantly higher in glioma tissues (P<0.001. In addition, the increased expression of miR-17 in glioma was significantly associated with advanced pathological grade (P=0.006 and low Karnofsky performance score (KPS, P=0.01. Moreover, Kaplan-Meier survival and Cox regression analyses showed that miR-17 overexpression (P=0.008 and advanced pathological grade (P=0.02 were independent factors predicting poor prognosis for gliomas. Furthermore, subgroup analyses showed that miR-17 expression was significantly associated with poor overall survival in glioma patients with high pathological grades (for grade III~IV: P<0.001. Conclusions. Our data offer the convinced evidence that the increased expression of miR-17 may have potential value for predicting poor prognosis in glioma patients with high pathological grades, indicating that miR-17 may contribute to glioma progression and be a candidate therapeutic target for this disease.

  16. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  17. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects

    Science.gov (United States)

    Ozone (03) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying 03-induced health effects remain understudied. MicroRN...

  18. Prognostic value of microRNA-126 and CRK expression in gastric cancer

    Science.gov (United States)

    Yue, Shun; Shi, Huichang; Han, Jun; Zhang, Tiecheng; Zhu, Weiguo; Zhang, Dahong

    2016-01-01

    Background MicroRNA (miR)-126, acting as a tumor suppressor, has been reported to inhibit the invasion of gastric cancer cells in part by targeting v-crk sarcoma virus CT10 oncogene homologue (CRK). The aim of this study was to investigate the clinical significance of miR-126/CRK axis in gastric cancer. Methods miR-126 and CRK mRNA expression levels were detected by real-time quantitative reverse transcription polymerase chain reaction in 220 self-pairs of gastric cancer and adjacent noncancerous tissues. Results Expression levels of miR-126 and CRK mRNA in gastric cancer tissues were, respectively, lower and higher than those in adjacent noncancerous tissues (both P<0.001). Low miR-126 expression and high CRK expression, alone or in combination, were all significantly associated with positive lymph node and distant metastases and advanced TNM stage of human gastric cancer (all P<0.05). We also found that the overall survival rates of the patients with low miR-126 expression and high CRK expression were, respectively, shorter than those with high miR-126 expression and low CRK expression. Interestingly, miR-126-low/CRK-high expression was associated with a significantly worse overall survival of all miR-126/CRK groups (P<0.001). Moreover, multivariate analysis identified miR-126 and/or CRK expression as independent prognostic factors for patients with gastric cancer. Notably, the prognostic relevance of miR-126 and/or CRK expression was more obvious in the subgroup of patients with TNM stage IV. Conclusion Dysregulation of miR-126/CRK axis may promote the malignant progression of human gastric cancer. miR-126 and CRK combined expression may serve as an independent predictor of overall survival in patients with advanced gastric cancer.

  19. Problem-Solving Test: The Role of a Micro-RNA in the Regulation of "fos" Gene Expression

    Science.gov (United States)

    Szeberenyi, Jozsef

    2009-01-01

    The "fos" proto-oncogene codes for a component of the AP1 transcription factor, an important regulator of gene expression and cell proliferation. Dysregulation of AP1 function may lead to the malignant transformation of the cell. The present test describes an experiment in which the role of a micro-RNA (miR-7b) in the regulation of "fos" gene…

  20. Distinct microRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-associated Gene

    Science.gov (United States)

    Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...

  1. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts

    NARCIS (Netherlands)

    Donker, Rogier B.; Mouillet, Jean-Francois; Nelson, D. Michael; Sadovsky, Yoel

    2007-01-01

    Endogenous microRNAs (miRNAs) post-transcriptionally regulate mRNA and protein expression during tissue development and function. Whereas adaptation to environmental insults are tightly regulated in human tissues, the role of miRNAs and miRNA biogenesis proteins in this context is inadequately explo

  2. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach.

    Science.gov (United States)

    Tesfaye, Dawit; Worku, Dagnachew; Rings, Franca; Phatsara, Chirawath; Tholen, Ernst; Schellander, Karl; Hoelker, Michael

    2009-07-01

    The accumulation of maternal mRNA and protein during oogenesis for supporting oocyte maturation and the newly fertilised zygote marks the beginning of developmental process in mammals. MicroRNAs (approximately 18-22 nt long) which are known for post-transcriptional gene regulation are evidenced for their essential role during animal development. We, therefore, aimed to investigate the expression of miRNAs in immature and in vitro matured bovine oocytes, using heterologous miRNA array platform. To attain this, we used a mercury locked nucleic acids (LNA) array (Exiqon, Vedbaek, Denmark) microarray that consist of 454 capture probes for human, mouse and rat miRNAs as registered and annotated in the miRBase release 8.0 at The Wellcome Trust Sanger Institute. Our result revealed the differential expression of 59 miRNAs, of which 31 and 28 miRNAs were found to be preferentially expressed in immature and matured oocytes, respectively. Here, we also report the identification of 32 orthologous miRNAs using a heterologous approach. Expression profiling of selected miRNAs during preimplantation stage embryos showed a distinct temporal expression pattern. After target prediction for selected candidate miRNAs high ranking target mRNA were quantified in immature and matured oocytes and showed a reciprocal expression pattern between the miRNA and the predicted targets suggesting a cause and effect relationship.

  3. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies.

    Science.gov (United States)

    Drusco, Alessandra; Bottoni, Arianna; Laganà, Alessandro; Acunzo, Mario; Fassan, Matteo; Cascione, Luciano; Antenucci, Anna; Kumchala, Prasanthi; Vicentini, Caterina; Gardiman, Marina P; Alder, Hansjuerg; Carosi, Mariantonia A; Ammirati, Mario; Gherardi, Stefano; Luscrì, Marilena; Carapella, Carmine; Zanesi, Nicola; Croce, Carlo M

    2015-08-28

    Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.

  4. MicroRNA expression and regulation in human, chimpanzee, and macaque brains.

    Directory of Open Access Journals (Sweden)

    Hai Yang Hu

    2011-10-01

    Full Text Available Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%-4% of mRNA and 4%-6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.

  5. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients

    Directory of Open Access Journals (Sweden)

    Niimoto Takuya

    2010-09-01

    Full Text Available Abstract Background Interleukin (IL-17 is an important factor in rheumatoid arthritis (RA pathogenesis. MicroRNA (miRNAs are a family of non coding RNAs and associated with human diseases including RA. The purpose of this study is to identify the miRNAs in the differentiation of IL-17 producing cells, and analyze their expression pattern in the peripheral blood mononuclear cells (PBMC and synovium from RA patients. Methods IL-17 producing cells were expanded from CD4+T cell. MiRNA microarray was performed to identify the miRNAs in the differentiation of IL-17 producing cells. Quantitative polymerase chain reaction was performed to examine the expression patterns of the identified miRNAs in the PBMC and synovium from RA and osteoarthritis (OA patients. Double staining combining in situ hybridization and immunohistochemistry of IL-17 was performed to analyze the expression pattern of identified miRNA in the synovium. Results Six miRNAs, let-7a, miR-26, miR-146a/b, miR-150, and miR-155 were significantly up regulated in the IL-17 producing T cells. The expression of miR-146a and IL-17 was higher than in PBMC in the patients with low score of Larsen grade and short disease duration. MiR-146a intensely expressed in RA synovium in comparison to OA. MiR-146a expressed intensely in the synovium with hyperplasia and high expression of IL-17 from the patients with high disease activity. Double staining revealed that miR-146a expressed in IL-17 expressing cells. Conclusion These results indicated that miR-146a was associated with IL-17 expression in the PBMC and synovium in RA patients. There is the possibility that miR-146a participates in the IL-17 expression.

  6. A serum microRNA signature as a prognostic factor for patients with advanced NSCLC and its association with tissue microRNA expression profiles

    OpenAIRE

    GUO, Jing; Meng, Rui; Yin, Zhongyuan; Li, Pengcheng; Zhou, Rui; Zhang, Sheng; DONG, XIAORONG; Liu, Li; Wu, Gang

    2016-01-01

    The aim of the present study was to detect microRNA (miRNA) signatures in advanced non-small cell lung cancer (NSCLC), and to study the association between miRNA expression levels in serum and tissue. A cohort of patients who had previously been diagnosed with advanced NSCLC was enrolled in the present study. miRNAs associated with prognosis, which had previously been detected in early stage NSCLC samples, were measured in the serum of the patient groups using a cross-validation method. In ad...

  7. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer.

    Science.gov (United States)

    Sandhu, Rupninder; Rivenbark, Ashley G; Mackler, Randi M; Livasy, Chad A; Coleman, William B

    2014-02-01

    Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR‑26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2‑enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation‑sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal

  8. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression

    Directory of Open Access Journals (Sweden)

    Meiri Eti

    2009-02-01

    Full Text Available Abstract Background RNA interference is a gene regulatory mechanism that employs small RNA molecules such as microRNA. Previous work has shown that HIV-1 produces TAR viral microRNA. Here we describe the effects of the HIV-1 TAR derived microRNA on cellular gene expression. Results Using a variation of standard techniques we have cloned and sequenced both the 5' and 3' arms of the TAR miRNA. We show that expression of the TAR microRNA protects infected cells from apoptosis and acts by down-regulating cellular genes involved in apoptosis. Specifically, the microRNA down-regulates ERCC1 and IER3, protecting the cell from apoptosis. Comparison to our cloned sequence reveals possible target sites for the TAR miRNA as well. Conclusion The TAR microRNA is expressed in all stages of the viral life cycle, can be detected in latently infected cells, and represents a mechanism wherein the virus extends the life of the infected cell for the purpose of increasing viral replication.

  9. MicroRNA Expression Profiling of the Porcine Developing Hypothalamus and Pituitary Tissue

    Directory of Open Access Journals (Sweden)

    Xiaoling Jiang

    2013-10-01

    Full Text Available MicroRNAs (miRNAs, a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our

  10. MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells.

    Science.gov (United States)

    Lakshmipathy, Uma; Love, Brad; Goff, Loyal A; Jörnsten, Rebecka; Graichen, Ralph; Hart, Ronald P; Chesnut, Jonathan D

    2007-12-01

    Many of the currently established human embryonic stem (hES) cell lines have been characterized extensively in terms of their gene expression profiles and genetic stability in culture. Recent studies have indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Using both microarrays and quantitative PCR, we report here the differences in miRNA expression between undifferentiated hES cells and their corresponding differentiated cells that underwent differentiation in vitro over a period of 2 weeks. Our results confirm the identity of a signature miRNA profile in pluripotent cells, comprising a small subset of differentially expressed miRNAs in hES cells. Examining both mRNA and miRNA profiles under multiple conditions using cross-correlation, we find clusters of miRNAs grouped with specific, biologically interpretable mRNAs. We identify patterns of expression in the progression from hES cells to differentiated cells that suggest a role for selected miRNAs in maintenance of the undifferentiated, pluripotent state. Profiling of the hES cell "miRNA-ome" provides an insight into molecules that control cellular differentiation and maintenance of the pluripotent state, findings that have broad implications in development, homeostasis, and human disease states.

  11. Computational prediction of microRNAs from Toxoplasma gondii potentially regulating the hosts' gene expression.

    Science.gov (United States)

    Saçar, Müşerref Duygu; Bağcı, Caner; Allmer, Jens

    2014-10-01

    MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene regulation. It may also regulate its hosts' gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation.

  12. Determinants of effective lentivirus-driven microRNA expression in vivo.

    Science.gov (United States)

    Mishima, Takuya; Sadovsky, Elena; Gegick, Margaret E; Sadovsky, Yoel

    2016-09-15

    Manipulation of microRNA (miRNA) levels, including overexpression of mature species, has become an important biological tool, even motivating miRNA-based therapeutics. To assess key determinants of miRNA overexpression in a mammalian system in vivo, we sought to bypass the laborious generation of a transgenic animal by exploiting placental trophoblast-specific gene manipulation using lentiviral vectors, which has been instrumental in elucidating trophoblast biology. We examined the impact of several key components of miRNA stem loops and their flanking sequences on the efficiency of mature miRNA expression in vivo. By combining established and novel approaches for miRNA expression, we engineered lentivirus-driven miRNA expression plasmids, which we tested in the mouse placenta. We found that reverse sense inserts minimized single-strand splicing and degradation, and that maintaining longer, poly-A-containing arms flanking the miRNA stem-loop markedly enhanced transgenic miRNA expression. Additionally, we accomplished overexpression of diverse mammalian, drosophila, or C. elegans miRNAs, either based on native context or using a "cassette" replacement of the mature miRNA sequence. Together, we have identified primary miRNA sequences that are paramount for effective expression of mature miRNAs, and validated their role in mice. Principles established by our findings may guide the design of efficient miRNA vectors for in vivo use.

  13. MicroRNA29a regulates the expression of the nuclear oncogene Ski.

    Science.gov (United States)

    Teichler, Sabine; Illmer, Thomas; Roemhild, Josephine; Ovcharenko, Dmitriy; Stiewe, Thorsten; Neubauer, Andreas

    2011-08-18

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate growth and differentiation. miRNAs are frequently located at cancer-specific fragile sites in the human genome, such as chromosome 7q. The nuclear oncogene SKI is up-regulated in acute myeloid leukemia (AML) with -7/del7q. Here we asked whether loss of miRNAs on chromosome 7q may explain this up-regulation. miR-29a expression was found to be down-regulated in AML with -7/del7q. Forced expression of miR-29a down-regulated Ski and its target gene, Nr-CAM, whereas miR-29a inhibition induced Ski expression. Luciferase assays validated a functional binding site for miR-29a in the 3' untranslated region of SKI. Finally, in samples of AML patients, we observed an inverse correlation of Ski and miR-29a expression, respectively. In conclusion, up-regulation of Ski in AML with -7/del7q is caused by loss of miR-29a. miR-29a may therefore function as an important tumor suppressor in AML by restraining expression of the SKI oncogene.

  14. Computational Prediction of MicroRNAs from Toxoplasma gondii Potentially Regulating the Hosts’ Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Muserref Duygu Sacar; Caner Bagc; Jens Allmer

    2014-01-01

    MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene reg-ulation. It may also regulate its hosts’ gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation.

  15. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    MicroRNAs (miRNAs) are essential for regulating cell differentiation and maintaining the pluripotent state of stem cells. Although dysregulation of specific miRNAs has been associated with certain types of cancer, to date no evidence has linked miRNA expression in embryonic and tumor tissues. We assessed the expression of mature miRNAs in human embryonic colon tissue, and in colorectal cancer and paired normal colon tissue. Overlapping miRNA expression was detected between embryonic colonic mucosa and colorectal cancer. We have found that the miR-17-92 cluster and its target, E2F1, exhibit a similar pattern of expression in human colon development and colonic carcinogenesis, regulating cell proliferation in both cases. In situ hybridization confirmed the high level of expression of miR-17-5p in the crypt progenitor compartment. We conclude that miRNA pathways play a major role in both embryonic development and neoplastic transformation of the colonic epithelium.

  16. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients.

    Science.gov (United States)

    Fan, Hui-min; Sun, Xin-yang; Guo, Wei; Zhong, Ai-fang; Niu, Wei; Zhao, Lin; Dai, Yun-hua; Guo, Zhong-min; Zhang, Li-yi; Lu, Jim

    2014-12-01

    Currently, diagnosis and treatment of major depressive disorder (MDD) are based on the patients' description of symptoms, mental status examinations, and clinical behavioral observations, which increases the chance of misdiagnosis. There is a serious need to find a practical biomarker for the proper diagnosis of MDD. This study aimed to explore the possibility of microRNA (miRNA) in peripheral blood mononuclear cells (PBMCs) as specific blood-based biomarker for MDD patients. By using an Affymetrix array that covers 723 human miRNAs, we identified 26 miRNAs with significant changes in expression in PBMCs of MDD patients. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in a larger cohort of 81 MDD patients and 46 healthy controls confirmed that the expression levels of 5 miRNAs (miRNA-26b, miRNA-1972, miRNA-4485, miRNA-4498, and miRNA-4743) were up-regulated. By receiver operating characteristic (ROC) curve analysis, the combining area under the ROC curve (AUC) of these five miRNAs was 0.636 [95% confidence interval (CI): 0.58-0.90]. MiRNA target gene prediction and functional annotation analysis showed that there was a significant enrichment in several pathways associated with nervous system and brain functions, supporting the hypothesis that differentially-regulated miRNAs may be involved in mechanism underlying development of MDD. We conclude that altered expression of miRNAs in PMBCs might be involved in multiple stages of MDD pathogenesis, and thus might be able to serve as specific biomarker for diagnosis of MDD.

  17. Acute hypoxia induces upregulation of microRNA-210 expression in glioblastoma spheroids

    DEFF Research Database (Denmark)

    Rosenberg, Tine Agerbo; Thomassen, Mads; Jensen, Stine Skov;

    2015-01-01

    AIM: Tumor hypoxia and presence of tumor stem cells are related to therapeutic resistance and tumorigenicity in glioblastomas. The aim of the present study was therefore to identify microRNAs deregulated in acute hypoxia and to identify possible associated changes in stem cell markers. MATERIALS...... & METHODS: Glioblastoma spheroid cultures were grown in either 2 or 21% oxygen. Subsequently, miRNA profiling was performed and expression of ten stem cell markers was examined. RESULTS: MiRNA-210 was significantly upregulated in hypoxia in patient-derived spheroids. The stem cell markers displayed...... a complex regulatory pattern. CONCLUSION: MiRNA-210 appears to be upregulated in hypoxia in immature glioblastoma cells. This miRNA may represent a therapeutic target although it is not clear from the results whether this miRNA may be related to specific cancer stem cell functions....

  18. MicroRNA-125b Induces Cancer Cell Apoptosis Through Suppression of Bcl-2 Expression

    Institute of Scientific and Technical Information of China (English)

    Aihua Zhao; Quan Zeng; Xiaoyan Xie; unnian Zhou; Wen Yue; Yali Li; Xuetao Pei

    2012-01-01

    MicroRNAs (miRNAs) are small,noncoding RNAs which can often act as an oncogene or a tumor suppressor.Several miRNAs are associated with the development of hepatocellular carcinoma (HCC).We demonstrated that miR-125b significantly suppresses HCC cell proliferation and promotes apoptosis by inhibiting the gene expression of the anti-apoptotic protein,Bcl-2.Bioinformatic analysis indicated that the 3'UTR of Bcl-2 has binding sites for miR-125b.Luciferase reporter assay confirmed the ability of miR-125b to dramatically suppress Bcl-2 transcription,suggesting that Bcl-2 is a target gene for miR-125b.We concluded that miR-125b acts as a tumor suppressor in hepatic tumor development by targeting Bcl-2 and inducing cancer cell apoptosis.

  19. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot

    Institute of Scientific and Technical Information of China (English)

    Yao Wu; Xiao-Jing Ma; Hui-Jun Wang; Wen-Can Li; Long Chen; Duan Ma; Guo-Ying Huang

    2014-01-01

    Background: Abnormal expression of connexin 43 (Cx43) has been reported to play an important role in the development of conotrunccal anomalies. However, less is known about the underlying reason for its abnormal expression. MicroRNAs (miRNAs), as an important part of gene expression regulation, have been implicated in some cardiac diseases. This study aimed to investigate the expression of Cx43 and its related miRNAs in patients with tetralogy of Fallot (TOF), and illustrate the potential role of abnormal miRNAs regulation to Cx43 expression in the pathology of TOF. Methods: Real-time polymerase chain reaction was used to detect the expression of Cx43 and 10 Cx43-related miRNAs in the myocardium from 30 TOF patients and 10 normal controls. Immunohistochemistry was used to detect Cx43 protein expression. Putative miRNA binding sites in the 3'UTR of Cx43 were examined in 200 TOF patients and 200 healthy individuals, using Sanger sequencing, to exclude sequence variations resulting in binding diffi culties of miRNAs. Results: Cx43 mRNA and protein expression in the myocardium tissue was significantly increased in TOF patients. The expression of MiR-1 and 206 was significantly decreased in the TOF patients as compared with the controls (P0.05). No meaningful sequence variation was detected in the putative miR1/206 binding sites in the 3'UTR of Cx43. Conclusions: This study indicated that miR-1 and 206 is down-regulated in TOF patients, which may cause an up-regulation of Cx43 protein's synthesis. It provided a clue that miR-1 and 206 might be involved in the pathogenesis of TOF, additional experiments are needed to determine if in fact, miR-1 and 206 contribute substantially to TOF.

  20. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda).

    Science.gov (United States)

    Quinn, Christina R; Iriyama, Rie; Fernando, Danilo D

    2014-06-01

    MicroRNAs (miRNAs) are small RNAs that regulate genes involved in various aspects of plant development, but their presence and expression patterns in the male gametophytes of gymnosperms have not yet been established. Therefore, this study identified and compared the expression patterns of conserved miRNAs from two stages of the male gametophyte of loblolly pine (Pinus taeda), which are the mature (ungerminated) and germinated pollen. Microarray was used to identify conserved miRNAs that varied in expression between these two stages of the loblolly pine male gametophyte. Forty-seven conserved miRNAs showed significantly different expression levels between mature and germinated loblolly pine pollen. In particular, miRNAs representing 14 and 8 families were up- and down-regulated in germinated loblolly pine pollen, respectively. qRT-PCR was used to validate their expression patterns using representative miRNAs. Target genes and proteins were identified using psRNATarget program. Predicted targets of the 22 miRNA families belong mostly to classes of genes involved in defense/stress response, metabolism, regulation, and signaling. qRT-PCR was also used to validate the expression patterns of representative target genes. This study shows that conserved miRNAs are expressed in mature and germinated loblolly pine pollen. Many of these miRNAs are differentially expressed, which indicates that the two stages of the male gametophyte examined are regulated at the miRNA level. This study also expands our knowledge of the male gametophytes of seed plants by providing insights on some similarities and differences in the types and expression patterns of conserved miRNAs between loblolly pine with those of rice and Arabidopsis.

  1. Expression of microRNAs in bovine and human pre-implantation embryo culture media

    Directory of Open Access Journals (Sweden)

    Jenna eKropp

    2014-04-01

    Full Text Available MicroRNAs (miRNA are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, mir-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy.

