WorldWideScience

Sample records for altered lung mechanics

  1. Effects of cyclooxygenase inhibitors on the alterations in lung mechanics caused by endotoxemia in the unanesthetized sheep.

    OpenAIRE

    Snapper, J R; Hutchison, A A; Ogletree, M L; Brigham, K L

    1983-01-01

    The effects of Escherichia coli endotoxin on lung mechanics, hemodynamics, gas exchange, and lung fluid and solute exchange were studied in 12 chronically instrumented unanesthetized sheep. A possible role for cyclooxygenase products of arachidonate metabolism as mediators of the endotoxin-induced alterations in lung mechanics was investigated by studying sheep before and after cyclooxygenase inhibition with sodium meclofenamate and ibuprofen. Sheep were studied three times in random order: (...

  2. Pulmonary vascular-bronchial interactions: acute reduction in pulmonary blood flow alters lung mechanics

    OpenAIRE

    Schulze-Neick, I; Penny, D; Derrick, G; Dhillon, R; Rigby, M.; Kelleher, A.; Bush, A; Redington, A

    2000-01-01

    BACKGROUND—Postoperative pulmonary hypertension in children after congenital heart surgery is a risk factor for death and is associated with severe acute changes in both pulmonary vascular resistance and lung mechanics.
OBJECTIVE—To examine the impact of changes in pulmonary blood flow on lung mechanics in preoperative children with congenital heart disease, in order to assess the cause-effect relation of pulmonary vascular-bronchial interactions.
DESIGN—Prospective, cross sectional study.
SE...

  3. Sustained inflation at birth did not alter lung injury from mechanical ventilation in surfactant-treated fetal lambs.

    Directory of Open Access Journals (Sweden)

    Noah H Hillman

    Full Text Available BACKGROUND: Sustained inflations (SI are used with the initiation of ventilation at birth to rapidly recruit functional residual capacity and may decrease lung injury and the need for mechanical ventilation in preterm infants. However, a 20 second SI in surfactant-deficient preterm lambs caused an acute phase injury response without decreasing lung injury from subsequent mechanical ventilation. HYPOTHESIS: A 20 second SI at birth will decrease lung injury from mechanical ventilation in surfactant-treated preterm fetal lambs. METHODS: The head and chest of fetal sheep at 126±1 day GA were exteriorized, with tracheostomy and removal of fetal lung fluid prior to treatment with surfactant (300 mg in 15 ml saline. Fetal lambs were randomized to one of four 15 minute interventions: 1 PEEP 8 cmH2O; 2 20 sec SI at 40 cmH2O, then PEEP 8 cmH2O; 3 mechanical ventilation with 7 ml/kg tidal volume; or 4 20 sec SI then mechanical ventilation at 7 ml/kg. Fetal lambs remained on placental support for the intervention and for 30 min after the intervention. RESULTS: SI recruited a mean volume of 6.8±0.8 mL/kg. SI did not alter respiratory physiology during mechanical ventilation. Heat shock protein (HSP 70, HSP60, and total protein in lung fluid similarly increased in both ventilation groups. Modest pro-inflammatory cytokine and acute phase responses, with or without SI, were similar with ventilation. SI alone did not increase markers of injury. CONCLUSION: In surfactant treated fetal lambs, a 20 sec SI did not alter ventilation physiology or markers of lung injury from mechanical ventilation.

  4. ALTERATIONS IN BACTERIAL DEFENSE MECHANISMS OF THE LUNG INDUCED BY INHALATION OF CADMIUM

    Science.gov (United States)

    Exposure to an aerosol of CdC12 has a marked proclivity to reduce the ability of the lung to defend itself against microbial insults. A significant enhancement of mortality was observed in mice exposed to CdC12 concentrations ranging from 80 to 1600 micrograms/cu m prior to being...

  5. Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby.

    Directory of Open Access Journals (Sweden)

    Damon Love

    Full Text Available The canonical Wnt/β-catenin pathway plays crucial roles in various aspects of lung morphogenesis and regeneration/repair. Here, we examined the lung phenotype and function in mice lacking the Wnt/β-catenin antagonist Chibby (Cby. In support of its inhibitory role in canonical Wnt signaling, expression of β-catenin target genes is elevated in the Cby(-/- lung. Notably, Cby protein is prominently associated with the centrosome/basal body microtubule structures in embryonic lung epithelial progenitor cells, and later enriches as discrete foci at the base of motile cilia in airway ciliated cells. At birth, Cby(-/- lungs are grossly normal but spontaneously develop alveolar airspace enlargement with reduced proliferation and abnormal differentiation of lung epithelial cells, resulting in altered pulmonary function. Consistent with the Cby expression pattern, airway ciliated cells exhibit a marked paucity of motile cilia with apparent failure of basal body docking. Moreover, we demonstrate that Cby is a direct downstream target for the master ciliogenesis transcription factor Foxj1. Collectively, our results demonstrate that Cby facilitates proper postnatal lung development and function.

  6. Lung parenchymal mechanics.

    Science.gov (United States)

    Suki, Béla; Stamenović, Dimitrije; Hubmayr, Rolf

    2011-07-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This chapter focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  7. Lung Parenchymal Mechanics

    OpenAIRE

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2011-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key de...

  8. Ventilation-induced Alterations in Lung Development

    OpenAIRE

    Kroon, André

    2011-01-01

    textabstractMechanical ventilation is a lifesaving treatment in critically ill neonates. However, mechanical ventilation is also one of the most important risk factors (Table 1) of Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infancy with long-term pulmonary and neurological complications (1). Exposure of immature lungs to positive pressure ventilation results in oxidative stress and ventilator-induced lung injury. The resulting injury and inflammation lead to abn...

  9. Assessment of Peripheral Lung Mechanics

    OpenAIRE

    Bates, Jason H. T.; Suki, Béla

    2008-01-01

    The mechanical properties of the lung periphery are major determinants of overall lung function, and can change dramatically in disease. In this review we examine the various experimental techniques that have provided data pertaining to the mechanical properties of the lung periphery, together with the mathematical models that have been used to interpret these data. These models seek to make a clear distinction between the central and peripheral compartments of the lung by encapsulating funct...

  10. Gastroesophageal Reflux and Altered Motility in Lung Transplant Rejection

    Science.gov (United States)

    Castor, John M; Wood, Richard K.; Muir, Andrew J.; Palmer, Scott M.; Shimpi, Rahul A.

    2010-01-01

    Background Lung transplantation has become an effective therapeutic option for selected patients with end stage lung disease. Long-term survival is limited by chronic rejection manifest as bronchiolitis obliterans syndrome (BOS). The aspiration of gastric contents has been implicated as a causative or additive factor leading to BOS. Gastroesophageal reflux (GER) and altered foregut motility are common both before and after lung transplantation. Further, the normal defense mechanisms against reflux are impaired in the allograft. Recent studies using biomarkers of aspiration have added to previous association studies to provide a growing body of evidence supporting the link between rejection and GER. Further, the addition of high-resolution manometry (HRM) and impedance technology to characterize bolus transit and the presence and extent of reflux regardless of pH might better identify at-risk patients. Although additional prospective studies are needed, fundoplication appears useful in the prevention or treatment of post-transplant BOS. Purpose This review will highlight the existing literature on the relationship of gastroesophageal reflux and altered motility to lung transplant rejection, particularly BOS. The article will conclude with a discussion of the evaluation and management of patients undergoing lung transplantation at our center. PMID:20507544

  11. Inflammatory mechanisms in the lung

    Directory of Open Access Journals (Sweden)

    B Moldoveanu

    2008-12-01

    Full Text Available B Moldoveanu1, P Otmishi1, P Jani1, J Walker1,2, X Sarmiento3, J Guardiola1, M Saad1, Jerry Yu11Department of Medicine, University of Louisville, Louisville, KY, USA, 40292; 2Department of Respiratory Therapy, Bellarmine University, Louisville, KY, USA, 40205; 3Intensive Care Medicine Service, University Hospital Germans Trias i Pujol, Badalona, Spain 08916Abstract: Inflammation is the body’s response to insults, which include infection, trauma, and hypersensitivity. The inflammatory response is complex and involves a variety of mechanisms to defend against pathogens and repair tissue. In the lung, inflammation is usually caused by pathogens or by exposure to toxins, pollutants, irritants, and allergens. During inflammation, numerous types of inflammatory cells are activated. Each releases cytokines and mediators to modify activities of other inflammatory cells. Orchestration of these cells and molecules leads to progression of inflammation. Clinically, acute inflammation is seen in pneumonia and acute respiratory distress syndrome (ARDS, whereas chronic inflammation is represented by asthma and chronic obstructive pulmonary disease (COPD. Because the lung is a vital organ for gas exchange, excessive inflammation can be life threatening. Because the lung is constantly exposed to harmful pathogens, an immediate and intense defense action (mainly inflammation is required to eliminate the invaders as early as possible. A delicate balance between inflammation and anti-inflammation is essential for lung homeostasis. A full understanding of the underlying mechanisms is vital in the treatment of patients with lung inflammation. This review focuses on cellular and molecular aspects of lung inflammation during acute and chronic inflammatory states.Keywords: inflammation, lung, inflammatory mediators, cytokines

  12. Effects of Tityus serrulatus scorpion venom on lung mechanics and inflammation in mice.

    Science.gov (United States)

    Paneque Peres, Ana Claudia; Nonaka, Paula Naomi; de Carvalho, Paulo de Tarso Camillo; Toyama, Marcos Hikari; Silva, Cesar Augusto Melo e; Vieira, Rodolfo de Paula; Dolhnikoff, Marisa; Zamuner, Stella Regina; de Oliveira, Luis Vicente Franco

    2009-06-01

    The present study evaluated the effects of an intramuscular injection of Tityus serrulatus venom (TsV) (0.67 miocrog/g) on lung mechanics and lung inflammation at 15, 30, 60 and 180 min after inoculation. TsV inoculation resulted in increased lung elastance when compared with the control group (p T. serrulatus venom leads to acute lung injury, characterised by altered lung mechanics and increased pulmonary inflammation. PMID:19470319

  13. Genome Wide Methylome Alterations in Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Nandita Mullapudi

    Full Text Available Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC, we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T-non-tumor (NT pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16. Further, when DM was coupled to differential transcriptome (DE in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  14. Genome Wide Methylome Alterations in Lung Cancer.

    Science.gov (United States)

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; pLAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents. PMID:26683690

  15. Pathogenic mechanism in lung fibrosis

    International Nuclear Information System (INIS)

    The purpose of the study was to examine whether an interaction between two agents causing alveolar epithelial damage would produce lung fibrosis. In mouse lung, intraperitoneal injection of the antioxidant butylated hydroxytoluene causes diffuse alveolar type I cell necrosis, followed by proliferation of type II alveolar cells. In animals exposed to 70% O2 or 100-200 rad x rays during the phase of type II cell proliferation following BHT, diffuse interstitial lung fibrosis developed within 2 weeks. Quantitative analysis of the lungs for hydroxyproline showed that the interaction between BHT and O2 or x rays was synergistic. If exposure to O2 or x rays was delayed until epithelial recovery was complete, no fibrosis was seen. Abnormally high levels of lung collagen persisted up to 6 months after one single treatment with BHT and 100 rad x rays. A commonly seen form of chronic lung damage may thus be caused by an acute interaction between a bloodborne agent which damages the alveolar cell and a toxic inhalant or x rays, provided a critically ordered sequence of exposure is observed

  16. Effects of pulmonary vascular pressures and flow on airway and parenchymal mechanics in isolated rat lungs

    OpenAIRE

    Petak, Ferenc; Habre, Walid; Hantos, Zoltán; Peter D Sly; Morel, Denis

    2002-01-01

    Changes in pulmonary hemodynamics have been shown to alter the mechanical properties of the lungs, but the exact mechanisms are not clear. We therefore investigated the effects of alterations in pulmonary vascular pressure and flow (Q(p)) on the mechanical properties of the airways and the parenchyma by varying these parameters independently in three groups of isolated perfused normal rat lungs. The pulmonary capillary pressure (Pc(est)), estimated from the pulmonary arterial (Ppa) and left a...

  17. Does Fatigue Alter Pitching Mechanics?

    Science.gov (United States)

    Chalmers, Peter Nissen; Erickson, Brandon J.; Sgroi, Terrance; Vignona, Peter; Lesniak, Matthew; Bush-Joseph, Charles A.; Verma, Nikhil N.; Romeo, Anthony A.

    2016-01-01

    Objectives: Background: Injuries of the adolescent shoulder and elbow are common in baseball pitchers. Fatigue has been demonstrated to be a risk factor for injury. Purpose: To determine if shoulder and elbow kinematics, pitching velocity, accuracy, and pain change during a simulated full baseball game in adolescent pitchers. Methods: Methods: Adolescent pitchers between the ages of 13-16 were recruited to throw a 90 pitch simulated game. Shoulder range of motion was assessed before and after the game. Velocity and accuracy were measured for every pitch and every 15th pitch was videotaped from two orthogonal views in high definition at 240 Hz. Quantitative and qualitative mechanics were measured from these videos. Perceived fatigue and pain were assessed after each inning using the visual analog scale. Data was statistically analyzed using a repeated-measures analysis of variance. Results: Results: Twenty-eight elite adolescent pitchers were included. These pitchers, on average, were 14.6±0.9 years old (mean ± standard deviation), had been pitching for 6.3±1.7 years, and threw 94±58 pitches per week. Our experimental model functioned as expected in that pitchers became progressively more fatigued and painful and pitched with a lower velocity as pitch number increased (p<0.001, 0.001, and <0.001 respectively). Knee flexion at ball release progressively increased with pitch number (p=0.008). Hip and shoulder separation significantly decreased as pitch number increased, from 90%±40% at pitch 15 to 40%±50% at pitch 90 (p0.271 in all cases, 91% power for elbow flexion at ball release). External rotation and total range of motion in the pitching shoulder significantly increased post-pitching (p=0.007 and 0.047 respectively). Conclusion: Conclusion: As pitchers progress through a simulated game they throw lower velocity pitches and become fatigued and painful. Core and leg musculature becomes fatigued before upper extremity kinematics change. Based upon these

  18. Regional lung function and mechanics using image registration

    Science.gov (United States)

    Ding, Kai

    The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung function and mechanics. In this thesis, we present a technique that uses multiple respiratory-gated CT images of the lung acquired at different levels of inflation with both breath-hold static scans and retrospectively reconstructed 4D dynamic scans, along with non-rigid 3D image registration, to make local estimates of lung tissue function and mechanics. We validate our technique using anatomical landmarks and functional Xe-CT estimated specific ventilation. The major contributions of this thesis include: (1) developing the registration derived regional expansion estimation approach in breath-hold static scans and dynamic 4DCT scans, (2) developing a method to quantify lobar sliding from image registration derived displacement field, (3) developing a method for measurement of radiation-induced pulmonary function change following a course of radiation therapy, (4) developing and validating different ventilation measures in 4DCT. The ability of our technique to estimate regional lung mechanics and function as a surrogate of the Xe-CT ventilation imaging for the entire lung from quickly and easily obtained respiratory-gated images, is a significant contribution to functional lung imaging because of the potential increase in resolution, and large reductions in imaging time, radiation, and contrast agent exposure. Our technique may be useful to detect and follow the progression of lung disease such as COPD, may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy.

  19. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    International Nuclear Information System (INIS)

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  20. Mechanisms of protein misfolding in conformational lung diseases.

    LENUS (Irish Health Repository)

    McElvaney, N G

    2012-08-01

    Genetic or environmentally-induced alterations in protein structure interfere with the correct folding, assembly and trafficking of proteins. In the lung the expression of misfolded proteins can induce a variety of pathogenetic effects. Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two major clinically relevant pulmonary disorders associated with protein misfolding. Both are genetic diseases the primary causes of which are expression of mutant alleles of the cystic fibrosis transmembrane conductance regulator (CFTR) and SERPINA1, respectively. The most common and best studied mutant forms of CFTR and AAT are ΔF508 CFTR and the Glu342Lys mutant of AAT called ZAAT, respectively. Non-genetic mechanisms can also damage protein structure and induce protein misfolding in the lung. Cigarette-smoke contains oxidants and other factors that can modify a protein\\'s structure, and is one of the most significant environmental causes of protein damage within the lung. Herein we describe the mechanisms controlling the folding of wild type and mutant versions of CFTR and AAT proteins, and explore the consequences of cigarette-smoke-induced effects on the protein folding machinery in the lung.

  1. Recurrent recruitment manoeuvres improve lung mechanics and minimize lung injury during mechanical ventilation of healthy mice.

    Directory of Open Access Journals (Sweden)

    Lucy Kathleen Reiss

    Full Text Available INTRODUCTION: Mechanical ventilation (MV of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM in healthy mice. METHODS: Mice were ventilated at low tidal volume V(T = 8 mL/kg or high tidal volume V(T = 16 mL/kg and a positive end-expiratory pressure (PEEP of 2 or 6 cm H(2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP, electrocardiogram (ECG, heart frequency (HF, oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL and blood serum as well as histopathology of the lung were examined. RESULTS: MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. CONCLUSIONS: Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by

  2. Alterations of the Notch pathway in lung cancer

    Science.gov (United States)

    Westhoff, Britta; Colaluca, Ivan N.; D'Ario, Giovanni; Donzelli, Maddalena; Tosoni, Daniela; Volorio, Sara; Pelosi, Giuseppe; Spaggiari, Lorenzo; Mazzarol, Giovanni; Viale, Giuseppe; Pece, Salvatore; Di Fiore, Pier Paolo

    2009-01-01

    Notch signaling regulates cell specification and homeostasis of stem cell compartments, and it is counteracted by the cell fate determinant Numb. Both Numb and Notch have been implicated in human tumors. Here, we show that Notch signaling is altered in approximately one third of non–small-cell lung carcinomas (NSCLCs), which are the leading cause of cancer-related deaths: in ≈30% of NSCLCs, loss of Numb expression leads to increased Notch activity, while in a smaller fraction of cases (around 10%), gain-of-function mutations of the NOTCH-1 gene are present. Activation of Notch correlates with poor clinical outcomes in NSCLC patients without TP53 mutations. Finally, primary epithelial cell cultures, derived from NSCLC harboring constitutive activation of the Notch pathway, are selectively killed by inhibitors of Notch (γ-secretase inhibitors), showing that the proliferative advantage of these tumors is dependent upon Notch signaling. Our results show that the deregulation of the Notch pathway is a relatively frequent event in NSCLCs and suggest that it might represent a possible target for molecular therapies in these tumors. PMID:20007775

  3. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    International Nuclear Information System (INIS)

    Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFα (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFα mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFα signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.

  4. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides

    OpenAIRE

    Schweitzer, Kelly S.; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J.; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G.; Hubbard, Walter C.; Petrache, Irina

    2011-01-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithel...

  5. Epithelial repair mechanisms in the lung.

    Science.gov (United States)

    Crosby, Lynn M; Waters, Christopher M

    2010-06-01

    The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-alpha, KGF, HGF), chemokines (MCP-1), interleukins (IL-1beta, IL-2, IL-4, IL-13), and prostaglandins (PGE(2)), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-beta and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes. PMID:20363851

  6. Lung mechanics in the aging lung and in acute lung injury. Studies based on sinusoidal flow modulation.

    OpenAIRE

    Bitzén, Ulrika

    2006-01-01

    Knowledge about lung mechanics is of interest in intensive care to adjust mechanical ventilation and in the lung laboratory for diagnostics and evaluation of patients with various kinds of respiratory diseases. In mechanical ventilation a single inspiratory elastic pressure-volume (Pel/V) curve is difficult to interpret due to continuing re-expansion of collapsed lung units over a large pressure interval. However, the volume shifts between multiple inspiratory Pel/V curves recorded at ...

  7. A gene-alteration profile of human lung cancer cell lines

    OpenAIRE

    R. Blanco; Iwakawa, R.; Tang, M; Kohno, T.; Angulo, B; Pio, R. (Rubén); Montuenga, L M; Minna, J D; Yokota, J; Sanchez-Cespedes, M.

    2009-01-01

    ABSTRACT: Aberrant proteins encoded from genes altered in tumors drive cancer development and may also be therapeutic targets. Here we derived a comprehensive gene-alteration profile of lung cancer cell lines. We tested 17 genes in a panel of 88 lung cancer cell lines and found the rates of alteration to be higher than previously thought. Nearly all cells feature inactivation at TP53 and CDKN2A or RB1, whereas BRAF, MET, ERBB2, and NRAS alterations were infrequent. A p...

  8. Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    OpenAIRE

    Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan

    2011-01-01

    Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined t...

  9. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome

    Science.gov (United States)

    Uriarte, Juan J.; Meirelles, Thayna; Gorbenko del Blanco, Darya; Nonaka, Paula N.; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  10. Open lung concept in high risk anaesthesia : Optimizing mechanical ventilation in morbidly obese patients and during one lung ventilation with capnothorax

    OpenAIRE

    Reinius, Henrik

    2016-01-01

    Formation of atelectasis, defined as reversible collapse of aerated lung, often occurs after induction of anaesthesia with mechanical ventilation. As a consequence, there is a risk for hypoxemia, altered hemodynamics and impaired respiratory system mechanics. In certain situations, the risk for atelectasis formation is increased and its consequences may also be more difficult to manage. Anesthesia for bariatric surgery in morbidly obese patients and surgery requiring one-lung ventilation (OLV...

  11. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice.

    Science.gov (United States)

    Izzotti, Alberto; Balansky, Roumen; D'Agostini, Francesco; Longobardi, Mariagrazia; Cartiglia, Cristina; Micale, Rosanna T; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E; De Flora, Silvio

    2014-06-01

    The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture. PMID:24683044

  12. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice

    International Nuclear Information System (INIS)

    The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture

  13. Role of TNF-α in lung tight junction alteration in mouse model of acute lung inflammation

    Directory of Open Access Journals (Sweden)

    Cuzzocrea Salvatore

    2007-10-01

    Full Text Available Abstract In the present study, we used tumor necrosis factor-R1 knock out mice (TNF-αR1KO to understand the roles of TNF-α on epithelial function in models of carrageenan-induced acute lung inflammation. In order to elucidate whether the observed anti-inflammatory status is related to the inhibition of TNF-α, we also investigated the effect of etanercept, a TNF-α soluble receptor construct, on lung TJ function. Pharmacological and genetic TNF-α inhibition significantly reduced the degree of (1 TNF-α production in pleural exudates and in the lung tissues, (2 the inflammatory cell infiltration in the pleural cavity as well as in the lung tissues (evaluated by MPO activity, (3 the alteration of ZO-1, Claudin-2, Claudin-4, Claudin-5 and β-catenin (immunohistochemistry and (4 apoptosis (TUNEL staining, Bax, Bcl-2 expression. Taken together, our results demonstrate that inhibition of TNF-α reduces the tight junction permeability in the lung tissues associated with acute lung inflammation, suggesting a possible role of TNF-α on lung barrier dysfunction.

  14. [Design of a lung simulator for teaching lung mechanics in mechanical ventilation].

    Science.gov (United States)

    Heili-Frades, Sarah; Peces-Barba, Germán; Rodríguez-Nieto, María Jesús

    2007-12-01

    Over the last 10 years, noninvasive ventilation has become a treatment option for respiratory insufficiency in pulmonology services. The technique is currently included in pulmonology teaching programs. Physicians and nurses should understand the devices they use and the interaction between the patient and the ventilator in terms of respiratory mechanics, adaptation, and synchronization. We present a readily assembled lung simulator for teaching purposes that is reproducible and interactive. Based on a bag-in-box system, this model allows the concepts of respiratory mechanics in mechanical ventilation to be taught simply and graphically in that it reproduces the patterns of restriction, obstruction, and the presence of leaks. It is possible to demonstrate how each ventilation parameter acts and the mechanical response elicited. It can also readily simulate asynchrony and demonstrate how this problem can be corrected. PMID:18053545

  15. Recirculation of Inhaled Xenon Does Not Alter Lung CT Density

    OpenAIRE

    Hoag, Jeffrey B.; Fuld, Matthew; Brown, Robert H.; Simon, Brett A.

    2007-01-01

    Rationale and Objectives: Xenon-enhanced computer tomography (Xe-CT) measures regional ventilation from changes in lung parenchymal CT density during the multi-breath washin/washout of inhaled Xe gas. Since Xe is moderately soluble, vascular uptake and redistribution has been proposed as a confounding phenomenon. We propose that the redistribution of Xe via the circulation is negligible, and correction is unwarranted.

  16. Surfactant alterations and treatment of lung transplant ischemia-reperfusion injury

    OpenAIRE

    Kaaij, Niels; Lachmann, Robert; Bogers, Ad; Lachmann, Burkhard

    2006-01-01

    textabstractThis review addresses surfactant alterations and treatment in lung transplant ischemia-reperfusion injury. Lung ischemia-reperfusion injury damages the endogenous surfactant system as a result of the production of reactive oxygen species, proteolytic enzymes and (phospho)lipases. Surfactant is composed of phospholipids and proteins and its main function is to reduce the surface tension inside the alveolus. Impairment of surfactant will cause atelectasis, influx of serum proteins, ...

  17. Effects of Lung Expansion Therapy on Lung Function in Patients with Prolonged Mechanical Ventilation

    OpenAIRE

    Yen-Huey Chen; Ming-Chu Yeh; Han-Chung Hu; Chung-Shu Lee; Li-Fu Li; Ning-Hung Chen; Chung-Chi Huang; Kuo-Chin Kao

    2016-01-01

    Common complications in PMV include changes in the airway clearance mechanism, pulmonary function, and respiratory muscle strength, as well as chest radiological changes such as atelectasis. Lung expansion therapy which includes IPPB and PEEP prevents and treats pulmonary atelectasis and improves lung compliance. Our study presented that patients with PMV have improvements in lung volume and oxygenation after receiving IPPB therapy. The combination of IPPB and PEEP therapy also results in inc...

  18. Altered Immunogenicity of Donor Lungs via Removal of Passenger Leukocytes Using Ex Vivo Lung Perfusion.

    Science.gov (United States)

    Stone, J P; Critchley, W R; Major, T; Rajan, G; Risnes, I; Scott, H; Liao, Q; Wohlfart, B; Sjöberg, T; Yonan, N; Steen, S; Fildes, J E

    2016-01-01

    Passenger leukocyte transfer from the donor lung to the recipient is intrinsically involved in acute rejection. Direct presentation of alloantigen expressed on donor leukocytes is recognized by recipient T cells, promoting acute cellular rejection. We utilized ex vivo lung perfusion (EVLP) to study passenger leukocyte migration from donor lungs into the recipient and to evaluate the effects of donor leukocyte depletion prior to transplantation. For this purpose, female pigs received male left lungs either following 3 h of EVLP or retrieved using standard protocols. Recipients were monitored for 24 h and sequential samples were collected. EVLP-reduced donor leukocyte transfer into the recipient and migration to recipient lymph nodes was markedly reduced. Recipient T cell infiltration of the donor lung was significantly diminished via EVLP. Donor leukocyte removal during EVLP reduces direct allorecognition and T cell priming, diminishing recipient T cell infiltration, the hallmark of acute rejection. PMID:26366523

  19. Lung mechanics and high-resolution computed tomography of the chest in very low birth weight premature infants

    International Nuclear Information System (INIS)

    Premature infant lung development may be affected by lung injuries during the first few weeks of life. Lung injuries have been associated with changes in lung mechanics. The objective is to evaluate an association between lung mechanics and lung structural alterations in very low birth weight infants (birth weight less than 1500 g). The design presents a cross-sectional evaluation of pulmonary mechanics (lung compliance and lung resistance) and high resolution computed tomography of the chest at the time of discharge, in 86 very low birth weight infants born at Instituto Fernandes Figueira, a tertiary public health care institution in Rio de Janeiro, Brazil. Lung compliance and resistance were measured during quiet sleep. High resolution computed tomography was performed using Pro Speed-S equipment. Statistical analysis was performed by means of variance analysis (ANOVA/ Kruskal Wallis). The significance level was set at 0.05. The results showed abnormal values for both lung compliance and lung resistance were found in 34 babies (43%), whereas 20 (23.3%) had normal values for both lung compliance and lung resistance. The mean lung compliance and lung resistance for the group were respectively 1.30 ml/cm H2 O/kg and 63.7 cm H2 O/l/s. Lung alterations were found via high-resolution computed tomography in 62 (72%) infants. Most infants showed more than one abnormality, and these were described as ground glass opacity, parenchymal bands, atelectasis and bubble/cyst. The mean compliance values for infants with normal (1.49 ml/cm H2 O/kg) high resolution computed tomography, 1 or 2 abnormalities (1.31 ml/cm H2 O/kg) and 3 or more abnormalities (1.16 ml/cm H2 O/kg) were significantly different (p = 0.015). Our data were insufficient to find any association between lung resistance and the number of alterations via high-resolution computed tomography. The conclusion was that the results show high prevalence of lung functional and tomographic abnormalities in asymptomatic

  20. Lung mechanics and high-resolution computed tomography of the chest in very low birth weight premature infants

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Rosane Reis de; Dutra, Maria Virginia Peixoto; Ramos, Jose Roberto; Daltro, Pedro; Boechat, Marcia; Andrade Lopes, Jose Maria de [Fundacao Inst. Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Instituto Fernandes Figueira

    2003-07-01

    Premature infant lung development may be affected by lung injuries during the first few weeks of life. Lung injuries have been associated with changes in lung mechanics. The objective is to evaluate an association between lung mechanics and lung structural alterations in very low birth weight infants (birth weight less than 1500 g). The design presents a cross-sectional evaluation of pulmonary mechanics (lung compliance and lung resistance) and high resolution computed tomography of the chest at the time of discharge, in 86 very low birth weight infants born at Instituto Fernandes Figueira, a tertiary public health care institution in Rio de Janeiro, Brazil. Lung compliance and resistance were measured during quiet sleep. High resolution computed tomography was performed using Pro Speed-S equipment. Statistical analysis was performed by means of variance analysis (ANOVA/ Kruskal Wallis). The significance level was set at 0.05. The results showed abnormal values for both lung compliance and lung resistance were found in 34 babies (43%), whereas 20 (23.3%) had normal values for both lung compliance and lung resistance. The mean lung compliance and lung resistance for the group were respectively 1.30 ml/cm H{sub 2} O/kg and 63.7 cm H{sub 2} O/l/s. Lung alterations were found via high-resolution computed tomography in 62 (72%) infants. Most infants showed more than one abnormality, and these were described as ground glass opacity, parenchymal bands, atelectasis and bubble/cyst. The mean compliance values for infants with normal (1.49 ml/cm H{sub 2} O/kg) high resolution computed tomography, 1 or 2 abnormalities (1.31 ml/cm H{sub 2} O/kg) and 3 or more abnormalities (1.16 ml/cm H{sub 2} O/kg) were significantly different (p = 0.015). Our data were insufficient to find any association between lung resistance and the number of alterations via high-resolution computed tomography. The conclusion was that the results show high prevalence of lung functional and tomographic

  1. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells.

    Science.gov (United States)

    Perkins, Timothy N; Dentener, Mieke A; Stassen, Frank R; Rohde, Gernot G; Mossman, Brooke T; Wouters, Emiel F M; Reynaert, Niki L

    2016-06-15

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. PMID:27095093

  2. Carbon monoxide transfer in pig lungs during mechanical ventilation

    OpenAIRE

    Nijenhuis, Frances

    1996-01-01

    textabstractThis thesis comprises studies of gas transfer in the lungs during mechanical ventilation, which have been obtained in healthy pigs. The objectives of this thesis were: I) to adapt the breath-holding teclmique, as used during spontaneous breathing for estimation of gas transfer, to conditions of mechanical ventilation; and 2) to evaluate the effect of changes in lung volume on pulmonary gas transfer and capillary blood volume.

  3. The lung mechanical behavior change with 100% oxygen

    Science.gov (United States)

    Shen, Hsuan-Tso

    In medicine, delivery of hyperbaric oxygen to the lung is necessary and quite common to use for critical care. However, it is known that too much oxygen, under different conditions, can be toxic. For example, at an oxygen fraction of 50% at normal atmospheric pressure, the alveoli will show damage after long periods of exposure (several hours). Prolonged or high oxygen concentrations (up to 50%) can cause oxidative damage to cell membranes, the collapse of the alveoli in the lungs, retinal detachment, and seizures. Oxygen toxicity is managed by reducing the exposure to elevated oxygen levels. The possible mechanisms of oxygen toxicity are not fully understood, but the two main hypotheses in literature are direct point out cellular damage or surfactant dysfunction. Most previous studies have focused on long-term (greater than 4 hours) exposure and the effects on lung. Very little is known regarding the short-term effects of oxygen on lung. In this study, we choose to investigate short-term (five tidal volume) changes in lung under oxygen. To test this, we measured any sensitive mechanical behavior change in the lung using indentation. In the experiments, we measured excised mammalian lungs inflated with air or 100% oxygen, to different pressure (4, 12, 25cmH2O) and different indenter displacement (1, 2, 3mm). Our results show the lung becomes stiffer even when exposed to oxygen in the short term. In addition, inflating air again, the lung mechanical property shows some reversible behavior. This phenomenon is more obvious at low inflation pressure than in high pressure after exposure oxygen. We suggest that pulmonary surfactant plays an important role in the observed change. Also, we can say that the exposure time for oxygen toxicity to occur could be shorted that previously thought short-term. This conclusion is important to understand and accommodate oxygen toxicity in the lung.

  4. Basaltic glass: alteration mechanisms and analogy with nuclear waste glasses

    International Nuclear Information System (INIS)

    A synthetic basaltic glass was dissolved experimentally at 90 deg. C under static conditions in initially pure water. The basaltic glass dissolution rates measured near and far from equilibrium were compared with those of SON 68 nuclear waste glass. Experimental and literature data notably suggested that the alteration mechanisms for the two glasses are initially similar. Under steady-state concentration conditions, the alteration rate decreased of four orders of magnitude below the initial rate (r0). The same alteration rate decrease was observed for basaltic and nuclear glass. These findings tend to corroborate the analogy of the two glasses alteration kinetics. The effect of dissolved silica in solution, observed through dynamic leach tests with silicon-rich solutions, cannot account for the significant drop in the basaltic glass kinetics. Hence, a protective effect of the glass alteration film was assumed and experimentally investigated. Moreover, modeling with LIXIVER argue for a significant effect of diffusion in the alteration gel

  5. Alterations of pulmonary defense mechanisms by protein depletion diet.

    OpenAIRE

    Jakab, G J; Warr, G A; Astry, C L

    1981-01-01

    Pulmonary defense mechanisms were quantitated in mice that were fed a protein-free diet (PFD) for periods of 2 and 3 weeks. Despite the severe weight loss and emaciation induced by the diet, the bactericidal mechanisms in their lungs were preserved against aerogenic challenges with staphylococcus aureus, Proteus mirabilis, and Listeria monocytogenes. Phagocytic assays of alveolar macrophages that were retrieved by pulmonary lavage from PFD-fed animals showed a decrease in Fc receptor-mediated...

  6. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics

    OpenAIRE

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F.

    2007-01-01

    Introduction Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we ...

  7. Postperfusion lung syndrome: Respiratory mechanics, respiratory indices and biomarkers

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2015-01-01

    Full Text Available Postperfusion lung syndrome is rare but lethal. Secondary inflammatory response was the popularly accepted theory for the underlying etiology. Respiratory index (RI and arterial oxygen tension/fractional inspired oxygen can be reliable indices for the diagnosis of this syndrome as X-ray appearance is always insignificant at the early stage of the onset. Evaluations of extravascular lung water content and pulmonary compliance are also helpful in the definite diagnosis. Multiorgan failure and triple acid-base disturbances that might develop secondary to postperfusion lung syndrome are responsible for the poor prognosis and increased mortality rather than postperfusion lung syndrome itself. Mechanical ventilation with low tidal volume (TV and proper positive end-expiratory pressure can be an effective treatment strategy. Use of ulinastatin and propofol may benefit the patients through different mechanisms.

  8. Mechanisms of immune response regulation in lung cancer

    OpenAIRE

    Domagala-Kulawik, Joanna; Osinska, Iwona; Hoser, Grazyna

    2014-01-01

    Lung cancer is a leading cause of cancer deaths. As a solid tumor with low antigenicity and heterogenic phenotype lung cancer evades host immune defense. The cytotoxic anticancer effect is suppressed by a complex mechanism in tumor microenvironment. The population of regulatory T cells (Tregs) plays a crucial role in this inhibition of immune response. Tregs are defined by presence of forkhead box P3 (Foxp3) molecule. The high expression of Foxp3 was found in lung cancer cells and in tumor in...

  9. Lung tissue mechanics in the early stages of induced paracoccidioidomycosis in rats

    Directory of Open Access Journals (Sweden)

    M.A. Shikanai-Yasuda

    1997-10-01

    Full Text Available Pulmonary dysfunction represents the most important cause of death in patients with paracoccidioidomycosis (PBM. In order to investigate the functional changes of the lungs in the early stages of PBM, a model of benign disease was developed by intratracheal challenge of 12-week old isogenic Wistar rats with 1 x 106 yeast forms of Paracoccidioides brasiliensis. Animals were studied 30 and 60 days after infection, when fully developed granulomas were demonstrable in the lungs. Measurements of airway resistance, lung elastance and tissue hysteresis were made during sinusoidal deformations (100 breaths/min, tidal volume = 2 ml with direct measurement of alveolar pressure using the alveolar capsule technique. Infection caused a significant increase in hysteresis (infected: 1.69, N = 13; control: 1.13, N = 12, P = 0.024, ANOVA, with no alterations in airway resistance or lung elastance. Histopathological analysis revealed the presence of fully developed granulomas located in the axial compartment of the lung interstitial space. These results suggest that alterations of tissue mechanics represent an early event in experimental PBM

  10. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future. PMID:25600535

  11. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    International Nuclear Information System (INIS)

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  12. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  13. Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line.

    Science.gov (United States)

    Chang, De; Xu, Huiwen; Guo, Yinghua; Jiang, Xuege; Liu, Yan; Li, Kailong; Pan, Chunxiao; Yuan, Ming; Wang, Junfeng; Li, Tianzhi; Liu, Changting

    2013-03-01

    Simulated microgravity (SM) has been implicated in affecting diverse cellular pathways. Although there is emerging evidence that SM can alter cellular functions, its effect in cancer metastasis has not been addressed. Here, we demonstrate that SM inhibits migration, gelatinolytic activity, and cell proliferation of an A549 human lung adenocarcinoma cell line in vitro. Expression of antigen MKI67 and matrix metalloproteinase-2 (MMP2) was reduced in A549 cells stimulated by clinorotation when compared with the 1×g control condition, while overexpression of each gene improves ability of proliferation and migration, respectively, under SM conditions. These findings suggest that SM reduced the metastatic potential of human lung adenocarcinoma cells by altering the expression of MKI67 and MMP2, thereby inhibiting cell proliferation, migration, and invasion, which may provide some clues to study cancer metastasis in the future. PMID:23404217

  14. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development.

    Science.gov (United States)

    Benjamin, John T; van der Meer, Riet; Im, Amanda M; Plosa, Erin J; Zaynagetdinov, Rinat; Burman, Ankita; Havrilla, Madeline E; Gleaves, Linda A; Polosukhin, Vasiliy V; Deutsch, Gail H; Yanagisawa, Hiromi; Davidson, Jeffrey M; Prince, Lawrence S; Young, Lisa R; Blackwell, Timothy S

    2016-07-01

    The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung. PMID:27181406

  15. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  16. Functions and mechanisms of long noncoding RNAs in lung cancer

    Directory of Open Access Journals (Sweden)

    Peng ZZ

    2016-07-01

    Full Text Available Zhenzi Peng, Chunfang Zhang, Chaojun Duan Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People’s Republic of China Abstract: Lung cancer is a heterogeneous disease, and there is a lack of adequate biomarkers for diagnosis. Long noncoding RNAs (lncRNAs are emerging as an important set of molecules because of their roles in various key pathophysiological pathways, including cell growth, apoptosis, and metastasis. We review the current knowledge of the lncRNAs in lung cancer. In-depth analyses of lncRNAs in lung cancer have increased the number of potential effective biomarkers, thus providing options to increase the therapeutic benefit. In this review, we summarize the functions, mechanisms, and regulatory networks of lncRNAs in lung cancer, providing a basis for further research in this field. Keywords: ncRNA, tumorigenesis, biomarker, network, proliferation, apoptosis 

  17. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.

    Science.gov (United States)

    Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina

    2011-12-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione

  18. Self-reported taste and smell alterations in patients under investigation for lung cancer

    OpenAIRE

    Belqaid, Kerstin; Orrevall, Ylva; McGreevy, Jenny; Månsson-Brahme, Eva; Wismer, Wendy; Tishelman, Carol; Bernhardson, Britt-Marie

    2014-01-01

    This study of patients under investigation for lung cancer (LC) aims to: 1) examine the prevalence of self-reported taste and smell alterations (TSAs) and their relationships with demographic and clinical characteristics; and 2) explore nutritional importance of TSAs by examining their associations with patient-reported weight loss, symptoms interfering with food intake, and changes in food intake. Methods Patients were recruited consecutively during investigation for LC from one university h...

  19. Paracetamol Supplementation Does Not Alter The Antitumor Activity and Lung Toxicity of Bleomycin

    Directory of Open Access Journals (Sweden)

    Ghada M. Suddek

    2014-01-01

    Full Text Available Bleomycin (BLM is well known by its antitumor activity both in vitro and in vivo. However, pulmonary fibrosis has been considered the dose limiting toxicity of the drug. Hyperpyrexia following injection of BLM was reported thus, paracetamol is sometimes administered with BLM as antipyretic drug. Actually, paracetamol was found to interfere with cytotoxicity of some drugs. This study was conducted to investigate the effect of paracetamol administration on the antitumor and lung toxicity of BLM. The antitumor activity was evaluated both in vitro and in vivo using Ehrlich ascites carcinoma (EAC cells. Paracetamol did not alter the antitumor effect of BLM in vitro or in vivo. The lung toxicity of BLM was evidenced by decrease in the body weight, increase in the lung/body weight ratio, decrease in the response of pulmonary arterial rings to 5-hydroxytryptamine (5-HT and increase in the contractility of tracheal smooth muscles induced by acetylcholine (ACh. The toxicity was also confirmed biochemically by marked increases in hydroxyproline and lipid peroxidation in rat lung and the decrease in reduced glutathione (GSH level. Pretreatment with paracetamol did not significantly change lipid peroxidation, GSH level, percent survival of rats or the response of pulmonary arterial rings and tracheal smooth muscles to 5-HT and ACh respectively. The results of the present study indicated that paracetamol neither modified the antitumor effect of BLM nor changed drug-induced lung toxicity.

  20. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  1. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    International Nuclear Information System (INIS)

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O3) or HDMA/ozone (HDMA + O3) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O3 alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  2. Study of glass alteration mechanisms in cement waters

    International Nuclear Information System (INIS)

    In the French deep geological repository concept, intermediate-level vitrified waste packages could be disposed of concrete medium. Chemical composition and pH of the interstitial leaching water are expected to influence the chemical durability of glass. Investigations have thus been carried out to study glass dissolution mechanisms and kinetics in contact with cement waters. Three cement pore waters were studied: the first two correspond to two stages of the Portland cement aging and the third corresponds to equilibrium with a low pH concrete. The S/V ratio (glass-surface-area-to-solution-volume ratio) and the chemistry of cement waters are the two main parameters that control glass alteration mechanisms. If the leaching flow from the glass allows a degree of supersaturation to be reached and maintained which leads to nucleation of secondary phases, then precipitation of these phases drives glass dissolution. At a very low S/V ratio, the calcium uptake into the alteration layer increases its passivating properties. Conversely, at a high S/V ratio, the calcium precipitates as cementitious phases consuming elements which form the alteration layer. The glass dissolution is maintained at a high rate. This study contributes to highlighting the beneficial role of low pH cement in glass alteration, and is a first step towards understanding the mechanisms between the glass and the cement medium. (author)

  3. Ultrastructural alterations in the mouse lung caused by real-life ambient PM{sub 10} at urban traffic sites

    Energy Technology Data Exchange (ETDEWEB)

    Samara, Constantini, E-mail: csamara@chem.auth.gr [Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki (Greece); Kouras, Athanasios; Kaidoglou, Katerina [Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki (Greece); Emmanouil-Nikoloussi, Elpida-Niki; Simou, Chrysanthi; Bousnaki, Maria [Laboratory of Histology-Embryology and Anthropology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thesaloniki (Greece); Kelessis, Apostolos [Environmental Department, Municipality of Thessaloniki, Kleanthous 18, 54 642 Thessaloniki (Greece)

    2015-11-01

    Current levels of ambient air particulate matter (PM) are associated with mortality and morbidity in urban populations worldwide. Nevertheless, current knowledge does not allow precise quantification or definitive ranking of the health effects of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. In this paper, healthy Balb/c mice were exposed to ambient PM{sub 10} at a traffic site of a large city (Thessaloniki, northern Greece), in parallel to control mice that were exposed to filtered air. Structural damages were examined in ultrafine sections of lung tissues by Transmission Electronic Microscopy (TEM). Ambient PM{sub 10} samples were also collected during the exposure experiment and characterized with respect to chemical composition and oxidative potential. Severe ultrastructural alterations in the lung tissue after a 10-week exposure of mice at PM{sub 10} levels often exceeding the daily limit of Directive 2008/50/EC were revealed mainly implying PM-induced oxidative stress. The DTT-based redox activity of PM{sub 10} was found within the range of values reported for traffic sites being correlated with traffic-related constituents. Although linkage of the observed lung damage with specific chemical components or sources need further elucidation, the magnitude of biological responses highlight the necessity for national and local strategies for mitigation of particle emissions from combustion sources. - Highlights: • Animal exposure to PM10 was conducted at a traffic site of a large city. • Chemical and toxicological characterization of PM10 was carried out. • Severe degenerative alterations in alveolar cells were revealed. • PM induced oxidative stress from carbonaceous species was suggested.

  4. Ultrastructural alterations in the mouse lung caused by real-life ambient PM10 at urban traffic sites

    International Nuclear Information System (INIS)

    Current levels of ambient air particulate matter (PM) are associated with mortality and morbidity in urban populations worldwide. Nevertheless, current knowledge does not allow precise quantification or definitive ranking of the health effects of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. In this paper, healthy Balb/c mice were exposed to ambient PM10 at a traffic site of a large city (Thessaloniki, northern Greece), in parallel to control mice that were exposed to filtered air. Structural damages were examined in ultrafine sections of lung tissues by Transmission Electronic Microscopy (TEM). Ambient PM10 samples were also collected during the exposure experiment and characterized with respect to chemical composition and oxidative potential. Severe ultrastructural alterations in the lung tissue after a 10-week exposure of mice at PM10 levels often exceeding the daily limit of Directive 2008/50/EC were revealed mainly implying PM-induced oxidative stress. The DTT-based redox activity of PM10 was found within the range of values reported for traffic sites being correlated with traffic-related constituents. Although linkage of the observed lung damage with specific chemical components or sources need further elucidation, the magnitude of biological responses highlight the necessity for national and local strategies for mitigation of particle emissions from combustion sources. - Highlights: • Animal exposure to PM10 was conducted at a traffic site of a large city. • Chemical and toxicological characterization of PM10 was carried out. • Severe degenerative alterations in alveolar cells were revealed. • PM induced oxidative stress from carbonaceous species was suggested

  5. Effects of nanoparticles on the mechanical functioning of the lung.

    Science.gov (United States)

    Arick, Davis Q; Choi, Yun Hwa; Kim, Hyun Chang; Won, You-Yeon

    2015-11-01

    Nanotechnology is a rapidly expanding field that has very promising applications that will improve industry, medicine, and consumer products. However, despite the growing widespread use of engineered nanoparticles in these areas, very little has been done to assess the potential health risks they may pose to high-risk areas of the body, particularly the lungs. In this review we first briefly discuss the structure of the lungs and establish that the pulmonary surfactant (PS), given its vulnerability and huge contribution to healthy lung function, is a mechanism of great concern when evaluating potential nanoparticle interactions within the lung. To warrant that these interactions can occur, studies on the transport of nanoaerols are reviewed to highlight that a plethora of factors contribute to a nanoparticle's ability to travel to the deep regions of the lung where PS resides. The focus of this review is to determine the extent that physicochemical characteristics of nanoparticles such as size, hydrophobicity, and surface charge effect PS function. Numerous nanoparticle types are taken into consideration in order to effectively evaluate observed consistencies across numerous nanoparticle types and develop general trends that exist among the physicochemical characteristics of interest. Biological responses from other mechanisms/components of the lung are briefly discussed to provide further insights on how the toxicology of different nanoparticles is determined. We conclude by discussing general trends that summarize consistencies observed among the studies in regard to physicochemical properties and their effects on monolayer function, addressing current gaps in our understanding, and discussing the future outlook of this field of research. PMID:26494653

  6. Mechanisms, assessment and therapeutic implications of lung hyperinflation in COPD.

    Science.gov (United States)

    Rossi, Andrea; Aisanov, Zaurbek; Avdeev, Sergey; Di Maria, Giuseppe; Donner, Claudio F; Izquierdo, José Luis; Roche, Nicolas; Similowski, Thomas; Watz, Henrik; Worth, Heinrich; Miravitlles, Marc

    2015-07-01

    The main complaint of patients with chronic obstructive pulmonary disease (COPD) is shortness of breath with exercise, that is usually progressive. The principal mechanism that explains this symptom is the development of lung hyperinflation (LH) which is defined by an increase of functional residual capacity (FRC) above predicted values. Patients with COPD may develop static LH (sLH) because of destruction of pulmonary parenchyma and loss of elastic recoil. In addition, dynamic LH (dLH) develops when patients with COPD breathe in before achieving a full exhalation and, as a consequence, air is trapped within the lungs with each further breath. Dynamic LH may also occur at rest but it becomes clinically relevant during exercise and exacerbation. Lung hyperinflation may have an impact beyond the lungs and the effects of LH on cardiovascular function have been extensively analysed. The importance of LH makes its identification and measurement crucial. The demonstration of LH in COPD leads to the adoption of strategies to minimise its impact on the daily activities of patients. Several strategies reduce the impact of LH; the use of long-acting bronchodilators has been shown to reduce LH and improve exercise capacity. Non pharmacologic interventions have also been demonstrated to be useful. This article describes the pathophysiology of LH, its impact on the lungs and beyond and reviews the strategies that improve LH in COPD. PMID:25892293

  7. Mechanisms for altered carnitine content in hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Carnitine levels are reduced in hypertrophied hearts of rats subjected to aortic constriction (banding) and evaluated in hypertrophied hearts of spontaneously hypertensive rats (SHR). In an attempt to determine the mechanisms for these alterations, L-[14C]carnitine transport was examined in isolated perfused hearts. Total carnitine uptake was significantly reduced by ∼20% in hypertrophied hearts of banded rats at all perfusate carnitine concentrations employed. The reduction in total uptake was due to a 40% reduction in carrier-mediated carnitine uptake with no difference in uptake by diffusion. In contrast, carnitine uptake was not altered in isolated hypertrophied hearts of SHR. However, serum carnitine levels were elevated in SHR, which could result in increased myocardial carnitine uptake in vivo. The data suggest that altered carnitine content in hypertrophied hearts of aortic-banded rats is due to an alteration in the carrier-mediated carnitine transport system in the myocardium. However, altered carnitine content in hypertrophied hearts of SHR is not due to a change in the carnitine transport system per se but may rather be due to a change in serum carnitine levels

  8. Molecular biologic study about the non-small cell lung carcinoma (2) : p53 gene alteration in non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    The main purpose of this research was to identify of the p53 and 3p gene alteration in non-small cell lung cancer patients residing in Korea. Furthermore, we analyzed the relationship between the p53 and 3p gene alterations and the clinicopathologic results of lung cancer patients. And we have investigated the role of PCR-LOH in analyzing tumor samples for LOH of defined chromosomal loci. We have used the 40 samples obtained from the lung cancer patients who were diagnosed and operated curatively at Korea Cancer Center Hospital. We have isolated the high molecular weight. DNA from the tumors and normal tissues. And we have amplified the DNA with PCR method and used the microsatellite assay method to detect the altered p53 and 3p gene. The conclusions were as follow: 1) The 3p gene alteration was observed in 9/39 (23.1%) and p53 gene alteration was observed in 15/40 (37.5%) of resected non-small cell lung cancer. 2) There was no correlations between the 3p or p53 gene alterations and prognosis of patients, but further study is necessary. 3) PCR-LOH is a very useful tool for analyzing small amount of tumor samples for loss of heterozygosity of defined chromosomal loci. (author). 10 refs

  9. Modifications of lung clearance mechanisms by acute influenza A infection

    International Nuclear Information System (INIS)

    Four volunteers with naturally acquired, culture-proved influenza A infection inhaled a radiolabeled aerosol to permit investigation of lung mucociliary clearance mechanisms during and after symptomatic illness. Mucus transport in the trachea was undetectable when monitored with an external multidetector probe within 48 hours of the onset of the illness, but was found at a normal velocity by 1 week in three of the four subjects. In two volunteers who coughed 23 to 48 times during the 4.5-hour observation period, whole lung clearance was as fast within the first 48 hours of illness as during health 3 months later in spite of the absence of measurable tracheal mucus transport. Conversely, in spite of the return 1 week later of mucus transport at velocities expected in the trachea, whole lung clearance for the 4.5-hour period was slowed in two volunteers who coughed less than once an hour. The data offer evidence that cough is important in maintaining lung clearance for at least several days after symptomatic influenza A infection when other mechanisms that depend on ciliary function are severely deficient

  10. Alterations in mechanical properties are associated with prostate cancer progression.

    Science.gov (United States)

    Wang, Xuejian; Wang, Jianbo; Liu, Yingxi; Zong, Huafeng; Che, Xiangyu; Zheng, Wei; Chen, Feng; Zhu, Zheng; Yang, Deyong; Song, Xishuang

    2014-03-01

    Cancer progression and metastasis have been shown to be accompanied by alterations in the mechanical properties of tissues, but the relationship between the mechanical properties and malignant behavior in prostate cancer (Pca) is less clear. The aims of this study were to detect the mechanical properties of benign prostatic hyperplasia (BPH) and Pca tissues on both the macro- and micro-scales, to explore the relationships between mechanical properties and malignant behavior and, finally, to identify the important molecules in the mechanotransduction signaling pathway. We demonstrated that the strain index of Pca tissue was significantly higher than that of BPH tissue on the macro-scale but the Young's modulus of the Pca tissues, especially in advanced Pca, was lower than that of BPH tissues on the micro-scale. These two seemingly contradictory results can be explained by the excessive proliferation of tumor cells (Ki-67) and the degradation of scaffold proteins (collagens). These data indicate that alterations of the macro- and micro-mechanical properties of Pca tissues with malignant behavior are contradictory. The mechanical properties of tissues might be useful as a new risk factor for malignancy and metastasis in Pca. Furthermore, collagens, matrix metalloproteinase, fibronectin, and integrins might be the important molecules in the mechanotransduction signaling pathway. PMID:24504844

  11. Effects of Lung Expansion Therapy on Lung Function in Patients with Prolonged Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Yen-Huey Chen

    2016-01-01

    Full Text Available Common complications in PMV include changes in the airway clearance mechanism, pulmonary function, and respiratory muscle strength, as well as chest radiological changes such as atelectasis. Lung expansion therapy which includes IPPB and PEEP prevents and treats pulmonary atelectasis and improves lung compliance. Our study presented that patients with PMV have improvements in lung volume and oxygenation after receiving IPPB therapy. The combination of IPPB and PEEP therapy also results in increase in respiratory muscle strength. The application of IPPB facilitates the homogeneous gas distribution in the lung and results in recruitment of collapsed alveoli. PEEP therapy may reduce risk of respiratory muscle fatigue by preventing premature airway collapse during expiration. The physiologic effects of IPPB and PEEP may result in enhancement of pulmonary function and thus increase the possibility of successful weaning from mechanical ventilator during weaning process. For patients with PMV who were under the risk of atelectasis, the application of IPPB may be considered as a supplement therapy for the enhancement of weaning outcome during their stay in the hospital.

  12. Chemical and Mechanical Alteration of Fractured Caprock Under Reactive Flow

    Science.gov (United States)

    Elkhoury, J. E.; Ameli, P.; Detwiler, R. L.

    2013-12-01

    Permeability evolution of fractures depends on chemical and mechanical processes. Stress perturbations lead to mechanical deformation and fracture propagation that can increase formation permeability. Chemical disequilibrium between fluids and resident minerals leads to dissolution and precipitation that further alter fracture porosity and permeability. The ability to predict whether these coupled chemical and mechanical processes will enhance or diminish fracture permeability remains elusive. Here, we present results from reactive-transport experiments in fractured anhydrite cores, with significant alteration of the rock matrix, where only the flow rate differed. For high flow rate, the transformation of anhydrite to gypsum occurred uniformly within the fracture leading to compaction and a two-order-of-magnitude decrease in permeability. For low flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. Anticipating such permeability evolution is critical for successful geologic CO2 sequestration and waste injection. Additionally, reactive alteration of the porous matrix bounding fractures will influence the strength of earthquake fault zones. Comparison of the aperture field before (a) and after (b) the reactive flow-through experiment at low flow rate. a) Aperture field from optical profilometry measurements of the fracture surfaces. b) Inferred aperture from x-ray computed tomography scans. Color scale I (blue) denotes mainly unaltered regions of the fracture and/or aperture 200 μm) leading to negligible change in permeability after a 6-month run.

  13. Alterations in particle accumulation and clearance in lungs of rats chronically exposed to diesel exhaust

    International Nuclear Information System (INIS)

    F344 rats were chronically exposed to diesel exhaust at target soot concentrations of 0 (control, C), 0.35 (low, L), 3.5 (medium, M), and 7.0 (high, H) mg/m3. Accumulated lung burdens of diesel soot were measured after 6, 12, 18, and 24 months of exposure. Parallel measurements of particle deposition and clearance were made to provide insight into the mechanisms of particle accumulation in lungs. The fractional deposition of inhaled 67Ga2O3 particles after 6, 12, 18, and 24 months of exposure and of inhaled 134Cs-fused aluminosilicate particles after 24 months were similar for all groups. Progressive increases in lung burdens of soot particles were observed in M and H exposed rats, reaching levels of 11.5 +/- 0.5 and 20.5 +/- 0.8 mg/lung (mean +/- SE), respectively, after 24 months. Rats in the L group had smaller relative increases in lung burden, reaching levels of 0.60 +/- 0.02 mg/lung after 24 months. Tracheal mucociliary clearance measurements, using 99mTc-macroaggregated albumin deposited in the trachea, showed no changes at anytime. There were statistically significant increases in clearance half-times of inhaled radiolabeled particles of 67Ga2O3 as early as 6 months at the H level and 18 months at the M level; no significant changes were seen at the L level. Rats inhaled fused aluminosilicate particles labeled with 134Cs after 24 months of diesel exhaust exposure to measure long-term components of pulmonary clearance. The long-term clearance half-times were 79 +/- 5, 81 +/- 5, 264 +/- 50, and 240 +/- 50 days (mean +/- SE) for the C, L, M, and H groups, respectively. Differences were significant between the C and both the M and H exposure groups (p less than 0.01)

  14. Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth

    Science.gov (United States)

    Cosgrove, D. J.

    1990-01-01

    The biophysical basis for the changes in cell elongation rate during gravitropism was examined in aetiolated cucumber (Cucumis sativus L.) hypocotyls. Bulk osmotic pressures on the two sides of the stem and in the epidermal cells were not altered during the early time course of gravitropism. By the pressure-probe technique, a small increase in turgor (0.3 bar, 30 kPa) was detected on the upper (inhibited) side, whereas there was a negligible decrease in turgor on the lower (stimulated) side. These small changes in turgor and water potential appeared to be indirect, passive consequences of the altered growth and the small resistance for water movement from the xylem, and indicated that the change in growth was principally due to changes in wall properties. The results indicate that the hydraulic conductance of the water-transport pathway was large (.25 h-1 bar-1) and the water potential difference supporting cell expansion was no greater than 0.3 bar (30 kPa). From pressure-block experiments, it appeared that upon gravitropic stimulation (1) the yield threshold of the lower half of the stem did not decrease and (2) the wall on the upper side of the stem was not made more rigid by a cross-linking process. Mechanical measurements of the stress/strain properties of the walls showed that the initial development of gravitropism did not involve an alteration of the mechanical behaviour of the isolated walls. Thus, gravitropism in cucumber hypocotyls occurs principally by an alteration of the wall relaxation process, without a necessary change in wall mechanical properties.

  15. Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men.

    Science.gov (United States)

    Dominelli, Paolo B; Sheel, A William; Foster, Glen E

    2012-06-01

    Weighted backpacks are used extensively in recreational and occupational settings, yet their effects on lung mechanics during acute exercise is poorly understood. The purpose of this study was to determine the effects of different backpack weights on lung mechanics and breathing patterns during treadmill walking. Subjects (n = 7, age = 28 ± 6 years), completed two 2.5-min exercise stages for each backpack condition [no backpack (NP), an un-weighted backpack (NW) or a backpack weighing 15, 25 or 35 kg]. A maximal expiratory flow volume curve was generated for each backpack condition and an oesophageal balloon catheter was used to estimate pleural pressure. The 15, 25 and 35 kg backpacks caused a 3, 5 and 8% (P backpack compared to NP (32 ± 4.3 vs. 88 ± 9.0 J min(-1), P backpack weight increased. As backpack weight increased, there was a concomitant decline in calculated maximal ventilation, a rise in minute ventilation, and a resultant greater utilization of maximal available ventilation. In conclusion, wearing a weighted backpack during an acute bout of exercise altered operational lung volumes; however, adaptive changes in breathing mechanics may have minimized changes in the required POB such that at an iso-ventilation, wearing a backpack weighing up to 35 kg does not increase the POB requirement. PMID:21947409

  16. Preemptive mechanical ventilation can block progressive acute lung injury.

    Science.gov (United States)

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  17. Chloroform alters interleaflet coupling in lipid bilayers: an entropic mechanism

    Science.gov (United States)

    Reigada, Ramon; Sagués, Francesc

    2015-01-01

    The interaction of the two leaflets of the plasmatic cell membrane is conjectured to play an important role in many cell processes. Experimental and computational studies have investigated the mechanisms that modulate the interaction between the two membrane leaflets. Here, by means of coarse-grained molecular dynamics simulations, we show that the addition of a small and polar compound such as chloroform alters interleaflet coupling by promoting domain registration. This is interpreted in terms of an entropic gain that would favour frequent chloroform commuting between the two leaflets. The implication of this effect is discussed in relation to the general anaesthetic action. PMID:25833246

  18. Effects of dexmedetomidine on oxygenation and lung mechanics in patients with moderate chronic obstructive pulmonary disease undergoing lung cancer surgery

    OpenAIRE

    Lee, Su Hyun; Kim, Namo; Lee, Chang Yeong; Ban, Min Gi; Oh, Young Jun

    2015-01-01

    BACKGROUND Chronic obstructive pulmonary disease (COPD) is a risk factor that increases the incidence of postoperative cardiopulmonary morbidity and mortality after lung resection. Dexmedetomidine, a selective α2-adrenoreceptor agonist, has been reported previously to attenuate intrapulmonary shunt during one-lung ventilation (OLV) and to alleviate bronchoconstriction. OBJECTIVE The objective is to determine whether dexmedetomidine improves oxygenation and lung mechanics in patients with mode...

  19. EFFECTS OF CONSTRICTION IN A MECHANICAL MODEL OF LUNG PARENCHYMA

    Directory of Open Access Journals (Sweden)

    Clara Ionescu

    2011-02-01

    Full Text Available The demands on materials’ properties, for medical purposes, largely depend on the site of application and the function it has to restore. Ideally a replacement material should mimic the living tissue from a mechanical, chemical, biological, and functional point of view. The estimation of the mechanical characteristics of blood vessel walls, the values of modulus of elasticity and the coefficient of transversal strain serve to determine some aspects of reconstruction of blood vessels. The tissue growth, the blood clotting and the affecting blood elements are influenced by surface energy. In this study, we address the possibility to investigate the mechanical properties of the airways in a simulation study of the human lungs.

  20. Tumor suppressor in lung cancer 1 (TSLC1 alters tumorigenic growth properties and gene expression

    Directory of Open Access Journals (Sweden)

    Murakami Yoshinori

    2005-08-01

    Full Text Available Abstract Background Introduction of cDNA or genomic clones of the tumor suppressor in lung cancer 1 (TSLC1 gene into the non-small cell lung cancer line, A549, reverses tumorigenic growth properties of these cells. These results and the observation that TSLC1 is down-regulated in a number of tumors suggest that TSLC1 functions as a critical switch mediating repression of tumorigenesis. Results To investigate this mechanism, we compared growth properties of A549 with the TSLC1-containing derivative. We found a G1/S phase transition delay in 12.2. Subtractive hybridization, quantitative PCR, and TranSignal Protein/DNA arrays were used to identify genes whose expression changed when TSLC1 was up-regulated. Members of common G1/S phase regulatory pathways such as TP53, MYC, RB1 and HRAS were not differentially expressed, indicating that TSLC1 may function through an alternative pathway(s. A number of genes involved in cell proliferation and tumorigenesis were differentially expressed, notably genes in the Ras-induced senescence pathway. We examined expression of several of these key genes in human tumors and normal lung tissue, and found similar changes in expression, validating the physiological relevance of the A549 and 12.2 cell lines. Conclusion Gene expression and cell cycle differences provide insights into potential downstream pathways of TSLC1 that mediate the suppression of tumor properties in A549 cells.

  1. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell.

    Science.gov (United States)

    Inamdar, Ajinkya C; Inamdar, Arati A

    2013-10-01

    Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD. PMID:23992090

  2. Right Atrial Pressure Affects the Interaction between Lung Mechanics and Right Ventricular Function in Spontaneously Breathing COPD Patients

    OpenAIRE

    Boerrigter, B.G.; Trip, P.; Bogaard, H.J.; Groepenhoff, H.; Oosterveer, F.; Westerhof, N.; Vonk Noordegraaf, A.

    2012-01-01

    Introduction It is generally known that positive pressure ventilation is associated with impaired venous return and decreased right ventricular output, in particular in patients with a low right atrial pressure and relative hypovolaemia. Altered lung mechanics have been suggested to impair right ventricular output in COPD, but this relation has never been firmly established in spontaneously breathing patients at rest or during exercise, nor has it been determined whether these cardiopulmonary...

  3. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Carughi Stefano

    2010-06-01

    Full Text Available Abstract Background The onset and the development of neoplastic disease may be influenced by many physiological, biological and immunological factors. The nervous, endocrine and immune system might act as an integrated unit to mantain body defense against this pathological process and reciprocal influences have been evidenced among hypothalamus, pituitary, thyroid, adrenal, pineal gland and immune system. In this study we evaluated differences among healthy subjects and subjects suffering from lung cancer in the 24-hour secretory profile of melatonin, cortisol, TRH, TSH, FT4, GH, IGF-1 and IL-2 and circadian variations of lymphocyte subpopulations. Methods In ten healthy male volunteers (age range 45-66 and ten male patients with untreated non small cell lung cancer (age range 46-65 we measured melatonin, cortisol, TRH, TSH, FT4, GH, IGF-1 and IL-2 serum levels and percentages of lymphocyte subpopulations on blood samples collected every four hours for 24 hours. One-way ANOVA between the timepoints for each variable and each group was performed to look for a time-effect, the presence of circadian rhythmicity was evaluated, MESOR, amplitude and acrophase values, mean diurnal levels and mean nocturnal levels were compared. Results A clear circadian rhythm was validated in the control group for hormone serum level and for lymphocyte subsets variation. Melatonin, TRH, TSH, GH, CD3, CD4, HLA-DR, CD20 and CD25 expressing cells presented circadian rhythmicity with acrophase during the night. Cortisol, CD8, CD8bright, CD8dim, CD16, TcRδ1 and δTcS1 presented circadian rhythmicity with acrophase in the morning/at noon. FT4, IGF-1 and IL-2 variation did not show circadian rhythmicity. In lung cancer patients cortisol, TRH, TSH and GH serum level and all the lymphocyte subsubsets variation (except for CD4 showed loss of circadian rhythmicity. MESOR of cortisol, TRH, GH, IL-2 and CD16 was increased, whereas MESOR of TSH, IGF-1, CD8, CD8bright, TcRδ1 and

  4. Altered prostanoid production by fibroblasts cultured from the lungs of human subjects with idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Pierson Richard

    2002-02-01

    Full Text Available Abstract Background Prostanoids are known to participate in the process of fibrogenesis. Because lung fibroblasts produce prostanoids and are believed to play a central role in the pathogenesis of idiopathic pulmonary fibrosis (IPF, we hypothesized that fibroblasts (HF cultured from the lungs of patients with IPF (HF-IPF have an altered balance between profibrotic (thromboxane [TX]A2 and antifibrotic (prostacyclin [PGI2] prostaglandins (PGs when compared with normal human lung fibroblasts (HF-NL. Methods We measured inducible cyclooxygenase (COX-2 gene and protein expression, and a profile of prostanoids at baseline and after IL-1β stimulation. Results In both HF-IPF and HF-NL COX-2 expression was undetectable at baseline, but was significantly upregulated by IL-1β. PGE2 was the predominant COX product in IL-1β-stimulated cells with no significant difference between HF-IPF and HF-NL (28.35 [9.09–89.09] vs. 17.12 [8.58–29.33] ng/106 cells/30 min, respectively; P = 0.25. TXB2 (the stable metabolite of TXA2 production was significantly higher in IL-1β-stimulated HF-IPF compared to HF-NL (1.92 [1.27–2.57] vs. 0.61 [0.21–1.64] ng/106 cells/30 min, respectively; P = 0.007 and the ratio of PGI2 (as measured by its stable metabolite 6-keto-PGF1α to TXB2 was significantly lower at baseline in HF-IPF (0.08 [0.04–0.52] vs. 0.12 [0.11–0.89] in HF-NL; P = 0.028 and with IL-1β stimulation (0.24 [0.05–1.53] vs. 1.08 [0.51–3.79] in HF-NL; P = 0.09. Conclusion An alteration in the balance of profibrotic and antifibrotic PGs in HF-IPF may play a role in the pathogeneses of IPF.

  5. Alteration mechanisms of UOX spent fuel in aqueous media

    International Nuclear Information System (INIS)

    The mechanisms of underwater alteration of spent fuels need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO2 matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified using samples of UO2 doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, located between 18 MBq/g and 33 MBq/g, was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m-2.d-1, even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  6. Alteration mechanisms of UOX spent fuel under water

    International Nuclear Information System (INIS)

    The mechanisms of spent fuel alteration in aqueous media need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO2 matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified by using samples of UO2 doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, between 18 MBq.g-1 and 33 MBq.g-1, was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m-2.d-1, even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  7. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Charlotte J. Beurskens

    2014-01-01

    Full Text Available Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2 diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen. A fixed protective ventilation protocol (6 mL/kg was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P<0.017. Results. During heliox ventilation, respiratory rate decreased (25±4 versus 23±5 breaths min−1, P=0.010. Minute volume ventilation showed a trend to decrease compared to baseline (11.1±1.9 versus 9.9±2.1 L min−1, P=0.026, while reducing PaCO2 levels (5.0±0.6 versus 4.5±0.6 kPa, P=0.011 and peak pressures (21.1±3.3 versus 19.8±3.2 cm H2O, P=0.024. Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  8. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    Science.gov (United States)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation. PMID:25548660

  9. A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants.

    OpenAIRE

    Warriner, H E; Ding, J; Waring, A J; Zasadzinski, J A

    2002-01-01

    Endogenous lung surfactant, and lung surfactant replacements used to treat respiratory distress syndrome, can be inactivated during lung edema, most likely by serum proteins. Serum albumin shows a concentration-dependent surface pressure that can exceed the respreading pressure of collapsed monolayers in vitro. Under these conditions, the collapsed surfactant monolayer can not respread to cover the interface, leading to higher minimum surface tensions and alterations in isotherms and morpholo...

  10. Lung microbicidal mechanisms and pulmonary hypertension in septic piglets

    International Nuclear Information System (INIS)

    These studies sought to determine whether the pulmonary hemodynamic abnormalities elicited in infant piglets in response to an intravascular bacterial challenge are dependent upon the clearance and killing of the organism by an oxygen radical dependent mechanism residing within the pulmonary circulation of the host. Initial studies were conducted to ascertain the effect of dimethylthiourea (DMTU), a relatively selective scavenger of hydroxyl radical, on Group B Streptococcus (GBS)-induced pulmonary abnormalities in young piglets. Lung samples from piglets infused with GBS and evaluated by transmission electron microscopy revealed that the GBS had been taken up by pulmonary intravascular macrophages. To determine clearance characteristics of intravascularly administered GBS as well as oxygen radical involvement in pulmonary bactericidal mechanisms, studies were performed in which GBS was radiolabelled with 111Indium-oxine and infused into piglets in the presence or absence of DMTU. In accord with the previous study, animals receiving GBS only exhibited profound increases in Ppa and TPR with concomitant arterial hypoxemia, all of which were attenuated by the co-administration of DMTU. Bacterial accumulated to the greatest extent in the lung, followed by the liver and spleen

  11. Mechanism of multidrug resistance of human small cell lung cancer cell line H446/VP

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ling; YAN Yun-li; ZHOU Na-jing; HAN Shuo; ZHAO Jun-xia; CAO Cui-li; Lü Yu-hong

    2010-01-01

    Background Small cell lung cancer (SCLC) is the most aggressive form of lung cancer. This study aimed to investigate the mechanism of human small cell lung cancer cell line resistance to etoposide (VP-16), H446/VP.Methods The cell viability was measured by M∏ assay. Immunocytochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting methods were used to detect the multidrug resistance gene (MDR1), bcl-2, bax and the topoisomerase Ⅱ (Topo Ⅱ) expressions in H446 and H446/VP cells after treated with or without VP-16.Results The 50% inhibition concentration (IC50) of VP-16 on H446 cells was 49 mg/L, and 836 mg/L was for H446/VP cells. The expressions of MDR1 and bcl-2 were up-regulated, while the amounts of bax and Topo Ⅱ were reduced in H446/VP cells. After treated with 49 mg/L of VP-16, it showed that the drug could significantly inhibit bcl-2 and Topo Ⅱ expressions, and increase bax expression in H446 cells compared with that of H446/VP cells.Conclusions The H446/VP cell was stably resistant to VP-16. The decreased expression of Topo Ⅱ was correlated with the H446/VP multidrug resistance. The elevated expressions of MDR1, and the altered apoptotic pathways also played an important role in VP-16 induced multidrug resistance of SCLC.

  12. On the modification of the postradiation ultra-structure alterations in the lungs of rats with the synthetic antioxidants

    International Nuclear Information System (INIS)

    promote the decrease of the following damage of pulmonary tissue (pneumocytes and endothelial cells) that is confirmed in the experiments using the protector WR-2721. Nevertheless, the efficiency of radioprotector WR-2721 in lungs proved to be lower than in other tissues in connection with the more intense oxidation: the oxygen for pulmonary cell damages was higher than that for the cells of the other tissues. The preneoplastic alterations which can be inherent in both the radioresisent cells of air-bearing ways and the alveolar macrophages are the most dangerous during the extensive irradiation with relatively low dose rate. The alveolar cells type 2 are considered to be potential targets for influence of alpha-particles in inhalation of plutonium oxide. On inhaling of radioactive particles both soluble and non-soluble they are initially delayed in the phagolisomes of the alveolar macrophages irreversibly damage the lysosomal membranes. The fibrinolytic disfunction of lungs with the delay of the lysis of fibrin thromboses is linked with the damage of the macrophages. The aim of the present investigation is to elucidate the mechanisms of the radioprotective action of the antioxidant IOS-4880 on the subcellular level in different elements of tissue of lungs. On estimation the radiation alterations in the ultrastructure the most effective is the morphometric analysis. The analysis has been partly used in the present investigation

  13. Ventilator-associated lung injury during assisted mechanical ventilation.

    Science.gov (United States)

    Saddy, Felipe; Sutherasan, Yuda; Rocco, Patricia R M; Pelosi, Paolo

    2014-08-01

    Assisted mechanical ventilation (MV) may be a favorable alternative to controlled MV at the early phase of acute respiratory distress syndrome (ARDS), since it requires less sedation, no paralysis and is associated with less hemodynamic deterioration, better distal organ perfusion, and lung protection, thus reducing the risk of ventilator-associated lung injury (VALI). In the present review, we discuss VALI in relation to assisted MV strategies, such as volume assist-control ventilation, pressure assist-control ventilation, pressure support ventilation (PSV), airway pressure release ventilation (APRV), APRV with PSV, proportional assist ventilation (PAV), noisy ventilation, and neurally adjusted ventilatory assistance (NAVA). In summary, we suggest that assisted MV can be used in ARDS patients in the following situations: (1) Pao(2)/Fio(2) >150 mm Hg and positive end-expiratory pressure ≥ 5 cm H(2)O and (2) with modalities of pressure-targeted and time-cycled breaths including more or less spontaneous or supported breaths (A-PCV [assisted pressure-controlled ventilation] or APRV). Furthermore, during assisted MV, the following parameters should be monitored: inspiratory drive, transpulmonary pressure, and tidal volume (6 mL/kg). Further studies are required to determine the impact of novel modalities of assisted ventilation such as PAV, noisy pressure support, and NAVA on VALI. PMID:25105820

  14. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    Directory of Open Access Journals (Sweden)

    Burkhardt Wolfram

    2007-06-01

    Full Text Available Abstract Background Repeated bronchoalveolar lavage (BAL has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5 or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5. For control, 10 healthy animals with gas (Healthy-Gas, n = 5 or PF5080 filled lungs (Healthy-PF5080, n = 5 were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. Results Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. Conclusion After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.

  15. Prenatal hormones alter antioxidant enzymes and lung histology in rats with congenital diaphragmatic hernia.

    NARCIS (Netherlands)

    H. IJsselstijn (Hanneke); B.A. Pacheco; A. Albert; W. Sluiter (Wim); P.K. Donahoe; J.C. de Jongste (Johan); J.J. Schnitzer; D. Tibboel (Dick)

    1997-01-01

    textabstractPrenatal administration of dexamethasone (Dex) and thyrotropin-releasing hormone (TRH) synergistically enhances lung maturity, but TRH suppresses the antioxidant enzyme activity. Prenatal hormonal therapy improves alveolar surfactant content and lung compliance in rat

  16. Noise alters hair-bundle mechanics at the cochlear apex

    Science.gov (United States)

    Strimbu, C. Elliott; Fridberger, Anders

    2015-12-01

    Exposure to loud sounds can lead to both permanent and short term changes in auditory sensitivity. Permanent hearing loss is often associated with gross changes in cochlear morphology including the loss of hair cells and auditory nerve fibers while the mechanisms of short term threshold shifts are much less well understood and may vary at different locations across the cochlea. Previous reports suggest that exposure to loud sounds leads to a decrease in the cochlear microphonic potential and in the stiffness of the organ of Corti. Because the cochlear microphonic reflects changes in the membrane potential of the hair cells, this suggests that hair-bundle motion should be reversibly altered following exposure to loud sounds. Using an in vitro preparation of the guinea pig temporal bone we investigate changes in the micro-mechanical response near the cochlear apex following a brief (up to 10 - 20 minutes) exposure to loud (˜ 120 dB) tones near the best frequency at this location. We use time-resolved confocal imaging to record the motion of outer hair cell bundles before and after acoustic overstimulation. We have also recorded larger-scale structural views of the organ of Corti before and after exposure to the loud sound. Conventional electrophysiological techniques are used measure the cochlear microphonic potential. As has been previously reported, following acoustic overexposure the cochlear microphonic declines in value and typically recovers on the order of 30 - 60 minutes. Hair-bundle trajectories are affected following the loud sound and typically recover on a somewhat faster time scale than the microphonic potential, although the results vary considerably across preparations. Preliminary results also suggest reversible changes in the hair cell's resting potential following the loud sound.

  17. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI).

    Science.gov (United States)

    Nieman, Gary F; Satalin, Joshua; Andrews, Penny; Habashi, Nader M; Gatto, Louis A

    2016-12-01

    It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not been reduced in over 15 years and remains ~40 %, even with protective low tidal volume (LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the impact of mechanical ventilation on lung tissue using engineering methods in normal pigs ventilated for 54 h. They used these methods to assess the impact of a mechanical breath on dynamic and static global lung strain and energy load. Strain is the change in lung volume in response to an applied stress (i.e., Tidal Volume-Vt). This study has yielded a number of exciting new concepts including the following: (1) Individual mechanical breath parameters (e.g., Vt or Plateau Pressure) are not directly correlated with VILI but rather any combination of parameters that subject the lung to excessive dynamic strain and energy/power load will cause VILI; (2) all strain is not equal; dynamic strain resulting in a dynamic energy load (i.e., kinetic energy) is more damaging to lung tissue than static strain and energy load (i.e., potential energy); and (3) a critical consideration is not just the size of the Vt but the size of the lung that is being ventilated by this Vt. This key concept merits attention since our current protective ventilation strategies are fixated on the priority of keeping the Vt low. If the lung is fully inflated, a large Vt is not necessarily injurious. In conclusion, using engineering concepts to analyze the impact of the mechanical breath on the lung is a novel new approach to investigate VILI mechanisms and to help design the optimally protective breath. Data generated using these methods have challenged some of the current dogma surrounding the mechanisms of VILI and of the components in the mechanical breath necessary for lung protection. PMID:27316442

  18. Intraoperative mechanical ventilation strategies for one-lung ventilation.

    Science.gov (United States)

    Şentürk, Mert; Slinger, Peter; Cohen, Edmond

    2015-09-01

    One-lung ventilation (OLV) has two major challenges: oxygenation and lung protection. The former is mainly because the ventilation of one lung is stopped while the perfusion continues; the latter is mainly because the whole ventilation is applied to only one lung. Recommendations for maintaining the oxygenation and methods of lung protection can contradict each other (such as high vs. low inspiratory oxygen fraction (FiO2), high vs. low tidal volume (TV), etc.). In light of the (very few) randomized clinical trials, this review focuses on a recent strategy for OLV, which includes a possible decrease in FiO2, lower TVs, positive end-expiratory pressure (PEEP) to the dependent lung, continuous positive airway pressure (CPAP) to the non-dependent lung and recruitment manoeuvres. Other applications such as anaesthetic choice and fluid management can affect the success of ventilatory strategy; new developments have changed the classical approach in this respect. PMID:26643100

  19. Absence of TNF-α enhances inflammatory response in the newborn lung undergoing mechanical ventilation.

    Science.gov (United States)

    Ehrhardt, Harald; Pritzke, Tina; Oak, Prajakta; Kossert, Melina; Biebach, Luisa; Förster, Kai; Koschlig, Markus; Alvira, Cristina M; Hilgendorff, Anne

    2016-05-15

    Bronchopulmonary dysplasia (BPD), characterized by impaired alveolarization and vascularization in association with lung inflammation and apoptosis, often occurs after mechanical ventilation with oxygen-rich gas (MV-O2). As heightened expression of the proinflammatory cytokine TNF-α has been described in infants with BPD, we hypothesized that absence of TNF-α would reduce pulmonary inflammation, and attenuate structural changes in newborn mice undergoing MV-O2 Neonatal TNF-α null (TNF-α(-/-)) and wild type (TNF-α(+/+)) mice received MV-O2 for 8 h; controls spontaneously breathed 40% O2 Histologic, mRNA, and protein analysis in vivo were complemented by in vitro studies subjecting primary pulmonary myofibroblasts to mechanical stretch. Finally, TNF-α level in tracheal aspirates from preterm infants were determined by ELISA. Although MV-O2 induced larger and fewer alveoli in both, TNF-α(-/-) and TNF-α(+/+) mice, it caused enhanced lung apoptosis (TUNEL, caspase-3/-6/-8), infiltration of macrophages and neutrophils, and proinflammatory mediator expression (IL-1β, CXCL-1, MCP-1) in TNF-α(-/-) mice. These differences were associated with increased pulmonary transforming growth factor-β (TGF-β) signaling, decreased TGF-β inhibitor SMAD-7 expression, and reduced pulmonary NF-κB activity in ventilated TNF-α(-/-) mice. Preterm infants who went on to develop BPD showed significantly lower TNF-α levels at birth. Our results suggest a critical balance between TNF-α and TGF-β signaling in the developing lung, and underscore the critical importance of these key pathways in the pathogenesis of BPD. Future treatment strategies need to weigh the potential benefits of inhibiting pathologic cytokine expression against the potential of altering key developmental pathways. PMID:27016588

  20. Computer-controlled mechanical lung model for application in pulmonary function studies

    NARCIS (Netherlands)

    A.F.M. Verbraak (Anton); J.E.W. Beneken; J.M. Bogaard (Jan); A. Versprille (Adrian)

    1995-01-01

    textabstractA computer controlled mechanical lung model has been developed for testing lung function equipment, validation of computer programs and simulation of impaired pulmonary mechanics. The construction, function and some applications are described. The physical model is constructed from two b

  1. Allergic lung inflammation alters neither susceptibility to Streptococcus pneumoniae infection nor inducibility of innate resistance in mice

    Directory of Open Access Journals (Sweden)

    Evans Christopher M

    2009-07-01

    Full Text Available Abstract Background Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria. Methods To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days. Results We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response

  2. Gender-associated Differences of Lung Cancer and Mechanism

    OpenAIRE

    XING, XIN; Liao, Yongde; Hexiao TANG; Chen, Guang; Ju, Sheng; You, Liangkun

    2011-01-01

    Lung cancer has been viewed as the most common malignant cancer with high incidence, mortality and poor survival all over the world. A lot of investigations indicated there are significant gender-associated differences in lung cancer in several characteristics such as epidemiology, pathology, clinical outcome and prognosis. The insight into these differences may help to clarify the gender-associated characteristics of lung cancer, and to drawn out new approach for treatment and prevent of lun...

  3. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    Lung injury is the most pertinent manifestation of extra-abdominal organ dysfunction in pancreatitis. The propensity of this retroperitoneal inflammatory condition to engender a diffuse and life-threatening lung injury is significant. Approximately one third of patients will develop acute lung injury and acute respiratory distress syndrome, which account for 60% of all deaths within the first week. The variability in the clinical course of pancreatitis renders it a vexing entity and makes demonstration of the efficacy of any specific intervention difficult. The distinct pathologic entity of pancreatitis-associated lung injury is reviewed with a focus on etiology and potential therapeutic maneuvers.

  4. Lung distortion during high-pressure mechanical ventilation

    International Nuclear Information System (INIS)

    The authors studied high pressure ventilation (HPV) as a potential cause of lung damage in patients with acute respiratory failure (ARF) due to severe abdominal distension. Radiographic signs of hyperinflationary intercostal lung distortion developed in 14 patients when mean peak inspiratory/end-expiratory pressures increased from 32.8/6.2 to 50.7/12.4 cm H/sub 2/O, resolved when pressures fell to predistortion levels (n = 9), and were attenuated in regions of pleural/lung disease (n = 4). The authors attribute transient distortion to the partition of disparate compliances of the lung and chest wall, not to ''air-trapping.''

  5. Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity

    OpenAIRE

    Yee, Min; Chess, Patricia R.; McGrath-Morrow, Sharon A.; Wang, Zhengdong; Gelein, Robert; Zhou, Rui; Dean, David A.; Notter, Robert H.; O'Reilly, Michael A.

    2009-01-01

    Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired oxygen fraction between postnatal days 1 and 4. Here, we investigate whether oxygen-induced changes...

  6. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome.

    Directory of Open Access Journals (Sweden)

    Kenneth R Eyring

    Full Text Available Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM model of allergic airway disease, we measured airway hyperresponsiveness (AHR and airway inflammation between mice exposed prenatally to cigarette smoke (CS or filtered air (FA. DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3 are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease.

  7. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide

    Directory of Open Access Journals (Sweden)

    Tourkina Elena

    2011-07-01

    Full Text Available Abstract Interstitial lung disease (ILD is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc. Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+/collagen I-positive (ColI+, CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12, are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and

  8. Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry.

    Science.gov (United States)

    Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M; Tourkina, Elena; Visconti, Richard P; Hoffman, Stanley

    2014-01-01

    Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45(high) fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47(high)/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ. PMID

  9. On the Role of Mechanics in Chronic Lung Disease

    Directory of Open Access Journals (Sweden)

    Mona Eskandari

    2013-12-01

    Full Text Available Progressive airflow obstruction is a classical hallmark of chronic lung disease, affecting more than one fourth of the adult population. As the disease progresses, the inner layer of the airway wall grows, folds inwards, and narrows the lumen. The critical failure conditions for airway folding have been studied intensely for idealized circular cross-sections. However, the role of airway branching during this process is unknown. Here, we show that the geometry of the bronchial tree plays a crucial role in chronic airway obstruction and that critical failure conditions vary significantly along a branching airway segment. We perform systematic parametric studies for varying airway cross-sections using a computational model for mucosal thickening based on the theory of finite growth. Our simulations indicate that smaller airways are at a higher risk of narrowing than larger airways and that regions away from a branch narrow more drastically than regions close to a branch. These results agree with clinical observations and could help explain the underlying mechanisms of progressive airway obstruction. Understanding growth-induced instabilities in constrained geometries has immediate biomedical applications beyond asthma and chronic bronchitis in the diagnostics and treatment of chronic gastritis, obstructive sleep apnea and breast cancer.

  10. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients

    OpenAIRE

    Slutsky Arthur S; Zhang Haibo; Haitsma Jack J; Royakkers Annick ANM; Determann Rogier M; Ranieri V Marco; Schultz Marcus J

    2010-01-01

    Abstract Background Preventing ventilator-associated lung injury (VALI) has become pivotal in mechanical ventilation of patients with acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS). In the present study we investigated whether plasma levels of lung-specific biological markers can be used to evaluate lung injury in patients with ALI/ARDS and patients without lung injury at onset of mechanical ventilation. Methods Plasma levels of surfactant protein ...

  11. Mechanisms of neutrophil accumulation in the lungs of patients with idiopathic pulmonary fibrosis.

    OpenAIRE

    Hunninghake, G W; Gadek, J E; Lawley, T J; Crystal, R G

    1981-01-01

    Neutrophils are a characteristic feature of the alveolitis of idiopathic pulmonary fibrosis (IPF). a chronic disorder limited to lung. One mechanism by which neutrophils may be selectively attracted to lung and not other tissues is via the secretion of the neutrophil-specific chemotactic factor by alveolar macrophages. To evaluate the role of alveolar macrophages in modulating the migration of neutrophils to he lung in IPF, alveolar macrophages, obtained by bronchoalveolar lavage of patients ...

  12. The progress in research on the mechanism, prevention and treatment of radiation-induced lung injury

    International Nuclear Information System (INIS)

    During radiotherapy of chest tumor,many patients often develop radiation-induced lung injury (including radiation induced interstitial pneumonia or pulmonary fibrosis), which significantly affects their quality of life. Therefore, it is very important to study the mechanism, prevention, and treatment of radiation-induced lung injury. Herein a review of recent research advances in radiation-induced lung injury is made, in order to provide theoretical basis for further research. (authors)

  13. A novel mechanical lung model of pulmonary diseases to assist with teaching and training

    Directory of Open Access Journals (Sweden)

    Shaw Geoffrey M

    2006-08-01

    Full Text Available Abstract Background A design concept of low-cost, simple, fully mechanical model of a mechanically ventilated, passively breathing lung is developed. An example model is built to simulate a patient under mechanical ventilation with accurate volumes and compliances, while connected directly to a ventilator. Methods The lung is modelled with multiple units, represented by rubber bellows, with adjustable weights placed on bellows to simulate compartments of different superimposed pressure and compliance, as well as different levels of lung disease, such as Acute Respiratory Distress Syndrome (ARDS. The model was directly connected to a ventilator and the resulting pressure volume curves recorded. Results The model effectively captures the fundamental lung dynamics for a variety of conditions, and showed the effects of different ventilator settings. It was particularly effective at showing the impact of Positive End Expiratory Pressure (PEEP therapy on lung recruitment to improve oxygenation, a particulary difficult dynamic to capture. Conclusion Application of PEEP therapy is difficult to teach and demonstrate clearly. Therefore, the model provide opportunity to train, teach, and aid further understanding of lung mechanics and the treatment of lung diseases in critical care, such as ARDS and asthma. Finally, the model's pure mechanical nature and accurate lung volumes mean that all results are both clearly visible and thus intuitively simple to grasp.

  14. In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice.

    Science.gov (United States)

    Ribeiro, André Luiz Teroso; Shimada, Ana Lúcia Borges; Hebeda, Cristina Bichels; de Oliveira, Tiago Franco; de Melo Loureiro, Ana Paula; Filho, Walter Dos Reis Pereira; Santos, Alcinéa Meigikos Dos Anjos; de Lima, Wothan Tavares; Farsky, Sandra Helena Poliselli

    2011-10-01

    Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50ppm HQ (1h/day for 5 days). One hour later, oxidative burst, cell cycle, DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1h later the last exposures, inflammation was induced by LPS inhalation (0.1mg/ml/10min) and 3h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of β(2) and β(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ

  15. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    International Nuclear Information System (INIS)

    Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl2 dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3− or NO2−. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation. - Highlights: • Effect of 60 ppm*hr Cl2 gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor. • Alterations in surfactant homeostasis and pulmonary mechanics

  16. Correlation between timing of tracheostomy and duration of mechanical ventilation in patients with potentially normal lungs admitted to intensive care unit

    OpenAIRE

    Mehrdad Masoudifar; Omid Aghadavoudi; Lida Nasrollahi

    2012-01-01

    Background: There is insufficient evidence to conclude that the timing of tracheostomy alters the duration of mechanical ventilation, hence this study was designed to investigate the correlation between timing of tracheostomy and duration of mechanical ventilation for patients admitted to intensive care unit (ICU) with potentially normal lungs. Materials and Methods: In a retrospective study for a period of 2 years, all adult patients admitted to the medical ICU of Al-Zahra Hospital in Is...

  17. A novel mechanical lung model of pulmonary diseases to assist with teaching and training

    OpenAIRE

    Shaw Geoffrey M; Mulligan Kerry J; Yuta Toshinori; Chase J Geoffrey; Horn Beverley

    2006-01-01

    Abstract Background A design concept of low-cost, simple, fully mechanical model of a mechanically ventilated, passively breathing lung is developed. An example model is built to simulate a patient under mechanical ventilation with accurate volumes and compliances, while connected directly to a ventilator. Methods The lung is modelled with multiple units, represented by rubber bellows, with adjustable weights placed on bellows to simulate compartments of different superimposed pressure and co...

  18. Diaphragm Unloading via Controlled Mechanical Ventilation Alters the Gene Expression Profile

    OpenAIRE

    DeRuisseau, Keith C.; Shanely, R Andrew; Akunuri, Nagabhavani; Hamilton, Marc T.; Van Gammeren, Darin; Zergeroglu, A. Murat; McKenzie, Michael; Powers, Scott K.

    2005-01-01

    Rationale: Prolonged controlled mechanical ventilation results in diaphragmatic inactivity and promotes oxidative injury, atrophy, and contractile dysfunction in this important inspiratory muscle. However, the impact of controlled mechanical ventilation on global mRNA alterations in the diaphragm remains unknown.

  19. Heliox improves pulmonary mechanics in a pediatric porcine model of induced severe bronchospasm and independent lung mechanical ventilation

    OpenAIRE

    Orsini, Anthony J; Stefano, John L; Leef, Kathleen H; Jasani, Melinda; Ginn, Andrew; Tice, Lisa; Nadkarni, Vinay M.

    1999-01-01

    Background: A helium-oxygen gas mixture (heliox) has low gas density and low turbulence and resistance through narrowed airways. The effects of heliox on pulmonary mechanics following severe methacholine-induced bronchospasm were investigated and compared to those of a nitrogen-oxygen gas mixture (nitrox) in an innovative pediatric porcine, independent lung, mechanical ventilation model. Results: All of the lungs showed evidence of severe bronchospasm after methacholine challenge. Prospective...

  20. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    Science.gov (United States)

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  1. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    Science.gov (United States)

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression

  2. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic

    International Nuclear Information System (INIS)

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  3. Chronic cigarette smoke exposure adversely alters 14C-arachidonic acid metabolism in rat lungs, aortas and platelets

    International Nuclear Information System (INIS)

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from 14C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from 14C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases

  4. Postperfusion lung syndrome: Respiratory mechanics, respiratory indices and biomarkers

    OpenAIRE

    Shi-Min Yuan

    2015-01-01

    Postperfusion lung syndrome is rare but lethal. Secondary inflammatory response was the popularly accepted theory for the underlying etiology. Respiratory index (RI) and arterial oxygen tension/fractional inspired oxygen can be reliable indices for the diagnosis of this syndrome as X-ray appearance is always insignificant at the early stage of the onset. Evaluations of extravascular lung water content and pulmonary compliance are also helpful in the definite diagnosis. Multiorgan failure and ...

  5. Beyond the Genome: Epigenetic Mechanisms in Lung Remodeling

    OpenAIRE

    Hagood, James S

    2014-01-01

    The lung develops from a very simple outpouching of the foregut into a highly complex, finely structured organ with multiple specialized cell types that are required for its normal physiological function. During both the development of the lung and its remodeling in the context of disease or response to injury, gene expression must be activated and silenced in a coordinated manner to achieve the tremendous phenotypic heterogeneity of cell types required for homeostasis and pathogenesis. Epige...

  6. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI)

    OpenAIRE

    Nieman, Gary F.; Satalin, Joshua; Andrews, Penny; Habashi, Nader M.; Gatto, Louis A.

    2016-01-01

    It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not been reduced in over 15 years and remains ~40 %, even with protective low tidal volume (LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the impact of mechanical ventilation on lung tissue using engineering methods in normal pigs ventilated for 54 h. They used these methods to a...

  7. Fibrocytes in the Fibrotic Lung: Altered Phenotype Detected by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Charles eReese

    2014-06-01

    Full Text Available Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study’s relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD, a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the

  8. The course of lung inflation alters the central pattern of tracheobronchial cough in cat-The evidence for volume feedback during cough.

    Science.gov (United States)

    Poliacek, Ivan; Simera, Michal; Veternik, Marcel; Kotmanova, Zuzana; Pitts, Teresa; Hanacek, Jan; Plevkova, Jana; Machac, Peter; Visnovcova, Nadezda; Misek, Jakub; Jakus, Jan

    2016-07-15

    The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing. When tidal volume was delivered (via the ventilator) there was a significant increase in the inspiratory and expiratory cough drive (esophageal pressures and EMG amplitudes), inspiratory phase duration (CTI), total cough cycle duration, and the duration of all cough related EMGs (Tactive). When the cough volume was delivered (via the ventilator) during the first half of inspiratory period (at CTI/2-early over inflation), there was a significant reduction in the inspiratory and expiratory EMG amplitude, peak inspiratory esophageal pressure, CTI, and the overlap between inspiratory and expiratory EMG activity. Additionally, there was significant increase in the interval between the maximum inspiratory and expiratory EMG activity and the active portion of the expiratory phase (CTE1). Control inflations coughs and control coughs with additional expiratory resistance had increased maximum expiratory esophageal pressure and prolonged CTE1, the duration of cough abdominal activity, and Tactive. There was no significant difference in control coughing and/or control coughing when sham ventilation was employed. In conclusion, modified lung inflations during coughing and/or additional expiratory airflow resistance altered the spatio-temporal features of cough motor pattern via the volume related feedback mechanism similar to that in breathing. PMID:27125979

  9. Static and dynamic mechanics of the murine lung after intratracheal bleomycin

    Directory of Open Access Journals (Sweden)

    Papiris Spyridon

    2011-05-01

    Full Text Available Abstract Background Despite its widespread use in pulmonary fibrosis research, the bleomycin mouse model has not been thoroughly validated from a pulmonary functional standpoint using new technologies. Purpose of this study was to systematically assess the functional alterations induced in murine lungs by fibrogenic agent bleomycin and to compare the forced oscillation technique with quasi-static pressure-volume curves in mice following bleomycin exposure. Methods Single intratracheal injections of saline (50 μL or bleomycin (2 mg/Kg in 50 μL saline were administered to C57BL/6 (n = 40 and Balb/c (n = 32 mice. Injury/fibrosis score, tissue volume density (TVD, collagen content, airway resistance (RN, tissue damping (G and elastance coefficient (H, hysteresivity (η, and area of pressure-volume curve (PV-A were determined after 7 and 21 days (inflammation and fibrosis stage, respectively. Statistical hypothesis testing was performed using one-way ANOVA with LSD post hoc tests. Results Both C57BL/6 and Balb/c mice developed weight loss and lung inflammation after bleomycin. However, only C57BL/6 mice displayed cachexia and fibrosis, evidenced by increased fibrosis score, TVD, and collagen. At day 7, PV-A increased significantly and G and H non-significantly in bleomycin-exposed C57BL/6 mice compared to saline controls and further increase in all parameters was documented at day 21. G and H, but not PV-A, correlated well with the presence of fibrosis based on histology, TVD and collagen. In Balb/c mice, no change in collagen content, histology score, TVD, H and G was noted following bleomycin exposure, yet PV-A increased significantly compared to saline controls. Conclusions Lung dysfunction in the bleomycin model is more pronounced during the fibrosis stage rather than the inflammation stage. Forced oscillation mechanics are accurate indicators of experimental bleomycin-induced lung fibrosis. Quasi-static PV-curves may be more sensitive than

  10. Use of static lung mechanics to identify early pulmonary involvement in patients with ankylosing spondylitis.

    OpenAIRE

    Aggarwal A; Gupta D; Wanchu A; Jindal S

    2001-01-01

    AIM: To assess if a detailed analysis of lung mechanics could help in early recognition of pulmonary abnormalities in patients with ankylosing spondylitis. METHODS: Static pulmonary mechanics were studied in 17 patients (16 men and one woman) of ankylosing spondylitis with no obvious clinical or radiological evidence of pulmonary involvement. Lung pressure-volume relationship was generated using a whole body plethysmograph, and a monoexponential equation fitted to this data. RESULTS: Total lu...

  11. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    Science.gov (United States)

    Wolcott, J A; Zee, Y C; Osebold, J W

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity. PMID:6182839

  12. Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties.

    OpenAIRE

    Gilliard, N; Heldt, G P; Loredo, J.; Gasser, H; Redl, H; Merritt, T A; Spragg, R G

    1994-01-01

    We have tested the hypothesis that oxidation of lung surfactant results in loss of surface tension lowering function. Porcine lung surfactant was exposed to conditions known to cause lipid peroxidation (0.2 mM FeCl2 + 0.1 mM H2O2 or 5 microM CuCl2). Lipid peroxidation was verified by detection of conjugated dienes, thiobarbituric acid reactive substances, fluorescent products, hydroxy alkenals, and loss of unsaturated fatty acids. Exposed samples had significantly diminished surface tension l...

  13. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury.

    Science.gov (United States)

    Urich, Daniela; Eisenberg, Jessica L; Hamill, Kevin J; Takawira, Desire; Chiarella, Sergio E; Soberanes, Saul; Gonzalez, Angel; Koentgen, Frank; Manghi, Tomas; Hopkinson, Susan B; Misharin, Alexander V; Perlman, Harris; Mutlu, Gokhan M; Budinger, G R Scott; Jones, Jonathan C R

    2011-09-01

    Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3(fl/fl)), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3(fl/fl) mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 laminin in whole lung homogenates was more than 50% lower than that in control-treated mice, suggesting a relatively long half-life for the protein in the lung. Upon exposure to an injurious ventilation strategy (tidal volume of 35 ml per kg of body weight for 2 hours), the mice with a knockdown of the α3 laminin subunit had less severe injury, as shown by lung mechanics, histology, alveolar capillary permeability and survival when compared with Ad-Null-treated mice. Knockdown of the α3 laminin subunit resulted in evidence of lung inflammation. However, this did not account for their resistance to mechanical ventilation. Rather, the loss of α3 laminin was associated with a significant increase in the collagen content of the lungs. We conclude that the loss of α3 laminin in the alveolar epithelium results in an increase in lung collagen, which confers resistance to mechanical injury. PMID:21878500

  14. Comparison of conventional mechanical ventilation and synchronous independent lung ventilation (SILV) in the treatment of unilateral lung injury.

    Science.gov (United States)

    Hurst, J M; DeHaven, C B; Branson, R D

    1985-08-01

    Eight patients presenting with severe unilateral pulmonary injury responded poorly to conventional mechanical ventilation. Synchronous independent lung ventilation (SILV) was employed to provide support of ventilation and oxygenation without creating the ventilation/perfusion (V/Q) mismatch observed during conventional ventilation. All patients demonstrated improved oxygenation (mean increase, 80 torr) during SILV with the FIO2 unchanged from previous therapy. Invasive hemodynamic monitoring in five of eight patients showed no difference in the commonly measured cardiopulmonary parameters with the two forms of mechanical ventilation. Peak inspiratory pressure (PIP), continuous positive airway pressure (CPAP), and pressure change secondary to tidal volume delivery to the uninvolved lung were significantly less during SILV. SILV is an effective method of improving oxygenation in patients with severe unilateral pulmonary injury. PMID:3894680

  15. Mechanical properties of lungs and chest wall during spontaneous breathing.

    Science.gov (United States)

    Nagels, J; Làndsér, F J; van der Linden, L; Clément, J; Van de Woestijne, K P

    1980-09-01

    Using a forced oscillation technique, we measured the resistance (Rrs) and reactance (Xrs) of the respiratory system between 2 and 32 Hz at three different lung volumes in 15 healthy subjects and 7 patients with chronic obstructive pulmonary disease. Rrs and Xrs were partitioned, by means of a pressure recording in the esophagus, into the resistance and reactance of lung and airways (L) and the chest wall. The measurements were validated by checking the adequacy of the frequency response of the esophagus, by the lack of difference between thoracic and mouth flow, by an estimation of the error introduced by the shunt impedance of the cheeks, and by comparisons with the values of pulmonary compliance and resistance determined in the same subjects with classical techniques. In both healthy subjects and patients, the chest wall has a low resistance that increases somewhat at low lung volumes and behaves functionally as a two-compartment system, with low capacitance at frequencies exceeding 4 Hz. Rrs varies with lung volume and is markedly frequency dependent in patients; both phenomena are due primarily to corresponding variations of RL. In healthy subjects, at and above functional residual capacity (FRC) level, the lungs behave as a one-compartment system, the reactance of which is mainly determined by the gaseous inertance, at least beyond 2 Hz. In patients and in healthy subjects breathing below FRC, the observed frequency dependence of resistance and the simultaneous increase in resonant frequency can be simulated satisfactorily by Mead's two-compartment model, assuming a large increase in peripheral airways resistance. PMID:7204163

  16. Altered Lung Function Test in Asymptomatic Women Using Biomass Fuel for Cooking

    Science.gov (United States)

    2014-01-01

    Background: One third of the world’s population use biomass fuel like wood, dung or charcoal for cooking. The smoke from these organic materials increases the incidence of respiratory illness including chronic obstructive pulmonary disease and lung cancer. Aim: To evaluate forced expiratory lung volumes in asymptomatic women previously exposed to biomass fuel smoke. Materials and Methods: The study was done in 74 healthy asymptomatic women divided into two age matched groups of 37 each. Pulmonary function tests (PFT) were assessed by computerised spirometry and statistical comparisons done on women using biomass fuel (study group) and women using other sources of fuel (LPG/ electric stove) for cooking (control group). Results: The PFT results showed significant reduction in forced expiratory lung volumes like Forced Vital Capacity (FVC), Forced Expiratory Volume in 1st sec (FEV1), Forced Expiratory Flow between 25-75% (FEF 25-75%) and Forced Expiratory Volume percentage (FEV1%) in biomass fuel users as compared to those not exposed to biomass fuel smoke. Conclusion: The results of this study suggest that biomass fuel smoke may produce definite impairment in lung function, especially with regard to the smaller airways. PMID:25478331

  17. [Postural therapy during mechanical pulmonary ventilation with PEEP in patients with unilateral lung damage].

    Science.gov (United States)

    Neverin, V K; Vlasenko, A V; Mitrokhin, A A; Galushka, S V; Ostapchenko, D V; Shishkina, E V

    2000-01-01

    Mechanical ventilation of the lungs (MVL) with positive end expiratory pressure (PEEP) is difficult in patients with unilateral lung damage because of uneven distribution of volumes and pressures in the involved and intact lungs. Harmful effects are easier manifested under such conditions. Selective MVL with selective PEEP is widely used abroad for optimizing MVL, but this method is rather expensive and is not devoid of shortcomings. Our study carried out in 32 patients with unilateral lung involvement showed that traditional MVL with general PEEP can effectively (in 75% cases) regulate gaseous exchange and decrease its untoward effects if MVL is performed with the patient lying on the healthy side and not supine. MVL in patients with unilateral lung injury lying on the healthy side can be a simpler and cheaper alternative to selective MVL with selective PEEP. PMID:10833838

  18. Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters miRNA Expression Profiles in Human Lung Cells

    OpenAIRE

    Rager, Julia E.; Smeester, Lisa; Jaspers, Ilona; Sexton, Kenneth G.; Fry, Rebecca C.