  2. Expression of herpes simplex virus 1 microRNAs in cell culture models of quiescent and latent infection.

    Science.gov (United States)

    Jurak, Igor; Hackenberg, Michael; Kim, Ju Youn; Pesola, Jean M; Everett, Roger D; Preston, Chris M; Wilson, Angus C; Coen, Donald M

    2014-02-01

    To facilitate studies of herpes simplex virus 1 latency, cell culture models of quiescent or latent infection have been developed. Using deep sequencing, we analyzed the expression of viral microRNAs (miRNAs) in two models employing human fibroblasts and one using rat neurons. In all cases, the expression patterns differed from that in productively infected cells, with the rat neuron pattern most closely resembling that found in latently infected human or mouse ganglia in vivo.

  3. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  4. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models.

    Science.gov (United States)

    Kretschmann, Anita; Danis, Benedicte; Andonovic, Lidija; Abnaof, Khalid; van Rikxoort, Marijke; Siegel, Franziska; Mazzuferi, Manuela; Godard, Patrice; Hanon, Etienne; Fröhlich, Holger; Kaminski, Rafal M; Foerch, Patrik; Pfeifer, Alexander

    2015-02-01

    Epilepsy affects around 50 million people worldwide, and in about 65% of patients, the etiology of disease is unknown. MicroRNAs are small non-coding RNAs that have been suggested to play a role in the pathophysiology of epilepsy. Here, we compared microRNA expression patterns in the hippocampus using two chronic models of epilepsy characterised by recurrent spontaneous seizures (pilocarpine and self-sustained status epilepticus (SSSE)) and an acute 6-Hz seizure model. The vast majority of microRNAs deregulated in the acute model exhibited increased expression with 146 microRNAs up-regulated within 6 h after a single seizure. In contrast, in the chronic models, the number of up-regulated microRNAs was similar to the number of down-regulated microRNAs. Three microRNAs-miR-142-5p, miR-331-3p and miR-30a-5p-were commonly deregulated in all three models. However, there is a clear overlap of differentially expressed microRNAs within the chronic models with 36 and 15 microRNAs co-regulated at 24 h and at 28 days following status epilepticus, respectively. Pathway analysis revealed that the altered microRNAs are associated with inflammation, innate immunity and cell cycle regulation. Taken together, the identified microRNAs and the pathways they modulate might represent candidates for novel molecular approaches for the treatment of patients with epilepsy.

  5. Antagonism pattern detection between microRNA and target expression in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Loredana Martignetti

    Full Text Available MicroRNAs (miRNAs have emerged as fundamental regulators that silence gene expression at the post-transcriptional and translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes. The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it has been applied to analyze expression data from Ewing's sarcoma patients. The antagonism relationship is evaluated as a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA binding site motifs in their 3'UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing's sarcoma disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms.

  6. Characterization of microRNA expression profiles in Leishmania-infected human phagocytes.

    Science.gov (United States)

    Geraci, N S; Tan, J C; McDowell, M A

    2015-01-01

    Leishmania are intracellular protozoa that influence host immune responses eliciting parasite species-specific pathologies. MicroRNAs (miRNAs) are short single-stranded ribonucleic acids that complement gene transcripts to block protein translation and have been shown to regulate immune system molecular mechanisms. Human monocyte-derived dendritic cells (DC) and macrophages (MP) were infected in vitro with Leishmania major or Leishmania donovani parasites. Small RNAs were isolated from total RNA and sequenced to identify mature miRNAs associated with leishmanial infections. Normalized sequence read count profiles revealed a global downregulation in miRNA expression among host cells following infection. Most identified miRNAs were expressed at higher levels in L. donovani-infected cells relative to L. major-infected cells. Pathway enrichments using in silico-predicted gene targets of differentially expressed miRNAs showed evidence of potentially universal MAP kinase signalling pathway effects. Whereas JAK-STAT and TGF-β signalling pathways were more highly enriched using targets of miRNAs upregulated in L. donovani-infected cells, these data provide evidence in support of a selective influence on host cell miRNA expression and regulation in response to differential Leishmania infections.

  7. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.

    Science.gov (United States)

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (Pstructure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct biological roles in WAT and BAT during hibernation and may involve the regulation of signaling cascades.

  8. Gender- and stressor-specific microRNA expression in Tribolium castaneum.

    Science.gov (United States)

    Freitak, Dalial; Knorr, Eileen; Vogel, Heiko; Vilcinskas, Andreas

    2012-10-23

    MicroRNAs (miRNAs) are small non-coding RNAs mediating post-transcriptional regulation of gene expression in eukaryotes. Addressing their role in regulation of physiological adaptations to environmental stress in insects, we selected the red flour beetle Tribolium castaneum as a model. Beetles were fed with the bacterial entomopathogen Pseudomonas entomophila (to mimic natural infection), injected with peptidoglycan (experimental setting of strong immune responses) or subjected to either mild heat shock or starvation. Differential expression of selected immunity- and stress-related genes was quantified using real-time PCR, and expression and induction of 455 mature arthropod miRNAs were determined using proprietary microarrays. We found that Tribolium exhibits both gender- and stressor-specific adjustment of immune gene and miRNA expression. Strikingly, we discovered that the number of stressor-induced miRNAs in females is remarkably higher than in males. This observation could support the hypothesis called Bateman's principle in immunity that predicts gender-specific immune responses because females gain fitness through increased longevity, whereas males gain fitness by increasing mating rates. Our results suggest that Tribolium males and females display differential regulatory elements, both pre- and post-transcriptional, likely resulting from different investment strategies in life-history traits.

  9. Expression Profiling of Circulating MicroRNAs in Canine Myxomatous Mitral Valve Disease

    Directory of Open Access Journals (Sweden)

    Qinghong Li

    2015-06-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that have shown promise as noninvasive biomarkers in cardiac disease. This study was undertaken to investigate the miRNA expression profile in dogs with myxomatous mitral valve disease (MMVD. 277 miRNAs were quantified using RT-qPCR from six normal dogs (American College of Veterinary Internal Medicine Stage A, six dogs with MMVD mild to moderate cardiac enlargement (ACVIM Stage B1/B2 and six dogs with MMVD and congestive heart failure (ACVIM Stage C/D. Eleven miRNAs were differentially expressed (False Discovery Rate < 0.05. Dogs in Stage B1/B2 or C/D had four upregulated miRNAs, including three cfa-let-7/cfa-miR-98 family members, while seven others were downregulated, compared to Stage A. Expression of six of the 11 miRNAs also were significantly different between dogs in Stage C/D and those in Stage B1/B2. The expression changes were greater as disease severity increased. These miRNAs may be candidates for novel biomarkers and may provide insights into genetic regulatory pathways in canine MMVD.

  10. Identification of differentially expressed microRNAs across the developing human brain.

    Science.gov (United States)

    Ziats, M N; Rennert, O M

    2014-07-01

    We present a spatio-temporal assessment of microRNA (miRNA) expression throughout early human brain development. We assessed the prefrontal cortex, hippocampus and cerebellum of 18 normal human donor brains spanning infancy through adolescence by RNA-seq. We discovered differentially expressed miRNAs and broad miRNA patterns across both temporal and spatial dimensions, and between male and female prefrontal cortex. Putative target genes of the differentially expressed miRNAs were identified, which demonstrated functional enrichment for transcription regulation, synaptogenesis and other basic intracellular processes. Sex-biased miRNAs also targeted genes related to Wnt and transforming growth factor-beta pathways. The differentially expressed miRNA targets were highly enriched for gene sets related to autism, schizophrenia, bipolar disorder and depression, but not neurodegenerative diseases, epilepsy or other adult-onset psychiatric diseases. Our results suggest critical roles for the identified miRNAs in transcriptional networks of the developing human brain and neurodevelopmental disorders.

  11. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression

    Science.gov (United States)

    LI, JIAN-ZHE; TANG, XIU-NENG; LI, TING-TING; LIU, LI-JUAN; YU, SHU-YI; ZHOU, GUANG-YU; SHAO, QING-RUI; SUN, HUI-PING; WU, CHENG; YANG, YANG

    2016-01-01

    Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation. PMID:27284328

  12. MicroRNA alterations in Barrett′s esophagus, esophageal adenocarcinoma, and esophageal adenocarcinoma cell lines following cranberry extract treatment: Insights for chemoprevention

    Directory of Open Access Journals (Sweden)

    Laura A Kresty

    2011-01-01

    Full Text Available Background: Aberrant expression of small noncoding endogenous RNA molecules known as microRNAs (miRNAs is documented to occur in multiple cancer types including esophageal adencarcinoma (EAC and its only known precursor, Barrett′s esophagus (BE. Recent studies have linked dysregulation of specific miRNAs to histological grade, neoplastic progression and metastatic potential. Materials and Methods: Herein, we present a summary of previously reported dysregulated miRNAs in BE and EAC tissues as well as EAC cell lines and evaluate a cranberry proanthocyanidin rich extract′s (C-PAC ability to modulate miRNA expression patterns of three human EAC cell lines (JHEso-Ad-1, OE33 and OE19. Results: A review of 13 published studies revealed dysregulation of 87 miRNAs in BE and EAC tissues, whereas 52 miRNAs have been reported to be altered in BE or EAC cell lines, with 48% overlap with miRNA changes reported in tissues. We report for the first time C-PAC-induced modulation of five miRNAs in three EAC cell lines resulting in 26 validated gene targets and identification of key signaling pathways including p53, angiogenesis, T-cell activation and apoptosis. Additionally, mutiple cancer related networks were ideintified as modulated by C-PAC utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG, Protein Analysis Through Evolutionary Relationships (PANTHER, and MetaCore analysis tools. Conclusions: Study results support the cancer inhibitory potential of C-PAC is in part attributable to C-PAC′s ability to modify miRNA profiles within EAC cells. A number of C-PAC-modulated miRNAs have been been identified as dysregulated in BE and EAC. Further insights into miRNA dysregulation and modulation by select cancer preventive agents will support improved targeted interventions in high-risk cohorts.

  13. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  14. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  15. Hepatocellular carcinoma associated microRNA expression signature: integrated bioinformatics analysis, experimental validation and clinical significance.

    Science.gov (United States)

    Shi, Ke-Qing; Lin, Zhuo; Chen, Xiang-Jian; Song, Mei; Wang, Yu-Qun; Cai, Yi-Jing; Yang, Nai-Bing; Zheng, Ming-Hua; Dong, Jin-Zhong; Zhang, Lei; Chen, Yong-Ping

    2015-09-22

    microRNA (miRNA) expression profiles varied greatly among current studies due to different technological platforms and small sample size. Systematic and integrative analysis of published datesets that compared the miRNA expression profiles between hepatocellular carcinoma (HCC) tissue and paired adjacent noncancerous liver tissue was performed to determine candidate HCC associated miRNAs. Moreover, we further validated the confirmed miRNAs in a clinical setting using qRT-PCR and Tumor Cancer Genome Atlas (TCGA) dataset. A miRNA integrated-signature of 5 upregulated and 8 downregulated miRNAs was identified from 26 published datesets in HCC using robust rank aggregation method. qRT-PCR demonstrated that miR-93-5p, miR-224-5p, miR-221-3p and miR-21-5p was increased, whereas the expression of miR-214-3p, miR-199a-3p, miR-195-5p, miR-150-5p and miR-145-5p was decreased in the HCC tissues, which was also validated on TCGA dataset. A miRNA based score using LASSO regression model provided a high accuracy for identifying HCC tissue (AUC = 0.982): HCC risk score = 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-223 - 0.185E_miR-130a. E_miR-n = Log 2 (expression of microRNA n). Furthermore, expression of 5 miRNAs (miR-222, miR-221, miR-21 miR-214 and miR-130a) correlated with pathological tumor grade. Cox regression analysis showed that miR-21 was related with 3-year survival (hazard ratio [HR]: 1.509, 95%CI: 1.079-2.112, P = 0.016) and 5-year survival (HR: 1.416, 95%CI: 1.057-1.897, P = 0.020). However, none of the deregulated miRNAs was related with microscopic vascular invasion. This study provides a basis for further clinical application of miRNAs in HCC.

  16. Prediction of microRNAs affecting mRNA expression during retinal development

    Directory of Open Access Journals (Sweden)

    Cogliati Tiziana

    2010-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNA molecules (~22 nucleotides which have been shown to play an important role both in development and in maintenance of adult tissue. Conditional inactivation of miRNAs in the eye causes loss of visual function and progressive retinal degeneration. In addition to inhibiting translation, miRNAs can mediate degradation of targeted mRNAs. We have previously shown that candidate miRNAs affecting transcript levels in a tissue can be deduced from mRNA microarray expression profiles. The purpose of this study was to predict miRNAs which affect mRNA levels in developing and adult retinal tissue and to confirm their expression. Results Microarray expression data from ciliary epithelial retinal stem cells (CE-RSCs, developing and adult mouse retina were generated or downloaded from public repositories. Analysis of gene expression profiles detected the effects of multiple miRNAs in CE-RSCs and retina. The expression of 20 selected miRNAs was confirmed by RT-PCR and the cellular distribution of representative candidates analyzed by in situ hybridization. The expression levels of miRNAs correlated with the significance of their predicted effects upon mRNA expression. Highly expressed miRNAs included miR-124, miR-125a, miR-125b, miR-204 and miR-9. Over-expression of three miRNAs with significant predicted effects upon global mRNA levels resulted in a decrease in mRNA expression of five out of six individual predicted target genes assayed. Conclusions This study has detected the effect of miRNAs upon mRNA expression in immature and adult retinal tissue and cells. The validity of these observations is supported by the experimental confirmation of candidate miRNA expression and the regulation of predicted target genes following miRNA over-expression. Identified miRNAs are likely to be important in retinal development and function. Misregulation of these miRNAs might contribute to retinal degeneration and disease

  17. MicroRNA expression analysis and Multiplex ligation-dependent probe amplification in metastatic and non-metastatic uveal melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Holst, Line; Kaczkowski, Bogumil

    2014-01-01

    Purpose: To determine the association of microRNA expression and chromosomal changes with metastasis and survival in uveal melanoma (UM). Methods: Thirty-six patients with UM were selected based on the metastatic status, and clinicopathological data were collected. Multiplex ligation......-dependent probe amplification (MLPA) was used to identify chromosomal changes. Chromosomal changes and clinicopathological data were correlated with survival and metastasis. The microRNA expression was analysed in 26 of the 36 archived UM samples. Unsupervised analysis, differential expression analysis and Cox...... regression analysis were performed to determine the association with metastasis and survival. Results: Metastasis and metastatic death occurred in 20 patients, two patients died of other causes and one patient of unknown causes. A significant association between increasing size category (p = 0.002, log...

  18. Regulation of MicroRNA Biogenesis: A miRiad of mechanisms

    Directory of Open Access Journals (Sweden)

    Davis Brandi N

    2009-08-01

    Full Text Available Abstract microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which govern the regulation of microRNA biogenesis and activity are just beginning to be uncovered. Following transcription, mature microRNA are generated through a series of coordinated processing events mediated by large protein complexes. It is increasingly clear that microRNA biogenesis does not proceed in a 'one-size-fits-all' manner. Rather, individual classes of microRNAs are differentially regulated through the association of regulatory factors with the core microRNA biogenesis machinery. Here, we review the regulation of microRNA biogenesis and activity, with particular focus on mechanisms of post-transcriptional control. Further understanding of the regulation of microRNA biogenesis and activity will undoubtedly provide important insights into normal development as well as pathological conditions such as cardiovascular disease and cancer.

  19. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related. Methods:  A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based...... on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A total of 17...

  20. Alterations in cathepsin L expression in lung cancers.

    Science.gov (United States)

    Okudela, Koji; Mitsui, Hideaki; Woo, Tetsukan; Arai, Hiromasa; Suzuki, Takehisa; Matsumura, Mai; Kojima, Yoko; Umeda, Shigeaki; Tateishi, Yoko; Masuda, Munetaka; Ohashi, Kenichi

    2016-07-01

    We herein investigated the potential role of cathepsin L in lung carcinogenesis. Lung cancer cell lines and surgically resected tumors were examined for the expression of the cathepsin L protein and copy number alterations in its gene locus. Cathepsin L was stably expressed in bronchiolar epithelial cells. Neoplastic cells expressed cathepsin L at various levels, whereas its expression was completely lost in most of the lung cancer cell lines (63.6%, 7/11) examined. Furthermore, expression levels were lower in a large fraction of lung tumors (69.5%, 139/200) than in bronchiolar epithelia. The expression of cathepsin L was lost in some tumors (16.0%, 32/200). In adenocarcinomas, expression levels were significantly lower in high-grade tumors than in low-grade tumors (one-way ANOVA, P L protein expression levels and the copy number of its gene locus (Spearman's rank-order correlation, P = 0.3096). Collectively, these results suggest that the down-regulated expression of cathepsin L, which is caused by an undefined mechanism other than copy number alterations, is involved in the progression of lung adenocarcinomas.

  1. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance

    Science.gov (United States)

    van Rooij, Eva; Quiat, Daniel; Johnson, Brett A.; Sutherland, Lillian B.; Qi, Xiaoxia; Richardson, James A.; Kelm, Robert J.; Olson, Eric N.

    2009-01-01

    Myosin is the primary regulator of muscle strength and contractility. Here we show that three myosin genes, Myh6, Myh7, and Myh7b, encode related microRNAs (miRNAs) within their introns, which, in turn, control muscle myosin content, myofiber identity and muscle performance. Within the adult heart, the Myh6 gene, encoding a fast myosin, co-expresses miR-208a, which regulates the expression of two slow myosins and their intronic miRNAs, Myh7/miR-208b and Myh7b/miR-499, respectively. miR-208b and miR-499 are functionally redundant, and play a dominant role in the specification of muscle fiber identity by activating slow and repressing fast myofiber gene programs. The actions of these miRNAs are mediated by a collection of transcriptional repressors of slow myofiber genes. These findings reveal that myosin genes not only encode the major contractile proteins of muscle, but act more broadly to influence muscle function by encoding a network of intronic miRNAs that control muscle gene expression and performance. PMID:19922871

  2. MirZ: an integrated microRNA expression atlas and target prediction resource.

    Science.gov (United States)

    Hausser, Jean; Berninger, Philipp; Rodak, Christoph; Jantscher, Yvonne; Wirth, Stefan; Zavolan, Mihaela

    2009-07-01

    MicroRNAs (miRNAs) are short RNAs that act as guides for the degradation and translational repression of protein-coding mRNAs. A large body of work showed that miRNAs are involved in the regulation of a broad range of biological functions, from development to cardiac and immune system function, to metabolism, to cancer. For most of the over 500 miRNAs that are encoded in the human genome the functions still remain to be uncovered. Identifying miRNAs whose expression changes between cell types or between normal and pathological conditions is an important step towards characterizing their function as is the prediction of mRNAs that could be targeted by these miRNAs. To provide the community the possibility of exploring interactively miRNA expression patterns and the candidate targets of miRNAs in an integrated environment, we developed the MirZ web server, which is accessible at www.mirz.unibas.ch. The server provides experimental and computational biologists with statistical analysis and data mining tools operating on up-to-date databases of sequencing-based miRNA expression profiles and of predicted miRNA target sites in species ranging from Caenorhabditis elegans to Homo sapiens.

  3. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis.

    Science.gov (United States)

    Sauer, Eva; Extra, Antje; Cachée, Philipp; Courts, Cornelius

    2017-05-01

    The identification of organ tissues in traces recovered from scenes and objects with regard to violent crimes involving serious injuries can be of considerable relevance in forensic investigations. Molecular genetic approaches are provably superior to histological and immunological assays in characterizing organ tissues, and micro-RNAs (miRNAs), due to their cell type specific expression patterns and stability against degradation, emerged as a promising molecular species for forensic analyses, with a range of tried and tested indicative markers. Thus, herein we present the first miRNA based approach for the forensic identification of organ tissues. Using quantitative PCR employing an empirically derived strategy for data normalization and unbiased statistical decision making, we assessed the differential expression of 15 preselected miRNAs in tissues of brain, kidney, lung, liver, heart muscle, skeletal muscle and skin. We show that not only can miRNA expression profiling be used to reliably differentiate between organ tissues but also that this method, which is compatible with and complementary to forensic DNA analysis, is applicable to realistic forensic samples e.g. mixtures, aged and degraded material as well as traces generated by mock stabbings and experimental shootings at ballistic models.

  4. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development.

    Science.gov (United States)

    Xin, Chengqi; Liu, Wanfei; Lin, Qiang; Zhang, Xiaowei; Cui, Peng; Li, Fusen; Zhang, Guangyu; Pan, Linlin; Al-Amer, Ali; Mei, Hailiang; Al-Mssallem, Ibrahim S; Hu, Songnian; Al-Johi, Hasan Awad; Yu, Jun

    2015-04-01

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development.

  5. Expression of Serum Exosomal MicroRNA-21 in Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Hongwei Wang

    2014-01-01

    Full Text Available New strategies for the diagnosis of hepatocellular carcinoma (HCC are urgently needed. There is an increasing interest in using microRNAs (miRNAs as biomarkers in diseases. In this study, we examined the expression of miR-21 in serum exosomes from patients with HCC or chronic hepatitis B (CHB and investigated the potential clinical significance of miR-21. Quantitative RT-PCR indicated that the concentration of miR-21 was significantly higher in exosomes than in exosome-depleted supernatants or the whole serum. Further, the expression level of serum exosomal miR-21 was significantly higher in patients with HCC than those with CHB or healthy volunteers (P<0.0001, P<0.0001, resp.. High level of miR-21 expression correlated with cirrhosis (P=0.024 and advanced tumor stage (P=0.001. Although serum level of miR-21 was higher in patients with HCC than in patients with CHB and healthy volunteers, the sensitivity of detection is much lower than using exosomal miR-21. These findings indicate that miR-21 is enriched in serum exosomes which provides increased sensitivity of detection than whole serum. Exosomal miR-21 may serve as a potential biomarker for HCC diagnosis.

  6. MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients.

    Science.gov (United States)

    Ogata, Yorimasa; Matsui, Sari; Kato, Ayako; Zhou, Liming; Nakayama, Yohei; Takai, Hideki

    2014-12-01

    Periodontitis is a chronic inflammatory disease caused by specific bacteria and viruses. Local, systemic, and environmental factors affect the rate of disease progression. Immune responses to bacterial products, and the subsequent production of inflammatory cytokines, are crucial in the destruction of periodontal tissue. MicroRNAs (miRNAs) are a class of small RNAs that control various cell processes by negatively regulating protein-coding genes. In this study, we compared miRNA expression in inflamed and noninflamed gingival tissues from Japanese dental patients. Total RNAs were isolated from inflamed and noninflamed gingival tissues. miRNA expression profiles were examined by an miRNA microarray, and the data were analyzed by GeneSpring GX, Ingenuity Pathways Analysis, and the TargetScan databases. Observed miRNA expression levels in inflamed gingiva were confirmed by real-time PCR. The three most overexpressed (by >2.72-fold) miRNAs were hsa-miR-150, hsa-miR-223, and hsa-miR-200b, and the three most underexpressed (by disease, organismal injury, abnormalities, urological disease, and cancer. The present findings suggest that miRNAs are associated with chronic periodontitis lesions in Japanese.