    2010-01-01

    Background Exposure to formaldehyde, a known air toxic, is associated with cancer and lung disease. Despite the adverse health effects of formaldehyde, the mechanisms underlying formaldehyde-induced disease remain largely unknown. Research has uncovered microRNAs (miRNAs) as key posttranscriptional regulators of gene expression that may influence cellular disease state. Although studies have compared different miRNA expression patterns between diseased and healthy tissue, this is the first st...

  19. Formaldehyde induces lung inflammation by an oxidant and antioxidant enzymes mediated mechanism in the lung tissue.

    Science.gov (United States)

    Lino-dos-Santos-Franco, Adriana; Correa-Costa, Matheus; Durão, Ana Carolina Cardoso dos Santos; de Oliveira, Ana Paula Ligeiro; Breithaupt-Faloppa, Ana Cristina; Bertoni, Jônatas de Almeida; Oliveira-Filho, Ricardo Martins; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Tavares-de-Lima, Wothan

    2011-12-15

    Formaldehyde (FA) is an indoor and outdoor pollutant widely used by many industries, and its exposure is associated with inflammation and oxidative stress in the airways. Our previous studies have demonstrated the role of reactive oxygen species (ROS) in lung inflammation induced by FA inhalation but did not identify source of the ROS. In the present study, we investigate the effects of FA on the activities and gene expression of glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), superoxide dismutase (SOD) 1 and 2, catalase (CAT), nitric oxide synthase (iNOS and cNOS) and cyclooxygenase (COX) 1 and 2. The hypothesized link between NADPH-oxidase, nitric oxide synthase and cyclooxygenase, the lung inflammation after FA inhalation was also investigated. For experiments, male Wistar rats were submitted to FA inhalation (1%, 90 min daily) for 3 consecutive days. The treatments with apocynin and indomethacin before the FA exposure reduced the number of neutrophils recruited into the lung. Moreover, the treatments with apocynin and indomethacin blunted the effect of FA on the generation of IL-1β, while the treatments with L-NAME and apocynin reduced the generation of IL-6 by lung explants when compared to the untreated group. FA inhalation increased the levels of NO and hydrogen peroxide by BAL cells cultured and the treatments with apocynin and l-NAME reduced these generations. FA inhalation did not modify the activities of GPX, GR, GST and CAT but reduced the activity of SOD when compared to the naïve group. Significant increases in SOD-1 and -2, CAT, iNOS, cNOS and COX-1 expression were observed in the FA group compared to the naïve group. The treatments with apocynin, indomethacin and L-NAME reduced the gene expression of antioxidant and oxidant enzymes. In conclusion, our results indicate that FA causes a disruption of the physiological balance between oxidant and antioxidant enzymes in lung tissue, most likely favoring the

  20. Alterations in bronchoalveolar lavage fluid but not in lung function and bronchial responsiveness in swine confinement workers.

    Science.gov (United States)

    Larsson, K; Eklund, A; Malmberg, P; Belin, L

    1992-03-01

    Testing of lung function and bronchial reactivity, bronchoalveolar lavage (BAL), and a skin prick test with a standard panel and six "swine" extracts obtained from swine and swine environment were performed in 20 randomly selected nonsmoking swine confinement workers. In addition, blood samples for detection of antibodies by the diffusion in gel-enzyme-linked immunosorbent assay (DIG-ELISA) technique and precipitating antibodies were drawn. Air samples for measurement of dust and endotoxin levels were collected. All the farmers regarded themselves as healthy. The results were compared with reference groups consisting of urban nonsmoking subjects who had not been exposed to pig farming environment. The pig farmers had normal lung function and the bronchial reactivity was not different from the reference group. In the BAL fluid of the farmers, the concentration of total cells and granulocytes was increased while the concentrations of lymphocytes and macrophages were normal. The BAL fluid concentrations of albumin, fibronectin, and hyaluronan were elevated in the farmers. Skin prick tests with swine extracts were negative in all farmers. Antibodies (assessed by DIG-ELISA) against swine dander, swine dust, and pig feed were increased and precipitating antibodies against swine dander were found in 14, against pig food in five, and against swine confinement dust in three of the 20 pig farmers. The concentration of airborne total dust was 7.4 mg/cu mm and the endotoxin concentration was 37 (22 to 60) ng/cu mm during tending the pigs and increased, during feeding, to 13.8 mg/cu mm and 315 (194 to 716) ng/cu mm, respectively. There was no correlation between exposure and lung function or lavage findings. In conclusion, randomly selected pig farmers had signs of airway inflammatory reaction and activation of the immune system without alteration in lung function and bronchial reactivity. PMID:1541145

  1. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Yi-Hung Carol Tan

    Full Text Available BACKGROUND: Non-small cell lung cancer (NSCLC is a heterogeneous group of disorders with a number of genetic and proteomic alterations. c-CBL is an E3 ubiquitin ligase and adaptor molecule important in normal homeostasis and cancer. We determined the genetic variations of c-CBL, relationship to receptor tyrosine kinases (EGFR and MET, and functionality in NSCLC. METHODS AND FINDINGS: Using archival formalin-fixed paraffin embedded (FFPE extracted genomic DNA, we show that c-CBL mutations occur in somatic fashion for lung cancers. c-CBL mutations were not mutually exclusive of MET or EGFR mutations; however they were independent of p53 and KRAS mutations. In normal/tumor pairwise analysis, there was significant loss of heterozygosity (LOH for the c-CBL locus (22%, n = 8/37 and none of these samples revealed any mutation in the remaining copy of c-CBL. The c-CBL LOH also positively correlated with EGFR and MET mutations observed in the same samples. Using select c-CBL somatic mutations such as S80N/H94Y, Q249E and W802* (obtained from Caucasian, Taiwanese and African-American samples, respectively transfected in NSCLC cell lines, there was increased cell viability and cell motility. CONCLUSIONS: Taking the overall mutation rate of c-CBL to be a combination as somatic missense mutation and LOH, it is clear that c-CBL is highly mutated in lung cancers and may play an essential role in lung tumorigenesis and metastasis.

  2. Study of mitochondrial DNA alteration in the exhaled breath condensate of patients affected by obstructive lung diseases.

    Science.gov (United States)

    Carpagnano, G E; Lacedonia, D; Carone, M; Soccio, P; Cotugno, G; Palmiotti, G A; Scioscia, G; Foschino Barbaro, M P

    2016-01-01

    Mitochondrial DNA (MtDNA) has been studied as an expression of oxidative stress in asthma, COPD, lung cancer and obstructive sleep apnea, but it has been mainly investigated systemically, although the pathogenetic mechanisms begin in the airways and only later progress to systemic circulation. The aim of this study was to investigate the MtDNA alterations in the exhaled breath condensate (EBC) of patients with asthma, COPD and asthma-COPD overlap syndrome (ACOS). In order to analyze better what happens to mitochondria, both locally and systemically, we compared MtDNA/nDNA in blood and EBC of paired patients. Thirteen (13) COPD patients, 14 asthmatics, 23 ACOS (10 according to Spanish guidelines, 13 in line with GINA guidelines) and 12 healthy subjects were enrolled. Patients underwent clinical and functional diagnostic tests as foreseen by the guidelines. They underwent blood and EBC collection. Content of MtDNA and nuclear DNA (nDNA) was measured in the blood cells and EBC of patients by Real Time PCR. The ratio between MtDNA/nDNA was calculated. For the first time we were able to detect MtDNA/nDNA in the EBC. We found higher exhaled MtDNA/nDNA in COPD, asthmatic and ACOS patients respectively compared to healthy subjects (21.9  ±  4.9 versus 6.51  ±  0.21, p  <  0.05; 7.9  ±  2.5 versus 6.51  ±  0.21, p  =  0.06; 18.3  ±  3.4 versus 6.51  ±  0.21, p  <  0.05). The level of exhaled MtDNA/nDNA was positively correlated with the plasmatic one. The levels of MtDNA/nDNA in the EBC, as expression of oxidative stress, are increased in COPD, asthmatic and ACOS patients compared to healthy subjects. These are preliminary results in a small number of well characterized patients that requires confirmation on a larger population. We support new studies directed toward the analysis of exhaled MtDNA/nDNA as a new exhaled non-invasive marker in other inflammatory/oxidative airways diseases. PMID

  3. Pattern Recognition Receptor–Dependent Mechanisms of Acute Lung Injury

    OpenAIRE

    Xiang, Meng; Fan, Jie

    2009-01-01

    Acute lung injury (ALI) that clinically manifests as acute respiratory distress syndrome is caused by an uncontrolled systemic inflammatory response resulting from clinical events including sepsis, major surgery and trauma. Innate immunity activation plays a central role in the development of ALI. Innate immunity is activated through families of related pattern recognition receptors (PRRs), which recognize conserved microbial motifs or pathogen-associated molecular patterns (PAMPs). Toll-like...

  4. Functions and mechanisms of long noncoding RNAs in lung cancer

    OpenAIRE

    Peng ZZ; Zhang CF; Duan CJ

    2016-01-01

    Zhenzi Peng, Chunfang Zhang, Chaojun Duan Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People’s Republic of China Abstract: Lung cancer is a heterogeneous disease, and there is a lack of adequate biomarkers for diagnosis. Long noncoding RNAs (lncRNAs) are emerging as an important set of molecules because of their roles in various key pathophysiological pathways, including cell gr...

  5. Commentary: research on the mechanisms of the occupational lung diseases

    International Nuclear Information System (INIS)

    In this commentary, the pathogenesis of alveolitis is examined and elucidated by animal models. The use of broncho alveolar lavage (BAL) and Ga-67 citrate whole-body scanning as a measure of the activity of alveolar inflammation in workers is discussed. Gallium scan indices have been reported to be elevated in asbestosis, silicosis, and coal workers' pneumoconiosis; diseases which may now be evaluated at earlier, potentially reversible stages. Research in emphysema and other lung diseases associated with α1 antitrypsin deficiency may help explain why coal miners develop focal emphysema. Furthermore, investigation of genetic factors may reveal why workers with similar exposures have a different susceptibility for the development of pneumoconiosis or lung cancer. Occupational asthma may not respond to removal of the worker from exposure because reactive airways may be a predisposing factor for chronic ashthma and chronic obstructive lung disease. A continuing challenge will be disease risk in new industries such as electronics and alternate energy industries and new diseases in worker groups not previously studied, such as the variety of pneumoconioses among dental laboratory technicians who work with exotic metal alloys. 52 references

  6. Morphofunctional changes and mechanisms of their realization in developing lungs under influence of paracetamol and nimesulid

    Directory of Open Access Journals (Sweden)

    Kharchenko S.V.

    2012-01-01

    Full Text Available Actuality of organs and tissues normality development studying is conditioned on continuous growth of conge-nital abnormalies оn the base of greater drugs distribution. The anomalie s of lungs development unde r influence of paraceta-mol and nimesulide are examined and the possible mechanisms of their appearance are analysed. It is determined that lungs develop more slowly under action of paracetamol than in norm and paracetamol lead to development of bronchial asthma during postnatal period of life. Small in numbers researches of nimesulide influen ce demonstrate changes of lungs histogene-sis, which show up in thei r development deceleration.

  7. Epigenetic Therapy in Lung Cancer

    OpenAIRE

    Liu, Stephen V.; Fabbri, Muller; Gitlitz, Barbara J.; Laird-Offringa, Ite A.

    2013-01-01

    Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  8. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    OpenAIRE

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widel...

  9. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    OpenAIRE

    Hancao Li; Haddad, Wassim M.

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential e...

  10. Regional distribution of acoustic-based lung vibration as a function of mechanical ventilation mode

    OpenAIRE

    Dellinger, R Phillip; Jean, Smith; Cinel, Ismail; Tay, Christina; Rajanala, Susmita; Glickman, Yael A; Parrillo, Joseph E

    2007-01-01

    Introduction There are several ventilator modes that are used for maintenance mechanical ventilation but no conclusive evidence that one mode of ventilation is better than another. Vibration response imaging is a novel bedside imaging technique that displays vibration energy of lung sounds generated during the respiratory cycle as a real-time structural and functional image of the respiration process. In this study, we objectively evaluated the differences in regional lung vibration during di...

  11. The mechanics of fibrin networks and their alterations by platelets

    Science.gov (United States)

    Jawerth, Louise Marie

    Fibrin is a biopolymer that assembles into a network during blood coagulation to become the structural scaffold of a blood clot. The precise mechanics of this network are crucial for a blood clot to properly stem the flow of blood at the site of vascular injury while still remaining pliable enough to avoid dislocation. A hallmark of fibrin's mechanical response is strain-stiffening: at small strains, its response is low and linear; while at high strains, its stiffness increases non-linearly with increasing strain. The physical origins of strain-stiffening have been studied for other biopolymer systems but have remained elusive for biopolymer networks composed of stiff filaments, such as fibrin. To understand the origins of this intriguing behavior, we directly observe and quantify the motion of all of the fibers in the fibrin networks as they undergo shear in 3D using confocal microscopy. We show that the strain-stiffening response of a clot is a result of the full network deformation rather than an intrinsic strain-stiffening response of the individual fibers. We observe a distinct transition from a linear, low-strain regime, where all fibers avoid any internal stretching, to a non-linear, high-strain regime, where an increasing number of fibers become stretched. This transition is characterized by a high degree of non-affine motion. Moreover, we are able to precisely calculate the non-linear stress-strain response of the network by using the strains on each fiber measured directly with confocal microscopy and by assuming the fibers behave like linearly elastic beams. This result confirms that it is the network deformation that causes the strain-stiffening behavior of fibrin clots. These data are consistent with predictions for low-connectivity networks with soft, bending, or floppy modes. Moreover, we show that the addition of small contractile cells, platelets, increases the low-strain stiffness of the network while the high-strain stiffness is independent of

  12. The dose–response association of urinary metals with altered pulmonary function and risks of restrictive and obstructive lung diseases: a population-based study in China

    OpenAIRE

    Feng, Wei; Huang, Xiji; Zhang, Ce; Liu, Chuanyao; Cui, Xiuqing; Zhou, Yun; Sun, Huizhen; Qiu, Gaokun; Guo, Huan; He, Meian; Zhang, Xiaomin; Yuan, Jing; Chen, Weihong; WU, TANGCHUN

    2015-01-01

    Objective Reduced pulmonary function is an important predictor of environment-related pulmonary diseases; however, evidence of an association between exposures to various metals from all possible routes and altered pulmonary function is limited. We aimed to investigate the association of various metals in urine with pulmonary function, restrictive lung disease (RLD) and obstructive lung disease (OLD) risks in the general Chinese population. Design A cross-sectional investigation in the Wuhan ...

  13. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation

    OpenAIRE

    Zhang, Yang; Liu, Gongjian; Dull, Randal O; Schwartz, David E; Hu, Guochang

    2014-01-01

    The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 smal...

  14. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury.

    Science.gov (United States)

    Nieman, Gary F; Gatto, Louis A; Habashi, Nader M

    2015-12-01

    The earliest description of what is now known as the acute respiratory distress syndrome (ARDS) was a highly lethal double pneumonia. Ashbaugh and colleagues (Ashbaugh DG, Bigelow DB, Petty TL, Levine BE Lancet 2: 319-323, 1967) correctly identified the disease as ARDS in 1967. Their initial study showing the positive effect of mechanical ventilation with positive end-expiratory pressure (PEEP) on ARDS mortality was dampened when it was discovered that improperly used mechanical ventilation can cause a secondary ventilator-induced lung injury (VILI), thereby greatly exacerbating ARDS mortality. This Synthesis Report will review the pathophysiology of ARDS and VILI from a mechanical stress-strain perspective. Although inflammation is also an important component of VILI pathology, it is secondary to the mechanical damage caused by excessive strain. The mechanical breath will be deconstructed to show that multiple parameters that comprise the breath-airway pressure, flows, volumes, and the duration during which they are applied to each breath-are critical to lung injury and protection. Specifically, the mechanisms by which a properly set mechanical breath can reduce the development of excessive fluid flux and pulmonary edema, which are a hallmark of ARDS pathology, are reviewed. Using our knowledge of how multiple parameters in the mechanical breath affect lung physiology, the optimal combination of pressures, volumes, flows, and durations that should offer maximum lung protection are postulated. PMID:26472873

  15. Altered neuromuscular control mechanisms of the trapezius muscle in fibromyalgia

    Directory of Open Access Journals (Sweden)

    Karlsson Stefan J

    2010-03-01

    Full Text Available Abstract Background fibromyalgia is a relatively common condition with widespread pain and pressure allodynia, but unknown aetiology. For decades, the association between motor control strategies and chronic pain has been a topic for debate. One long held functional neuromuscular control mechanism is differential activation between regions within a single muscle. The aim of this study was to investigate differences in neuromuscular control, i.e. differential activation, between myalgic trapezius in fibromyalgia patients and healthy controls. Methods 27 fibromyalgia patients and 30 healthy controls performed 3 minutes bilateral shoulder elevations with different loads (0-4 Kg with a high-density surface electromyographical (EMG grid placed above the upper trapezius. Differential activation was quantified by the power spectral median frequency of the difference in EMG amplitude between the cranial and caudal parts of the upper trapezius. The average duration of the differential activation was described by the inverse of the median frequency of the differential activations. Results the median frequency of the differential activations was significantly lower, and the average duration of the differential activations significantly longer in fibromyalgia compared with controls at the two lowest load levels (0-1 Kg (p Conclusion these findings illustrate a different neuromuscular control between fibromyalgia patients and healthy controls during a low load functional task, either sustaining or resulting from the chronic painful condition. The findings may have clinical relevance for rehabilitation strategies for fibromyalgia.

  16. Mechanisms of gas exchange response to lung volume reduction surgery in severe emphysema.

    Science.gov (United States)

    Cremona, George; Barberà, Joan A; Barbara, Joan A; Melgosa, Teresa; Appendini, Lorenzo; Roca, Josep; Casadio, Caterina; Donner, Claudio F; Rodriguez-Roisin, Roberto; Wagner, Peter D

    2011-04-01

    Lung volume reduction surgery (LVRS) improves lung function, respiratory symptoms, and exercise tolerance in selected patients with chronic obstructive pulmonary disease, who have heterogeneous emphysema. However, the reported effects of LVRS on gas exchange are variable, even when lung function is improved. To clarify how LVRS affects gas exchange in chronic obstructive pulmonary disease, 23 patients were studied before LVRS, 14 of whom were again studied afterwards. We performed measurements of lung mechanics, pulmonary hemodynamics, and ventilation-perfusion (Va/Q) inequality using the multiple inert-gas elimination technique. LVRS improved arterial Po₂ (Pa(O₂)) by a mean of 6 Torr (P = 0.04), with no significant effect on arterial Pco₂ (Pa(CO₂)), but with great variability in both. Lung mechanical properties improved considerably more than did gas exchange. Post-LVRS Pa(O₂) depended mostly on its pre-LVRS value, whereas improvement in Pa(O(2)) was explained mostly by improved Va/Q inequality, with lesser contributions from both increased ventilation and higher mixed venous Po(2). However, no index of lung mechanical properties correlated with Pa(O₂). Conversely, post-LVRS Pa(CO₂) bore no relationship to its pre-LVRS value, whereas changes in Pa(CO₂) were tightly related (r² = 0.96) to variables, reflecting decrease in static lung hyperinflation (intrinsic positive end-expiratory pressure and residual volume/total lung capacity) and increase in airflow potential (tidal volume and maximal inspiratory pressure), but not to Va/Q distribution changes. Individual gas exchange responses to LVRS vary greatly, but can be explained by changes in combinations of determining variables that are different for oxygen and carbon dioxide. PMID:21233341

  17. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  18. Predicting the lung compliance of mechanically ventilated patients via statistical modeling

    International Nuclear Information System (INIS)

    To avoid ventilator associated lung injury (VALI) during mechanical ventilation, the ventilator is adjusted with reference to the volume distensibility or ‘compliance’ of the lung. For lung-protective ventilation, the lung should be inflated at its maximum compliance, i.e. when during inspiration a maximal intrapulmonary volume change is achieved by a minimal change of pressure. To accomplish this, one of the main parameters is the adjusted positive end-expiratory pressure (PEEP). As changing the ventilator settings usually produces an effect on patient's lung mechanics with a considerable time delay, the prediction of the compliance change associated with a planned change of PEEP could assist the physician at the bedside. This study introduces a machine learning approach to predict the nonlinear lung compliance for the individual patient by Gaussian processes, a probabilistic modeling technique. Experiments are based on time series data obtained from patients suffering from acute respiratory distress syndrome (ARDS). With a high hit ratio of up to 93%, the learned models could predict whether an increase/decrease of PEEP would lead to an increase/decrease of the compliance. However, the prediction of the complete pressure–volume relation for an individual patient has to be improved. We conclude that the approach is well suitable for the given problem domain but that an individualized feature selection should be applied for a precise prediction of individual pressure–volume curves. (paper)

  19. Altered turnover and synthesis rates of lung surfactant following thoracic irradiation

    International Nuclear Information System (INIS)

    Between 2-6 weeks after thoracic irradiation with 10 Gy X rays, when levels of surfactant in the alveoli show the greatest increase, there is a reduction in the rate of radioactivity loss from 3H-choline labeled disaturated phosphatidylcholine from the lung. This indicates a reduced turnover of surfactant. Discrepancies between the halving times for specific activity and for total radioactivity of the disaturated phospholipids suggest that at between 2 and 3 weeks post-irradiation, removal and degradation of surfactant almost ceases, but that synthesis continues normally. However, by 3 weeks post-irradiation, choline-3H incorporation into disaturated phosphatidylcholine suggests that surfactant synthesis is increased about two-fold. The reduced number of macrophages recovered from alveolar lavage between about 2 and 6 weeks post-irradiation may indicate a reason for the lengthened turnover times of surfactant over this period. Nevertheless, the stimulated surfactant production that takes place from about 3 weeks onward suggests an additional active response to radiation or to radiation damage by the type II pneumonocytes. These studies confirm that the maximum levels of alveolar surfactant seen at 3 weeks post-irradiation result from a different lung response than that responsible for the increase in surfactant, which occurs within hours of irradiation

  20. Lymphatic function is required prenatally for lung inflation at birth

    OpenAIRE

    Jakus, Zoltán; Gleghorn, Jason P.; Enis, David R.; Sen, Aslihan; Chia, Stephanie; Liu, Xi; Rawnsley, David R.; Yang, Yiqing; Hess, Paul R; Zou, Zhiying; Yang, Jisheng; Guttentag, Susan H.; Nelson, Celeste M.; Kahn, Mark L.

    2014-01-01

    Mammals must inflate their lungs and breathe within minutes of birth to survive. A key regulator of neonatal lung inflation is pulmonary surfactant, a lipoprotein complex which increases lung compliance by reducing alveolar surface tension (Morgan, 1971). Whether other developmental processes also alter lung mechanics in preparation for birth is unknown. We identify prenatal lymphatic function as an unexpected requirement for neonatal lung inflation and respiration. Mice lacking lymphatic ves...

  1. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    2011-09-01

    Full Text Available Tuberculosis (TB treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4 inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH. Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.

  2. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  3. Genomic alterations on 8p21-p23 are the most frequent genetic events in stage I squamous cell carcinoma of the lung

    OpenAIRE

    KANG, JIUN

    2014-01-01

    Genetic alterations in the early stages of cancer have a close correlation with tumor initiation and potentially activate downstream pathways implicated in tumor progression; however, the method of initiation in sporadic neoplasias is largely unknown. In this study, whole-genome microarray-comparative genomic hybridization was performed to identify the early genetic alterations that define the prognosis of patients with stage I squamous cell carcinoma (SCC) of the lung. The most striking find...

  4. Indomethacin and cromolyn sodium alter ozone-induced changes in lung function and plasma eicosanoid concentrations in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.D.; Ainsworth, D.; Lam, H.F.; Amdur, M.O.

    1988-04-01

    Male Hartley guinea pigs were given either indomethacin (IN), cromolyn sodium (CS), or no drug (ND) and then exposed either to filtered air or to 1 ppm ozone (O3) for 1 hr. At 2 or 24 hr postexposure, ventilation, respiratory mechanics, lung volumes, carbon monoxide-diffusing capacity (DLCO), and alveolar volume (VA) were measured, and in separate groups of animals, plasma eicosanoids (EC) were measured. Both drugs blocked the increase in flow resistance noted at 2 hr after O3 and prevented O3-induced increases in the wet lung weight to body weight ratio seen at 2 and 24 hr in the ND group. In the ND animals O3 also decreased total lung capacity (TLC), vital capacity (VC), functional residual capacity (FRC), and residual volume (RV). IN as well as CS blocked reductions in FRC and RV at both 2 and 24 hr after O3. TLC was reduced by both drug treatments in air- and O3-exposed animals. CS treatment also decreased VC in all groups. IN blocked reductions in VA after O3 but did not prevent decreases in DLCO. CS blocked reductions in both VA and DLCO after O3, but the drug decreased DLCO in air-exposed animals. The prostaglandins PGF2 alpha and 6-keto PGF1 alpha were largely unaffected by O3 exposure or drug treatment. Prostaglandin E1 (PGE1) was not affected by O3, but both drugs significantly increased PGE1 in all exposure groups. Effects on plasma thromboxane B2 (TxB2) were variable although in most groups TxB2 was lower than in the O3-exposed ND groups. Although our findings suggest that both drugs block some effects of O3 exposure on the lungs and on plasma EC concentrations, the degree to which EC contribute to O3-induced pulmonary effects is not clearly apparent.

  5. Lungs in Heart Failure

    OpenAIRE

    Anna Apostolo; Giuliano Giusti; Paola Gargiulo; Maurizio Bussotti; Piergiuseppe Agostoni

    2012-01-01

    Lung function abnormalities both at rest and during exercise are frequently observed in patients with chronic heart failure, also in the absence of respiratory disease. Alterations of respiratory mechanics and of gas exchange capacity are strictly related to heart failure. Severe heart failure patients often show a restrictive respiratory pattern, secondary to heart enlargement and increased lung fluids, and impairment of alveolar-capillary gas diffusion, mainly due to an increased resistance...

  6. Use of static lung mechanics to identify early pulmonary involvement in patients with ankylosing spondylitis.

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2001-04-01

    Full Text Available AIM: To assess if a detailed analysis of lung mechanics could help in early recognition of pulmonary abnormalities in patients with ankylosing spondylitis. METHODS: Static pulmonary mechanics were studied in 17 patients (16 men and one woman of ankylosing spondylitis with no obvious clinical or radiological evidence of pulmonary involvement. Lung pressure-volume relationship was generated using a whole body plethysmograph, and a monoexponential equation fitted to this data. RESULTS: Total lung capacity (TLC was reduced in one (5.9% and static lung compliance (Cst in nine (52.9% patients. Four (23.5% patients had normal TLC, yet Cst and shape constant (K were reduced. Five (29.4% patients had reduced TLC and Cst; four of them had low K. One (5.9% patient had normal TLC but elevated Cst and K. CONCLUSIONS: Pulmonary involvement in patients with ankylosing spondylitis is probably diffuse and begins much earlier than generally presumed. Evaluation of static lung mechanics can identify pulmonary involvement early in the course of disease in several of these patients.

  7. MECHANICAL PROPERTIES OF LUNGS IN PATIENTS PROGRESSING MUSCULAR DYSTROPHY VARIOUS SEVERITY OF THE DISEASE

    Directory of Open Access Journals (Sweden)

    K. F. Tetenev

    2013-01-01

    Full Text Available Results of research of biomechanics of breathing at patients with progressing muscular dystrophy (PMD and their interpretation are unique. Compared indicators of ventilating function of lungs and indicators of mechanics of breathing at 31 patients with PMD to 1–2 extent of motive frustration and 17 patients with 3–4 extent of motive frustration. In both groups of sick MVL and OFV-1 are lowered to the same extent, bronchial resistance isn’t increased. In the 2nd group the reserve volume of an expiratory is reduced for the account decrease in force of respiratory muscles is decreased. Elastic draft of lungs is reduced, the coefficient of functional activity of lungs is increased. At spontaneous breath the tensile properties of lungs are lowered, increased elastic fraction of work of breathing. The general nonelastic resistance of lungs is on the average equally increased in both groups at the expense of increase of tissue friction. At 12 sick PMD the abnormal respiratory loop came to light: completely I was absent at 8 patients and at 4 there was no inspiratory or expiratory part of a loop. Changes of indicators of mechanics of breath are the in generally functionally, and are considered as manifestation of compensatory strengthening of function of an intra pulmonary source of mechanical energy.

  8. Altered expression of the IQGAP1 gene in human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.E.; Palmisano, W.A.; Lechner, J.F. [and others

    1995-12-01

    IQGAP1 is a GTPase activation protein that accelerates GTP hydrolysis by normal p21 ras proteins. Therefore, IQGAP1 could act as an upstream affector of p21 ras activity by convert in excess amounts of active GTP-21 ras to inactive GDP-21 ras. IQGAP1 displays extensive sequence similarity to the catalytic domain of all previously reported ras GAPs, including the tumor suppressor gene protein neurofibromatosis type 1 (NF1). It has been shown that abnormal NF1 protein cannot negatively regulate the activity of ras proteins in neuroblast cells. This observation supports the hypothesis that NF1 is a tumor suppressor gene whose product acts upstream of ras. IQGAP1 is primarily expressed in lung, where it may play a role similar to NF1 in regulating the activity of H-ras or K-ras proteins. IQGAP1 functions as other GAPs by controlling the activity of ras.

  9. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    Science.gov (United States)

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury. PMID:12456388

  10. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model.

    Science.gov (United States)

    Birkelbach, Bastian; Lutz, Dennis; Ruppert, Clemens; Henneke, Ingrid; Lopez-Rodriguez, Elena; Günther, Andreas; Ochs, Matthias; Mahavadi, Poornima; Knudsen, Lars

    2015-07-01

    Chronic injury of alveolar epithelial type II cells (AE2 cells) represents a key event in the development of lung fibrosis in animal models and in humans, such as idiopathic pulmonary fibrosis (IPF). Intratracheal delivery of amiodarone to mice results in a profound injury and macroautophagy-dependent apoptosis of AE2 cells. Increased autophagy manifested in AE2 cells by disturbances of the intracellular surfactant. Hence, we hypothesized that ultrastructural alterations of the intracellular surfactant pool are signs of epithelial stress correlating with the severity of fibrotic remodeling. With the use of design-based stereology, the amiodarone model of pulmonary fibrosis in mice was characterized at the light and ultrastructural level during progression. Mean volume of AE2 cells, volume of lamellar bodies per AE2 cell, and mean size of lamellar bodies were correlated to structural parameters reflecting severity of fibrosis like collagen content. Within 2 wk amiodarone leads to an increase in septal wall thickness and a decrease in alveolar numbers due to irreversible alveolar collapse associated with alveolar surfactant dysfunction. Progressive hypertrophy of AE2 cells and increase in mean individual size and total volume of lamellar bodies per AE2 cell were observed. A high positive correlation of these AE2 cell-related ultrastructural changes and the deposition of collagen fibrils within septal walls were established. Qualitatively, similar alterations could be found in IPF samples with mild to moderate fibrosis. We conclude that ultrastructural alterations of AE2 cells including the surfactant system are tightly correlated with the progression of fibrotic remodeling. PMID:25957292

  11. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    International Nuclear Information System (INIS)

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m3 of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) were measured by 32P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  12. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna [Department of Health Sciences, University of Genoa, Genoa (Italy); Steele, Vernon E. [National Cancer Institute (NCI), Rockville, MD (United States); De Flora, Silvio, E-mail: sdf@unige.it [Department of Health Sciences, University of Genoa, Genoa (Italy)

    2011-12-01

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m{sup 3} of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodGuo) were measured by {sup 32}P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  13. The Design of Future Pediatric Mechanical Ventilation Trials for Acute Lung Injury

    OpenAIRE

    Robinder G Khemani; Newth, Christopher J.L.

    2010-01-01

    Pediatric practitioners face unique challenges when attempting to translate or adapt adult-derived evidence regarding ventilation practices for acute lung injury or acute respiratory distress syndrome into pediatric practice. Fortunately or unfortunately, there appears to be selective adoption of adult practices for pediatric mechanical ventilation, many of which pose considerable challenges or uncertainty when translated to pediatrics. These differences, combined with heterogeneous managemen...

  14. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery

    OpenAIRE

    Peter M Spieth; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J.; Pelosi, Paolo; Koch, Thea; Gamba de Abreu, Marcelo

    2015-01-01

    Background: General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventil...

  15. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Directory of Open Access Journals (Sweden)

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  16. [Unilateral hyperlucent lung induced by a carcinoid tumor: comments on the differential diagnosis and mechanisms of hypoperfusion].

    Science.gov (United States)

    Schmitz, N; Bugnet, A-S; Demian, M; Massard, G; De Blay, F; Pauli, G

    2005-04-01

    We report the case of a 35-year-old woman in whom a systematic thoracic x-ray led to the diagnosis of unilateral hyperlucent lung due to a carcinoid tumor obstructing the main left bronchus almost completely. Injected computed tomography permitted diagnosis of left lung hypoperfusion and visualization of the tumor. After enlarged inferior left lobar resection, normal perfusion was observed six months later on the isotopic lung perfusion scan. Other reported causes of unilateral hyperlucent lung are discussed as well as pathophysiological mechanisms of lung hypoperfusion and hypoxic vasoconstriction. PMID:16012363

  17. Lung and chest wall mechanics in ventilated patients with end stage idiopathic pulmonary fibrosis

    OpenAIRE

    Nava, S.; Rubini, F.

    1999-01-01

    BACKGROUND—Idiopathic pulmonary fibrosis is an inflammatory disease which leads to chronic ventilatory insufficiency and is characterised by a reduction in pulmonary static and dynamic volumes. It has been suggested that lung elastance may also be abnormally increased, particularly in end stage disease, but this has not been systematically tested. The aim of this study was to assess the respiratory mechanics during mechanical ventilation in patients affected by end stage ...

  18. Do Ergogenic Aids Alter Lower Extremity Joint Alignment During a Functional Movement Lunge Prior to and Following an Exercise Bout?

    Directory of Open Access Journals (Sweden)

    Mills Chris

    2015-03-01

    Full Text Available Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®, prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise.

  19. Do Ergogenic Aids Alter Lower Extremity Joint Alignment During a Functional Movement Lunge Prior to and Following an Exercise Bout?

    Science.gov (United States)

    Mills, Chris; Knight, James; Milligan, Gemma

    2015-01-01

    Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise. PMID:25964805

  20. Intrapleural delivery of MSCs attenuates acute lung injury by paracrine/endocrine mechanism

    OpenAIRE

    Qin, Zhao-hui; Xu, Jin-Fu; Qu, Jie-Ming; Zhang, Jing; Sai, Yin; Chen, Chun-mei; Wu, Lian; YU, LONG

    2012-01-01

    Two different repair mechanisms of mesenchymal stem cells (MSCs) are suggested to participate in the repair of acute lung injury (ALI): (i) Cell engraftment mechanism, (ii) Paracrine/endocrine mechanism. However, the exact roles they play in the repair remain unclear. The aim of the study was to evaluate the role of paracrine/endocrine mechanism using a novel intrapleural delivery method of MSCs. Either 1 × 106 MSCs in 300 μl of PBS or 300 μl PBS alone were intrapleurally injected into rats w...

  1. Evaluation of Arsenic Trioxide Potential for Lung Cancer Treatment: Assessment of Apoptotic Mechanisms and Oxidative Damage

    Science.gov (United States)

    Walker, Alice M; Stevens, Jacqueline J; Ndebele, Kenneth; Tchounwou, Paul B

    2016-01-01

    Background Lung cancer is one of the most lethal and common cancers in the world, causing up to 3 million deaths annually. The chemotherapeutic drugs that have been used in treating lung cancer include cisplatin-pemetrexed, cisplastin-gencitabinoe, carboplatin-paclitaxel and crizotinib. Arsenic trioxide (ATO) has been used in the treatment of acute promyelocytic leukemia. However, its effects on lung cancer are not known. We hypothesize that ATO may also have a bioactivity against lung cancer, and its mechanisms of action may involve apoptosis, DNA damage and changes in stress-related proteins in lung cancer cells. Methods To test the above stated hypothesis, lung carcinoma (A549) cells were used as the test model. The effects of ATO were examined by performing 6-diamidine-2 phenylindole (DAPI) nuclear staining for morphological characterization of apoptosis, flow cytometry analysis for early apoptosis, and western blot analysis for stress-related proteins (Hsp70 and cfos) and apoptotic protein expressions. Also, the single cell gel electrophoresis (Comet) assay was used to evaluate the genotoxic effect. Results ATO-induced apoptosis was evidenced by chromatin condensation and formation of apoptotic bodies as revealed by DAPI nuclear staining. Cell shrinkage and membrane blebbing were observed at 4 and 6 µg/ml of ATO. Data from the western blot analysis revealed a significant dose-dependent increase (p < 0.05) in the Hsp 70, caspase 3 and p53 protein expression, and a significant (p < 0.05) decrease in the cfos, and bcl-2 protein expression at 4 and 6 µg/ml of ATO. There was a slight decrease in cytochrome c protein expression at 4 and 6 µg/ ml of ATO. Comet assay data revealed significant dose-dependent increases in the percentages of DNA damage, Comet tail lengths, and Comet tail moment. Conclusion Taken together our results indicate that ATO is cytotoxic to lung cancer cells and its bioactivity is associated with oxidative damage, changes in cellular

  2. Studies on the mechanism of apoptasis by radon in lung tissue of mice

    International Nuclear Information System (INIS)

    Objective: To study the mechanism of apoptasis by radon in lung tissue of mice. Methods: Male BALB/c mice were exposed to radon with the cumulative dose of 0.02, 30 or 60 working level month (WLM) respectively, and then were raised for different time (24 h, 30 d or 90 d). Apoptosis was detected by terminal deoxynucleotidy transferase-mediated dUTP-biotin nick end labeling (TUNEL). The expression of p 53 and Bcl-2/Bax protein was observed by immunohistochemistry. Results: As compared with the control group, the apoptotic index in lung tissue increased along with the increasing of expose dose and the raise time. The protein expression of p 53 increased significantlyin the 30 d and 90 d groups. But Bcl-2/Bax expression decreased. Conclusions: The apoptosis by radon in lung tissue of mice had close relationship with p 53 and.Bcl-2/Bax pathway. (authors)

  3. Advances on Mechanisms of Coagulation with Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yanhua LI

    2013-12-01

    Full Text Available Recently, researchers have been increasingly finding coagulation disorders are commonly the first sign of malignancy. It has now been established that cancer development leads to an increased risk of thrombosis, and conversely, excessive activation of blood coagulation profoundly influences cancer progression. In patients with lung cancer, a sustained stimulation of blood coagulation takes place. Cancer cells trigger coagulation through expression of tissue factor, and affect coagulation through expression of thrombin, release of microparticles that augment coagulation and so on. Coagulation also facilitates tumour progression through release of platelet granule contents, inhibition of natural killer cells and recruitment of macrophages. Non-small cell lung cancer (NSCLC accounts for about 80%-85% of all lung malignancies. In the present review, we summarized the newly updated data about the physiopathological mechanisms of various components of the clotting system in different stages of carcinogenesis in NSCLC.

  4. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension.

    Science.gov (United States)

    Veith, Christine; Schermuly, Ralph T; Brandes, Ralf P; Weissmann, Norbert

    2016-03-01

    Oxygen (O2) is essential for the viability and function of most metazoan organisms and thus is closely monitored at both the organismal and the cellular levels. However, alveoli often encounter decreased O2 levels (hypoxia), leading to activation of physiological or pathophysiological responses in the pulmonary arteries. Such changes are achieved by activation of transcription factors. The hypoxia-inducible factors (HIFs) are the most prominent hypoxia-regulated transcription factors in this regard. HIFs bind to hypoxia-response elements (HREs) in the promoter region of target genes, whose expression and translation allows the organism, amongst other factors, to cope with decreased environmental O2 partial pressure (pO2). However, prolonged HIF activation can contribute to major structural alterations, especially in the lung, resulting in the development of pulmonary hypertension (PH). PH is characterized by a rise in pulmonary arterial pressure associated with pulmonary arterial remodelling, concomitant with a reduced intravascular lumen area. Patients with PH develop right heart hypertrophy and eventually die from right heart failure. Thus, understanding the molecular mechanisms of HIF regulation in PH is critical for the identification of novel therapeutic strategies. This review addresses the relationship of hypoxia and the HIF system with pulmonary arterial dysfunction in PH. We particularly focus on the cellular and molecular mechanisms underlying the HIF-driven pathophysiological processes. PMID:26228924

  5. ROS1 copy number alterations are frequent in non-small cell lung cancer

    Science.gov (United States)

    Clavé, Sergi; Gimeno, Javier; Muñoz-Mármol, Ana M.; Vidal, Joana; Reguart, Noemí; Carcereny, Enric; Pijuan, Lara; Menéndez, Sílvia; Taus, Álvaro; Mate, José Luís; Serrano, Sergio; Albanell, Joan; Espinet, Blanca; Arriola, Edurne; Salido, Marta

    2016-01-01

    Objectives We aimed to determine the prevalence and partners of ROS1 rearrangements, to explore the correlation between FISH and IHC assays, and to investigate clinical implications of ROS1 copy number alterations (CNAs). Methods A total of 314 NSCLC patients were screened using ROS1 FISH break-apart probes. Of these, 47 surgical tumors were included in TMAs to analyze ROS1 heterogeneity assessed either by FISH and IHC, and chromosome 6 aneusomy. To characterize ROS1 partners, probes for CD74, EZR, SLC34A2 and SDC3 genes were developed. ROS1 positive FISH cases were screened also by IHC. Results Five patients were ROS1 positive (1.8%). We identified two known fusion partners in three patients: CD74 and SLC34A2. Four out of five ROS1 rearranged patients were female, never smokers and with adenocarcinoma histology. Rearranged cases were also positive by IHC as well. According to ROS1 CNAs, we found a prevalence of 37.8% gains/amplifications and 25.1% deletions. Conclusions This study point out the high prevalence of ROS1 CNAs in a large series of NSCLC. ROS1 gains, amplifications and deletions, most of them due to chromosome 6 polysomy or monosomy, were heterogeneous within a tumor and had no impact on overall survival. PMID:26783962

  6. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity.

    Science.gov (United States)

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci. PMID:27087825

  7. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  8. Effects of Chemotherapy-Induced Alterations in Cell Mechanical Properties on Cancer Metastasis

    Science.gov (United States)

    Prathivadhi, Sruti; Ekpenyong, Andrew; Nichols, Michael; Taylor, Carolyn; Ning, Jianhao

    Biological cells can modulate their mechanical properties to suit their functions and in response to changes in their environment. Thus, mechanical phenotyping of cells has been employed for tracking stem cell differentiation, bacterial infection, cell death, etc. Malignant transformation of cells also involves changes in mechanical properties. However, the extent to which mechanical properties of cancer cells contribute to metastasis is not well understood. Yet, more than 90% of all cancer deaths are directly related to metastasis. Transit of cells through the microcirculation is one of the key features of metastasis. We hypothesize that cancer treatment regimens do inadvertently alter cell mechanical properties in ways that might promote cancer metastasis. We use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that cancer cells treated with chemotherapeutic drugs such as daunorubicin, become more deformable at short timescales (0.1 s) and transit faster through the device. Our results are first steps in evaluating the pro- or anti-metastatic effects of chemotherapeutic drugs based on their induced alterations in cell mechanical properties.

  9. Stable Small Animal Mechanical Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rick E.; Lamm, W. J.

    2011-11-08

    Pulmonary computational fluid dynamics models require 3D images to be acquired over multiple points in the dynamic breathing cycle, with no breath holds or changes in ventilatory mechanics. With small animals, these requirements result in long imaging times ({approx}90 minutes), over which lung mechanics, such as compliance, can gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for pulmonary CT imaging throughout the dynamic breathing cycle. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in peak inspiratory pressure and flow provide diagnostics of changes in breathing mechanics.

  10. Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development

    OpenAIRE

    Xu, Bing; Chen, Cheng; Chen, Hui; Zheng, Song-Guo; Bringas, Pablo; Xu, Min; Zhou, Xianghong; Chen, Di; Umans, Lieve; Zwijsen, An; SHI, Wei

    2011-01-01

    Bone morphogenetic protein 4 (Bmp4) is essential for lung development. To define the intracellular signaling mechanisms by which Bmp4 regulates lung development, BMP-specific Smad1 or Smad5 was selectively knocked out in fetal mouse lung epithelial cells. Abrogation of lung epithelial-specific Smad1, but not Smad5, resulted in retardation of lung branching morphogenesis and reduced sacculation, accompanied by altered distal lung epithelial cell proliferation and differentiation and, consequen...

  11. Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis.

    Science.gov (United States)

    Lutz, Dennis; Gazdhar, Amiq; Lopez-Rodriguez, Elena; Ruppert, Clemens; Mahavadi, Poornima; Günther, Andreas; Klepetko, Walter; Bates, Jason H; Smith, Bradford; Geiser, Thomas; Ochs, Matthias; Knudsen, Lars

    2015-02-01

    Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF. PMID:25033427

  12. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    Science.gov (United States)

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede

  13. Lung

    International Nuclear Information System (INIS)

    At present no simple statement can be made relative to the role of radionuclidic lung studies in the pediatric population. It is safe to assume that they will be used with increasing frequency for research and clinical applications because of their sensitivity and ready applicability to the pediatric patient. Methods comparable to those used in adults can be used in children older than 4 years. In younger children, however, a single injection of 133Xe in solution provides an index of both regional perfusion and ventilation which is easier to accomplish. This method is particularly valuable in infants and neonates because it is rapid, requires no patient cooperation, results in a very low radiation dose, and can be repeated in serial studies. Radionuclidic studies of ventilation and perfusion can be performed in almost all children if the pediatrician and the nuclear medicine specialist have motivation and ingenuity. S

  14. Identification of the mechanism limiting the alteration of clad spent fuel segments in aerated carbonated groundwater

    Science.gov (United States)

    Jégou, C.; Peuget, S.; Broudic, V.; Roudil, D.; Deschanels, X.; Bart, J. M.

    2004-03-01

    Leaching experiments were performed with five spent fuel samples (20 mm segments of clad fuel rods) from French power reactors (four UO 2 fuel samples with burnup ratings of 22, 37, 47 and 60 GW d t HM-1 and a MOX fuel sample irradiated to 47 GW d t HM-1) to determine the release kinetics of the matrix containing most of the radionuclides. The experiments were carried out with carbonated groundwater on previously leached sections of clad fuel rods in static mode, in an aerated medium at room temperature (25 °C) in a hot cell. Until 313 days of leaching and below uranium saturation, the Sr/U congruence ratios for all the UO 2 fuel samples ranged from 1 to 2; allowing for the experimental uncertainty, strontium can thus be considered as a satisfactory matrix alteration tracer. No significant burnup effect was observed on the alteration of the UO 2 fuel matrix. The daily strontium release factor was approximately 2.7 × 10 -8 d -1 for UO 2 fuel after 706 days of leaching, and seven to eight times higher for MOX fuel. Several alteration mechanisms (radiolysis, solubility, precipitation/clogging) are examined to account for the experimental findings. All the available experimental data (characterization of secondary phases and leaching data) indicate that the mechanism limiting the spent fuel alteration kinetics, for the conditions studied, is likely based on the transport and accessibility of oxidizing species and/or water within the segment.

  15. Identification of the mechanism limiting the alteration of clad spent fuel segments in aerated carbonated groundwater

    International Nuclear Information System (INIS)

    Leaching experiments were performed with five spent fuel samples (20 mm segments of clad fuel rods) from French power reactors (four UO2 fuel samples with burnup ratings of 22, 37, 47 and 60 GW d tHM-1 and a MOX fuel sample irradiated to 47 GW d tHM-1) to determine the release kinetics of the matrix containing most of the radionuclides. The experiments were carried out with carbonated groundwater on previously leached sections of clad fuel rods in static mode, in an aerated medium at room temperature (25 deg. C) in a hot cell. Until 313 days of leaching and below uranium saturation, the Sr/U congruence ratios for all the UO2 fuel samples ranged from 1 to 2; allowing for the experimental uncertainty, strontium can thus be considered as a satisfactory matrix alteration tracer. No significant burnup effect was observed on the alteration of the UO2 fuel matrix. The daily strontium release factor was approximately 2.7 x 10-8 d-1 for UO2 fuel after 706 days of leaching, and seven to eight times higher for MOX fuel. Several alteration mechanisms (radiolysis, solubility, precipitation/clogging) are examined to account for the experimental findings. All the available experimental data (characterization of secondary phases and leaching data) indicate that the mechanism limiting the spent fuel alteration kinetics, for the conditions studied, is likely based on the transport and accessibility of oxidizing species and/or water within the segment

  16. Respiratory failure following anti-lung serum: study on mechanisms associated with surfactant system damage

    International Nuclear Information System (INIS)

    Within 2 minutes intravenous anti-lung serum (ALS) into guinea pig induces a respiratory failure that is fatal within 30 min. The relationship between surfactant, alveolar-capillary permeability and respiratory failure was studied. Within two minutes ALS induced a leak in the alveolar-capillary barrier. Within 30 minutes 28.3% (controls, given normal rabbit serum: 0.7%) of iv 131I-albumin, and 0.5% (controls 0.02%) of iv surfactant phospholipid tracer were recovered in bronchoalveolar lavage. Furthermore, 57% (controls 32%) of the endotracheally administered surfactant phospholipid became associated with lung tissue and only less than 0.5% left the lung. The distribution of proteins and phospholipids between the in vivo small volume bronchoalveolar lavages and the ex vivo bronchoalveolar lavages were dissimilar: 84% (controls 20%) of intravenously injected, lavageable 131I-albumin and 23% (controls 18%) of total lavageable phospholipid were recovered in the in vivo small volume bronchoalveolar lavages. ALS also decreased lavageable surfactant phospholipid by 41%. After ALS the minimum surface tension increased. The supernatant of the lavage increased the minimum surface tension of normal surfactant. In addition, the sediment fraction of the lavage had slow surface adsorption, and a marked reduction in 35,000 and 10,000 MW peptides. Exogenous surfactant ameliorated the ALS-induced respiratory failure. We propose that inhibition, altered intrapulmonary distribution, and dissociation of protein and phospholipid components of surfactant are important in early pathogenesis of acute respiratory failure

  17. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    International Nuclear Information System (INIS)

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  18. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Highlights: • Uniaxial stretching activates Ca2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca2+ elevation is mainly via Ca2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca2+ concentration ([Ca2+]i) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca2+]i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca2+]i. The stretch-induced [Ca2+]i elevation was attenuated in Ca2+-free solution. In contrast, the increase of [Ca2+]i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd3+, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca2+]i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  19. PULMONARY PATHOPHYSIOLOGY AND LUNG MECHANICS IN ANESTHESIOLOGY: A CASE-BASED OVERVIEW

    OpenAIRE

    Vidal Melo, Marcos F.; Musch, Guido; Kaczka, David W.

    2012-01-01

    The induction and maintenance of anesthesia, surgical requirements, and patients’ unique pathophysiology all combine to create a setting in which our accumulated knowledge of respiratory physiology and lung mechanics take on immediate and central importance in patient management. In this review we will take a case-based approach to illustrate how the complex interactions between anesthesia, surgery, and patient disease impact patient care with respect to pulmonary pathophysiology and clinical...

  20. Assessment of murine lung mechanics outcome measures: alignment with those made in asthmatics

    OpenAIRE

    Walker, Julia K. L.; Kraft, Monica; Fisher, John T

    2013-01-01

    Although asthma is characterized as an inflammatory disease, recent reports highlight the importance of pulmonary physiology outcome measures to the clinical assessment of asthma control and risk of asthma exacerbation. Murine models of allergic inflammatory airway disease have been widely used to gain mechanistic insight into the pathogenesis of asthma; however, several aspects of murine models could benefit from improvement. This review focuses on aligning lung mechanics measures made in mi...

  1. Effects of inhaled acid aerosols on lung mechanics: an analysis of human exposure studies.

    OpenAIRE

    Utell, M J

    1985-01-01

    There exist significant gaps in our understanding of human health effects from inhalation of pollutants associated with acid precipitation. Controlled clinical studies examine effects of criteria pollutants almost exclusively by assessing changes in lung mechanics. One constituent of acid precipitation, sulfuric acid aerosols, has been shown to induce bronchoconstriction in exercising extrinsic asthmatics at near ambient levels. These asthmatics may be an order of magnitude more sensitive to ...

  2. More Than a Monolayer: Relating Lung Surfactant Structure and Mechanics to Composition

    OpenAIRE

    Alonso, Coralie; Alig, Tim; Yoon, Joonsung; Bringezu, Frank; Warriner, Heidi; Zasadzinski, Joseph A.

    2004-01-01

    Survanta, a clinically used bovine lung surfactant extract, in contact with surfactant in the subphase, shows a coexistence of discrete monolayer islands of solid phase coexisting with continuous multilayer “reservoirs” of fluid phase adjacent to the air-water interface. Exchange between the monolayer, the multilayer reservoir, and the subphase determines surfactant mechanical properties such as the monolayer collapse pressure and surface viscosity by regulating solid-fluid coexistence. Grazi...

  3. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  4. A Preconscious Neural Mechanism of Hypnotically Altered Colors: A Double Case Study

    OpenAIRE

    Mika Koivisto; Svetlana Kirjanen; Antti Revonsuo; Sakari Kallio

    2013-01-01

    Hypnotic suggestions may change the perceived color of objects. Given that chromatic stimulus information is processed rapidly and automatically by the visual system, how can hypnotic suggestions affect perceived colors in a seemingly immediate fashion? We studied the mechanisms of such color alterations by measuring electroencephalography in two highly suggestible participants as they perceived briefly presented visual shapes under posthypnotic color alternation suggestions such as "all the ...