  7. Differential expression of microRNAs in avian leukosis virus subgroup J-induced tumors.

    Science.gov (United States)

    Wang, Qi; Gao, Yulong; Ji, Xiaolin; Qi, Xiaole; Qin, Liting; Gao, Honglei; Wang, Yongqiang; Wang, Xiaomei

    2013-02-22

    Avian leukosis virus subgroup J (ALV-J) has become pandemic and induced serious clinical outbreaks in chickens in China. In particular, ALV-J induced various clinical tumors in infected chickens, which caused enormous economic losses to poultry. In this study, an infectious clone from an epidemic ALV-J Chinese isolate designated HLJ09SH01 was constructed and rescued. The rescued virus (named rHLJ09SH01) was inoculated into specific-pathogen-free (SPF) layer chickens, and infected chickens were observed for 238 days to explore the oncogenicity of rHLJ09SH01. As a result, 57.9% of rHLJ09SH01-infected chickens produced tumors. Accumulating evidence shows that microRNAs (miRNAs) have a close relationship with tumorigenesis. To gain more insight into the tumorigenesis of ALV-J, a miRNA microarray was performed as part of an investigation of changes in host miRNA expression in a liver tumor from ALV-J infected chickens. The results showed that four miRNAs were significantly differentially expressed; these data were verified using real-time PCR. Bioinformatics analysis showed the differentially expressed miRNAs to be involved in some tumorigenesis-related signaling pathways, such as the MAPK signaling pathway and the Wnt signaling pathway, which may represent a possible signaling pathway that was involved in the ALV-J-induced tumorigenesis.

  8. MicroRNA expression profiles in conventional and micropropagated strawberry (Fragaria x ananassa Duch.) plants.

    Science.gov (United States)

    Li, He; Zhang, Zhihong; Huang, Feifei; Chang, Linlin; Ma, Yue

    2009-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs which play a critical role in plant growth and development. To detect strawberry miRNAs and discover the expression difference between conventional and micropropagated strawberry plants, we carried out the detection and quantification of strawberry miRNAs by microarray. The main findings were that 74 miRNAs were checked in strawberry plants and four miRNA genes displayed clear expression difference between conventional and micropropagated strawberry plants, including two up-regulated genes (miR535 and miR390) and two down-regulated genes (miR169a and miR169d). The ratios of conventionally propagated strawberry plant/micropropagated strawberry plant for miR535, miR390, miR169a and miR169d were 2.6884, 2.2673, 0.2496 and 0.3814, respectively. Quantitative reverse transcription polymerase chain reaction applied to the two up-regulated genes (miR535 and miR390) validated the microarray result. This is the first report on differential expression of miRNAs in conventional and micropropagated plants.

  9. Toxicological implications of modulation of gene expression by microRNAs.

    Science.gov (United States)

    Yokoi, Tsuyoshi; Nakajima, Miki

    2011-09-01

    MicroRNAs (miRNAs) are a large family of non-coding RNAs that are evolutionarily conserved, endogenous, and 21-23 nucleotides in length. miRNAs regulate gene expression by targeting messenger RNAs (mRNAs) by binding to complementary regions of transcripts to repress their translation or mRNA degradation. miRNAs are encoded by the genome, and more than 1000 human miRNAs have been identified so far. miRNAs are predicted to target ∼60% of human mRNAs and are expressed in all animal cells and have fundamental roles in cellular responses to xenobiotic stresses, which affect a large range of physiological processes such as development, immune responses, metabolism, tumor formation as well as toxicological outcomes. Recently, many reports concerning miRNAs related to cancer have been published; however, the miRNA research in the metabolism of xenobiotics and endobiotics and in toxicology has only recently been established. This review describes the current knowledge on the miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and its potential toxicological implications. In this review, miRNAs with reference to target prediction, potential modulation of toxicology-related changes of miRNA expression, role of miRNA in immune-mediated drug-induced liver injury, miRNA in plasma as potential toxicological biomarkers, and relevance of miRNA-related genetic polymorphisms are discussed.

  10. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S. [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa); Arbuthnot, Patrick, E-mail: Patrick.Arbuthnot@wits.ac.za [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  11. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development

    KAUST Repository

    Xin, Chengqi

    2015-01-29

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development.

  12. Differential expression of microRNA clusters in bladder transitional cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Zhifeng Wei; Zhengyu Zhang; Jingping Ge; Peng Xie; Hongqing Ma; Jianping Gao; Wen Cheng

    2013-01-01

    Objective: The aim of the study was to investigate the differential expression of microRNAs (miRNAs) in bladder transitional cell carcinoma (BTC). Methods: Fresh tissues were obtained from patients with BTC (9 cases; 3 cases with grade I, 3 cases with grade II, 3 cases with grade III) and those with normal bladder mucosa (3 cases) and stored in liquid nitrogen. Total RNA was extracted using TRizol reagent and RNA was quantified and quality control was performed. miRNA probes were labeled with Hy3TM fluorescence, then hybridized with a miRCURYTM array labeling kit. miRNA arrays were scanned and analyzed and the scanned result was validated using reverse transcription-polymerase chain reaction (RT-PCR). Results: In four groups of differentially expressed genes obtained from grade I, grade II, grade III, and grade I + grade II + grade III BTC tissues compared with normal bladder mucosa, hsa-miR-29b-1* was upregulated, and hsa-miR-923 and hsa-miR-300 were downregulated. The hsa-miR-29b-1*, hsa-miR-300, and hsa-miR-923 findings were confirmed by real-time RT-PCR. Conclusion: Genes that were differentially expressed between BTC and normal bladder mucosa may be involved in the pathogenesis and development of BTC, and may be useful for further studies of BTC-related genes.

  13. Bioinformatic identification of microRNAs and their target genes from Solanum tuberosum expressed sequence tags

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene post-transcriptional expression in plants and animals. Low levels of some miRNAs and time- and tissue-specific expression patterns lead to the difficulty for experimental identification of miRNAs. Here we present a bioinformatic approach for expressed sequence tags (ESTs) prediction of novel miRNAs as well as their targets in Solanum tuberosum. We blasted the databases of S. Tuberosum ESTs to search for potential miRNAs, using previously known miRNA sequences from Arabidopsis, rice and other plant species. By analyzing parameters of plant precursors, including secondary structure, stem length and conservation of miRNAs, and following a variety of filtering criteria, a total of 22 potential miRNAs were detected. Using the newly identified miRNA sequences, we were able to further blast the S. Tuberosum mRNA database and detected 75 potential targets of miRNAs in S. Tuberosum. According to the mRNA annotations provided by the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/), most of the miRNA target genes were predicted to encode transcription factors that regulate cell growth and development, signaling, and metabolism.

  14. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients.

    Directory of Open Access Journals (Sweden)

    Meredith G Banigan

    Full Text Available Exosomes are cellular secretory vesicles containing microRNAs (miRNAs. Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ and bipolar disorder (BD might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center, BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe and Boston Medical Center (BMC. Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD.

  15. Aberrant microRNA expression in Chinese patients with chronic lymphocytic leukemia.

    Science.gov (United States)

    Zhu, Dan-Xia; Miao, Kou-Rong; Fang, Cheng; Fan, Lei; Zhu, Wei; Zhu, Hua-Yuan; Zhuang, Yun; Hong, Ming; Liu, Peng; Xu, Wei; Li, Jian-Yong

    2011-06-01

    MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles by targeting mRNAs for cleavage or translational repression. Many reports have indicated that miRNAs play a critical role in malignancies, and regulations in the progression of leukemia. However, the miRNAs expression level in Chinese patients with chronic lymphocytic leukemia (CLL), and its prognostic value remain elusive. We identified various degrees of down-regulation of miR-15a, miR-16-1, miR-29b, miR-181a and miR-181b in CLL mononuclear cells. Moreover, we have identified miR-29b and miR-181a/b expression significantly correlated with IGHV mutational status. Transcript levels of predicted target genes BCL-2 and TCL-1 were also determined, and the expression levels were significantly upregulated in CLL patients compared with normal controls (PmiR-181b) and BCL-2 level; furthermore, an inverse correlation was also observed between miRNAs (miR-16-1, miR-181a, miR-181b) and TCL-1, which suggest that these miRNAs may implicate in negatively regulating target mRNA at transcriptional level. These different miRNAs may play an important role in the pathogenesis of CLL and might be applied for the assessment of prognosis in patients with CLL.

  16. Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts.

    Science.gov (United States)

    Makino, Katsunari; Jinnin, Masatoshi; Aoi, Jun; Hirano, Ayaka; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Fukushima, Satoshi; Inoue, Yuji; Ihn, Hironobu

    2013-01-01

    Systemic sclerosis (SSc) is characterized by excess collagen deposition in the skin, due to intrinsic transforming growth factor-β (TGF-β) activation. We tried to determine the expression and the role of discoidin domain receptor 2 (DDR2) in SSc. The expression of DDR2 mRNA and protein was significantly decreased in SSc dermal fibroblasts, which was recovered by knocking down TGF-β. The knockdown of DDR2 in normal fibroblasts induced microRNA-196a expression, which led to type I collagen downregulation, indicating that DDR2 itself has a negative effect on microRNA-196a expression and inducible effect on collagen expression. In SSc fibroblasts, however, the DDR2 knockdown did not affect TGF-β signaling and microRNA-196a expression. The microRNA-196a levels were significantly decreased in normal fibroblasts treated with TGF-β and in SSc fibroblasts. Taken together our data indicate that, in SSc fibroblasts, intrinsic TGF-β stimulation induces type I collagen expression, and also downregulates DDR2 expression. This probably acts as a negative feedback mechanism against excess collagen expression, as a decreased DDR2 expression is supposed to stimulate the microRNA-196a expression and further change the collagen expression. However, in SSc fibroblasts the microRNA-196a expression was downregulated by TGF-β signaling. DDR2-microRNA-196a pathway may be a previously unreported negative feedback system, and its impairment may be involved in the pathogenesis of SSc.

  17. MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation.

    Science.gov (United States)

    Liu, Xiao-Dong; Cai, Feng; Liu, Liang; Zhang, Yan; Yang, An-Li

    2015-04-01

    MicroRNAs (miRNAs) are small non-protein-codingRNAs that function as negative gene expression regulators. miRNA-210 (miR-210) has recently been recognized in the pathogenesis of osteonecrosis associated with angiogenesis. Herein we aimed to explore the clinical significance of miR-210 treatment for postmenopausal osteoporosis. The expression of miR-210 was detected in bone marrow mesenchymal stem cells (BMSCs) in vitro and miR-210 significantly promoted the expression of vascular edothelial growth factor (VEGF) in BMSCs in a time-dependent manner (posteoporosis through promotion the VEGF expression and osteoblast differentiation.

  18. Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression

    Institute of Scientific and Technical Information of China (English)

    Te Liu; Qing Chen; Yongyi Huang; Qin Huang; Lizhen Jiang; Lihe Guo

    2012-01-01

    Human-induced pluripotent stem (iPS) cells share the same key properties as embryonic stem cells,and may be generated from patient- or disease-specific sources,which makes them attractive for personalized medicine,drug screens,or cellular therapy.Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state is a major challenge.Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells,or spermatogonial stem cells,as they express endogenous leukemia inhibitory factor (LIF) at high levels.Here,we examined the effect of exogenous microRNA-199a regulation on endogenous LIF expression in HuAECs,and in torn on human iPS cell pluripotency.We found that HuAECs feeder cells transfected with microRNA-199a mutant expressed LIF at high levels,allowing iPS to maintain a high level of alkaline phosphatase activity in longterm culture and form teratomas in severe combined immunodeficient mice.The expression of stem cell markers was increased in iPS cultured on HuAECs feeder cells transfected with the microRNA-199a mutant,compared with iPS cultured on HuAECs transfected with microRNA-199a or mouse embryo fibroblasts.Taken together,these results suggested that LIF expression might be regulated by microRNA-199a,and LIF was a crucial component in feeder cells,and also was required for maintenance of human iPS cells in an undifferentiated,proliferative state capable of self-renewal.

  19. MicroRNA dysregulation in the spinal cord following traumatic injury.

    Directory of Open Access Journals (Sweden)

    Mónica Yunta

    Full Text Available Spinal cord injury (SCI triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury.The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury.

  20. Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-infected brain: novel analysis of retrospective cases.

    Science.gov (United States)

    Tatro, Erick T; Scott, Erick R; Nguyen, Timothy B; Salaria, Shahid; Banerjee, Sugato; Moore, David J; Masliah, Eliezer; Achim, Cristian L; Everall, Ian P

    2010-04-26

    HIV infection disturbs the central nervous system (CNS) through inflammation and glial activation. Evidence suggests roles for microRNA (miRNA) in host defense and neuronal homeostasis, though little is known about miRNAs' role in HIV CNS infection. MiRNAs are non-coding RNAs that regulate gene translation through post-transcriptional mechanisms. Messenger-RNA profiling alone is insufficient to elucidate the dynamic dance of molecular expression of the genome. We sought to clarify RNA alterations in the frontal cortex (FC) of HIV-infected individuals and those concurrently infected and diagnosed with major depressive disorder (MDD). This report is the first published study of large-scale miRNA profiling from human HIV-infected FC. The goals of this study were to: 1. Identify changes in miRNA expression that occurred in the frontal cortex (FC) of HIV individuals, 2. Determine whether miRNA expression profiles of the FC could differentiate HIV from HIV/MDD, and 3. Adapt a method to meaningfully integrate gene expression data and miRNA expression data in clinical samples. We isolated RNA from the FC (n = 3) of three separate groups (uninfected controls, HIV, and HIV/MDD) and then pooled the RNA within each group for use in large-scale miRNA profiling. RNA from HIV and HIV/MDD patients (n = 4 per group) were also used for non-pooled mRNA analysis on Affymetrix U133 Plus 2.0 arrays. We then utilized a method for integrating the two datasets in a Target Bias Analysis. We found miRNAs of three types: A) Those with many dysregulated mRNA targets of less stringent statistical significance, B) Fewer dysregulated target-genes of highly stringent statistical significance, and C) unclear bias. In HIV/MDD, more miRNAs were downregulated than in HIV alone. Specific miRNA families at targeted chromosomal loci were dysregulated. The dysregulated miRNAs clustered on Chromosomes 14, 17, 19, and X. A small subset of dysregulated genes had many 3' untranslated region (3'UTR) target

  1. Upregulated microRNA-224 promotes ovarian cancer cell proliferation by targeting KLLN.

    Science.gov (United States)

    Hu, Ke; Liang, Meng

    2017-02-01

    Human epithelial ovarian cancer is a complex disease, with low 5-yr survival rate largely due to the terminal stage at diagnosis in most patients. MicroRNAs play critical roles during epithelial ovarian cancer progression in vivo and have also been shown to regulate characteristic of ovarian cancer cell line in vitro. Alterative microRNA-224 (microRNA-224) expression affects human epithelial ovarian cancer cell survival, apoptosis, and metastasis. However, people know little about the effects of microRNA-224 on epithelial ovarian cancer cell proliferation. In the current study, we found that the microRNA-224 expression level of human syngeneic epithelial ovarian cancer cells HO8910 (low metastatic ability) was lower than that of HO8910PM (high metastatic ability). Furthermore, microRNA-224 was confirmed to target KLLN in HO8910 and HO8910PM. The known KLLN downstream target cyclin A was regulated by microRNA-224 in HO8910 and HO8910PM. In addition, overexpression of microRNA-224 enhanced the proliferation abilities of HO8910 and knockdown of microRNA-224 suppressed the proliferation abilities of HO8910PM by KLLN-cyclin A pathway. Our results provide new data about microRNAs and their targets involved in proliferation of epithelial ovarian cancer cells by modulating the downstream signaling.

  2. A microRNA-7 binding site polymorphism in HOXB5 leads to differential gene expression in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Junhua Luo

    Full Text Available PURPOSE: To investigate the biological function of HOXB5 in human bladder cancer and explore whether the HOXB5 3'-UTR SNP (1010A/G, which is located within the microRNA-7 binding site, was correlated with clinical features of bladder cancer. METHODS: Expression of HOXB5 in 35 human bladder cancer tissues and 8 cell lines were examined using real-time PCR and immunohistochemistry. Next, we explored the biological function of HOXB5 in vitro using cell proliferation, migration and colony formation assays. Using bioinformatics, a SNP (1010A/G was found located within the microRNA-7 binding site in the 3'-UTR of HOXB5. Real-time PCR was used to test HOXB5 expression affected by different alleles. Finally, multivariate logistic regression analysis was used to determine the relationship between SNP (1010A/G frequency and clinical features in 391 cases. RESULTS: HOXB5 was frequently over-expressed both in bladder cancer tissues and cell lines. Inhibition of HOXB5 suppressed the oncogenic function of cancer cells. Next, we demonstrated that a SNP (1010A/G, located within the microRNA-7 binding site in the 3'-UTR of HOXB5, could affect HOXB5 expression in bladder cancer mainly by differential binding activity of microRNA-7 and SNP-related mRNA stability. Finally, we also showed the frequency of 1010G genotype was higher in cancer group compared to normal controls and correlated with the risk of high grade and high stage. CONCLUSION: HOXB5 is overexpressed in bladder cancer. A miRNA-binding SNP (1010A/G located within 3'-UTR of HOXB5 is associated with gene expression and may be a promising prognostic factor for bladder cancer.

  3. Altering sensorimotor feedback disrupts visual discrimination of facial expressions.

    Science.gov (United States)

    Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula

    2016-08-01

    Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities.

  4. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2009-11-01

    Full Text Available Abstract Background Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression. Methods To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80 and normal colon tissue (n = 28 and validated a subset of this data by qRT-PCR. Results Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes. Conclusion Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.

  5. MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression

    Institute of Scientific and Technical Information of China (English)

    WU De-gang; WANG Xi-rui; YOU Yong-ping; LIU Ning; WANG Ying-yi; FAN Li-gang; LUO Hui; HAN Bin; SUN Li-hua; WANG Xie-feng; ZHANG Jun-xia; CAO Lei

    2011-01-01

    Background Invasion growth is the most characteristic biological phenotype of glioblastoma,but the molecular mechanism in glioma cell invasion is poorly understood.Recent data have showed that microRNA plays an essential role in tumor invasion.Our study aimed to explore the mechanism of miR-7 involved in the control of glioblastoma cell invasion.Methods Glioma cell invasion was evaluated by transwell and scratch assays after up-regulation of miR-7 using miR-7 mimics in U87 and U251 cells.Luciferase reporter assay was used to determine focal adhesion kinase (FAK) as a target of miR-7.The levels of miR-7,matrix metalloproteinases (MMP)-2 and MMP-9 mRNA were detected by PCR assay,and the levels of FAK,MMP-2,MMP-9,total and phosphorylation serine/threonine kinase (AKT),and extracellular signal-regulated kinase (ERK) 1/2 were measured by Western blotting analysis.Results Over-expression of miR-7 inhibited the invasion and migration activity of U87 and U251 cells.And up-regulation of miR-7 reduced FAK protein expression,Further,luciferase reporter assay showed that miR-7 modulated FAK expression directly by binding 3'UTR of FAK mRNA.In addition,miR-7 repressed p-ERK1/2 and p-AKT level,MMP-2 and MMP-9 expression.Finally,the inverse relationship between FAK and miR-7 expression was certificated in human glioma tissues.Conclusion To our knowledge,these data indicate for the first time that miR-7 directly regulates cell invasion by targeting FAK in glioblastoma and that miR-7 could be a potential therapeutic target for glioblastoma intervention.

  6. Plasma microRNAs expression profile in female workers occupationally exposed to mercury

    Science.gov (United States)

    Ding, Enmin; Zhao, Qiuni; Bai, Ying; Xu, Ming; Pan, Liping; Liu, Qingdong; Wang, Bosheng; Song, Xianping; Wang, Jun; Chen, Lin

    2016-01-01

    Background Circulating microRNAs (miRNAs) have attracted interests as non-invasive biomarkers of physiological and pathological conditions. Several studies have examined the potential effects of mercury exposure on miRNAs expression profiles of general population environmentally exposed to mercury. The objective is to identify mercury-related miRNAs of female workers occupationally exposed to mercury. Methods In this case-control study, we used a microarray assay to detect the miRNA expression profiles in pooled plasma samples between (I) chronic mercury poisoning group; (II) mercury absorbing group and (III) control group in the discovery stage. Each group has ten individuals. In addition, we conducted a validation of eight candidate miRNAs in the same 30 workers by quantitative real-time PCR. Results In the discovery stage, eight miRNAs were conformed following our selection criteria. In the validation stage, RT-PCR confirmed up-regulation of miR-92a and miR-486 in the mercury poisoned group (P<0.05) compared to the other two groups. The results were consistent with the microarray analysis. Conclusions Plasma miR-92a-3p and miR-486-5p might prove to be potential biomarkers to indicate responses to mercury exposure. However, further studies are necessary to prove the causal association between miRNAs changes and mercury exposure, and to determine whether these two miRNAs are clear biomarkers to mercury exposure. PMID:27162656

  7. MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression

    Science.gov (United States)

    Hu, Ruozhen; Huffaker, Thomas B.; Kagele, Dominique A.; Runtsch, Marah C.; Bake, Erin; Chaudhuri, Aadel A.; Round, June L.; O’Connell, Ryan M.

    2013-01-01

    Th17 cells are central to the pathogenesis of autoimmune disease, and recently specific noncoding microRNAs (miRNAs) have been shown to regulate their development. However, it remains unclear if miRNAs are also involved in modulating Th17 cell effector functions. Consequently, we examined the role of miR-155 in differentiated Th17 cells during their induction of Experimental Autoimmune Encephalomyelitis (EAE). Using adoptive transfer experiments, we found that highly purified, MOG antigen-specific Th17 cells lacking miR-155 were defective in their capacity to cause EAE. Gene expression profiling of purified miR-155−/− IL-17F+ Th17 cells identified a subset of effector genes that are dependent upon miR-155 for their proper expression through a mechanism involving repression of the transcription factor Ets1. Among the genes reduced in the absence of miR-155 was IL-23R, resulting in miR-155−/− Th17 cells being hypo-responsive to IL-23. Taken together, our study demonstrates a critical role for miR-155 in Th17 cells as they unleash autoimmune inflammation, and finds that this occurs through a signaling network involving miR-155, Ets1 and the clinically relevant IL-23-IL-23R pathway. PMID:23686497

  8. Profiling of REST-dependent microRNAs reveals dynamic modes of expression

    Directory of Open Access Journals (Sweden)

    Zhengliang eGao

    2012-05-01

    Full Text Available Multipotent neural stem cells (NSCs possess the ability to self-renew and differentiate into both neurons and glia. However, the detailed mechanisms underlying NSC fate decisions are not well understood. Recent work suggest that the interaction between cell-type specific transcription factors and microRNAs (miRNAs is important as resident neural stem/progenitor cells give rise to functionally mature neurons. Recently, we demonstrated that the transcriptional repressor REST (RE1-silencing transcription factor is essential to prevent precocious neuronal differentiation and maintain NSC self-renewal in the adult hippocampus. Here we show that REST is required for orchestrating the expression of distinct subsets of miRNAs in primary mouse NSC cultures, a physiologically relevant cell type. Using miRNA array profiling, we identified known REST-regulated miRNA genes, as well as previously uncharacterized REST-dependent miRNAs. Interestingly, REST-regulated miRNAs undergo dynamic expression changes under differentiation conditions over time, but not under proliferation conditions. These results suggest that REST functions in a context-dependent manner through its target miRNAs for mediating neuronal production.

  9. MicroRNA expression analysis in the liver of high fat diet-induced obese mice

    Directory of Open Access Journals (Sweden)

    Won-Mo Yang

    2016-12-01

    Full Text Available A previous study indicated a causal link between certain miRNAs induced by obesity and the development of hepatic insulin resistance and type 2 diabetes. Here we provide accompanying data collected using Affymetrix GeneChip miRNAs microarrays to identify the changes in miRNAs expression in the liver of mice fed a high fat diet (HFD. Differentially expressed microRNA analyses in the liver of the HFD-fed mice revealed a range of upregulated (>1.5-fold or downregulated (<0.5-fold miRNAs. Among those upregulated miRNAs, in silico target analysis, such as TargetScan, PicTar, and miRWalk, identified miRNAs with the putative binding sites on the 3’UTRs of INSR and/or IRS-1. Interpretation of the data and further extensive insights into the implication of miRNAs, particularly miR-15b, in hepatic insulin resistance can be found in "Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes." (W.M. Yang, H.J. Jeong, S.W. Park, W. Lee, 2015[1].

  10. Lactation-related microRNA expression profiles of porcine breast milk exosomes.

    Directory of Open Access Journals (Sweden)

    Yiren Gu

    Full Text Available Breast milk is the primary source of nutrition for newborns, and is rich in immunological components. MicroRNAs (miRNAs are present in various body fluids and are selectively packaged inside the exosomes, a type of membrane vesicles, secreted by most cell types. These exosomal miRNAs could be actively delivered into recipient cells, and could regulate target gene expression and recipient cell function. Here, we analyzed the lactation-related miRNA expression profiles in porcine milk exosomes across the entire lactation period (newborn to 28 days after birth by a deep sequencing. We found that immune-related miRNAs are present and enriched in breast milk exosomes (p<10(-16, χ(2 test and are generally resistant to relatively harsh conditions. Notably, these exosomal miRNAs are present in higher numbers in the colostrums than in mature milk. It was higher in the serum of colostrum-only fed piglets compared with the mature milk-only fed piglets. These immune-related miRNA-loaded exosomes in breast milk may be transferred into the infant body via the digestive tract. These observations are a prelude to in-depth investigations of the essential roles of breast milk in the development of the infant's immune system.

  11. Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Lian-Fang Lin

    Full Text Available Luteolin (3',4',5,7-tetrahydroxyflavone, a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132 in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB, which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA and MAPK/ERK kinase 1/2 (MEK1/2 inhibitors but not by protein kinase C (PKC or calcium/calmodulin-dependent protein kinase II (CaMK II inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.

  12. Expression of human ARGONAUTE 2 inhibits endogenous microRNA activity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ira eDeveson

    2013-04-01

    Full Text Available Plant and animal microRNA (miRNA pathways share many analogous components, the ARGONAUTE (AGO proteins being foremost among them. We sought to ascertain the degree of functional conservation shared by Homo sapiens ARGONAUTE 2 (HsAGO2 and Arabidopsis thaliana ARGONAUTE 1 (AtAGO1, which are the predominant AGO family members involved with miRNA activity in their respective species. Transgenic Arabidopsis plants expressing HsAGO2 were indistinguishable from counterparts over-expressing AtAGO1, each group exhibiting the morphological and molecular hallmarks of miRNA-pathway loss-of-function alleles. However, unlike AtAGO1, HsAGO2 was unable to rescue the ago1-27 allele. We conclude that, despite the evolutionary gulf between them, HsAGO2 is likely capable of interacting with some component/s of the Arabidopsis miRNA pathway, thereby perturbing its operation, although differences have arisen such that HsAGO2 alone is insufficient to confer efficient silencing of miRNA targets in planta.

  13. MicroRNA-16 suppresses epithelial-mesenchymal transition‑related gene expression in human glioma.

    Science.gov (United States)

    Wang, Qin; Li, Xu; Zhu, Yu; Yang, Ping

    2014-12-01

    Glioma is one of the most prevalent types of brain tumor and is associated with the highest mortality rate of all CNS cancers. Epithelial‑mesenchymal transition (EMT) has been recognized as an important factor in tumor metastasis. Previously, it has been demonstrated that microRNA-16 (miR-16) has an important role in tumor metastasis in human cancer cell lines. However, the role of miR-16 in epithelial‑mesenchymal transition of human glioma cells remains unclear. In the present study, U87 and U251 glioma cell lines overexpressing miR-16 were established and it was identified that miR-16 suppressed invasion, adhesion, cell cycle, production of interleukin (IL)-6, IL-8 and transforming growth factor-β, and EMT-related gene expression, including vimentin, β-catenin and E-cadherin in miR-16 overexpressing U87 and U251 glioma cells. Furthermore, miR-16 suppressed EMT mainly through the downregulation of p-FAK and p-Akt expression, and nuclear factor-κB and Slug transcriptional activity. Therefore, miR-16 may be an important therapeutic target and predictor for glioma therapy.

  14. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions.

    Directory of Open Access Journals (Sweden)

    Jiejie Shen

    Full Text Available Hydrogen sulfide (H2S is a gasotransmitter and plays an important role in many physiological processes in mammals. Studies of its functions in plants are attracting ever growing interest, for example, its ability to enhance drought resistance in Arabidopsis. A general role of microRNAs (miRNAs in plant adaptive responses to drought stress has thereby increased our interest to delve into the possible interplay between H2S and miRNAs. Our results showed that treating wild type (WT Arabidopsis seedlings with polyethylene glycol 8000 (PEG8000 to simulate drought stress caused an increase in production rate of endogenous H2S; and a significant transcriptional reformation of relevant miRNAs, which were also triggered by exogenous H2S in WT. When lcd mutants (with lower H2S production rate than WT were treated with PEG8000, they showed lower levels of miRNA expression changes than WT. In addition, we detected significant changes in target gene expression of those miRNAs and the corresponding phenotypes in lcd, including less roots, retardation of leaf growth and development and greater superoxide dismutase (SOD activity under drought stress. We thereby conclude that H2S can improve drought resistance through regulating drought associated miRNAs in Arabidopsis.

  15. Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags.

    Science.gov (United States)

    Song, C; Jia, Q; Fang, J; Li, F; Wang, C; Zhang, Z

    2010-11-01

    MicroRNAs (miRNAs) are a new family of small RNA molecules found in plants and animals. We developed a comprehensive strategy for identifying new miRNA homologues by mining the repository of available citrus expressed sequence tags (ESTs). By adopting a range of filtering criteria, we identified a total of 38 potential miRNAs--nine, five, nine and 15 miRNAs in Citrus trifoliata (ctr-miRNAs), C. clementina (ccl-miRNAs), C. reticulata (crt-miRNAs) and C. sinensis (csi-miRNAs), respectively--from more than 430,000 EST sequences in citrus. Using the potential miRNA sequences, we conducted a further BLAST search of the mRNA database and found six potential target genes in these citrus species. Eight miRNAs were selected in order to verify their existence in citrus using Northern blotting, and the functions of several miRNAs in miRNA-mediated gene regulation are experimentally suggested. It appears that all these miRNAs regulate expression of their target genes by cleavage, which is the most common situation in gene regulation mediated by plant miRNAs. Our achievement in identifying new miRNAs in citrus provides a powerful incentive for further studies on the important roles of these miRNAs.

  16. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Shuqiang Li

    Full Text Available Chronic lymphocytic leukemia (CLL is thought to be a disease of resting lymphocytes. However, recent data suggest that CLL cells may more closely resemble activated B cells. Using microRNA (miRNA expression profiling of highly-enriched CLL cells from 38 patients and 9 untransformed B cells from normal donors before acute CpG activation and 5 matched B cells after acute CpG activation, we demonstrate an activated B cell status for CLL. Gene set enrichment analysis (GSEA identified statistically-significant similarities in miRNA expression between activated B cells and CLL cells including upregulation of miR-34a, miR-155, and miR-342-3p and downregulation of miR-103, miR-181a and miR-181b. Additionally, decreased levels of two CLL signature miRNAs miR-29c and miR-223 are associated with ZAP70(+ and IgV(H unmutated status and with shorter time to first therapy. These data indicate an activated B cell status for CLL cells and suggest that the direction of change of individual miRNAs may predict clinical course in CLL.

  17. Expression of 6 MicroRNAs in Prostate Cancer and Its Significance

    Institute of Scientific and Technical Information of China (English)

    Ming Li; Liyu Cao; Hongfu Zhang; Yu Yin; Xiaochun Xu

    2009-01-01

    OBJECTIVE Numerous microRNAs (miRNAs) are deregulated in human cancers. The experimental evidence supports that miRNAs plays a role in the initiation and progression of human malignancies.The present study was undertaken to evaluate the differential expression of 6 miRNAs as biomarker for early detection of prostate cancer, and then to determine whether the expression profiling of these miRNAs could predict the prognosis of prostate cancer.METHODS The expression profilings of these 6 miRNAs were investigated using the method of locked nucleic acid (LNA)-modified oligonucleotide in situ hybridization (ISH). And the technology of tissue microarray (TMA) was employed using the formalin-fixed, paraffin-embedd (FFPE) specimens taken from 52 patients with prostate carcinoma (PCa) and 38 patients with benign prostatic hyperplasia (BPH).RESULTS The rates of positive expression for 6 miRNAs (miR-15b, miR-16, let-7g, miR- 96,miR-182 and miR-183) were 26.92%,15.38%o, 15.38%, 67.31%, 61.54% and 71.15% in the specimens of prostate cancer, and 57.89%, 76.32%, 68.42%, 44.74%, 31.58%,47.37% in the tissues of benign prostatic hyperplasia, respectively.The expressions of all 6 miRNAs between the prostate cancer and benign prostatic hyperplasia tissues were significantly different (P 0.05). We also found that the expression of miR-15b, miR-96 and miR-182 correlated with clinical stages of tumor (P 0.05). In addition, the expression of miR-15b was negatively related to that of miR-96,miR-182 and miR-183, respectively (P 0.00). The expression of miR-16 was positively related to that of miR-let-7g (P 0.00).CONCLUSION The results suggest that miRNA expression profiling could have relevance to the biological and clinical behavior of prostate cancer, and they might be important biomarkers for early detection and prognostic assessment of prostate cancer.

  18. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle

    OpenAIRE

    Mardaryev, Andrei N.; Ahmed, Mohammed I.; Vlahov, Nikola V.; Fessing, Michael Y.; Gill, Jason H; Sharov, Andrey A.; Botchkareva, Natalia V.

    2010-01-01

    The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases duri...

  19. Trichostatin A induces a unique set of microRNAs including miR-129-5p that blocks cyclin-dependent kinase 6 expression and proliferation in H9c2 cardiac myocytes.

    Science.gov (United States)

    Majumdar, Gipsy; Raghow, Rajendra

    2016-04-01

    The pan-histone deacetylase inhibitor (HDACI), trichostatin A (TSA), was shown to normalize interleukin-18-induced cardiac hypertrophy in vivo and in vitro; evidently, this occurred via epigenetic mechanisms that profoundly altered cardiac gene expression (Majumdar et al. in, Physiol Genom, 43: 1392, 2011; BMC Genom, 13: 709, 2012). Here, we tested the hypothesis that TSA-induced changes in chromatin architecture also led to altered expression of microRNAs that in turn, contributed to the unique transcriptome of cardiac myocytes exposed to the HDACI. Using miRCURY LNA™ Universal microRNA PCR system, we demonstrate that H9c2 cells exposed to TSA for 6 and 24 h elicited differential expression of 19 and 16 microRNAs, respectively. H9c2 cells incubated in medium-containing 100 nM of TSA elicited a rapid and robust induction of miR-129-5p. Enhanced expression of miR-129-5p was also observed in the hearts of TSA-treated mice. Induction of miR-129-5p in H9c2 cells was accompanied by reduced expression of its direct target, cyclin-dependent kinase 6 (CDK6) that is a key regulator of cell cycle. Using cell division-dependent dilution of Cell Trace™ violet measurements we showed that concomitant induction of miR-129-5p and reduced CDK6 expression were mechanistically involved in TSA-induced inhibition of proliferation of H9c2 cells. Consistent with this scenario, cells expressing an antagomiR of miR-129-5p were resistant to the anti-proliferative actions of TSA. These data indicate that although TSA treatment led to altered expression of several microRNAs, the overarching action of TSA (i.e., inhibition of cell division) in H9c2 cells was achieved via miR-129-5p.

  20. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects.

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    Full Text Available Because of the role played by miRNAs in post-transcriptional regulation of an array of genes, their impact in neuropsychiatric disease pathophysiology has increasingly been evident. In the present study, we assessed microRNA expression in prefrontal cortex (Brodmann area 10 of a well-characterized cohort of major depressed, bipolar, and schizophrenia subjects (obtained from Stanley Neuropathology Consortium; n = 15 in each group, using high throughput RT-PCR plates. Discrete miRNA alterations were observed in all disorders, as well as in suicide subjects (pooled across diagnostic categories compared to all non-suicide subjects. The changes in the schizophrenia group were partially similar to those in the bipolar group, but distinct from changes in depression and suicide. Intriguingly, those miRNAs which were down-regulated in the schizophrenia group tended to be synaptically enriched, whereas up-regulated miRNAs tended not to be. To follow this up, we purified synaptosomes from pooled samples of the schizophrenia vs. control groups and subjected them to Illumina deep sequencing. There was a significant loss of small RNA expression in schizophrenia synaptosomes only for certain sequence lengths within the miRNA range. Moreover, 73 miRNAs were significantly down-regulated whereas only one was up-regulated. Strikingly, across all expressed miRNAs in synaptosomes, there was a significant inverse correlation between the fold-change of a given miRNA seen in schizophrenia and its synaptic enrichment ratio observed in controls. Thus, synaptic miRNAs tended to be down-regulated in schizophrenia, and the more highly synaptically enriched miRNAs tended to show greater down-regulation. These findings point to some deficit in miRNA biogenesis, transport, processing or turnover in schizophrenia that is selective for the synaptic compartment. A novel class of ncRNA-derived small RNAs, shown to be strongly induced during an early phase of learning in mouse

  1. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects.

    Science.gov (United States)

    Smalheiser, Neil R; Lugli, Giovanni; Zhang, Hui; Rizavi, Hooriyah; Cook, Edwin H; Dwivedi, Yogesh

    2014-01-01

    Because of the role played by miRNAs in post-transcriptional regulation of an array of genes, their impact in neuropsychiatric disease pathophysiology has increasingly been evident. In the present study, we assessed microRNA expression in prefrontal cortex (Brodmann area 10) of a well-characterized cohort of major depressed, bipolar, and schizophrenia subjects (obtained from Stanley Neuropathology Consortium; n = 15 in each group), using high throughput RT-PCR plates. Discrete miRNA alterations were observed in all disorders, as well as in suicide subjects (pooled across diagnostic categories) compared to all non-suicide subjects. The changes in the schizophrenia group were partially similar to those in the bipolar group, but distinct from changes in depression and suicide. Intriguingly, those miRNAs which were down-regulated in the schizophrenia group tended to be synaptically enriched, whereas up-regulated miRNAs tended not to be. To follow this up, we purified synaptosomes from pooled samples of the schizophrenia vs. control groups and subjected them to Illumina deep sequencing. There was a significant loss of small RNA expression in schizophrenia synaptosomes only for certain sequence lengths within the miRNA range. Moreover, 73 miRNAs were significantly down-regulated whereas only one was up-regulated. Strikingly, across all expressed miRNAs in synaptosomes, there was a significant inverse correlation between the fold-change of a given miRNA seen in schizophrenia and its synaptic enrichment ratio observed in controls. Thus, synaptic miRNAs tended to be down-regulated in schizophrenia, and the more highly synaptically enriched miRNAs tended to show greater down-regulation. These findings point to some deficit in miRNA biogenesis, transport, processing or turnover in schizophrenia that is selective for the synaptic compartment. A novel class of ncRNA-derived small RNAs, shown to be strongly induced during an early phase of learning in mouse, is also

  2. MicroRNA-941 Expression in Polymorphonuclear Granulocytes Is Not Related to Granulomatosis with Polyangiitis

    Science.gov (United States)

    Svendsen, Jesper Brink; Baslund, Bo; Cramer, Elisabeth Præstekjær; Rapin, Nicolas; Borregaard, Niels

    2016-01-01

    Jumonji Domain-Containing Protein 3 (JMJD3)/lysine demethylase 6B (KDM6B) is an epigenetic modulator that removes repressive histone marks on genes. Expression of KDM6B mRNA is elevated in leukocytes from patients with ANCA-associated vasculitis (AAV) and has been suggested to be the reason for higher proteinase 3 (PR3) mRNA expression in these cells due to derepression of PRTN3 gene transcription. MicroRNA-941 (miR-941) has been shown to target KDM6B mRNA and inhibit JMJD3 production. We therefore investigated whether polymorphonuclear granulocytes (PMNs) from patients suffering from granulomatosis with polyangiitis (GPA) have lower expression of miR-941 than healthy control donors as a biological cause for higher JMJD3 levels. We found no significant difference in the degree of maturation of PMNs from GPA patients (n = 8) and healthy controls (n = 11) as determined from cell surface expression of the neutrophil maturation marker CD16 and gene expression profile of FCGR3B. The expression of PRTN3 and KDM6B mRNAs and miR-941 was not significantly different in GPA patients and healthy controls. Transfection of pre-miR-941 into the neutrophil promyelocyte cell line PLB-985 cells did not result in reduction of the KDM6B mRNA level as shown previously in a hepatocellular carcinoma cell line. The amount of PR3 in PMNs from GPA patients and healthy controls was comparable. In conclusion, we found that PRTN3 mRNA, KDM6B mRNA, and miR-941 expression levels in PMNs do not differ between GPA patients and healthy controls, and that miR-941 does not uniformly regulate KDM6B mRNA levels by inducing degradation of the transcript. Thus, decreased miR-941 expression in PMNs cannot be part of the pathogenesis of GPA. PMID:27755585

  3. Expression Patterns of MicroRNAs in the Chorioamniotic Membranes: a Role for MicroRNAs in Human Pregnancy and Parturition

    Science.gov (United States)

    Montenegro, Daniel; Romero, Roberto; Kim, Sung-Su; Tarca, Adi L; Draghici, Sorin; Kusanovic, Juan Pedro; Kim, Jung-Sun; Lee, Deug-Chan; Erez, Offer; Gotsch, Francesca; Hassan, Sonia S.; Kim, Chong Jai

    2014-01-01

    MicroRNAs (miRNAs) are involved in the post-transcriptional regulation of gene expression during development. This study was performed to determine gestational age-dependent changes in miRNA expression in the chorioamniotic membranes and to assess the significance of miRNAs in human pregnancy and parturition. The expression profile of 455 miRNAs was compared between patients at term without labor (TNL: n=10), in labor (TL: n=10), and preterm labor (PTL: n=10) using microarrays. A total of 39 miRNAs were differentially expressed between term and preterm cases, of which 31 (79.5%) were down-regulated at term. Expression of 10 miRNAs, including miR-338, differentially expressed between PTL and TL groups was decreased at term. Computational analyses using miRBase Targets have identified PLA2G4B, a phospholipase implicated in parturition, as a putative target of miR-338. Inhibition of endogenous miR-338 with anti-miR-338 increased the mRNA and protein expression of PLA2G4B in decidual cells. Luciferase assay with reporter constructs confirmed that the suppression of PLA2G4B occurs through binding of miR-338 to the 3’UTR of PLA2G4B. Interestingly, the expression of Dicer, a key miRNA-processing enzyme, was markedly decreased at term, particularly with labor in the chorioamniotic membranes. Collectively, the novel findings reported herein strongly suggest that post-transcriptional regulation of genes by miRNAs, coupled with the changes of miRNA processing machinery in the chorioamniotic membranes, plays a role in pregnancy and parturition. Furthermore, the expression level of Dicer in the chorioamniotic membranes dichotomizes pathological preterm labor and physiological spontaneous labor at term. PMID:18991333

  4. Correlation of microRNA-124 expression in cervical cancer tissue with cancer cell growth and invasion

    Institute of Scientific and Technical Information of China (English)

    Yi Zhu

    2016-01-01

    Objective:To study the correlation of microRNA-124 expression in cervical cancer tissue with cancer cell growth and invasion.Methods: A total of 56 cases of cervical cancer tissue samples and 60 cases of normal cervical tissue samples were selected for study, and microRNA-124 expression levels as well as protein content of proliferation, apoptosis and invasion genes in cervical tissue samples were determined.Results: The relative expression level of miR-124 in cervical cancer tissue was significantly lower than that in normal cervical tissue and the higher the FIGO staging, the lower the relative expression level of miR-124; cervical cancer tissue with different miR-124 expression was divided into group A-D according to quartile, there were differences in the protein content of cyclinD1, CDK4, CDK6, Prdx4, TNFAIP8, Piwil2, p16, p27, Caspase-3, Ezrin, CD44v6, E-cadherin andβ-catenin in cervical cancer tissue of group A, B, C and D, and the lower the relative expression level of miR-124, the higher the protein content of cyclinD1, CDK4, CDK6, Prdx4, TNFAIP8, Piwil2 as well as Ezrin and CD44v6, and the lower the protein content of p16, p27, Caspase-3 as well as E-cadherin andβ-catenin.Conclusions: microRNA-124 shows a trend of lower expression in cervical cancer tissue and is closely related to the excessive proliferation, insufficient apoptosis and invasive growth of cancer cells.