  5. Lung-Derived Mediators Induce Cytokine Production in Downstream Organs via an NF-κB-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    E. K. Patterson

    2013-01-01

    Full Text Available In the setting of acute lung injury, levels of circulating inflammatory mediators have been correlated with adverse outcomes. Previous studies have demonstrated that injured, mechanically ventilated lungs represent the origin of the host inflammatory response; however, mechanisms which perpetuate systemic inflammation remain uncharacterized. We hypothesized that lung-derived mediators generated by mechanical ventilation (MV are amplified by peripheral organs in a “feed forward” mechanism of systemic inflammation. Herein, lung-derived mediators were collected from 129X1/SVJ mice after 2 hours of MV while connected to the isolated perfused mouse lung model setup. Exposure of liver endothelial cells to lung-derived mediators resulted in a significant increase in G-CSF, IL-6, CXCL-1, CXCL-2, and MCP-1 production compared to noncirculated control perfusate media (P<0.05. Furthermore, inhibition of the NF-κB pathway significantly mitigated this response. Changes in gene transcription were confirmed using qPCR for IL-6, CXCL-1, and CXCL-2. Additionally, liver tissue obtained from mice subjected to 2 hours of in vivo MV demonstrated significant increases in hepatic gene transcription of IL-6, CXCL-1, and CXCL-2 compared to nonventilated controls. Collectively, this data demonstrates that lung-derived mediators, generated in the setting of MV, are amplified by downstream organs in a feed forward mechanism of systemic inflammation.

  6. Alterations in gene expression of proprotein convertases in human lung cancer have a limited number of scenarios.

    Directory of Open Access Journals (Sweden)

    Ilya V Demidyuk

    Full Text Available Proprotein convertases (PCs is a protein family which includes nine highly specific subtilisin-like serine endopeptidases in mammals. The system of PCs is involved in carcinogenesis and levels of PC mRNAs alter in cancer, which suggests expression status of PCs as a possible marker for cancer typing and prognosis. The goal of this work was to assess the information value of expression profiling of PC genes. Quantitative polymerase chain reaction was used for the first time to analyze mRNA levels of all PC genes as well as matrix metalloproteinase genes MMP2 and MMP14, which are substrates of PCs, in 30 matched pairs of samples of human lung cancer tumor and adjacent tissues without pathology. Significant changes in the expression of PCs have been revealed in tumor tissues: increased FURIN mRNA level (p<0.00005 and decreased mRNA levels of PCSK2 (p<0.007, PCSK5 (p<0.0002, PCSK7 (p<0.002, PCSK9 (p<0.00008, and MBTPS1 (p<0.00004 as well as a tendency to increase in the level of PCSK1 mRNA. Four distinct groups of samples have been identified by cluster analysis of the expression patterns of PC genes in tumor vs. normal tissue. Three of these groups covering 80% of samples feature a strong elevation in the expression of a single gene in cancer: FURIN, PCSK1, or PCSK6. Thus, the changes in the expression of PC genes have a limited number of scenarios, which may reflect different pathways of tumor development and cryptic features of tumors. This finding allows to consider the mRNAs of PC genes as potentially important tumor markers.

  7. Comprehensive genetic testing identifies targetable genomic alterations in most patients with non-small cell lung cancer, specifically adenocarcinoma, single institute investigation

    Science.gov (United States)

    Won, Brian M.; Patton, Kathryn Alexa; Villaflor, Victoria M.; Hoffman, Philip C.; Hensing, Thomas; Hogarth, D. Kyle; Malik, Renuka; MacMahon, Heber; Mueller, Jeffrey; Simon, Cassie A.; Vigneswaran, Wickii T.; Wigfield, Christopher H.; Ferguson, Mark K.; Husain, Aliya N.; Vokes, Everett E.; Salgia, Ravi

    2016-01-01

    This study reviews extensive genetic analysis in advanced non-small cell lung cancer (NSCLC) patients in order to: describe how targetable mutation genes interrelate with the genes identified as variants of unknown significance; assess the percentage of patients with a potentially targetable genetic alterations; evaluate the percentage of patients who had concurrent alterations, previously considered to be mutually exclusive; and characterize the molecular subset of KRAS. Thoracic Oncology Research Program Databases at the University of Chicago provided patient demographics, pathology, and results of genetic testing. 364 patients including 289 adenocarcinoma underwent genotype testing by various platforms such as FoundationOne, Caris Molecular Intelligence, and Response Genetics Inc. For the entire adenocarcinoma cohort, 25% of patients were African Americans; 90% of KRAS mutations were detected in smokers, including current and former smokers; 46% of EGFR and 61% of ALK alterations were detected in never smokers. 99.4% of patients, whose samples were analyzed by next-generation sequencing (NGS), had genetic alterations identified with an average of 10.8 alterations/tumor throughout different tumor subtypes. However, mutations were not mutually exclusive. NGS in this study identified potentially targetable genetic alterations in the majority of patients tested, detected concurrent alterations and provided information on variants of unknown significance at this time but potentially targetable in the future. PMID:26934441

  8. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  9. Nicotine-induced resistance of non-small cell lung cancer to treatment – possible mechanisms

    Directory of Open Access Journals (Sweden)

    Rafał Czyżykowski

    2016-03-01

    Full Text Available Cigarette smoking is the leading risk factor of lung cancer. Data from several clinical studies suggest that continuation of smoking during therapy of tobacco-related cancers is associated with lower response rates to chemotherapy and/or radiotherapy, and even with decreased survival. Although nicotine – an addictive component of tobacco – is not a carcinogen, it may influence cancer development and progression or effectiveness of anti-cancer therapy. Several in vitro and in vivo trials have evaluated the influence of nicotine on lung cancer cells. The best known mechanisms by which nicotine impacts cancer biology involve suppression of apoptosis induced by certain drugs or radiation, promotion of proliferation, angiogenesis, invasion and migration of cancer cells. This effect is mainly mediated by membranous nicotinic acetylcholine receptors whose stimulation leads to sustained activation of such intracellular pathways as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK and JAK/STAT, induction of NF-κB activity, enhanced transcription of mitogenic promoters, inhibition of the mitochondrial death pathway or stimulation of pro-angiogenic factors. We herein summarize the mechanisms underlying nicotine’s influence on biology of lung cancer cells and the effectiveness of anti-cancer therapy.

  10. Improvement of lung mechanics by exogenous surfactant: effect of prior application of high positive end-expiratory pressure

    OpenAIRE

    Hartog, Anneke; Gommers, Diederik; Haitsma, J.J.; Lachmann, Burkhard

    2000-01-01

    textabstractThe use of a ventilation strategy with high positive end-expiratory pressure (PEEP) that is intended to recruit collapsed alveoli and to prevent recurrent collapse can reduce alveolar protein influx in experimental acute lung injury (ALI). This could affect the pulmonary response to treatment with surfactant, since plasma proteins inhibit surfactant function. We studied the effect of exogenous surfactant on lung mechanics after 4 h of mechanical ventilation with high or low PEEP. ...

  11. A preconscious neural mechanism of hypnotically altered colors: a double case study.

    Directory of Open Access Journals (Sweden)

    Mika Koivisto

    Full Text Available Hypnotic suggestions may change the perceived color of objects. Given that chromatic stimulus information is processed rapidly and automatically by the visual system, how can hypnotic suggestions affect perceived colors in a seemingly immediate fashion? We studied the mechanisms of such color alterations by measuring electroencephalography in two highly suggestible participants as they perceived briefly presented visual shapes under posthypnotic color alternation suggestions such as "all the squares are blue". One participant consistently reported seeing the suggested colors. Her reports correlated with enhanced evoked upper beta-band activity (22 Hz 70-120 ms after stimulus in response to the shapes mentioned in the suggestion. This effect was not observed in a control condition where the participants merely tried to simulate the effects of the suggestion on behavior. The second participant neither reported color alterations nor showed the evoked beta activity, although her subjective experience and event-related potentials were changed by the suggestions. The results indicate a preconscious mechanism that first compares early visual input with a memory representation of the suggestion and consequently triggers the color alteration process in response to the objects specified by the suggestion. Conscious color experience is not purely the result of bottom-up processing but it can be modulated, at least in some individuals, by top-down factors such as hypnotic suggestions.

  12. A preconscious neural mechanism of hypnotically altered colors: a double case study.

    Science.gov (United States)

    Koivisto, Mika; Kirjanen, Svetlana; Revonsuo, Antti; Kallio, Sakari

    2013-01-01

    Hypnotic suggestions may change the perceived color of objects. Given that chromatic stimulus information is processed rapidly and automatically by the visual system, how can hypnotic suggestions affect perceived colors in a seemingly immediate fashion? We studied the mechanisms of such color alterations by measuring electroencephalography in two highly suggestible participants as they perceived briefly presented visual shapes under posthypnotic color alternation suggestions such as "all the squares are blue". One participant consistently reported seeing the suggested colors. Her reports correlated with enhanced evoked upper beta-band activity (22 Hz) 70-120 ms after stimulus in response to the shapes mentioned in the suggestion. This effect was not observed in a control condition where the participants merely tried to simulate the effects of the suggestion on behavior. The second participant neither reported color alterations nor showed the evoked beta activity, although her subjective experience and event-related potentials were changed by the suggestions. The results indicate a preconscious mechanism that first compares early visual input with a memory representation of the suggestion and consequently triggers the color alteration process in response to the objects specified by the suggestion. Conscious color experience is not purely the result of bottom-up processing but it can be modulated, at least in some individuals, by top-down factors such as hypnotic suggestions. PMID:23940663

  13. Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study.

    Directory of Open Access Journals (Sweden)

    Jill Koshiol

    Full Text Available BACKGROUND: Chronic obstructive pulmonary disease (COPD has been consistently associated with increased risk of lung cancer. However, previous studies have had limited ability to determine whether the association is due to smoking. METHODOLOGY/PRINCIPAL FINDINGS: The Environment And Genetics in Lung cancer Etiology (EAGLE population-based case-control study recruited 2100 cases and 2120 controls, of whom 1934 cases and 2108 controls reported about diagnosis of chronic bronchitis, emphysema, COPD (chronic bronchitis and/or emphysema, or asthma more than 1 year before enrollment. We estimated odds ratios (OR and 95% confidence intervals (CI using logistic regression. After adjustment for smoking, other previous lung diseases, and study design variables, lung cancer risk was elevated among individuals with a history of chronic bronchitis (OR = 2.0, 95% CI = 1.5-2.5, emphysema (OR = 1.9, 95% CI = 1.4-2.8, or COPD (OR = 2.5, 95% CI = 2.0-3.1. Among current smokers, association between chronic bronchitis and lung cancer was strongest among lighter smokers. Asthma was associated with a decreased risk of lung cancer in males (OR = 0.48, 95% CI = 0.30-0.78. CONCLUSIONS/SIGNIFICANCE: These results suggest that the associations of personal history of chronic bronchitis, emphysema, and COPD with increased risk of lung cancer are not entirely due to smoking. Inflammatory processes may both contribute to COPD and be important for lung carcinogenesis.

  14. NF-κB Inhibition after Cecal Ligation and Puncture Reduces Sepsis-Associated Lung Injury without Altering Bacterial Host Defense

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available Introduction. Since the NF-κB pathway regulates both inflammation and host defense, it is uncertain whether interventions targeting NF-κB would be beneficial in sepsis. Based on the kinetics of the innate immune response, we postulated that selective NF-κB inhibition during a defined time period after the onset of sepsis would reduce acute lung injury without compromising bacterial host defense. Methods. Mice underwent cecal ligation and puncture (CLP. An NF-κB inhibitor, BMS-345541 (50 µg/g mice, was administered by peroral gavage beginning 2 hours after CLP and repeated at 6 hour intervals for 2 additional doses. Results. Mice treated with BMS-345541 after CLP showed reduced neutrophilic alveolitis and lower levels of KC in bronchoalveolar lavage fluid compared to mice treated with CLP+vehicle. In addition, mice treated with CLP+BMS had minimal histological evidence of lung injury and normal wet-dry ratios, indicating protection from acute lung injury. Treatment with the NF-κB inhibitor did not affect the ability of cultured macrophages to phagocytose bacteria and did not alter bacterial colony counts in blood, lung tissue, or peritoneal fluid at 24 hours after CLP. While BMS-345541 treatment did not alter mortality after CLP, our results showed a trend towards improved survival. Conclusion. Transiently blocking NF-κB activity after the onset of CLP-induced sepsis can effectively reduce acute lung injury in mice without compromising bacterial host defense or survival after CLP.

  15. Lung volumes and respiratory mechanics in elastase-induced emphysema in mice.

    Science.gov (United States)

    Hantos, Z; Adamicza, A; Jánosi, T Z; Szabari, M V; Tolnai, J; Suki, B

    2008-12-01

    Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH(2)O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema. PMID:18845778

  16. Differential diagnosis of several mechanisms of destruction in patients with dust diseases of lungs

    Energy Technology Data Exchange (ETDEWEB)

    Zhumabekova, B.K.; Nikolaeva, L.N.; Milishnikova, V.V.

    1982-11-01

    In pathogenesis of lung diseases destruction of bronchial passability plays a significant role. Differential diagnosis of the mechanisms of destruction in patients ill with dust diseases was conducted with inhalation of salbutamol, stimulator of beta-adrenoreceptors of bronchi. Investigations of function of breathing included determination of ventilation characteristics, gases of blood and resistance of bronchi. Sixty patients were studied, 30 with pneumoconiosis and 30 with chronic dust bronchitis. Combination of ventilation characteristics and inhalation of salbutamol over 10, 20, 30 and 40 minute periods was used to determine mechanisms causing destruction of function of breathing. Comparisons of results of pneumotaxometry and fibroscopy show changes in mucous envelope of trachea and bronchi, inflammation and hypersecretion causing obstruction of bronchi. It is possible that these mechanisms may be combined with other changes of the tracheobronchial tree (dyskinesia, dystonia, changes in architectonics of bronchial tree and others). Further investigation of these possible mechanisms of destruction of bronchial passability is needed. (5 refs.) (In Russian)

  17. Prevention of chinese green tea on 3,4-benzopyrene-induced lung cancer and its mechanism in animal model

    Directory of Open Access Journals (Sweden)

    Qihua GU

    2008-08-01

    Full Text Available Background and objective Chinese green tea is one of the daily consumption beverages in the world and is considered a promising cancer chemopreventive agent. In the present study, we investigate the role of lung cancer prevention by green tea and its mechanism. Methods Three groups of female SD rats were kept with the same feed. Rats in group A were administrated with 1% green tea drinking, while in group B and group C with water only. Animals in group A and group B were given 3,4-benzopyrene-corn oil mixture pulmonary injection fortnightly for 4 times, while in group C corn oil only. Rats were sacrificed 1 year after the first injection under narcotism. Lung tumors and lung tissues were performed H&E staining for cancer identification. Each case of lung cancer was examined for expression of p53 and Bcl-2 with in situ hybridization analysis and immunohistochemistry staining. Results No cancer was found in rats in group C. However, in group B, 15 out of 20 rats were found generating lung cancer, and in group A, 6 out of 20 rats inducing lung cancer were recorded. The rate of lung carcinogenesis in rats was decreased from 75% to 30% by 1% chinese green tea oral administration (χ2=8.12, P0.05. However, significantly lower level of Bcl-2 expression was found in lung cancer tissues of group A than that of group B (P<0.05. Conclusion The results indicate that chinese green tea inhibits lung carcinogenesis. Chinese green tea can slightly upregulate expression of p53, but significantly downregulate expression of Bcl-2 in lung cancer, and this may be related to the mechanism of lung cancer prevention.

  18. The mechanism of the hydrothermal alteration of cerium- and plutonium-doped zirconolite

    Science.gov (United States)

    Pöml, P.; Geisler, T.; Cobos-Sabaté, J.; Wiss, T.; Raison, P. E.; Schmid-Beurmann, P.; Deschanels, X.; Jégou, C.; Heimink, J.; Putnis, A.

    2011-03-01

    A comprehensive study on the aqueous stability of Ce- and Pu-doped zirconolite has been performed. Four series of hydrothermal experiments were carried out with Ce-doped zirconolite powders: (1) a solution series (1 M HCl, 2 M NaCl, 1 M NaOH, 1 M NH 3, pure H 2O), (2) a temperature series ( T = 100-300 °C), (3) a surface area-to-fluid volume ratio series, and (4) a series using different reactor materials (Teflon ©, Ni, and Ag). In addition, experiments on 238Pu- and 239Pu-doped zirconolite ceramics in a 1 M HCl solution have been performed. The 238Pu-doped zirconolite had already accumulated significant radiation damage and was X-ray amorphous, while the 239Pu-doped zirconolite was still well-crystalline. The results of the different experimental series can be summarized as follows: (1) After 14 days the degree of alteration is insignificant for all solutions other than 1 M HCl, which was therefore used for all other experimental series; (2) TiO 2 and m-ZrO 2 replaced the zirconolite grains to varying degrees in the 1 M HCl solution, i.e., zirconolite dissolution is incongruent; (3) the degree of alteration increases only slightly with increasing temperature; (4) the alteration rate is independent on the surface to volume ratio; (5) Ag dissolved from the silver reactors dramatically increases the reaction rate, while Ni from the Ni reactors reduces the solubility of Ti and Zr in the HCl solution, indicating that background electrolytes have a strong effect on the alteration rate. From the experiment with the Pu-doped samples at 200 °C in a 1 M HCl solution it was found that the amorphous 238Pu-doped zirconolite was altered to a significantly greater extent than the crystalline counterparts. The results suggest a coupled dissolution-reprecipitation mechanism, which is discussed in detail.

  19. Brain alterations and clinical symptoms of dementia in diabetes: Abeta/tau-dependent and independent mechanisms

    Directory of Open Access Journals (Sweden)

    Naoyuki eSato

    2014-09-01

    Full Text Available Emerging evidence suggests that diabetes affects cognitive function and increases the incidence of dementia. However, the mechanisms by which diabetes modifies cognitive function still remains unclear. Morphologically, diabetes is associated with neuronal loss in the frontal and temporal lobes including the hippocampus, and aberrant functional connectivity of the posterior cingulate cortex and medial frontal/temporal gyrus. Clinically, diabetic patients show decreased executive function, information processing, planning, visuospatial construction, and visual memory. Therefore, in comparison with the characteristics of AD brain structure and cognition, diabetes seems to affect cognitive function through not only simple AD pathological feature-dependent mechanisms, but also independent mechanisms. As an Abeta/tau-independent mechanism, diabetes compromises cerebrovascular function, increases subcortical infarction and might alter the blood brain barrier (BBB. Diabetes also affects glucose metabolism, insulin signaling and mitochondrial function in the brain. Diabetes also modifies metabolism of Abeta and tau and causes Abeta/tau-dependent pathological changes. Moreover, there is evidence that suggests an interaction between Abeta/tau-dependent and independent mechanisms. Therefore, diabetes modifies cognitive function through Abeta/tau-dependent and independent mechanisms. Interaction between these two mechanisms forms a vicious cycle.

  20. Early detection of changes in lung mechanics with oscillometry following bariatric surgery in severe obesity.

    Science.gov (United States)

    Peters, Ubong; Hernandez, Paul; Dechman, Gail; Ellsmere, James; Maksym, Geoffrey

    2016-05-01

    Obesity is associated with respiratory symptoms that are reported to improve with weight loss, but this is poorly reflected in spirometry, and few studies have measured respiratory mechanics with oscillometry. We investigated whether early changes in lung mechanics following weight loss are detectable with oscillometry. Furthermore, we investigated whether the changes in lung mechanics measured in the supine position following weight loss are associated with changes in sleep quality. Nineteen severely obese female subjects (mean body mass index, 47.2 ± 6.6 kg/m(2)) were evaluated using spirometry, oscillometry, plethysmography, and the Pittsburgh Sleep Quality Index before and 5 weeks after bariatric surgery. These tests were conducted in both the upright and the supine position, and pre- and postbronchodilation with 200 μg of salbutamol. Five weeks after surgery, weight loss of 11.5 ± 2.5 kg was not associated with changes in spirometry and plethysmography, with the exception of functional residual capacity. There were also no changes in upright respiratory system resistance (Rrs) or reactance following weight loss. Importantly, however, in the supine position, weight loss caused a substantial reduction in Rrs. In addition, sleep quality improved significantly and was highly correlated with the reduction in supine Rrs. Prior to weight loss, subjects did not respond to the bronchodilator when assessed in the upright position with either spirometry or oscillometry; however, with modest weight loss, bronchodilator responsiveness returned to the normal range. Improvements in lung mechanics occur very early after weight loss, mostly in the supine position, resulting in improved sleep quality. These improvements are detectable with oscillometry but not with spirometry. PMID:27109263

  1. Comparison of exogenous surfactant therapy, mechanical ventilation with high end-expiratory pressure and partial liquid ventilation in a model of acute lung injury

    OpenAIRE

    Hartog, Anneke; Vazquez de Anda, G.F.; Gommers, Diederik; Kaisers, U; Verbrugge, Serge; Schnabel, R.; Lachmann, Burkhard

    1999-01-01

    textabstractWe have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in eac...

  2. Modulation by aspirin and naproxen of nucleotide alterations and tumors in the lung of mice exposed to environmental cigarette smoke since birth.

    Science.gov (United States)

    La Maestra, Sebastiano; D'Agostini, Francesco; Izzotti, Alberto; Micale, Rosanna T; Mastracci, Luca; Camoirano, Anna; Balansky, Roumen; Trosko, James E; Steele, Vernon E; De Flora, Silvio

    2015-12-01

    Chemoprevention provides an important strategy for cancer control in passive smokers. Due to the crucial role played by smoke-related chronic inflammation in lung carcinogenesis, of special interest are extensively used pharmacological agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs). We evaluated the ability of aspirin and naproxen, inhibitors of both cyclooxygenase-1 and cyclooxygenase -2, to modulate environmental cigarette smoke (ECS)-induced lung carcinogenesis in A/J mice of both genders. Based on a subchronic toxicity study in 180 postweaning mice, we used 1600 mg/kg diet aspirin and 320 mg/kg diet naproxen. In the tumor chemoprevention study, using 320 mice, exposure to ECS started soon after birth and administration of NSAIDs started after weaning. At 10 weeks of life, the NSAIDs did not affect the presence of occult blood in feces. As assessed in a subset of 40 mice, bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine levels were considerably increased in ECS-exposed mice and, irrespective of gender, both NSAIDs remarkably inhibited these nucleotide alterations. After exposure for 4 months followed by 5 months in filtered air, ECS induced a significant increase in the yield of surface lung tumors, the 43.7% of which were adenomas and the 56.3% were adenocarcinomas. Oct-4 (octamer-binding transcription factor 4), a marker of cell stemness, was detected in some adenocarcinoma cells. The NAIDs attenuated the yield of lung tumors, but prevention of ECS-induced lung adenomas was statistically significant only in female mice treated with aspirin, which supports a role for estrogens in ECS-related lung carcinogenesis and highlights the antiestrogenic properties of NSAIDs. PMID:26464196

  3. Endoplasmic reticulum Ca2+-homeostasis is altered in small and non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Tufman Amanda

    2009-02-01

    Full Text Available Abstract Background Knowledge of differences in the cellular physiology of malignant and non-malignant cells is a prerequisite for the development of cancer treatments that effectively kill cancer without damaging normal cells. Calcium is a ubiquitous signal molecule that is involved in the control of proliferation and apoptosis. We aimed to investigate if the endoplasmic reticulum (ER Ca2+-homeostasis is different in lung cancer and normal human bronchial epithelial (NHBE cells. Methods The intracellular Ca2+-signaling was investigated using fluorescence microscopy and the expression of Ca2+-regulating proteins was assessed using Western Blot analysis. Results In a Small Cell Lung Cancer (H1339 and an Adeno Carcinoma Lung Cancer (HCC cell line but not in a Squamous Cell Lung Cancer (EPLC and a Large Cell Lung Cancer (LCLC cell line the ER Ca2+-content was reduced compared to NHBE. The reduced Ca2+-content correlated with a reduced expression of SERCA 2 pumping calcium into the ER, an increased expression of IP3R releasing calcium from the ER, and a reduced expression of calreticulin buffering calcium within the ER. Lowering the ER Ca2+-content with CPA led to increased proliferation NHBE and lung cancer cells. Conclusion The significant differences in Ca2+-homeostasis between lung cancer and NHBE cells could represent a new target for cancer treatments.

  4. Changes in the mechanical properties of the respiratory system during the development of interstitial lung edema

    Directory of Open Access Journals (Sweden)

    Leone Biagio E

    2008-06-01

    Full Text Available Abstract Background Pulmonary edema induces changes in airway and lung tissues mechanical properties that can be measured by low-frequency forced oscillation technique (FOT. It is preceded by interstitial edema which is characterized by the accumulation of extravascular fluid in the interstitial space of the air-blood barrier. Our aim was to investigate the impact of the early stages of the development of interstitial edema on the mechanical properties of the respiratory system. Methods We studied 17 paralysed and mechanically ventilated closed-chest rats (325–375 g. Total input respiratory system impedance (Zrs was derived from tracheal flow and pressure signals by applying forced oscillations with frequency components from 0.16 to 18.44 Hz distributed in two forcing signals. In 8 animals interstitial lung edema was induced by intravenous infusion of saline solution (0.75 ml/kg/min for 4 hours; 9 control animals were studied with the same protocol but without infusion. Zrs was measured at the beginning and every 15 min until the end of the experiment. Results In the treated group the lung wet-to-dry weight ratio increased from 4.3 ± 0.72 to 5.23 ± 0.59, with no histological signs of alveolar flooding. Resistance (Rrs increased in both groups over time, but to a greater extent in the treated group. Reactance (Xrs did not change in the control group, while it decreased significantly at all frequencies but one in the treated. Significant changes in Rrs and Xrs were observed starting after ~135 min from the beginning of the infusion. By applying a constant phase model to partition airways and tissue mechanical properties, we observed a mild increase in airways resistance in both groups. A greater and significant increase in tissue damping (from 603.5 ± 100.3 to 714.5 ± 81.9 cmH2O/L and elastance (from 4160.2 ± 462.6 to 5018.2 ± 622.5 cmH2O/L was found only in the treated group. Conclusion These results suggest that interstitial edema has a

  5. Adaptation of muscle coordination to altered task mechanics during steady-state cycling.

    Science.gov (United States)

    Neptune, R R; Herzog, W

    2000-02-01

    The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Altered task mechanics were introduced using an elliptical chainring. The kinematics of the crank were changed from a relatively constant angular velocity using a circular chainring to a widely varying angular velocity using an elliptical chainring. Kinetic, kinematic and muscle activity data were collected from eight competitive cyclists using three different chainrings--one circular and two different orientations of an elliptical chainring. We tested the hypotheses that muscle coordination patterns (EMG timing and magnitude), specifically the regions of active muscle force production, would shift towards regions in the crank cycle in which the crank angular velocity, and hence muscle contraction speeds, were favorable to produce muscle power as defined by the skeletal muscle power-velocity relationship. The results showed that our hypothesis with regards to timing was not supported. Although there were statistically significant shifts in muscle timing, the shifts were minor in absolute terms and appeared to be the result of the muscles accounting for the activation dynamics associated with muscle force development (i.e. the delay in muscle force rise and decay). But, significant changes in the magnitude of muscle EMG during regions of slow crank angular velocity for the tibialis anterior and rectus femoris were observed. Thus, the nervous system used adaptations to the muscle EMG magnitude, rather than the timing, to adapt to the altered task mechanics. The results also suggested that cyclists might work on the descending limb of the power-velocity relationship when pedaling at

  6. Involvement of three mechanisms in the alteration of cytokine responses by sodium methyldithiocarbamate

    International Nuclear Information System (INIS)

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the U.S. We recently reported that it alters the induction of cytokine production mediated though Toll-like receptor (TLR) 4 at relevant dosages in mice. Its chemical properties and evidence from the literature suggest thee potential mechanisms of action for this compound. It could either act as a free radical scavenger (by means of its free S-group) or promote oxidation by breaking down to form methylisothiocyanate, which can deplete glutathione. It is a potent copper chelator and may affect the availability of copper to a number of copper-dependent enzymes (including some signaling molecules). SMD induces a classical neuroendocrine stress response characterized by elevated serum corticosterone concentrations, which could affect cytokine production. Although each of these mechanisms could potentially contribute to altered cytokine responses, direct evidence is lacking. The present study was conducted to obtain such evidence. The role of redox balance was investigated by pretreating mice with N-acetyl cysteine (NAC), which increases cellular glutathione concentrations, before administration of SMD. NAC exacerbated the SMD-induced suppression of IL-12 and the SMD-induced enhancement of IL-10 in the serum. The role of copper chelation was investigated by comparing the effects of SMD with an equimolar dose to SMD that was administered in the form of a copper chelation complex. Addition of copper significantly decreased the action of SMD on IL-12 production but not on IL-10 production. The role of the stress response was investigated by pretreating mice with antagonists of corticosterone and catecholamines. This treatment partially prevented the action of SMD on IL-10 and IL-12 in the peritoneal fluid. The results suggest that all of the proposed mechanisms have some role in the alteration of cytokine production by SMD

  7. A micromechanical model for estimating alveolar wall strain in mechanically ventilated edematous lungs.

    Science.gov (United States)

    Chen, Zheng-long; Chen, Ya-zhu; Hu, Zhao-yan

    2014-09-15

    To elucidate the micromechanics of pulmonary edema has been a significant medical concern, which is beneficial to better guide ventilator settings in clinical practice. In this paper, we present an adjoining two-alveoli model to quantitatively estimate strain and stress of alveolar walls in mechanically ventilated edematous lungs. The model takes into account the geometry of the alveolus, the effect of surface tension, the length-tension properties of parenchyma tissue, and the change in thickness of the alveolar wall. On the one hand, our model supports experimental findings (Perlman CE, Lederer DJ, Bhattacharya J. Am J Respir Cell Mol Biol 44: 34-39, 2011) that the presence of a liquid-filled alveolus protrudes into the neighboring air-filled alveolus with the shared septal strain amounting to a maximum value of 1.374 (corresponding to the maximum stress of 5.12 kPa) even at functional residual capacity; on the other hand, it further shows that the pattern of alveolar expansion appears heterogeneous or homogeneous, strongly depending on differences in air-liquid interface tension on alveolar segments. The proposed model is a preliminary step toward picturing a global topographical distribution of stress and strain on the scale of the lung as a whole to prevent ventilator-induced lung injury. PMID:24947025

  8. Mechanisms of macrophage accumulation in the lungs of asbestos-exposed subjects

    International Nuclear Information System (INIS)

    Chronic asbestos exposure is associated with the accumulation of mononuclear phagocytes in the lower respiratory tract. This process can be both protective and injurious, since macrophages can aid in asbestos clearance yet also modulate structural derangements of the alveolar walls. To understand why macrophages accumulate in the lungs of asbestos-exposed persons, 2 possible mechanisms were evaluated using alveolar macrophages from subjects with histories of chronic high exposure to airborne asbestos: enhanced recruitment of blood monocytes to the lung, and an increased rate of replication of macrophages in situ. Monoclonal antibody analysis with antibodies that detect surface antigens on the majority of circulating blood monocytes but only on a minority of mature alveolar macrophages demonstrated that an increased proportion of alveolar macrophages of asbestos workers expressed monocyte lineage antigens, suggesting the presence of young newly recruited macrophages and thus enhanced recruitment. Culture of the alveolar macrophages from these subjects with [3H]thymidine followed by autoradiography demonstrated an increased proportion of alveolar macrophages synthesizing DNA, suggesting the macrophages are replicating at an increased rate in situ. These observations are consistent with the concept that both enhanced recruitment of blood monocytes and increased local proliferation of alveolar macrophages contribute to the accumulation mononuclear phagocytes in the lung of persons with chronic asbestos exposure

  9. Mechanism of Action of Lung Damage Caused by a Nanofilm Spray Product

    Science.gov (United States)

    Larsen, Søren T.; Dallot, Constantin; Larsen, Susan W.; Rose, Fabrice; Poulsen, Steen S.; Nørgaard, Asger W.; Hansen, Jitka S.; Sørli, Jorid B.; Nielsen, Gunnar D.; Foged, Camilla

    2014-01-01

    Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products. PMID:24863969

  10. miR-17-5p Downregulation Contributes to Paclitaxel Resistance of Lung Cancer Cells through Altering Beclin1 Expression

    OpenAIRE

    Abhisek Chatterjee; Dhrubajyoti Chattopadhyay; Gopal Chakrabarti

    2014-01-01

    Non- small- cell lung cancer (NSCLC) is one of the most leading causes of cancer-related deaths worldwide. Paclitaxel based combination therapies have long been used as a standard treatment in aggressive NSCLCs. But paclitaxel resistance has emerged as a major clinical problem in combating non-small-cell lung cancer and autophagy is one of the important mechanisms involved in this phenomenon. In this study, we used microRNA (miRNA) arrays to screen differentially expressed miRNAs between pacl...

  11. MECHANICAL PROPERTIES OF LUNGS IN PATIENTS PROGRESSING MUSCULAR DYSTROPHY VARIOUS SEVERITY OF THE DISEASE

    OpenAIRE

    K. F. Tetenev; T. N. Bodrova; F. F. Tetenev

    2016-01-01

    Results of research of biomechanics of breathing at patients with progressing muscular dystrophy (PMD) and their interpretation are unique. Compared indicators of ventilating function of lungs and indicators of mechanics of breathing at 31 patients with PMD to 1–2 extent of motive frustration and 17 patients with 3–4 extent of motive frustration. In both groups of sick MVL and OFV-1 are lowered to the same extent, bronchial resistance isn’t increased. In the 2nd group the reserve volume of an...

  12. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2009-06-01

    Full Text Available Abstract Background Metabolic perturbations arising from malignant transformation have not been systematically characterized in human lung cancers in situ. Stable isotope resolved metabolomic analysis (SIRM enables functional analysis of gene dysregulations in lung cancer. To this purpose, metabolic changes were investigated by infusing uniformly labeled 13C-glucose into human lung cancer patients, followed by resection and processing of paired non-cancerous lung and non small cell carcinoma tissues. NMR and GC-MS were used for 13C-isotopomer-based metabolomic analysis of the extracts of tissues and blood plasma. Results Many primary metabolites were consistently found at higher levels in lung cancer tissues than their surrounding non-cancerous tissues. 13C-enrichment in lactate, Ala, succinate, Glu, Asp, and citrate was also higher in the tumors, suggesting more active glycolysis and Krebs cycle in the tumor tissues. Particularly notable were the enhanced production of the Asp isotopomer with three 13C-labeled carbons and the buildup of 13C-2,3-Glu isotopomer in lung tumor tissues. This is consistent with the transformations of glucose into Asp or Glu via glycolysis, anaplerotic pyruvate carboxylation (PC, and the Krebs cycle. PC activation in tumor tissues was also shown by an increased level of pyruvate carboxylase mRNA and protein. Conclusion PC activation – revealed here for the first time in human subjects – may be important for replenishing the Krebs cycle intermediates which can be diverted to lipid, protein, and nucleic acid biosynthesis to fulfill the high anabolic demands for growth in lung tumor tissues. We hypothesize that this is an important event in non-small cell lung cancer and possibly in other tumor development.

  13. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    International Nuclear Information System (INIS)

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC

  14. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tianqing; Teng, Jiajun; Jiang, Liyan; Zhong, Hua; Han, Baohui, E-mail: baohuihan1@163.com

    2014-01-17

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC.

  15. Alteration in refractive index profile during accommodation based on mechanical modelling.

    Science.gov (United States)

    Bahrami, Mehdi; Heidari, Ali; Pierscionek, Barbara K

    2016-01-01

    The lens of the eye has a gradient refractive index (GRIN). Ocular accommodation, which alters the shape of the lens in response to visual demand, causes a redistribution of the internal structure of the lens leading to a change in the GRIN profile. The nature of this redistribution and the consequence of change in the GRIN profile are not understood. A modelling approach that considers how the GRIN profile may change with accommodation needs to take into account optical and mechanical parameters and be cognisant of individual variability in the shape and size of lenses. This study models the normalised axial GRIN profile during accommodation using reduced modelling and incorporating finite element analysis to connect inhomogenous mechanical characteristics of the lens to optical performance. The results show that simulated stretching changes the length of the plateau but does not alter the cortical gradient, which supports clinical findings. There is a very small change to the accommodated and non-accommodated profiles when normalised, yet this yields measurable changes in aberrations with around 11% and almost 13% difference in spherical aberration and astigmatism respectively. The results can be used in reconstruction of the refractive index and for investigating gradual changes with age. PMID:26819821

  16. Th17 can regulate silica-induced lung inflammation through an IL-1β-dependent mechanism

    OpenAIRE

    Song, Laiyu; Weng, Dong; Dai, Wujing; Tang, Wen; Chen, Shi; Li, Chao; Chen, Ying; Liu, Fangwei; Chen, Jie

    2014-01-01

    Silicosis is an occupational lung disease caused by the inhalation of silica dust and characterized by lung inflammation and fibrosis. Interleukin (IL)-1β is induced by silica and functions as the key pro-inflammatory cytokine in this process. The Th17 response, which is induced by IL-1β, has been reported very important in chronic human lung inflammatory diseases. To elucidate the underlying mechanisms of IL-1β and IL-17 in silicosis, we used anakinra and an anti-IL-17 monoclonal antibody (m...

  17. Right atrial pressure affects the interaction between lung mechanics and right ventricular function in spontaneously breathing COPD patients.

    Directory of Open Access Journals (Sweden)

    Bart Boerrigter

    Full Text Available INTRODUCTION: It is generally known that positive pressure ventilation is associated with impaired venous return and decreased right ventricular output, in particular in patients with a low right atrial pressure and relative hypovolaemia. Altered lung mechanics have been suggested to impair right ventricular output in COPD, but this relation has never been firmly established in spontaneously breathing patients at rest or during exercise, nor has it been determined whether these cardiopulmonary interactions are influenced by right atrial pressure. METHODS: Twenty-one patients with COPD underwent simultaneous measurements of intrathoracic, right atrial and pulmonary artery pressures during spontaneous breathing at rest and during exercise. Intrathoracic pressure and right atrial pressure were used to calculate right atrial filling pressure. Dynamic changes in pulmonary artery pulse pressure during expiration were examined to evaluate changes in right ventricular output. RESULTS: Pulmonary artery pulse pressure decreased up to 40% during expiration reflecting a decrease in stroke volume. The decline in pulse pressure was most prominent in patients with a low right atrial filling pressure. During exercise, a similar decline in pulmonary artery pressure was observed. This could be explained by similar increases in intrathoracic pressure and right atrial pressure during exercise, resulting in an unchanged right atrial filling pressure. CONCLUSIONS: We show that in spontaneously breathing COPD patients the pulmonary artery pulse pressure decreases during expiration and that the magnitude of the decline in pulmonary artery pulse pressure is not just a function of intrathoracic pressure, but also depends on right atrial pressure.

  18. Lack of cathepsin activities alter or prevent the development of lung granulomas in a mouse model of sarcoidosis

    Directory of Open Access Journals (Sweden)

    Percival M David

    2011-01-01

    Full Text Available Abstract Background Remodeling of lung tissues during the process of granuloma formation requires significant restructuring of the extra-cellular matrix and cathepsins K, L and S are among the strongest extra-cellular matrix degrading enzymes. Cathepsin K is highly expressed in various pathological granulomatous infiltrates and all three enzymes in their active form are detected in bronchoalveolar lavage fluids from patients with sarcoidosis. Granulomatous inflammation is driven by T-cell response and cathepsins S and L are actively involved in the regulation of antigen presentation and T-cell selection. Here, we show that the disruption of the activities of cathepsins K, L, or S affects the development of lung granulomas in a mouse model of sarcoidosis. Methods Apolipoprotein E-deficient mice lacking cathepsin K or L were fed Paigen diet for 16 weeks and lungs were analyzed and compared with their cathepsin-expressing littermates. The role of cathepsin S in the development of granulomas was evaluated using mice treated for 8 weeks with a potent and selective cathepsin S inhibitor. Results When compared to wild-type litters, more cathepsin K-deficient mice had lung granulomas, but individually affected mice developed smaller granulomas that were present in lower numbers. The absence of cathepsin K increased the number of multinucleated giant cells and the collagen content in granulomas. Cathepsin L deficiency resulted in decreased size and number of lung granulomas. Apoe-/- mice treated with a selective cathepsin S inhibitor did not develop lung granulomas and only individual epithelioid cells were observed. Conclusions Cathepsin K deficiency affected mostly the occurrence and composition of lung granulomas, whereas cathepsin L deficiency significantly reduced their number and cathepsin S inhibition prevented the formation of granulomas.

  19. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies

    OpenAIRE

    Luh, Shi-Ping; Chiang, Chi-huei

    2006-01-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), which manifests as non-cardiogenic pulmonary edema, respiratory distress and hypoxemia, could be resulted from various processes that directly or indirectly injure the lung. Extensive investigations in experimental models and humans with ALI/ARDS have revealed many molecular mechanisms that offer therapeutic opportunities for cell or gene therapy. Herein the present strategies and future perspectives of the treatment for ALI/AR...

  20. Functional residual capacity tool: A practical method to assess lung volume changes during pulmonary complications in mechanically ventilated patients

    OpenAIRE

    Veena S; Palepu Sudeep; Umamaheswara Rao G; Ramesh V

    2010-01-01

    In this report, we describe a patient in whom we used a functional residual capacity (FRC) tool available on a critical care ventilator to identify the loss of lung volume associated with pulmonary complications and increase in FRC with the application of a recruitment maneuver. The case report underlines the utility of the FRC tool in rapid visualization of the lung volume changes and the effects of application of corrective strategies in patients receiving mechanical ventilation.

  1. Functional residual capacity tool: A practical method to assess lung volume changes during pulmonary complications in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Veena S

    2010-01-01

    Full Text Available In this report, we describe a patient in whom we used a functional residual capacity (FRC tool available on a critical care ventilator to identify the loss of lung volume associated with pulmonary complications and increase in FRC with the application of a recruitment maneuver. The case report underlines the utility of the FRC tool in rapid visualization of the lung volume changes and the effects of application of corrective strategies in patients receiving mechanical ventilation.

  2. Importance of Bacterial Replication and Alveolar Macrophage-Independent Clearance Mechanisms during Early Lung Infection with Streptococcus pneumoniae

    OpenAIRE

    Camberlein, Emilie; Cohen, Jonathan M.; José, Ricardo; Hyams, Catherine J.; Callard, Robin; Chimalapati, Suneeta; Yuste, Jose; Edwards, Lindsey A.; Marshall, Helina; van Rooijen, Nico; Noursadeghi, Mahdad; Brown, Jeremy S.

    2015-01-01

    Although the importance of alveolar macrophages for host immunity during early Streptococcus pneumoniae lung infection is well established, the contribution and relative importance of other innate immunity mechanisms and of bacterial factors are less clear. We have used a murine model of S. pneumoniae early lung infection with wild-type, unencapsulated, and para-amino benzoic acid auxotroph mutant TIGR4 strains to assess the effects of inoculum size, bacterial replication, capsule, and alveol...

  3. The mechanism of the hydrothermal alteration of cerium- and plutonium-doped zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Poeml, P., E-mail: philipp@poeml.de [Institut fuer Mineralogie, Westfaelische Wilhelms-Universitaet, Corrensstrasse 24, 48149 Muenster (Germany); European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Geisler, T. [Institut fuer Mineralogie, Westfaelische Wilhelms-Universitaet, Corrensstrasse 24, 48149 Muenster (Germany); Cobos-Sabate, J.; Wiss, T.; Raison, P.E. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Schmid-Beurmann, P. [Institut fuer Mineralogie, Westfaelische Wilhelms-Universitaet, Corrensstrasse 24, 48149 Muenster (Germany); Deschanels, X. [Institut de Chimie Separative de Marcoule, UMR 5257, F-30207 Bagnols-sur-Ceze (France); Jegou, C. [CEA-DEN/DTCD/SECM, F-30207 Bagnols-sur-Ceze (France); Heimink, J. [Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet, Correnstrasse 36, 48149 Muenster (Germany); Putnis, A. [Institut fuer Mineralogie, Westfaelische Wilhelms-Universitaet, Corrensstrasse 24, 48149 Muenster (Germany)

    2011-03-15

    A comprehensive study on the aqueous stability of Ce- and Pu-doped zirconolite has been performed. Four series of hydrothermal experiments were carried out with Ce-doped zirconolite powders: (1) a solution series (1 M HCl, 2 M NaCl, 1 M NaOH, 1 M NH{sub 3}, pure H{sub 2}O), (2) a temperature series (T = 100-300 deg. C), (3) a surface area-to-fluid volume ratio series, and (4) a series using different reactor materials (Teflon, Ni, and Ag). In addition, experiments on {sup 238}Pu- and {sup 239}Pu-doped zirconolite ceramics in a 1 M HCl solution have been performed. The {sup 238}Pu-doped zirconolite had already accumulated significant radiation damage and was X-ray amorphous, while the {sup 239}Pu-doped zirconolite was still well-crystalline. The results of the different experimental series can be summarized as follows: (1) After 14 days the degree of alteration is insignificant for all solutions other than 1 M HCl, which was therefore used for all other experimental series; (2) TiO{sub 2} and m-ZrO{sub 2} replaced the zirconolite grains to varying degrees in the 1 M HCl solution, i.e., zirconolite dissolution is incongruent; (3) the degree of alteration increases only slightly with increasing temperature; (4) the alteration rate is independent on the surface to volume ratio; (5) Ag dissolved from the silver reactors dramatically increases the reaction rate, while Ni from the Ni reactors reduces the solubility of Ti and Zr in the HCl solution, indicating that background electrolytes have a strong effect on the alteration rate. From the experiment with the Pu-doped samples at 200 deg. C in a 1 M HCl solution it was found that the amorphous {sup 238}Pu-doped zirconolite was altered to a significantly greater extent than the crystalline counterparts. The results suggest a coupled dissolution-reprecipitation mechanism, which is discussed in detail.

  4. Mechanism of the reaction catalyzed by acyl-CoA: lysolecithin acyltransferase from rabbit lung

    International Nuclear Information System (INIS)

    This paper deals with the first attempt to elucidate the chemical mechanism of acyl-CoA:lysolecithin acyltransferase from rabbit lung, a key enzyme in the metabolism of lung surfactant. For this purpose, the pH dependence of kinetic constants as well as the chemical modification of the protein have been studied on a partially-purified preparation. From these experiments, the pKs on which the activity of the enzyme relies have been calculated, giving values of pK1 approximately 5.5 and pK2 approximately 10. Analysis of the effect of organic solvents on these pKs and the calculation of the enthalpies of ionization, together with the chemical modification experiments, lead to the conclusion that pK1 is due to an histidine residue, whereas pK2 arises from the amino group of the adenine ring of palmitoyl-CoA. Moreover, chemical modification demonstrated an essential cysteine. A tentative chemical mechnism, in accordance with these results, is proposed and it is hypothesized, in view of other results obtained in our laboratory and from the literature, that the chemical mechanism of acyl transfer to sn-2 position may be common to other enzymes of glycerolipid metabolism. (author)

  5. Inhibitory effect of mimosine on proliferation of human lung cancer cells is mediated by multiple mechanisms.

    Science.gov (United States)

    Chang, H C; Lee, T H; Chuang, L Y; Yen, M H; Hung, W C

    1999-10-18

    The plant amino acid mimosine has been reported to block cell cycle progression in the late G1 phase. A recent study showed that mimosine might induce growth arrest by activating the expression of p21CIP1, a cyclin-dependent kinase inhibitor (CDKI), and by inhibiting the activity of cyclin E-associated kinases in human breast cancer cells. However, mimosine at higher concentrations also blocked proliferation of p21-/- cells by unknown mechanisms. In this study, we investigated the effect of mimosine on the expression of cyclins and CDKIs in human lung cancer cells. We found that mimosine specifically inhibited cyclin D1 expression in H226 cells. The expression of another G1 cyclin, cyclin E, was not regulated by mimosine in all lung cancer cell lines examined. Moreover, mimosine induced p21CIP1 expression in H226 and H358 cells, while it activated p27KIP1 expression in H322 cells. However, mimosine does not affect transcription of these genes directly because significant changes in cyclin D1 or CDKI expression were observed at 12-24 h after drug addition. Our results indicate that mimosine may block cell proliferation by multiple mechanisms and this amino acid is a useful agent for the study of cell cycle control. PMID:10530763

  6. Curcumin: Updated Molecular Mechanisms and Intervention Targets in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2012-03-01

    Full Text Available Curcumin, a yellow pigment derived from Curcuma longa Linn, has attracted great interest in the research of cancer during the past decades. Extensive studies documented that curcumin attenuates cancer cell proliferation and promotes apoptosis in vivo and in vitro. Curcumin has been demonstrated to interact with multiple molecules and signal pathways, which makes it a potential adjuvant anti-cancer agent to chemotherapy. Previous investigations focus on the mechanisms of action for curcumin, which is shown to manipulate transcription factors and induce apoptosis in various kinds of human cancer. Apart from transcription factors and apoptosis, emerging studies shed light on latent targets of curcumin against epidermal growth factor receptor (EGFR, microRNAs (miRNA, autophagy and cancer stem cell. The present review predominantly discusses significance of EGFR, miRNA, autophagy and cancer stem cell in lung cancer therapy. Curcumin as a natural phytochemicals could communicate with these novel targets and show synergism to chemotherapy. Additionally, curcumin is well tolerated in humans. Therefore, EGFR-, miRNA-, autophagy- and cancer stem cell-based therapy in the presence of curcumin might be promising mechanisms and targets in the therapeutic strategy of lung cancer.

  7. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. PMID:24021157

  8. Whole lung lavage in alveolar proteinosis: manual clapping versus mechanical chest percussion

    OpenAIRE

    Ars, Catherine; Delguste, Pierre; M’Bazoa, Marie-Paule Biettlot Catherine; Rennotte, Marie-Therese; Weynand, Birgit; Pilette, Charles; Rodenstein, Daniel O

    2009-01-01

    Alveolar proteinosis is an uncommon lung disease presenting in primary or secondary forms, characterised by surfactant derived proteinous material accumulation within the lungs. The most effective treatment remains whole lung lavage under general anaesthesia. We have recently performed whole lung lavage in a 46-year-old patient with alveolar proteinosis who presented with severe dyspnoea and hypoxia. During the left lung lavage, outwards flow was enhanced at random either by manual clapping o...

  9. Unusual or unanticipated alterations in the biodistribution of radiopharmaceuticals as a result of pathologic mechanisms

    International Nuclear Information System (INIS)

    This chapter discusses radiopharmaceuticals for the following: central nervous system imaging; thyroid imaging; cardiovascular imaging; lung imaging; gastrointestinal imaging; genitourinary imaging; musculoskeletal imaging

  10. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P

    2016-06-01

    We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions. PMID:26473996

  11. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients

    Science.gov (United States)

    Chabon, Jacob J.; Simmons, Andrew D.; Lovejoy, Alexander F.; Esfahani, Mohammad S.; Newman, Aaron M.; Haringsma, Henry J.; Kurtz, David M.; Stehr, Henning; Scherer, Florian; Karlovich, Chris A.; Harding, Thomas C.; Durkin, Kathleen A.; Otterson, Gregory A.; Purcell, W. Thomas; Camidge, D. Ross; Goldman, Jonathan W.; Sequist, Lecia V.; Piotrowska, Zofia; Wakelee, Heather A.; Neal, Joel W.; Alizadeh, Ash A.; Diehn, Maximilian

    2016-01-01

    Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment. PMID:27283993

  12. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients.

    Science.gov (United States)

    Chabon, Jacob J; Simmons, Andrew D; Lovejoy, Alexander F; Esfahani, Mohammad S; Newman, Aaron M; Haringsma, Henry J; Kurtz, David M; Stehr, Henning; Scherer, Florian; Karlovich, Chris A; Harding, Thomas C; Durkin, Kathleen A; Otterson, Gregory A; Purcell, W Thomas; Camidge, D Ross; Goldman, Jonathan W; Sequist, Lecia V; Piotrowska, Zofia; Wakelee, Heather A; Neal, Joel W; Alizadeh, Ash A; Diehn, Maximilian

    2016-01-01

    Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment. PMID:27283993

  13. Spatial distribution of sequential ventilation during mechanical ventilation of the uninjured lung: an argument for cyclical airway collapse and expansion

    Directory of Open Access Journals (Sweden)

    Altemeier William A

    2010-05-01

    Full Text Available Abstract Background Ventilator-induced lung injury (VILI is a recognized complication of mechanical ventilation. Although the specific mechanism by which mechanical ventilation causes lung injury remains an active area of study, the application of positive end expiratory pressure (PEEP reduces its severity. We have previously reported that VILI is spatially heterogeneous with the most severe injury in the dorsal-caudal lung. This regional injury heterogeneity was abolished by the application of PEEP = 8 cm H2O. We hypothesized that the spatial distribution of lung injury correlates with areas in which cyclical airway collapse and recruitment occurs. Methods To test this hypothesis, rabbits were mechanically ventilated in the supine posture, and regional ventilation distribution was measured under four conditions: tidal volumes (VT of 6 and 12 ml/kg with PEEP levels of 0 and 8 cm H2O. Results We found that relative ventilation was sequentially redistributed towards dorsal-caudal lung with increasing tidal volume. This sequential ventilation redistribution was abolished with the addition of PEEP. Conclusions These results suggest that cyclical airway collapse and recruitment is regionally heterogeneous and spatially correlated with areas most susceptible to VILI.

  14. Altered Metabolic Homeostasis in Amyotrophic Lateral Sclerosis: Mechanisms of Energy Imbalance and Contribution to Disease Progression.

    Science.gov (United States)

    Ioannides, Zara A; Ngo, Shyuan T; Henderson, Robert D; McCombe, Pamela A; Steyn, Frederik J

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurones, which leads to paralysis and death in an average of 3 years following diagnosis. The cause of ALS is unknown, but there is substantial evidence that metabolic factors, including nutritional state and body weight, affect disease progression and survival. This review provides an overview of the characteristics of metabolic dysregulation in ALS focusing on mechanisms that lead to disrupted energy supply (at a whole-body and cellular level) and altered energy expenditure. We discuss how a decrease in energy supply occurs in parallel with an increase in energy demand and leads to a state of chronic energy deficit which has a negative impact on disease outcome in ALS. We conclude by presenting potential and tested strategies to compensate for, or correct this energy imbalance, and speculate on promising areas for further research. PMID:27400276

  15. Plasma PGE-2 levels and altered cytokine profiles in adherent peripheral blood mononuclear cells in non-small cell lung cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Hirschowitz Edward A

    2002-11-01

    Full Text Available Abstract Introduction PGE-2 is constitutively produced by many non-small cell lung cancers (NSCLC and its immunosuppressive effects have been linked to altered immune responses in lung cancer. We asked whether elevated levels of plasma PGE-2 correlated with monocyte IL10 production in the NSCLC environment. Looking for correlation in NSCLC patient blood we assayed plasma from NSCLC patients for PGE2 and IL10; we further evaluated production of IL10 by adherent mononuclear cells from a subset of these patients looking for an altered cytokine profile. Results Our initial in vitro experiments show that monocyte IL10 induction correlates with tumor cell PGE-2 production, confirming similar reports in the literature. Data show plasma PGE-2 levels in 38 NSCLC patients are elevated compared to normal controls. Plasma IL10 levels were not significantly elevated; however, adherent monocytes derived from NSCLC patient blood did produce significantly more IL10 in 24 hr primary culture than those from normal controls (p Conclusions Elevated plasma PGE-2 and monocyte IL10 production are associated with NSCLC. The biological significance to elevated PGE-2 levels in NSCLC are unclear. Further investigation of each as a nonspecific marker for NSCLC tumor is warranted.