  5. MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Brian S Letzen

    Full Text Available BACKGROUND: Cells of the oligodendrocyte (OL lineage play a vital role in the production and maintenance of myelin, a multilamellar membrane which allows for saltatory conduction along axons. These cells may provide immense therapeutic potential for lost sensory and motor function in demyelinating conditions, such as spinal cord injury, multiple sclerosis, and transverse myelitis. However, the molecular mechanisms controlling OL differentiation are largely unknown. MicroRNAs (miRNAs are considered the "micromanagers" of gene expression with suggestive roles in cellular differentiation and maintenance. Although unique patterns of miRNA expression in various cell lineages have been characterized, this is the first report documenting their expression during oligodendrocyte maturation from human embryonic stem (hES cells. Here, we performed a global miRNA analysis to reveal and identify characteristic patterns in the multiple stages leading to OL maturation from hES cells including those targeting factors involved in myelin production. METHODOLOGY/PRINCIPAL FINDINGS: We isolated cells from 8 stages of OL differentiation. Total RNA was subjected to miRNA profiling and validations preformed using real-time qRT-PCR. A comparison of miRNAs from our cultured OLs and OL progenitors showed significant similarities with published results from equivalent cells found in the rat and mouse central nervous system. Principal component analysis revealed four main clusters of miRNA expression corresponding to early, mid, and late progenitors, and mature OLs. These results were supported by correlation analyses between adjacent stages. Interestingly, the highest differentially-expressed miRNAs demonstrated a similar pattern of expression throughout all stages of differentiation, suggesting that they potentially regulate a common target or set of targets in this process. The predicted targets of these miRNAs include those with known or suspected roles in

  6. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations.

    Science.gov (United States)

    Duregon, Eleonora; Rapa, Ida; Votta, Arianna; Giorcelli, Jessica; Daffara, Fulvia; Terzolo, Massimo; Scagliotti, Giorgio V; Volante, Marco; Papotti, Mauro

    2014-08-01

    Several microRNAs (miRNAs) were shown to be deregulated in adrenocortical carcinoma (ACC) as compared with adenoma, but a detailed assessment of their expression in its histologic variants and correlation with clinicopathologic characteristics has not been performed, so far. Our aim was to assess the expression of 5 selected miRNAs (IGF2 gene-related miR-483-3p and 5p and hypoxia-induced miR-210, miR-195, and miR-1974) in a series of 51 ACCs (35 classical, 6 myxoid, and 10 oncocytic) as compared with clinical and pathologic features and immunohistochemical expression of prognostic markers, including steroidogenic factor 1, p53, β-catenin, and glucose transporter 1. Oncocytic carcinomas had a reduced expression of miR-483-3p (P = .0325), miR-483-5p (P = .0175), and miR-210 (P = .0366), as compared with other histotypes. Overexpression of miR-210 was associated with the presence of necrosis (P = .0035), high Ki-67 index (P = .0013), and high glucose transporter 1 expression (P = .0043), whereas an inverse correlation with mitotic rate was observed in cases with high miR-493-3p (P = .0191) and miR-1974 (P = .0017) expression. High miR-1974 was also associated with low Ki-67 (P = .0312) and European Network for the Study of Adrenal Tumors stage (P = .0082) and negative p53 (P = .0013). At univariate analysis myxoid/classic histotype (P = .026), high miR-210 (P = .0465), high steroidogenic factor 1 protein (P = .0017), high Ki-67 (P = .0066), and high mitotic index (P = .0006) were significantly associated the shorter overall survival, the latter being the sole independent prognostic factor at multivariate analysis (P = .017). In conclusion, (a) miR-483-3p, miR-483-5p, and miR-210 are differentially expressed in ACC variants, and (b) high miR-210 is associated with clinicopathologic parameters of aggressiveness and a poor prognosis.

  7. Regulation of coagulation factor XI expression by microRNAs in the human liver.

    Directory of Open Access Journals (Sweden)

    Salam Salloum-Asfar

    Full Text Available High levels of factor XI (FXI increase the risk of thromboembolic disease. However, the genetic and environmental factors regulating FXI expression are still largely unknown. The aim of our study was to evaluate the regulation of FXI by microRNAs (miRNAs in the human liver. In silico prediction yielded four miRNA candidates that might regulate FXI expression. HepG2 cells were transfected with miR-181a-5p, miR-23a-3p, miR-16-5p and miR-195-5p. We used mir-494, which was not predicted to bind to F11, as a negative control. Only miR-181a-5p caused a significant decrease both in FXI protein and F11 mRNA levels. In addition, transfection with a miR-181a-5p inhibitor in PLC/PRF/5 hepatic cells increased both the levels of F11 mRNA and extracellular FXI. Luciferase assays in human colon cancer cells deficient for Dicer (HCT-DK demonstrated a direct interaction between miR-181a-5p and 3'untranslated region of F11. Additionally, F11 mRNA levels were inversely and significantly correlated with miR-181a-5p levels in 114 healthy livers, but not with miR-494. This study demonstrates that FXI expression is directly regulated by a specific miRNA, miR-181a-5p, in the human liver. Future studies are necessary to further investigate the potential consequences of miRNA dysregulation in pathologies involving FXI.

  8. Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus.

    Directory of Open Access Journals (Sweden)

    Yuanshuai Fu

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of endogenous small non-coding RNAs of 20-25 nucleotides that play a key role in diverse biological processes. Japanese flounder undergo dramatic metamorphosis in their early development. The metamorphosis is characterized by morphological transformation from a bilaterally symmetrical to an asymmetrical body shape concomitant with extensive morphological and physiological remodeling of organs. So far, only a few miRNAs have been identified in fish and there are very few reports about the Japanese flounder miRNA. METHODOLOGY/PRINCIPAL FINDINGS: Solexa sequencing technology was used to perform high throughput sequencing of the small RNA library from the metamorphic period of Japanese flounder. Subsequently, aligning these sequencing data with metazoan known miRNAs, we characterized 140 conserved miRNAs and 57 miRNA: miRNA* pairs from the small RNA library. Among these 57 miRNA: miRNA* pairs, twenty flounder miRNA precursors were amplified from genomic DNA. We also demonstrated evolutionary conservation of Japanese flounder miRNAs and miRNA* in the animal evolution process. Using miRNA microarrays, we identified 66 differentially expressed miRNAs at two metamorphic stages (17 and 29 days post hatching of Japanese flounder. The results show that miRNAs might play a key role in regulating gene expression during Japanese flounder metamorphosis. CONCLUSIONS/SIGNIFICANCE: We identified a large number of miRNAs during flounder metamorphosis, some of which are differentially expressed at two different metamorphic stages. The study provides an opportunity for further understanding of miRNA function in the regulation of flounder metamorphosis and gives us clues for further studies of the mechanisms of metamorphosis in Japanese flounder.

  9. Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1.

    Science.gov (United States)

    Fritegotto, Chiara; Ferrati, Chiara; Pegoraro, Valentina; Angelini, Corrado

    2017-04-01

    We aimed to explore the cellular action of micro-RNAs that are non-coding-RNAs modulating gene expression, whose expression is dysregulated in myotonic dystrophy (DM1). Basic procedure was to measure the levels of muscle-specific myo-miRNAs (miR-1, miR-133a/b, miR-206) in muscle of 12 DM1 patients. Muscle fiber morphometry and a new grading of histopathological severity score were used to compare specific myo-miRNA level and fiber atrophy. We found that the levels of miR-1 and miR-133a/b were significantly decreased, while miR-206 was significantly increased as compared to controls. The histopathological score did not significantly correlate with the levels of myo-miRNAs, even if the lowest levels of miRNA-1 and miRNA-133a/b, and the highest levels of miRNA-206 were observed in patients with either severe histopathological scores or long disease duration. The histopathological score was inversely correlated with disease duration. Nowadays that DM1 muscle biopsies are scanty, since patients are usually diagnosed by genetic analysis, our study offers a unique opportunity to present miRNA expression profiles in muscle and correlate them to muscle morphology in this rare multisystem disorder. Our molecular and morphologic data suggest a post-transcriptional regulatory action of myo-miRNA in DM1, highlighting their potential role as biomarkers of muscle plasticity.

  10. Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa.

    Directory of Open Access Journals (Sweden)

    Yuepeng Song

    Full Text Available Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs. The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca(2+ transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant.

  11. Global microRNA expression is essential for murine mast cell development in vivo.

    Science.gov (United States)

    Oh, Sun Young; Brandal, Stephanie; Kapur, Reuben; Zhu, Zhou; Takemoto, Clifford M

    2014-10-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that have been shown to play a critical role in normal physiology and disease, such as hematopoietic development and cancer. However, their role in mast-cell function and development is poorly understood. The major objective of this study was to determine how global miRNA expression affects mast-cell physiology. The RNase III endonuclease, Dicer, is required for the processing of pre-miRNAs into mature miRNAs. To investigate the effect of global miRNA depletion on mast cells in vivo, we generated a mast-cell-specific knock out of Dicer in mice. Transgenic mice (Mcpt5-Cre) that express Cre selectively in connective tissue mast cells were crossed with mice carrying the floxed conditional Dicer allele (Dicer fl/fl). Mcpt5-Cre × Dicer fl/fl mice with homozygous Dicer gene deletion in mast cells were found to have a profound mast-cell deficiency with near complete loss of peritoneal, gastrointestinal, and skin mast cells. We examined the in vivo functional consequence of mast-cell-specific Dicer deletion using an immunoglobulin-E-dependent passive systemic anaphylaxis murine model. Immunoglobulin-E-sensitized wild type Mcpt5-Cre × Dicer +/+ and heterozygous Mcpt5-Cre × Dicer fl/+ mice show marked hypothermia with antigen; however, homozygous Mcpt5-Cre × Dicer fl/fl mice were completely unresponsive to antigen challenge. These studies suggest a critical role for Dicer and miRNA expression for establishment of tissue compartments of functional mast cells in vivo.

  12. microRNA expression pattern modulates temozolomide response in GBM tumors with cancer stem cells.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Preusser, Matthias; Berghoff, Anna Sophie; Egeli, Unal; Cecener, Gulsah; Ricken, Gerda; Budak, Ferah; Taskapılıoglu, Mevlut Ozgur; Kocaeli, Hasan; Tolunay, Sahsine

    2014-07-01

    Temozolomide (TMZ) is widely used to treat glioblastoma multiforme (GBM). Although the MGMT gene methylation status is postulated to correlate with TMZ response, some patients with a methylated MGMT gene still do not benefit from TMZ therapy. Cancer stem cells (CSCs) may be one of the causes of therapeutic resistance, but the molecular mechanism underlying this resistance is unclear. microRNA (miRNA) deregulation has been recognized as another chemoresistance modulating mechanism. Thus, we aimed to evaluate the miRNA expression patterns associated with chemoresistance that is dependent on the CSC status in GBM tumors to identify therapeutic biomarkers. CSCs were identified in 5 of 20 patients' tumor tissues using magnetic separation. CSC (+) tumors displayed a significant induction of CpG island methylation in the MGMT gene promoter (p = 0.009). Using real-time reverse transcription polymerase chain reaction (qRT-PCR), 9 miRNAs related to GBM (mir-181b, miR-153, miR-137, miR-145, miR-10a, miR-10b, let-7d, miR-9, and miR-455-3p), which are associated with cell cycle and invasion was analyzed in tumor samples. Low miR-181b and high miR-455-3p expression levels were detected (p = 0.053, p = 0.004; respectively) in CSC (+) tumors. Analysis revealed a significant correlation between miR-455-3p expression and Smad2 protein levels as analyzed by immunohistochemistry in CSC (+) tumors (p = 0.002). Thus, miR-455-3p may be involved in TMZ resistance in MGMT methylated CSC (+) GBM patients. Further studies and evaluations are required, but this miRNA may provide novel therapeutic molecular targets for GBM treatment and new directions for the development of anticancer drugs.

  13. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  14. Prolonged morphine administration alters protein expression in the rat myocardium

    OpenAIRE

    Drastichova Zdenka; Skrabalova Jitka; Neckar Jan; Kolar Frantisek; Novotny Jiri

    2011-01-01

    Abstract Background Morphine is used in clinical practice as a highly effective painkiller as well as the drug of choice for treatment of certain heart diseases. However, there is lack of information about its effect on protein expression in the heart. Therefore, here we aimed to identify the presumed alterations in rat myocardial protein levels after prolonged morphine treatment. Methods Morphine was administered to adult male Wistar rats in high doses (10 mg/kg per day) for 10 days. Protein...

  15. Marek’s disease virus-encoded microRNAs: genomics, expression and function

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    MicroRNAs (miRNAs) are the recently discovered small non-coding RNA molecules that have post-transcriptional regulatory functions in many important biological processes. A large number of miRNAs have been found to be encoded by viral genomes, especially in herpesviruses. Previous research regarding miRNAs encoded by herpesviruses, including Marek’s disease virus (MDV), has demonstrated their involvement in lytic replication, latent infection, T-lymphocyte transformation and tumorigenesis. MDV is an oncogenic alphaherpesvirus, with the ability to induce tumors in natural hosts; however, formation of these tumors can be prevented by immunization with attenuated or nonpathogenic forms of the virus. Marek’s disease is considered to be a good biomedical model for investigating the biology, genetics, and immunology of tumorigenesis. In this paper, we review the discovery and identification of MDV-encoded miRNAs, along with their genomics, expression profiles, and currently known functions. We also discuss the prospects and techniques possibly applicable to the further investigation of the biological roles of MDV-encoded miRNAs.

  16. Cross-platform analysis of global microRNA expression technologies

    Directory of Open Access Journals (Sweden)

    Stead John DH

    2010-05-01

    Full Text Available Abstract Background Although analysis of microRNAs (miRNAs by DNA microarrays is gaining in popularity, these new technologies have not been adequately validated. We examined within and between platform reproducibility of four miRNA array technologies alongside TaqMan PCR arrays. Results Two distinct pools of reference materials were selected in order to maximize differences in miRNA content. Filtering for miRNA that yielded signal above background revealed 54 miRNA probes (matched by sequence across all platforms. Using this probeset as well as all probes that were present on an individual platform, within-platform analyses revealed Spearman correlations of >0.9 for most platforms. Comparing between platforms, rank analysis of the log ratios of the two reference pools also revealed high correlation (range 0.663-0.949. Spearman rank correlation and concordance correlation coefficients for miRNA arrays against TaqMan qRT-PCR arrays were similar for all of the technologies. Platform performances were similar to those of previous cross-platform exercises on mRNA and miRNA microarray technologies. Conclusions These data indicate that miRNA microarray platforms generated highly reproducible data and can be recommended for the study of changes in miRNA expression.

  17. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    Science.gov (United States)

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.

  18. Gastrointestinal hyperplasia with altered expression of DNA polymerase beta.

    Directory of Open Access Journals (Sweden)

    Katsuhiko Yoshizawa

    Full Text Available BACKGROUND: Altered expression of DNA polymerase beta (Pol beta has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol beta over-expression has not yet been evaluated in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS: We have recently developed a novel transgenic mouse model that over-expresses Pol beta. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol beta over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol beta expression. We observed elevated expression of Pol beta in stomach adenomas and thyroid follicular carcinomas, but reduced Pol beta expression in esophageal adenocarcinomas and squamous carcinomas. CONCLUSIONS/SIGNIFICANCE: These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation.

  19. Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum

    Directory of Open Access Journals (Sweden)

    Leterme Nathalie

    2010-05-01

    Full Text Available Abstract Background Post-transcriptional regulation in eukaryotes can be operated through microRNA (miRNAs mediated gene silencing. MiRNAs are small (18-25 nucleotides non-coding RNAs that play crucial role in regulation of gene expression in eukaryotes. In insects, miRNAs have been shown to be involved in multiple mechanisms such as embryonic development, tissue differentiation, metamorphosis or circadian rhythm. Insect miRNAs have been identified in different species belonging to five orders: Coleoptera, Diptera, Hymenoptera, Lepidoptera and Orthoptera. Results We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 149 miRNAs including 55 conserved and 94 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode. Pea aphid microRNA sequences have been posted to miRBase: http://microrna.sanger.ac.uk/sequences/ Conclusions Our study has identified candidates as putative regulators involved in reproductive polyphenism in aphids and opens new avenues for further functional analyses.

  20. Prolonged morphine administration alters protein expression in the rat myocardium

    Directory of Open Access Journals (Sweden)

    Drastichova Zdenka

    2011-11-01

    Full Text Available Abstract Background Morphine is used in clinical practice as a highly effective painkiller as well as the drug of choice for treatment of certain heart diseases. However, there is lack of information about its effect on protein expression in the heart. Therefore, here we aimed to identify the presumed alterations in rat myocardial protein levels after prolonged morphine treatment. Methods Morphine was administered to adult male Wistar rats in high doses (10 mg/kg per day for 10 days. Proteins from the plasma membrane- and mitochondria-enriched fractions or cytosolic proteins isolated from left ventricles were run on 2D gel electrophoresis, scanned and quantified with specific software to reveal differentially expressed proteins. Results Nine proteins were found to show markedly altered expression levels in samples from morphine-treaded rats and these proteins were identified by mass spectrometric analysis. They belong to different cell pathways including signaling, cytoprotective, and structural elements. Conclusions The present identification of several important myocardial proteins altered by prolonged morphine treatment points to global effects of this drug on heart tissue. These findings represent an initial step toward a more complex view on the action of morphine on the heart.

  1. MicroRNA dysregulation in Spinal Cord Injury: causes, consequences and therapeutics

    Directory of Open Access Journals (Sweden)

    Manuel eNieto-Díaz

    2014-02-01

    Full Text Available Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI. Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR/486, miR-20 involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.

  2. Effects of acute prenatal exposure to ethanol on microRNA expression are ameliorated by social enrichment

    Directory of Open Access Journals (Sweden)

    Cherry eIgnacio

    2014-09-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are associated with abnormal social behavior. These behavioral changes may resemble those seen in autism. Rats acutely exposed to ethanol on gestational day 12 show decreased social motivation at postnatal day 42. We previously showed that housing these ethanol-exposed rats with non-exposed controls normalized this deficit. The amygdala is critical for social behavior and regulates it, in part, through connections with the basal ganglia, particularly the ventral striatum. MicroRNAs (miRNAs are short, hairpin-derived RNAs that repress mRNA expression. Many brain disorders, including FASD, show dysregulation of miRNAs. In this study, we tested if miRNA and mRNA networks are altered in the amygdala and ventral striatum as a consequence of prenatal ethanol exposure and show any evidence of reversal as a result of Social Enrichment. RNA samples from two different brain regions in 72 male and female adolescent rats were analyzed by RNA-Seq and microarray analysis. Several miRNAs showed significant changes due to prenatal ethanol exposure and/or Social Enrichment in one or both brain regions. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. Several miRNA changes caused by ethanol were reversed by Social Enrichment, including mir-204, mir-299a, miR-384-5p, miR-222-3p, miR-301b-3p and mir-6239. Moreover, enriched gene networks incorporating the targets of these miRNAs also showed reversal. We also extended our previously published mRNA expression analysis by directly examining all annotated brain-related canonical pathways. The additional pathways that were most strongly affected at the mRNA level included p53, CREB, Glutamate and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for Social Enrichment to reverse the effects of ethanol exposure through widespread influences on gene expression.

  3. MicroRNA expression signatures of bladder cancer revealed by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Yonghua Han

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression. They are aberrantly expressed in many types of cancers. In this study, we determined the genome-wide miRNA profiles in bladder urothelial carcinoma by deep sequencing. METHODOLOGY/PRINCIPAL FINDINGS: We detected 656 differentially expressed known human miRNAs and miRNA antisense sequences (miRNA*s in nine bladder urothelial carcinoma patients by deep sequencing. Many miRNAs and miRNA*s were significantly upregulated or downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium. hsa-miR-96 was the most significantly upregulated miRNA and hsa-miR-490-5p was the most significantly downregulated one. Upregulated miRNAs were more common than downregulated ones. The hsa-miR-183, hsa-miR-200b ∼ 429, hsa-miR-200c ∼ 141 and hsa-miR-17 ∼ 92 clusters were significantly upregulated. The hsa-miR-143 ∼ 145 cluster was significantly downregulated. hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients. They were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium (p < 0.001 for each miRNA. CONCLUSIONS/SIGNIFICANCE: To date, this is the first study to determine genome-wide miRNA expression patterns in human bladder urothelial carcinoma by deep sequencing. We found that a collection of miRNAs were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium, suggesting that they might play roles as oncogenes or tumor suppressors in the development and/or progression of this cancer. Our data provide novel insights into cancer biology.

  4. MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression.

    Directory of Open Access Journals (Sweden)

    Sreekumar Othumpangat

    Full Text Available BACKGROUND: Early-life infection by respiratory syncytial virus (RSV is associated with aberrant expression of the prototypical neurotrophin nerve growth factor (NGF and its cognate receptors in human bronchial epithelium. However, the chain of events leading to this outcome, and its functional implications for the progression of the viral infection, has not been elucidated. This study sought to test the hypothesis that RSV infection modulates neurotrophic pathways in human airways by silencing the expression of specific microRNAs (miRNAs, and that this effect favors viral growth by interfering with programmed death of infected cells. METHODOLOGY: Human bronchial epithelial cells infected with green fluorescent protein-expressing RSV (rgRSV were screened with multiplex qPCR arrays, and miRNAs significantly affected by the virus were analyzed for homology with mRNAs encoding neurotrophic factors or receptors. Mimic sequences of selected miRNAs were transfected into non-infected bronchial cells to confirm the role of each of them in regulating neurotrophins expression at the gene and protein level, and to study their influence on cell cycle and viral replication. PRINCIPAL FINDINGS: RSV caused downregulation of 24 miRNAs and upregulation of 2 (p<0.01. Homology analysis of microarray data revealed that 6 of those miRNAs exhibited a high degree of complementarity to NGF and/or one of its cognate receptors TrKA and p75(NTR. Among the selected miRNAs, miR-221 was significantly downregulated by RSV and its transfection in bronchial epithelial cells maximally inhibited gene and protein expression of NGF and TrKA, increased apoptotic cell death, and reduced viral replication and infectivity. CONCLUSIONS/SIGNIFICANCE: Our data suggest that RSV upregulates the NGF-TrKA axis in human airways by silencing miR-221 expression, and this favors viral replication by interfering with the apoptotic death of infected cells. Consequently, the targeted delivery of

  5. Module network inference from a cancer gene expression data set identifies microRNA regulated modules.

    Directory of Open Access Journals (Sweden)

    Eric Bonnet

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small RNAs that recognize and regulate mRNA target genes. Multiple lines of evidence indicate that they are key regulators of numerous critical functions in development and disease, including cancer. However, defining the place and function of miRNAs in complex regulatory networks is not straightforward. Systems approaches, like the inference of a module network from expression data, can help to achieve this goal. METHODOLOGY/PRINCIPAL FINDINGS: During the last decade, much progress has been made in the development of robust and powerful module network inference algorithms. In this study, we analyze and assess experimentally a module network inferred from both miRNA and mRNA expression data, using our recently developed module network inference algorithm based on probabilistic optimization techniques. We show that several miRNAs are predicted as statistically significant regulators for various modules of tightly co-expressed genes. A detailed analysis of three of those modules demonstrates that the specific assignment of miRNAs is functionally coherent and supported by literature. We further designed a set of experiments to test the assignment of miR-200a as the top regulator of a small module of nine genes. The results strongly suggest that miR-200a is regulating the module genes via the transcription factor ZEB1. Interestingly, this module is most likely involved in epithelial homeostasis and its dysregulation might contribute to the malignant process in cancer cells. CONCLUSIONS/SIGNIFICANCE: Our results show that a robust module network analysis of expression data can provide novel insights of miRNA function in important cellular processes. Such a computational approach, starting from expression data alone, can be helpful in the process of identifying the function of miRNAs by suggesting modules of co-expressed genes in which they play a regulatory role. As shown in this study, those modules can then be

  6. Effects of antipsychotics on microRNA expression of peripheral blood in schizophrenia patients

    Directory of Open Access Journals (Sweden)

    Xin-yang SUN

    2015-01-01

    Full Text Available Objective To observe the changes in microRNA (miRNA expression levels in peripheral blood of schizophrenia patients before and after treatment with antipsychotics. Methods Sixty-one consecutive patients with schizophrenia (case group and 62 normal controls (control group hospitalized to the 102nd Hospital of PLA from July 2012 to May 2013 were involved in this study. The relative expression levels of 9 miRNAs (miR-181b, miR-195, miR-132, miR-212, miR-30e, miR-346, miR-34a, miR-432, miR-7 in the peripheral blood plasma of patients in two groups were determined by real-time fluorescence quantitative PCR. Twenty-five schizophrenia patients with total score of Positive and Negative Syndrome Scale (PANSS >70 were selected to determine the miRNA expression levels before and 3 and 6 weeks after antipsychotics (including olanzapine, quetiapine, ziprasidone and risperidone treatment, and the clinical symptoms and treatment effect in different stages of therapy were assessed by PANSS, Global Assessment Scale (GAS, and Clinical Global Impression scale (CGI. Results The expression levels of miR-181b, miR-30e, miR-346, miR-34a and miR-7 in case group were significantly higher than those in control group (P70, the expression level of miR-132 lowered 3 weeks after treatment (P0.05. The expression of miR-132, miR-195, miR-30e and miR-432 were significantly correlated with the PANSS total score and GAS score along with the treatment course (P<0.05. Conclusion The miR-181b, miR-132, miR-30e and miR-432 may be used as biological markers for the prediction of the prognosis of patients with schizophrenia. DOI: 10.11855/j.issn.0577-7402.2014.12.09

  7. microRNA Alterations Driving Acute and Late Stages of Radiation-Induced Fibrosis in a Murine Skin Model

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Brittany A. [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Ly, David; Savage, Jason E. [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Hewitt, Stephen M. [Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Dan, Tu D. [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Ylaya, Kris [Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Shankavaram, Uma [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Lim, Meng; Jin, Lianjin [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Camphausen, Kevin [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Mitchell, James B. [Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Simone, Nicole L., E-mail: nicole.simone@jeffersonhospital.org [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States)

    2014-09-01

    Purpose: Although ionizing radiation is critical in treating cancer, radiation-induced fibrosis (RIF) can have a devastating impact on patients' quality of life. The molecular changes leading to radiation-induced fibrosis must be elucidated so that novel treatments can be designed. Methods and Materials: To determine whether microRNAs (miRs) could be responsible for RIF, the fibrotic process was induced in the right hind legs of 9-week old CH3 mice by a single-fraction dose of irradiation to 35 Gy, and the left leg served as an unirradiated control. Fibrosis was quantified by measurements of leg length compared with control leg length. By 120 days after irradiation, the irradiated legs were 20% (P=.013) shorter on average than were the control legs. Results: Tissue analysis was done on muscle, skin, and subcutaneous tissue from irradiated and control legs. Fibrosis was noted on both gross and histologic examination by use of a pentachrome stain. Microarrays were performed at various times after irradiation, including 7 days, 14 days, 50 days, 90 days, and 120 days after irradiation. miR-15a, miR-21, miR-30a, and miR-34a were the miRs with the most significant alteration by array with miR-34a, proving most significant on confirmation by reverse transcriptase polymerase chain reaction, c-Met, a known effector of fibrosis and downstream molecule of miR-34a, was evaluated by use of 2 cell lines: HCT116 and 1522. The cell lines were exposed to various stressors to induce miR changes, specifically ionizing radiation. Additionally, in vitro transfections with pre-miRs and anti-miRs confirmed the relationship of miR-34a and c-Met. Conclusions: Our data demonstrate an inverse relationship with miR-34a and c-Met; the upregulation of miR-34a in RIF causes inhibition of c-Met production. miRs may play a role in RIF; in particular, miR-34a should be investigated as a potential target to prevent or treat this devastating side effect of irradiation.

  8. MicroRNA Expression Analyses in Preoperative Pancreatic Juice Samples of Pancreatic Ductal Adenocarcinoma

    OpenAIRE

    Yoshihiko Sadakari; Takao Ohtsuka; Kenoki Ohuchida; Kosuke Tsutsumi; Shunichi Takahata; Masafumi Nakamura; Kazuhiro Mizumoto; Masao Tanaka

    2010-01-01

    Context Cytological assessment of pancreatic juice is commonly used to diagnose pancreatic ductal adenocarcinoma; however, the sensitivity of cytological assessment has been reported to be low. MicroRNAs are small RNAs regulating various cellular processes and have recently been identified as possible markers of malignant diseases including pancreatic ductal adenocarcinoma. Objective The purposes of this study were to prove the existence of microRNAs in pancreatic juice and to determine w...

  9. Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes

    Directory of Open Access Journals (Sweden)

    Price Jennifer

    2011-01-01

    Full Text Available Abstract Background The molecular pathways involved in the interstitial lung diseases (ILDs are poorly understood. Systems biology approaches, with global expression data sets, were used to identify perturbed gene networks, to gain some understanding of the underlying mechanisms, and to develop specific hypotheses relevant to these chronic lung diseases. Methods Lung tissue samples from patients with different types of ILD were obtained from the Lung Tissue Research Consortium and total cell RNA was isolated. Global mRNA and microRNA were profiled by hybridization and amplification-based methods. Differentially expressed genes were compiled and used to identify critical signaling pathways and potential biomarkers. Modules of genes were identified that formed a regulatory network, and studies were performed on cultured cells in vitro for comparison with the in vivo results. Results By profiling mRNA and microRNA (miRNA expression levels, we found subsets of differentially expressed genes that distinguished patients with ILDs from controls and that correlated with different disease stages and subtypes of ILDs. Network analysis, based on pathway databases, revealed several disease-associated gene modules, involving genes from the TGF-β, Wnt, focal adhesion, and smooth muscle actin pathways that are implicated in advancing fibrosis, a critical pathological process in ILDs. A more comprehensive approach was also adapted to construct a putative global gene regulatory network based on the perturbation of key regulatory elements, transcription factors and microRNAs. Our data underscores the importance of TGF-β signaling and the persistence of smooth muscle actin-containing fibroblasts in these diseases. We present evidence that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT and the resultant persistence of mesenchymal cells

  10. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation

    DEFF Research Database (Denmark)

    Wainwright, Elanor N; Jorgensen, Joan S; Kim, Youngha;

    2013-01-01

    . Expression of the primary transcript of miR-202-5p/3p remained low in XY gonads in a conditional Sox9-null mouse model, suggesting that pri-miR-202 transcription is downstream of SOX9, a transcription factor that is both necessary and sufficient for male sex determination. We identified the pri-miR-202...... findings indicate that expression of the conserved gonad microRNA, miR-202-5p/3p, is downstream of the testis-determining factor SOX9, suggesting an early role in testis development....

  11. Encouraging expressions affect the brain and alter visual attention.

    Directory of Open Access Journals (Sweden)

    Manuel Martín-Loeches

    Full Text Available BACKGROUND: Very often, encouraging or discouraging expressions are used in competitive contexts, such as sports practice, aiming at provoking an emotional reaction on the listener and, consequently, an effect on subsequent cognition and/or performance. However, the actual efficiency of these expressions has not been tested scientifically. METHODOLOGY/PRINCIPAL FINDINGS: To fill this gap, we studied the effects of encouraging, discouraging, and neutral expressions on event-related brain electrical activity during a visual selective attention task in which targets were determined by location, shape, and color. Although the expressions preceded the attentional task, both encouraging and discouraging messages elicited a similar long-lasting brain emotional response present during the visuospatial task. In addition, encouraging expressions were able to alter the customary working pattern of the visual attention system for shape selection in the attended location, increasing the P1 and the SP modulations while simultaneously fading away the SN. CONCLUSIONS/SIGNIFICANCE: This was interpreted as an enhancement of the attentional processes for shape in the attended location after an encouraging expression. It can be stated, therefore, that encouraging expressions, as those used in sport practice, as well as in many other contexts and situations, do seem to be efficient in exerting emotional reactions and measurable effects on cognition.

  12. Correlation Between the Expression of MicroRNA-301a-3p and the Proportion of Th17 Cells in Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Tang, Xinyi; Yin, Kai; Zhu, Hongsheng; Tian, Jie; Shen, Dong; Yi, Lixian; Rui, Ke; Ma, Jie; Xu, Huaxi; Wang, Shengjun

    2016-04-01

    Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation and subsequent joint destruction. Previous studies have confirmed that Th17 cells play a critical role in the pathogenesis of RA. MicroRNA (miR)-301a-3p is a regulatory factor for Th17 cells differentiation that contributes to the pathogenesis of autoimmune diseases. The purposes of this study were to identify the alteration of Th17 cells and analyze the correlation between the expression of the miR-301a-3p and the proportion of Th17 cells in RA patients. The results showed that the frequency of Th17 cells and the expression of transcription factors (RORγt and STAT3) significantly increased in the peripheral blood mononuclear cells (PBMCs) from RA patients, and the associated proinflammatory cytokines were also upregulated. We also observed that the expression of protein inhibitor of activated STAT3 (PIAS3), the main cellular inhibitor of STAT3, was attenuated in RA patients and negatively correlated with the percentage of Th17 cells in RA. Interestingly, miR-301a-3p, an inhibitor of PIAS3 expression, was overexpressed in the PBMCs from RA patients and positively correlated with the frequency of Th17 cells in patients with RA. Taken together, these data indicated that miR-301a-3p and Th17 cells were augmented in peripheral blood, which may play an important role in the process of RA.

  13. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼ 30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5-7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.

  14. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi.

    Science.gov (United States)

    Poole, Catherine B; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J; Bauche, David; McReynolds, Larry A

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼ 30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5-7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.

  15. Sex-different and growth hormone-regulated expression of microRNA in rat liver

    Directory of Open Access Journals (Sweden)

    Tollet-Egnell Petra

    2009-02-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are short non-coding RNAs playing an important role in post-transcriptional regulation of gene expression. We have previously shown that hepatic transcript profiles are different between males and females; that some of these differences are under the regulation of growth hormone (GH; and that mild starvation diminishes some of the differences. In this study, we tested if hepatic miRNAs are regulated in a similar manner. Results Using microarrays, miRNA screening was performed to identify sex-dependent miRNAs in rat liver. Out of 324 unique probes on the array, 254 were expressed in the liver and eight (3% of 254 of those were found to be different between the sexes. Among the eight putative sex-different miRNAs, only one female-predominant miRNA (miR-29b was confirmed using quantitative real-time PCR. Furthermore, 1 week of continuous GH-treatment in male rats reduced the levels of miR-451 and miR-29b, whereas mild starvation (12 hours raised the levels of miR-451, miR-122a and miR-29b in both sexes. The biggest effects were obtained on miR-29b with GH-treatment. Conclusion We conclude that hepatic miRNA levels depend on the hormonal and nutritional status of the animal and show that miR-29b is a female-predominant and GH-regulated miRNA in rat liver.

  16. MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus

    Directory of Open Access Journals (Sweden)

    Jeongeun Hyun

    2016-06-01

    Full Text Available Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs, small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4 and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis.

  17. Similar Squamous Cell Carcinoma Epithelium microRNA Expression in Never Smokers and Ever Smokers.

    Science.gov (United States)

    Kolokythas, Antonia; Zhou, Yalu; Schwartz, Joel L; Adami, Guy R

    2015-01-01

    The incidence of oral tumors in patients who never used mutagenic agents such as tobacco is increasing. In an effort to better understand these tumors we studied microRNA (miRNA) expression in tumor epithelium of never tobacco users, tumor epithelium of ever tobacco users, and nonpathological control oral epithelium. A comparison of levels among 372 miRNAs in 12 never tobacco users with oral squamous cell carcinoma (OSCC) versus 10 healthy controls was made using the reverse transcription quantitative polymerase chain reaction. A similar analysis was done with 8 ever tobacco users with OSCC. These comparisons revealed miR-10b-5p, miR-196a-5p, and miR-31-5p as enriched in the tumor epithelium in OSCC of both never and ever tobacco users. Examination of The Cancer Genome Atlas (TCGA) project miRNA data on 305 OSCCs and 30 controls revealed 100% of those miRNAs enriched in never smoker OSCCs in this patient group were also enriched in ever smoker OSCCs. Nonsupervised clustering of TCGA OSCCs was suggestive of two or four subgroups of tumors based on miRNA levels with limited evidence for differences in tobacco exposure among the groups. Results from both patient groups together stress the importance of miR196a-5p in OSCC malignancy in both never and ever smokers, and emphasize the overall similarity of miRNA expression in OSCCs in these two risk groups. It implies that there may be great similarity in etiology of OSCC in never and ever smokers and that classifying OSCC based on tobacco exposure may not be helpful in the clinic.

  18. Hepatitis B surface antigen quantity positively correlates with plasma levels of microRNAs differentially expressed in immunological phases of chronic hepatitis B in children.

    Directory of Open Access Journals (Sweden)

    Thilde Nordmann Winther

    Full Text Available BACKGROUND AND AIM: Children with chronic hepatitis B (CHB are at high risk of progressive liver disease. It is suggested that a newly-identified panel of 16 microRNAs is important in the pathogenesis of CHB in children. Subviral hepatitis B surface antigen (HBsAg particles are produced in large excess over infectious virions. Interestingly, circulating HBsAg particles have been shown to carry microRNAs. A thorough characterisation of the identified microRNAs and HBsAg over time in plasma from children with CHB may provide useful information about the natural course of childhood CHB. PATIENTS AND METHODS: A cohort of 42 children with CHB was followed over time. Three to five blood samples were obtained from each child at minimum intervals of half a year; in total 180 blood samples. Plasma levels of the 16 microRNAs previously identified were analysed by quantitative real-time polymerase-chain-reaction. Plasma HBsAg was quantified using ARCHITECT® HBsAg assay. RESULTS: The presence of 14/16 plasma microRNAs in children with CHB was confirmed. All 14 microRNAs were significantly differentially expressed in different immunological phases of the disease. MicroRNA plasma levels were highest in immune-tolerant children, lower in immune-active children, and reached the lowest values in immune-inactive children, p<0.001. Plasma levels of four microRNAs decreased significantly over time in immune-tolerant and immune-active children whereas the microRNA plasma levels were stable in immune-inactive children, p<0.004. HBsAg quantity was positively correlated with plasma levels of 11/14 microRNAs, p<0.004. CONCLUSION: This is the first study to characterise plasma microRNAs and HBsAg over time in children with CHB. Our data suggest that plasma levels of selected microRNAs and HBsAg are inversely correlated with immunological control of CHB in children. Further studies are, however, needed to advance the understanding of microRNAs and HBsAg in the

  19. MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants

    Directory of Open Access Journals (Sweden)

    Shaun J. Curtin

    2016-02-01

    Full Text Available Small nonprotein-coding microRNAs (miRNAs are present in most eukaryotes and are central effectors of RNA silencing-mediated mechanisms for gene expression regulation. In plants, DICER-LIKE1 (DCL1 is the founding member of a highly conserved family of RNase III-like endonucleases that function as core machinery proteins to process hairpin-like precursor transcripts into mature miRNAs, small regulatory RNAs, 21–22 nucleotides in length. Zinc finger nucleases (ZFNs were used to generate single and double-mutants of putative soybean DCL1 homologs, DCL1a and DCL1b, to confirm their functional role(s in the soybean miRNA pathway. Neither DCL1 single mutant, dcl1a or dcl1b plants, exhibited a pronounced morphological or molecular phenotype. However, the dcl1a/dcl1b double mutant expressed a strong morphological phenotype, characterized by reduced seed size and aborted seedling development, in addition to defective miRNA precursor transcript processing efficiency and deregulated miRNA target gene expression. Together, these findings indicate that the two soybean DCL1 paralogs, DCL1a and DCL1b, largely play functionally redundant roles in the miRNA pathway and are essential for normal plant development.

  20. The silkworm (Bombyx mori microRNAs and their expressions in multiple developmental stages.

    Directory of Open Access Journals (Sweden)

    Xiaomin Yu

    Full Text Available BACKGROUND: MicroRNAs (miRNAs play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. METHODOLOGY/PRINCIPAL FINDINGS: We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs and 14 novel miRNAs (including 11 predicted novel miRNAs. Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5' and/or 3' ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. CONCLUSIONS/SIGNIFICANCE: Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over

  1. Identification and Pathway Analysis of microRNAs with No Previous Involvement in Breast Cancer

    Science.gov (United States)

    Rebollar-Vega, Rosa; Quintanar-Jurado, Valeria; Maffuz-Aziz, Antonio; Jimenez-Sanchez, Gerardo; Bautista-Piña, Veronica; Arellano-Llamas, Rocio; Hidalgo-Miranda, Alfredo

    2012-01-01

    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described. PMID:22438871

  2. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer.

    Directory of Open Access Journals (Sweden)

    Sandra Romero-Cordoba

    Full Text Available microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2 in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.

  3. Altered choroid plexus gene expression in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Cortney Ann Turner

    2014-04-01

    Full Text Available Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus, the region that produces cerebrospinal fluid (CSF, in individuals with major depressive disorder (MDD. Genes that are expressed in the choroid plexus (CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the choroid plexus at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p< 0.05 between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ pathway. Quantitative real-time PCR (qRT-PCR confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the choroid plexus in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

  4. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    Science.gov (United States)

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  5. Maternal obesity down-regulates microRNA (miRNA) let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development

    Science.gov (United States)

    Yan, Xu; Huang, Yan; Zhao, Jun-Xing; Rogers, Carl J.; Zhu, Mei-Jun; Ford, Stephen P.; Nathanielsz, Peter W.; Du, Min

    2014-01-01

    Background Obesity in women of childbearing age is increasing at an alarming rate. Growing evidence shows that maternal obesity induces detrimental effects on offspring health including pre-disposition to obesity. We have shown that maternal obesity increases fetal intramuscular adipogenesis at mid-gestation. However, the mechanisms are poorly understood. MicroRNAs (miRNAs) regulate mRNA stability. We hypothesized that maternal obesity alters fetal muscle miRNA expression, thereby influencing intramuscular adipogenesis. Methods Non-pregnant ewes received a control diet (Con, fed 100% of NRC recommendations, n = 6) or obesogenic diet (OB; 150% NRC recommendations, n = 6) from 60 days before to 75 days after conception when the fetal longissimus dorsi (LD) muscle was sampled and miRNA expression analyzed by miRNA microarray. One of miRNAs with differential expression between Con and OB fetal muscle, let-7g, was further tested for its role in adipogenesis and cell proliferation in C3H10T1/2 cells. Results A total of 155 miRNAs were found with a signal above 500, among which, 3 miRNAs, hsa-miR-381, hsa-let-7g and bta-miR-376d, were differentially expressed between Con and OB fetuses, and confirmed by QRT-PCR analyses. Reduced expression of miRNA let-7g, an abundantly expressed miRNA, in OB fetal muscle was correlated with higher expression of its target genes. Over-expression of let-7g in C3H10T1/2 cells reduced their proliferation rate. Expression of adipogenic markers decreased in cells over-expressing let-7g, and the formation of adipocytes was also reduced. Over-expression of let-7g decreased expression of inflammatory cytokines. Conclusion Fetal muscle miRNA expression was altered due to maternal obesity, and let-7g down-regulation may enhance intramuscular adipogenesis during fetal muscle development in the setting of maternal obesity. PMID:22614057

  6. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Frazier, Taylor P; Burklew, Caitlin E; Zhang, Baohong

    2014-03-01

    Titanium dioxide (TiO(2)) is one of the most widely used pigments in the world. Due to its heavy use in industry and daily life, such as food additives, cosmetics, pharmaceuticals, and paints, many residues are released into the environment and currently TiO(2) nanoparticles are considered an emerging environmental contaminant. Although several studies have shown the effect of TiO(2) nanoparticles on a wide range of organisms including bacteria, algae, plankton, fish, mice, and rats, little research has been performed on land plants. In this study, we investigated the effect of TiO(2) nanoparticles on the growth, development, and gene expression of tobacco, an important economic and agricultural crop in the southeastern USA as well as around the world. We found that TiO(2) nanoparticles significantly inhibited the germination rates, root lengths, and biomasses of tobacco seedlings after 3 weeks of exposure to 0.1, 1, 2.5, and 5 % TiO(2) nanoparticles and that overall growth and development of the tobacco seedlings significantly decreased as TiO(2) nanoparticle concentrations increased. Overall, tobacco roots were the most sensitive to TiO(2) nanoparticle exposure. Nano-TiO(2) also significantly influenced the expression profiles of microRNAs (miRNAs), a recently discovered class of small endogenous noncoding RNAs (∼20-22 nt) that are considered important gene regulators and have been shown to play an important role in plant development as well as plant tolerance to abiotic stresses such as drought, salinity, cold, and heavy metal. Low concentrations (0.1 and 1 %) of TiO(2) nanoparticles dramatically induced miRNA expression in tobacco seedlings with miR395 and miR399 exhibiting the greatest fold changes of 285-fold and 143-fold, respectively. The results of this study show that TiO(2) nanoparticles have a negative impact on tobacco growth and development and that miRNAs may play an important role in tobacco response to heavy metals/nanoparticles by regulating

  7. Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-09-01

    Full Text Available MicroRNAs (miRNAs constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192 were selected for validation by quantitative polymerase chain reaction (qPCR, which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx and muscle RING finger 1 (MuRF1 mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.