  16. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2016-01-01

    Full Text Available Traditional Chinese medicine Jinfukang (JFK has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P<0.05. Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated, intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.

  17. CXC Receptor 1 and 2 and Neutrophil Elastase Inhibitors Alter Radiation-induced Lung Disease in the Mouse

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jessica [Department of Medicine and the Meakins-Christie Laboratories, McGill University, Montreal, Quebec (Canada); Haston, Christina K., E-mail: christina.haston@mcgill.ca [Department of Medicine and the Meakins-Christie Laboratories, McGill University, Montreal, Quebec (Canada)

    2013-01-01

    Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation. Methods and Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms. Results: Irradiated mice receiving sivelestat survived 18% longer than did mice receiving radiation alone (73 vs 60 days for female mice, 91 vs 79 days for male mice), whereas postirradiation survival times did not differ between the group of mice receiving DF2156A and the radiation-only group. The numbers of neutrophils in lung tissue and in bronchoalveolar lavage fluid did not differ among groups of irradiated mice, but they significantly exceeded the levels in unirradiated control mice. The extent of alveolitis, assessed histologically, did not differ between irradiated mice treated with either drug and those receiving radiation alone, when assessed at the end of the experiment, but it was significantly reduced, as were the neutrophil measures, in sivelestat-treated mice at the common kill time of 60 days after irradiation. Mice treated with radiation and DF2156A developed significantly less fibrosis than did mice receiving radiation alone, and this difference was associated with decreased expression of interleukin-13 in lung tissue. Conclusions: We conclude that neutrophil elastase inhibition affects alveolitis and prolongs survival, whereas CXCR1/2 antagonism reduces radiation-induced fibrotic lung disease in mice without affecting the onset of distress.

  18. CXC Receptor 1 and 2 and Neutrophil Elastase Inhibitors Alter Radiation-induced Lung Disease in the Mouse

    International Nuclear Information System (INIS)

    Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation. Methods and Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms. Results: Irradiated mice receiving sivelestat survived 18% longer than did mice receiving radiation alone (73 vs 60 days for female mice, 91 vs 79 days for male mice), whereas postirradiation survival times did not differ between the group of mice receiving DF2156A and the radiation-only group. The numbers of neutrophils in lung tissue and in bronchoalveolar lavage fluid did not differ among groups of irradiated mice, but they significantly exceeded the levels in unirradiated control mice. The extent of alveolitis, assessed histologically, did not differ between irradiated mice treated with either drug and those receiving radiation alone, when assessed at the end of the experiment, but it was significantly reduced, as were the neutrophil measures, in sivelestat-treated mice at the common kill time of 60 days after irradiation. Mice treated with radiation and DF2156A developed significantly less fibrosis than did mice receiving radiation alone, and this difference was associated with decreased expression of interleukin-13 in lung tissue. Conclusions: We conclude that neutrophil elastase inhibition affects alveolitis and prolongs survival, whereas CXCR1/2 antagonism reduces radiation-induced fibrotic lung disease in mice without affecting the onset of distress.

  19. Effect of bronchodilation on expiratory flow limitation and resting lung mechanics in COPD.

    Science.gov (United States)

    Dellacà, R L; Pompilio, P P; Walker, P P; Duffy, N; Pedotti, A; Calverley, P M A

    2009-06-01

    Bronchodilator drugs produce variable improvements in forced expiratory volume in 1 s (FEV(1)), but larger changes in end-expiratory lung volume (EELV) in chronic obstructive pulmonary disease (COPD), which were suggested to be related to the presence of expiratory flow limitation (EFL) at rest. We tested this concept in 42 COPD patients (FEV(1) 42.3+/-13.8% predicted) during spontaneous breathing before and after 5 mg nebulised salbutamol. EFL was detected by within-breath changes in respiratory system reactance measured by a multifrequency forced oscillation method, while changes in EELV were assessed by inspiratory capacity (IC). Bronchodilation (BD) increased IC (from 1.8+/-0.5 to 2.1+/-0.6 L, pflow-limited before BD. They showed worse spirometry and higher residual volume, but significant improvements in IC were seen in all patients irrespective of flow limitation. Changes in (insp) were confined to flow-limited patients, as were reactance changes. BD reduced the degree of heterogeneity in the respiratory system, a change best seen with inspiratory values. BD has complex effects on lung mechanics in COPD, and EFL affects both this and the response of some respiratory variables to treatment. However, changes in EELV are consistently seen, irrespective of the presence of flow limitation at rest. PMID:19164347

  20. Parametric and nonparametric nonlinear system identification of lung tissue strip mechanics.

    Science.gov (United States)

    Yuan, H; Westwick, D T; Ingenito, E P; Lutchen, K R; Suki, B

    1999-01-01

    Lung parenchyma is a soft biological material composed of many interacting elements such as the interstitial cells, extracellular collagen-elastin fiber network, and proteoglycan ground substance. The mechanical behavior of this delicate structure is complex showing several mild but distinct types of nonlinearities and a fractal-like long memory stress relaxation characterized by a power-law function. To characterize tissue nonlinearity in the presence of such long memory, we investigated the robustness and predictive ability of several nonlinear system identification techniques on stress-strain data obtained from lung tissue strips with various input wave forms. We found that in general, for a mildly nonlinear system with long memory, a nonparametric nonlinear system identification in the frequency domain is preferred over time-domain techniques. More importantly, if a suitable parametric nonlinear model is available that captures the long memory of the system with only a few parameters, high predictive ability with substantially increased robustness can be achieved. The results provide evidence that the first-order kernel of the stress-strain relationship is consistent with a fractal-type long memory stress relaxation and the nonlinearity can be described as a Wiener-type nonlinear structure for displacements mimicking tidal breathing. PMID:10468239

  1. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M.G.; Di Segni, R.; Mazzetti, G.; Staffa, F. [Dept. of Radiology, S. Giovanni HS, Rome (Italy); Conforto, F.; Calimici, R.; Salvi, A. [Dept. of Anesthesiology, S. Giovanni HS, Rome (Italy); Matteucci, G. [Dept. of Pneumology, S. Giovanni HS, Rome (Italy)

    2007-06-15

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 {+-} 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 = hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H{sub 2}O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  2. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    International Nuclear Information System (INIS)

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 ± 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H2O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  3. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Perez, M.; Dubner, D.; Michelin, S. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Carosella, E. [CEA, Service de Recherches en Hemato -Immunologie, 75 - Paris (France)

    2006-07-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  4. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    International Nuclear Information System (INIS)

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  5. In vitro measurements of respiratory mechanics during HFPV using a mechanical lung model

    International Nuclear Information System (INIS)

    High-frequency percussive ventilation (HFPV) may be defined as flow-regulated time-cycled ventilation that creates controlled pressure and delivers a series of high-frequency subtidal volumes in combination with low-frequency breathing cycles. In recent years, the usefulness of HFPV has been clinically assessed as an alternative to conventional mechanical ventilation. In the clinical practice, HFPV is not an intuitive ventilatory modality and the absence of real-time delivered volume monitoring produces disaffection among the physicians. For this purpose, it would be useful to develop a monitor able to realize a complete online characterization of high-frequency percussive ventilators and to identify the best combination of their parameters according to the specific pathological situation. This paper describes an innovative acquisition and elaboration system based on the use of new generation pressure transducers presenting high sensitivity and fast response. Such a system is compact and inexpensive, and it allows the user to carry out a more correct online characterization of high-frequency percussive ventilators. This output allowed best real-time ventilatory setting, minimizing the potential baro-volutrauma hazard

  6. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    OpenAIRE

    Wolcott, J A; Zee, Y. C.; Osebold, J W

    1982-01-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in ...

  7. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Directory of Open Access Journals (Sweden)

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  8. Mechanisms of Indomethacin-Induced Alterations in the Choline Phospholipid Metabolism of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2006-09-01

    Full Text Available Human mammary epithelial cells (HMECs exhibit an increase in phosphocholine (PC and total cholinecontaining compounds, as well as a switch from high glycerophosphocholine (GPC/low PC to low GPC/high PC, with progression to malignant phenotype. The treatment of human breast cancer cells with a nonsteroidal anti-inflammatory agent, indomethacin, reverted the high PC/low GPC pattern to a low PC/high GPC pattern indicative of a less malignant phenotype, supported by decreased invasion. Here, we have characterized mechanisms underlying indomethacininduced alterations in choline membrane metabolism in malignant breast cancer cells and nonmalignant HMECs labeled with [1,2-13C]choline using 1H and 13C magnetic resonance spectroscopy. Microarray gene expression analysis was performed to understand the molecular mechanisms underlying these changes. In breast cancer cells, indomethacin treatment activated phospholipases that, combined with an increased choline phospholipid biosynthesis, led to increased GPC and decreased PC levels. However, in nonmalignant HMECs, activation of the anabolic pathway alone was detected following indomethacin treatment. Following indomethacin treatment in breast cancer cells, several candidate genes, such as interleukin 8, NGFB, CSF2, RHOB, EDN1, and JUNB, were differentially expressed, which may have contributed to changes in choline metabolism through secondary effects or signaling cascades leading to changes in enzyme activity.

  9. Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment.

    Science.gov (United States)

    Alburges, Mario E; Hoonakker, Amanda J; Horner, Kristen A; Fleckenstein, Annette E; Hanson, Glen R

    2011-05-01

    Methylphenidate (MPD) is a psychostimulant widely used to treat behavioral problems such as attention deficit hyperactivity disorder. MPD competitively inhibits the dopamine (DA) transporter. Previous studies demonstrated that stimulants of abuse, such as cocaine (COC) and methamphetamine differentially alter rat brain neurotensin (NT) systems through DA mechanisms. As NT is a neuropeptide primarily associated with the regulation of the nigrostriatal and mesolimbic DA systems, the effect of MPD on NT-like immunoreactivity (NTLI) content in several basal ganglia regions was assessed. MPD, at doses of 2.0 or 10.0 mg/kg, s.c., significantly increased the NTLI contents in dorsal striatum, substantia nigra and globus pallidus; similar increases in NTLI were observed in these areas after administration of COC (30.0 mg/kg, i.p.). No changes in NTLI occurred within the nucleus accumbens, frontal cortex and ventral tegmental area following MPD treatment. In addition, the NTLI changes in basal ganglia regions induced by MPD were prevented when D(1) (SCH 23390) or D(2) (eticlopride) receptor antagonists were coadministered with MPD. MPD treatment also increased dynorphin (DYN) levels in basal ganglia structures. These findings provide evidence that basal ganglia, but not limbic, NT systems are significantly affected by MPD through D(1) and D(2) receptor mechanisms, and these NTLI changes are similar, but not identical to those which occurred with COC administration. In addition, the MPD effects on NT systems are mechanistically distinct from the effects of methamphetamine. PMID:21323925

  10. Localization and characterization of hydrothermal alteration zones in a geothermal reservoir and their significance for rock mechanics

    OpenAIRE

    Meller, Carola

    2014-01-01

    The present thesis introduces a method to localize hydrothermally altered zones in a crystalline geothermal reservoir. On the basis of synthetic clay content logs, the geomechanical significance of clay zones is demonstrated. It is shown that clay zones reduce the rock strength, thus creating aseismic slips on fractures and affecting the evolution of induced seismicity. The results of the thesis highlight the importance of hydrothermal alteration for hydro-mechanical reservoir characterization.

  11. Epigenetic alterations leading to TMPRSS4 promoter hypomethylation and protein overexpression predict poor prognosis in squamous lung cancer patients

    Science.gov (United States)

    Villalba, Maria; Diaz-Lagares, Angel; Redrado, Miriam; de Aberasturi, Arrate L.; Segura, Victor; Bodegas, Maria Elena; Pajares, Maria J.; Pio, Ruben; Freire, Javier; Gomez-Roman, Javier; Montuenga, Luis M.; Esteller, Manel; Sandoval, Juan; Calvo, Alfonso

    2016-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which highlights the need of innovative therapeutic options. Although targeted therapies can be successfully used in a subset of patients with lung adenocarcinomas (ADC), they are not appropriate for patients with squamous cell carcinomas (SCC). In addition, there is an unmet need for the identification of prognostic biomarkers that can select patients at risk of relapse in early stages. Here, we have used several cohorts of NSCLC patients to analyze the prognostic value of both protein expression and DNA promoter methylation status of the prometastatic serine protease TMPRSS4. Moreover, expression and promoter methylation was evaluated in a panel of 46 lung cancer cell lines. We have demonstrated that a high TMPRSS4 expression is an independent prognostic factor in SCC. Similarly, aberrant hypomethylation in tumors, which correlates with high TMPRSS4 expression, is an independent prognostic predictor in SCC. The inverse correlation between expression and methylation status was also observed in cell lines. In vitro studies showed that treatment of cells lacking TMPRSS4 expression with a demethylating agent significantly increased TMPRSS4 levels. In conclusion, TMPRSS4 is a novel independent prognostic biomarker regulated by epigenetic changes in SCC and a potential therapeutic target in this tumor type, where targeted therapy is still underdeveloped. PMID:26989022

  12. Lung Circulation.

    Science.gov (United States)

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  13. Effects and mechanism analysis of combined infusion by levosimendan and vasopressin on acute lung injury in rats septic shock.

    Science.gov (United States)

    Wang, Xuebing; Ma, Shaolin; Liu, Yang; Xu, Wei; Li, Zhanxia

    2014-12-01

    This research is aimed to discover the influence and underling mechanism of combined infusion of arginine vasopressin with levosimendan on acute lung injury in rat septic shock with norepinephrine supplemented. The traditional fecal peritonitis-induced septic shock model was undergone in rats for study. It is observed that the combined infusion supplemented with norepinephrine brought about a lower mean pulmonary artery pressure; lower high-mobility group box 1 levels, pulmonary levels of interleukin-6, and arterial total nitrate/nitrite; lower apoptotic cells scores and total histological scores; but higher pulmonary gas exchange when compared with the separate infusion group and norepinephrine group. This therapy shows potential clinical beneficial assistance in sepsis-induced acute lung injury. The results suggest the mechanism of such effect is through abating pulmonary artery pressure, and more importantly suppressing inflammatory responses in lung when compared with norepinephrine infusion group and the separate infusion of levosimendan or vasopressin alone. PMID:25002345

  14. N-isopropyl-123I-p-iodoamphetamine uptake mechanism in the lung - is it dependent on pH, lipophilicity or pKa?

    International Nuclear Information System (INIS)

    The uptake and binding mechanism of biogenic amines in the lungs has been studied extensively with no conclusive results. The competition between N-isopropyl-123I-p-iodo amphetamines (123I-IMP) and propranolol and 123I-IMP and ketamine, in the lungs suggest that the pKa value of the biogenic amines has a significant role to play in the mechanism of uptake and retention of biogenic amines in the lungs. (orig.)

  15. Alteration of membrane lipid biophysical properties and resistance of human lung adenocarcinoma A549 cells to cisplatin

    Institute of Scientific and Technical Information of China (English)

    LIANG; Xingjie; (

    2001-01-01

    [1]Simon, S. M., Schindler, M., Cell biological mechanisms of multidrug resistance in tumors, Proc. Natl. Acad. Sci. USA, 1994, 91: 3497.[2]Ambudkar, S. V., Dey, S., Hrycyna, C. A. et al., Biochemical, cellular, and pharmacological aspects of the multidrug trans-porter, Annu. Rev. Pharmacol. Toxicol., 1999, 39: 361.[3]Dudeja, P. K., Anderson, K. M., Harris, J. S. et al., Reversal of multidrug resistance phenotype by surfactants: Relationship to membrane lipid fluidity, Arch. Biochem. Biophys., 1995, 319 (1): 8309.[4]Collins, J. M., Scott, R. B., Grogan, W. M., Plasma membrane fluidity gradients of human peripheral blood leukocytes, J. Cell Physiol., 1990, 144: 42.[5]Collins, J. M., Dominey, R. N., Grogan, W. M., Shape of the fluidity gradient in the plasma membrane of living Hela cells, J. Lipid Res., 1990, 31: 261.[6]Ashman, R. F., Peckham, D., Alhasan, S. et al., Membrane unpacking and the rapid disposal of apoptotic cells, Immunol. Lett., 1995, 48(3): 159.[7]Sentjurc, M., Zorec, M., Cemazar, M. et al., Effect of vinblastine on cell membrane fluidity in vinblastine-sensitive and -resistant HeLa cells, Cancer Lett., 1998, 130(1-2):183.[8]Regev, R., Assaraf, Y. G., Eytan, G. D. et al., Membrane fluidization by ether, other anesthetics, and certain agents abolish-es P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells, Eur. J. Biochem., 1999, 259(1-2): 18.[9]Robert, A. S., Mariamme, S., Katherine, L. S., Altered lipid packing identifies apoptotic thymocytes, Immunol. Lett., 1993, 36: 283.[10] Lagerberg, J. W., Kallen, K. J., Haest, C. W. et al., Factors affecting the amount and the mode of merocyanine 540 binding to the membrane of human erythrocytes, Biochim. Biophys. Acta, 1995, 1235(2): 428.[11] Stillwell, W., Wassall, S. R., Dumaual, A. C. et al., Use of merocyanine (MC540) in quantifying lipid domains and pack-ing in phospholipid vesicles and tumor cells, Biochem. Biophys. Acta, 1993

  16. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin–focal adhesion kinase signal transduction

    Directory of Open Access Journals (Sweden)

    Huang YT

    2016-03-01

    Full Text Available Yu-ting Huang,1,* Lan Zhao,1,* Zheng Fu,1 Meng Zhao,1 Xiao-meng Song,1 Jing Jia,1 Song Wang,1 Jin-ping Li,1 Zhi-feng Zhu,1 Gang Lin,1,2 Rong Lu,1,2 Zhi Yao1,3 1Department of Immunology, Tianjin Medical University, Tianjin, 2Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, 3Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, People’s Republic of China *These authors contributed equally to this paper Abstract: Tyroservatide (YSV can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin ß1 and integrin ß3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer. Keywords: tyroservatide, integrin, focal adhesion kinase, FAK, MMP-2, MMP-9

  17. The mechanisms of ARPD in treating radiation-induced lung fibrosis in rats

    International Nuclear Information System (INIS)

    Objective: To investigate the therapeutic effects and mechanism of anti-radiation pneumonia decoction(ARPD) on radiation induced lung fibrosis in rats. Methods: One hundred and five male SD rats in a SPF grade were divided into Chinese medicine group, single radiation group and control group by random digits table method, with 35 in each group.After anesthetization, rats in Chinese medicine and single radiation groups were exposed to 6 MV X-rays at the dose of 15 Gy. Rats in Chinese medicine group were treated with ARPD at the dosage of 10 ml·kg-1 ·d-1 once a day, but rats in single radiation group did not receive ARPD treatment. Rats in control group were treated with neither irradiation nor drugs. Five rats of each group were killed and the lung tissues and blood samples were collected at 15, 30, 60, 75, 90, 105 and 140 d. The pathological changes of lung tissues were observed and the tissue protein and gene expressions of TGF-β1, PAI-1 and collagen type Ⅲ (C Ⅲ) were assayed by Western blot and RT-PCR. ELISA was used to detect serum TGF-β1 and plasma PAI-1. Tissue and serum HYP were determined by acid hydrolysis and alkaline hydrolysis methods respectively. Results: Inflammation was found in the lung tissues of all the exposed rats. Obvious pathological lung fibrosis was found at 60 d, the inflammation and the fibrosis in treated group were slighter than those in single radiation group. In Chinese medicine group,the protein and gene expression levels of TGF-β1, PAI-1, C Ⅲ 30 d (Protein: t=2.49-3.74, t=2.63-4.57 and t=2.76-3.83; Gene: t=2.59-4.33, t=2.83-4.62 and t=2.83-3.96, P<0.05), serum TGF-β1 and plasma PAI-1 15 d later (t=2.85-6.27 and t=3.69-5.27, P<0.05), and the levels of tissue and serum HYP 60 d later (t=3.65-4.40 and t=6.56-3.75, P<0.05), all of them were lower than those in single radiation groups. There were significant positive correlations between tissue TGF-β1 and PAI-1 as well as C Ⅲ (Protein expression: r=0.604, 0.759, P<0

  18. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial

    OpenAIRE

    Peter M Spieth; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J.; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-01-01

    Background General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventila...

  19. Lung function

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005200 The effect of body position changes on lung function, lung CT imaging and pathology in an oleic acid induced acute lung injury model. JI Xin-ping (戢新平), et al. Dept Emergency, 1st Affili Hosp, China Med Univ, Shenyang 110001. Chin J Tuberc Respir Dis, 2005;28(1) :33-36. Objective: To study the effect of body position changes on lung mechanics, oxygenation, CT images and pathology in an oleic acid-induced acute lung injury (ALl) model. Methods: The study groups con-

  20. Establishment of a radioresistant human lung cancer cell subline and its mechanism of radioresistance

    International Nuclear Information System (INIS)

    Objective: To establish a radioresistant cell subline from a human A549 lung cancer cell line and investigate the mechanism of radioresistance. Methods: Two proposals were applied for the non-small cell lung cancer A549 cells irradiated with X-rays: A group of A549 cell line was irradiated five times, the fractionated dose was 600 cGy, and the other group was exposed 15 times, the fractionated dose was 200 cGy. After the completion of irradiation, two monoclones were obtained from the survival of cells and named the subline A549-S1 and A549-S2. The radiosensitivity and cell cycle distribution of these two clones, together with its parental A549 cells were measured by clone formation assay and flow cytometry. The mRNA and protein levels of Notchl in A549 cell line and the sublines were determined by RT-PCR and Western-blots. Results: Compared with the parental A549 cells, A549-S1 cells showed significant resistance to radiation with D0, Dq and N values increased, and a broader initial shoulder as well as 1.38-fold increased value of SF2. The A549-S1 subline also showed higher percentage of cells in S phase and G2/M phase, but lower percentages in G1/G1 phase (P0, Dq and N values decreased and a curve initial shoulder. The ratio of cells in S and G0/G1 phase ratio was lower than that in parental A549 cells, but that in G2/M phase ratio was higher significantly (P<0.05). The expression of Notchl had no marked change compared to A549 cell. Conclusions: The radioresistance of the A549 cell subline is correlated with the irradiation program. The cell subline shows a different cell cycle distribution from their parental line. The cell cycle distribution has a close correlaiton with the expression of Notchl. (authors)

  1. Drug-induced interstitial lung disease: mechanisms and best diagnostic approaches

    Directory of Open Access Journals (Sweden)

    Matsuno Osamu

    2012-05-01

    Full Text Available Abstract Drug-induced interstitial lung disease (DILD is not uncommon and has many clinical patterns, ranging from benign infiltrates to life-threatening acute respiratory distress syndrome. There are two mechanisms involved in DILD, which are probably interdependent: one is direct, dose-dependent toxicity and the other is immune-mediated. Cytotoxic lung injury may result from direct injury to pneumocytes or the alveolar capillary endothelium. Drugs can induce all types of immunological reactions described by Gell and Coombs; however, most reactions in immune-mediated DILD may be T cell-mediated. DILD can be difficult to diagnose; diagnosis is often possible by exclusion alone. Identifying the causative drug that induces an allergy or cytotoxicity is essential for preventing secondary reactions. One method to confirm the diagnosis of a drug-induced disease is re-exposure or re-test of the drug. However, clinicians are reluctant to place patients at further risk of illness, particularly in cases with severe drug-induced diseases. Assessment of cell-mediated immunity has recently increased, because verifying the presence or absence of drug-sensitized lymphocytes can aid in confirmation of drug-induced disease. Using peripheral blood samples from drug-allergic patients, the drug-induced lymphocyte stimulation test (DLST and the leukocyte migration test (LMT can detect the presence of drug-sensitized T cells. However, these tests do not have a definite role in the diagnosis of DILD. This study explores the potential of these new tests and other similar tests in the diagnosis of DILD and provides a review of the relevant literature on this topic.

  2. Altered nucleotide-microtubule coupling and increased mechanical output by a kinesin mutant.

    Directory of Open Access Journals (Sweden)

    Hong-Lei Liu

    Full Text Available Kinesin motors hydrolyze ATP to produce force and do work in the cell--how the motors do this is not fully understood, but is thought to depend on the coupling of ATP hydrolysis to microtubule binding by the motor. Transmittal of conformational changes from the microtubule- to the nucleotide-binding site has been proposed to involve the central β-sheet, which could undergo large structural changes important for force production. We show here that mutation of an invariant residue in loop L7 of the central β-sheet of the Drosophila kinesin-14 Ncd motor alters both nucleotide and microtubule binding, although the mutated residue is not present in either site. Mutants show weak-ADP/tight-microtubule binding, instead of tight-ADP/weak-microtubule binding like wild type--they hydrolyze ATP faster than wild type, move faster in motility assays, and assemble long spindles with greatly elongated poles, which are also produced by simulations of assembly with tighter microtubule binding and faster sliding. The mutated residue acts like a mechanochemical coupling element--it transmits changes between the microtubule-binding and active sites, and can switch the state of the motor, increasing mechanical output by the motor. One possibility, based on our findings, is that movements by the residue and the loop that contains it could bend or distort the central β-sheet, mediating free energy changes that lead to force production.

  3. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption.

    Science.gov (United States)

    Nhan, Le Van; Ma, Chuanxin; Rui, Yukui; Liu, Shutong; Li, Xuguang; Xing, Baoshan; Liu, Liming

    2015-01-01

    This study focused on determining the phytotoxic mechanism of CeO2 nanoparticles (NPs): destroying chloroplasts and vascular bundles and altering absorption of nutrients on conventional and Bt-transgenic cottons. Experiments were designed with three concentrations of CeO2 NPs including: 0, 100 and 500 mg·L(-1), and each treatment was three replications. Results indicate that absorbed CeO2 nanoparticles significantly reduced the Zn, Mg, Fe, and P levels in xylem sap compared with the control group and decreased indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations in the roots of conventional cotton. Transmission electron microscopy (TEM) images revealed that CeO2 NPs were absorbed into the roots and subsequently transported to the stems and leaves of both conventional and Bt-transgenic cotton plants via xylem sap. In addition, the majority of aggregated CeO2 NPs were attached to the external surface of chloroplasts, which were swollen and ruptured, especially in Bt-transgenic cotton. The vascular bundles were destroyed by CeO2 nanoparticles, and more damage was observed in transgenic cotton than conventional cotton. PMID:26108166

  4. Probing the transcription mechanisms of reovirus cores with molecules that alter RNA duplex stability.

    Science.gov (United States)

    Demidenko, Alexander A; Nibert, Max L

    2009-06-01

    The mammalian reovirus (MRV) genome comprises 10 double-stranded RNA (dsRNA) segments, packaged along with transcriptase complexes inside each core particle. Effects of four small molecules on transcription by MRV cores were studied for this report, chosen for their known capacities to alter RNA duplex stability. Spermidine and spermine, which enhance duplex stability, inhibited transcription, whereas dimethyl sulfoxide and trimethylglycine, which attenuate duplex stability, stimulated transcription. Different mechanisms were identified for inhibition or activation by these molecules. With spermidine, one round of transcription occurred normally, but subsequent rounds were inhibited. Thus, inhibition occurred at the transition between the end of elongation in one round and initiation in the next round of transcription. Dimethyl sulfoxide or trimethylglycine, on the other hand, had no effect on transcription by a constitutively active fraction of cores in each preparation but activated transcription in another fraction that was otherwise silent for the production of elongated transcripts. Activation of this other fraction occurred at the transition between transcript initiation and elongation, i.e., at promoter escape. These results suggest that the relative stability of RNA duplexes is most important for certain steps in the particle-associated transcription cycles of dsRNA viruses and that small molecules are useful tools for probing these and probably other steps. PMID:19297468

  5. Hyperammonaemia alters the mechanisms by which metabotropic glutamate receptors in nucleus accumbens modulate motor function.

    Science.gov (United States)

    Cauli, Omar; Mlili, Nisrin; Rodrigo, Regina; Felipo, Vicente

    2007-10-01

    Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors. PMID:17587309

  6. Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model

    Directory of Open Access Journals (Sweden)

    Casula Milena

    2010-03-01

    Full Text Available Abstract Background Previous experimental studies have shown that injurious mechanical ventilation has a direct effect on pulmonary and systemic immune responses. How these responses are propagated or attenuated is a matter of speculation. The goal of this study was to determine the contribution of mechanical ventilation in the regulation of Toll-like receptor (TLR signaling and interleukin-1 receptor associated kinase-3 (IRAK-3 during experimental ventilator-induced lung injury. Methods Prospective, randomized, controlled animal study using male, healthy adults Sprague-Dawley rats weighing 300-350 g. Animals were anesthetized and randomized to spontaneous breathing and to two different mechanical ventilation strategies for 4 hours: high tidal volume (VT (20 ml/kg and low VT (6 ml/kg. Histological evaluation, TLR2, TLR4, IRAK3 gene expression, IRAK-3 protein levels, inhibitory kappa B alpha (IκBα, tumor necrosis factor-alpha (TNF-α and interleukin-6 (IL6 gene expression in the lungs and TNF-α and IL-6 protein serum concentrations were analyzed. Results High VT mechanical ventilation for 4 hours was associated with a significant increase of TLR4 but not TLR2, a significant decrease of IRAK3 lung gene expression and protein levels, a significant decrease of IκBα, and a higher lung expression and serum concentrations of pro-inflammatory cytokines. Conclusions The current study supports an interaction between TLR4 and IRAK-3 signaling pathway for the over-expression and release of pro-inflammatory cytokines during ventilator-induced lung injury. Our study also suggests that injurious mechanical ventilation may elicit an immune response that is similar to that observed during infections.

  7. Anticancer mechanisms of YC-1 in human lung cancer cell line, NCI-H226.

    Science.gov (United States)

    Chen, Chun-Jen; Hsu, Mei-Hua; Huang, Li-Jiau; Yamori, Takao; Chung, Jing-Gung; Lee, Fang-Yu; Teng, Che-Ming; Kuo, Sheng-Chu

    2008-01-15

    As part of a continuing search for potential anticancer drug candidates, 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) was evaluated in the Japanese Cancer Institute's (JCI) in vitro disease-oriented anticancer screen. The results indicated that YC-1 showed impressive selective toxicity against the NCI-H226 cell line. Therefore, the molecular mechanism by which YC-1 affects NCI-H226 cell growth was studied. YC-1 inhibited NCI-H226 cell growth in a time- and a concentration-dependent manner. YC-1 suppressed the protein levels of cyclin D1, CDK2 and cdc25A, up-regulated p16, p21 and p53, increased the number of NCI-H226 cells in the G0/G1 phase of the cell cycle. Long exposure to YC-1 induced apoptosis by mitochondrial-dependent pathway. In addition, YC-1 inhibited MMP-2 and MMP-9 protein activities to abolish tumor cells metastasis. These findings suggest a mechanism of cytotoxic action of YC-1 and indicate that YC-1 may be a promising chemotherapy agent against lung cancer. PMID:17880926

  8. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical

  9. Altered expression of the CCN genes in the lungs of mice in response to cigarette smoke exposure and viral and bacterial infections.

    Science.gov (United States)

    Gueugnon, Fabien; Thibault, Virginie C; Kearley, Jennifer; Petit-Courty, Agnès; Vallet, Amandine; Guillon, Antoine; Si-Tahar, Mustapha; Humbles, Alison A; Courty, Yves

    2016-07-15

    The CCN proteins are key signaling and regulatory molecules involved in many biological functions and contribute to malignant and non-malignant lung diseases. Despite the high morbidity and mortality of the lung respiratory infectious diseases, there is very little data related to the expression of the CCNs during infection. We investigated in mice the pulmonary mRNA expression levels of five CCNs (1 to 5) in response to influenza A virus (IAV) and bacterial agents (Nontypeable Haemophilus influenzae (NTHi), lipopolysaccharide (LPS) and lipoteichoic acid (LTA)). IAV, NTHi, LPS or LTA were instilled intranasally into mice. Mice were also exposed for 4days or 8weeks to cigarette smoke alone or prior infection to IAV in order to determine if CS modifies the CCN response to a viral infection. All challenges induced a robust inflammation. The mRNA expression of CCN1, CCN2 and CCN3 was decreased after short exposure to CS whereas prolonged exposure altered the expression of CCN1, CCN3 and CCN4. Influenza A virus infection increased CCN1, 2, 4 and 5 mRNA levels but expression of CCN3 was significantly decreased. Acute CS exposure prior infection had little effect on the expression of CCN genes but prolonged exposure abolished the IAV-dependent induction. Treatment with LPS or LTA and infection with NTHi revealed that both Gram-positive and Gram-negative bacteria rapidly modulate the expression of the CCN genes. Our findings reveal that several triggers of lung inflammation influence differently the CCN genes. CCN3 deserves special attention since its mRNA expression is decreased by all the triggers studied. PMID:27080955

  10. Lymphatic function is required prenatally for lung inflation at birth.

    Science.gov (United States)

    Jakus, Zoltán; Gleghorn, Jason P; Enis, David R; Sen, Aslihan; Chia, Stephanie; Liu, Xi; Rawnsley, David R; Yang, Yiqing; Hess, Paul R; Zou, Zhiying; Yang, Jisheng; Guttentag, Susan H; Nelson, Celeste M; Kahn, Mark L

    2014-05-01

    Mammals must inflate their lungs and breathe within minutes of birth to survive. A key regulator of neonatal lung inflation is pulmonary surfactant, a lipoprotein complex which increases lung compliance by reducing alveolar surface tension (Morgan, 1971). Whether other developmental processes also alter lung mechanics in preparation for birth is unknown. We identify prenatal lymphatic function as an unexpected requirement for neonatal lung inflation and respiration. Mice lacking lymphatic vessels, due either to loss of the lymphangiogenic factor CCBE1 or VEGFR3 function, appear cyanotic and die shortly after birth due to failure of lung inflation. Failure of lung inflation is not due to reduced surfactant levels or altered development of the lung but is associated with an elevated wet/dry ratio consistent with edema. Embryonic studies reveal active lymphatic function in the late gestation lung, and significantly reduced total lung compliance in late gestation embryos that lack lymphatics. These findings reveal that lymphatic vascular function plays a previously unrecognized mechanical role in the developing lung that prepares it for inflation at birth. They explain respiratory failure in infants with congenital pulmonary lymphangiectasia, and suggest that inadequate late gestation lymphatic function may also contribute to respiratory failure in premature infants. PMID:24733830

  11. Lung hyperinflation in chronic obstructive pulmonary disease: mechanisms, clinical implications and treatment

    OpenAIRE

    Langer, Daniel; Ciavaglia, Casey E; Neder, J. Alberto; Katherine A. Webb; O'Donnell, Denis E.

    2014-01-01

    Lung hyperinflation is highly prevalent in patients with chronic obstructive pulmonary disease and occurs across the continuum of the disease. A growing body of evidence suggests that lung hyperinflation contributes to dyspnea and activity limitation in chronic obstructive pulmonary disease and is an important independent risk factor for mortality. In this review, we will summarize the recent literature on pathogenesis and clinical implications of lung hyperinflation. We will outline the cont...

  12. Mechanisms of gas exchange response to lung volume reduction surgery in severe emphysema

    OpenAIRE

    Cremona, George; Barbara, Joan A.; Melgosa, Teresa; Appendini, Lorenzo; Roca, Josep; Casadio, Caterina; Donner, Claudio F; Rodriguez-Roisin, Roberto; Wagner, Peter D.

    2011-01-01

    Lung volume reduction surgery (LVRS) improves lung function, respiratory symptoms, and exercise tolerance in selected patients with chronic obstructive pulmonary disease, who have heterogeneous emphysema. However, the reported effects of LVRS on gas exchange are variable, even when lung function is improved. To clarify how LVRS affects gas exchange in chronic obstructive pulmonary disease, 23 patients were studied before LVRS, 14 of whom were again studied afterwards. We performed measurement...

  13. Atelectasis Induced by Thoracotomy Causes Lung Injury during Mechanical Ventilation in Endotoxemic Rats

    OpenAIRE

    Choi, Won-Il; Kwon, Kun Young; Kim, Jin Mo; Quinn, Deborah A; Hales, Charles Albert; Seo, Jeong Wook

    2008-01-01

    Atelectasis can impair arterial oxygenation and decrease lung compliance. However, the effects of atelectasis on endotoxemic lungs during ventilation have not been well studied. We hypothesized that ventilation at low volumes below functional residual capacity (FRC) would accentuate lung injury in lipopolysaccharide (LPS)-pretreated rats. LPS-pretreated rats were ventilated with room air at 85 breaths/min for 2 hr at a tidal volume of 10 mL/kg with or without thoracotomy. Positive end-expirat...

  14. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism.

    OpenAIRE

    Dweik, R A; Laskowski, D; Abu-Soud, H M; Kaneko, F; Hutte, R; Stuehr, D J; Erzurum, S. C.

    1998-01-01

    In this study, we show that oxygen regulates nitric oxide (NO) levels through effects on NO synthase (NOS) enzyme kinetics. Initially, NO synthesis in the static lung was measured in bronchiolar gases during an expiratory breath-hold in normal individuals. NO accumulated exponentially to a plateau, indicating balance between NO production and consumption in the lung. Detection of NO2-, NO3-, and S-nitrosothiols in lung epithelial lining fluids confirmed NO consumption by chemical reactions in...

  15. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms.

    Science.gov (United States)

    Antony, N; McDougall, A R; Mantamadiotis, T; Cole, T J; Bird, A D

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1(-/-) mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1(-/-) mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1(-/-) mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  16. Lung surfactant in a cystic fibrosis animal model: increased alveolar phospholipid pool size without altered composition and surface tension function in cftrm1HGU/m1HGU mice

    OpenAIRE

    Bernhard, W.; J.Y. Wang; Tschernig, T.; Tummler, B.; Hedrich, H. J.; von der Hardt, H

    1997-01-01

    BACKGROUND: Progressive pulmonary dysfunction is a characteristic symptom of cystic fibrosis (CF) and is associated with functional impairment and biochemical alterations of surfactant phospholipids in the airways. However, the fundamental question of whether surfactant alterations in the CF lung are secondary to the pulmonary damage or are present before initiation of chronic infection and inflammation has yet to be resolved in patients with cystic fibrosis but can now be addressed in ...

  17. Mechanisms of hydrothermal alteration in a granitic rock. Consequences for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    The study of hydrothermal alteration in the Auriat granitic rock (France, Massif-Central) has evidenced three main events: - a pervasive chloritisation of biotites in some parts of the drill-core, - an alteration localized around subvertical cracks and superimposed on previously chloritized or unaltered granite, - an alteration localized around subhorizontal cracks cross-cutting the preceding ones. The second type of alteration, produced by a geothermal system, gives the most interesting results to be applied to the nuclear radwaste disposal problem. Among primary minerals of granite, only biotite (or chlorite) and oligoclase are intensively altered. Therefore, the chemical composition of these minerals induces the nature of secondary parageneses. These, associated to the subvertical cracks network, indicate a thermal gradient of 150 C/Km. The geochemical code has allowed to corroborate that the thermal gradient was responsible for the occurrence of different parageneses with depth. Moreover, it was shown that the variable mineralogy around cracks was due to a thermal profile established at equilibrium between the rock and the fluid. Therefore, the extent of the alteration was proportional to the thermal power of the fluid. A dissolution and next a precipitation phase of new minerals characterize hydrothermal alteration, which is due to the thermal power emitted by radioactive waste and linked with the evolution of temperature during time. This alteration provokes two favourable events to storage: decrease of rock porosity and increase of sorption capacity

  18. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    Science.gov (United States)

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism

  19. Visualization of neonatal lung injury associated with mechanical ventilation using x-ray dark-field radiography

    Science.gov (United States)

    Yaroshenko, Andre; Pritzke, Tina; Koschlig, Markus; Kamgari, Nona; Willer, Konstantin; Gromann, Lukas; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne

    2016-04-01

    Mechanical ventilation (MV) and supplementation of oxygen-enriched gas, often needed in postnatal resuscitation procedures, are known to be main risk factors for impaired pulmonary development in the preterm and term neonates. Unfortunately, current imaging modalities lack in sensitivity for the detection of early stage lung injury. The present study reports a new imaging approach for diagnosis and staging of early lung injury induced by MV and hyperoxia in neonatal mice. The imaging method is based on the Talbot-Lau x-ray grating interferometry that makes it possible to quantify the x-ray small-angle scattering on the air-tissue interfaces. This so-called dark-field signal revealed increasing loss of x-ray small-angle scattering when comparing images of neonatal mice undergoing hyperoxia and MV-O2 with animals kept at room air. The changes in the dark field correlated well with histologic findings and provided superior differentiation than conventional x-ray imaging and lung function testing. The results suggest that x-ray dark-field radiography is a sensitive tool for assessing structural changes in the developing lung. In the future, with further technical developments x-ray dark-field imaging could be an important tool for earlier diagnosis and sensitive monitoring of lung injury in neonates requiring postnatal oxygen or ventilator therapy.

  20. Gender-associated Differences of Lung Cancer and Mechanism%肺癌的性别差异及机制

    Institute of Scientific and Technical Information of China (English)

    邢昕; 廖永德; 唐和孝; 陈广; 具晟; 游良琨

    2011-01-01

    Lung cancer has been viewed as the most common malignant cancer with high incidence, mortality and poor survival all over the world. A lot of investigations indicated there are significant gender-associated differences in lung cancer in several characteristics such as epidemiology, pathology, clinical outcome and prognosis. The insight into these differences may help to clarify the gender-associated characteristics of lung cancer, and to drawn out new approach for treatment and prevent of lung cancer depending on gender-associated characteristics. Furthmore, study on mechanism of gender-associated characteristics may even help to illuminate the pathogenesis of lung cancer.%肺癌是全球发病率、死亡率最高、治疗效果差的恶性肿瘤.肺癌在流行病学、病理类型、疗效和预后、甚至发病机制等多方面均表现出明显性别差异.对这些差异的深入剖析能更好地认识男女性别肺癌各自的特点,为肺癌防治采用不同的性别化措施提供新线索和思路;而对导致性别差异的具体机制进行深入研究,有助于阐明肺癌的发病机制.

  1. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    Directory of Open Access Journals (Sweden)

    Nikolai V. Gorbunov

    2015-02-01

    Full Text Available The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS. The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS. Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous

  2. Molecular mechanisms underlying variations in lung function : a systems genetics analysis

    NARCIS (Netherlands)

    Obeidat, Ma'en; Hao, Ke; Bosse, Yohan; Nickle, David C.; Nie, Yunlong; Postma, Dirkje S.; Laviolette, Michel; Sandford, Andrew J.; Daley, Denise D.; Hogg, James C.; Elliott, W. Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G.; Kaprio, Jaakko; Wilson, James F.; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Jarvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kahonen, Mika; Franceschini, Nora; North, Kari E.; Loth, Daan W.; Brusselle, Guy G.; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M.; Wilk, Jemma B.; O'Connor, George T.; Cassano, Patricia A.; Tang, Wenbo; Wain, Louise V.; Artigas, Maria Soler; Gharib, Sina A.; Strachan, David P.; Sin, Don D.; Tobin, Martin D.; London, Stephanie J.; Hall, Ian P.; Pare, Peter D.

    2015-01-01

    Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume

  3. Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity

    OpenAIRE

    Beno W Oppenheimer; Berger, Kenneth I.; Ali, Saleem; Segal, Leopoldo N.; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M.

    2016-01-01

    Rationale Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. Objectives We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) t...

  4. Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Donaldson Kenneth

    2007-05-01

    Full Text Available Abstract Background A symposium on the mechanisms of action of inhaled airborne particulate matter (PM, pathogenic particles and fibers such as silica and asbestos, and nanomaterials, defined as synthetic particles or fibers less than 100 nm in diameter, was held on October 27 and 28, 2005, at the Environmental Protection Agency (EPA Conference Center in Research Triangle Park, North Carolina. The meeting was the eighth in a series of transatlantic conferences first held in Penarth, Wales, at the Medical Research Council Pneumoconiosis Unit (1979, that have fostered long-standing collaborations between researchers in the fields of mineralogy, cell and molecular biology, pathology, toxicology, and environmental/occupational health. Results The goal of this meeting, which was largely supported by a conference grant from the NHLBI, was to assemble a group of clinical and basic research scientists who presented and discussed new data on the mechanistic effects of inhaled particulates on the onset and development of morbidity and mortality in the lung and cardiovascular system. Another outcome of the meeting was the elucidation of a number of host susceptibility factors implicated in adverse health effects associated with inhaled pathogenic particulates. Conclusion New models and data presented supported the paradigm that both genetic and environmental (and occupational factors affect disease outcomes from inhaled particulates as well as cardiopulmonary responses. These future studies are encouraged to allow the design of appropriate strategies for prevention and treatment of particulate-associated morbidity and mortality, especially in susceptible populations.

  5. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    Science.gov (United States)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  6. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    International Nuclear Information System (INIS)

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  7. Bufalin Alters Gene Expressions Associated DNA Damage, Cell Cycle, and Apoptosis in Human Lung Cancer NCI-H460 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Shin-Hwar Wu

    2014-05-01

    Full Text Available Lung cancer is the leading cause of cancer related death and there is no effective treatment to date. Bufalin has been shown effective in inducing apoptosis and DNA damage in lung cancer cells. However, the genetic mechanisms underlying these actions have not been elucidated yet. Cultured NCI-H460 cells were treated with or without 2 μM of bufalin for 24 h. The total RNA was extracted from each treatment for cDNA synthesis and labeling, microarray hybridization, and then followed by flour-labeled cDNA hybridized on chip. The localized concentrations of fluorescent molecules were detected and quantitated and analyzed by Expression Console software (Affymetrix with default RMA parameters. The key genes involved and their possible interaction pathways were mapped by GeneGo software. About 165 apoptosis-related genes were affected. CASP9 was up-regulated by 5.51 fold and THAP1 by 2.75-fold while CCAR1 was down-regulated by 2.24 fold. 107 genes related to DNA damage/repair were affected. MDC1 was down-regulated by 2.22-fold, DDIT4 by 2.52 fold while GADD45B up-regulated by 3.72 fold. 201 genes related to cell cycles were affected. CCPG1 was down-regulated by 2.11 fold and CDCA7L by 2.71 fold. Many genes about apoptosis, cell cycle regulation and DNA repair are changed significantly following bufalin treatment in NCI-H460 cells. These changes provide an in depth understanding of cytotoxic mechanism of bufalin in genetic level and also offer many potentially useful biomarkers for diagnosis and treatment of lung cancer in future.

  8. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice

    OpenAIRE

    Izzotti, Alberto; Balansky, Roumen; D'Agostini, Francesco; Longobardi, Mariagrazia; Cartiglia, Cristina; Rosanna T Micale; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E; De Flora, Silvio

    2014-01-01

    The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Expo...

  9. Role of Frizzled6 in the molecular mechanism of beta-carotene action in the lung

    International Nuclear Information System (INIS)

    β-Carotene (BC) is omnipresent in our diet, both as natural food component as well as an additive. BC and its metabolites have important biological functions. For this reason, BC is generally considered to be a health promoting compound. Two human trials, however, have described adverse effects in lung tissue, increasing the risk of lung cancer. We previously applied transcriptomic analyses in a unique animal model, beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1−/−) mice that are, like humans, able to accumulate intact BC. In our search to unravel the molecular action of BC in the lung, we previously identified two genes particularly strongly down-regulated by BC in lung tissue of the male Bcmo1−/− mice: frizzled homologue 6 (Fzd6) and collagen triple helix repeat containing 1 (Cthrc1). In the present study, our aim was to further elucidate the role of FZD6 in lung epithelial cells and to provide a mechanistic explanation for BC increased lung cancer risk in humans. We performed whole genome microarray analysis on silenced FZD6 in non-tumor human type II bronchial epithelial BEAS-2B cells using RNAi. To directly link FZD6 to BC-effects on the lung, we compared the FZD6-silenced BEAS-2B gene expression profile to the BC-dependent gene expression profile of Bcmo1−/− mouse lungs. A number of relevant genes were regulated in the same direction in FZD6− BEAS-2B and in BC-exposed lungs of Bcmo1−/− mice and revealed enrichment of the Gene Ontology terms “oncogenes”, “cell proliferation” and “cell cycle”, which suggests a mediating role of FZD6 in BC-induced uncontrolled proliferation of lung cells

  10. The effect of a peptide-containing synthetic lung surfactant on gas exchange and lung mechanics in a rabbit model of surfactant depletion

    Directory of Open Access Journals (Sweden)

    van Zyl JM

    2013-03-01

    Full Text Available Johann M van Zyl,1 Johan Smith,2 Arthur Hawtrey1 1Division of Pharmacology, 2Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa Background: Currently, a new generation of synthetic pulmonary surfactants is being developed that may eventually replace animal-derived surfactants used in the treatment of respiratory distress syndrome. Enlightened by this, we prepared a synthetic peptide-containing surfactant (Synsurf consisting of phospholipids and poly-L-lysine electrostatically bonded to poly-L-glutamic acid. Our objective in this study was to investigate if bronchoalveolar lavage (BAL-induced acute lung injury and surfactant deficiency with accompanying hypoxemia and increased alveolar and physiological dead space is restored to its prelavage condition by surfactant replacement with Synsurf, a generic prepared Exosurf, and a generic Exosurf containing Ca2+. Methods: Twelve adult New Zealand white rabbits receiving conventional mechanical ventilation underwent repeated BAL to create acute lung injury and surfactant-deficient lung disease. Synthetic surfactants were then administered and their effects assessed at specified time points over 5 hours. The variables assessed before and after lavage and surfactant treatment included alveolar and physiological dead space, dead space/tidal volume ratio, arterial end-tidal carbon dioxide tension (PCO2 difference (mainstream capnography, arterial blood gas analysis, calculated shunt, and oxygen ratios. Results: BAL led to acute lung injury characterized by an increasing arterial PCO2 and a simultaneous increase of alveolar and physiological dead space/tidal volume ratio with no intergroup differences. Arterial end-tidal PCO2 and dead space/tidal volume ratio correlated in the Synsurf, generic Exosurf and generic Exosurf containing Ca2+ groups. A significant and sustained improvement in systemic oxygenation occurred from time point 180 minutes onward in animals

  11. Alteration mechanisms of UOX spent fuel under water; Mecanismes d'alteration sous eau du combustible irradie de type UOX

    Energy Technology Data Exchange (ETDEWEB)

    Muzeau, B

    2008-06-15

    The mechanisms of spent fuel alteration in aqueous media need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO{sub 2} matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified by using samples of UO{sub 2} doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, between 18 MBq.g{sup -1} and 33 MBq.g{sup -1}, was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m{sup -2}.d{sup -1}, even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  12. Alteration mechanisms of UOX spent fuel in aqueous media; Mecanismes d'alteration sous eau du combustible irradie de type UOX

    Energy Technology Data Exchange (ETDEWEB)

    Muzeau, B

    2007-06-15

    The mechanisms of underwater alteration of spent fuels need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO{sub 2} matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified using samples of UO{sub 2} doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, located between 18 MBq/g and 33 MBq/g, was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m{sup -2}.d{sup -1}, even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  13. Study on the alteration of hydrogeological and mechanical properties of the cementitious Material. 3

    International Nuclear Information System (INIS)

    We experimentally investigated the influence of several phenomena at the disposal environment, to evaluate the long-term alteration of cementitious material. The results are shown below. 1. Hardened cement paste specimens were altered and characterized after artificial seawater permeation. The calcium dissolution was accelerated, and secondary minerals containing magnesium were deposited. The permeability became one to three orders of magnitude smaller than data from specimens altered by deionized water permeation. It was estimated that secondary mineral formations reduced the permeability. These results meant that seawater and pure water differ remarkably from each other in influence to alteration of cementitious material. 2. Two type mixture proportions concrete, two type mixture proportions mortar and a cement paste under same W/C ratio 55% were characterized, to apply the accumulated data of paste to concrete or mortar. Compressive strength of paste was lower than that of concrete and mortar. It was contrary to the previous report. The behavior of Young's modulus and Poisson's ratio could be explained well using amount of aggregate. The data of permeability meant that boundary between aggregate and cement paste didn't become path of water flow, and that aggregate disturbed permeation. 3. Self-sealing property of cracked specimen of cementitious material were investigated by the water permeation test using sodium bicarbonate solution. The permeability decreased in two orders of magnitude, and possibility of sealing was suggested. By the morphology, the deposits in the cracks might be portlandite and C-S-H, and be not calcium carbonate. 4. Alteration of characteristics of cementitious material in sodium-nitrate and ammonia solution was evaluated by the water permeation test. Alteration degree of the nitrate and ammonia solution case showed similar trend to that of the sodium nitrate solution case. This result meant that ammonia solution would not influence the

  14. Mechanisms of Acquired Resistance to ALK Inhibitors and the Rationale for Treating ALK-positive Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isozaki, Hideko [Department of Clinical Pharmaceutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558 (Japan); Takigawa, Nagio, E-mail: ntakigaw@gmail.com [Department of General Internal Medicine 4, Kawasaki Medical School, Okayama 700-8505 (Japan); Kiura, Katsuyuki [Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama 700-8558 (Japan)

    2015-04-30

    The discovery of an echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene led to improved clinical outcomes in patients with lung cancer after the development of the first ALK-targeting agent, crizotinib. Some second-generation ALK tyrosine kinase inhibitors (TKIs), which might be more potent than crizotinib or effective on crizotinib-resistant patients, have been developed. Although these ALK-TKIs show an excellent response initially, most patients eventually acquire resistance. Therefore, careful consideration of the resistance mechanisms might lead to superior therapeutic strategies. Here, we summarize the history of ALK-TKIs and their underlying resistance mechanisms in both the preclinical and clinical settings. In addition, we discuss potential future treatment strategies in ALK-TKI-naïve and -resistant patients with lung cancer harboring the EML4-ALK fusion gene.