  8. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  9. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  10. MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Kai SUN; Wei WANG; Jun-jie ZENG; Cheng-tang WU; Shang-tong LEI; Guo-xin LI

    2011-01-01

    Aim: To investigate the regulatory effect of microRNA-221 (miR-221) on CDKN1C/p57 expression in colorectal carcinoma (CRC).Methods: Thirty four CRC and adjacent non-tumorous tissue samples were collected individually. Total RNA and protein were isolatedand from these samples and four human CRC-derived cell lines (including HT-29, Lovo, SW-480 and Caco2). MiR-221 expression was examined using real-time RT-PCR. CRC cells were treated with or without anti-p57-siRNA prior to the addition of premiR-221 or anti-miR-221. The mRNA and protein levels of CDKN1C/p57 were examined using semi-quantitative RT-PCR and Western blot, respectively. CRC cell proliferation and apoptosis were assessed using MTT assay and flow cytometry, respectively.The CDKN1C/p57 3'-UTR fragment was amplified using PCR from the genomic DNA of human colon cells and inserted into a luciferase reporter construct. The reporter construct was then transfected into CRC cells together with pre-miR-221 or anti-miR-221, and the luciferase activity in the transfected cells was examined.Results: MiR-221 expression was significantly up-regulated in 90% of CRC samples compared to that in the adjacent non-tumorous tissue, and the expression level was positively correlated to an advanced TNM stage and local invasion. There was no significant difference in CDKN1C/p57 mRNA expression between CRC and corresponding non-tumorous tissues, whereas CDKN1C/p57 protein expression was markedly decreased in the CRC samples. A significant inverse correlation between miR-221 and CDKN1C/p57expression was found in CRC cells. Moreover, a miR-221-specific inhibitor significantly increased CDKN1C/p57 protein expression in CRC cells. Anti-miR-221 markedly inhibited CRC cell proliferation and induced apoptosis. This inhibitory effect was abolished by pretreatment with a nti-p57-siRNA, suggesting that the inhibition was mediated by CDKN1C/p57. A significant increase of the luciferase activity was observed in CRC cells co-transfected with

  11. Age-associated changes in microRNA expression in bone marrow derived dendritic cells.

    Science.gov (United States)

    Park, Seungbum; Kang, Soowon; Min, Kyung Hoon; Woo Hwang, Kwang; Min, Hyeyoung

    2013-01-01

    MiRNAs have shown to regulate aging process at the level of cellular senescence, tissue aging, and lifespan of whole organism. Given that many miRNAs also function as important regulators of hematopoietic system as well as aging process, it is highly likely that miRNAs would be involved in the changes of myeloid function and differentiation during aging. Therefore, here we examine differential expression of miRNAs in aged myeloid lineage cells and assess if altered miRNA expression pattern would reflect the change of miRNA targets and related function. We demonstrated that the expressions of myelogenic miRNAs such as miR-155, miR-223, miR-146a, miR-146b, miR-132, miR-142-5p, and miR-142-3p were increased in aged bone marrow derived dendritic cells (BMDC) under normal and activated conditions. We also observed that the expressions of IRAK1 and TRAF6, the targets of miR-146a, and DC-SIGN, a target of miR-155 were diminished while miR-146a and miR-155 were augmented during aging. In addition, we found that the production of pro-inflammatory cytokines, which is mediated by the activation of NF-kB pathway via IRAK1 and TRAF6, was greatly reduced in aged BMDC. Taken together, our data reveal that age-associated changes occur in miRNA expression in BMDC, and this altered miRNA expression affects miRNA target expression and compromises BMDC function such as cytokine production during aging.

  12. microRNA-483和microRNA-486在克隆和转fat-1基因牛组织中的表达%Expression of microRNA-483 and microRNA-486 in the Cloned and fat-1-transgenic Bovine

    Institute of Scientific and Technical Information of China (English)

    吕洋; 王煜; 孙佳佳; 弓春玲; 李光鹏

    2016-01-01

    The expression levels of microRNA-483 and microRNA-486 in heart,liver,spleen,lung,kidney,placenta, cotyledons,endometrium from normal,cloned,and transgenic bovine were measured by real time quantitative PCR. The results showed that microRNA-483 and microRNA-486 were expressed in all tissues of normal,cloned and fat-1-transgenic bovine;significantly higher in the heart than other tissues. However,the expression levels of microRNA-483 and microRNA-486 in transgenic bovine were lower than normal one. Further,the expressions of microRNA-483 and microRNA-486 varied in different tissues and high in the heart,indicating that the expressions of microRNA-483 and microRNA-486 may be correlated with pathophysiological process of myocardial hypertrophy and myocardial infarction.%利用荧光定量PCR比较正常受精牛、克隆牛和转基因牛的心、肝、脾、肺、肾、胎盘、子叶、子宫内膜中miR-483和miR-486的表达水平。结果显示,miR-483和miR-486在正常受精牛、克隆牛和转fat-1基因牛的组织中均有表达,其中在心脏中表达量显著高于其他组织。而转fat-1基因牛心脏中miR-483和miR-486表达量均低于正常牛。miR-483和miR-486在不同组织中表达量存在一定差异,在心脏中呈现高表达,提示miR-483和miR-486表达降低可能与心肌肥大、心肌梗死等病理生理过程有关。

  13. Micro-RNA-15a and micro-RNA-16 expression and chromosome 13 deletions in multiple myeloma.

    Science.gov (United States)

    Corthals, Sophie L; Jongen-Lavrencic, Mojca; de Knegt, Yvonne; Peeters, Justine K; Beverloo, H Berna; Lokhorst, Henk M; Sonneveld, Pieter

    2010-05-01

    We have used copy number variation (CNV) analysis with SNP mapping arrays for miRNA-15a and miRNA-16-1 expression analysis in patients with multiple myeloma (MM) with or without deletion of chromosome 13q14. MiRNA-15a and miRNA-16 display a range of expression patterns in MM patients, independent of the chromosome 13 status. These findings suggest that genes other than miR-15a and miR-16 may explain the prognostic significance of 13q14 deletions.

  14. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Magali Fasseu

    Full Text Available BACKGROUND: Ulcerative Colitis (UC and Crohn's Disease (CD are two chronic Inflammatory Bowel Diseases (IBD affecting the intestinal mucosa. Current understanding of IBD pathogenesis points out the interplay of genetic events and environmental cues in the dysregulated immune response. We hypothesized that dysregulated microRNA (miRNA expression may contribute to IBD pathogenesis. miRNAs are small, non-coding RNAs which prevent protein synthesis through translational suppression or mRNAs degradation, and regulate several physiological processes. METHODOLOGY/FINDINGS: Expression of mature miRNAs was studied by Q-PCR in inactive colonic mucosa of patients with UC (8, CD (8 and expressed relative to that observed in healthy controls (10. Only miRNAs with highly altered expression (>5 or 100 -fold and 0.05-0.19 -fold for over- and under- expression, respectively; 0.001expression co-localize with acknowledged IBD-susceptibility loci while others, (eg. clustered on 14q32.31, map on chromosomal regions not previously recognized as IBD-susceptibility loci. In addition, in silico clustering analysis identified 5 miRNAs (mir-26a,-29b,-126*,-127-3p,-324-3p that share coordinated dysregulation of expression both in quiescent and in inflamed colonic mucosa of IBD patients. Six miRNAs displayed significantly distinct alteration of expression in non-inflamed colonic biopsies of UC and CD patients (mir-196b,-199a-3p,-199b-5p,-320a,-150,-223. CONCLUSIONS/SIGNIFICANCE: Our study supports miRNAs as crucial players in the onset and/or relapse of inflammation from quiescent mucosal tissues in IBD patients. It allows speculating a role for miRNAs as contributors to IBD susceptibility and suggests that some of the miRNA with altered expression in the quiescent mucosa of

  15. MicroRNA related polymorphisms and breast cancer risk

    NARCIS (Netherlands)

    S. Khan (Sofia); D. Greco (Dario); K. Michailidou (Kyriaki); R.L. Milne (Roger); T.A. Muranen (Taru); T. Heikkinen (Tuomas); K. Aaltonen (Kirsimari); J. Dennis (Joe); M.K. Bolla (Manjeet); J. Liu (Jianjun); P. Hall (Per); A. Irwanto (Astrid); M.K. Humphreys (Manjeet); J. Li (Jingmei); K. Czene (Kamila); J. Chang-Claude (Jenny); R. Hein (Rebecca); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); J. Peto (Julian); I. dos Santos Silva (Isabel); N. Johnson (Nichola); L.J. Gibson (Lorna); A. Aitken; J.L. Hopper (John); H. Tsimiklis (Helen); M. Bui (Minh); E. Makalic (Enes); D.F. Schmidt (Daniel); M.C. Southey (Melissa); C. Apicella (Carmel); J. Stone (Jennifer); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); A. Meindl (Alfons); R.K. Schmutzler (Rita); B. Müller-Myhsok (B.); P. Lichtner (Peter); C. Turnbull (Clare); N. Rahman (Nazneen); S.J. Chanock (Stephen); D. Hunter (David); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); F.B.L. Hogervorst (Frans); P.A. Fasching (Peter); A. Schrauder (André); A.B. Ekici (Arif); M.W. Beckmann (Matthias); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Benítez (Javier); P.M. Zamora (Pilar M.); J.I.A. Perez (Jose Ignacio Arias); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L.L. March (Loic Le); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); M. Shah (Mitul); R.N. Luben (Robert); J. Brown (Judith); F.J. Couch (Fergus); X. Wang (X.); C. Vachon (Celine); J.E. Olson (Janet); D. Lambrechts (Diether); M. Moisse (Matthieu); R. Paridaens (Robert); M.R. Christiaens (Marie Rose); P. Guénel (Pascal); T. Truong (Thérèse); P. Laurent-Puig (Pierre); C. Mulot (Claire); F. Marme (Frederick); B. Burwinkel (Barbara); A. Schneeweiss (Andreas); C. Sohn (Christof); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); I.L. Andrulis (Irene); J.A. Knight (Julia); S. Tchatchou (Srine); A.-M. Mulligan (Anna-Marie); T. Dörk (Thilo); N.V. Bogdanova (Natalia); N.N. Antonenkova (Natalia); H. Anton-Culver (Hoda); H. Darabi (Hatef); M. Eriksson (Mats); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); J. Lissowska (Jolanta); L.A. Brinton (Louise); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); V. Kristensen (Vessela); S. Slager (Susan); A.E. Tol (Ama E.); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); A. Lindblom (Annika); S. Margolin (Sara); P. Radice (Paolo); P. Peterlongo (Paolo); M. Barile (Monica); P. Mariani (Paolo); M.J. Hooning (Maartje); J.W.M. Martens (John); J. Margriet Collée; A. Jager (Agnes); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); G.G. Giles (Graham); C.A. McLean (Catriona Ann); H. Brauch (Hiltrud); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); H.B. The Genica Network (Hermann Brenner); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A.J. Swerdlow (Anthony ); A. Ashworth (Alan); N. Orr (Nick); M. Jones (Michael); J. Simard (Jacques); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); A. Mannermaa (Arto); U. Hamann (Ute); G. Chenevix-Trench (Georgia); C. Blomqvist (Carl); K. Aittomäki (Kristiina); D.F. Easton (Douglas); H. Nevanlinna (Heli)

    2014-01-01

    textabstractGenetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility

  16. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues.

    Science.gov (United States)

    Hirota, Takeshi; Date, Yuko; Nishibatake, Yu; Takane, Hiroshi; Fukuoka, Yasushi; Taniguchi, Yuuji; Burioka, Naoto; Shimizu, Eiji; Nakamura, Hiroshige; Otsubo, Kenji; Ieiri, Ichiro

    2012-07-01

    Dihydropyrimidine dehydrogenase (DPD) is important to the antitumor effect of 5-fluorouracil (5-FU). DPD gene (DPYD) expression in tumors is correlated with sensitivity to 5-FU. Because the 5-FU accumulated in cancer cells is also rapidly converted into inactivated metabolites through catabolic pathways mediated by DPD, high DPD activity in cancer cells is an important determinant of the response to 5-FU. DPD activity is highly variable and reduced activity causes a high risk of 5-FU toxicity. Genetic variation in DPYD has been proposed as the main factor responsible for the variation in DPD activity. However, only a small proportion of the activity of DPD can be explained by DPYD mutations. In this study, we found that DPYD is a target of the following microRNAs (miRNA): miR-27a, miR-27b, miR-134, and miR-582-5p. In luciferase assays with HepG2 cells, the overexpression of these miRNAs was associated with significantly decreased reporter activity in a plasmid containing the 3'-UTR of DYPD mRNA. The level of DPD protein in MIAPaca-2 cells was also significantly decreased by the overexpression of these four miRNAs. The results suggest that miR-27a, miR-27b, miR-134, and miR-582-5p post-transcriptionally regulate DPD protein expression. The levels of miRNAs in normal lung tissue and lung tumors were compared; miR-27b and miR-134 levels were significantly lower in the tumors than normal tissue (3.64 ± 4.02 versus 9.75 ± 6.58 and 0.64 ± 0.75 versus 1.48 ± 1.39). DPD protein levels were significantly higher in the tumors. Thus, the decreased expression of miR-27b would be responsible for the high levels of DPD protein. This study is the first to show that miRNAs regulate the DPD protein, and provides new insight into 5-FU-based chemotherapy.

  17. A novel artificial microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes improves Ca2+ uptake into the sarcoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Tobias Gröβl

    Full Text Available In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.

  18. MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development.

    Directory of Open Access Journals (Sweden)

    Elena Chiavacci

    Full Text Available tbx5, a member of the T-box gene family, encodes one of the key transcription factors mediating vertebrate heart development. Tbx5 function in heart development appears to be exquisitely sensitive to gene dosage, since both haploinsufficiency and gene duplication generate the cardiac abnormalities associated with Holt-Oram syndrome (HOS, a highly penetrant autosomal dominant disease characterized by congenital heart defects of varying severity and upper limb malformation. It is suggested that tight integration of microRNAs and transcription factors into the cardiac genetic circuitry provides a rich and robust array of regulatory interactions to control cardiac gene expression. Based on these considerations, we performed an in silico screening to identify microRNAs embedded in genes highly sensitive to Tbx5 dosage. Among the identified microRNAs, we focused our attention on miR-218-1 that, together with its host gene, slit2, is involved in heart development. We found correlated expression of tbx5 and miR-218 during cardiomyocyte differentiation of mouse P19CL6 cells. In zebrafish embryos, we show that both Tbx5 and miR-218 dysregulation have a severe impact on heart development, affecting early heart morphogenesis. Interestingly, down-regulation of miR-218 is able to rescue the heart defects generated by tbx5 over-expression supporting the notion that miR-218 is a crucial mediator of Tbx5 in heart development and suggesting its possible involvement in the onset of heart malformations.

  19. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies

    Directory of Open Access Journals (Sweden)

    Fedele Vita

    2006-06-01

    Full Text Available Abstract Background Recent studies indicate that microRNAs (miRNAs are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA. Results Comparison of microarray and qRT-PCR measured miRNA levels from two different prostate cancer cell lines showed concordance between the two platforms (Pearson correlation R2 = 0.81; and extension of the amplification, labeling and microarray platform was successfully demonstrated using clinical core and excision biopsy samples from breast and prostate cancer patients. Unsupervised clustering analysis of the prostate biopsy microarrays separated advanced and metastatic prostate cancers from pooled normal prostatic samples and from a non-malignant precursor lesion. Unsupervised clustering of the breast cancer microarrays significantly distinguished ErbB2-positive/ER-negative, ErbB2-positive/ER-positive, and ErbB2-negative/ER-positive breast cancer phenotypes (Fisher exact test, p = 0.03; as well, supervised analysis of these microarray profiles identified distinct miRNA subsets distinguishing ErbB2-positive from ErbB2-negative and ER-positive from ER-negative breast cancers, independent of other clinically important parameters (patient age; tumor size, node status and proliferation index. Conclusion In sum, these findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast

  20. Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma

    Directory of Open Access Journals (Sweden)

    Alessandra Mangolini

    2014-01-01

    Full Text Available Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs, which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma.

  1. MicroRNAs as potential biomarkers in adrenocortical cancer: progress and challenges

    Directory of Open Access Journals (Sweden)

    Nadia eCHERRADI

    2016-01-01

    Full Text Available Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited therapeutic options. Over the last decade, pan-genomic analyses of genetic and epigenetic alterations and genome-wide expression profile studies allowed major advances in the understanding of the molecular genetics of adrenocortical carcinoma. Besides the well-known dysfunctional molecular pathways in adrenocortical tumors such as the IGF2 pathway, the Wnt pathway and TP53, high-throughput technologies enabled a more comprehensive genomic characterization of adrenocortical cancer. Integration of expression profile data with exome sequencing, SNP array analysis, methylation and microRNA profiling led to the identification of subgroups of malignant tumors with distinct molecular alterations and clinical outcomes. MicroRNAs post-transcriptionally silence their target gene expression either by degrading mRNA or by inhibiting translation. Although our knowledge of the contribution of deregulated microRNAs to the pathogenesis of adrenocortical carcinoma is still in its infancy, recent studies support their relevance in gene expression alterations in these tumors. Some microRNAs have been shown to carry potential diagnostic and prognostic values while others may be good candidates for therapeutic interventions. With the emergence of disease-specific blood-borne microRNAs signatures, analyses of small cohorts of patients with adrenocortical carcinoma suggest that circulating microRNAs represent promising non-invasive biomarkers of malignancy or recurrence. However, some technical challenges still remain, and most of the microRNAs reported in the literature have not yet been validated in sufficiently powered and longitudinal studies. In this review, we discuss the current knowledge regarding the deregulation of tumor-associated and circulating microRNAs in adrenocortical carcinoma patients, while emphasizing their potential significance in adrenocortical carcinoma pathogenic

  2. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice

    Science.gov (United States)

    Dong, Daoyin; Zhang, Yuji; Reece, E. Albert; Wang, Lei; Harman, Christopher R.; Yang, Peixin

    2017-01-01

    Maternal pregestational diabetes mellitus (PGDM) induces congenital heart defects (CHDs). The molecular mechanism underlying PGDM-induced CHDs is unknown. microRNAs (miRNAs), small non-coding RNAs, repress gene expression at the posttranscriptional level and play important roles in heart development. We performed a global miRNA profiling study to assist in revealing potential miRNAs modulated by PGDM and possible developmental pathways regulated by miRNAs during heart development. A total of 149 mapped miRNAs in the developing heart were significantly altered by PGDM. Bioinformatics analysis showed that the majority of the 2111 potential miRNA target genes were associated with cardiac development-related pathways including STAT3 and IGF-1 and transcription factors (Cited2, Zeb2, Mef2c, Smad4 and Ets1). Overexpression of the antioxidant enzyme, superoxide dismutase 1, reversed PGDM-altered miRNAs, suggesting that oxidative stress is responsible for dysregulation of miRNAs. Thus, our study provides the foundation for further investigation of a miRNA-dependent mechanism underlying PGDM-induced CHDs. PMID:27629361

  3. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.

    Science.gov (United States)

    Kleinman, Claudia L; Gerges, Noha; Papillon-Cavanagh, Simon; Sin-Chan, Patrick; Pramatarova, Albena; Quang, Dong-Anh Khuong; Adoue, Véronique; Busche, Stephan; Caron, Maxime; Djambazian, Haig; Bemmo, Amandine; Fontebasso, Adam M; Spence, Tara; Schwartzentruber, Jeremy; Albrecht, Steffen; Hauser, Peter; Garami, Miklos; Klekner, Almos; Bognar, Laszlo; Montes, Jose-Luis; Staffa, Alfredo; Montpetit, Alexandre; Berube, Pierre; Zakrzewska, Magdalena; Zakrzewski, Krzysztof; Liberski, Pawel P; Dong, Zhifeng; Siegel, Peter M; Duchaine, Thomas; Perotti, Christian; Fleming, Adam; Faury, Damien; Remke, Marc; Gallo, Marco; Dirks, Peter; Taylor, Michael D; Sladek, Robert; Pastinen, Tomi; Chan, Jennifer A; Huang, Annie; Majewski, Jacek; Jabado, Nada

    2014-01-01

    Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.

  4. Validation of artificial microRNA expression by poly(A) tailing-based RT-PCR

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Rui Shi, Chenmin Yang, Ronald Sederoff & Vincent Chiang ### Abstract Here we describe a protocol for validating expression of artificial microRNAs (amiRNAs) by poly(A) tailing-based RT-PCR. Total RNAs, including amiRNA, are poly(A) tailed using E.coli. poly(A) polymerase. Poly(A) tailed amiRNA can be converted into cDNA along with mRNAs in a reverse transcription reaction primed by a standard poly(T) anchor adaptor. AmiRNA can then be amplified and quantitated by real-tim...

  5. Aberrant decrease of microRNA19b regulates TSLP expression and contributes to Th17 cells development in myasthenia gravis related thymomas.

    Science.gov (United States)

    Wang, Zhongkui; Chen, Yuping; Xu, Shengjie; Yang, Yanhua; Wei, Dongning; Wang, Wei; Huang, Xusheng

    2015-11-15

    Myasthenia gravis (MG) is an organ-specific autoimmune disease. The imbalance of T helper type 17 cells (Th17) plays a key role in the pathogenesis of thymomatous MG. But the regulatory mechanism for Th17 cell development in MG-related thymoma remains undefined. Here we demonstrated that thymic stromal lymphopoietin (TSLP) is significantly decreased in thymomas. We also proved that TSLP was post-trancriptionally regulated by microRNA-19b. The expression of microRNA-19b was negatively correlated with the expression of TSLP mRNA and protein in thymomas. This study indicated that the elevation of microRNA-19b suppressed TSLP expression and then influenced T cell development in thymomatous MG.

  6. Prenatal Exposure to TCDD Triggers Significant Modulation of microRNA Expression Profile in the Thymus That Affects Consequent Gene Expression

    OpenAIRE

    Singh, Narendra P; Singh, Udai P.; Hongbing Guan; Prakash Nagarkatti; Mitzi Nagarkatti

    2012-01-01

    BACKGROUND: MicroRNAs (miRs) are a class of small RNAs that regulate gene expression. There are over 700 miRs encoded in the mouse genome and modulate most of the cellular pathways and functions by controlling gene expression. However, there is not much known about the pathophysiological role of miRs. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), an environmental contaminant is well known to induce severe toxicity (acute and chronic) with long-term effects. Also, in utero exposure of fetus to T...

  7. In vitro maturation alters gene expression in bovine oocytes.

    Science.gov (United States)

    Adona, Paulo R; Leal, Cláudia L V; Biase, Fernando H; De Bem, Tiago H; Mesquita, Lígia G; Meirelles, Flávio V; Ferraz, André L; Furlan, Luiz R; Monzani, Paulo S; Guemra, Samuel

    2016-08-01

    Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein-protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein-protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.

  8. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell

    Science.gov (United States)

    Ahluwalia, Pankaj Kumar; Pandey, Rajan Kumar; Sehajpal, Prabodh Kumar; Prajapati, Vijay Kumar

    2017-01-01

    Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host’s immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz. DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3′-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3′-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but

  9. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR) expression in hippocampus of stressed neonatal mice.

    Science.gov (United States)

    McAdams, Ryan M; McPherson, Ronald J; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Juul, Sandra E

    2015-01-01

    Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, Pmorphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine-mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning.

  10. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR expression in hippocampus of stressed neonatal mice.

    Directory of Open Access Journals (Sweden)

    Ryan M McAdams

    Full Text Available Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05 from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated, and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine-mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine

  11. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells.

    Science.gov (United States)

    Zhou, Jiawei; Lei, Bin; Li, Huanan; Zhu, Lihua; Wang, Lei; Tao, Hu; Mei, Shuqi; Li, Fenge

    2017-02-09

    Mammalian folliculogenesis is a complex process in which primordial follicles develop into pre-ovulatory follicles, followed by ovulation to release mature oocytes. In this study, we explored the role of miR-144 in ovulation. miR-144 was one of the differentially expressed microRNAs, which showed 5.59-fold changes, in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We demonstrated that overexpression of miR-144 significantly decreased the luciferase reporter activity under the control of the cyclooxygenase-2 (COX-2) or mothers against decapentaplegic homologue 4 (Smad4) 3'-untranslated region (3'-UTR) and suppressed COX-2 and Smad4 expression. In contrast, a miR-144 inhibitor increased COX-2 and Smad4 expression in mouse granulosa cells (mGCs). Meanwhile, Smad4 upregulated COX-2 expression, but this effect was abolished when the mGCs were treated with the transforming growth factor beta signalling pathway inhibitor SB431542. Moreover, luciferase reporter, chromatin immunoprecipitation and electrophoretic mobility shift assay results showed that the transcription factor CP2 upregulated miR-144 expression, which partially contributed to the suppression of COX-2 in mGCs. Both CP2 and miR-144 alter prostaglandin E2 (PGE2) production by regulating COX-2 expression. In addition, miR-144 regulated mGC apoptosis and affected follicular atresia, but these activities did not appear to be through COX-2 and Smad4. Taken together, we revealed an important CP2/miR-144/COX-2/PGE2/ovulation pathway in mGCs.

  12. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle

    DEFF Research Database (Denmark)

    Bork-Jensen, Jette; Schéele, Camilla Charlotte; Christophersen, Daniel V;

    2015-01-01

    AIMS/HYPOTHESIS: We aimed to identify microRNAs (miRNAs) associated with type 2 diabetes and risk of developing the disease in skeletal muscle biopsies from phenotypically well-characterised twins. METHODS: We measured muscle miRNA levels in monozygotic (MZ) twins discordant for type 2 diabetes u...

  13. Micro-RNA Expression in the Urinary Sediment of Patients with Chronic Kidney Diseases

    Directory of Open Access Journals (Sweden)

    Cheuk-Chun Szeto

    2012-01-01

    Full Text Available Background: Evidence indicates that microRNAs (miRNA play a role in the pathogenesis of chronic kidney diseases (CKD. We explored the possibility of using urinary miRNA as non-invasive biomarkers for CKD.

  14. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection

    Science.gov (United States)

    Background: Milk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation. Ingestion of milk and subsequent absorption of miRNAs into recipient cells by endocytosis may play a role in the regulation of neonatal innate and adaptive immunity. In contrast, the miRNA content ...

  15. MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Husted, Susanne; Søkilde, Rolf; Rask, Lene;

    2011-01-01

    Multidrug resistance (MDR) poses a major obstacle to successful chemotherapeutic treatment of cancer, and often involves multiple genes, which may be regulated post-transcriptionally by microRNAs (miRNAs). The purpose of the present study was therefore to identify any resistance-associated change...

  16. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  17. Vibrational force alters mRNA expression in osteoblasts

    Science.gov (United States)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  18. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia

    Institute of Scientific and Technical Information of China (English)

    Yu Lu; Min-Yu Jian; Yi-Bing Ouyang; Ru-Quan Han

    2015-01-01

    Background:Sevoflurane and propofol are widely used anesthetics for surgery.Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid.MicroRNAs (miRNAs) regulate neural function by altering protein expression.We hypothesize that sevoflurane and propofol affect miRNA expression profiles in the brain,expect to understand the mechanism of anesthetic agents.Methods:Rats were randomly assigned to a 2% sevoflurane group,600 μg·kg 1·min-1 propofol group,and a control group without anesthesia (n =4,respectively).Treatment group was under anesthesia for 6 h,and all rats breathed spontaneously with continuous monitoring of respiration and blood gases.Changes in rat cortex miRNA expression profiles were analyzed by miRNA microarrays and validated by quantitative real-time polymerase chain reaction (qRT-PCR).Differential expression ofmiRNA using qRT-PCR among the control,sevoflurane,and propofol groups were compared using one-way analysis of variance (ANOVA).Results:Of 677 preloaded rat miRNAs,the microarray detected the expression of 277 miRNAs in rat cortex (40.9%),of which 9 were regulated by propofol and (or) sevoflurane.Expression levels of three miRNAs (rno-miR-339-3p,rno-miR-448,rno-miR-466b-1 *) were significantly increased following sevoflurane and six (rno-miR-339-3p,rno-miR-347,rno-miR-378*,rno-miR-412*,mo-miR-702-3p,and mo-miR-7a-2*) following propofol.Three miRNAs (rno-miR-466b-1*,rno-miR-3584-5p and rno-miR-702-3p) were differentially expressed by the two anesthetic treatment groups.Conclusions:Sevoflurane and propofol anesthesia induced distinct changes in brain miRNA expression patterns,suggesting differential regulation of protein expression.Determining the targets of these differentially expressed miRNAs may help reveal both the common and agent-specific actions of anesthetics on neurological and physiological function.

  19. The GATA factor elt-1 regulates C. elegans developmental timing by promoting expression of the let-7 family microRNAs.

    Science.gov (United States)

    Cohen, Max L; Kim, Sunhong; Morita, Kiyokazu; Kim, Seong Heon; Han, Min

    2015-03-01

    Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241). DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP) data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation.

  20. The GATA factor elt-1 regulates C. elegans developmental timing by promoting expression of the let-7 family microRNAs.

    Directory of Open Access Journals (Sweden)

    Max L Cohen

    2015-03-01

    Full Text Available Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241. DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation.

  1. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  2. microRNA-218 Inhibits Oxygen-induced Retinal Neovascularization via Reducing the Expression of Roundabout 1

    Institute of Scientific and Technical Information of China (English)

    Shuang Han; Yi-Chun Kong; Bei Sun; Quan-Hong Han; Ying Chen; Yu-Chuan Wang

    2016-01-01

    Background:The mechanisms of pathological retinal neovascularization (RNV) remain unknown.Several microRNAs were reported to be involved in the process of RNV.Oxygen-induced retinopathy (OIR) is a useful model to investigate RNV.Our present work explored the expression and the role of microRNA-128 (miR-218) in oxygen-induced RNV.Methods:OIR was used to establish RNV model.The expression level ofmiR-218 in the retina from OIR mice was assessed by quantitative real-time reverse transcfiptase polymerase chain reaction.Fluorescein angiography was performed in retinae of OIR mice,and RNV was quantified by hematoxylin and eosin staining to evaluate the effect of pCDH-CMV-miR-218 intravitreal injection on RNV in OIR mice.Roundabout 1 (Robo 1) expression was detected by Western blotting in mouse retinal vascular endothelial cells expressing a high or low level ofmiR-218 and retinal tissues from OIR mice.Cell migration was evaluated by scratch wound assay.Results:In OIR mice,the expression level of miR-218 was significantly down-regulated (P =0.006).Retinal Robo1 expression was significantly increased at both mRNA and protein levels (P =0.001,0.008;respectively),miR-218 intravitreal injection inhibited retinal angiogenesis in OIR mice,and the restoration of miR-218 in retina led to down-regulation of Robo 1.Conclusions:Our experiments showed that restoration of miR-218 inhibited retinal angiogenesis via targeting Robo 1.MiR-218 contributed to the inhibition of retinal angiogenesis and miR-218 might be a new therapeutic target for preventing RNV.

  3. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Te, E-mail: liute79@yahoo.com [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031 (China); Cheng, Weiwei [International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030 (China); Huang, Yongyi [Laboratoire PROTEE, Batiment R, Universite du Sud Toulon-Var, 83957 LA GARDE Cedex (France); Huang, Qin; Jiang, Lizhen [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Guo, Lihe, E-mail: liute79@yahoo.com [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  4. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis.

    Directory of Open Access Journals (Sweden)

    J Christopher States

    Full Text Available The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE(-/- mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE(-/- mice exposed to 49 ppm arsenic in utero from gestational day (GD 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a. Gene ontology (GO annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8 and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes

  5. Early Epigenetic Downregulation of microRNA-192 Expression Promotes Pancreatic Cancer Progression.

    Science.gov (United States)

    Botla, Sandeep K; Savant, Soniya; Jandaghi, Pouria; Bauer, Andrea S; Mücke, Oliver; Moskalev, Evgeny A; Neoptolemos, John P; Costello, Eithne; Greenhalf, William; Scarpa, Aldo; Gaida, Matthias M; Büchler, Markus W; Strobel, Oliver; Hackert, Thilo; Giese, Nathalia A; Augustin, Hellmut G; Hoheisel, Jörg D

    2016-07-15

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by very early metastasis, suggesting the hypothesis that metastasis-associated changes may occur prior to actual tumor formation. In this study, we identified miR-192 as an epigenetically regulated suppressor gene with predictive value in this disease. miR-192 was downregulated by promoter methylation in both PDAC and chronic pancreatitis, the latter of which is a major risk factor for the development of PDAC. Functional studies in vitro and in vivo in mouse models of PDAC showed that overexpression of miR-192 was sufficient to reduce cell proliferation and invasion. Mechanistic analyses correlated changes in miR-192 promoter methylation and expression with epithelial-mesenchymal transition. Cell proliferation and invasion were linked to altered expression of the miR-192 target gene SERPINE1 that is encoding the protein plasminogen activator inhibitor-1 (PAI-1), an established regulator of these properties in PDAC cells. Notably, our data suggested that invasive capacity was altered even before neoplastic transformation occurred, as triggered by miR-192 downregulation. Overall, our results highlighted a role for miR-192 in explaining the early metastatic behavior of PDAC and suggested its relevance as a target to develop for early diagnostics and therapy. Cancer Res; 76(14); 4149-59. ©2016 AACR.

  6. Identification of conserved microRNAs in peripheral blood from giant panda: expression of mammary gland-related microRNAs during late pregnancy and early lactation.

    Science.gov (United States)

    Wang, C D; Long, K; Jin, L; Huang, S; Li, D H; Ma, X P; Wei, M; Gu, Y; Ma, J D; Zhang, H

    2015-11-13

    The giant panda (Ailuropoda melanoleuca) is one of the world's most endangered mammals, and it has evolved several unusual biological and behavioral traits. During puberty, pregnancy, lactation, and involution, the mammary gland undergoes profound morphological and functional changes. A large number of microRNAs (miRNAs) have been identified to be involved in mammary gland development and lactation. In this study, we identified 202 conserved mature miRNAs, corresponding to 147 pre-miRNAs, in giant panda peripheral blood using a small RNA-sequencing approach. In addition, 27 miRNA families and 29 miRNA clusters were identified. We analyzed the arm selection preference of pre-miRNAs and found that: 1) most giant panda pre-miRNAs generated one-strand miRNAs, and the 5p-arm only miRNAs have a higher expression level than 3p-arm only miRNAs; 2) there were more 5p-arm dominant miRNAs than 3p-arm dominant miRNAs; and 3) 5p-arm dominant miRNAs have a larger fold change within miRNA pairs than 3p-arm dominant miRNAs. Expression of 12 lactation-related miRNAs was detected across late pregnancy and early lactation stages by qPCR, and seven miRNAs were identified as clustered in one significant model. Most of these clustered miRNAs exhibited inhibitory roles in proliferation and differentiation of mammary epithelial cells. Functional analysis highlighted important roles of the seven as signed miRNAs in mammary development and metabolic changes, including blood vessel morphogenesis, macromolecule biosynthesis, cell cycle regulation, and protein transport.

  7. The Prognostic and Predictive Value of Melanoma-related MicroRNAs Using Tissue and Serum: A MicroRNA Expression Analysis

    Directory of Open Access Journals (Sweden)

    Mitchell S. Stark

    2015-07-01

    Full Text Available The overall 5-year survival for melanoma is 91%. However, if distant metastasis occurs (stage IV, cure rates are <15%. Hence, melanoma detection in earlier stages (stages I–III maximises the chances of patient survival. We measured the expression of a panel of 17 microRNAs (miRNAs (MELmiR-17 in melanoma tissues (stage III; n = 76 and IV; n = 10 and serum samples (collected from controls with no melanoma, n = 130; and patients with melanoma (stages I/II, n = 86; III, n = 50; and IV, n = 119 obtained from biobanks in Australia and Germany. In melanoma tissues, members of the ‘MELmiR-17’ panel were found to be predictors of stage, recurrence, and survival. Additionally, in a minimally-invasive blood test, a seven-miRNA panel (MELmiR-7 detected the presence of melanoma (relative to controls with high sensitivity (93% and specificity (≥82% when ≥4 miRNAs were expressed. Moreover, the ‘MELmiR-7’ panel characterised overall survival of melanoma patients better than both serum LDH and S100B (delta log likelihood = 11, p < 0.001. This panel was found to be superior to currently used serological markers for melanoma progression, recurrence, and survival; and would be ideally suited to monitor tumour progression in patients diagnosed with early metastatic disease (stages IIIa–c/IV M1a–b to detect relapse following surgical or adjuvant treatment.

  8. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    Science.gov (United States)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  9. Transient Gene and MicroRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-01-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NF(kappa)B and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for alpha-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  10. MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1.

    Directory of Open Access Journals (Sweden)

    Kyu-Tae Kim

    Full Text Available Activating mutations in the receptor tyrosine kinase FLT3 are one of the most frequent somatic mutations in acute myeloid leukemia (AML. Internal tandem duplications of the juxtamembrane region of FLT3 (FLT3/ITD constitutively activate survival and proliferation pathways, and are associated with a poor prognosis in AML. We suspected that alteration of small non-coding microRNA (miRNA expression in these leukemia cells is involved in the transformation process and used miRNA microarrays to determine the miRNA signature from total RNA harvested from FLT3/ITD expressing FDC-P1 cells (FD-FLT3/ITD. This revealed that a limited set of miRNAs appeared to be affected by expression of FLT3/ITD compared to the control group consisting of FDC-P1 parental cells transfected with an empty vector (FD-EV. Among differentially expressed miRNAs, we selected miR-16, miR-21 and miR-223 to validate the microarray data by quantitative real-time RT-PCR showing a high degree of correlation. We further analyzed miR-16 expression with FLT3 inhibitors in FLT3/ITD expressing cells. MiR-16 was found to be one of most significantly down-regulated miRNAs in FLT3/ITD expressing cells and was up-regulated upon FLT3 inhibition. The data suggests that miR-16 is acting as a tumour suppressor gene in FLT3/ITD-mediated leukemic transformation. Whilst miR-16 has been reported to target multiple mRNAs, computer models from public bioinformatic resources predicted a potential regulatory mechanism between miR-16 and Pim-1 mRNA. In support of this interaction, miR-16 was shown to suppress Pim-1 reporter gene expression. Further, our data demonstrated that over-expression of miR-16 mimics suppressed Pim-1 expression in FD-FLT3/ITD cells suggesting that increased miR-16 expression contributes to depletion of Pim-1 after FLT3 inhibition and that miR-16 repression may be associated with up-regulated Pim-1 in FLT3/ITD expressing cells.

  11. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    Science.gov (United States)

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  12. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Benjamin Izar

    2012-01-01

    Full Text Available microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We  investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (∆inlAB or ∆hly or incubated with purified listeriolysin (LLO. Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR-146b, miR-16, let-7a1, miR-145 and miR-155 that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ∆inlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization.

  13. The bull sperm microRNAome and the effect of fescue toxicosis on sperm microRNA expression.

    Science.gov (United States)

    Stowe, Heather M; Calcatera, Samantha M; Dimmick, Marcy A; Andrae, John G; Duckett, Susan K; Pratt, Scott L

    2014-01-01

    Tall fescue [Schedonorus phoenix (Scop.) Holub] accounts for nearly 16 million hectares of pasture in the Southeastern and Mid-Atlantic U.S. due to its heat, drought, and pest resistance, conferred to the plant by its symbiotic relationship with the endophyte Neotyphodium coenophialum. The endophyte produces ergot alkaloids that have negative effects on the growth and reproduction of animals, resulting in the syndrome known as fescue toxicosis. The objectives of our study were to identify microRNA (miRNA) present in bovine sperm and to evaluate the effects of fescue toxicosis on sperm miRNA expression. Angus bulls were assigned to treatments of either toxic or non-toxic fescue seed diets. Semen was collected and subjected to RNA isolation. Three samples from each treatment group were chosen and pooled for deep sequencing. To compare miRNA expression between treatment groups, a microarray was designed and conducted. For each of the top ten expressed miRNA, target prediction analysis was conducted using TargetScan. Gene ontology enrichment was assessed using the Database for Annotation, Visualization and Integrated Discovery. Sequencing results elucidated the presence of 1,582 unique small RNA present in sperm. Of those sequences, 382 were known Bos taurus miRNA, 22 were known but novel to Bos taurus, and 816 were predicted candidate miRNA that did not map to any currently reported miRNA. Of the sequences chosen for microarray, twenty-two showed significant differential expression between treatment groups. Gene pathways of interest included: regulation of transcription, embryonic development (including blastocyst formation), Wnt and Hedgehog signaling, oocyte meiosis, and kinase and phosphatase activity. MicroRNA present in mature sperm appears to not only be left over from spermatogenic processes, but may actually serve important regulatory roles in fertilization and early developmental processes. Further, our results indicate the possibility that environmental

  14. The bull sperm microRNAome and the effect of fescue toxicosis on sperm microRNA expression.

    Directory of Open Access Journals (Sweden)

    Heather M Stowe

    Full Text Available Tall fescue [Schedonorus phoenix (Scop. Holub] accounts for nearly 16 million hectares of pasture in the Southeastern and Mid-Atlantic U.S. due to its heat, drought, and pest resistance, conferred to the plant by its symbiotic relationship with the endophyte Neotyphodium coenophialum. The endophyte produces ergot alkaloids that have negative effects on the growth and reproduction of animals, resulting in the syndrome known as fescue toxicosis. The objectives of our study were to identify microRNA (miRNA present in bovine sperm and to evaluate the effects of fescue toxicosis on sperm miRNA expression. Angus bulls were assigned to treatments of either toxic or non-toxic fescue seed diets. Semen was collected and subjected to RNA isolation. Three samples from each treatment group were chosen and pooled for deep sequencing. To compare miRNA expression between treatment groups, a microarray was designed and conducted. For each of the top ten expressed miRNA, target prediction analysis was conducted using TargetScan. Gene ontology enrichment was assessed using the Database for Annotation, Visualization and Integrated Discovery. Sequencing results elucidated the presence of 1,582 unique small RNA present in sperm. Of those sequences, 382 were known Bos taurus miRNA, 22 were known but novel to Bos taurus, and 816 were predicted candidate miRNA that did not map to any currently reported miRNA. Of the sequences chosen for microarray, twenty-two showed significant differential expression between treatment groups. Gene pathways of interest included: regulation of transcription, embryonic development (including blastocyst formation, Wnt and Hedgehog signaling, oocyte meiosis, and kinase and phosphatase activity. MicroRNA present in mature sperm appears to not only be left over from spermatogenic processes, but may actually serve important regulatory roles in fertilization and early developmental processes. Further, our results indicate the possibility that

  15. Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells.

    Science.gov (United States)

    Hodzic, Jasmina; Giovannetti, Elisa; Diosdado, Begoňa; Calvo, Begona Diosdado; Adema, A D; Peters, G J

    2011-12-01

    Deoxycytidine kinase (dCK) is essential for phosphorylation of natural deoxynucleosides and analogs, such as gemcitabine and cytarabine, two widely used anticancer compounds. Regulation of dCK is complex, including Ser-74 phosphorylation. We hypothesized that dCK could be regulated by two additional mechanisms: micro-RNA (miRNA) and promoter methylation. Methylation-specific PCR (MSP) revealed methylation of the 3' GC box in three out of six cancer cell lines. The 3' GC box is located at the dCK promoter region. The methylation status was related to dCK mRNA expression. TargetScan and miRanda prediction algorithms revealed several possible miRNAs targeting dCK and identified miR-330 (micro-RNA 330) as the one conserved between the human, the chimpanzee, and the rhesus monkey genomes. Expression of miR-330 in various colon and lung cancer cell lines, as measured by QRT-PCR, varied five-fold between samples and correlated with in-vitro gemcitabine resistance (R = 0.82, p = 0.04). Exposure to gemcitabine also appeared to influence miR-330 levels in these cell