  15. Pneumomediastinum or lung damage in breath-hold divers from different mechanisms: a report of three cases.

    Science.gov (United States)

    Toklu, Akin Savaş; Erelel, Mustafa; Arslan, Abdullah

    2013-12-01

    Normally pulmonary over-inflation is not an issue during breath-hold diving, in contrast to lung squeeze. Compared with compressed air diving, pulmonary barotrauma is rare in breath-hold diving. Several mechanisms can lead to an increase in intrathoracic pressure in breath-hold diving that may cause alveolar rupture. Here we report three cases of pulmonary barotrauma in breath-hold diving. Using high-resolution chest tomography, bullous damage in Case 1, and pneumomediastinum in Cases 2 and 3 were detected. Transient neurological symptoms in Cases 1 and 2 suggested cerebral arterial gas embolism. The mechanisms that caused intrapulmonary overpressure were, respectively, lung packing ('buccal pumping'), considerable effort and straining at depth, and breathing compressed air at depth and ascending without exhaling. All three cases recovered without specific treatment such as recompression. PMID:24510331

  16. Mechanisms of Acquired Resistance to ALK Inhibitors and the Rationale for Treating ALK-positive Lung Cancer

    International Nuclear Information System (INIS)

    The discovery of an echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene led to improved clinical outcomes in patients with lung cancer after the development of the first ALK-targeting agent, crizotinib. Some second-generation ALK tyrosine kinase inhibitors (TKIs), which might be more potent than crizotinib or effective on crizotinib-resistant patients, have been developed. Although these ALK-TKIs show an excellent response initially, most patients eventually acquire resistance. Therefore, careful consideration of the resistance mechanisms might lead to superior therapeutic strategies. Here, we summarize the history of ALK-TKIs and their underlying resistance mechanisms in both the preclinical and clinical settings. In addition, we discuss potential future treatment strategies in ALK-TKI-naïve and -resistant patients with lung cancer harboring the EML4-ALK fusion gene

  17. Effect of spontaneous breathing on ventilator-induced lung injury in mechanically ventilated healthy rabbits: a randomized, controlled, experimental study

    OpenAIRE

    Xia, Jingen; Sun, Bing; He, Hangyong; Zhang, Heng; Wang, Chunting; Zhan, Qingyuan

    2011-01-01

    Introduction Ventilator-induced lung injury (VILI), one of the most serious complications of mechanical ventilation (MV), can impact patients' clinical prognoses. Compared to control ventilation, preserving spontaneous breathing can improve many physiological features in ventilated patients, such as gas distribution, cardiac performance, and ventilation-perfusion matching. However, the effect of spontaneous breathing on VILI is unknown. The goal of this study was to compare the effects of spo...

  18. Zinc induces epithelial to mesenchymal transition in human lung cancer H460 cells via superoxide anion-dependent mechanism

    OpenAIRE

    Ninsontia, Chuanpit; Phiboonchaiyanan, Preeyaporn Plaimee; Chanvorachote, Pithi

    2016-01-01

    Background Epithelial to mesenchymal transition (EMT) has been shown to be a crucial enhancing mechanism in the process of cancer metastasis, as it increases cancer cell capabilities to migrate, invade and survive in circulating systems. This study aimed to investigate the effect of essential element zinc on EMT characteristics in lung cancer cells. Methods The effect of zinc on EMT was evaluated by determining the EMT behaviors using migration, invasion and colony formation assay. EMT marker...

  19. From fruitflies to mammals: mechanisms of signalling via the Sonic hedgehog pathway in lung development

    OpenAIRE

    Tuyl, Minke; Post, Martin

    2000-01-01

    The hedgehog signalling pathway has been implicated in many different processes in fly and vertebrate development. It is now known that the hedgehog cascade is crucial for the patterning of the early respiratory system. Hedgehog signalling in the lung involves Gli transcription proteins, but their potential downstream target genes have yet to be identified. Bmp4 and Fgf10 have been shown to regulate lung branching morphogenesis but seem not to be targets of hedgehog signalling.

  20. Lung tissue mechanics in the early stages of induced paracoccidioidomycosis in rats

    OpenAIRE

    M. A. Shikanai-Yasuda; Pereira, P.M.; E. Yamashiro-Kanashiro; M.I.S. Duarte; C.M. Assis; E.A. Geraldes; Saldiva, P H N

    1997-01-01

    Pulmonary dysfunction represents the most important cause of death in patients with paracoccidioidomycosis (PBM). In order to investigate the functional changes of the lungs in the early stages of PBM, a model of benign disease was developed by intratracheal challenge of 12-week old isogenic Wistar rats with 1 x 106 yeast forms of Paracoccidioides brasiliensis. Animals were studied 30 and 60 days after infection, when fully developed granulomas were demonstrable in the lungs. Measurements of ...

  1. Impact of fractionated local irradiation on lung metastasis in H22-bearing mice and exploration of its mechanism

    International Nuclear Information System (INIS)

    Objective: To study the impact of local fractionated irradiation on lung metastasis in H22-bearing ice, and to explore its mechanism involved. Methods: Subcutaneous transplantation tumor model bearing with H22 was established. Mice were divided into three groups as healthy control, tumor control and irradiation groups. The size of subcutaneous tumors was measured and lung metastasis was observed. The expressions of PCNA, VEGF and MVD were detected immunohistochemically. The plasma levels of CD4 and CD8 were determined by using flow cytometry. Results: The tumor size in irradiated group was smaller than that in tumor control group. The tumor inhibition rate in irradiated group was 30%. Lung metastasis in irradiated group was more severe than that in tumor control group (χ2=8.31, 4.48, 9.60, P<0.05). The expressions of PCNA, VEGF and MVD in two groups were statistically different (t=23.78, -2.47, -6.43, P<0.05). The levels of CD4 and CD8 in irradiated group were statistically different compared to healthy control group (t=4.72 and 3.31, P<0.05). Conclusions: For the H22 model, radiation might inhibit the local transplantation tumor, but increase the risk of lung metastasis. (authors)

  2. Out of time? - Music, consciousness states and neuropharmacological mechanisms of an altered temporality

    OpenAIRE

    Fachner, Jörg

    2009-01-01

    Drug-induced altered temporality is a well-known effect of cannabis action that is utilised from musicians and music listeners for music appreciation since the early days of jazz. Cannabis has an influence on timing processes at short time scales of hundreds of milliseconds as O’Leary et al (2003) have shown in their tapping studies, proving evidence of an altered cerebellar functioning. This paper will focus on cannabis and its action on timing and aims to discuss selected scientific streams...

  3. Long term alteration of glass/iron systems in anoxic conditions: contribution of archaeological analogues to the study of mechanisms

    International Nuclear Information System (INIS)

    The knowledge of glass alteration mechanisms arouses a great interest over the last decades, particularly in the nuclear field, since vitrification is used to stabilize high-level radioactive wastes in many countries. In the French concept, these nuclear glasses would be stored in geological repositories. This multi-barrier system (glass matrix, stainless steel container, low carbon steel over-container, geological barrier) must ensure the durable confinement of radionuclides. But laboratory experiments do not permit to predict directly the behaviour of these materials over typically a million-year timescale and the extrapolation of short-term laboratory data to long time periods remains problematic. Part of the validation of the predictive models relies on natural and archaeological analogues. Here, the analogues considered are vitreous slags produced as wastes by a blast furnace working during the 16. century in the iron making site of Glinet (Normandy, France). The choice of these specific artefacts is due to the presence of particular interface between corrosion products and glass matrix inside the blocks. Thus, they can help us to understand the influence of iron corrosion products from the steel containers on the glass alteration mechanisms and kinetics. A first part of this work concerns the characterization of the archaeological artefacts especially the interfacial area between glass and corrosion products inside cracks using micro and nano-beam techniques ( Raman spectroscopy, FEG-SEM, TEM, STXM...). This study has enabled to suggest an alteration process with different geochemical steps that leads to alteration profile observed. One of these steps is the precipitation of an iron silicate phase. In a second time, leaching experiments were set up on a synthetic glass of similar composition than the archaeological one to understand the first stages of alteration with and without iron. Two phenomena can be observed: silicon sorption and precipitation of iron

  4. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD

    Science.gov (United States)

    Tripp, Gail; Wickens, Jeff R.

    2008-01-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer…

  5. Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: therapeutical implications.

    Science.gov (United States)

    Monfort, Pilar; Cauli, Omar; Montoliu, Carmina; Rodrigo, Regina; Llansola, Marta; Piedrafita, Blanca; El Mlili, Nisrin; Boix, Jordi; Agustí, Ana; Felipo, Vicente

    2009-01-01

    Patients with liver diseases (e.g. cirrhosis) may present hepatic encephalopathy (HE), an alteration in cerebral function which is a consequence of previous failure of liver function. Patients with minimal or clinical HE present different levels of cognitive impairment. Hyperammonemia is considered a main contributor to the neurological alterations in HE. Animal models of chronic HE (e.g. rats with portacaval shunts) or of "pure" hyperammonemia also show impaired cognitive function. The studies summarized here show that the impairment of some types of cognitive function in chronic HE is due to the impaired function of the glutamate-nitric oxide-cGMP pathway in brain. Both hyperammonemia and neuroinflammation contribute to the impairment of the pathway and of cognitive function. Treatment of rats with chronic HE or hyperammonemia with inhibitors of phosphodiesterase 5 restores the function of the glutamate-nitric oxide-cGMP pathway and cGMP levels in brain as well as the ability to learn a Y maze conditional discrimination task. The same beneficial effects may be obtained by treating the rats chronically with an anti-inflammatory, ibuprofen. As the function of this pathway is also altered in brain of patients died in HE, this alteration would also contribute to cognitive impairment in patients with HE. Increasing cGMP by using inhibitors of phosphodiesterase 5 (PDE-5) or anti-inflammatories (under safe conditions) would be therefore a new therapeutic approach to improve learning and memory performance in individuals with minimal or clinical HE. PMID:19428813

  6. Insulin-like growth factor-1 receptor protein expression and gene copy number alterations in non-small cell lung carcinomas.

    Science.gov (United States)

    Tsuta, Koji; Mimae, Takahiro; Nitta, Hiroaki; Yoshida, Akihiko; Maeshima, Akiko M; Asamura, Hisao; Grogan, Thomas M; Furuta, Koh; Tsuda, Hitoshi

    2013-06-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor implicated in the pathogenesis of several malignancies and is potentially an attractive target for anticancer treatment. In this study, we included 379 patients who underwent surgical resection (179 diagnosed as having adenocarcinoma [ADC]; 150, squamous cell carcinoma [SCC]; 41, sarcomatoid carcinoma and 9, large cell carcinoma). IGF-1R expression and gene copy number were assessed by immunohistochemistry and bright-field in situ hybridization (BISH), respectively. IGF-1R expression in non-small cell lung carcinoma was observed in 41.4% of samples and was more prevalent in SCC (69.3%) than in ADC (25.1%), large cell carcinoma (33.3%), and sarcomatoid carcinoma (12.2%) (P < .001). Among ADCs, most mucinous ADCs (75%) showed strong membranous staining with the IGF-1R antibody. Compared with protein expression, IGF-1R gene alteration was rare (8.4%). A statistically significant correlation between IGF-1R expression and positive IGF-1R BISH was observed (γ = 0.762, P < .001). IGF-1R-positive tumors were more common in smokers (P = .004), and these tumors were larger (P = .006) than the IGF-1R-negative tumors. IGF-1R BISH positivity was not correlated with any clinicopathologic factor. IGF-1R expression and IGF-1R BISH positivity were not correlated with overall survival. IGF-1R is highly expressed in SCC and mucinous ADC, although copy number alterations in the IGF-1R gene were rare. These findings may have important implications for future anti-IGF-1R therapeutic approaches. PMID:23266446

  7. The radioprotective effect and mechanism of captopril on radiation induced lung damage in rat

    International Nuclear Information System (INIS)

    It was reported that Captopril (angiotensin converting enzyme inhibitor) had an effect to reduce the pneumonitis and pulmonary fibrosis induced by radiation in rat. We performed this study to investigate the radioprotective effect and mechanism of Captopril. The comparison was made between the radiation only group and the combined Captopril and radiation group by examining histopathologic findings and immunohistochemical stains (TNF α and TGF β1) at 2 and 8 weeks after irradiation. Each group has 8 to 10 rats (Sprague-Dawley). 12.5 Gy of X-ray was irradiated to the left hemithorax in a single fraction. Captopril (50 mg/kg/d) mixed with water was given per oral and continuously from 1 week prior to irradiation up to 8th week of the experiment. In the combined Captopril and radiation group, the histopathologic changes which were hemorrhage into alveolar space, changes of alveolar epithelium, bronchial epithelium and blood vessels, and perivascular edema were less severe than in the radiation only group at 2 weeks. At 8 weeks, the alveolar epithelial changes and perivascular edema were less prominent in the combined Captopril and radiation group. At 2 weeks, the TNF α expression of the combined Captopril and radiation group was markedly decreased at the alveolar epithelium (p<0.01), lymphoid tissue (p=0.06) and the macrophage of alveolar space (p<0.01) compared with the radiation only group. Furthermore the TGF β1 expression was significantly prominent at the alveolar epithelium (p<0.02) and the macrophage in alveolar space (p< 0.02). At 8 weeks, the expression of TNF α and TGF β 1 of most sites, except TGF β1 of the macrophage of alveolar space (p=0.09), showed no significant difference between 2 groups. This study revealed that early lung damage induced by irradiation was reduced with the addition of Captopril in the latent and early pneumonitis phase. The expression of TNF α and TGF β 1 at 2 weeks and TGF β 1 at 8 weeks was further decreased in the

  8. The radioprotective effect and mechanism of captopril on radiation induced lung damage in rat

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi Hee; Lee, Kyung Ja; Koo, Hea Soo; Oh, Won Young [College of Medicine, Ewha Women Univ., Seoul (Korea, Republic of)

    2001-06-01

    It was reported that Captopril (angiotensin converting enzyme inhibitor) had an effect to reduce the pneumonitis and pulmonary fibrosis induced by radiation in rat. We performed this study to investigate the radioprotective effect and mechanism of Captopril. The comparison was made between the radiation only group and the combined Captopril and radiation group by examining histopathologic findings and immunohistochemical stains (TNF {alpha} and TGF {beta}1) at 2 and 8 weeks after irradiation. Each group has 8 to 10 rats (Sprague-Dawley). 12.5 Gy of X-ray was irradiated to the left hemithorax in a single fraction. Captopril (50 mg/kg/d) mixed with water was given per oral and continuously from 1 week prior to irradiation up to 8th week of the experiment. In the combined Captopril and radiation group, the histopathologic changes which were hemorrhage into alveolar space, changes of alveolar epithelium, bronchial epithelium and blood vessels, and perivascular edema were less severe than in the radiation only group at 2 weeks. At 8 weeks, the alveolar epithelial changes and perivascular edema were less prominent in the combined Captopril and radiation group. At 2 weeks, the TNF {alpha} expression of the combined Captopril and radiation group was markedly decreased at the alveolar epithelium (p<0.01), lymphoid tissue (p=0.06) and the macrophage of alveolar space (p<0.01) compared with the radiation only group. Furthermore the TGF {beta}1 expression was significantly prominent at the alveolar epithelium (p<0.02) and the macrophage in alveolar space (p< 0.02). At 8 weeks, the expression of TNF {alpha} and TGF {beta} 1 of most sites, except TGF {beta}1 of the macrophage of alveolar space (p=0.09), showed no significant difference between 2 groups. This study revealed that early lung damage induced by irradiation was reduced with the addition of Captopril in the latent and early pneumonitis phase. The expression of TNF {alpha} and TGF {beta} 1 at 2 weeks and TGF {beta} 1 at

  9. Advances in the Molecular Mechanisms and Prognostic Significance of EMT 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Qinchen CAO

    2014-07-01

    Full Text Available Epithelial to mesenchymal transition (EMT has an important role in the development of embryo, as well as that in the metastasis of non-small cell lung cancer (NSCLC. Recent researches have demonstrated that both morphological and phenotypic conversions emerge in cells undergoing EMT. As most of relevant studies were on other cancers, it is essential to uncover whether it is the similar mechanisms accounting for EMT in NSCLC. With the progress of the studies, EMT-related basic researches are gradually applied to predicting the prognosis of NSCLC. The aim of this article was to discuss the mechanisms related to EMT emerging in NSCLC.

  10. The mechanism underlying alpinetin-mediated alleviation of pancreatitis-associated lung injury through upregulating aquaporin-1.

    Science.gov (United States)

    Liang, Xingsi; Zhang, Bin; Chen, Quan; Zhang, Jing; Lei, Biao; Li, Bo; Wei, Yangchao; Zhai, Run; Liang, Zhiqing; He, Songqing; Tang, Bo

    2016-01-01

    Characterized by its acute onset, critical condition, poor prognosis, and high mortality rate, severe acute pancreatitis (SAP) can cause multiple organ failure at its early stage, particularly acute lung injury (ALI). The pathogenesis of ALI is diffuse alveolar damage, including an increase in pulmonary microvascular permeability, a decrease in compliance, and invasion of many inflammatory cells. Corticosteroids are the main treatment method for ALI; however, the associated high toxicity and side effects induce pain in patients. Recent studies show that the effective components in many traditional Chinese medicines can effectively inhibit inflammation with few side effects, which can decrease the complications caused by steroid consumption. Based on these observations, the main objective of the current study is to investigate the effect of alpinetin, which is a flavonoid extracted from Alpinia katsumadai Hayata, on treating lung injury induced by SAP and to explore the mechanism underlying the alpinetin-mediated decrease in the extent of ALI. In this study, we have shown through in vitro experiments that a therapeutic dose of alpinetin can promote human pulmonary microvascular endothelial cell proliferation. We have also shown via in vitro and in vivo experiments that alpinetin upregulates aquaporin-1 and, thereby, inhibits tumor necrosis factor-α expression as well as reduces the degree of lung injury. Overall, our study shows that alpinetin alleviates SAP-induced ALI. The likely molecular mechanism includes upregulated aquaporin expression, which inhibits tumor necrosis factor-α and, thus, alleviates SAP-induced ALI. PMID:26966354

  11. The extent of ventilator-induced lung injury in mice partly depends on duration of mechanical ventilation.

    Science.gov (United States)

    Hegeman, Maria A; Hemmes, Sabrine N T; Kuipers, Maria T; Bos, Lieuwe D J; Jongsma, Geartsje; Roelofs, Joris J T H; van der Sluijs, Koenraad F; Juffermans, Nicole P; Vroom, Margreeth B; Schultz, Marcus J

    2013-01-01

    Background. Mechanical ventilation (MV) has the potential to initiate ventilator-induced lung injury (VILI). The pathogenesis of VILI has been primarily studied in animal models using more or less injurious ventilator settings. However, we speculate that duration of MV also influences severity and character of VILI. Methods. Sixty-four healthy C57Bl/6 mice were mechanically ventilated for 5 or 12 hours, using lower tidal volumes with positive end-expiratory pressure (PEEP) or higher tidal volumes without PEEP. Fifteen nonventilated mice served as controls. Results. All animals remained hemodynamically stable and survived MV protocols. In both MV groups, PaO2 to FiO2 ratios were lower and alveolar cell counts were higher after 12 hours of MV compared to 5 hours. Alveolar-capillary permeability was increased after 12 hours compared to 5 hours, although differences did not reach statistical significance. Lung levels of inflammatory mediators did not further increase over time. Only in mice ventilated with increased strain, lung compliance declined and wet to dry ratio increased after 12 hours of MV compared to 5 hours. Conclusions. Deleterious effects of MV are partly dependent on its duration. Even lower tidal volumes with PEEP may initiate aspects of VILI after 12 hours of MV. PMID:23691294

  12. Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats.

    Science.gov (United States)

    Emery, C J; Bee, D; Barer, G R

    1981-11-01

    1. Chronically hypoxic rats kept in 10% (v/v) O2 for 3--6 weeks, were compared with littermate control rats. Pulmonary vascular resistance, measured from the slope of the pressure-flow relationship in isolated lungs perfused with blood of normal packed cell volume was higher in chronically hypoxic than control rats even during normoxia. 2. Chronically hypoxic rats weighed less than control rats but their pulmonary vascular volume, measured with labelled albumin was similar to control rats. This, together with evidence that the number of precapillary vessels is not reduced, does not suggest a large reduction in the vascular bed in chronic hypoxia. 3. A greater vasodilator action of isoprenaline and adenosine in chronically hypoxic than control lungs suggested a higher normoxic vascular tone. This higher tone was not the sole cause of increased resistance in chronically hypoxic lungs, since maximal vasodilatation did not reduce resistance to control levels. The chief cause was probably encroachment of new muscle on the vascular lumen of small vessels. 4. Pulmonary arterial compliance was reduced in chronically hypoxic lungs. 5. Reactivity of vessels to ventilation hypoxia, over a wide range of oxygen tension, to angiotensin II (ANG II) and to adenosine 5'-triphosphate (ATP) was significantly greater in chronically hypoxic than control lungs, but thresholds to these stimuli were not reduced. PMID:7285503

  13. Pyrazine, 2-ethylpyridine, and 3-ethylpyridine are cigarette smoke components that alter the growth of normal and malignant human lung cells, and play a role in multidrug resistance development.

    Science.gov (United States)

    Liu, Min; Poo, Wak-Kim; Lin, Yu-Ling

    2015-02-01

    Lung cancer is one of the few human diseases for which the primary etiological agent, cigarette smoke (CS), has been described; however, the precise role of individual cigarette smoke toxicant in tumor development and progression remains to be elusive. The purpose of this study was to assess in vitro the effects of previously identified cigarette smoke components, pyrazine, 2-ethylpyridine, and 3-ethylpyridine, on non-tumorigenic (MRC5) and adenocarcinomic (A549) human lung cell lines. Our data showed that the administration of three cigarette smoke components in combination perturbed the proliferation of both normal and adenocarcinomic cells. Study of malignant cells revealed that CS components were cytotoxic at high concentration (10(-6) M) and stimulatory in a dose-dependent manner at lower concentrations (10(-8) M to 10(-10) M). This adverse effect was enhanced when adenocarcinomic cells were maintained in hypoxia resembling intratumoral environment. Furthermore, exposure to pyrazine, 2-ethylpyridine, and 3-ethylpyridine induced oxidative stress in both normal and malignant cells. Finally, assessment of P-gp activity revealed that multidrug resistance was induced in CS component exposed adenocarcinomic lung cells and the induction was augmented in hypoxia. Taken together, pyrazine, 2-ethylpyridine, and 3-ethylpyridine adversely altered both normal and diseased lung cells in vitro and data collected from this study may help lung cancer patients to understand the importance of quitting smoking during lung cancer treatment. PMID:25449333

  14. A Systemic Review of Resistance Mechanisms and Ongoing Clinical Trials in ALK-rearranged Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    VictorCohen

    2014-07-01

    Full Text Available The identification of oncogenic driver driver mutations in non-small cell lung cancer has led to a paradigm shift and the development of specific molecular treatments. Tumors harboring a rearranged EML4-ALK fusion oncogene are highly sensitive to therapy with ALK-targeted inhibitors. Crizotinib is the first approved treatment for advanced lung tumors containing this genetic abnormality. In this mini review, we discuss the existing data on crizotinib as well as ongoing trials involving this medication. A brief overview of the known resistance mechanisms to criztotinib will also be presented followed by a summary of the ongoing trials involving next-generation ALK inhibitors or other targeted therapies in patients with ALK+ NSCLC.

  15. Alteration in refractive index profile during accommodation based on mechanical modelling

    OpenAIRE

    Bahrami, Mehdi; Heidari, Ali; Pierscionek, Barbara K.

    2015-01-01

    The lens of the eye has a gradient refractive index (GRIN). Ocular accommodation, which alters the shape of the lens in response to visual demand, causes a redistribution of the internal structure of the lens leading to a change in the GRIN profile. The nature of this redistribution and the consequence of change in the GRIN profile are not understood. A modelling approach that considers how the GRIN profile may change with accommodation needs to take into account optical and mecha...

  16. Probing the Transcription Mechanisms of Reovirus Cores with Molecules That Alter RNA Duplex Stability▿

    OpenAIRE

    Demidenko, Alexander A.; Nibert, Max L.

    2009-01-01

    The mammalian reovirus (MRV) genome comprises 10 double-stranded RNA (dsRNA) segments, packaged along with transcriptase complexes inside each core particle. Effects of four small molecules on transcription by MRV cores were studied for this report, chosen for their known capacities to alter RNA duplex stability. Spermidine and spermine, which enhance duplex stability, inhibited transcription, whereas dimethyl sulfoxide and trimethylglycine, which attenuate duplex stability, stimulated transc...

  17. Aqueous alteration of potassium-bearing aluminosilicate minerals: from mechanism to processing

    OpenAIRE

    Skorina, Taisiya; Allanore, Antoine

    2014-01-01

    The anticipated increase in demand for potassium fertilizers and alumina from developing nations experiencing a high-rate of population growth brings a global sustainability concern. Most of these countries do not have economically viable resources for both commodities; and the environmental footprint of existing technologies may compromise local ecosystems. Alternatives, both in terms of resources and extraction technologies, are therefore needed. Aqueous alteration of potassium-bearing alum...

  18. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics

    OpenAIRE

    Marzetti, Emanuele; Csiszar, Anna; Dutta, Debapriya; Balagopal, Gauthami; Calvani, Riccardo; Leeuwenburgh, Christiaan

    2013-01-01

    Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also p...

  19. Effect of oleic acid-induced acute lung injury and conventional mechanical ventilation on renal function in piglets

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-jun; LING Feng; LI Zhi-qiang; LI Xiao-feng; LIU Ying-long; DU Jie; HAN Ling

    2013-01-01

    Background Animal models that demonstrate changes of renal function in response to acute lung injury (ALl) and mechanical ventilation (MV) are few.The present study was performed to examine the effect of ALl induced by oleic acid (OA) in combination with conventional MV strategy on renal function in piglets.Methods Twelve Chinese mini-piglets were randomly divided into two groups:the OA group (n=6),animals were ventilated with a conventional MV strategy of 12 ml/kg and suffered an ALl induced by administration of OA,and the control group (n=6),animals were ventilated with a protective MV strategy of 6 ml/kg and received the same amount of sterile saline.Results Six hours after OA injection a severe lung injury and a mild-moderate degree of renal histopathological injury were seen,while no apparent histological abnormalities were observed in the control group.Although we observed an increase in the plasma concentrations of creatinine and urea after ALl,there was no significant difference compared with the control group.Plasma concentrations of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C increased (5.6±1.3) and (7.4±1.5) times in the OA group compared to baseline values,and were significantly higher than the values in the control group.OA injection in combination with conventional MV strategy resulted in a dramatic aggravation of hemodynamic and blood gas exchange parameters,while these parameters remained stable during the experiment in the control group.The plasma expression of TNF-α and IL-6 in the OA group were significantly higher than that in the control group.Compared with high expression in the lung and renal tissue in the OA group,TNF-α and IL-6 were too low to be detected in the lung and renal tissue in the control group.Conclusions OA injection in combination with conventional MV strategy not only resulted in a severe lung injury but also an apparent renal injury.The potential mechanisms involved a cytokine response of TNF-α and

  20. Study to evaluate molecular mechanics behind synergistic chemo-preventive effects of curcumin and resveratrol during lung carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Anshoo Malhotra

    Full Text Available BACKGROUND: The combination approach is the future of the war against cancer and the present study evaluated molecular mechanics behind the synergistic effects of curcumin and resveratrol during lung carcinogenesis. METHODS: The mice were segregated into five groups which included normal control, Benzo[a]pyrene[BP] treated, BP+curcumin treated, BP+resveratrol treated and BP+curcumin+resveratrol treated. RESULTS: The morphological analyses of tumor nodules confirmed lung carcinogenesis in mice after 22 weeks of single intra-peritoneal[i.p] injection of BP at a dose of 100 mg/Kg body weight. The BP treatment resulted in a significant increase in the protein expressions of p53 in the BP treated mice. Also, a significant increase in the protein expression of phosphorylated p53[ser15] confirmed p53 hyper-phosphorylation in BP treated mice. On the other hand, enzyme activities of caspase 3 and caspase 9 were noticed to be significantly decreased following BP treatment. Further, radiorespirometric studies showed a significant increase in the 14C-glucose turnover as well as 14C-glucose uptake in the lung slices of BP treated mice. Moreover, a significant rise in the cell proliferation was confirmed indirectly by enhanced uptake of 3H-thymidine in the lung slices of BP treated mice. Interestingly, combined treatment of curcumin and resveratrol to BP treated animals resulted in a significant decrease in p53 hyper-phosphorylation, 14C glucose uptakes/turnover and 3H-thymidine uptake in the BP treated mice. However, the enzyme activities of caspase 3 and caspase 9 showed a significant increase upon treatment with curcumin and resveratrol. CONCLUSION: The study, therefore, concludes that molecular mechanics behind chemo-preventive synergism involved modulation of p53 hyper-phosphorylation, regulation of caspases and cellular metabolism enzymes.

  1. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    Directory of Open Access Journals (Sweden)

    Kuiper Jan

    2011-12-01

    Full Text Available Abstract Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV with either a low tidal volume (Vt of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis or with a high Vt of 15 mL/kg and no PEEP (HVt acid, HVt sepsis. Rats sacrificed immediately after acid instillation and non-ventilated septic animals served as controls. Hemodynamic and respiratory variables were monitored. After 4 h, lung wet to dry (W/D weight ratios, histological lung injury and plasma mediator concentrations were measured. Results Oxygenation and lung compliance decreased after acid instillation as compared to sepsis. Additionally, W/D weight ratios and histological lung injury scores increased after acid instillation as compared to sepsis. MV increased W/D weight ratio and lung injury score, however this effect was mainly attributable to HVt ventilation after acid instillation. Similarly, effects of HVt on oxygenation were only observed after acid instillation. HVt during sepsis did not further affect oxygenation, compliance, W/D weight ratio or lung injury score. Plasma interleukin-6 and tumour necrosis factor-α concentrations were increased after acid instillation as compared to sepsis, but plasma intercellular adhesion molecule-1 concentration increased during sepsis only. In contrast to lung injury parameters, no additional effects of HVt MV after acid instillation on plasma mediator concentrations were observed. Conclusions During MV more severe lung injury develops after acid instillation as compared to sepsis. HVt causes VILI after acid instillation, but not during sepsis. However, this differential effect was not observed in the systemic release of

  2. Monitoring of intratidal lung mechanics: a Graphical User Interface for a model-based decision support system for PEEP-titration in mechanical ventilation.

    Science.gov (United States)

    Buehler, S; Lozano-Zahonero, S; Schumann, S; Guttmann, J

    2014-12-01

    In mechanical ventilation, a careful setting of the ventilation parameters in accordance with the current individual state of the lung is crucial to minimize ventilator induced lung injury. Positive end-expiratory pressure (PEEP) has to be set to prevent collapse of the alveoli, however at the same time overdistension should be avoided. Classic approaches of analyzing static respiratory system mechanics fail in particular if lung injury already prevails. A new approach of analyzing dynamic respiratory system mechanics to set PEEP uses the intratidal, volume-dependent compliance which is believed to stay relatively constant during one breath only if neither atelectasis nor overdistension occurs. To test the success of this dynamic approach systematically at bedside or in an animal study, automation of the computing steps is necessary. A decision support system for optimizing PEEP in form of a Graphical User Interface (GUI) was targeted. Respiratory system mechanics were analyzed using the gliding SLICE method. The resulting shapes of the intratidal compliance-volume curve were classified into one of six categories, each associated with a PEEP-suggestion. The GUI should include a graphical representation of the results as well as a quality check to judge the reliability of the suggestion. The implementation of a user-friendly GUI was successfully realized. The agreement between modelled and measured pressure data [expressed as root-mean-square (RMS)] tested during the implementation phase with real respiratory data from two patient studies was below 0.2 mbar for data taken in volume controlled mode and below 0.4 mbar for data taken in pressure controlled mode except for two cases with RMS automatic categorisation of curve shape into one of six shape-categories provides the rational decision-making model for PEEP-titration. PMID:24549460

  3. Mechanisms controlling the volume of pleural fluid and extravascular lung water

    Directory of Open Access Journals (Sweden)

    G. Miserocchi

    2009-12-01

    Full Text Available Pleural and interstitial lung fluid volumes are strictly controlled and maintained at the minimum thanks to the ability of lymphatics to match the increase in filtration rate. In the pleural cavity, fluid accumulation is easily accommodated by retraction of lung and chest wall (high compliance of the pleural space; the increase of lymph flow per unit increase in pleural fluid volume is high due to the great extension of the parietal lymphatic. However, for the lung interstitium, the increase in lymph flow to match increased filtration does not need to be so great. In fact, increased filtration only causes a minor increase in extravascular water volume (<10% due to a marked increase in interstitial pulmonary pressure (low compliance of the extracellular matrix which, in turn, buffers further filtration. Accordingly, a less extended lymphatic network is needed. The efficiency of lymphatic control is achieved through a high lymphatic conductance in the pleural fluid and through a low interstitial compliance for the lung interstitium. Fluid volume in both compartments is so strictly controlled that it is difficult to detect initial deviations from the physiological state; thus, a great physiological advantage turns to be a disadvantage on a clinical basis as it prevents an early diagnosis of developing disease.

  4. Mechanism of misonidazole linked cytotoxicity and altered radiation response: role of cellular thiols

    International Nuclear Information System (INIS)

    The effectiveness of misonidazole as a hypoxic radiosensitizer of mammalian cells is increased by prolonged exposure of hypoxic cells to the drug. It was found that drug intermediates might react with endogenous non-protein thiols (NPSH). These thiols function to protect the cell against deleterious intermediates that could otherwise attach and modify critical macromolecules such as DNA, RNA and protein. This paper presents studies on the effects of misonidazole, as well as newly developed hypoxic cell radiosensitizers, in an attempt to (1) identify the alterations in the NPSH, and (2) elucidate the role that the changes in NPSH play in cytotoxic and radiosensitizing effects of nitro compounds

  5. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    Full Text Available Nayana A Patil,1,2 WN Gade,2 Deepti D Deobagkar1 1Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies, 2Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India Abstract: Titanium dioxide (TiO2 and zinc oxide (ZnO nanoparticles (NPs are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5 cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear

  6. Potential of DNMT and its Epigenetic Regulation for Lung Cancer Therapy

    OpenAIRE

    Tang, Mingqing; Xu, William; Wang, Qizhao; Xiao, Weidong; Xu, Ruian

    2009-01-01

    Lung cancer, the leading cause of mortality in both men and women in the United States, is largely diagnosed at its advanced stages that there are no effective therapeutic alternatives. Although tobacco smoking is the well established cause of lung cancer, the underlying mechanism for lung tumorigenesis remains poorly understood. An important event in tumor development appears to be the epigenetic alterations, especially the change of DNA methylation patterns, which induce the most tumor supp...

  7. Use of salbutamol in detection of mechanism destructive to bronchial patency in dust-induced lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhumabekova, B.K.

    1982-04-01

    Different mechanisms destroy the open passibility of the bronchi: bronchospasm, destruction of drop eliminator function of the bronchi, valvular mechanics, change in elastic properties of lungs, dyskinesia of the tracheobronchial tree and inflammatory edema of the mucous envelope. Bronchospasm is the most studied form of bronchial pathology. To detect the bronchospastic component, various bronchodilating means are used: (1) stimulators of adrenergic receptors, (2) blockers of acetylcholine (atropine, bella donna); preparations acting directly on smooth musculature of the bronchi (theophylline, euphylline). The pharmaceutical industry is now making aerosol bronchodilators. Since salbutamol is widely used as an aerosol and opinions of its effectiveness are not uniform, a test was made of it on 35 patients; 22 with chronic bronchitis and 13 with silicosis. The rate of air flow during inspiration and expiration was examined 10, 20, 30 and 40 minutes after administration of salbutamol aerosol. Results of the test are presented in a table and show that the use of a pharmacological test with salbutamol aerosol to detect bronchospasm as a cause of lung obstruction is valid. If 10 minutes after inhalation of salbutamol, a therapeutic effect is observed and inhalation and exhalation increase, bronchospasm as the cause of the pathology is demonstrated. The absence of a measurable reaction to salbutamol after 10 minutes indicates that other mechanisms are the basis of the obstruction. (11 refs.) (In Russian)

  8. Paclitaxel alters the expression and specific activity of deoxycytidine kinase and cytidine deaminase in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Patel Shitalben R

    2009-06-01

    Full Text Available Abstract Background We observed that paclitaxel altered the pharmacokinetic properties of gemcitabine in patients with non-small cell lung cancer (NSCLC and limited the accumulation of gemcitabine and its metabolites in various primary and immortalized human cells. Therefore, we classified the drug-drug interaction and the effects of paclitaxel on deoxycytidine kinase (dCK and cytidine deaminase (CDA in three NSCLC cell lines. These enzymes are responsible for the metabolism of gemcitabine to its deaminated metabolite dFdU (80% of the parent drug and the phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP. These metabolites appear to relate to sensitivity and tolerability of gemcitabine based on previous animal and laboratory studies. Methods Three immortalized human cells representative of the most common histological subtypes identified in patients with advanced NSCLC were exposed to the individual drugs or combinations to complete a multiple drug effect analysis. These same cell lines were exposed to vehicle-control or paclitaxel and the mRNA levels, protein expression and specific activity of dCK and CDA were compared. Comparisons were made using a two-tailed paired t-test or analysis of variance with a P value of Results The multiple drug effect analysis indicated synergy for H460, H520 and H838 cells independent of sequence. As anticipated, paclitaxel-gemcitabine increased the number of G2/M cells, whereas gemcitabine-paclitaxel increased the number of G0/G1 or S cells. Paclitaxel significantly decreased dCK and CDA mRNA levels in H460 and H520 cells (40% to 60%, P Conclusion In summary, paclitaxel altered the mRNA levels and specific activity of dCK and CDA and these effects could be dependent on histological subtype. More cell and animal studies are needed to further characterize the relationship between mRNA levels and the overall drug-drug interaction and the potential to use histological subtype as a predictive factor in the

  9. Effect of salmeterol/fluticasone combination on the dynamic changes of lung mechanics in mechanically ventilated COPD patients: a prospective pilot study

    Directory of Open Access Journals (Sweden)

    Chen WC

    2016-01-01

    Full Text Available Wei-Chih Chen,1,2 Hung-Hsing Chen,2 Chi-Huei Chiang,2 Yu-Chin Lee,3 Kuang-Yao Yang1,2 1Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 2Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; 3Sijhih Cathay General Hospital, Taipei, Taiwan Background: The combined therapy of inhaled corticosteroids and long-acting beta-2 agonists for mechanically ventilated patients with COPD has never been explored. Therefore, the aim of this study was to investigate their dynamic effects on lung mechanics and gas exchange. Materials and methods: Ten mechanically ventilated patients with resolution of the causes of acute exacerbations of COPD were included. Four puffs of salmeterol 25 µg/fluticasone 125 µg combination therapy were administered. Lung mechanics, including maximum resistance of the respiratory system (Rrs, end-inspiratory static compliance, peak inspiratory pressure (PIP, plateau pressure, and mean airway pressure along with gas exchange function were measured and analyzed. Results: Salmeterol/fluticasone produced a significant improvement in Rrs and PIP after 30 minutes. With regard to changes in baseline values, salmeterol/fluticasone inhalation had a greater effect on PIP than Rrs. However, the therapeutic effects seemed to lose significance after 3 hours of inhaled corticosteroid/long-acting beta-2 agonist administration. Conclusion: The combination of salmeterol/fluticasone-inhaled therapy in mechanically ventilated patients with COPD had a significant benefit in reducing Rrs and PIP. Keywords: COPD, inhaled corticosteroid, long-acting beta-2 agonist, mechanical ventilation, respiratory failure

  10. Altered insulin and glucagon secretion in treated genetic hyperlipemia: a mechanism of theraphy?

    Science.gov (United States)

    Eaton, R P; Oase, R; Schade, D S

    1976-03-01

    The influence of Halofenate therapy on insulin and glucagon secretion was examined in the Zucker rat with genetic endogenous hyperlipemia. Coincident with the lipid lowering effects of Halofenate, the net change in the basal bihormonal axis favored glucagon, with the I/G molar ratio (Insulin/Glucagon) decreasing from 2.72 +/- 0.53 to 0.96 +/- 0.20 during treatment with this drug. Following arginine stimulation the I/G ratio remained reduced at 0.87 +/- 0.13 in Halofenate treated animals, contrasting with the statistically greater ratio of 2.5 +/- 0.55 in control animals. The Halofenate induced state of reduced insulin:glucagon was associated with hypolipemia, postarginine hyperglycemia, and hyperketonemia,-three metabolic parameters characteristic of glucagon excess relative to insulin. It is suggested that the lipid-lowering action of Halofenate in genetic hyperlipemia may reflect the altered bihormonal axis induced by the drug. PMID:1250161

  11. Alterations in EGFR and related genes following neo-adjuvant chemotherapy in Chinese patients with non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Shuhang Wang

    Full Text Available INTRODUCTION: Genetic aberrancies within epidermal growth factor receptor (EGFR pathway are associated with therapeutic outcomes of EGFR-tyrosine kinase inhibitors (TKIs in advanced non-small cell lung cancer (NSCLC. However, the impact of chemotherapy on EGFR-related genes alterations has not been defined in NSCLC. Our study aims to investigate the impact of neoadjuvant chemotherapy (Neoadj-Chemo on EGFR activating mutations and associated EGFR-TKIs resistance-related genes. PATIENTS AND METHODS: Matched tumor samples were obtained retrospectively from 66 NSCLC patients (stages IIb-IIIb corresponding to pre- and post- Neoadj-Chemo. EGFR mutations were detected by denaturing high performance liquid chromatography (DHPLC and confirmed by Amplification Refractory Mutation System technology (ARMS, KRAS mutations, T790M mutation and c-MET amplification were identified using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP, ARMS, and real-time PCR, respectively. RESULTS: Before Neoadj-Chemo, EGFR mutations were identified in 33.3% (22/66 of NSCLC patients. Only 18.2% (12/66 of patients carried EGFR mutations after Neoadj-Chemo (p = 0.013. The median peak value of EGFR 19 exon mutations decreased non-significantly after Neoadj-Chemo. KRAS mutation rate decreased from 4.6% (3/66 to 3.0% (2/66 with Neoadj-Chemo. Although the overall percentage of patients exhibiting c-MET amplifications (6.1% [4/66] did not change with Neoadj-Chemo, two patients transitioned from negative to positive c-MET amplification, and two patients reversed these changes post-Neoadj-Chemo. T790M mutations were absent from all samples. CONCLUSION: Neoadjuvant chemotherapy tends to decrease the mutation frequency of EGFR mutation and downstream genes, which suggests that real-time samples analysis for genetic aberrancies within EGFR pathways have important value to delineate specific patient populations and facilitate individualized treatment.

  12. On the repair mechanisms of the lung - experimental and clinical results

    International Nuclear Information System (INIS)

    The effect of dose and time and of the RBE on the pulmonary reaction to radiation has been studied by means of trials with young pigs. 70 animals received a fractionated (five and 15 fractions) telecobalt irradiation of the right lung over total treatment periods T of five, 23, and 35 days. The influence of dose and time on the pulmonary reaction to radiation is defined at the ED50 level (effective dose, after which 50% of animals will suffer from radiopathy) by a proportionality of D ∝ N0.32 . T0.05. An α/β value of 3.7 Gy is calculated according to the LQ model. An RBE value of 4.0 to 4.1 was determined in 38 animals treated over five and 35 days with the 6.2 MeV neutrons of the cyclotron Rossendorf. The experimentations on animals allow to classify the lung reaction as late effect. The clinical results found in literature show that this classification is also valid for human lung reaction to fractionated radiotherapy. So it is not possible to achieve a considerable increase of the pulmonary tolerance dose by increasing the total treatment period. The best sparing of the respiratory organ is obtained by an application of small single doses which allows to profit from the large repair capacity of pulmonary tissue. These results, as well as our considerations regarding the latent time between therapy and lung reaction, and some trials on laboratory rodents allow to speak of a radiogenic pneumopathy with the properties of a late reaction characterized by a pneumonitis appearing previously and changing into pulmonary fibrosis. (orig.)

  13. Morphological alterations in dentine after mechanical treatment and ultrashort pulse laser irradiation.

    Science.gov (United States)

    Portillo Muñoz, María; Lorenzo Luengo, María Cruz; Sánchez Llorente, José Miguel; Peix Sánchez, Manuel; Albaladejo, Alberto; García, Ana; Moreno Pedraz, Pablo

    2012-01-01

    The aim of this study was to evaluate and compare the morphological changes that occur in dentine after femtosecond laser irradiation and after mechanical treatment. The duration of the laser pulse is an important parameter, because within the time frame of the pulse heat diffusion plays a very important role in the mechanism of interaction between the light and the tissue. Six totally impacted human third molars were sectioned into sheets approximately 1 mm thick with an Accutom-50 precision cutting machine. The samples were randomly divided into two groups according to their cavity preparation: mechanical cavity preparation and laser cavity preparation. The samples were then examined by light microscopy and scanning electron microscopy. There were clear differences in the results obtained with the two techniques. Cavities prepared with the laser with pulses of pulse laser. PMID:20978918

  14. Effect of penehyclidine hydrochloride on patients with acute lung injury and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    LI Bai-qiang; SUN Hai-chen; NIE Shi-nan; SHAO Dan-bing; LIU Hong-mei; QIAN Xiao-ming

    2010-01-01

    Objective: To assess the effects of penehyclidine hydrochloride on patients with acute lung injury (ALI), to observe the expression of Toll-like receptor 4 (TLR4) on the peripheral monocytes of ALI patients and changes of inflammatory & anti-inflammatory cytokines and to investigate the mechanism of TLR4 in ALI.Methods: Forty-five patients with ALI were randomly divided into penehyclidine hydrochloride treatment group (P group, n=21) and conventional treatment group (control group, C group, n=24). Patients in both groups received conventional treatment, including active treatment of the primary disease, respiratory support, nutritional support and fluid management therapy, while those in P group were given penehyclidine hydrochloride (1 mg, im, q. 12 h) in addition.The TLR4 expression of 20 healthy volunteers were detected.The clinical effect, average length of stay in ICU and hospital,values of PaO2 and PaO2/FiO2, expression of TLR4 on the surface of peripheral blood mononuclear cells and some serum cytokines were evaluated for 48 h.Results: The general conditions of the two groups were improved gradually and PaO2 increased progressively.Compared with 0 h, PaO2 and PaO2/FiO2 at 6, 12, 24 and 48 h after treatment were significantly increased (P<0.05). The improvement in P group was obviously greater than that in C group (P<0.05). The average length of hospitalization showed no difference between the two groups, but penehyclidine hydrochloride significantly decreased the average length of stay in ICU (t=3.485, P<0.01). The expression of TLR4 in two groups were both obviously higher than that of healthy volunteers (P<0.01). It decreased significantly at 24 h (t=2.032, P<0.05) and 48 h (t=3.620, P<0.01)and was lower in P group than in C group. The patients who showed a higher level of TLR4 expression in early stage had a worse prognosis and most of them developed acute respiratory distress syndrome (ARDS). The incidence of ARDS was 23.8% in P group and 29

  15. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    International Nuclear Information System (INIS)

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics

  16. Effect of Surfactant and Partial Liquid Ventilation Treatment on Gas Exchange and Lung Mechanics in Immature Lambs: Influence of Gestational Age

    OpenAIRE

    Rey-Santano, Carmen; Mielgo, Victoria; Gastiasoro, Elena; Valls-i-Soler, Adolfo; Murgia, Xabier

    2013-01-01

    Objectives Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Setting Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Design Prospective, randomized study using sealed envelopes. Subjects 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubat...

  17. Investigation of airway inflammation and asthma by repeated bronchoalveolar lavage combined with measurements of airway and lung tissue mechanics in individual rats.

    OpenAIRE

    dr Bánfi Andrea

    2011-01-01

    Acute and chronic airway inflammations are the main pathogenetic features of numerous pulmonary diseases. There are several methods studying the pathomechanisms of inflammatory respiratory diseases. To asses the severity of lung diseases, the bronchoalveolar lavage (BAL) and lung function tests are the most current diagnostic methods in the experimental and human pulmonology. However, repetition of BAL procedures and assessments of respiratory mechanic parameters in small rodents (mice and ra...

  18. Brain Alterations and Clinical Symptoms of Dementia in Diabetes: Aβ/Tau-Dependent and Independent Mechanisms

    OpenAIRE

    NaoyukiSato

    2014-01-01

    Emerging evidence suggests that diabetes affects cognitive function and increases the incidence of dementia. However, the mechanisms by which diabetes modifies cognitive function still remains unclear. Morphologically, diabetes is associated with neuronal loss in the frontal and temporal lobes including the hippocampus, and aberrant functional connectivity of the posterior cingulate cortex and medial frontal/temporal gyrus. Clinically, diabetic patients show decreased executive function, info...

  19. Pathogenic Mechanism of an Autism-Associated Neuroligin Mutation Involves Altered AMPA-Receptor Trafficking

    OpenAIRE

    Chanda, Soham; Aoto, Jason; Lee, Sung-Jin; Wernig, Marius; Südhof, Thomas C.

    2015-01-01

    Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Although the general synaptic role of neuroligins is undisputed, their specific functions at a synapse remain unclear, even controversial. Moreover, many neuroligin gene mutations were associated with autism, but the pathophysiological relevance of these mutations is often unknown, and their mechanisms of action uninvestigated. Here, we examine the synaptic effects of an autism-associated neuroligin-4 sub...

  20. Persons with reconstructed ACL exhibit altered knee mechanics during high-speed maneuvers.

    Science.gov (United States)

    Lee, S-P; Chow, J W; Tillman, M D

    2014-06-01

    Anterior cruciate ligament (ACL) injury is a sports trauma that causes long-term disability. The function of the knee during dynamic activities can be severely limited even after successful surgical reconstruction. This study examined the effects of approach velocity during side-step cutting on knee joint mechanics in persons with reconstructed ACL (ACLR). 22 participants (11 with unilateral ACLR, 11 matched-controls) participated. Knee joint mechanics were tested in 3 approach conditions: counter-movement, one-step, and running. Dependent variables, including peak knee flexion, extension, valgus, varus, internal rotation, external rotation angles and corresponding peak joint moments, were assessed during the stance phase of cutting. Two 2×3 ("group" by "approach condition") mixed MANOVA tests were used to examine the effects of ACLR and approach velocity on knee mechanics. ACLR participants exhibited higher knee internal rotator moment (0.22 vs. 0.13 Nm/kg, p=0.003). Inter-group comparisons revealed that the ACLR participants exhibited significantly higher abductor and internal rotator moments only in the running condition (1.86 vs. 1.16 Nm/kg, p=0.018; 0.28 vs. 0.17 Nm/kg, p=0.010, respectively). Our findings suggested that patients with ACLR may be at increased risk of re-injury when participating in high-demand physical activities. Task demand should be considered when prescribing progressive therapeutic interventions to ACLR patients. PMID:24408765

  1. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation.

    Science.gov (United States)

    Li, Jie; Yang, Chun-Xu; Mei, Zi-Jie; Chen, Jing; Zhang, Shi-Min; Sun, Shao-Xing; Zhou, Fu-Xiang; Zhou, Yun-Feng; Xie, Cong-Hua

    2013-01-01

    Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R , by exposing the parental A549 cells to repeated γ-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells. PMID:24289569

  2. Solasonine-induced Apoptosis in Lung Cancer Cell Line H446 and Its Mechanism

    Directory of Open Access Journals (Sweden)

    Wensi HUANG

    2015-07-01

    Full Text Available Background and objective Incidence and mortality rates of lung cancer are rising sharply. Small cell lung cancer patients prefer chemotherapy than surgery because of the insignificant side effects of Chinese medicine. Studies have shown that solasonine possesses an anti-tumor property. The aim of this study is to investigate the effect of solasonine on the apoptosis of lung cancer cell line H446. Methods Appropriate concentration and time were selected with a CCK8 kit. The drug that was used in H446 cells was divided into four different concentrations: 0 μmol/L, 3.4 μmol/L, 6.8 μmol/L and 13.6 μmol/L. The changes in forms and nucleus of H446 cells that were stained with DAPI were observed under an inverted optical microscope. The effects on H446 cell apoptosis were detected by FCM. The changes in apoptosis-related proteins BCL2, BAX, and CASP3 were investigated using Western blot for 24 h. Results Solasonine reduced the survival ratio of H446 cells and inhibited the proliferation with a dose-related effect. The survival ratio of H446 cells could be reduced to 16.77% (P<0.001, and the highest apoptosis ratio was 44.62% (P<0.001. Apoptosis was observed in H446 cells. Moreover, Western blot showed that the apoptosis-related proteins BAX and CASP3 were upregulated (P<0.05. Conclusion The proliferation of H446 cells can be inhibited by solasonine, and the expression of pro-apoptotic proteins is up-regulated, and the expression of anti-apoptotic proteins is down-regulated, thereby promoting the apoptosis of cells.

  3. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury

    OpenAIRE

    Urich, Daniela; Eisenberg, Jessica L.; Hamill, Kevin J.; Takawira, Desire; Chiarella, Sergio E.; Soberanes, Saul; Gonzalez, Angel; Koentgen, Frank; Manghi, Tomas; Hopkinson, Susan B.; Misharin, Alexander V.; Perlman, Harris; Mutlu, Gokhan M; Budinger, G. R. Scott; Jonathan C.R. Jones

    2011-01-01

    Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3fl/fl), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3fl/fl mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 lami...

  4. The mechanism underlying alpinetin-mediated alleviation of pancreatitis-associated lung injury through upregulating aquaporin-1

    Directory of Open Access Journals (Sweden)

    Liang XS

    2016-02-01

    Full Text Available Xingsi Liang,1,2,* Bin Zhang,3,* Quan Chen,4,* Jing Zhang,1,5 Biao Lei,1,5 Bo Li,5 Yangchao Wei,1,5 Run Zhai,1,5 Zhiqing Liang,2 Songqing He,1,5 Bo Tang1,5 1Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, 2Department of Infectious Diseases, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, 3Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 4Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, 5Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People’s Republic of China *These authors contributed equally to this work Abstract: Characterized by its acute onset, critical condition, poor prognosis, and high mortality rate, severe acute pancreatitis (SAP can cause multiple organ failure at its early stage, particularly acute lung injury (ALI. The pathogenesis of ALI is diffuse alveolar damage, including an increase in pulmonary microvascular permeability, a decrease in compliance, and invasion of many inflammatory cells. Corticosteroids are the main treatment method for ALI; however, the associated high toxicity and side effects induce pain in patients. Recent studies show that the effective components in many traditional Chinese medicines can effectively inhibit inflammation with few side effects, which can decrease the complications caused by steroid consumption. Based on these observations, the main objective of the current study is to investigate the effect of alpinetin, which is a flavonoid extracted from Alpinia katsumadai Hayata, on treating lung injury induced by SAP and to explore the mechanism underlying the alpinetin-mediated decrease in the extent of ALI. In this study, we have shown through in vitro experiments that a therapeutic dose of alpinetin can promote human pulmonary microvascular endothelial cell proliferation. We

  5. New animal model to study epigenetic mechanisms mediating altered gravity effects upon cell growth and morphogenesis

    Science.gov (United States)

    Grigoryan, Eleonora N.; Dvorochkin, Natasha; Radugina, Elena A.; Poplinskaya, Valentina; Novikova, Julia; Almeida, Eduardo

    The gravitational field and its variations act as a major environmental factor that can impact morphogenesis developing through epigenetic molecular mechanisms. The mechanisms can be thoroughly investigated by using adequate animal models that reveal changes in the morpho-genesis of a growing organ as a function of gravitational effects. Two cooperative US/Russian experiments on Foton-M2 (2005) and Foton-M3 (2007) were the first to demonstrate differences in the shape of regenerating tails of space-flown and ground control newts. The space-flown and aquarium (simulated microgravity) animals developed lancet-shaped tails whereas 1 g con-trols (kept in space-type habitats) showed hook-like regenerates. These visual observations were supported by computer-aided processing of the images and statistical analysis of the results. Morphological examinations and cell proliferation measurements using BrdU demon-strated dorsal-ventral asymmetry as well as enhanced epithelial growth on the dorsal area of regenerating tails in 1 g newts. These findings were reproduced in laboratory tests on newts kept at 1 g and in large water tanks at cut g. The 1 g animals showed statistically significant deviations of the lancet-like tail shape typically seen in aquarium animals. Such modifications were found as early as regeneration stages III-IV and proved irreversible. The authors believe that the above phenomenon detected in newts used in many space experiments can serve as an adequate model for studying molecular mechanisms underlying gravitational effects upon animal morphogenesis.

  6. Lung histopathology, radiography, high-resolution computed tomography, and bronchio-alveolar lavage cytology are altered by Toxocara cati infection in cats and is independent of development of adult intestinal parasites.

    Science.gov (United States)

    Dillon, A Ray; Tillson, D M; Hathcock, J; Brawner, B; Wooldridge, A; Cattley, R; Welles, B; Barney, S; Lee-Fowler, T; Botzman, L; Sermersheim, M; Garbarino, R

    2013-04-15

    . Pulmonary arterial, bronchial, and interstitial disease were prominent histological findings. Infected treated cats had a subtle attenuation but not prevention of lung disease compared to infected cats. Significant lung disease in kittens and adult cats is associated with the early arrival of T. cati larvae in the lungs and is independent of the development of adult worms in the intestine. These data suggest that while the medical prevention of the development of adult parasites after oral exposure to T. cati is obviously beneficial, this practice even with good client compliance will not prevent the development of lung disease which can alter clinical diagnostic methods. PMID:23411376

  7. Adrenergic mechanism responsible for pathological alteration in gastric mucosal blood flow in rats with ulcer bleeding

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.; Semyachkin-Glushkovskiy, I. A.; Gekalyuk, A. S.; Ulanova, M. V.; Lychagov, V. V.; Tuchin, V. V.

    2014-09-01

    The adrenergic system plays an important role in regulation of central and peripheral circulation in normal state and during hemorrhage. Because the impaired gastric mucosal blood flow (GMBF) is the major cause of gastroduodenal lesions, including ulcer bleeding (UB), we studied the adrenergic mechanism responsible for regulation of GMBF in rats with a model of stress-induced UB (SUB) using the laser Doppler flowmetry (LDF). First, we examined the effect of adrenaline on GMBF in rats under normal state and during UB. In all healthy animals the submucosal adrenaline injection caused a decrease in local GMBF. During UB the submucosal injection of adrenaline was accompanied by less pronounced GMBF suppression in 30,3% rats with SUB vs. healthy ones. In 69,7% rats with SUB we observed the increase in local GMBF after submucosal injection of adrenaline. Second, we studied the sensitivity of gastric β2-adrenoreceptors and the activity of two factors which are involved in β2-adrenomediated vasorelaxation-KATP -channels and NO. The effects of submucosal injection of isoproterenol, ICI118551 and glybenclamide on GMBF as well as NO levels in gastric tissue were significantly elevated in rats with SUB vs. healthy rats. Thus, our results indicate that high activation of gastric β2-adrenoreceptors associated with the increased vascular KATP -channels activity and elevated NO production is the important adrenergic mechanism implicated in the pathogenesis of UB.

  8. Dynamic Alterations in Microarchitecture, Mineralization and Mechanical Property of Subchondral Bone in Rat Medial Meniscal Tear Model of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    De-Gang Yu

    2015-01-01

    Full Text Available Background: The properties of subchondral bone influence the integrity of articular cartilage in the pathogenesis of osteoarthritis (OA. However, the characteristics of subchondral bone alterations remain unresolved. The present study aimed to observe the dynamic alterations in the microarchitecture, mineralization, and mechanical properties of subchondral bone during the progression of OA. Methods: A medial meniscal tear (MMT operation was performed in 128 adult Sprague Dawley rats to induce OA. At 2, 4, 8, and 12 weeks following the MMT operation, cartilage degeneration was evaluated using toluidine blue O staining, whereas changes in the microarchitecture indices and tissue mineral density (TMD, mineral-to-collagen ratio, and intrinsic mechanical properties of subchondral bone plates (BPs and trabecular bones (Tbs were measured using micro-computed tomography scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: Cartilage degeneration occurred and worsened progressively from 2 to 12 weeks after OA induction. Microarchitecture analysis revealed that the subchondral bone shifted from bone resorption early (reduced trabecular BV/TV, trabecular number, connectivity density and trabecular thickness [Tb.Th], and increased trabecular spacing (Tb.Sp at 2 and 4 weeks to bone accretion late (increased BV/TV, Tb.Th and thickness of subchondral bone plate, and reduced Tb.Sp at 8 and 12 weeks. The TMD of both the BP and Tb displayed no significant changes at 2 and 4 weeks but decreased at 8 and 12 weeks. The mineral-to-collagen ratio showed a significant decrease from 4 weeks for the Tb and from 8 weeks for the BP after OA induction. Both the elastic modulus and hardness of the Tb showed a significant decrease from 4 weeks after OA induction. The BP showed a significant decrease in its elastic modulus from 8 weeks and its hardness from 4 weeks. Conclusion: The microarchitecture, mineralization and mechanical

  9. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis.

    Science.gov (United States)

    Gonçalves, Inês O; Passos, Emanuel; Diogo, Cátia V; Rocha-Rodrigues, Sílvia; Santos-Alves, Estela; Oliveira, Paulo J; Ascensão, António; Magalhães, José

    2016-03-01

    Mitochondrial quality control and apoptosis have been described as key components in the pathogenesis of nonalcoholic steatohepatitis (NASH); exercise is recognized as a nonpharmacological strategy to counteract NASH-associated consequences. We aimed to analyze the effect of voluntary physical activity (VPA) and endurance training (ET) against NASH-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial and cellular quality control deleterious alterations. Forty-eight male Sprague-Dawley rats were divided into standard-diet sedentary (SS, n = 16), standard-diet VPA (n = 8), high-fat diet sedentary (HS, n = 16), and high-fat diet VPA (n = 8). After 9 weeks of diet treatment, half of the SS and HS groups were engaged in an ET program for 8 weeks, 5 days/week, 1 h/day. Liver mPTP susceptibility through osmotic swelling, mPTP-related proteins (cyclophilin D, Sirtuin3, Cofilin-1), markers of mitochondrial biogenesis ((mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor gamma co-activator protein (PGC-1α)), dynamics (Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Dynamin related protein 1, and Optic atrophy 1)), auto/mitophagy (Beclin-1, microtubule-associated protein 1 light chain 3, p62, PINK1, and Parkin), and apoptotic signaling (Bax, Bcl-2) and caspases-like activities were assessed. HS animals showed an increased susceptibility to mPTP, compromised expression of Tfam, Mfn1, PINK1, and Parkin and an increase in Bax content (HS vs. SS). ET and VPA improved biogenesis-related proteins (PGC-1α) and autophagy signaling (Beclin-1 and Beclin-1/Bcl-2 ratio) and decreased apoptotic signaling (caspases 8 activity, Bax content, and Bax/Bcl-2 ratio). However, only ET decreased mPTP susceptibility and positively modulated Bcl-2, Tfam, Mfn1, Mfn2, PINK1, and Parkin content. In conclusion, exercise reduces the increased susceptibility to mPTP induced by NASH and promotes the increase of auto/mitophagy and mitochondrial

  10. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Monego, Simeone dal [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Larsson, Emanuel [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); University of Trieste, Trieste (Italy); Linköping University, SE-581 83 Linkoeping (Sweden); Mohammadi, Sara [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); Krenkel, Martin [University of Göttingen, Göttingen (Germany); Garrovo, Chiara; Biffi, Stefania [IRCCS Burlo Garofolo, Trieste (Italy); Lorenzon, Andrea [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Markus, Andrea [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Napp, Joanna [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Salditt, Tim [University of Göttingen, Göttingen (Germany); Accardo, Agostino [University of Trieste, Trieste (Italy); Alves, Frauke [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Tromba, Giuliana [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy)

    2015-01-01

    This study presents an approach to increase the sensitivity of lung computed tomography (CT) imaging by utilizing in-line phase contrast CT in combination with single-distance phase-retrieval algorithms and a dedicated image-processing regime. As demonstrated here, functional CT imaging can be achieved for the assessment of both structural alterations in asthmatic mouse lung tissue and the accumulation pattern of instilled barium-sulfate-labelled macrophages in comparison with healthy controls. Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  11. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    International Nuclear Information System (INIS)

    This study presents an approach to increase the sensitivity of lung computed tomography (CT) imaging by utilizing in-line phase contrast CT in combination with single-distance phase-retrieval algorithms and a dedicated image-processing regime. As demonstrated here, functional CT imaging can be achieved for the assessment of both structural alterations in asthmatic mouse lung tissue and the accumulation pattern of instilled barium-sulfate-labelled macrophages in comparison with healthy controls. Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites

  12. Biological Significance and the Related Molecular Mechanism of Ets1 mRNA Expression in Lung Cancer by Tissue Microarray (TMA)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the expressions and molecular mechanism of Ets-1 mRNA, and TGFβ1 and c-Met proteins in the pathogenesis, progression of lung cancer by tissue microarray (TMA) method. Methods: The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were detected in 89 primary lung cancers, 12 lung cancer with lymph-node metastasis and 12 precancerous lesions by FISH(fluorescence in situ hybridization) and immunohistochemical method, and 10 normal lung tissues were used as controls. Results: The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were significantly higher in 89 primary lung cancer than in the control group (P<0.05). The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were related to lymph node metastasis and clinical stages. There was a positive correlation between the Ets-1 mRNA expression and TGFβ1 and c-Met proteins (P<0.05). Conclusion: Ets-1 mRNA, TGFβ1 and c-Met proteins may be related to the pathogenesis, progression and malignant behavior of lung cancer. They may play an important role in prognosis assessment of lung cancer.

  13. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  14. Sterilization of Lung Matrices by Supercritical Carbon Dioxide.

    Science.gov (United States)

    Balestrini, Jenna L; Liu, Angela; Gard, Ashley L; Huie, Janet; Blatt, Kelly M S; Schwan, Jonas; Zhao, Liping; Broekelmann, Tom J; Mecham, Robert P; Wilcox, Elise C; Niklason, Laura E

    2016-03-01

    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10(-6) in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes. PMID:26697757

  15. Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice

    Directory of Open Access Journals (Sweden)

    Yu-Qin Chen

    2015-01-01

    Full Text Available Objective: This work was aimed at studying the inhibitory activity of metformin combined with the commonly used chemotherapy drug cisplatin in human lung cancer xenografts in nude mice. We also examined the combined effects of these drugs on the molecular expression of survivin, matrix metalloproteinase-2 (MMP-2, vascular endothelial growth factor-C (VEGF-C, and vascular endothelial growth factorreceptor-3 (VEGFR-3 to determine the mechanism of action and to explore the potential applications of the new effective drug therapy in lung cancer. Materials and Methods: The nude mice model of lung cancer xenografts was established, and mice were randomly divided into the metformin group, the cisplatin group, the metformin + cisplatin group, and the control group. The animals were killed 42 days after drug administration, and the tumor tissues were then sampled to detect the messenger ribonucleic acid (mRNA and protein expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR. Results: The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the cisplatin group and the combined treatment group were lower than that in the control group (P < 0.05. In the metformin group, the expression of MMP-2 protein and mRNA was lower than that in the control group (P < 0.05. The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the combined treatment group were lower than that in the cisplatin group and the metformin group (P < 0.05. Conclusions: Metformin inhibited the expression of MMP-2, cisplatin and the combined treatment inhibited the expression of survivin, MMP-2, VEGF-C, and VEGFR-3, and the combined treatment of metformin with cisplatin resulted in enhanced anti-tumor efficacy.

  16. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  17. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    Science.gov (United States)

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  18. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs.

    Directory of Open Access Journals (Sweden)

    Jesús Villar

    Full Text Available BACKGROUND: Mechanical ventilation (MV with high tidal volumes (V(T can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI. The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. METHODOLOGY/PRINCIPAL FINDINGS: Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T (6 mL/kg or high V(T (20 mL/kg. Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41 β-catenin, matrix metalloproteinase-7 (MMP-7, cyclin D1, vascular endothelial growth factor (VEGF, and axis inhibition protein 2 (AXIN2 protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

  19. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    OpenAIRE

    Kuiper Jan; Plötz Frans B; Groeneveld AB Johan; Haitsma Jack J; Jothy Serge; Vaschetto Rosanna; Zhang Haibo; Slutsky Arthur S

    2011-01-01

    Abstract Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI) and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV) with either a low tidal volume (Vt) of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis) or with a high Vt of 15 ...

  20. Structural modifications of mitochondria-targeted chlorambucil alter cell death mechanism but preserve MDR evasion.

    Science.gov (United States)

    Jean, Sae Rin; Pereira, Mark P; Kelley, Shana O

    2014-08-01

    Multidrug resistance (MDR) remains one of the major obstacles in chemotherapy, potentially rendering a multitude of drugs ineffective. Previously, we have demonstrated that mitochondrial targeting of DNA damaging agents is a promising tool for evading a number of common resistance factors that are present in the nucleus or cytosol. In particular, mitochondria-targeted chlorambucil (mt-Cbl) has increased potency and activity against resistant cancer cells compared to the parent compound chlorambucil (Cbl). However, it was found that, due to its high reactivity, mt-Cbl induces a necrotic type of cell death via rapid nonspecific alkylation of mitochondrial proteins. Here, we demonstrate that by tuning the alkylating activity of mt-Cbl via chemical modification, the rate of generation of protein adducts can be reduced, resulting in a shift of the cell death mechanism from necrosis to a more controlled apoptotic pathway. Moreover, we demonstrate that all of the modified mt-Cbl compounds effectively evade MDR resulting from cytosolic GST-μ upregulation by rapidly accumulating in mitochondria, inducing cell death directly from within. In this study, we systematically elucidated the advantages and limitations of targeting alkylating agents with varying reactivity to mitochondria. PMID:24922525

  1. Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking.

    Science.gov (United States)

    Chanda, S; Aoto, J; Lee, S-J; Wernig, M; Südhof, T C

    2016-02-01

    Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Although the general synaptic role of neuroligins is undisputed, their specific functions at a synapse remain unclear, even controversial. Moreover, many neuroligin gene mutations were associated with autism, but the pathophysiological relevance of these mutations is often unknown, and their mechanisms of action uninvestigated. Here, we examine the synaptic effects of an autism-associated neuroligin-4 substitution (called R704C), which mutates a cytoplasmic arginine residue that is conserved in all neuroligins. We show that the R704C mutation, when introduced into neuroligin-3, enhances the interaction between neuroligin-3 and AMPA receptors, increases AMPA-receptor internalization and decreases postsynaptic AMPA-receptor levels. When introduced into neuroligin-4, conversely, the R704C mutation unexpectedly elevated AMPA-receptor-mediated synaptic responses. These results suggest a general functional link between neuroligins and AMPA receptors, indicate that both neuroligin-3 and -4 act at excitatory synapses but perform surprisingly distinct functions, and demonstrate that the R704C mutation significantly impairs the normal function of neuroligin-4, thereby validating its pathogenicity. PMID:25778475

  2. Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms.

    Science.gov (United States)

    del Rosario, Ricardo Cruz-Herrera; Poschmann, Jeremie; Rouam, Sigrid Laure; Png, Eileen; Khor, Chiea Chuen; Hibberd, Martin Lloyd; Prabhakar, Shyam

    2015-05-01

    Most disease associations detected by genome-wide association studies (GWAS) lie outside coding genes, but very few have been mapped to causal regulatory variants. Here, we present a method for detecting regulatory quantitative trait loci (QTLs) that does not require genotyping or whole-genome sequencing. The method combines deep, long-read chromatin immunoprecipitation-sequencing (ChIP-seq) with a statistical test that simultaneously scores peak height correlation and allelic imbalance: the genotype-independent signal correlation and imbalance (G-SCI) test. We performed histone acetylation ChIP-seq on 57 human lymphoblastoid cell lines and used the resulting reads to call 500,066 single-nucleotide polymorphisms de novo within regulatory elements. The G-SCI test annotated 8,764 of these as histone acetylation QTLs (haQTLs)—an order of magnitude larger than the set of candidates detected by expression QTL analysis. Lymphoblastoid haQTLs were highly predictive of autoimmune disease mechanisms. Thus, our method facilitates large-scale regulatory variant detection in any moderately sized cohort for which functional profiling data can be generated, thereby simplifying identification of causal variants within GWAS loci. PMID:25799442

  3. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms.

    Science.gov (United States)

    Gonçalves, Pedro; Araújo, João Ricardo; Martel, Fátima

    2015-01-01

    The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication. PMID:25523882

  4. Expression of transforming growth factor alpha in plutonium-239-induced lung neoplasms in dogs: investigations of autocrine mechanisms of growth

    International Nuclear Information System (INIS)

    We have previously shown that 47% of radiation-induced lung neoplasms in dogs exhibit increased expression of epidermal growth factor receptor (EGFR). In this study, we investigated the expression of transforming growth factor alpha (TGF-alpha), a ligand for EGFR, to determine if an autocrine mechanism for growth stimulation was present in these tumors. As determined by immunohistochemistry, 59% (26/44) of the lung neoplasms examined had increased expression of TGF-alpha. Expression of TGF-alpha was not related to the etiology of the tumor, e.g., spontaneous or plutonium-induced; however, it was related to the phenotype of the tumor. Statistical analysis of the correlation of EGFR and TGF-alpha expression within the same tumor did not show a positive association; however, specific phenotypes did have statistically significant expression of EGFR or TGF-alpha, suggesting that overexpression of either the ligand or its receptor conferred a growth advantage to the neoplasm. Twenty-seven percent (32/117) of radiation-induced proliferative epithelial foci expressed TGF-alpha, and a portion of those foci (8/32) expressed both EGFR and TGF-alpha. This supports the hypothesis that these foci represent preneoplastic lesions, and suggests that those foci exhibiting increased expression of the growth factor or its receptor are at greater risk for progressing to neoplasia

  5. Mechanism of Drug Resistance Identified in Human Lung Adenocarcinoma Cell Line SPC-A1 Selected for Resistance to Docetaxel

    Institute of Scientific and Technical Information of China (English)

    Hai Sun; Long-bang Chen

    2009-01-01

    Objective: To investigate the mechanism of resistance to docetaxel in human lung cancer.Methods: Human lung carcinoma SPC-A1/Docetaxel cells were derived from parental SPC-A1 cells by continuous exposure to increasing concentration of docetaxel. The drug sensitivity was measured by MTT assay in vitro. The cDNA microarray identified a set of differentially expressed genes, and some genes were confirmed by RT-PCR. P-glycoprotein level was measured by flow cytometry analysis.Results: The results of drug sensitivity measured by MTT assay showed that SPC-A1/Docetaxel cells were 13.2-fold resistant to docetaxel and cross-resistant at varying levels to other drugs. The cDNA microarray results identified a set of differentially expressed genes, which showed 428 genes that were up-regulated and 506 genes that were down-regulated in SPC-A1/Docetaxel cells, and some genes were confirmed by RT-PCR. Flow cytometry analysis suggests expression of P-glycoprotein (P-gp) was more abundant in SPC-A1/Docetaxel cells than in the parental cells and docetaxel selection reduces the apoptotic response.Conclusion: The results suggest that docetaxel selection led to changes in gene expression that contribute to the multidrug resistance phenotype.

  6. Mechanisms driving alteration of the Landau state in the vicinity of a second-order phase transition

    International Nuclear Information System (INIS)

    The rearrangement of the Fermi surface of a homogeneous Fermi system upon approach to a second-order phase transition is studied at zero temperature. The analysis begins with an investigation of solutions of the equation ε(p) = μ, a condition that ordinarily has the Fermi momentum pF as a single root. The emergence of a bifurcation point in this equation is found to trigger a qualitative alteration of the Landau state, well before the collapse of the collective degree of freedom that is responsible for the second-order transition. The competition between mechanisms that drive rearrangement of the Landau quasiparticle distribution is explored, taking into account the feedback of the rearrangement on the spectrum of critical fluctuations. It is demonstrated that the transformation of the Landau state to a new ground state may be viewed as a first-order phase transition

  7. Respiratory syncytial virus infection is associated with an altered innate immunity and a heightened pro-inflammatory response in the lungs of preterm lambs

    Directory of Open Access Journals (Sweden)

    Suzich JoAnn

    2011-08-01

    Full Text Available Abstract Introduction Factors explaining the greater susceptibility of preterm infants to severe lower respiratory infections with respiratory syncytial virus (RSV remain poorly understood. Fetal/newborn lambs are increasingly appreciated as a model to study key elements of RSV infection in newborn infants due to similarities in lung alveolar development, immune response, and susceptibility to RSV. Previously, our laboratory demonstrated that preterm lambs had elevated viral antigen and developed more severe lesions compared to full-term lambs at seven days post-infection. Here, we compared the pathogenesis and immunological response to RSV infection in lungs of preterm and full-term lambs. Methods Lambs were delivered preterm by Caesarian section or full-term by natural birth, then inoculated with bovine RSV (bRSV via the intratracheal route. Seven days post-infection, lungs were collected for evaluation of cytokine production, histopathology and cellular infiltration. Results Compared to full-term lambs, lungs of preterm lambs had a heightened pro-inflammatory response after infection, with significantly increased MCP-1, MIP-1α, IFN-γ, TNF-α and PD-L1 mRNA. RSV infection in the preterm lung was characterized by increased epithelial thickening and periodic acid-Schiff staining, indicative of glycogen retention. Nitric oxide levels were decreased in lungs of infected preterm lambs compared to full-term lambs, indicating alternative macrophage activation. Although infection induced significant neutrophil recruitment into the lungs of preterm lambs, neutrophils produced less myeloperoxidase than those of full-term lambs, suggesting decreased functional activation. Conclusions Taken together, our data suggest that increased RSV load and inadequate immune response may contribute to the enhanced disease severity observed in the lungs of preterm lambs.

  8. Local cooling alters neural mechanisms producing changes in peripheral blood flow by spinal cord stimulation.

    Science.gov (United States)

    Tanaka, Satoshi; Barron, Kirk W; Chandler, Margaret J; Linderoth, Bengt; Foreman, Robert D

    2003-03-28

    This study was performed to investigate the respective role of sensory afferent and sympathetic fibers in peripheral vasodilatation induced by spinal cord stimulation at different hindpaw skin temperatures. Cooling the skin was used as a strategy to enhance sympathetic activity [Am. J. Physiol.: Heart Circ. Physiol. 263 (1992) H1197]. Cutaneous blood flow in the footpad of anesthetized rats was recorded using laser Doppler flowmetry. Local cooling (copper coil. Spinal cord stimulation delivered at clinically relevant parameters and with 30%, 60%, and 90% of motor threshold induced the early phase of vasodilatation in the cooled and the moderately cooled hindpaw. In addition, spinal cord stimulation at 90% of motor threshold produced the late phase of vasodilatation only in the cooled hindpaw, which was possible to block by the autonomic ganglion-blocking agent, hexamethonium. The early responses to spinal cord stimulation in the moderately cooled hindpaw were not affected by hexamethonium. In contrast, both the early and the late phase responses were eliminated by CGRP (8-37), an antagonist of the calcitonin gene-related peptide receptor. After dorsal rhizotomy, spinal cord stimulation at 90% of motor threshold elicited hexamethonium-sensitive vasodilatation in the cooled hindpaw (late phase). These results suggest that spinal cord stimulation-induced vasodilatation in the cooled hindpaw (<25 degrees C) is mediated via both the sensory afferent (early phase of vasodilatation) and via suppression of the sympathetic efferent activity (late phase) although the threshold for vasodilatation via the sympathetic efferent fibers is higher than that via sensory nerves. In contrast, vasodilatation via sensory afferent fibers may predominate with moderate temperatures (25-28 degrees C). Thus, two complementary mechanisms for spinal cord stimulation-induced vasodilatation may exist depending on the basal sympathetic tone. PMID:12648613

  9. Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Allard Paul

    2006-10-01

    Full Text Available Abstract Background Scoliosis is the most common type of spinal deformity. In North American children, adolescent idiopathic scoliosis (AIS makes up about 90% of all cases of scoliosis. While its prevalence is about 2% to 3% in children aged between 10 to 16 years, girls are more at risk than boys for severe progression with a ratio of 3.6 to 1. The aim of the present study was to test the hypothesis that idiopathic scoliosis interferes with the mechanisms responsible for sensory-reweighting during balance control. Methods Eight scoliosis patients (seven female and one male; mean age: 16.4 years and nine healthy adolescents (average age 16.5 years participated in the experiment. Visual and ankle proprioceptive information was perturbed (eyes closed and/or tendon vibration suddenly and then returned to normal (eyes open and/or no tendon vibration. An AMTI force platform was used to compute centre of pressure root mean squared velocity and sway density curve. Results For the control condition (eyes open and no tendon vibration, adolescent idiopathic scoliosis patients had a greater centre of pressure root mean squared velocity (variability than control participants. Reintegration of ankle proprioception, when vision was either available or removed, led to an increased centre of pressure velocity variability for the adolescent idiopathic scoliosis patients whereas the control participants reduced their centre of pressure velocity variability. Moreover, in the absence of vision, adolescent idiopathic scoliosis exhibited an increased centre of pressure velocity variability when ankle proprioception was returned to normal (i.e. tendon vibration stopped. The analysis of the sway density plot suggests that adolescent idiopathic scoliosis patients, during sensory reintegration, do not scale appropriately their balance control commands. Conclusion Altogether, the present results demonstrate that idiopathic scoliosis adolescents have difficulty in

  10. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline alter lipid metabolism by different mechanisms in mouse liver slices.

    Directory of Open Access Journals (Sweden)

    Ewa Szalowska

    Full Text Available Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI, valproic acid (VA, and tetracycline (TET. Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA or compounds impairing mitochondrial functions (i.e. TET. Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.

  11. Biological alterations resulting from chronic lung irradiation. I. The pulmonary lipid composition, physiology, and pathology after inhalation by beagle dogs of 144Ce-labeled fused clay aerosols

    International Nuclear Information System (INIS)

    Three groups of four beagle dogs inhaled a 144Ce-labeled fused clay aerosol; two additional dogs per group, exposed to a stable cerium-labeled fused clay aerosol, were used as controls. At monthly intervals, one diaphragmatic lobe of each of two dogs exposed to 144Ce and one control animal from each group was lavaged with isotonic saline. The recovered lavage solutions were centrifuged to isolate lung cells (mostly macrophages) and surfactant for lipid analyses. The groups were sacrificed at 2, 4, and 6 mo after exposure, when the lungs of the dogs exposed to 144Ce had average cumulative radiation doses of 23, 36, and 59 krad, respectively. Chronic irradiation of the lung resulted in a progressive radiation pneumonitis which was assessed clinically and pathologically at various intervals. At sacrifice, the lungs were analyzed for 144Ce and the right apical and diaphragmatic lobes were minced and lyophilized and the lipids were extracted. Total lipids from all lung samples were determined gravimetrically and individual compounds were identified, isolated, and quantitated. The quantities of lipid in lung tissue, in pulmonary cells, and in surfactant increased as a function of time and radiation dose. Neutral lipids (sterol esters and triglycerides) accounted for most of the increase. (U.S.)

  12. Mechanisms underlying gas exchange alterations in an experimental model of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    J.H.T. Ferreira

    2006-09-01

    Full Text Available The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg. The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13 consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction. The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg, but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg. Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg, as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution

  13. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation

    OpenAIRE

    Michard, Frédéric; Teboul, Jean-Louis

    2000-01-01

    According to the Frank-Starling relationship, a patient is a 'responder' to volume expansion only if both ventricles are preload dependent. Mechanical ventilation induces cyclic changes in left ventricular (LV) stroke volume, which are mainly related to the expiratory decrease in LV preload due to the inspiratory decrease in right ventricular (RV) filling and ejection. In the present review, we detail the mechanisms by which mechanical ventilation should result in greater cyclic changes in LV...

  14. Cavin1; a regulator of lung function and macrophage phenotype.

    Directory of Open Access Journals (Sweden)

    Praveen Govender

    Full Text Available Caveolae are cell membrane invaginations that are highly abundant in adipose tissue, endothelial cells and the lung. The formation of caveolae is dependent on the expression of various structural proteins that serve as scaffolding for these membrane invaginations. Cavin1 is a newly identified structural protein whose deficiency in mice leads to loss of caveolae formation and to development of a lipodystrophic phenotype. In this study, we sought to investigate the functional role of Cavin1 in the lung. Cavin1 deficient mice possessed dramatically altered distal lung morphology and exhibited significant physiological alterations, notably, increased lung elastance. The changes in distal lung architecture were associated with hypercellularity and the accumulation of lung macrophages. The increases in lung macrophages occurred without changes to circulating numbers of mononuclear cells and without evidence for increased proliferation. However, the increases in lung macrophages were associated with higher levels of macrophage chemotactic factors CXCL2 and CCL2 in BAL fluid from Cavin1-/- mice suggesting a possible mechanism by which these cells accumulate. In addition, lung macrophages from Cavin1-/- mice were larger and displayed measurable differences in gene expression when compared to macrophages from wild-type mice. Interestingly, macrophages were also increased in adipose tissue but not in liver, kidney or skeletal muscle from Cavin1-/- mice, and similar tissue specificity for macrophage accumulation was observed in lungs and adipose tissue from Caveolin1-/- mice. In conclusion, this study demonstrates an important role for Cavin1 in lung homeostasis and suggests that caveolae structural proteins are necessary for regulating macrophage number and phenotype in the lung.

  15. Epigenetics of Lung Cancer

    OpenAIRE

    Langevin, Scott M; Kratzke, Robert A.; Kelsey, Karl T.

    2014-01-01

    Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and non-coding RNA expression, have widely been reported in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and provide an overview of the potential translational applications of these ...

  16. Toxicity of Mineral Dusts and a Proposed Mechanism for the Pathogenesis of Particle-Induced Lung Diseases

    Science.gov (United States)

    Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.; Meighan, T.; James, J.T.

    2015-01-01

    Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.

  17. Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions.

    Science.gov (United States)

    Krege, John B; Aref, Mohammad W; McNerny, Erin; Wallace, Joseph M; Organ, Jason M; Allen, Matthew R

    2016-06-01

    Reference point indentation (RPI) was developed as a novel method to assess mechanical properties of bone in vivo, yet it remains unclear what aspects of bone dictate changes/differences in RPI-based parameters. The main RPI parameter, indentation distance increase (IDI), has been proposed to be inversely related to the ability of bone to form/tolerate damage. The goal of this work was to explore the relationshipre-intervention RPI measurebetween RPI parameters and traditional mechanical properties under varying experimental conditions (drying and ashing bones to increase brittleness, demineralizing bones and soaking in raloxifene to decrease brittleness). Beams were machined from cadaveric bone, pre-tested with RPI, subjected to experimental manipulation, post-tested with RPI, and then subjected to four-point bending to failure. Drying and ashing significantly reduced RPI's IDI, as well as ultimate load (UL), and energy absorption measured from bending tests. Demineralization increased IDI with minimal change to bending properties. Ex vivo soaking in raloxifene had no effect on IDI but tended to enhance post-yield behavior at the structural level. These data challenge the paradigm of an inverse relationship between IDI and bone toughness, both through correlation analyses and in the individual experiments where divergent patterns of altered IDI and mechanical properties were noted. Based on these results, we conclude that RPI measurements alone, as compared to bending tests, are insufficient to reach conclusions regarding mechanical properties of bone. This proves problematic for the potential clinical use of RPI measurements in determining fracture risk for a single patient, as it is not currently clear that there is an IDI, or even a trend of IDI, that can determine clinically relevant changes in tissue properties that may contribute to whole bone fracture resistance. PMID:27072518

  18. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography

    Science.gov (United States)

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, T.; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 µm of subpleural lung parenchyma with a 3-D resolution of 16×16×8 µm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).

  19. Lungs in Heart Failure

    Directory of Open Access Journals (Sweden)

    Anna Apostolo

    2012-01-01

    Full Text Available Lung function abnormalities both at rest and during exercise are frequently observed in patients with chronic heart failure, also in the absence of respiratory disease. Alterations of respiratory mechanics and of gas exchange capacity are strictly related to heart failure. Severe heart failure patients often show a restrictive respiratory pattern, secondary to heart enlargement and increased lung fluids, and impairment of alveolar-capillary gas diffusion, mainly due to an increased resistance to molecular diffusion across the alveolar capillary membrane. Reduced gas diffusion contributes to exercise intolerance and to a worse prognosis. Cardiopulmonary exercise test is considered the “gold standard” when studying the cardiovascular, pulmonary, and metabolic adaptations to exercise in cardiac patients. During exercise, hyperventilation and consequent reduction of ventilation efficiency are often observed in heart failure patients, resulting in an increased slope of ventilation/carbon dioxide (VE/VCO2 relationship. Ventilatory efficiency is as strong prognostic and an important stratification marker. This paper describes the pulmonary abnormalities at rest and during exercise in the patients with heart failure, highlighting the principal diagnostic tools for evaluation of lungs function, the possible pharmacological interventions, and the parameters that could be useful in prognostic assessment of heart failure patients.

  20. Analysis of Alterations in Morphologic Characteristics of Mesenchymal Stem Cells by Mechanical Stimulation during Differentiation into Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Shokrgozar

    2010-01-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs can be expanded and differentiated intomany mature cell types including smooth muscle cells (SMCs. In addition to growth factor,cyclic stretch contributes to differentiation of stem cells. Mechanical stimuli are criticalto morphological changes, development, regeneration, differentiation and pathology ofmesenchymal tissues. The aim of this study is to investigate effects of cyclic stretch withdiffering amplitudes on morphology and differentiation of mesenchymal stem cells.Materials and Methods: Mesenchymal stem cells are extracted from human bone marrow.Cells are cultured on silicone membrane and exposed to cyclic stretch by a custommade device. Cellular images are captured before and after tests. Effects of 5% and 15%uniaxial strain with 1Hz frequency and 1-8 hour durations on morphology of human mesenchymalstem cells are investigated. It is assumed that environmental factors such asmechanical loading regulate MSCs differentiation to SMCs. Fractal analysis is used toquantify alterations in cellular morphology. An image processing method with a designedcode is used for evaluation of fractal dimension parameter.Results: Results demonstrate statistically significant change in cell morphology due tomechanical stretch. By elevation of strain amplitude and number of load cycles, fractaldimensions of cell images decrease. Such decrease is equivalent to alignment of cells bymechanical stimulus. Cells are differentiated to SMCs purely by cyclic stretch. The initiationand rate of differentiation depend on mechanical conditions.Conclusion: To produce functional SMCs for engineered tissues, MSCs can be exposed to uniaxialcyclic stretch. The functionality of differentiated SMCs depends on loading conditions.

  1. Early palliative care and metastatic non-small cell lung cancer: potential mechanisms of prolonged survival.

    Science.gov (United States)

    Irwin, Kelly E; Greer, Joseph A; Khatib, Jude; Temel, Jennifer S; Pirl, William F

    2013-02-01

    Patients with advanced cancer experience a significant burden of physical symptoms and psychological distress at the end of life, and many elect to receive aggressive cancer-directed therapy. The goal of palliative care is to relieve suffering and promote quality of life (QOL) for patients and families. Traditionally, both the public and medical community have conceptualized the need for patients to make a choice between pursuing curative therapy or receiving palliative care. However, practice guidelines from the World Health Organization and leadership from the oncology and palliative care communities advocate a different model of palliative care that is introduced from the point of diagnosis of life-threatening illness. Early palliative care has been shown to provide benefits in QOL, mood, and health care utilization. Additionally, preliminary research has suggested that in contrast to fears about palliative care hastening death, referral to palliative care earlier in the course of illness may have the potential to lengthen survival, particularly in patients with advanced nonsmall-cell lung cancer. This review summarizes the literature on potential survival benefits of palliative care and presents a model of how early integrated palliative care could potentially influence survival in patients with advanced cancer. PMID:23355404

  2. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice.

    Science.gov (United States)

    Xu, Jianguo; Gonzalez, Edilson T; Iyer, Smita S; Mac, Valerie; Mora, Ana L; Sutliff, Roy L; Reed, Alana; Brigham, Kenneth L; Kelly, Patricia; Rojas, Mauricio

    2009-07-01

    The incidence of pulmonary fibrosis increases with age. Studies from our group have implicated circulating progenitor cells, termed fibrocytes, in lung fibrosis. In this study, we investigate whether the preceding determinants of inflammation and fibrosis were augmented with aging. We compared responses to intratracheal bleomycin in senescence-accelerated prone mice (SAMP), with responses in age-matched control senescence-accelerated resistant mice (SAMR). SAMP mice demonstrated an exaggerated inflammatory response as evidenced by lung histology. Bleomycin-induced fibrosis was significantly higher in SAMP mice compared with SAMR controls. Consistent with fibrotic changes in the lung, SAMP mice expressed higher levels of transforming growth factor-beta1 in the lung. Furthermore, SAMP mice showed higher numbers of fibrocytes and higher levels of stromal cell-derived factor-1 in the peripheral blood. This study provides the novel observation that apart from increases in inflammatory and fibrotic factors in response to injury, the increased mobilization of fibrocytes may be involved in age-related susceptibility to lung fibrosis. PMID:19359440

  3. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency

    OpenAIRE

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-01-01

    Objective(s): High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Mat...

  4. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  5. Lung Disease

    Science.gov (United States)

    ... ePublications > Our ePublications > Lung disease fact sheet ePublications Lung disease fact sheet This information in Spanish (en ... disease? More information on lung disease What is lung disease? Lung disease refers to disorders that affect ...

  6. Lung Stem cell biology

    OpenAIRE

    Ardhanareeswaran, Karthikeyan; Mirotsou, Maria

    2013-01-01

    Over the past few years new insights have been added to the study of stem cells in the adult lung. The exploration of the endogenous lung progenitors as well as the study of exogenously delivered stem cell populations holds promise for advancing our understanding of the biology of lung repair mechanisms. Moreover, it opens new possibilities for the use of stem cell therapy for the development of regenerative medicine approaches for the treatment of lung disease. Here, we discuss the main type...

  7. Effect of N-Acetylcystein in ICU patients with acute lung injury requiring mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Mojtahed Zadeh

    2008-08-01

    Full Text Available "n Background: Acute lung injury (ALI is a pulmonary pathology occuring in context of infection, trauma, burn, and sepsis. Tissue injury and release of chemical mediators result in tissue damage and organ failure especially respiratory failure. Many therapeutic modalities including vitamin E, allopurinol, and N-acetylcystein (NAC have been used to decrease levels of inflammatory factors and to control and improve signs and symptoms. The antioxidant feature of NAC induces synthesis of glutathione- the scavenger of free radicals- and increase respiratory drive and PaO2. In time diagnosis of ALI, prompt institution of treatment will reduce mortality and morbidity in critical illness."n"nMethods: This open label analytical clinical trial included a total of 50 patients admitted in the ICU ward of Sina University Hospital. They were randomly divided into two groups of 25, the case group received NAC 150mg/kg in 100ml Normal saline within 20 minutes then 50mg/kg in 100ml Normal saline within 4 hr after that 50mg/kg daily for three days. The controls received only normal saline. Oxygenation and ventilation parameters were studied In both groups."n"nResults: There were no significant difference between the groups in terms of demographic indices, mean SpO2, ABG values, mortality rates, and clearing of chest x-rays. The best outcome was seen in young traumatic patients."n"nConclusion: In this relatively small group of patients presenting with an established ALI/ ARDS subsequent to a variety of underlying disease, intravenous NAC treatment during first four days neither significantly improved systemic oxygenation nor reduced the need for ventilatory support.

  8. Numerical investigation of aerosolized drug delivery in the human lungs under mechanical ventilator conditions

    Science.gov (United States)

    Vanrhein, Timothy; Banerjee, Arindam

    2010-11-01

    Particle deposition for aerosolized drug delivery in the human airways is heavily dependent upon flow conditions. Numerical modeling techniques have proven valuable for determining particle deposition characteristics under steady flow conditions. For the case of patients under mechanical ventilation, however, flow conditions change drastically and there is an increased importance to understand particle deposition characteristics. This study focuses on mechanically ventilated conditions in the upper trachea-bronchial (TB) region of the human airways. Solution of the continuous phase flow is done under ventilator waveform conditions with a suitable turbulence model in conjunction with a realistic model of upper TB airways. A discrete phase Euler-Lagrange approach is applied to solve for particle deposition characteristics with a focus on the effect of the ventilator inlet waveform. The purpose of this study is to accurately model flow conditions in the upper TB airways under mechanically ventilated conditions with a focus on real-time patient specific targeted aerosolized drug delivery.

  9. RARβ Promoter Methylation as an Epigenetic Mechanism of Gene Silencing in Non-small Cell Lung Cancer.

    Science.gov (United States)

    Dutkowska, A; Antczak, A; Pastuszak-Lewandoska, D; Migdalska-Sek, M; Czarnecka, K H; Górski, P; Kordiak, J; Nawrot, E; Brzeziańska-Lasota, E

    2016-01-01

    The retinoid acid receptor-p (RARβ) gene is one of the tumor suppressor genes (TSGs), which is frequently deleted or epigenetically silenced at an early stage of tumor progression. In this study we investigated the promoter methylation and expression status of the RARβ gene in 60 surgically resected non-small cell lung cancer (NSCLC) tissue samples and 60 corresponding unchanged lung tissue samples, using methylation-specific PCR and real-time-polymerase chain reaction (qPCR) techniques. We correlated the results with the pathological features of tumors and clinical characteristics of patients. qPCR analysis detected a significantly lower RARβ expression in the patients with adenocarcinoma (AC) and large cell carcinoma (LCC) than in those with squamous cell carcinoma (SCC) (AC vs. SCC, p = 0.032; AC and LCC vs. SCC, p = 0.0 13). Additionally, significantly lower expression of the RARβ gene was revealed in the patients with non-squamous cell cancer with a history of smoking assessed as pack-years (PY staging; with higher index values in T1a + T1b compared with T2a + T2b and T3 + T4 groups (p = 0.024). There was no correlation between the methylation status and expression level of the RARβ gene, which suggests that other molecular mechanisms influence the RARβ expression in NSCLC patients. In conclusion, different expression of the RARβ gene in SCC and NSCC makes the RARβ gene a valuable diagnostic marker for differentiating the NSCLC subtypes. PMID:26453065

  10. Alteration, adsorption and nucleation processes on clay-water interfaces: Mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale

    Science.gov (United States)

    Schindler, Michael; Legrand, Christine A.; Hochella, Michael F.

    2015-03-01

    Nano-scale processes on the solid-water interface of clay minerals control the mobility of metals in the environment. These processes can occur in confined pore spaces of clay buffers and barriers as well as in contaminated sediments and involve a combination of alteration, adsorption and nucleation processes of multiple species and phases. This study characterizes nano-scale processes on the interface between clay minerals and uranyl-bearing solution near neutral pH. Samples of clay minerals with a contact pH of ∼6.7 are collected from a U mill and mine tailings at Key Lake, Saskatchewan, Canada. The tailings material contains Cu-, As-, Co-, Mo-, Ni-, Se-bearing polymetallic phases and has been deposited with a surplus of Ca(OH)2 and Na2CO3 slaked lime. Small volumes of mill-process solutions containing sulfuric acid and U are occasionally discharged onto the surface of the tailings and are neutralized after discharge by reactions with the slaked lime. Transmission electron microscopy (TEM) in combination with the focused ion beam (FIB) technique and other analytical methods (SEM, XRD, XRF and ICP-OES) are used to characterize the chemical and mineralogical composition of phases within confined pore spaces of the clay minerals montmorillonite and kaolinite and in the surrounding tailings material. Alteration zones around the clay minerals are characterized by different generations of secondary silicates containing variable proportions of adsorbed uranyl- and arsenate-species and by the intergrowth of the silicates with the uranyl-minerals cuprosklodowskite, Cu[(UO2)2(SiO3OH)2](H2O)6 and metazeunerite, Cu[(UO2)(AsO4)2](H2O)8. The majority of alteration phases such as illite, illite-smectite, kaolinite and vermiculite have been most likely formed in the sedimentary basin of the U-ore deposit and contain low amounts of Fe (10 at.%) formed most likely in the limed tailings at high contact pH (∼10.5) and their structure is characterized by a low degree of long

  11. The effect of manual lung hyperinflation and postural drainage on pulmonary complications in mechanically ventilated trauma patients.

    Science.gov (United States)

    Ntoumenopoulos, G; Gild, A; Cooper, D J

    1998-10-01

    This study questioned whether manual lung hyperinflation (MHI) and postural drainage reduced the incidence of nosocomial pneumonia or improved other outcome variables in mechanically ventilated trauma patients. Patients were withdrawn from the study if they developed nosocomial pneumonia according to a predetermined definition or on the clinical suspicion of nosocomial pneumonia by the attending intensivist. Of the 46 patients who fulfilled all the inclusion criteria and were enrolled into the study, 22 patients were randomized to group A (physiotherapy) and 24 patients to group B (control group). Twice as many patients were withdrawn in group B (8/24) compared with group A (4/22), although the differences were not statistically significant, [X2(1, 1) = 1.36, P = 0.24]. The length of time receiving mechanical ventilation and in the ICU was similar between the two groups and there were no differences in pulmonary dysfunction ("worst" daily PaO2/FiO2 ratio) between the two groups. There were no ICU deaths in either group. Physiotherapy as used in this study was not associated with a reduced incidence of nosocomial pneumonia based on standard clinical criteria. Nevertheless the trend to more frequent nosocomial pneumonia in the control patients suggests that a larger study in more severely injured patients with stricter clinical criteria for the definition of nosocomial pneumonia is indicated. PMID:9807602

  12. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases.

    Science.gov (United States)

    Tulic, M K; Piche, T; Verhasselt, V

    2016-04-01

    The mucosal immune system (including airway, intestinal, oral and cervical epithelium) is an integrated network of tissues, cells and effector molecules that protect the host from environmental insults and infections at mucous membrane surfaces. Dysregulation of immunity at mucosal surfaces is thought to be responsible for the alarming global increase in mucosal inflammatory diseases such as those affecting the gastrointestinal (Crohn's disease, ulcerative colitis and irritable bowel syndrome) and respiratory (asthma, allergy and chronic obstructive pulmonary disorder) system. Although immune regulation has been well-studied in isolated mucosal sites, the extent of the immune interaction between anatomically distant mucosal sites has been mostly circumstantial and the focus of much debate. With novel technology and more precise tools to examine histological and functional changes in tissues, today there is increased appreciation of the 'common mucosal immunological system' originally proposed by Bienenstock nearly 40 years ago. Evidence is amounting which shows that stimulation of one mucosal compartment can directly and significantly impact distant mucosal site, however the mechanisms are unknown. Today, we are only beginning to understand the complexity of relationships and communications that exist between different mucosal compartments. A holistic approach to studying the mucosal immune system as an integrated global organ is imperative for future advances in understanding mucosal immunology and for future treatment of chronic diseases. In this review, we particularly focus on the latest evidence and the mechanisms operational in driving the lung-gut cross-talk. PMID:26892389

  13. Comparison of functional biochemical, and morphometric alterations in the lungs of four rat strains and hamsters following repeated intratracheal instillation of crocidolite asbestos

    Science.gov (United States)

    Four rat strains and hamsters were exposed to 0.7mg crocidolite asbestos/g lung once/wk for 3weeks by intratracheal instillation (IT). Pulmonary function, biochemistry, and morphometry were evaluated at 3 and 6-months after IT. Each rat strain, but not the hamster, exhibited ele...

  14. Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer

    International Nuclear Information System (INIS)

    Despite an initial good response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), resistance to treatment eventually develops. Although several resistance mechanisms have been discovered, little data exist regarding Asian patient populations. Among patients at a tertiary referral hospital in Korea who initially responded well to gefitinib and later acquired resistance to treatment, we selected those with enough tissues obtained before EGFR-TKI treatment and after the onset of resistance to examine mutations by mass spectrometric genotyping technology (Asan-Panel), MET amplification by fluorescence in situ hybridization (FISH), and analysis of AXL status, epithelial-to-mesenchymal transition (EMT) and neuroendocrine markers by immunohistochemistry. Twenty-six patients were enrolled, all of whom were diagnosed with adenocarcinoma with EGFR mutations (19del: 16, L858R: 10) except one (squamous cell carcinoma with 19del). Secondary T790M mutation was detected in 11 subjects (42.3%) and four of these patients had other co-existing resistance mechanisms; increased AXL expression was observed in 5/26 patients (19.2%), MET gene amplification was noted in 3/26 (11.5%), and one patient acquired a mutation in the phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) gene. None of the patients exhibited EMT; however, increased CD56 expression suggesting neuroendocrine differentiation was observed in two patients. Interestingly, conversion from L858R-mutant to wild-type EGFR occurred in one patient. Seven patients (26.9%) did not exhibit any known resistance mechanisms. Patients with a T790M mutation showed a more favorable prognosis. The mechanisms and frequency of acquired EGFR-TKI resistance in Koreans are comparable to those observed in Western populations; however, more data regarding the mechanisms that drive EGFR-TKI resistance are necessary

  15. Altered miR-143 and miR-150 expressions in peripheral blood mononuclear cells for diagnosis of non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiao-li; ZHANG Shao-yan; ZHENG Jun-fang; YUAN Hui; WANG Yan

    2013-01-01

    Background Sensitive and specific biomarkers for identifying early stage of non-small cell lung cancer (NSCLC) are urgently needed to improve the therapeutic outcome and reduce the mortality.Small non-coding microRNAs (miRNAs) are key components of cancer development and are considered as potential biomarkers for cancer diagnosis and for monitoring treatment.The aim of this study was to determine whether aberrant miRNA expression can be used as a marker in peripheral blood mononuclear cells (PBMC) for the diagnosis of NSCLC.Methods The levels of two mature miRNAs (miR-143 and miR-150) were detected by probe-based stem-loop quantitative reverse-transcriptase PCR (RT-qPCR) in PBMC of 64 patients with NSCLC and 26 healthy individuals,and the relationship between miR-143 and miR-150 levels and clinical and pathological factors was explored.Results All endogenous miRNAs were present in peripheral blood in a remarkably stable form and detected by RT-qPCR.MiR-143 expression in the PBMC specimens was significantly lower in NSCLC patients than in healthy individuals (P <0.0001).MiR-150 expression in the PBMC specimens was not significantly different between NSCLC patients and healthy individuals (P=0.260).MiR-150 expression was significantly higher in lung adenocarcinoma patients than in healthy individuals (P=0.001).There was a very strong difference in the expression level of miR-150 between lung adenocarcinoma patients and lung squamous cell caminoma patients (P <0.0001).In receiver operating characteristic curve (ROC) analysis,low expression of miR-143 showed the area under the ROC (AUC) of 0.885 for distinguishing cancer patients from healthy subjects.High expression of miR-150 had an AUC of 0.834 for distinguishing lung adenocarcinoma patients from healthy subjects.High expression of miR-150 had an AUC of 0.951 for distinguishing lung adenocarcinoma from lung squamous cell carcinoma.The miR-150 level was significantly associated with distant metastasis (P=0

  16. Effect of Dachengqi Decoction on NF-κB p65 Expression in Lung of Rats with Partial Intestinal Obstruction and the Underlying Mechanism

    Institute of Scientific and Technical Information of China (English)

    杨胜兰; 沈霖; 金阳; 刘建国; 高洁嫦; 李道本

    2010-01-01

    To investigate the effect of Dachengqi decoction on NF-κB p65 expression in lung of rats with partial intestinal obstruction and the underlying mechanism,30 SD rats were randomly divided into three groups:sham-operation group,model group and Dachengqi decoction treatment group(Dachengqi group),with 10 animals in each group.The models were made by partially ligating their large intestines outside the body.The pathological changes were analyzed by HE staining.The expression of NF-κB p65 in rats lung were meas...

  17. Research Progress on Resistance Mechanisms of Epidermal Growth Factor Receptor 
Tyrosine Kinase Inhibitors in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuan LI

    2012-02-01

    Full Text Available With a greater understanding of tumor biology, novel molecular-targeted strategies that block cancer progression pathways have been evaluated as a new therapeutic approach for treating non-small cell lung cancer (NSCLC. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib and erlotinib, show favorable response to EGFR mutant lung cancer in some populations of NSCLC patients. However, the efficacy of EGFR-TKIs is limited by either primary (de novo or acquired resistance after therapy. This review will focus on recently identified mechanisms of primary and acquired resistance to EGFR TKIs and strategies currently being employed to overcome resistance.

  18. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder. PMID:22736441

  19. Brain injury requires lung protection

    OpenAIRE

    Lopez-Aguilar, Josefina; Blanch, Lluis

    2015-01-01

    The paper entitled “The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation” published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is on...

  20. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.

    Science.gov (United States)

    Sarafzadeh, Pegah; Hezave, Ali Zeinolabedini; Ravanbakhsh, Moosa; Niazi, Ali; Ayatollahi, Shahab

    2013-05-01

    Microbial enhanced oil recovery (MEOR) process utilizes microorganisms or their metabolites to mobilize the trapped oil in the oil formation after primary and secondary oil recovery stages. MEOR technique is considered as more environmentally friendly and low cost process. There are several identified mechanisms for more oil recovery using MEOR processes however; wettability alteration and interfacial tension (IFT) reduction are the important ones. Enterobacter Cloacae, a facultative bio-surfactant producer bacterium, was selected as a bacterial formulation due to its known performance on IFT reduction and wettability alteration. To quantify the effects of these two mechanisms, different tests including oil spreading, in situ and ex situ core flooding, wettability measurement (Amott), IFT, viscosity and pH measurements were performed. The obtained results revealed that the experimental procedure used in this study was able to quantitatively identify the individual effects of both mechanisms on the ultimate microbial oil recovery. The results demonstrated considerable effects of both mechanisms on the tertiary oil recovery; however after a proper shut in time period, more tertiary oil was recovered because of wettability alteration mechanism. Finally, SEM images taken from the treated cores showed biofilm formation on the rock pore surfaces, which is responsible for rock surface wettability alteration. PMID:23376749

  1. Potential mechanisms for acute health effects and lung retention of inhaled particles of different origin

    OpenAIRE

    Klepczynska Nyström, Anna

    2012-01-01

    Background: Environmental particle exposure is known to have negative health effects. There is limited knowledge about how size and origin of particles influence these effects. There is also little known regarding the fate of ultrafine particles (particles in nanosize;< 100 nanometers in diameter) after being inhaled. Aim: The main objective of this thesis was to study acute health effects in humans and their potential underlying mechanisms, resulting from exposure to particles of different o...

  2. Exertional dyspnoea in chronic heart failure: the role of the lung and respiratory mechanical factors.

    Science.gov (United States)

    Dubé, Bruno-Pierre; Agostoni, Piergiuseppe; Laveneziana, Pierantonio

    2016-09-01

    Exertional dyspnoea is among the dominant symptoms in patients with chronic heart failure and progresses relentlessly as the disease advances, leading to reduced ability to function and engage in activities of daily living. Effective management of this disabling symptom awaits a better understanding of its underlying physiology.Cardiovascular factors are believed to play a major role in dyspnoea in heart failure patients. However, despite pharmacological interventions, such as vasodilators or inotropes that improve central haemodynamics, patients with heart failure still complain of exertional dyspnoea. Clearly, dyspnoea is not determined by cardiac factors alone, but likely depends on complex, integrated cardio-pulmonary interactions.A growing body of evidence suggests that excessively increased ventilatory demand and abnormal "restrictive" constraints on tidal volume expansion with development of critical mechanical limitation of ventilation, contribute to exertional dyspnoea in heart failure. This article will offer new insights into the pathophysiological mechanisms of exertional dyspnoea in patients with chronic heart failure by exploring the potential role of the various constituents of the physiological response to exercise and particularly the role of abnormal ventilatory and respiratory mechanics responses to exercise in the perception of dyspnoea in patients with heart failure. PMID:27581831

  3. Isotope tracing (29Si and 18O) of the alteration mechanisms of the French glass 'SON68' used for the storage of nuclear waste

    International Nuclear Information System (INIS)

    This study aims to enhance our understanding of the mechanisms of aqueous corrosion of the glasses used for the storage of nuclear waste. Glass samples 'SON68', doped with a different rare earth element (La, Ce or Nd), were altered simultaneously with water enriched in 29Si and 18O, throughout a period of 20 months. The aim of such isotope tracing was (i) to follow the 'real' exchanges between glass and solution and (ii) to understand the reactions involving Si-O bonds in the leached layer during alteration. Leachates were analyzed by ICP-MS and -AES, and elemental and isotopic variations in the altered glass layer were measured by ion-probe, using a depth profiling technique. Elemental analyses enabled the distribution of the elements in the two layers of altered glass (phyllosilicates and gel) to be established, and the results reveal a selective partitioning of elements between the two layers. Isotopic analyses of altered layers and leachates allowed phyllosilicates to be distinguished from gel, and suggest two different mechanisms of formation. Whilst phyllosilicates grow on the surface of the glass by a mechanism of precipitation, gel is formed by a succession of hydrolysis / condensation reactions taking place mainly at the gel / pristine glass interface. This gel is formed by the in situ rearrangement of hydrated species, without reaching equilibrium with the solution. Moreover, an experimental technique has been developed enabling one to trace the transport of silicon from the solution into the altered glasses, under an isotopic gradient. Diffusion profiles, obtained by ion-probe, have been modeled and have allowed the determination of the apparent silicon diffusion coefficient (DSi) in gels. Therefore, our experiments have permitted the quantification of the influence of both the alteration conditions (dynamic or static tests) and the solution composition on the value of DSi. (author)

  4. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    OpenAIRE

    Burkhardt Wolfram; Köthe Lars; Wendt Sebastian; Rüdiger Mario; Wauer Roland R; Ochs Matthias

    2007-01-01

    Abstract Background Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats w...

  5. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation; an electron microscopical and stereological study in the rat lung ; Research

    OpenAIRE

    Rüdiger, Mario; Wendt, Sebastian; Köthe, Lars; Burkhardt, Wolfram; Wauer, Roland R.; Ochs, Matthias

    2007-01-01

    Background: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods: Male wistar rats were sur...

  6. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism

    DEFF Research Database (Denmark)

    Jayakumar, A R; Bak, L K; Rama Rao, K V;

    2016-01-01

    dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of (13)C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4-24 h), and whether such events...

  7. Molecular Mechanisms Contributing to Resistance to Tyrosine Kinase-Targeted Therapy for Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    One of the most important pathways in non-small cell lung cancer (NSCLC) is the epidermal growth factor receptor (EGFR) pathway. This pathway affects several crucial processes in tumor development and progression, including tumor cell proliferation, apoptosis regulation, angiogenesis, and metastatic invasion. Targeting EGFR is currently being intensely explored. We are witnessing the development of a number of potential molecular-inhibiting treatments for application in clinical oncology. In the last decade, the tyrosine kinase (TK) domain of the EGFR was identified in NSCLC patients, and it has responded very well with a dramatic clinical improvement to TK inhibitors such are gefitinib and erlotinib. Unfortunately, there were primary and/or secondary resistance to these treatments, as shown by clinical trials. Subsequent molecular biology studies provided some explanations for the drug resistance phenomenon. The molecular mechanisms of resistance need to be clarified. An in-depth understanding of these targeted-therapy resistance may help us explore new strategies for overcoming or reversing the resistance to these inhibitors for the future of NSCLC treatment

  8. Effects of MicroRNA-10b on lung cancer cell proliferation and invasive metastasis and the underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    Qiao-Li Su; Shuang-Qing Li; Duo-Ning Wang; Feng Liu; Bo Yuan

    2014-01-01

    Objective:To study the influence ofMicroRNA-10b on proliferation and invasion of human low metastatic lung cancer cell95-C and its mechanism.Methods:LipofectamineMicroRNA-10b eukaryotic expression plasmid was transfected into95-C.The experiment group was divided into blank control group, empty vector transfected group andMicroRNA-10b transfected group.Real time quantitativeRT-PCR was used to detect theexpression ofMicroRNA-10b and KLF4mRNA expression.Proliferations of cells were detected by cell proliferation assay, invasion of the detected the cellTranswell experiments, the expression ofKLF4 protein was detected in Western blotting cells.Results:The proliferation rate ofMicroRNA-10b plasmid transfection group increased significantly after transfection, invasion and migration ability enhancement, by comparison, there are statistically significant differences in the blank control group and negative control group(P0.05). Conclusions:MicroRNA-10b may promote proliferation and invasion of95-C cells by down regulating the expression ofKLF4 protein.

  9. 肺癌干细胞的影响机制研究进展%Influencing Mechanisms of Lung Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    李小江; 张文治; 张莹; 李宝乐; 黄敏娜; 包芳芳; 吴建国; 周佳静

    2012-01-01

    肺癌是严重威胁人类生命和健康的恶性肿瘤之一.肿瘤干细胞学说的提出为肺癌研究提供了一个新的思路.多项实验研究已证实了肺癌干细胞的存在.对肺癌干细胞的影响机制的研究日益增多,目前研究主要围绕微环境调控、信号转导机制、细胞因子作用等进行.对肺癌干细胞的影响机制的研究,也为寻求更为有效的治疗方法带来新的希望.%Lung cancer is one of [lie most severe malignant tumors that threaten human health and life. The cancer stem cell theory provides a new research pathway in the field of lung cancer study. The existence of lung cancer stem cells has been confirmed in a few experimental studies. There Is an increasing number of studies on the influencing mechanism of lung cancer stem cells, mainly including micro-circumstance regulation, signal transduction mechanisms, and cytokines, bringing new hope for more effective treatments.

  10. Magnetic resonance Elastography of the Lung parenchyma in an in situ porcine model with a non-invasive mechanical driver: Correlation of Shear Stiffness with Trans-respiratory system Pressures

    OpenAIRE

    Mariappan, Yogesh K.; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D.; Ehman, Richard L.; Araoz, Philip; McGee, Kiaran P.

    2011-01-01

    Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography (MRE) is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indic...

  11. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures.

    Science.gov (United States)

    Mariappan, Yogesh K; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D; Ehman, Richard L; Araoz, Philip; McGee, Kiaran P

    2012-01-01

    Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) . PMID:21590723

  12. Prolonged mechanical ventilation alters the expression pattern of angio-neogenetic factors in a pre-clinical rat model.

    Directory of Open Access Journals (Sweden)

    Christian S Bruells

    Full Text Available OBJECTIVE: Mechanical ventilation (MV is a life saving intervention for patients with respiratory failure. Even after 6 hours of MV, diaphragm atrophy and dysfunction (collectively referred to as ventilator-induced diaphragmatic dysfunction, VIDD occurs in concert with a blunted blood flow and oxygen delivery. The regulation of hypoxia sensitive factors (i.e. hypoxia inducible factor 1α, 2α (HIF-1α,-2α, vascular endothelial growth factor (VEGF and angio-neogenetic factors (angiopoietin 1-3, Ang might contribute to reactive and compensatory alterations in diaphragm muscle. METHODS: Male Wistar rats (n = 8 were ventilated for 24 hours or directly sacrificed (n = 8, diaphragm and mixed gastrocnemius muscle tissue was removed. Quantitative real time PCR and western blot analyses were performed to detect changes in angio-neogenetic factors and inflammatory markers. Tissues were stained using Isolectin (IB 4 to determine capillarity and calculate the capillary/fiber ratio. RESULTS: MV resulted in up-regulation of Ang 2 and HIF-1α mRNA in both diaphragm and gastrocnemius, while VEGF mRNA was down-regulated in both tissues. HIF-2α mRNA was reduced in both tissues, while GLUT 4 mRNA was increased in gastrocnemius and reduced in diaphragm samples. Protein levels of VEGF, HIF-1α, -2α and 4 did not change significantly. Additionally, inflammatory cytokine mRNA (Interleukin (IL-6, IL-1β and TNF α were elevated in diaphragm tissue. CONCLUSION: The results demonstrate that 24 hrs of MV and the associated limb disuse induce an up-regulation of angio-neogenetic factors that are connected to HIF-1α. Changes in HIF-1α expression may be due to several interactions occurring during MV.

  13. Feasibility study into the use of mechanical choppers to alter the natural time structure of the APS

    International Nuclear Information System (INIS)

    The prospect of extending static x-ray measurements into the time domain is an exciting one indeed. The foundations for this extension have already been laid by some very innovative experiments performed at existing storage ring sources. The enormous enhancement in brilliance that the APS will afford over existing sources will, I believe, foster a tremendous growth in the area of time-resolved x-ray experimentation. The growing interest in this field is evidenced by both the number of participants and their enthusiasm at an APS Workshop on Time-Resolved Studies and Ultrafast Detectors held on January 25-26, 1988, at Argonne. We present here what may be a viable approach to the problem of altering the natural time structure of the APS with a minimal impact on other users. Our technique involves placing 19 of the 20 circulating bunches of positrons in (nearly) contiguous RF buckets and the remaining one bunch 180 degrees around the ring from this pack. The method we are advocating has several advantages over other schemes (such as wobblers) in that it is a passive technique: there are no external forces on the particle beam to destroy its stability, emittance, or lifetime properties, and it will not limit the total number of bunches in the beam to one (or a few) in order to get long dark periods between x-ray bursts. In this configuaration is should be possible to transmit the lone bunch and mechanically shutter the remaining 19 bunches with a chopper running at approximately 18,000 RPM. Although high, such revolution frequencies are achieved in neutron choppers which are generally much more massive than what is envisioned for an x-ray chopper

  14. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    Science.gov (United States)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  15. The lung in space

    Science.gov (United States)

    Prisk, G. Kim

    2005-01-01

    The lung is exquisitely sensitive to gravity, which induces gradients in ventilation, blood flow, and gas exchange. Studies of lungs in microgravity provide a means of elucidating the effects of gravity. They suggest a mechanism by which gravity serves to match ventilation to perfusion, making for a more efficient lung than anticipated. Despite predictions, lungs do not become edematous, and there is no disruption to, gas exchange in microgravity. Sleep disturbances in microgravity are not a result of respiratory-related events; obstructive sleep apnea is caused principally by the gravitational effects on the upper airways. In microgravity, lungs may be at greater risk to the effects of inhaled aerosols.

  16. Defective Expression of TGFBR3 Gene and Its Molecular Mechanisms in Non-small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Qinghua ZHOU

    2010-05-01

    Full Text Available Background and objective It has been reported that defective expression of TGFBR3 was found in non-small cell lung cancer (NSCLC. However, its molecular mechanisms remain unclear. The aim of this study is to investigate expression of TGFBR3 in NSCLC cell lines and normal human bronchial epithelial cell (HBEpiC, and to explore potential molecular mechanisms underlying inactivation of TGFBR3 gene. Methods Western blot was performed to determine the expression of TGFBR3 in HBEpiC and NSCLC cell lines. Automatic image analysis was carried out to estimate relative expression of TGFBR3 protein. We screened for mutation of the promoter region of TGFBR3 gene using DNA direct sequencing. Bisulfite-sodium modification sequencing was used to detect the methylation status of TGFBR3 promoter. Results TGFBR3 protein level was abnormally reduced in NSCLC cell lines as compared with HBEpiC. There was significant difference in TGFBR3 expression between the highly metastatic cell line 95D and non-metastatic cell lines, including LTEP-α-2, A549 and NCI-H460. No mutation and methylation was found in upstream sites -165 to -75 of the proximal promoter of TGFBR3 in HBEpiC and NSCLC cell lines. Hypermethylation was shown in upstream sites -314 to -199 of the distal promoter of TGFBR3 in HBEpiC and NSCLC cell lines. Conclusion Reduced expression of TGFBR3 was observed in NSCLC cell lines, especially in 95D, suggesting that TGFBR3 might play an important role in development and progression of NSCLC and correlate with NSCLC invasion and migration. The methylation event occurring at TGFBR3 promoter is not a major cause for reduction of TGFBR3 expression.

  17. Effect and Mechanism of Ginsenoside Rg3 on Postoperative Life Span of Patients with Non-Small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    LU Ping; SU Wei; MIAO Zhan-hui; NIU Hong-rui; LIU Jing; HUA Qin-liang

    2008-01-01

    Objective: To explore the effect and mechanism of ginsenoside Rg3 (Shenyi Capsule,参一胶囊) on the postoperative life span of patients with non-small cell lung cancer (NSCLC). Methods: The prospective, randomized, controlled method was adopted. One hundred and thirty- three patients with NSCLC were randomly assigned to 3 groups: Shenyi Capsule group (43 cases), combined therapy group (Shenyi Capsule plus chemotherapy, 46 cases), and chemotherapy group (44 cases). The survival rates, immune function and the correlation between vascular endothelial growth factor (VEGF) expression and clinical effect were analyzed in the three groups. Results: (1) The 1-year survival rate in the Shenyi group, the combined group and the chemotherapy group was 76.7% (33/43), 82.6% (38/46), and 79.5% (35/44), respectively; the 2-year survival rate was 67.4% (29/43), 71.7% (33/46), and 70.5% (31/44), respectively; and the 3-year survival rate was 46.5% (20/43), 54.3% (25/46), and 47.7% (21/44), respectively. There was no significant difference among the 3 groups (P>0.05). (2) NK cells were increased to different degrees and the ratio of CD4/CD8 was normal in the Shenyi Capsule group and the combined group, while the ratio of CD4/CD8 was disproportional in the chemotherapy group. (3) In the chemotherapy group, the 3-year survival rate was lower in patients with positive expression of VEGF than in patients with negative expression (37.0% vs 64.7%, ~ 2=17.9, P0.05; 44.4% vs 50.0%, P>0.05). Conclusion: Shenyi Capsule, especially in combination with chemotherapy, can improve the life span of patients with NSCLC after operation. The mechanism might be correlated with improving the immune function and anti-tumor angiogenesis.

  18. Effects of paclitaxel on cell proliferation and apoptosis and its mechanism in human lung adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    Baoan Gao; Chunling Du; Wenbo Ding; Shixiong Chen; Jun Yang

    2006-01-01

    Objective: To investigate the effect of paclitaxel on cell proliferation and apoptosis of human lung adenocarcinoma A549 cells line and its mechanism in vitro. Methods: Cell growth inhibition of paclitaxel on A549 cells was analyzed by MTT assay. Cell apoptosis was detected by DNA cytofluorometry, Hoechst33258 staining when treated with paclitaxel for 48hours. Meanwhile, Cell cycle and apoptotic rate were analyzed by flow cytometry. The protein expressions of Bax and Bcl-2 were studied by Western Blot. Results: Paclitaxel inhibited the proliferation of A549 cells in a time-and dose-dependant manner.Hoechst33258 staining indicated that apoptosis was induced by paclitaxel. After treated for 48 hours, cell apoptosis rates of 25nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 11.52 ± 1.94% ,17.73 ± 2.53%, and 29.32 ± 5.51% respectively,which were significantly higher than those of control group 5.88 ± 1.07%(all P < 0.01 ), and apoptosis rate increased in dose-dependant manner. Meanwhile, G2/M stage cell percentage of 25 nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 42.52± 6.25%, 40.46 ± 5.81%, and 35.34 ± 6.17% respectively,which were significantly higher than that of control group 22.32 ±3.30%(all P < 0.01 ); Western blot showed that paclitaxel increased the expression of Bax and decreased the expression of Bcl-2 in dose-dependant manner. Conclusion: Paclitaxel can inhibit A549 cell proliferation in a time- and dose-dependant manner. Its mechanism may be related to arresting cell cycle in G2/M stage and induce cell apoptosis by up-modulating Bax expression and down-modulating Bcl-2 expression.

  19. Removing or truncating connexin 43 in murine osteocytes alters cortical geometry, nanoscale morphology, and tissue mechanics in the tibia.

    Science.gov (United States)

    Hammond, Max A; Berman, Alycia G; Pacheco-Costa, Rafael; Davis, Hannah M; Plotkin, Lilian I; Wallace, Joseph M

    2016-07-01

    Gap junctions are formed from ubiquitously expressed proteins called connexins that allow the transfer of small signaling molecules between adjacent cells. Gap junctions are especially important for signaling between osteocytes and other bone cell types. The most abundant type of connexin in bone is connexin 43 (Cx43). The C-terminal domain of Cx43 is thought to be an important modulator of gap junction function but the role that this domain plays in regulating tissue-level mechanics is largely unknown. We hypothesized that the lack of the C-terminal domain of Cx43 would cause morphological and compositional changes as well as differences in how bone responds to reference point indentation (RPI) and fracture toughness testing. The effects of the C-terminal domain of Cx43 in osteocytes and other cell types were assessed in a murine model (C57BL/6 background). Mice with endogenous Cx43 in their osteocytes removed via a Cre-loxP system were crossed with knock-in mice which expressed Cx43 that lacked the C-terminal domain in all cell types due to the insertion of a truncated allele to produce the four groups used in the study. The main effect of removing the C-terminal domain from osteocytic Cx43 increased cortical mineral crystallinity (p=0.036) and decreased fracture toughness (p=0.017). The main effect of the presence of the C-terminal domain in other cell types increased trabecular thickness (p<0.001), cortical thickness (p=0.008), and average RPI unloading slope (p=0.004). Collagen morphology was altered when either osteocytes lacked Cx43 (p=0.008) or some truncated Cx43 was expressed in all cell types (p<0.001) compared to controls but not when only the truncated form of Cx43 was expressed in osteocytes (p=0.641). In conclusion, the presence of the C-terminal domain of Cx43 in osteocytes and other cell types is important to maintain normal structure and mechanical integrity of bone. PMID:27113527

  20. Inhibition of survivin expression and mechanisms of reversing drug-resistance of human lung adenocarcinoma cells by siRNA

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-lei; WANG Yan; JIANG Ji; KONG Rui; YANG Yan-mei; JI Hong-fei; SHI Yu-zhi

    2010-01-01

    Background Survivin, a member of the inhibitor of apoptosis protein (IAP) family, overexpresses in tumor cells and not expresses in terminally differentiated adult tissues. This study aimed to investigate the effects of survivin-specific siRNA on cell proliferation, apoptosis and chemosensitivity to cisplatin in vitro and in vivo and explore the mechanisms about decreasing expression of survivin in reversing cancer cells resistance to chemotherapeutic drug.Methods Survivin-specific siRNA was transfected into A549/DDP cells. The expression of survivin and lung resistance-related protein (LRP) mRNA levels were determined by RT-PCR, chemosensitivity of A549/DDP (cisplatin)cells to cisplatin was determined by MTT assay, and apoptosis and cell cycle were determined by flow cytometry (FCM).The protein expression levels of survivin, LRP, cyclin-D1, caspase-3 and bcl-2 were determined by Western blotting analyses. The effect of survivin siRNA inhibition on tumor growth was studied in athymic nude mice in vivo.Results Survivin-specific siRNA efficiently down-regulated survivin expression. The cell cycle was arrested at G2/M phase, and apoptosis was obviously found. Inhibition of survivin expression could make the IC50 and drug-resistant index of cisplatin decrease, and enhance the cancer cells sensitivity to cisplatin. After transfection by survivin-specific siRNA, expression of LRP and cyclin-D1 were downregulated, caspase-3 expression was upregulated, bcl-2 expression had no obvious change. The animal experiment confirmed knockdown of survivin could inhibit the tumor growth.Conclusions Survivin-specific siRNA can efficiently suppress the expression of survivin, increase apoptosis, inhibit cells proliferation and enhance the chemosensitivity to cisplatin in vitro and in vivo. Suppression of survivin expression helping to reverse drug-resistance may have relationship with downregulation of LRP and upregulation of caspase-3.Anti-tumor strategies based on the inhibition of

  1. Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo

    Science.gov (United States)

    Taylor, Alexia J.; McClure, Christina D.; Shipkowski, Kelly A.; Thompson, Elizabeth A.; Hussain, Salik; Garantziotis, Stavros; Parsons, Gregory N.; Bonner, James C.

    2014-01-01

    Background Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown. Methods The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure. Results ALD coating of MWCNTs with Al2O3 enhanced IL-1β secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1β but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level. Conclusion These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo

  2. Lung Emergencies

    Science.gov (United States)

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  3. Lung metastases

    Science.gov (United States)

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  4. Mechanisms for Planetary Spherules Formation and Alteration: Salar Grande, Chile -- An Example of Volcanic/Aqueous Processes Interactions

    Science.gov (United States)

    Ukstins Peate, I.; Cabrol, N. A.; Grin, E. A.; French, R.; Dressing, C.; Franklin, T.; Parsons, K.; Piatek, J. L.; Chong, G.

    2009-03-01

    Silica nodules and hematite spherules are observed at Salar Grande and Monturaqui, Atacama Desert, Chile. The Planetary Spherules Project investigates formation, deposition and alteration processes as analogs to Gusev Crater and Meridiani, Mars.

  5. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    Science.gov (United States)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  6. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  7. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    OpenAIRE

    Spyridon Loridas; Konstantinos Fiotakis; Athanasios Valavanidis; Thomais Vlachogianni

    2013-01-01

    Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have s...

  8. Limit cycle stability analysis and adaptive control of a multi-compartment model for a pressure-limited respirator and lung mechanics system

    Science.gov (United States)

    Chellaboina, VijaySekhar; Haddad, Wassim M.; Li, Hancao; Bailey, James M.

    2010-05-01

    Acute respiratory failure due to infection, trauma or major surgery is one of the most common problems encountered in intensive care units, and mechanical ventilation is the mainstay of supportive therapy for such patients. In this article, we develop a general mathematical model for the dynamic behaviour of a multi-compartment respiratory system in response to an arbitrary applied inspiratory pressure. Specifically, we use compartmental dynamical system theory and Poincaré maps to model and analyse the dynamics of a pressure-limited respirator and lung mechanics system, and show that the periodic orbit generated by this system is globally asymptotically stable. Furthermore, we show that the individual compartmental volumes, and hence the total lung volume, converge to steady-state end-inspiratory and end-expiratory values. Finally, we develop a model reference direct adaptive controller framework for the multi-compartmental model of a pressure-limited respirator and lung mechanics system where the plant and reference model involve switching and time-varying dynamics. We then apply the proposed adaptive feedback controller framework to stabilise a given limit cycle corresponding to a clinically plausible respiratory pattern.

  9. Effect of surfactant and partial liquid ventilation treatment on gas exchange and lung mechanics in immature lambs: influence of gestational age.

    Directory of Open Access Journals (Sweden)

    Carmen Rey-Santano

    Full Text Available OBJECTIVES: Surfactant (SF and partial liquid ventilation (PLV improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. SETTING: Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. DESIGN: Prospective, randomized study using sealed envelopes. SUBJECTS: 36 preterm lambs were exposed (at 125 or 133-days of gestational age by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. INTERVENTIONS: All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV, surfactant (Curosurf®, 200 mg/kg or (3 no pulmonary treatment (Controls for 3 h. MEASUREMENTS AND MAIN RESULTS: Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. CONCLUSION: SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.

  10. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  11. Mechanisms of pulmonary fibrosis. Spontaneous release of the alveolar macrophage-derived growth factor in the interstitial lung disorders.

    OpenAIRE

    Bitterman, P B; Adelberg, S; Crystal, R G

    1983-01-01

    Interstitial lung disorders are characterized both by a chronic inflammation of the lower respiratory tract that includes increased numbers of activated alveolar macrophages and by increased numbers of fibroblasts within the alveolar wall. Since alveolar macrophages from normal individuals can be activated to release a growth factor for lung fibroblasts (alveolar macrophage-derived growth factor [AMDGF]), we hypothesized that the activated alveolar macrophages within the lower respiratory tra...

  12. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/β-Catenin Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Francesca Wannenes

    2014-01-01

    Full Text Available Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD. We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1 affected by obesity with normal BMD (O, (2 affected by obesity with low BMD (OO, (3 affected by obesity and sarcopenia (OS, and (4 affected by obesity, sarcopenia, and low BMD (OOS as compared to subjects with normal body weight and normal BMD (CTL. Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis.

  13. Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L mice

    Directory of Open Access Journals (Sweden)

    Stoeger Tobias

    2011-09-01

    Full Text Available Abstract Background The alveolar macrophage (AM - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor γ (PPARγ. PPARγ ligand-induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed anti-inflammatory functions of PPARγ we tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution. Methods To address this hypothesis we examined the effects of a carbon-nanoparticle (CNP lung challenge, as surrogate for non-infectious environmental irritants, in a murine model carrying a dominant-negative point mutation in the ligand-binding domain of PPARγ (P465L/wt. Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL was gained 24 h or 72 h after instillation to investigate its cellular and protein composition. Results Higher BAL cell numbers - due to higher macrophage counts - were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h and resolution (72 h were not observed. There were no signs for increased alveolar-capillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactate-dehydrogenase content. Pro-inflammatory macrophage-derived cytokine osteopontin was higher, but galectin-3 lower in female mutants. CXCL5 and lipocalin-2 markers, attributed to epithelial cell stimulation did not differ. Conclusions

  14. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K.; Yasuhiko, K. (Dept. of Radiology, St. Hill Hospital, Ube, Yamaguchi (Japan)); Iwanaga, H.; Tokuda, O.; Matsunaga, N. (Dept. of Radiology, Yamaguchi Univ. School of Medicine, Ube, Yamaguchi (Japan))

    2009-01-15

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  15. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    International Nuclear Information System (INIS)

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  16. Benefit-Risk Summary of Crizotinib for the Treatment of Patients With ROS1 Alteration-Positive, Metastatic Non-Small Cell Lung Cancer

    Science.gov (United States)

    Blumenthal, Gideon M.; Luo, Lola; He, Kun; Fran, Ingrid; Lemery, Steven; Pazdur, Richard

    2016-01-01

    On March 11, 2016, after an expedited 5-month review, the U.S. Food and Drug Administration expanded the crizotinib metastatic non-small cell lung cancer (mNSCLC) indication to include the treatment of patients whose tumors harbor a ROS1 rearrangement. The approval was based on a clinically meaningful, durable objective response rate (ORR) in a multicenter, single-arm clinical trial (ROS1 cohort of Trial PROFILE 1001) in patients with ROS1-positive mNSCLC. The trial enrolled 50 patients (age range: 25–77 years) whose tumors were prospectively determined to have a ROS1 gene rearrangement by break-apart fluorescence in situ hybridization (96%) or reverse transcriptase polymerase chain reaction (4%) clinical trial assays. Crizotinib demonstrated an ORR of 66% (95% confidence interval [CI]: 51%–79%) with a median duration of response of 18.3 months by independent radiology review and 72% (95% CI: 58%–84%) by investigator review. Patients received crizotinib 250 mg twice daily and had a median duration of exposure of 34.4 months. The toxicity profile in ROS1-positive patients was generally consistent with the randomized safety data in the U.S. Product Insert from two ALK-positive mNSCLC trials. The most common (≥25%) adverse reactions and laboratory test abnormalities included vision disorders, elevation of alanine transaminase and aspartate transaminase levels, nausea, hypophosphatemia, diarrhea, edema, vomiting, constipation, neutropenia, and fatigue. There were no treatment-related deaths. A favorable benefit-to-risk evaluation led to the traditional approval of crizotinib for this new supplemental indication. Implications for Practice: Given the results from the ROS1 cohort of the clinical trial PROFILE 1001, crizotinib represents a new treatment option and the first approved therapy for patients with metastatic non-small cell lung cancer whose tumors are ROS1 positive. Crizotinib demonstrated efficacy irrespective of prior treatment status. PMID:27328934

  17. Live imaging of the lung.

    Science.gov (United States)

    Looney, Mark R; Bhattacharya, Jahar

    2014-01-01

    Live lung imaging has spanned the discovery of capillaries in the frog lung by Malpighi to the current use of single and multiphoton imaging of intravital and isolated perfused lung preparations incorporating fluorescent molecular probes and transgenic reporter mice. Along the way, much has been learned about the unique microcirculation of the lung, including immune cell migration and the mechanisms by which cells at the alveolar-capillary interface communicate with each other. In this review, we highlight live lung imaging techniques as applied to the role of mitochondria in lung immunity, mechanisms of signal transduction in lung compartments, studies on the composition of alveolar wall liquid, and neutrophil and platelet trafficking in the lung under homeostatic and inflammatory conditions. New applications of live lung imaging and the limitations of current techniques are discussed. PMID:24245941

  18. The effect and mechanism of endothelin-1-induced intracellular free calcium in human lung adenocarcinoma cells SPC-A1

    Directory of Open Access Journals (Sweden)

    Juan ZHOU

    2008-08-01

    Full Text Available Background and objective Endothelin-1 (ET-1 is a potent mitogen involved in cell growth in human lung adenocarcinoma cells SPC-A1. The increase in intracellular free calcium ([Ca2+]i plays a great role in this process. The aim of this study is to investigate the ET-1-induced [Ca2+]i responses in SPC-A1 cells and to explore its cellular mechanism. Methods [Ca2+]i was measured by Fura-2/AM fluorescent assay. Endothelin receptors antagonists, calcium channel blockers and intracellular signal transduction blockers were used to study the underlying mechanism of ET-1-induced [Ca2+]i responses in SPC-A1 cells. Results At the concentration of 1×10-15 mol/L-1×10-8 mol/L, ET-1 caused a dose-dependent increase of [Ca2+]i in SPC-A1 cells (P0.05, a highly selective endothelin receptor B (ETBR antagonist. Depletion of extracellular Ca2+ with free Ca2+ solution and 0.1mmol/L ethyleneglycol bis (2-aminoethyl ether tetraacetic acid (EGTA or blockade of voltage dependent calcium channel with nifedipine at 1×10-6 mol/L significantly reduced the ET-1-induced increase of [Ca2+]i. The ET-1-induced (1×10-10 mol/L increase of [Ca2+]i was also significantly attenuated by U73122 at 1×10-5 mol/L (P<0.05, a phospholipase C inhibitor, and by Ryanodine at 50×10-6 mol/L. However, Staurosporine (2×10-9 mol/L, a protein kinas C inhibitor, exerted no significant effect on the ET-1-induced (1×10-10 mol/L increase of [Ca2+]i. Conclusion ET-1 elevates [Ca2+]i via activation of ETA receptor. Both phospholipase C/Ca2+ pathway and Ca2+ influx through voltage dependent Ca2+ channel activate by ETAR contribute to this process.

  19. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic; Etude des mecanismes d'alteration par l'eau du verre R7T7 en milieu confine: comprehension et modelisation de la cinetique residuelle

    Energy Technology Data Exchange (ETDEWEB)

    Chave, T

    2007-10-15

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  20. Lung compliance, plasma electrolyte levels and acid-base balance are affected by scorpion envenomation in anesthetized rats under mechanical ventilation.

    Science.gov (United States)

    Andrade, Marcus V; Caramez, Maria Paula R; Abreu, Elnara Marcia N N; Dolnikoff, Marisa; Omar, Erick D; Velasco, Irineu T; Cunha-Melo, José R

    2004-05-01

    To determine the effects of Tityus serrulatus scorpion toxin on lung compliance and resistance, ionic equilibrium and acid-base balance over time in anesthetized and mechanically ventilated rats, we measured air flow, tracheal and esophageal pressure. Lung volume was obtained by electronic integration of airflow signal. Arterial blood samples were collected through a catheter at baseline (before) and 5, 15, 30 and 60 min after scorpion toxin injection for arterial blood gases, bicarbonate, and alkali reserve levels as well as for, sodium, potassium, magnesium, glucose, lactate, hematocrit, and osmolality analysis. Injection of the gamma fraction of the T. serrulatus scorpion venom in rats under mechanical ventilatory support leads to a continuous decrease in lung compliance secondary to pulmonary edema, but no change in airway resistance. The changes in arterial blood gases characterizing metabolic acidosis were accompanied by an increase in arterial lactate and glucose values, suggesting a scorpion toxin-induced lactic acidosis, in association with poor tissue perfusion (hypotension and low cardiac output). Moreover, scorpion toxin injection resulted in hyperosmolality, hyperkalemia, hypermagnesemia and an increase in hematocrit. The experiments have shown a clinically relevant animal model to study severe scorpion envenoming and may help to better understand the scorpion envenoming syndrome. PMID:15313452

  1. Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs.

    Science.gov (United States)

    da Palma, Renata Kelly; Nonaka, Paula Naomi; Campillo, Noelia; Uriarte, Juan J; Urbano, Jessica Julioti; Navajas, Daniel; Farré, Ramon; Oliveira, Luis V F

    2016-05-01

    Bioengineering of functional lung tissue by using whole lung scaffolds has been proposed as a potential alternative for patients awaiting lung transplant. Previous studies have demonstrated that vascular resistance (Rv) could be altered to optimize the process of obtaining suitable lung scaffolds. Therefore, this work was aimed at determining how lung inflation (tracheal pressure) and perfusion (pulmonary arterial pressure) affect vascular resistance. This study was carried out using the lungs excised from 5 healthy male Sprague-Dawley rats. The trachea was cannulated and connected to a continuous positive airway pressure (CPAP) device to provide a tracheal pressure ranging from 0 to 15cmH2O. The pulmonary artery was cannulated and connected to a controlled perfusion system with continuous pressure (gravimetric level) ranging from 5 to 30cmH2O. Effective Rv was calculated by ratio of pulmonary artery pressure (PPA) by pulmonary artery flow (V'PA). Rv in the decellularized lungs scaffolds decreased at increasing V'PA, stabilizing at a pulmonary arterial pressure greater than 20cmH2O. On the other hand, CPAP had no influence on vascular resistance in the lung scaffolds after being subjected to pulmonary artery pressure of 5cmH2O. In conclusion, compared to positive airway pressure, arterial lung pressure markedly influences the mechanics of vascular resistance in decellularized lungs. PMID:26949099

  2. Resistance mechanisms after tyrosine kinase inhibitors afatinib and crizotinib in non-small cell lung cancer, a review of the literature.

    Science.gov (United States)

    van der Wekken, A J; Saber, A; Hiltermann, T J N; Kok, K; van den Berg, A; Groen, H J M

    2016-04-01

    Targeted treatment of advanced non-small cell lung cancer patients with afatinib in EGFR mutation or crizotinib in ALK break positive patients results in profound tumor responses but inevitably induces resistance. In this review we present currently known resistance mechanisms for afatinib and crizotinib two recently approved drugs. Resistance mechanisms identified for afatinib include c-MET amplification and the V843I EGFR mutation. Expression of FGFR1, increased IL6R/JAK/STAT signaling, enhanced interference with aerobic glycolysis and autophagy are associated with resistance to afatinib. Most common resistance mechanisms for ALK break positive cases are gatekeeper mutations in the ALK gene. Also activation of the EGFR pathway, KRAS mutations, the autophagy pathway and epithelial mesenchymal transition (EMT), have been associated with resistance. Many of the proposed resistance mechanisms need to be functionally studied to proof a causative relationship with resistance. PMID:26852079

  3. Mechanical Ventilation and the Titer of Antibodies as Risk Factors for the Development of Transfusion-Related Lung Injury

    OpenAIRE

    Vlaar, A.P.J.; Kuipers, M. T.; Hofstra, J. J.; E. K. Wolthuis; Wieland, C. W.; Roelofs, J. J. T. H.; Boon, L.; Schultz, M.J.; Lutter, R; Juffermans, N.P.

    2012-01-01

    Purpose. Onset of transfusion-related acute lung injury (TRALI) is suggested to be a threshold-event. Data is lacking on the relation between titer of antibodies infused and onset of TRALI. We determined whether onset of TRALI is dependent on the titer of MHC-I antibodies infused in a combined model of ventilator-induced lung injury and antibody-induced TRALl. Methods. BALB/c mice were ventilated for five hours with low (7.5 ml/kg) or high (15 ml/kg) tidal volume. After three hours of MV, TRA...

  4. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung.

    OpenAIRE

    Swenson, E.R.; Robertson, H T; Hlastala, M P

    1993-01-01

    Lung carbonic anhydrase (CA) permits rapid pH responses when changes in regional ventilation or perfusion alter airway and alveolar PCO2. These pH changes affect airway and vascular resistances and lung compliance to optimize the balance of regional ventilation (VA) and perfusion (Q) in the lung. To test the hypothesis that these or other CA-dependent mechanisms contribute to VA/Q matching, we administered acetazolamide (25 mg/kg intravenously) to six anesthetized and paralyzed dogs and measu...

  5. Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms

    International Nuclear Information System (INIS)

    Objective: To study the low dose hyper-radiosensitivity in human lung cancer cell line A549, and its possible mechanisms. Methods: Exponentially growing A549 cells were irradiated with 60Co γ-rays at doses of 0-2 Gy. Together with flow cytometry for precise cell sorting, cell survival fraction was measured by mean of conventional colony-formation assay. ATM1981 Ser-P protein expression was examined by Western blot. Apoptosis was identified by Hoechst 33258 fluorescent staining, and Annexin V-FITC and propidium iodide staining flow cytometry. Cell cycle distribution was observed by flow cytometry. Results: There was an excessive cell killing per unit dose when the doses were below about 0.3 Gy, and the cells exhibited more resistant response at the doses between 0.3 and 0.5 Gy, the cell survival fraction was decreased as the doses over 0.5 Gy. The expression of ATM1981Ser-P protein was first observed at 0.2 Gy, followed by an increase over 0.2 Gy, and reached the peak at 0.5 Gy (compared with 0.2 Gy group, t=7.96, P0.05). 24 hours after irradiation, part cells presented the characteristic morphological change of apoptosis, and the apoptosis curve was coincident with the dose-survival curve. Compared with the control group, the cell cycle had no change post-irradiation to 0.1 and 0.2 Gy. G2/M phase arrest was manifested at 6 and 12 hours post-irradiation to 0.3, 0.4 and 0.5 Gy (t=2.87, 2.88, 4.92 and 3.70, 3.12, 8.11, P2/M phase was decreased at 24 hours post-irradiation (t=3.87, 4.77, 3.01, P<0.05). Conclusions: A549 cells displays the phenomenon of hyper-radiosensitivity (HRS) /induced radioresistance (IRR). The model of cell death induced by low dose irradiation is mainly apoptosis. The activity of ATM and cell cycle change might play an important role in HRS/IRR. (authors)

  6. Low Dose Hyper-radiosensitivity in Human Lung Cancer Cell Line A549 and Its Possible Mechanisms

    Institute of Scientific and Technical Information of China (English)

    Xiaofang DAI; Dan TAO; Hongge WU; Jing CHENG

    2009-01-01

    The low dose hyper-radiosensitivity (HRS) in human lung cancer cell line A549 was in-vestigated,the changes of ATM kinase,cell cycle and apoptosis of cells at different doses of radiation were observed,and the possible mechanisms were discussed.A549 cells in logarithmic growth phase were irradiated with 60Co γ-rays at doses of 0-2 Gy.Together with flow cytometry for precise cell sorting,cell survival fraction was measured by means of conventional colony-formation assay.The expression of ATM1981Ser-P protein was examined by Western blot 1 h after radiation.Apoptosis was detected by Hoechst 33258 fluorescent staining,and Annexin V-FITC/PI staining flow cytometry 24 h after radiation.Cell cycle distribution was observed by flow cytometly 6,12 and 24 h after ra-diation.The results showed that the expression of ATM1981Ser-P protein was observed at 0.2 Gy,followed by an increase at >0.2 Gy,and reached the peak at 0.5 Gy,with little further increase as the dose exceeded 0.5 Gy.Twenty-four h after radiation,partial cells presented the characteristic mor-phological changes of apoptosis,and the cell apoptosis curve was coincident with the survival curve.As compared with control group,the cell cycle almost had no changes after exposure to 0.1 and 0.2 Gy radiation (P>0.05).After exposure to 0.3,0.4 and 0.5 Cry radiation,G2/M phase arrest occurred 6 and 12 h after radiation (P<0.05),and the ratio of G2/M phase cells was decreased 24 h after radiation (P<0.05).It was concluded that A549 cells displayed the phenomenon of HRS/IRR.The mode of cell death was mainly apoptosis.The activity of ATM and cell cycle change may take an important role in HRS/IRR.

  7. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    OpenAIRE

    Yinglong Su; Xiong Zheng; Yinguang Chen; Mu Li; Kun Liu

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total n...

  8. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  9. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism.

    Science.gov (United States)

    Anas, Adam A; van Lieshout, Miriam H P; Claushuis, Theodora A M; de Vos, Alex F; Florquin, Sandrine; de Boer, Onno J; Hou, Baidong; Van't Veer, Cornelis; van der Poll, Tom

    2016-08-01

    Pseudomonas aeruginosa is a flagellated pathogen frequently causing pneumonia in hospitalized patients and sufferers of chronic lung disease. Here we investigated the role of the common Toll-like receptor (TLR) adaptor myeloid differentiation factor (MyD)88 in myeloid vs. lung epithelial cells in clearance of P. aeruginosa from the airways. Mice deficient for MyD88 in lung epithelial cells (Sftpccre-MyD88-lox mice) or myeloid cells (LysMcre-MyD88-lox mice) and bone marrow chimeric mice deficient for TLR5 (the receptor recognizing Pseudomonas flagellin) in either parenchymal or hematopoietic cells were infected with P. aeruginosa via the airways. Sftpccre-MyD88-lox mice demonstrated a reduced influx of neutrophils into the bronchoalveolar space and an impaired early antibacterial defense after infection with P. aeruginosa, whereas the response of LysMcre-MyD88-lox mice did not differ from control mice. The immune-enhancing role of epithelial MyD88 was dependent on recognition of pathogen-derived flagellin by epithelial TLR5, as demonstrated by an unaltered clearance of mutant P. aeruginosa lacking flagellin from the lungs of Sftpccre-MyD88-lox mice and an impaired bacterial clearance in bone marrow chimeric mice lacking TLR5 in parenchymal cells. These data indicate that early clearance of P. aeruginosa from the airways is dependent on flagellin-TLR5-MyD88-dependent signaling in respiratory epithelial cells. PMID:27288486

  10. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung

    DEFF Research Database (Denmark)

    Mathee, Kalai; Ciofu, Oana; Sternberg, Claus; Lindum, Peter W.; Campbell, Joan I. A.; Jensen, Per; Johnsen, Anders H.; Givskov, Michael Christian; Ohman, Dennis E.; Molin, Søren; Høiby, Niels; Kharazmi, Arsalan

    1999-01-01

    The leading cause of mortality in patients with cystic fibrosis (CF) is respiratory failure due in large part to chronic lung infection with Pseudomonas aeruginosa strains that undergo mucoid conversion, display a biofilm mode of growth in vivo and resist the infiltration of polymorphonuclear leu...

  11. Biomarkers for oxidative stress in acute lung injury induced in rabbits submitted to different strategies of mechanical ventilation

    Science.gov (United States)

    Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using ...

  12. Alterations of Phosphoproteins in NCI-H526 Small Cell Lung Cancer Cells Involved in Cytotoxicity of Cisplatin and Titanocene Y

    Directory of Open Access Journals (Sweden)

    Ulrike Olszewski

    2012-09-01

    Full Text Available First-line treatment of small cell lung cancer (SCLC with combination chemotherapy consisting of cis-diamminedichloroplatinum(II (cisplatin and etoposide is frequently followed by early relapses and a dismal prognosis. Survival of a fraction of tumor cells and development of chemoresistance may be influenced by an initial cellular stress response against the administered xenobiotics. Therefore, we compared the short-term effects of cisplatin and non-cross-resistant bis-[(p-methoxybenzylcyclopentadienyl] titanium(IV dichloride (Titanocene Y on phosphorylation of 46 sites of a total of 38 signaling proteins in tumor suppressor protein 53 (p53-wild-type NCI-H526 SCLC cells. The functional significance of selected kinases for the cytotoxicity of both drugs was tested using specific inhibitors and an activator. The cisplatin-induced cellular stress response involved activation of p38α mitogen-activated protein kinase, whereas Titanocene Y-triggered signaling affected c-Jun N-terminal kinase. Phosphorylation of adenosine monophosphate (AMP-activated protein kinase α1 (AMPKα1 was increased by both drugs, which promoted cell survival, as indicated by results obtained using AMPK inhibitor compound C and AMPK activator 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This is in good agreement with previous reports, where AMPKα1 was demonstrated to represent an important factor for the sensitivity to cisplatin in colon and ovarian cancers, most likely by induction of autophagy. Thus, AMPKα1 constitutes a potential target to be exploited for chemotherapeutic treatment of SCLC to circumvent resistance to metal-based compounds.

  13. Collapsed Lung

    Science.gov (United States)

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  14. Distinct HIC1-SIRT1-p53 Loop Deregulation in Lung Squamous Carcinoma and Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Ruo-Chia Tseng

    2009-08-01

    Full Text Available A HIC1-SIRT1-p53 circular loop in which hypermethylation in cancer 1 (HIC1 represses the transcription of SIRT1 that deacetylates and inactivates p53 thus leading to HIC1 inactivation has been identified in cell and animal models. However, the alteration and prognostic effects of HIC1-SIRT1-p53 circular loop have never been demonstrated in human cancer patients. We examine the HIC1-SIRT1-p53 alterations in 118 lung cancer patients to define their etiological roles in tumorigenesis. We found that patients with lung squamous cell carcinoma with low p53 acetylation and SIRT1 expression mostly showed low HIC1 expression, confirming deregulation of HIC1-SIRT1-p53 circular loop in the clinical model. Interestingly, the expression of deleted in breast cancer 1 (DBC1, which blocks the interaction between SIRT1 deacetylase and p53, led to acetylated p53 in patients with lung adenocarcinoma. However, epigenetic alteration of HIC1 promoter by posttranslational modifications of histones and promoter hypermethylation favoring the compacted chromatin production attenuated the transcriptional induction by acetylated p53. Importantly, lung cancer patients with altered HIC1-SIRT1-p53 circular regulation showed poor prognosis. Our data show the first valid clinical evidence of the deregulation of HIC1-SIRT1-p53 loop in lung tumorigenesis and prognosis. Distinct status of p53 acetylation/deacetylation and HIC1 alteration mechanism result from different SIRT1-DBC1 control and epigenetic alteration in lung squamous cell carcinoma and lung adenocarcinoma.

  15. Cumulative-Phase-Alteration of Galactic-Light Passing Through the Cosmic-Microwave-Background: A New Mechanism for Some Observed Spectral-Shifts

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-07-01

    Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.

  16. Altered Expression of Transporters, its Potential Mechanisms and Influences in the Liver of Rodent Models Associated with Diabetes Mellitus and Obesity.

    Science.gov (United States)

    Ma, Leilei; He, Lei; Wang, Le; Li, Li; Lin, Xuena; Pan, Guoyu

    2016-06-01

    Diabetes mellitus is becoming an increasingly prevalent disease that concerns patients and healthcare professionals worldwide. Among many anti-diabetic agents in clinical uses, numerous reports are available on their altered pharmacokinetics because of changes in the expression of drug transporters and metabolic enzymes under diabetic states. These changes may affect the safety and efficacy of therapeutic agents and/or drug-drug interaction with co-administered agents. Therefore, the changes in transporter expression should be identified, and the underlying mechanisms should be clarified. This review summarizes the progress of recent studies on the alterations in important uptake and efflux transporters in liver of diabetic animals and their regulatory pathways. PMID:26597190

  17. Knockdown of Merm1/Wbscr22 attenuates sensitivity of H460 non-small cell lung cancer cells to SN-38 and 5-FU without alteration to p53 expression levels.

    Science.gov (United States)

    Yan, Dongmei; Zheng, Xiaoliang; Tu, Linglan; Jia, Jing; Li, Qin; Cheng, Liyan; Wang, Xiaoju

    2015-01-01

    Merm1/Wbscr22 is a novel metastasis promoter that has been shown to be involved in tumor metastasis, viability and apoptosis. To the best of our knowledge, there are currently no studies suggesting the possible correlation between the expression of Merm1/Wbscr22 in tumor cells and chemosensitivity to antitumor agents. In the present study, two human non-small cell lung cancer cell lines, H1299 and H460, were used to investigate whether Merm1/Wbscr22 affects chemosensitivity to antitumor agents, including cisplatin (CDDP), doxorubicin (ADM), paclitaxel (PTX), mitomycin (MMC), 7-Ethyl-10-hydroxycamptothecin (SN-38; the active metabolite of camptothecin) and 5-fluorouracil (5-FU). Merm1/Wbscr22 knockdown cell lines (H1299-shRNA and H460-shRNA) and negative control cell lines (H1299-NC and H460-NC) were established by stable transfection, and the efficiency of Merm1/Wbscr22 knockdown was confirmed by western blotting, immunofluorescence microscopy and quantitative polymerase chain reaction. The results demonstrated that shRNA-mediated knockdown of Merm1/Wbscr22 did not affect cell proliferation in vitro and in vivo. The H460 cells harboring wild type p53 were markedly more sensitive to all six antitumor agents as compared with the p53-null H1299 cells. Downregulation of Merm1/Wbscr22 did not affect H1299 sensitivity to any of the six antitumor agents, whereas attenuated H460 sensitivity to SN-38 and 5-FU, without significant alteration in p53 at both mRNA and protein levels, was identified. The reduced H460 sensitivity to SN-38 was further confirmed in vivo. SN-38 demonstrated significant tumor growth inhibitory activity in both H460 and H460‑NC tumor xenograft models, but only marginally suppressed the H460-shRNA xenograft tumor growth. Furthermore, CDDP (4, 10, 15 µg/ml)-resistant human non-small lung cancer cells A549 (A549-CDDPr-4, 10, 15) expressed significant amounts of Merm1/Wbscr22 protein, as compared with the parental A549 cells. In conclusion, sh

  18. Successes and limitations of targeted cancer therapy in lung cancer.

    Science.gov (United States)

    Suda, Kenichi; Mitsudomi, Tetsuya

    2014-01-01

    Human cancers usually evolve through multistep processes. These processes are driven by the accumulation of abundant genetic and epigenetic abnormalities. However, some lung cancers depend on a single activated oncogene by somatic mutation, termed 'driver oncogenic mutations', for their proliferation and survival. EGFR(epidermal growth factor receptor) mutations and ALK(anaplastic lymphoma kinase) rearrangement are typical examples of such driver oncogenic mutations found in lung adenocarcinomas. EGFR-tyrosine kinase inhibitors (TKIs) or ALK-TKIs significantly improved treatment outcomes compared with conventional cytotoxic chemotherapy in patients with lung cancers harboring EGFR mutations or ALK rearrangement, respectively. Therefore, treatment strategies for lung cancers have dramatically changed from a 'general and empiric' to a 'personalized and evidence-based' approach according to the driver oncogenic mutation. Several novel driver oncogenic mutations, which are candidates as novel targets, such as ERBB2, BRAF, ROS1, and RET, have been discovered. Despite these successes, several limitations have arisen. One example is that some lung cancers do not respond to treatments targeting driver oncogenic mutations, as exemplified in KRAS-mutated lung cancers. Another is resistance to molecular-targeted drugs. Such resistance includes de novo resistance and acquired resistance. A number of molecular mechanisms underlying such resistance have been reported. These mechanisms can be roughly divided into three categories: alteration of the targeted oncogenes themselves by secondary mutations or amplification, activation of an alternative oncogenic signaling track, and conversion of cellular characteristics. Overcoming resistance is a current area of urgent clinical research. PMID:24727987

  19. Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats

    Science.gov (United States)

    Acute ozone-induced pulmonary injury and inflammation are well characterized in rats; however, mechanistic understanding of the pathways involved is limited. We hypothesized that acute exposure of healthy rats to ozone will cause transcriptional alterations, and comprehensive ana...

  20. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism.

    Science.gov (United States)

    Borkowska, Malgorzata; Millar, J Kirsty; Price, David J

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse for