WorldWideScience

Sample records for altered gene synchrony

  1. Altered gene synchrony suggests a combined hormone-mediated dysregulated state in major depression.

    Directory of Open Access Journals (Sweden)

    Chris Gaiteri

    Full Text Available Coordinated gene transcript levels across tissues (denoted "gene synchrony" reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001. Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here "depression" (n = 14; MDD/Permutated data, p<0.000001, significantly affecting between 100 and 250 individual genes (10-30% false discovery rate. Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks. In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression.

  2. Changes in large-scale climate alter spatial synchrony of aphid pests

    Science.gov (United States)

    Sheppard, Lawrence W.; Bell, James R.; Harrington, Richard; Reuman, Daniel C.

    2016-06-01

    Spatial synchrony, the tendency of distant populations to fluctuate similarly, is a major concern in ecology. Except in special circumstances, researchers historically had difficulty identifying drivers of synchrony in field systems. Perhaps for this reason, the possibility that changes in large-scale climatic drivers may modify synchrony, thereby impacting ecosystems and human concerns, has been little examined. Here, we use wavelets to determine environmental drivers of phenological synchrony across Britain for 20 aphid species, most major crop pests. Consistently across species, changes in drivers produced large changes in aphid synchrony. Different drivers acted on different timescales: using a new wavelet analogue of the Moran theorem, we show that on long timescales (>4 years), 80% of synchrony in aphid first flights is due to synchrony in winter climate; but this explanation accounts for less short-timescale (Changes in aphid synchrony over time also differed by timescale: long-timescale synchrony fell from before 1993 to after, caused by similar changes in winter climate; whereas short-timescale synchrony increased. Shifts in winter climate are attributable to the North Atlantic Oscillation, an important climatic phenomenon, so effects described here may influence other taxa. This study documents a new way that climatic changes influence populations, through altered Moran effects.

  3. An Eight Month Randomized Controlled Exercise Intervention Alters Resting State Synchrony in Overweight Children

    OpenAIRE

    Krafft, Cynthia E.; Pierce, Jordan E.; Schwarz, Nicolette F.; Chi, Lingxi; Weinberger, Abby L.; Schaeffer, David J.; Rodrigue, Amanda L.; Camchong, Jazmin; Allison, Jerry D.; Yanasak, Nathan E.; Liu, Tianming; Davis, Catherine L.; McDowell, Jennifer E.

    2013-01-01

    Children with low aerobic fitness have altered brain function compared to higher-fit children. This study examined the effect of an 8-month exercise intervention on resting state synchrony. Twenty-two sedentary, overweight (body mass index ≥ 85th percentile) children 8–11 years old were randomly assigned to one of two after-school programs: aerobic exercise (n=13) or sedentary attention control (n=9). Before and after the 8-month programs, all subjects participated in resting state functional...

  4. An eight month randomized controlled exercise intervention alters resting state synchrony in overweight children.

    Science.gov (United States)

    Krafft, C E; Pierce, J E; Schwarz, N F; Chi, L; Weinberger, A L; Schaeffer, D J; Rodrigue, A L; Camchong, J; Allison, J D; Yanasak, N E; Liu, T; Davis, C L; McDowell, J E

    2014-01-01

    Children with low aerobic fitness have altered brain function compared to higher-fit children. This study examined the effect of an 8-month exercise intervention on resting state synchrony. Twenty-two sedentary, overweight (body mass index ≥85th percentile) children 8-11 years old were randomly assigned to one of two after-school programs: aerobic exercise (n=13) or sedentary attention control (n=9). Before and after the 8-month programs, all subjects participated in resting state functional magnetic resonance imaging scans. Independent components analysis identified several networks, with four chosen for between-group analysis: salience, default mode, cognitive control, and motor networks. The default mode, cognitive control, and motor networks showed more spatial refinement over time in the exercise group compared to controls. The motor network showed increased synchrony in the exercise group with the right medial frontal gyrus compared to controls. Exercise behavior may enhance brain development in children. PMID:24096138

  5. Synchrony and cooperation.

    Science.gov (United States)

    Wiltermuth, Scott S; Heath, Chip

    2009-01-01

    Armies, churches, organizations, and communities often engage in activities-for example, marching, singing, and dancing-that lead group members to act in synchrony with each other. Anthropologists and sociologists have speculated that rituals involving synchronous activity may produce positive emotions that weaken the psychological boundaries between the self and the group. This article explores whether synchronous activity may serve as a partial solution to the free-rider problem facing groups that need to motivate their members to contribute toward the collective good. Across three experiments, people acting in synchrony with others cooperated more in subsequent group economic exercises, even in situations requiring personal sacrifice. Our results also showed that positive emotions need not be generated for synchrony to foster cooperation. In total, the results suggest that acting in synchrony with others can increase cooperation by strengthening social attachment among group members. PMID:19152536

  6. Monitoring spike train synchrony

    CERN Document Server

    Kreuz, Thomas; Houghton, Conor; Andrzejak, Ralph G; Mormann, Florian

    2012-01-01

    Recently, the SPIKE-distance has been proposed as a parameter-free and time-scale independent measure of spike train synchrony. This measure is time-resolved since it relies on instantaneous estimates of spike train dissimilarity. However, its original definition led to spuriously high instantaneous values for event-like firing patterns. Here we present a substantial improvement of this measure which eliminates this shortcoming. The reliability gained allows us to track changes in instantaneous clustering, i.e., time-localized patterns of (dis)similarity among multiple spike trains. Additional new features include selective and triggered temporal averaging as well as the instantaneous comparison of spike train groups. In a second step, a causal SPIKE-distance is defined such that the instantaneous values of dissimilarity rely on past information only so that time-resolved spike train synchrony can be estimated in real-time. We demonstrate that these methods are capable of extracting valuable information from ...

  7. Diurnal Oscillation of Amygdala Clock Gene Expression and Loss of Synchrony in a Mouse Model of Depression

    OpenAIRE

    Savalli, Giorgia; Diao, Weifei; Schulz, Stefan; Todtova, Kristina; Pollak, Daniela D.

    2015-01-01

    Background: Disturbances in circadian rhythm-related physiological and behavioral processes are frequently observed in depressed patients and several clock genes have been identified as risk factors for the development of mood disorders. However, the particular involvement of the circadian system in the pathophysiology of depression and its molecular regulatory interface is incompletely understood. Methods: A naturalistic animal model of depression based upon exposure to chronic mild stress w...

  8. Spatial synchrony in cisco recruitment

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  9. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    Science.gov (United States)

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances. PMID:27111147

  10. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael;

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A total of 17...

  11. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    Science.gov (United States)

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  12. Measuring spike train synchrony

    CERN Document Server

    Kreuz, T; Haas, J S; Morelli, A; Politi, A; Abarbanel, Henry D. I.; Haas, Julie S.; Kreuz, Thomas; Morelli, Alice; Politi, Antonio

    2007-01-01

    Estimating the degree of synchrony or reliability between two or more spike trains is a frequent task in both experimental and computational neuroscience. In recent years, many different methods have been proposed that typically compare the timing of spikes on a certain time scale to be fixed beforehand. Here, we propose the ISI-distance, a simple complementary approach that extracts information from the interspike intervals by evaluating the ratio of the instantaneous frequencies. The method is parameter free, time scale independent and easy to visualize as illustrated by an application to real neuronal spike trains obtained in vitro from rat slices. In a comparison with existing approaches on spike trains extracted from a simulated Hindemarsh-Rose network, the ISI-distance performs as well as the best time-scale-optimized measure based on spike timing.

  13. Optimizing patient-ventilator synchrony.

    Science.gov (United States)

    Epstein, S K

    2001-01-01

    Mechanical ventilation assumes the work of breathing, improves gas exchange, and unloads the respiratory muscles, all of which require good synchronization between the patient and the ventilator. Causes for patient-ventilator dyssynchrony include both patient factors (abnormalities of respiratory drive and abnormal respiratory mechanics) and ventilator factors (triggering, flow delivery, breath termination criteria, the level and mode of ventilator support, and imposed work of breathing). Although patient-ventilator dyssynchrony can often be detected on physical exam, careful analysis of ventilator waveforms (pressure-time, flow-time) allows for more precise definition of the underlying cause. Patient-ventilator interaction can be improved by reversing patient factors that alter respiratory drive or elevate patient ventilatory requirements and by correcting factors that contribute to dynamic hyperinflation. Proper setting of the ventilator using sensitive triggering mechanisms, satisfactory flow rates, adequate delivered minute ventilation, matching machine T(I) to neural T(I), and applying modes that overcome the imposed work of breathing, further optimize patient-ventilator synchrony. PMID:16088669

  14. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  15. Spatial synchrony of monarch butterflies

    OpenAIRE

    Koenig, W D

    2006-01-01

    I examined spatial synchrony in Populations of monarch butterflies (Danaus plexippus) during the summer breeding season across North America and while overwintering along the Pacific Coast. Spatial synchrony was observed in all analyses, but was particularly great among eastern summer populations and among overwintering populations on the Pacific Coast. Thus, in a year when relatively large numbers of monarchs were found at a particular breeding or wintering site in these populations, other s...

  16. Alteration of gene expression by alcohol exposure at early neurulation

    Directory of Open Access Journals (Sweden)

    McClintick Jeanette N

    2011-02-01

    Full Text Available Abstract Background We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Result Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545, adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22, neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg, and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1, and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1. Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO and a closed neural tube (ALC-NTC. Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. Conclusion This study revealed a set of genes vulnerable to alcohol exposure and

  17. Endogenous rhythms influence interpersonal synchrony.

    Science.gov (United States)

    Zamm, Anna; Wellman, Chelsea; Palmer, Caroline

    2016-05-01

    Interpersonal synchrony, the temporal coordination of actions between individuals, is fundamental to social behaviors from conversational speech to dance and music-making. Animal models indicate constraints on synchrony that arise from endogenous rhythms: Intrinsic periodic behaviors or processes that continue in the absence of change in external stimulus conditions. We report evidence for a direct causal link between endogenous rhythms and interpersonal synchrony in a music performance task, which places high demands on temporal coordination. We first establish that endogenous rhythms, measured by spontaneous rates of individual performance, are stable within individuals across stimulus materials, limb movements, and time points. We then test a causal link between endogenous rhythms and interpersonal synchrony by pairing each musician with a partner who is either matched or mismatched in spontaneous rate and by measuring their joint behavior up to 1 year later. Partners performed melodies together, using either the same or different hands. Partners who were matched for spontaneous rate showed greater interpersonal synchrony in joint performance than mismatched partners, regardless of hand used. Endogenous rhythms offer potential to predict optimal group membership in joint behaviors that require temporal coordination. (PsycINFO Database Record PMID:26820249

  18. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  19. In vitro maturation alters gene expression in bovine oocytes.

    Science.gov (United States)

    Adona, Paulo R; Leal, Cláudia L V; Biase, Fernando H; De Bem, Tiago H; Mesquita, Lígia G; Meirelles, Flávio V; Ferraz, André L; Furlan, Luiz R; Monzani, Paulo S; Guemra, Samuel

    2016-08-01

    Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein-protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein-protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.

  20. Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression

    Directory of Open Access Journals (Sweden)

    Farruk M. Lutful Kabir

    2015-12-01

    Full Text Available Breast cancer represents the second most frequent neoplasm in humans and sexually intact female dogs after lung and skin cancers, respectively. Many similar features in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression and response to conventional therapies have supported development of this comparative model as an alternative to mice. The highly conserved similarities between canine and human genomes are also key to this comparative analysis, especially when compared to the murine genome. Studies with canine mammary tumor (CMT models have shown a strong genetic correlation with their human counterparts, particularly in terms of altered expression profiles of cell cycle regulatory genes, tumor suppressor and oncogenes and also a large group of non-coding RNAs or microRNAs (miRNAs. Because CMTs are considered predictive intermediate models for human breast cancer, similarities in genetic alterations and cancer predisposition between humans and dogs have raised further interest. Many cancer-associated genetic defects critical to mammary tumor development and oncogenic determinants of metastasis have been reported and appear to be similar in both species. Comparative analysis of deregulated gene sets or cancer signaling pathways has shown that a significant proportion of orthologous genes are comparably up- or down-regulated in both human and dog breast tumors. Particularly, a group of cell cycle regulators called cyclin-dependent kinase inhibitors (CKIs acting as potent tumor suppressors are frequently defective in CMTs. Interestingly, comparative analysis of coding sequences has also shown that these genes are highly conserved in mammals in terms of their evolutionary divergence from a common ancestor. Moreover, co-deletion and/or homozygous loss of the INK4A/ARF/INK4B (CDKN2A/B locus, encoding three members of the CKI tumor suppressor gene families (p16/INK4A, p14ARF and p15

  1. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  2. Synchrony-optimized power grids

    CERN Document Server

    Pinto, Rafael S

    2014-01-01

    We investigate synchronization in power grids, which we assume to be modeled by a network of Kuramoto oscillators with inertia. More specifically, we study the optimization of the power grid topology to favor the network synchronization. We introduce a rewiring algorithm which consists basically in a hill climb scheme where the edges of the network are swapped in order enhance the main measures of synchronization. As a byproduct of the optimization algorithm, we typically have also the anticipation of the synchronization onset for the optimized network. We perform several robustness tests for the synchrony-optimized power grids, including the impact of consumption peaks. In our analyses, we investigate synthetic random networks, which we consider as hypothetical decentralized power generation situations, and also a network based in the actual power grid of Spain, which corresponds to the current paradigm of centralized power grids. The synchrony-optimized power grids obtained by our algorithm have some intere...

  3. Alterations of FHIT Gene and P16 Gene in Nickel Transformed Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG JI; JIA-KUN CHEN; JIA-CHUN LU; ZHONG-LIANG WU; FEI YI; SU-MEI FENG

    2006-01-01

    To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immoral human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P<0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.

  4. Taking Synchrony Seriously: A Perceptual-Level Model of Infant Synchrony Detection

    OpenAIRE

    Prince, Christopher G.; Hollich, George J.; Helder, Nathan A.; Mislivec, Eric J.; Reddy, Anoop; Salunke, Sampanna; Memon, Naveed

    2004-01-01

    Synchrony detection between different sensory and/or motor channels appears critically important for young infant learning and cognitive development. For example, empirical studies demonstrate that audio-visual synchrony aids in language acquisition. In this paper we compare these infant studies with a model of synchrony detection based on the Hershey and Movellan (2000) algorithm augmented with methods for quantitative synchrony estimation. Four infant-model comparisons are presented, using ...

  5. Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation

    Science.gov (United States)

    Abuisneineh, Fida; Fahrenbach, John P.; Zhang, Yuan; MacLeod, Heather; Dellefave, Lisa; Pytel, Peter; Selig, Sara; Labno, Christine M.; Reddy, Karen; Singh, Harinder; McNally, Elizabeth

    2010-01-01

    Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered. PMID:21179469

  6. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation.

    Directory of Open Access Journals (Sweden)

    Stephanie K Mewborn

    Full Text Available BACKGROUND: Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. METHODS/FINDINGS: To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. CONCLUSIONS: These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.

  7. Altered choroid plexus gene expression in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Cortney Ann Turner

    2014-04-01

    Full Text Available Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus, the region that produces cerebrospinal fluid (CSF, in individuals with major depressive disorder (MDD. Genes that are expressed in the choroid plexus (CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the choroid plexus at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p< 0.05 between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ pathway. Quantitative real-time PCR (qRT-PCR confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the choroid plexus in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

  8. Genomic aberrations frequently alter chromatin regulatory genes in chordoma.

    Science.gov (United States)

    Wang, Lu; Zehir, Ahmet; Nafa, Khedoudja; Zhou, Nengyi; Berger, Michael F; Casanova, Jacklyn; Sadowska, Justyna; Lu, Chao; Allis, C David; Gounder, Mrinal; Chandhanayingyong, Chandhanarat; Ladanyi, Marc; Boland, Patrick J; Hameed, Meera

    2016-07-01

    Chordoma is a rare primary bone neoplasm that is resistant to standard chemotherapies. Despite aggressive surgical management, local recurrence and metastasis is not uncommon. To identify the specific genetic aberrations that play key roles in chordoma pathogenesis, we utilized a genome-wide high-resolution SNP-array and next generation sequencing (NGS)-based molecular profiling platform to study 24 patient samples with typical histopathologic features of chordoma. Matching normal tissues were available for 16 samples. SNP-array analysis revealed nonrandom copy number losses across the genome, frequently involving 3, 9p, 1p, 14, 10, and 13. In contrast, copy number gain is uncommon in chordomas. Two minimum deleted regions were observed on 3p within a ∼8 Mb segment at 3p21.1-p21.31, which overlaps SETD2, BAP1 and PBRM1. The minimum deleted region on 9p was mapped to CDKN2A locus at 9p21.3, and homozygous deletion of CDKN2A was detected in 5/22 chordomas (∼23%). NGS-based molecular profiling demonstrated an extremely low level of mutation rate in chordomas, with an average of 0.5 mutations per sample for the 16 cases with matched normal. When the mutated genes were grouped based on molecular functions, many of the mutation events (∼40%) were found in chromatin regulatory genes. The combined copy number and mutation profiling revealed that SETD2 is the single gene affected most frequently in chordomas, either by deletion or by mutations. Our study demonstrated that chordoma belongs to the C-class (copy number changes) tumors whose oncogenic signature is non-random multiple copy number losses across the genome and genomic aberrations frequently alter chromatin regulatory genes. © 2016 Wiley Periodicals, Inc.

  9. Genomic aberrations frequently alter chromatin regulatory genes in chordoma.

    Science.gov (United States)

    Wang, Lu; Zehir, Ahmet; Nafa, Khedoudja; Zhou, Nengyi; Berger, Michael F; Casanova, Jacklyn; Sadowska, Justyna; Lu, Chao; Allis, C David; Gounder, Mrinal; Chandhanayingyong, Chandhanarat; Ladanyi, Marc; Boland, Patrick J; Hameed, Meera

    2016-07-01

    Chordoma is a rare primary bone neoplasm that is resistant to standard chemotherapies. Despite aggressive surgical management, local recurrence and metastasis is not uncommon. To identify the specific genetic aberrations that play key roles in chordoma pathogenesis, we utilized a genome-wide high-resolution SNP-array and next generation sequencing (NGS)-based molecular profiling platform to study 24 patient samples with typical histopathologic features of chordoma. Matching normal tissues were available for 16 samples. SNP-array analysis revealed nonrandom copy number losses across the genome, frequently involving 3, 9p, 1p, 14, 10, and 13. In contrast, copy number gain is uncommon in chordomas. Two minimum deleted regions were observed on 3p within a ∼8 Mb segment at 3p21.1-p21.31, which overlaps SETD2, BAP1 and PBRM1. The minimum deleted region on 9p was mapped to CDKN2A locus at 9p21.3, and homozygous deletion of CDKN2A was detected in 5/22 chordomas (∼23%). NGS-based molecular profiling demonstrated an extremely low level of mutation rate in chordomas, with an average of 0.5 mutations per sample for the 16 cases with matched normal. When the mutated genes were grouped based on molecular functions, many of the mutation events (∼40%) were found in chromatin regulatory genes. The combined copy number and mutation profiling revealed that SETD2 is the single gene affected most frequently in chordomas, either by deletion or by mutations. Our study demonstrated that chordoma belongs to the C-class (copy number changes) tumors whose oncogenic signature is non-random multiple copy number losses across the genome and genomic aberrations frequently alter chromatin regulatory genes. © 2016 Wiley Periodicals, Inc. PMID:27072194

  10. Genomic Aberrations Frequently Alter Chromatin Regulatory Genes in Chordoma

    Science.gov (United States)

    Wang, Lu; Zehir, Ahmet; Nafa, Khedoudja; Zhou, Nengyi; Berger, Michael F.; Casanova, Jacklyn; Sadowska, Justyna; Lu, Chao; Allis, C. David; Gounder, Mrinal; Chandhanayingyong, Chandhanarat; Ladanyi, Marc; Boland, Patrick J; Hameed, Meera

    2016-01-01

    Chordoma is a rare primary bone neoplasm that is resistant to standard chemotherapies. Despite aggressive surgical management, local recurrence and metastasis is not uncommon. To identify the specific genetic aberrations that play key roles in chordoma pathogenesis, we utilized a genome-wide high-resolution SNP-array and next generation sequencing (NGS)-based molecular profiling platform to study 24 patient samples with typical histopathologic features of chordoma. Matching normal tissues were available for 16 samples. SNP-array analysis revealed nonrandom copy number losses across the genome, frequently involving 3, 9p, 1p, 14, 10, and 13. In contrast, copy number gain is uncommon in chordomas. Two minimum deleted regions were observed on 3p within a ~8 Mb segment at 3p21.1–p21.31, which overlaps SETD2, BAP1 and PBRM1. The minimum deleted region on 9p was mapped to CDKN2A locus at 9p21.3, and homozygous deletion of CDKN2A was detected in 5/22 chordomas (~23%). NGS-based molecular profiling demonstrated an extremely low level of mutation rate in chordomas, with an average of 0.5 mutations per sample for the 16 cases with matched normal. When the mutated genes were grouped based on molecular functions, many of the mutation events (~40%) were found in chromatin regulatory genes. The combined copy number and mutation profiling revealed that SETD2 is the single gene affected most frequently in chordomas, either by deletion or by mutations. Our study demonstrated that chordoma belongs to the C-class (copy number changes) tumors whose oncogenic signature is non-random multiple copy number losses across the genome and genomic aberrations frequently alter chromatin regulatory genes. PMID:27072194

  11. Nonverbal synchrony and affect in dyadic interactions

    Directory of Open Access Journals (Sweden)

    Wolfgang eTschacher

    2014-11-01

    Full Text Available In an experiment on dyadic social interaction, we invited participants to verbal interactions in cooperative, competitive, and 'fun task' conditions. We focused on the link between interactants' affectivity and their nonverbal synchrony, and explored which further variables contributed to affectivity: interactants' personality traits, sex, and the prescribed interaction tasks. Nonverbal synchrony was quantified by the coordination of interactants' body movement, using an automated video-analysis algorithm (Motion Energy Analysis, MEA. Traits were assessed with standard questionnaires of personality, attachment, interactional style, psychopathology and interpersonal reactivity. We included 168 previously unacquainted individuals who were randomly allocated to same-sex dyads (84 females, 84 males, mean age 27.3 years. Dyads discussed four topics of general interest drawn from an urn of eight topics, and finally engaged in a fun interaction. Each interaction lasted five minutes. In between interactions, participants repeatedly assessed their affect. Using hierarchical linear modeling, we found moderate to strong effect sizes for synchrony to occur, especially in competitive and fun task conditions. Positive affect was associated positively with synchrony, negative affect was associated negatively. As for causal direction, data supported the interpretation that synchrony entailed affect rather than vice versa. The link between nonverbal synchrony and affect was strongest in female dyads. The findings extend previous reports of synchrony and mimicry associated with emotion in relationships and suggest a possible mechanism of the synchrony-affect correlation.

  12. Exit from Synchrony in Joint Improvised Motion

    Science.gov (United States)

    Dahan, Assi; Noy, Lior; Hart, Yuval; Mayo, Avi; Alon, Uri

    2016-01-01

    Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction. PMID:27711185

  13. Synchrony Can Destabilize Reward-Sensitive Networks

    Directory of Open Access Journals (Sweden)

    Michael eChary

    2014-04-01

    Full Text Available When exposed to rewarding stimuli, only some animals develop persistent craving. Others are resilient and do not. How the activity of neural populations relates to the development of persistent craving behavior is not fully understood. Previous computational studies suggest that synchrony helps a network embed certain patterns of activity, although the role of synchrony in reward-dependent learning has been less studied. Increased synchrony has been reported as a marker for both susceptibility and resilience to developing persistent craving. Here we use computational simulations to study the effect of reward salience on the ability of synchronous input to embed a new pattern of activity into a neural population. Our main finding is that weak stimulus-reward correlations can facilitate the short-term repetition of a pattern of neural activity, while blocking long-term embedding of that pattern. Interestingly, synchrony did not have this dual effect on all patterns, which suggests that synchrony is more effective at embedding some patterns of activity than others. Our results demonstrate that synchrony can have opposing effects in networks sensitive to the correlation structure of their inputs, in this case the correlation between stimulus and reward. This work contributes to an understanding of the interplay between synchrony and reward-dependent plasticity.

  14. Antipsychotic pathway genes with expression altered in opposite direction by antipsychotics and amphetamine.

    Science.gov (United States)

    Ko, Françoise; Tallerico, Teresa; Seeman, Philip

    2006-08-01

    To develop a new strategy for identifying possible psychotic- or antipsychotic-related pathway genes, rats were treated with clinical doses of haloperidol and clozapine for 4 days, and the altered expression of genes was compared with the genes altered in expression after amphetamine sensitization. The objective was to identify genes with expression altered in the same direction by haloperidol and clozapine but in the opposite direction in the amphetamine-sensitized rat striatum. These criteria were met by 21 genes, consisting of 15 genes upregulated by amphetamine, and 6 genes downregulated by amphetamine. Of the 21 genes, 15 are not presently identified, and only 3 genes (cathepsin K, GRK6, and a gene with accession number AI177589) are located in chromosome regions known to be associated with schizophrenia.

  15. A gene-alteration profile of human lung cancer cell lines

    OpenAIRE

    R. Blanco; Iwakawa, R.; Tang, M; Kohno, T.; Angulo, B; Pio, R. (Rubén); Montuenga, L M; Minna, J D; Yokota, J; Sanchez-Cespedes, M.

    2009-01-01

    ABSTRACT: Aberrant proteins encoded from genes altered in tumors drive cancer development and may also be therapeutic targets. Here we derived a comprehensive gene-alteration profile of lung cancer cell lines. We tested 17 genes in a panel of 88 lung cancer cell lines and found the rates of alteration to be higher than previously thought. Nearly all cells feature inactivation at TP53 and CDKN2A or RB1, whereas BRAF, MET, ERBB2, and NRAS alterations were infrequent. A p...

  16. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-Jun.

    Science.gov (United States)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata; Aumercier, Marc; Mukhopadhyay, Gauranga; Tyagi, Rakesh K

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling.

  17. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  18. Autism associated gene, engrailed2, and flanking gene levels are altered in post-mortem cerebellum.

    Directory of Open Access Journals (Sweden)

    Jiyeon Choi

    Full Text Available BACKGROUND: Previous genetic studies demonstrated association between the transcription factor engrailed2 (EN2 and Autism Spectrum Disorder (ASD. Subsequent molecular analysis determined that the EN2 ASD-associated haplotype (rs1861972-rs1861973 A-C functions as a transcriptional activator to increase gene expression. EN2 is flanked by 5 genes, serotonin receptor5a (HTR5A, insulin induced gene1 (INSIG1, canopy1 homolog (CNPY1, RNA binding motif protein33 (RBM33, and sonic hedgehog (SHH. These flanking genes are co-expressed with EN2 during development and coordinate similar developmental processes. To investigate if mRNA levels for these genes are altered in individuals with autism, post-mortem analysis was performed. METHODS: qRT-PCR quantified mRNA levels for EN2 and the 5 flanking genes in 78 post-mortem cerebellar samples. mRNA levels were correlated with both affection status and rs1861972-rs1861973 genotype. Molecular analysis investigated whether EN2 regulates flanking gene expression. RESULTS: EN2 levels are increased in affected A-C/G-T individuals (p = .0077. Affected individuals also display a significant increase in SHH and a decrease in INSIG1 levels. Rs1861972-rs1861973 genotype is correlated with significant increases for SHH (A-C/G-T and CNPY1 (G-T/G-T levels. Human cell line over-expression and knock-down as well as mouse knock-out analysis are consistent with EN2 and SHH being co-regulated, which provides a possible mechanism for increased SHH post-mortem levels. CONCLUSIONS: EN2 levels are increased in affected individuals with an A-C/G-T genotype, supporting EN2 as an ASD susceptibility gene. SHH, CNPY1, and INSIG1 levels are also significantly altered depending upon affection status or rs1861972-rs1861973 genotype. Increased EN2 levels likely contribute to elevated SHH expression observed in the post-mortem samples.

  19. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    Science.gov (United States)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  20. Interpersonal synchrony increases prosocial behavior in infants.

    Science.gov (United States)

    Cirelli, Laura K; Einarson, Kathleen M; Trainor, Laurel J

    2014-11-01

    Adults who move together to a shared musical beat synchronously as opposed to asynchronously are subsequently more likely to display prosocial behaviors toward each other. The development of musical behaviors during infancy has been described previously, but the social implications of such behaviors in infancy have been little studied. In Experiment 1, each of 48 14-month-old infants was held by an assistant and gently bounced to music while facing the experimenter, who bounced either in-synchrony or out-of-synchrony with the way the infant was bounced. The infants were then placed in a situation in which they had the opportunity to help the experimenter by handing objects to her that she had ‘accidently’ dropped. We found that 14-month-old infants were more likely to engage in altruistic behavior and help the experimenter after having been bounced to music in synchrony with her, compared to infants who were bounced to music asynchronously with her. The results of Experiment 2, using anti-phase bouncing, suggest that this is due to the contingency of the synchronous movements as opposed to movement symmetry. These findings support the hypothesis that interpersonal motor synchrony might be one key component of musical engagement that encourages social bonds among group members, and suggest that this motor synchrony to music may promote the very early development of altruistic behavior. PMID:25513669

  1. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Bouzinova, Elena; Fahrenkrug, Jan;

    2016-01-01

    of clock gene expression in depressive patients many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats associates with alternations of the diurnal expression of clock genes......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model...

  2. Alteration of plant meristem function by manipulation of the Retinoblastoma-like plant RRB gene

    Science.gov (United States)

    Durfee, Tim; Feiler, Heidi; Gruissem, Wilhelm; Jenkins, Susan; Roe, Judith; Zambryski, Patricia

    2007-01-16

    This invention provides methods and compositions for altering the growth, organization, and differentiation of plant tissues. The invention is based on the discovery that, in plants, genetically altering the levels of Retinoblastoma-related gene (RRB) activity produces dramatic effects on the growth, proliferation, organization, and differentiation of plant meristem.

  3. Gene expression alterations in brains of mice infected with three strains of scrapie

    Directory of Open Access Journals (Sweden)

    Race Richard E

    2006-05-01

    Full Text Available Abstract Background Transmissible spongiform encephalopathies (TSEs or prion diseases are fatal neurodegenerative disorders which occur in humans and various animal species. Examples include Creutzfeldt-Jakob disease (CJD in humans, bovine spongiform encephalopathy (BSE in cattle, chronic wasting disease (CWD in deer and elk, and scrapie in sheep, and experimental mice. To gain insights into TSE pathogenesis, we made and used cDNA microarrays to identify disease-associated alterations in gene expression. Brain gene expression in scrapie-infected mice was compared to mock-infected mice at pre-symptomatic and symptomatic time points. Three strains of mouse scrapie that show striking differences in neuropathology were studied: ME7, 22L, and Chandler/RML. Results In symptomatic mice, over 400 significant gene expression alterations were identified. In contrast, only 22 genes showed significant alteration in the pre-symptomatic animals. We also identified genes that showed significant differences in alterations in gene expression between strains. Genes identified in this study encode proteins that are involved in many cellular processes including protein folding, endosome/lysosome function, immunity, synapse function, metal ion binding, calcium regulation and cytoskeletal function. Conclusion These studies shed light on the complex molecular events that occur during prion disease, and identify genes whose further study may yield new insights into strain specific neuropathogenesis and ante-mortem tests for TSEs.

  4. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  5. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  6. Genetic Alterations within the DENND1A Gene in Patients with Polycystic Ovary Syndrome (PCOS)

    OpenAIRE

    Eriksen, Mette B.; Michael F B Nielsen; Klaus Brusgaard; Qihua Tan; Marianne S Andersen; Dorte Glintborg; Michael Gaster

    2013-01-01

    Polycystic ovary syndrome (PCOS), the most common endocrine disease among premenopausal women, is caused by both genes and environment. We and others previously reported association between single nucleotide polymorphisms (SNPs) in the DENND1A gene and PCOS. We therefore sequenced the DENND1A gene in white patients with PCOS to identify possible alterations that may be implicated in the PCOS pathogenesis. Patients were referred with PCOS and/or hirsutism between 1998 and 2011 (n = 261). PCOS ...

  7. [Numeric alterations in the dys gene and their association with clinical features].

    Science.gov (United States)

    Mampel, Alejandra; Echeverría, María Inés; Vargas, Ana Lía; Roque, María

    2011-01-01

    The Duchenne/Becker muscular dystrophy is a hereditary miopathy with a recessive sex-linked pattern. The related gene is called DYS and the coded protein plays a crucial role in the anchorage between the cytoskeleton and the cellular membrane in muscle cells. Different clinical manifestations are observed depending on the impact of the genetic alteration on the protein. The global register of mutations reveals an enhanced frequency for deletions/duplications of one or more exons affecting the DYS gene. In the present work, numeric alterations have been studied in the 79 exons of the DYS gene. The study has been performed on 59 individuals, including 31 independent cases and 28 cases with a familial link. The applied methodology was Multiplex Ligation Dependent Probe Amplification (MLPA). In the 31 independent cases clinical data were established: i.e. the clinical score, the Raven test percentiles, and the creatininphosphokinase (CPK) blood values. Our results reveal a 61.3% frequency of numeric alterations affecting the DYS gene in our population, provoking all of them a reading frame shift. The rate for de novo mutations was identified as 35.2%. Alterations involving a specific region of one exon were observed with high frequency, affecting a specific region. A significant association was found between numeric alterations and a low percentile for the Raven test. These data contribute to the local knowledge of genetic alterations and their phenotypic impact for the Duchenne/Becker disease.

  8. Synchrony and neural coding in cerebellar circuits

    Directory of Open Access Journals (Sweden)

    Abigail L Person

    2012-12-01

    Full Text Available The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input-output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor

  9. Let's dance together: synchrony, shared intentionality and cooperation.

    Directory of Open Access Journals (Sweden)

    Paul Reddish

    Full Text Available Previous research has shown that the matching of rhythmic behaviour between individuals (synchrony increases cooperation. Such synchrony is most noticeable in music, dance and collective rituals. As well as the matching of behaviour, such collective performances typically involve shared intentionality: performers actively collaborate to produce joint actions. Over three experiments we examined the importance of shared intentionality in promoting cooperation from group synchrony. Experiment 1 compared a condition in which group synchrony was produced through shared intentionality to conditions in which synchrony or asynchrony were created as a by-product of hearing the same or different rhythmic beats. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. To examinef the importance of synchrony when shared intentionality is present, Experiment 2 compared a condition in which participants deliberately worked together to produce synchrony with a condition in which participants deliberately worked together to produce asynchrony. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. Experiment 3 manipulated both the presence of synchrony and shared intentionality and found significantly greater cooperation with synchrony and shared intentionality combined. Path analysis supported a reinforcement of cooperation model according to which perceiving synchrony when there is a shared goal to produce synchrony provides immediate feedback for successful cooperation so reinforcing the group's cooperative tendencies. The reinforcement of cooperation model helps to explain the evolutionary conservation of traditional music and dance performances, and furthermore suggests that the collectivist values of such cultures may be an essential part of the mechanisms by which synchrony galvanises cooperative behaviours.

  10. Let’s Dance Together: Synchrony, Shared Intentionality and Cooperation

    Science.gov (United States)

    Reddish, Paul; Fischer, Ronald; Bulbulia, Joseph

    2013-01-01

    Previous research has shown that the matching of rhythmic behaviour between individuals (synchrony) increases cooperation. Such synchrony is most noticeable in music, dance and collective rituals. As well as the matching of behaviour, such collective performances typically involve shared intentionality: performers actively collaborate to produce joint actions. Over three experiments we examined the importance of shared intentionality in promoting cooperation from group synchrony. Experiment 1 compared a condition in which group synchrony was produced through shared intentionality to conditions in which synchrony or asynchrony were created as a by-product of hearing the same or different rhythmic beats. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. To examinef the importance of synchrony when shared intentionality is present, Experiment 2 compared a condition in which participants deliberately worked together to produce synchrony with a condition in which participants deliberately worked together to produce asynchrony. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. Experiment 3 manipulated both the presence of synchrony and shared intentionality and found significantly greater cooperation with synchrony and shared intentionality combined. Path analysis supported a reinforcement of cooperation model according to which perceiving synchrony when there is a shared goal to produce synchrony provides immediate feedback for successful cooperation so reinforcing the group’s cooperative tendencies. The reinforcement of cooperation model helps to explain the evolutionary conservation of traditional music and dance performances, and furthermore suggests that the collectivist values of such cultures may be an essential part of the mechanisms by which synchrony galvanises cooperative behaviours. PMID:23951106

  11. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    徐永忠; 谢建平; 李瑶; 乐军; 陈建平; 淳于利娟; 王洪海

    2003-01-01

    Objective To examine the global effects of Mycobacterium tuberculosis (M.tuberculosis) infection on macrophages. Methods The gene expression profiling of macrophage U937, in response to infection with M.tuberculosis H37Ra, was monitored using a high-density cDNA microarray. Results M.tuberculosis infection caused 463 differentially expressed genes, of which 366 genes are known genes registered in the Gene Bank. These genes function in various cellular processes including intracellular signalling, cytoskeletal rearrangement, apoptosis, transcriptional regulation, cell surface receptors, cell-mediated immunity as well as a variety of cellular metabolic pathways, and may play key roles in M.tuberculosis infection and intracellular survival. Conclusions M.tuberculosis infection alters the expression of host-cell genes, and these genes will provide a foundation for understanding the infection process of M.tuberculosis. The cDNA microarray is a powerful tool for studying pathogen-host cell interaction.

  12. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Berthrong, Sean T [ORNL; Schadt, Christopher Warren [ORNL; Pineiro, Gervasio [Duke University; Jackson, Robert B [Duke University

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH{sub 4}{sup +} in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  13. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms

    Directory of Open Access Journals (Sweden)

    Hyeon O Kim

    2008-09-01

    Full Text Available Hyeon O Kim1, Greg P Snyder1, Tyler M Blazey1, Richard E Race2, Bruce Chesebro2, Pamela J Skinner11Department of Veterinary and Biomedical Sciences, University of Minnesota, USA; 2NIH Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USAAbstract: Prion diseases are fatal neurodegenerative disorders that affect animals and humans. There is a need to gain understanding of prion disease pathogenesis and to develop diagnostic assays to detect prion diseases prior to the onset of clinical symptoms. The goal of this study was to identify genes that show altered expression early in the disease process in the spleen and brain of prion disease-infected mice. Using Affymetrix microarrays, we identified 67 genes that showed increased expression in the brains of prion disease-infected mice prior to the onset of clinical symptoms. These genes function in many cellular processes including immunity, the endosome/lysosome system, hormone activity, and the cytoskeleton. We confirmed a subset of these gene expression alterations using other methods and determined the time course in which these changes occur. We also identified 14 genes showing altered expression prior to the onset of clinical symptoms in spleens of prion disease infected mice. Interestingly, four genes, Atp1b1, Gh, Anp32a, and Grn, were altered at the very early time of 46 days post-infection. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as surrogate markers for the early detection and diagnosis of prion disease.Keywords: prion disease, microarrays, gene expression

  14. Altered circadian clock gene expression in patients with schizophrenia.

    Science.gov (United States)

    Johansson, Anne-Sofie; Owe-Larsson, Björn; Hetta, Jerker; Lundkvist, Gabriella B

    2016-07-01

    Impaired circadian rhythmicity has been reported in several psychiatric disorders. Schizophrenia is commonly associated with aberrant sleep-wake cycles and insomnia. It is not known if schizophrenia is associated with disturbances in molecular rhythmicity. We cultured fibroblasts from skin samples obtained from patients with chronic schizophrenia and from healthy controls, respectively, and analyzed the circadian expression during 48h of the clock genes CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, REV-ERBα and DBP. In fibroblasts obtained from patients with chronic schizophrenia, we found a loss of rhythmic expression of CRY1 and PER2 compared to cells from healthy controls. We also estimated the sleep quality in these patients and found that most of them suffered from poor sleep in comparison with the healthy controls. In another patient sample, we analyzed mononuclear blood cells from patients with schizophrenia experiencing their first episode of psychosis, and found decreased expression of CLOCK, PER2 and CRY1 compared to blood cells from healthy controls. These novel findings show disturbances in the molecular clock in schizophrenia and have important implications in our understanding of the aberrant rhythms reported in this disease. PMID:27132483

  15. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.)

  16. Epigenetic and Genetic Alterations Affect the WWOX Gene in Head and Neck Squamous Cell Carcinoma

    Science.gov (United States)

    Ekizoglu, Seda; Bulut, Pelin; Karaman, Emin; Kilic, Erkan; Buyru, Nur

    2015-01-01

    Different types of genetic and epigenetic changes are associated with HNSCC. The molecular mechanisms of HNSCC carcinogenesis are still undergoing intensive investigation. WWOX gene expression is altered in many cancers and in a recent work reduced WWOX expression has been associated with miR-134 expression in HNSCC. In this study we investigated the WWOX messenger RNA expression levels in association with the promoter methylation of the WWOX gene and miR-134 expression levels in 80 HNSCC tumor and non-cancerous tissue samples. Our results show that WWOX expression is down-regulated especially in advanced-stage tumor samples or in tumors with SCC. This down-regulation was associated with methylation of the WWOX promoter region but not with miR-134 expression. There was an inverse correlation between the expression level and promoter methylation. We also analyzed whole exons and exon/intron boundries of the WWOX gene by direct sequencing. In our study group we observed 10 different alterations in the coding sequences and 18 different alterations in the non-coding sequences of the WWOX gene in HNSCC tumor samples. These results indicate that the WWOX gene can be functionally inactivated by promoter methylation, epigenetically or by mutations affecting the sequences coding for the enzymatic domain of the gene, functionally. We conclude that inactivation of WWOX gene contributes to the progression of HNSCC. PMID:25612104

  17. Chronic mild stress alters circadian expressions of molecular clock genes in the liver.

    Science.gov (United States)

    Takahashi, Kei; Yamada, Tetsuya; Tsukita, Sohei; Kaneko, Keizo; Shirai, Yuta; Munakata, Yuichiro; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Hasegawa, Yutaka; Sawada, Shojiro; Oka, Yoshitomo; Katagiri, Hideki

    2013-02-01

    Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.

  18. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    OpenAIRE

    Douglas Fields

    2009-01-01

    Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between corti...

  19. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  20. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  1. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  2. Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a 'second hit' mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

  3. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts.

    Science.gov (United States)

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-19

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276-induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  4. Pair bonds: arrival synchrony in migratory birds.

    Science.gov (United States)

    Gunnarsson, T G; Gill, J A; Sigurbjörnsson, T; Sutherland, W J

    2004-10-01

    Synchronous arrival of pairs of migratory birds at their breeding grounds is important for maintaining pair bonds and is achieved by pairs that remain together all year round. Here we show that arrival is also synchronized in paired individuals of a migratory shorebird, the black-tailed godwit (Limosa limosa islandica), even though they winter hundreds of kilometres apart and do not migrate together. The mechanisms required to achieve this synchrony and prevent 'divorce' illustrate the complexity of migratory systems. PMID:15470417

  5. The brain basis of social synchrony

    OpenAIRE

    Atzil, Shir; Hendler, Talma; Feldman, Ruth

    2013-01-01

    As a social species, humans evolved to detect information from the social behavior of others. Yet, the mechanisms used to evaluate social interactions, the brain networks implicated in such recognition, and whether individual differences in own social behavior determine response to similar behavior in others remain unknown. Here we examined social synchrony as a potentially important mechanism in the evaluation of social behavior and utilized the parenting context, an evolutionarily salient s...

  6. NF-Y activates genes of metabolic pathways altered in cancer cells.

    Science.gov (United States)

    Benatti, Paolo; Chiaramonte, Maria Luisa; Lorenzo, Mariangela; Hartley, John A; Hochhauser, Daniel; Gnesutta, Nerina; Mantovani, Roberto; Imbriano, Carol; Dolfini, Diletta

    2016-01-12

    The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.

  7. Enhancing "theory of mind" through behavioral synchrony.

    Science.gov (United States)

    Baimel, Adam; Severson, Rachel L; Baron, Andrew S; Birch, Susan A J

    2015-01-01

    Theory of mind refers to the abilities underlying the capacity to reason about one's own and others' mental states. This ability is critical for predicting and making sense of the actions of others, is essential for efficient communication, fosters social learning, and provides the foundation for empathic concern. Clearly, there is incredible value in fostering theory of mind. Unfortunately, despite being the focus of a wealth of research over the last 40 years relatively little is known about specific strategies for fostering social perspective taking abilities. We provide a discussion of the rationale for applying one specific strategy for fostering efficient theory of mind-that of engaging in "behavioral synchrony" (i.e., the act of keeping together in time with others). Culturally evolved collective rituals involving synchronous actions have long been held to act as social glue. Specifically, here we present how behavioral synchrony tunes our minds for reasoning about other minds in the process of fostering social coordination and cooperation, and propose that we can apply behavioral synchrony as a tool for enhancing theory of mind. PMID:26157415

  8. Altered gene expression in highly purified enterocytes from patients with active coeliac disease

    Directory of Open Access Journals (Sweden)

    Jackson John

    2008-08-01

    Full Text Available Abstract Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99% were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.

  9. Hierarchical Synchrony of Phase Oscillators in Modular Networks

    CERN Document Server

    Skardal, Per Sebastian

    2011-01-01

    We study synchronization of sinusoidally coupled phase oscillators on networks with modular structure and a large number of oscillators in each community. Of particular interest is the hierarchy of local and global synchrony, i.e., synchrony within and between communities, respectively. Using the recent ansatz of Ott and Antonsen, we find that the degree of local synchrony can be determined from a set of coupled low-dimensional equations. If the number of communities in the network is large, a low-dimensional description of global synchrony can be also found. Using these results, we study bifurcations between different types of synchrony. We find that, depending on the relative strength of local and global coupling, the transition to synchrony in the network can be mediated by local or global effects.

  10. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Science.gov (United States)

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  11. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  12. MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation

    Science.gov (United States)

    Zhao, Jin; Schnitzler, Gavin R.; Iyer, Lakshmanan K.; Aronovitz, Mark J.; Baur, Wendy E.; Karas, Richard H.

    2016-01-01

    MicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We demonstrate that endogenous or over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. We report that there is a “seed region” of moR-21 as well as a “seed match region” in the target gene 3’UTR that are indispensable for moR-21-mediated gene down-regulation. We further demonstrate that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. Taken together, these findings provide the first evidence that microRNA offset RNA alters gene expression and is biologically active. PMID:27276022

  13. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heidi Marjonen

    Full Text Available The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v ethanol for the first 8 days of gestation (GD 0.5-8.5. Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60: we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in

  14. Pioglitazone administration alters ovarian gene expression in aging obese lethal yellow mice

    Directory of Open Access Journals (Sweden)

    Weber Mitch

    2008-03-01

    Full Text Available Abstract Background Women with polycystic ovary syndrome (PCOS are often treated with insulin-sensitizing agents, e.g. thiazolidinediones (TZD, which have been shown to reduce androgen levels and improved ovulatory function. Acting via peroxisome proliferator-activated receptor (PPAR gamma, TZD alter the expression of a large variety of genes. Lethal yellow (LY; C57BL/6J Ay/a mice, possessing a mutation (Ay in the agouti gene locus, exhibit progressive obesity, reproductive dysfunction, and altered metabolic regulation similar to women with PCOS. The current study was designed to test the hypothesis that prolonged treatment of aging LY mice with the TZD, pioglitazone, alters the ovarian expression of genes that may impact reproduction. Methods Female LY mice received daily oral doses of either 0.01 mg pioglitazone (n = 4 or an equal volume of vehicle (DMSO; n = 4 for 8 weeks. At the end of treatment, ovaries were removed and DNA microarrays were used to analyze differential gene expression. Results Twenty-seven genes showed at least a two-fold difference in ovarian expression with pioglitazone treatment. These included leptin, angiopoietin, angiopoietin-like 4, Foxa3, PGE1 receptor, resistin-like molecule-alpha (RELM, and actin-related protein 6 homolog (ARP6. For most altered genes, pioglitazone changed levels of expression to those seen in untreated C57BL/6J(a/a non-mutant lean mice. Conclusion TZD administration may influence ovarian function via numerous diverse mechanisms that may or may not be directly related to insulin/IGF signaling.

  15. Di-(2 ethylhexyl phthalate and flutamide alter gene expression in the testis of immature male rats

    Directory of Open Access Journals (Sweden)

    Yu Frank H

    2009-09-01

    Full Text Available Abstract We previously demonstrated that the androgenic and anti-androgenic effects of endocrine disruptors (EDs alter reproductive function and exert distinct effects on developing male reproductive organs. To further investigate these effects, we used an immature rat model to examine the effects of di-(2 ethylhexyl phthalate (DEHP and flutamide (Flu on the male reproductive system. Immature male SD rats were treated daily with DEHP and Flu on postnatal days (PNDs 21 to 35, in a dose-dependent manner. As results, the weights of the testes, prostate, and seminal vesicle and anogenital distances (AGD decreased significantly in response to high doses of DEHP or Flu. Testosterone (T levels significantly decreased in all DEHP- treated groups, whereas luteinizing hormone (LH plasma levels were not altered by any of the two treatments at PND 36. However, treatment with DEHP or Flu induced histopathological changes in the testes, wherein degeneration and disorders of Leydig cells, germ cells and dilatation of tubular lumen were observed in a dose-dependent manner. Conversely, hyperplasia and denseness of Leydig, Sertoli and germ cells were observed in rats given with high doses of Flu. The results by cDNA microarray analysis indicated that 1,272 genes were up-regulated by more than two-fold, and 1,969 genes were down-regulated in response to DEHP, Flu or both EDs. These genes were selected based on their markedly increased or decreased expression levels. These genes have been also classified on the basis of gene ontology (e.g., steroid hormone biosynthetic process, regulation of transcription, signal transduction, metabolic process, biosynthetic process.... Significant decreases in gene expression were observed in steroidogenic genes (i.e., Star, Cyp11a1 and Hsd3b. In addition, the expression of a common set of target genes, including CaBP1, Vav2, Plcd1, Lhx1 and Isoc1, was altered following exposure to EDs, suggesting that they may be marker genes to

  16. Frequent alteration of the tumor suppressor gene APC in sporadic canine colorectal tumors.

    Directory of Open Access Journals (Sweden)

    Lydia Youmans

    Full Text Available Sporadic canine colorectal cancers (CRCs should make excellent models for studying the corresponding human cancers. To molecularly characterize canine CRC, we investigated exonic sequence mutations of adenomatous polyposis coli (APC, the best known tumor suppressor gene of human CRC, in 23 sporadic canine colorectal tumors, including 8 adenomas and 15 adenocarcinomas, via exon-resequencing analysis. As a comparison, we also performed the same sequencing analysis on 10 other genes, either located at human 5q22 (the same locus as APC or 18q21 (also frequently altered in human CRC, or known to play a role in human carcinogenesis. We noted that APC was the most significantly mutated gene in both canine adenomas and adenocarcinomas among the 11 genes examined. Significantly, we detected large deletions of ≥ 10 bases, many clustered near the mutation cluster region, as well as single or two base deletions in ~70% canine tumors of both subtypes. These observations indicate that like in the human, APC is also frequently altered in sporadic colorectal tumors in the dog and its alteration is an early event in canine colorectal tumorigenesis. Our study provides further evidence demonstrating the molecular similarity in pathogenesis between sporadic human and canine CRCs. This work, along with our previous copy number abnormality study, supports that sporadic canine CRCs are valid models of human CRCs at the molecular level.

  17. Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts.

    Directory of Open Access Journals (Sweden)

    Laura Herrero

    Full Text Available The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT, brown adipose tissue (BAT and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level.

  18. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Marek Kiliszek

    Full Text Available BACKGROUND: Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients. METHODS AND RESULTS: Twenty-eight patients with ST-segment elevation myocardial infarction (STEMI were included. The blood was collected on the 1(st day of myocardial infarction, after 4-6 days, and after 6 months. Control group comprised 14 patients with stable coronary artery disease, without history of myocardial infarction. Gene expression analysis was performed with Affymetrix Human Gene 1.0 ST microarrays and GCS3000 TG system. Lists of genes showing altered expression levels (fold change >1.5, p<0.05 were submitted to Ingenuity Pathway Analysis. Gene lists from each group were examined for canonical pathways and molecular and cellular functions. Comparing acute phase of MI with the same patients after 6 months (stable phase and with control group we found 24 genes with changed expression. In canonical analysis three pathways were highlighted: signaling of PPAR (peroxisome proliferator-activated receptor, IL-10 and IL-6 (interleukin 10 and 6. CONCLUSIONS: In the acute phase of STEMI, dozens of genes from several pathways linked with lipid/glucose metabolism, platelet function and atherosclerotic plaque stability show altered expression. Up-regulation of SOCS3 and FAM20 genes in the first days of myocardial infarction is observed in the vast majority of patients.

  19. Cognitive Style and Synchrony in Measures of Anxiety.

    Science.gov (United States)

    Strohmer, Douglas C.; And Others

    1983-01-01

    Examined the extent to which a cognitive style variable, integrative complexity, was related to synchrony between behavioral and self-report measures of anxiety in counseling students (N=26). During a therapy analogue two measures of anxiety were taken. Results indicated a substantial dependence of synchrony/desynchrony on cognitive style.…

  20. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  1. Identification of genes whose expression is altered by obesity throughout the arterial tree

    Science.gov (United States)

    Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold

    2014-01-01

    We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications. PMID:25271210

  2. Identification of genes whose expression is altered by obesity throughout the arterial tree.

    Science.gov (United States)

    Padilla, Jaume; Jenkins, Nathan T; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Davis, J Wade; Laughlin, M Harold

    2014-11-15

    We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications.

  3. Altered Gene Expression, Mitochondrial Damage and Oxidative Stress: Converging Routes in Motor Neuron Degeneration

    Directory of Open Access Journals (Sweden)

    Luisa Rossi

    2012-01-01

    Full Text Available Motor neuron diseases (MNDs are a rather heterogeneous group of diseases, with either sporadic or genetic origin or both, all characterized by the progressive degeneration of motor neurons. At the cellular level, MNDs share features such as protein misfolding and aggregation, mitochondrial damage and energy deficit, and excitotoxicity and calcium mishandling. This is particularly well demonstrated in ALS, where both sporadic and familial forms share the same symptoms and pathological phenotype, with a prominent role for mitochondrial damage and resulting oxidative stress. Based on recent data, however, altered control of gene expression seems to be a most relevant, and previously overlooked, player in MNDs. Here we discuss which may be the links that make pathways apparently as different as altered gene expression, mitochondrial damage, and oxidative stress converge to generate a similar motoneuron-toxic phenotype.

  4. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes

    Directory of Open Access Journals (Sweden)

    Olschwang Sylviane

    2008-10-01

    Full Text Available Abstract Background Chronic myelomonocytic leukemia (CMML is a hematological disease close to, but separate from both myeloproliferative disorders (MPD and myelodysplastic syndromes and may show either myeloproliferative (MP-CMML or myelodysplastic (MD-CMML features. Not much is known about the molecular biology of this disease. Methods We studied a series of 30 CMML samples (13 MP- and 11 MD-CMMLs, and 6 acutely transformed cases from 29 patients by using Agilent high density array-comparative genomic hybridization (aCGH and sequencing of 12 candidate genes. Results Two-thirds of samples did not show any obvious alteration of aCGH profiles. In one-third we observed chromosome abnormalities (e.g. trisomy 8, del20q and gain or loss of genes (e.g. NF1, RB1 and CDK6. RAS mutations were detected in 4 cases (including an uncommon codon 146 mutation in KRAS and PTPN11 mutations in 3 cases. We detected 11 RUNX1 alterations (9 mutations and 2 rearrangements. The rearrangements were a new, cryptic inversion of chromosomal region 21q21-22 leading to break and fusion of RUNX1 to USP16. RAS and RUNX1 alterations were not mutually exclusive. RAS pathway mutations occurred in MP-CMMLs (~46% but not in MD-CMMLs. RUNX1 alterations (mutations and cryptic rearrangement occurred in both MP and MD classes (~38%. Conclusion We detected RAS pathway mutations and RUNX1 alterations. The latter included a new cryptic USP16-RUNX1 fusion. In some samples, two alterations coexisted already at this early chronic stage.

  5. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  6. Synchrony in Metapopulations with Sporadic Dispersal

    Science.gov (United States)

    Jeter, Russell; Belykh, Igor

    2015-06-01

    We study synchronization in ecological networks under the realistic assumption that the coupling among the patches is sporadic/stochastic and due to rare and short-term meteorological conditions. Each patch is described by a tritrophic food chain model, representing the producer, consumer, and predator. If all three species can migrate, we rigorously prove that the network can synchronize as long as the migration occurs frequently, i.e. fast compared to the period of the ecological cycle, even though the network is disconnected most of the time. In the case where only the top trophic level (i.e. the predator) can migrate, we reveal an unexpected range of intermediate switching frequencies where synchronization becomes stable in a network which switches between two nonsynchronous dynamics. As spatial synchrony increases the danger of extinction, this counterintuitive effect of synchrony emerging from slower switching dispersal can be destructive for overall metapopulation persistence, presumably expected from switching between two dynamics which are unfavorable to extinction.

  7. Group Rhythmic Synchrony and Attention in Children

    Directory of Open Access Journals (Sweden)

    Alexander K Khalil

    2013-09-01

    Full Text Available Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD. Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child’s attentional behavior.

  8. Propagating Synchrony in Feed-Forward Networks

    Directory of Open Access Journals (Sweden)

    Sven eJahnke

    2013-11-01

    Full Text Available Coordinated patterns of precisely timed action potentials (spikes emerge in a variety of neural circuits but their dynamical originis still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of nonlinear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons.

  9. Enhancing 'theory of mind' through behavioral synchrony

    Directory of Open Access Journals (Sweden)

    Adam eBaimel

    2015-06-01

    Full Text Available Theory of mind refers to the abilities underlying the capacity to reason about one's own and others' mental states. This ability is critical for predicting and making sense of the actions of others, is essential for efficient communication, fosters social learning, and provides the foundation for empathic concern for others. Clearly there is incredible value in fostering theory of mind. Unfortunately, despite being the focus of a wealth of research over the last 40 years relatively little is known about specific strategies for fostering perspective taking abilities. We provide a discussion of the rationale for applying one specific strategy for fostering efficient perspective taking—that of engaging in ‘behavioral synchrony’ (i.e. the act of keeping together in time with others. Culturally evolved collective rituals involving synchronous actions have long been held to act as social glue. Specifically, here we present how behavioral synchrony tunes our minds for reasoning about other minds in the process of fostering social coordination and cooperation, and propose that we can apply behavioral synchrony as a tool for enhancing theory of mind.

  10. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  11. Preliminary evidence of phenytoin-induced alterations in embryonic gene expression in a mouse model.

    Science.gov (United States)

    Musselman, A C; Bennett, G D; Greer, K A; Eberwine, J H; Finnell, R H

    1994-01-01

    SWV mouse embryos collected on gestational days (GD) 9:12 and 10:00 following chronic in utero exposure to teratogenic concentrations of phenytoin were utilized for in situ transcription studies of gene expression. The substrate cDNA obtained from the frozen embryo sections was amplified into radiolabelled antisense RNA (RT/aRNA) and used as a probe to screen a panel of 20 cDNA clones representing genes that are important regulators of craniofacial and neural development. The magnitude of alteration in gene expression following phenytoin treatment was determined densitometrically by changes in the hybridization intensity of the aRNA probes to the cDNA clones immobilized to the slot blots. We found that both Wnt-1 and the calcium channel gene were developmentally regulated, as their level of expression decreased significantly between the two collection times. Phenytoin treatment produced a significant downregulation in the level of expression for 25% of the genes examined in the GD 9:12 embryos, including the growth factors TGF-beta and NT3, the proto-oncogene Wnt-1, the nicotinic receptor, and the voltage sensitive calcium channel gene. Additional changes in the coordinate expression of several of the growth and transcription factors were observed at both gestational timepoints. The application of RT/aRNA technology has extended our appreciation of the normal patterns of gene expression during craniofacial and neural development, and provided the first demonstration of multiple coordinate changes in transcription patterns following teratogenic insult.

  12. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    Science.gov (United States)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  13. Altered Gene Expression in Schizophrenia: Findings from Transcriptional Signatures in Fibroblasts and Blood

    Science.gov (United States)

    Cattane, Nadia; Minelli, Alessandra; Milanesi, Elena; Maj, Carlo; Bignotti, Stefano; Bortolomasi, Marco; Chiavetto, Luisella Bocchio; Gennarelli, Massimo

    2015-01-01

    Background Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ) can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders. Methods A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR) in fibroblasts and analyzed in a sample of peripheral blood cell (PBC) RNA from patients (n = 25) and controls (n = 22). To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD) (n = 16; n = 21, respectively) and Bipolar Disorder (BD) patients (n = 15; n = 20, respectively). Results Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4) were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD. Conclusions Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses. PMID:25658856

  14. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.

    Directory of Open Access Journals (Sweden)

    Nadia Cattane

    Full Text Available Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders.A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR in fibroblasts and analyzed in a sample of peripheral blood cell (PBC RNA from patients (n = 25 and controls (n = 22. To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD (n = 16; n = 21, respectively and Bipolar Disorder (BD patients (n = 15; n = 20, respectively.Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4 were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD.Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses.

  15. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program

    Directory of Open Access Journals (Sweden)

    Revel S M Drummond

    2012-01-01

    Full Text Available Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signalling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologues of the Arabidopsis MAX1 and MAX2 genes to characterise their role in petunia architecture. A single orthologue of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels increase as leaves age. Nonetheless, this gene functionally complements the Arabidopsis max2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over the development series. Alterations to the expression of these genes over time, or in different regions of the plant, may influence the branching growth habit of the plant. Alterations to strigolactone production and/or sensitivity could allow both subtle and dramatic changes to branching within and between species.

  16. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  17. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  18. Concerning RNA-guided gene drives for the alteration of wild populations

    Science.gov (United States)

    Esvelt, Kevin M; Smidler, Andrea L; Catteruccia, Flaminia; Church, George M

    2014-01-01

    Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology. DOI: http://dx.doi.org/10.7554/eLife.03401.001 PMID:25035423

  19. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells.

  20. Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow.

    Science.gov (United States)

    Jha, S

    2015-03-01

    Much of the world's terrestrial landscapes are being altered by humans in the form of agriculture, urbanization and pastoral systems, with major implications for biodiversity. Bumble bees are one of the most effective pollinators in both natural and cultivated landscapes, but are often the first to be extirpated in human-altered habitats. Yet, little is known about the role of natural and human-altered habitats in promoting or limiting bumble bee gene flow. In this study, I closely examine the genetic structure of the yellow-faced bumble bee, Bombus vosnesenskii, across the southwestern US coast and find strong evidence that natural oceanic barriers, as well as contemporary human-altered habitats, limit bee gene flow. Heterozygosity and allelic richness were lower in island populations, while private allelic richness was higher in island populations compared to mainland populations. Genetic differentiation, measured for three indices across the 1000 km study region, was significantly greater than the null expectation (F(ST) = 0.041, F'(ST) = 0.044 and D(est) = 0.155) and correlated with geographic distance. Furthermore, genetic differentiation patterns were most strongly correlated with contemporary (2011) not past (2006, 2001) resistance maps calibrated for high dispersal limitation over oceans, impervious habitat and croplands. Despite the incorporation of dramatic elevation gradients, the analyses reveal that oceans and contemporary human land use, not mountains, are the primary dispersal barriers for B. vosnesenskii gene flow. These findings reinforce the importance of maintaining corridors of suitable habitat across the distribution range of native pollinators to promote their persistence and safeguard their ability to provide essential pollination services.

  1. Alterations in tumour suppressor gene p53 in human gliomas from Indian patients

    Indian Academy of Sciences (India)

    Pornima Phatak; S Kalai Selvi; T Divya; A S Hegde; Sridevi Hegde; Kumaravel Somasundaram

    2002-12-01

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. In order to study the significance of the p53 gene in the genesis and development of human glioma from Indian patients, we checked 44 untreated primary gliomas for mutations in exons 5–9 of the p53 gene by PCR-SSCP and DNA sequencing. Sequencing analysis revealed six missense mutations. The incidence of p53 mutations was 13.6% (6 of 44). All the six mutations were found to be located in the central core domain of p53, which carries the sequence-specific DNA-binding domain. These results suggest a rather low incidence but a definite involvement of p53 mutations in the gliomas of Indian patients.

  2. Genetic Alterations within the DENND1A Gene in Patients with Polycystic Ovary Syndrome (PCOS)

    DEFF Research Database (Denmark)

    Eriksen, Mette B; Nielsen, Michael F B; Brusgaard, Klaus;

    2013-01-01

    Polycystic ovary syndrome (PCOS), the most common endocrine disease among premenopausal women, is caused by both genes and environment. We and others previously reported association between single nucleotide polymorphisms (SNPs) in the DENND1A gene and PCOS. We therefore sequenced the DENND1A gene...... in white patients with PCOS to identify possible alterations that may be implicated in the PCOS pathogenesis. Patients were referred with PCOS and/or hirsutism between 1998 and 2011 (n = 261). PCOS was diagnosed according to the Rotterdam criteria (n = 165). Sequence analysis was performed in 10 patients...... with PCOS. Additional patients (n = 251) and healthy female controls (n = 248) were included for SNP genotyping. Patients underwent clinical examination including Ferriman-Gallwey score (FG-score), biochemical analyses and transvaginal ultrasound. Mutation analysis was carried out by bidirectional...

  3. Addiction and Reward-related Genes Show Altered Expression in the Postpartum Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Changjiu eZhao

    2014-11-01

    Full Text Available Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET indicated that postpartum (relative to virgin NAC gene expression profile was significantly enriched for genes related to addiction and reward in 5 of 5 independently curated databases (e.g., Malacards, Phenopedia. Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder, and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.

  4. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions.

    Science.gov (United States)

    Schnackenberg, B J; Saini, U T; Robinson, B L; Ali, S F; Patterson, T A

    2010-10-13

    Gamma-hydroxybutyric acid (GHB) is normally found in the brain in low concentrations and may function as a neurotransmitter, although the mechanism of action has not been completely elucidated. GHB has been used as a general anesthetic and is currently used to treat narcolepsy and alcoholism. Recreational use of GHB is primarily as a "club drug" and a "date rape drug," due to its amnesic effects. For this study, the hypothesis was that behavioral and neurochemical alterations may parallel gene expression changes in the brain after GHB administration. Adult male C57/B6N mice (n=5/group) were administered a single dose of 500 mg/kg GHB (i.p.) and were sacrificed 1, 2 and 4 h after treatment. Control mice were administered saline. Brains were removed and regionally dissected on ice. Total RNA from the hippocampus, cortex and striatum was extracted, amplified and labeled. Gene expression was evaluated using Agilent whole mouse genome 4x44K oligonucleotide microarrays. Microarray data were analyzed by ArrayTrack and differentially expressed genes (DEGs) were identified using P or = 1.7 as the criteria for significance. Principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that samples from each time point clustered into distinct treatment groups with respect to sacrifice time. Ingenuity pathways analysis (IPA) was used to identify involved pathways. The results show that GHB induces gene expression alterations in hundreds of genes in the hippocampus, cortex and striatum, and the number of affected genes increases throughout a 4-h time course. Many of these DEGs are involved in neurological disease, apoptosis, and oxidative stress.

  5. Progressive obesity leads to altered ovarian gene expression in the Lethal Yellow mouse: a microarray study

    Directory of Open Access Journals (Sweden)

    Brannian John

    2009-08-01

    Full Text Available Abstract Background Lethal yellow (LY; C57BL/6J Ay/a mice exhibit adult-onset obesity, altered metabolic regulation, and early reproductive senescence. The present study was designed to test the hypothesis that obese LY mice possess differences in expression of ovarian genes relative to age-matched lean mice. Methods 90- and 180-day-old LY and lean black (C57BL/6J a/a mice were suppressed with GnRH antagonist (Antide®, then stimulated with 5 IU eCG. cRNA derived from RNA extracts of whole ovarian homogenates collected 36 h post-eCG were run individually on Codelink Mouse Whole Genome Bioarrays (GE Healthcare Life Sciences. Results Fifty-two genes showed ≥ 2-fold differential (p Cyp51, and steroidogenic acute regulatory protein (Star. Fewer genes showed lower expression in LY mice, e.g. angiotensinogen. In contrast, none of these genes showed differential expression in 90-day-old LY and black mice, which are of similar body weight. Interestingly, 180-day-old LY mice had a 2-fold greater expression of 11beta-hydroxysteroid dehydrogenase type 1 (Hsd11b1 and a 2-fold lesser expression of 11beta-hydroxysteroid dehydrogenase type 2 (Hsd11b2, differences not seen in 90-day-old mice. Consistent with altered Hsd11b gene expression, ovarian concentrations of corticosterone (C were elevated in aging LY mice relative to black mice, but C levels were similar in young LY and black mice. Conclusion The data suggest that reproductive dysfunction in aging obese mice is related to modified intraovarian gene expression that is directly related to acquired obesity.

  6. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  7. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    Science.gov (United States)

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  8. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  9. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    Directory of Open Access Journals (Sweden)

    Kata Filkor

    Full Text Available Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS or peptidoglycan (PGN induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (Kegg analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified

  10. Alterations of c-Myc and c-erbB-2 genes in ovarian tumours

    Directory of Open Access Journals (Sweden)

    Pastor Tibor

    2009-01-01

    Full Text Available Introduction. According to clinical and epidemiological studies, ovarian cancer ranks fifth in cancer deaths among women. The causes of ovarian cancer remain largely unknown but various factors may increase the risk of developing it, such as age, family history of cancer, childbearing status etc. This cancer results from a succession of genetic alterations involving oncogenes and tumour suppressor genes, which have a critical role in normal cell growth regulation. Mutations and/or overexpression of three oncogenes, c-erbB-2, c-Myc and K-ras, and of the tumour suppressor gene p53, have been frequently observed in a sporadic ovarian cancer. Objective. The aim of the present study was to analyze c-Myc and c-erbB-2 oncogene alterations, specifically amplification, as one of main mechanisms of their activation in ovarian cancers and to establish a possible association with the pathogenic process. Methods. DNA was isolated from 15 samples of malignant and 5 benign ovarian tumours, using proteinase K digestion, followed by phenol-chloroform isoamyl extraction and ethanol precipitation. C-Myc and c-erbB-2 amplification were detected by differential PCR. The level of gene copy increase was measured using the Scion image software. Results. The amplification of both c-Myc and c-erbB-2 was detected in 26.7% of ovarian epithelial carcinoma specimens. Only one tumour specimen concomitantly showed increased gene copy number for both studied genes. Interestingly, besides amplification, gene deletion was also detected (26.7% for c-erbB-2. Most of the ovarian carcinomas with alterations in c-Myc and c-erbB-2 belonged to advanced FIGO stages. Conclusion. The amplification of c-Myc and c-erbB-2 oncogenes in ovarian epithelial carcinomas is most probably a late event in the pathogenesis conferring these tumours a more aggressive biological behaviour. Similarly, gene deletions point to genomic instability in epithelial carcinomas in higher clinical stages as the

  11. Simulated microgravity alters the expression of key genes involved in fracture healing

    Science.gov (United States)

    McCabe, N. Patrick; Androjna, Caroline; Hill, Esther; Globus, Ruth K.; Midura, Ronald J.

    2013-11-01

    Fracture healing in animal models has been shown to be altered in both ground based analogs of spaceflight and in those exposed to actual spaceflight. The molecular mechanisms behind altered fracture healing as a result of chronic exposure to microgravity remain to be elucidated. This study investigates temporal gene expression of multiple factors involved in secondary fracture healing, specifically those integral to the development of a soft tissue callus and the transition to that of hard tissue. Skeletally mature female rats were subjected to a 4 week period of simulated microgravity and then underwent a closed femoral fracture procedure. Thereafter, they were reintroduced to the microgravity and allowed to heal for a 1 or 2 week period. A synchronous group of weight bearing rats was used as a normal fracture healing control. Utilizing Real-Time quantitative PCR on mRNA from fracture callus tissue, we found significant reductions in the levels of transcripts associated with angiogenesis, chondrogenesis, and osteogenesis. These data suggest an altered fracture healing process in a simulated microgravity environment, and these alterations begin early in the healing process. These findings may provide mechanistic insight towards developing countermeasure protocols to mitigate these adaptations.

  12. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Directory of Open Access Journals (Sweden)

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  13. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    Science.gov (United States)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  14. Altered expression of adipose differentiation-related protein gene in placental tissue of pre-eclampsia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-li; YAO Yuan-qing; LI Dong-hong; ZHANG Wei

    2006-01-01

    Objective: To investigate the altered expression of lipid metabolism-related gene adipose differentiation-related protein (ADRP) in pre-eclampsia. Methods: Semi-quantitative RT-PCR and Western blotting were used to validate the altered expression of ADRP gene between pre-eclamptic placentas (preeclampsia group) and normotensive placentas (control group) respectively. In situ hybridization (ISH)was used to localize ADRP mRNA in pre-eclamptic placentas. Results: There was a significant difference in the levels of placental ADRP mRNA between pre-eclampsia group and control group (1.98± 0. 50 vs 1. 09±0. 20, P<0.01). Western blotting showed that placentas both in pre-eclampsia group and control group expressed the special ADRP band at 48. 1 kD. The relative levels of ADRP protein in pre-eclampsia group were significantly higher than those of control group (0. 40 ±0. 19 vs 0. 19 ±0. 09, P< 0. 01).ADRP mRNA was diffusely distributed in pre-eclamptic placentas. Their positive staining existed in cytoplasm of trophoblast. Conclusion: Abnormal expression of ADRP gene in pre-eclamptic placenta may be associated with the pathogenesis of pre-eclampsia.

  15. Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Laszlo, A. (Lawrence Berkeley Lab., CA); Radke, K.; Chin, S.; Bissell, M.J.

    1981-10-01

    We have investigated the effect of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the synthesis and modification of polypeptides in normal avian cells and cells infected by wild-type and temperature-sensitive Rous sarcoma virus (RSV). Using two-dimensional gel electrophoresis, we have detected alterations in both the abundance of cellular polypeptides and in their phosphorylation that seem unique to TPA treatment. However, the state of phosphorylation of the major putative substrate for the action of the src gene-associated protein kinase, the 34- to 36-kilodalton protein, was not altered. Moreover, examination of the phosphorylated amino acid content of total cellular phosphoproteins revealed that the response to TPA was not associated with detectable increases in their phosphotyrosine content. These results make it unlikely that TPA acts by the activation of the phosphorylating activity of the cellular proto-src gene or by the activation of other cellular phosphotyrosine-specific kinases. We have shown previously that temperature-sensitive RSV-infected cells at nonpermissive temperature demonstrate an increased sensitivity to TPA treatment (Bissell, M.J., Hatie, C. and Calfin, M. (1979) Proc. Natl. Acad. Sci. USA 76, 348-352). Our present results indicate that this is not due to reactivation of the phosphorylating activity of the defective src gene product or to its leakiness, and they lend support to the notion of multistep viral carcinogenesis.

  16. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons

    Science.gov (United States)

    Agarwal, Andrea B.; Feng, Cheng-Yuan; Altick, Amy L.; Quilici, David R.; Wen, Dan; Johnson, L. Alan; von Bartheld, Christopher S.

    2016-01-01

    Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered. PMID:27768799

  17. Alteration of acylphosphatase levels in familial Alzheimer's disease fibroblasts with presenilin gene mutations.

    Science.gov (United States)

    Liguri, G; Cecchi, C; Latorraca, S; Pieri, A; Sorbi, S; Degl'Innocenti, D; Ramponi, G

    1996-06-01

    Acylphosphatase (AcPase), an enzyme that modulates the activity of Ca(2+)-ATPase by hydrolysing its phosphorylated moiety, has been found to be significantly higher in cultured skin fibroblasts from donors affected by early onset familial Alzheimer's disease (EOFAD) with PS-1 and PS-2 gene mutations. Of the two known isoenzymes of acylphosphatase, only the erythrocyte one accounts for the total increase in activity. No relevant alteration was observed in phosphotyrosine phosphatase activity (PTPase), in Ca(2+)-ATPase and Na+, K(+)-ATPase activities of the same cells as compared to age-matched controls. This finding could suggest a possible explanation for the calcium-dependent biochemical alterations previously described in Alzheimer's disease fibroblasts. PMID:8805118

  18. Predicting synchrony in heterogeneous pulse coupled oscillators.

    Science.gov (United States)

    Talathi, Sachin S; Hwang, Dong-Uk; Miliotis, Abraham; Carney, Paul R; Ditto, William L

    2009-08-01

    Pulse coupled oscillators (PCOs) represent an ubiquitous model for a number of physical and biological systems. Phase response curves (PRCs) provide a general mathematical framework to analyze patterns of synchrony generated within these models. A general theoretical approach to account for the nonlinear contributions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here, by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC corrections in the derivation of an approximate discrete map, the stable fixed point of which can predict the domain of 1:1 phase locked synchronous states generated by the PCO network.

  19. Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana.

    Science.gov (United States)

    Mishra, Sandhya; Singh, H B

    2015-03-01

    Melanin production in many fungal phytopathogens has been investigated to play direct or indirect role in pathogenesis. However, in Bipolaris sorokiniana, the spot blotch pathogen of wheat, much less is known about the role melanin play in pathogenesis. As an extension of our previous report, the present study aims to investigate the plausible association between melanin production and virulence factor in B. sorokiniana. In the previous study, we carried out analysis on the antifungal efficacy of biosynthesized silver nanoparticles (AgNPs) against B. sorokiniana. The present investigation revealed the gene expression analysis of melanin biosynthesis genes viz. polyketide synthase (PKS1) and scytalone dehydratase (SCD1) under the influence of AgNPs. The 0.05mg/ml concentration of AgNPs yielded noticeable inhibition of B. sorokiniana growth, while 0.1mg/ml concentration of AgNPs accounted for complete inhibition of pathogen growth. In addition, the semiquantitative RT-PCR analysis exhibited reduced expression of PKS1 and SCD1 under the influence of AgNPs treatment. Furthermore, the qRT-PCR demonstrated 6.47 and 1.808 fold significant decrease in the expression pattern of PKS1 and SCD1, respectively, in B. sorokiniana treated with AgNPs. The present study provides probable understanding of molecular events underlying the antifungal role of AgNPs against B. sorokiniana.

  20. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    Science.gov (United States)

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  1. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Hanyang Hu

    2014-01-01

    Full Text Available Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice.

  2. Altered surfactant function and structure in SP-A gene targeted mice.

    OpenAIRE

    Korfhagen, T R; Bruno, M D; Ross, G F; Huelsman, K. M.; Ikegami, M; Jobe, A H; Wert, S E; Stripp, B R; Morris, R E; Glasser, S W; Bachurski, C J; Iwamoto, H S; Whitsett, J A

    1996-01-01

    The surfactant protein A (SP-A) gene was disrupted by homologous recombination in embryonic stem cells that were used to generate homozygous SP-A-deficient mice. SP-A mRNA and protein were not detectable in the lungs of SP-A(-/-) mice, and perinatal survival of SP-A(-/-) mice was not altered compared with wild-type mice. Lung morphology, surfactant proteins B-D, lung tissue, alveolar phospholipid pool sizes and composition, and lung compliance in SP-A(-/-) mice were unaltered. At the highest ...

  3. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides

    OpenAIRE

    Dahmen, Volker; Kriehuber, Ralf

    2012-01-01

    Purpose: Triplex-forming oligonucleotides (TFO) bind to the DNA double helix in a sequence-specific manner. Therefore, TFO seem to be a suitable carrier for Auger electron emitters to damage exclusively targeted DNA sequences, e.g., in tumor cells. We studied the influence of I-125 labeled TFO with regard to cell survival and induction of DNA double-strand breaks (DSB) using TFO with different genomic targets and target numbers. Furthermore, the ability of TFO to alter the gene expression of ...

  4. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Wiborg, Ove; Bouzinova, Elena

    2016-01-01

    . The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes; Per1, Per2 and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at 4 h sampling interval within 24 h. We......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model.......Background: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation...

  5. Multiple insulin degrading enzyme variants alter in vitro reporter gene expression.

    Directory of Open Access Journals (Sweden)

    Olivia Belbin

    Full Text Available The insulin degrading enzyme (IDE variant, v311 (rs6583817, is associated with increased post-mortem cerebellar IDE mRNA, decreased plasma β-amyloid (Aβ, decreased risk for Alzheimer's disease (AD and increased reporter gene expression, suggesting that it is a functional variant driving increased IDE expression. To identify other functional IDE variants, we have tested v685, rs11187061 (associated with decreased cerebellar IDE mRNA and variants on H6, the haplotype tagged by v311 (v10; rs4646958, v315; rs7895832, v687; rs17107734 and v154; rs4646957, for altered in vitro reporter gene expression. The reporter gene expression levels associated with the second most common haplotype (H2 successfully replicated the post-mortem findings in hepatocytoma (0.89 fold-change, p = 0.04 but not neuroblastoma cells. Successful in vitro replication was achieved for H6 in neuroblastoma cells when the sequence was cloned 5' to the promoter (1.18 fold-change, p = 0.006 and 3' to the reporter gene (1.29 fold change, p = 0.003, an effect contributed to by four variants (v10, v315, v154 and v311. Since IDE mediates Aβ degradation, variants that regulate IDE expression could represent good therapeutic targets for AD.

  6. Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry.

    Science.gov (United States)

    DeCoste, Nadine J; Gadkar, Vijay J; Filion, Martin

    2010-11-01

    The production of hydrogen cyanide (HCN) by beneficial root-associated bacteria is an important mechanism for the biological control of plant pathogens. However, little is known about the biotic factors affecting HCN gene expression in the rhizosphere of plants. In this study, real-time reverse transcription PCR (qRT-PCR) assays were developed to investigate the effect of the plant pathogen Verticillium dahliae on hcnC (encoding for HCN biosynthesis) gene expression in Pseudomonas sp. LBUM300. Strawberry plants were inoculated with Pseudomonas sp. LBUM300 and (or) V. dahliae and grown in pots filled with nonsterilized field soil. RNA was extracted from rhizosphere soil sampled at 0, 15, 30, and 45 days following inoculation with V. dahliae and used for qRT-PCR analyses. Populations of V. dahliae and Pseudomonas sp. LBUM300 were also monitored using a culture-independent qPCR approach. hcnC expression was detected at all sampling dates. The presence of V. dahliae had a significant stimulation effect on hcnC gene expression and also increased the population of Pseudomonas sp. LBUM300. However, the V. dahliae population was not altered by the presence of Pseudomonas sp. LBUM300. To our knowledge, this study is the first to evaluate the effect of a plant pathogen on HCN gene expression in the rhizosphere soil. PMID:21076481

  7. Molecular classification of thyroid lesions by combined testing for miRNA gene expression and somatic gene alterations.

    Science.gov (United States)

    Wylie, Dennis; Beaudenon-Huibregtse, Sylvie; Haynes, Brian C; Giordano, Thomas J; Labourier, Emmanuel

    2016-04-01

    Multiple molecular markers contribute to the pathogenesis of thyroid cancer and can provide valuable information to improve disease diagnosis and patient management. We performed a comprehensive evaluation of miRNA gene expression in diverse thyroid lesions (n = 534) and developed predictive models for the classification of thyroid nodules, alone or in combination with genotyping. Expression profiling by reverse transcription-quantitative polymerase chain reaction in surgical specimens (n = 257) identified specific miRNAs differentially expressed in 17 histopathological categories. Eight supervised machine learning algorithms were trained to discriminate benign from malignant lesions and evaluated for accuracy and robustness. The selected models showed invariant area under the receiver operating characteristic curve (AUC) in cross-validation (0.89), optimal AUC (0.94) in an independent set of preoperative thyroid nodule aspirates (n = 235), and classified 92% of benign lesions as low risk/negative and 92% of malignant lesions as high risk/positive. Surgical and preoperative specimens were further tested for the presence of 17 validated oncogenic gene alterations in the BRAF, RAS, RET or PAX8 genes. The miRNA-based classifiers complemented and significantly improved the diagnostic performance of the 17-mutation panel (p management of patients with indeterminate thyroid nodules. PMID:27499919

  8. Epigenetic alteration of imprinted genes during neural differentiation of germline-derived pluripotent stem cells.

    Science.gov (United States)

    Lee, Hye Jeong; Choi, Na Young; Lee, Seung-Won; Ko, Kisung; Hwang, Tae Sook; Han, Dong Wook; Lim, Jisun; Schöler, Hans R; Ko, Kinarm

    2016-03-01

    Spermatogonial stem cells (SSCs), which are unipotent stem cells in the testes that give rise to sperm, can be converted into germline-derived pluripotent stem (gPS) by self-induction. The androgenetic imprinting pattern of SSCs is maintained even after their reprogramming into gPS cells. In this study, we used an in vitro neural differentiation model to investigate whether the imprinting patterns are maintained or altered during differentiation. The androgenetic patterns of H19, Snrpn, and Mest were maintained even after differentiation of gPS cells into NSCs (gPS-NSCs), whereas the fully unmethylated status of Ndn in SSCs was altered to somatic patterns in gPS cells and gPS-NSCs. Thus, our study demonstrates epigenetic alteration of genomic imprinting during the induction of pluripotency in SSCs and neural differentiation, suggesting that gPS-NSCs can be a useful model to study the roles of imprinted genes in brain development and human neurodevelopmental disorders.

  9. Sustained alterations in neuroimmune gene expression after daily, but not intermittent, alcohol exposure.

    Science.gov (United States)

    Gano, Anny; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2016-09-01

    Acute ethanol intoxication is associated with Rapid Alterations in Neuroimmune Gene Expression (RANGE), including increased Interleukin (IL)-6 and Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and suppressed IL-1β and Tumor necrosis factor (TNF) α, yet little is known about adaptations in cytokines across the first few ethanol exposures. Thus, the present studies examined central cytokines during intoxication (3h post-ethanol) following 2, 4 or 6 intragastric ethanol challenges (4g/kg) delivered either daily or every-other-day (EOD). Subsequent analyses of blood ethanol concentrations (BECs) and corticosterone were performed to determine whether the schedule of ethanol delivery would alter the pharmacokinetics of, or general sensitivity to, subacute ethanol exposure. As expected, ethanol led to robust increases in IL-6 and IκBα gene expression in hippocampus, amygdala and bed nucleus of the stria terminalis (BNST), whereas IL-1β and TNFα were suppressed, thereby replicating our prior work. Ethanol-dependent increases in IL-6 and IκBα remained significant in all structures - even after 6 days of ethanol. When these doses were administered EOD, modest IL-6 increases in BNST were observed, with TNFα and IL-1β suppressed exclusively in the hippocampus. Analysis of BECs revealed a small but significant reduction in ethanol after 4 EOD exposures - an effect which was not observed when ethanol was delivered after 6 daily intubations. These findings suggest that ethanol-induced RANGE effects are not simply a function of ethanol load per se, and underscore the critical role that ethanol dosing interval plays in determining the neuroimmune consequences of alcohol. PMID:27208497

  10. Interhemispheric synchrony in the neonatal EEG revisited: Activation Synchrony Index as a promising classifier

    Directory of Open Access Journals (Sweden)

    Ninah eKoolen

    2014-12-01

    Full Text Available A key feature of normal neonatal EEG at term age is interhemispheric synchrony (IHS, which refers to the temporal co-incidence of bursting across hemispheres during trace alternant EEG activity. The assessment of IHS in both clinical and scientific work relies on visual, qualitative EEG assessment without clearly quantifiable definitions. A quantitative measure, activation synchrony index (ASI, was recently shown to perform well as compared to visual assessments. The present study set out to test whether IHS is stable enough for clinical use, and whether it could be an objective feature of EEG normality.We analyzed 31 neonatal EEG recordings that had been clinically classified as normal (n=14 or abnormal (n=17 using holistic, conventional visual criteria including amplitude, focal differences, qualitative synchrony, and focal abnormalities. We selected 20-minute epochs of discontinuous background pattern. ASI values were computed separately for different channel pair combinations and window lengths to define the optimal ASI intraindividual stability. Finally, ROC curves were computed to find trade-offs related to compromised data lengths, a common challenge in neonatal EEG studies.Using the average of four consecutive 2.5-minute epochs in the centro-occipital bipolar derivations gave ASI estimates that very accurately distinguished babies clinically classified as normal vs. abnormal. It was even possible to draw a cut-off limit (ASI~3.6 which correctly classified the EEGs in 97% of all cases. Finally, we showed that compromising the length of EEG segments from 20 minutes to 5 minutes leads to increased variability in ASI-based classification.Our findings support the prior literature that IHS is an important feature of normal neonatal brain function. We show that ASI may provide diagnostic value even at individual level, which strongly supports its use in prospective clinical studies on neonatal EEG as well as in the feature set of upcoming EEG

  11. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  12. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  13. The combined effects of temperature and CO2 lead to altered gene expression in Acropora aspera

    Science.gov (United States)

    Ogawa, D.; Bobeszko, T.; Ainsworth, T.; Leggat, W.

    2013-12-01

    This study explored the interactive effects of near-term CO2 increases (40-90 ppm above current ambient) during a simulated bleaching event (34 °C for 5 d) of Acropora aspera by linking physiology to expression patterns of genes involved in carbon metabolism. Symbiodinium photosynthetic efficiency ( F v / F m ) was significantly depressed by the bleaching event, while elevated pressure of CO2 (pCO2) slightly mitigated the effects of increased temperature on F v / F m during the final 4 d of the recovery period, however, did not affect the loss of symbionts. Elevated pCO2 alone had no effect on F v / F m or symbiont density. Expression of targeted Symbiodinium genes involved in carbon metabolism and heat stress response was not significantly altered by either increased temperature and/or CO2. Of the selected host genes, two carbonic anhydrase isoforms (coCA2 and coCA3) exhibited the largest changes, most notably in crossed bleaching and elevated pCO2 treatments. CA2 was significantly down-regulated on day 14 in all treatments, with the greatest decrease in the crossed treatment (relative expression compared to control = 0.16; p bleaching were evident during this study and demonstrate that increased pCO2 in surface waters will impact corals much sooner than many studies utilising end-of-century pCO2 concentrations would indicate.

  14. Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes.

    Directory of Open Access Journals (Sweden)

    Gary P Dillon

    Full Text Available BACKGROUND: Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified. METHODOLOGY/PRINCIPAL FINDINGS: We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae. These were transformed in vitro and cultured for four, seven, and ten days to correspond in development to the priming parasites, before RNA extraction. At these late times after the radiation insult, transcript suppression was the principal feature of the irradiated larvae. Individual gene analysis revealed that only seven were significantly down-regulated in the irradiated versus normal larvae at the three time-points; notably, four of the protein products are present in the tegument or associated with its membranes, perhaps indicating a perturbed function. Grouping of transcripts using Gene Ontology (GO and subsequent Gene Set Enrichment Analysis (GSEA proved more informative in teasing out subtle differences. Deficiencies in signalling pathways involving G-protein-coupled receptors suggest the parasite is less able to sense its environment. Reduction of cytoskeleton transcripts could indicate compromised structure which, coupled with a paucity of neuroreceptor transcripts, may mean the parasite is also unable to respond correctly to external stimuli. CONCLUSIONS/SIGNIFICANCE: The transcriptional differences observed are concordant with the known extended transit of attenuated parasites through skin-draining lymph nodes and the lungs: prolonged priming of the immune system by the parasite, rather than over-expression of novel antigens, could thus

  15. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia.

    Science.gov (United States)

    Martin, David A; Marona-Lewicka, Danuta; Nichols, David E; Nichols, Charles D

    2014-08-01

    Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction. In order to elucidate molecular changes that underlie these aberrant behaviors, we chronically treated rats with LSD and performed RNA-sequencing on the medial prefrontal cortex (mPFC), an area highly associated with both the actions of LSD and the pathophysiology of schizophrenia and other psychiatric illnesses. We observed widespread changes in the neurogenetic state of treated animals four weeks after cessation of LSD treatment. QPCR was used to validate a subset of gene expression changes observed with RNA-Seq, and confirmed a significant correlation between the two methods. Functional clustering analysis indicates differentially expressed genes are enriched in pathways involving neurotransmission (Drd2, Gabrb1), synaptic plasticity (Nr2a, Krox20), energy metabolism (Atp5d, Ndufa1) and neuropeptide signaling (Npy, Bdnf), among others. Many processes identified as altered by chronic LSD are also implicated in the pathogenesis of schizophrenia, and genes affected by LSD are enriched with putative schizophrenia genes. Our results provide a relatively comprehensive analysis of mPFC transcriptional regulation in response to chronic LSD, and indicate that the long-term effects of LSD may bear relevance to psychiatric illnesses, including schizophrenia.

  16. Laminin gene LAMB4 is somatically mutated and expressionally altered in gastric and colorectal cancers.

    Science.gov (United States)

    Choi, Mi Ryoung; An, Chang Hyeok; Yoo, Nam Jin; Lee, Sug Hyung

    2015-01-01

    Laminins are important in tumor invasion and metastasis as well as in maintenance of normal epithelial cell structures. However, mutation status of laminin chain-encoding genes remains unknown in cancers. Aim of this study was to explore whether laminin chain genes are mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). In a public database, we found that laminin chain genes LAMA1, LAMA3, LAMB1 and LAMB4 had mononucleotide repeats in the coding sequences that might be mutation targets in the cancers with microsatellite instability (MSI). We analyzed the genes in 88 GC and 139 CRC [high MSI (MSI-H) or stable MSI/low MSI (MSS/MSI-L)] by single strand conformation polymorphism analysis and DNA sequencing. In the present study, we found LAMB4 (11.8% of GC and 7.6% of CRC with MSI-H), LAMA3 (2.9% of GC and 2.5 of CRC with MSI-H), LAMA1 (5.9% of GC with MSI-H) and LAMB1 frameshift mutations (1.3% of CRC with MSI-H). These mutations were not found in MSS/MSI-L (0/114). We also analyzed LAMB4 expression in GC and CRC by immunohistochemistry. Loss of LAMB4 expression was identified in 17-32% of the GC and CRC. Of note, the loss expression was more common in the cancers with LAMB4 mutation or those with MSI-H. Our data show that frameshift mutations of LAMA1, LAMA3, LAMB1 and LAMB4, and loss of LAMB4 may be features of GC and CRC with MSI-H. PMID:25257191

  17. Colon cancer and gene alterations: their immunological implications and suggestions for prognostic indices and improvements in biotherapy.

    Science.gov (United States)

    Contasta, Ida; Pellegrini, Patrizia; Berghella, Anna Maria; Del Beato, Tiziana; Adorno, Domenico

    2006-10-01

    Studies have shown that changes occur in c-Ki-ras, p53, and Bcl2 gene structure and function during the various stages of human colon carcinogenesis. Alterations of these genes are responsible for the establishment of a state of continuous stimulus for cell division and apoptotic inhibition at physiological and pharmacological levels. This paper focuses on the results of our research aimed at investigating how these gene alterations influence tumoral mechanisms on an immunological level and how immunological parameters can be used as prognostic markers for the passage of normal tissue to adenoma and adenoma to carcinoma. Overall, our data suggest that an alteration in the c-Ki-ras gene results in a switch to a suppressive type of immune response, determining an impairment of immune cell activation at both antigen- presenting-cell and T-cell levels. c-Ki-ras gene mutations, p53 deletions, and Bc12 expression, on the other hand, can be used as prognostic markers for the passage of normal tissue to adenoma and adenoma to carcinoma. The p53 oncogene does not appear to impair patients' immunological response further. In conclusion, an evaluation of c-Ki-ras, rather than p53 gene alterations, would seem to be more relevant in colon cancer prevention programs and biotherapy improvement.

  18. Increasing Maternal or Post-Weaning Folic Acid Alters Gene Expression and Moderately Changes Behavior in the Offspring

    OpenAIRE

    Subit Barua; Chadman, Kathryn K.; Salomon Kuizon; Diego Buenaventura; Stapley, Nathan W.; Felicia Ruocco; Umme Begum; Sara R Guariglia; W. Ted Brown; Mohammed A. Junaid

    2014-01-01

    BACKGROUND: Studies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA) exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whethe...

  19. Unconscious errors enhance prefrontal-occipital oscillatory synchrony

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    2009-11-01

    Full Text Available The medial prefrontal cortex (MFC is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signaled Go/No-Go task in which half of the No-Go cues were masked and thus not consciously perceived, response errors enhanced tonic (i.e., over 1-2 seconds oscillatory synchrony between MFC and occipital cortex leading up to and during the subsequent trial. Spectral Granger causality analyses demonstrated that MFC >  occipital cortex directional synchrony was enhanced during trials following both conscious and unconscious errors, whereas transient stimulus-induced occipital >  MFC directional synchrony was independent of errors in the previous trial. Further, the strength of pre-trial MFC-occipital synchrony predicted individual differences in task performance. Together, these findings suggest that synchronous neurophysiological oscillations are a plausible mechanism of MFC-driven cognitive control that is independent of conscious awareness.

  20. Psychosocial effects of perceived emotional synchrony in collective gatherings.

    Science.gov (United States)

    Páez, Dario; Rimé, Bernard; Basabe, Nekane; Wlodarczyk, Anna; Zumeta, Larraitz

    2015-05-01

    In a classic theory, Durkheim (1912) predicted that because of the social sharing of emotion they generate, collective gatherings bring participants to a stage of collective effervescence in which they experience a sense of union with others and a feeling of empowerment accompanied by positive affect. This would lead them to leave the collective situation with a renewed sense of confidence in life and in social institutions. A century after Durkheim's predictions of these effects, though, they remained untested as a whole. This article reports 4 studies, 2 correlational, 1 semilongitudinal, and 1 experimental, assessing the positive effects of participation in either positively valenced (folkloric marches) or negatively valenced (protest demonstrations) collective gatherings. Results confirmed that collective gatherings consistently strengthened collective identity, identity fusion, and social integration, as well as enhancing personal and collective self-esteem and efficacy, positive affect, and positive social beliefs among participants. In line with a central tenet of the theory, emotional communion, or perceived emotional synchrony with others mediated these effects. Higher perceived emotional synchrony was associated with stronger emotional reactions, stronger social support, and higher endorsement of social beliefs and values. Participation in symbolic collective gatherings also particularly reinforced identity fusion when perceived emotional synchrony was high. The respective contributions of perceived emotional synchrony and flow, or optimal experience, were also assessed. Whereas perceived emotional synchrony emerged as strongly related to the various social outcomes, flow was observed to be related first to collective efficacy and self-esteem, and thus, to encompass mainly empowerment effects. PMID:25822033

  1. Evaluating Interpersonal Synchrony: Wavelet Transform Toward an Unstructured Conversation.

    Science.gov (United States)

    Fujiwara, Ken; Daibo, Ikuo

    2016-01-01

    This study examined whether interpersonal synchrony could be extracted using spectrum analysis (i.e., wavelet transform) in an unstructured conversation. Sixty-two female undergraduates were randomly paired and they engaged in a 6-min unstructured conversation. Interpersonal synchrony was evaluated by calculating the cross-wavelet coherence of the time-series movement data, extracted using a video-image analysis software. The existence of synchrony was tested using a pseudo-synchrony paradigm. In addition, the frequency at which the synchrony occurred and the distribution of the relative phase was explored. The results showed that the value of cross-wavelet coherence was higher in the experimental participant pairs than in the pseudo pairs. Further, the coherence value was higher in the frequency band under 0.5 Hz. These results support the validity of evaluating interpersonal synchron Behavioral mimicry and interpersonal syyby using wavelet transform even in an unstructured conversation. However, the role of relative phase was not clear; there was no significant difference between each relative-phase region. The theoretical contribution of these findings to the area of interpersonal coordination is discussed.

  2. The Subjective Sensation of Synchrony: An Experimental Study

    KAUST Repository

    Llobera, Joan

    2016-02-12

    People performing actions together have a natural tendency to synchronize their behavior. Consistently, people doing a task together build internal representations not only of their actions and goals, but also of the other people performing the task. However, little is known about which are the behavioral mechanisms and the psychological factors affecting the subjective sensation of synchrony, or “connecting” with someone else. In this work, we sought to find which factors induce the subjective sensation of synchrony, combining motion capture data and psychological measures. Our results show that the subjective sensation of synchrony is affected by performance quality together with task category, and time. Psychological factors such as empathy and negative subjective affects also correlate with the subjective sensation of synchrony. However, when people estimate synchrony as seen from a third person perspective, their psychological factors do not affect the accuracy of the estimation. We suggest that to feel this sensation it is necessary to, first, have a good joint performance and, second, to assume the existence of an attention monitoring mechanism that reports that the attention of both participants (self and other) is focused on the task.

  3. In vivo alteration of the keratin 17 gene in hair follicles by oligonucleotide-directed gene targeting.

    Science.gov (United States)

    Fan, W; Yoon, K

    2003-12-01

    Using intradermal injection of a chimeric RNA-DNA oligonucleotide (RDO) or a single-stranded oligonucleotide (ssODN) into murine skin, we attempted to make a dominant mutation (R94p) in the conserve alpha-helical domain of keratin 17 (K17), the same mutation found in pachyononychia congenichia type 2 (PC-2) patients with phenotypes ranging from twisted hair and multiple pilosebaceous cysts. Both K17A-RDO and -ssODN contained a single base mismatch (CGC to CCC) to alter the normal K17 sequence to cause an amino acid substitution (R94P). The complexes consisting of oligonucleotides and cationic liposomes were injected to C57B1/6 murine skin at 2 and 5 day after birth. Histological examination of skin biopsies at postnatal day 8 from several mice showed consistent twisted hair shafts or broken hair follicles at the sebaceous gland level and occasional rupture of the hair bulb or epidermal cyst-like changes. In the injected area, the number of full anagen hair follicles decrease by 50%. Injection of the control oligonucleotide, identical to K17A-RDO but containing no mismatch to the normal sequence, did not result in any detectable abnormality. The frequency of gene alteration was lower than 3%, according to the restriction fragment length polymorphism (RFLP) analysis of the genomic DNA isolated by dissection of hair follicles from slides. Although intradermal injection of K17A-RDO or K17-ssODN caused a dominant mutation in K17 affecting hair growth and morphology, these phenotypic changes were transient either due to the compensation of K17 by other keratins or the replacement of the mutated cells by normal surrounding cells during hair growth.

  4. Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    Directory of Open Access Journals (Sweden)

    Hernan G. Garcia

    2012-07-01

    Full Text Available A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression.

  5. Rarity of DNA sequence alterations in the promoter region of the human androgen receptor gene

    Directory of Open Access Journals (Sweden)

    D.F. Cabral

    2004-12-01

    Full Text Available The human androgen receptor (AR gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.

  6. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression.

    Directory of Open Access Journals (Sweden)

    Marina M Bellet

    Full Text Available Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.

  7. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  8. Altered expression of mitochondrial related genes in the native Tibetan placents by mitochondrial cDNA array analysis

    Institute of Scientific and Technical Information of China (English)

    Luo Yongjun; Gao Wenxiang; Zhao Xiuxin; Suo Lang; Chen Li; Liu Fuyu; Song Tonglin; Chen Jian; Gao Yuqi

    2009-01-01

    Objective: To explore the mechanism of native Tibetan fetuses adaptation to hypoxia, we tried to find the different expression genes about mitochondrial function in the native Tibetan placents. Methods: In this study, the placents of native Tibetan and the high-altitude Han (ha-Han) were collected. After the total RNA extraction, the finally synthesized cDNAs were hybridized to mitochondrial array to find the altered expression genes between them. Then, the cytochrome c oxidase 17 (Coxl7), dynactin 2 (DCTN2, also known as p50), and vascular endothelial growth factor receptor (VEGFR, also known as KDR) were chosen from the altered expression genes to further verify the array results using the SYBR Green real-time PCR. Because the altered expression genes (such as Cybb and Coxl 7) in the array results related to the activities of COXI and COXIV, the placental mitochondria activities of COXI and COXIV were measured to find their changes in the hypoxia. Results: By a standard of >1.5 or <0.67, there were 24 different expressed genes between the native Tibetan and the ha-Han placents, including 3 up-regulated genes and 21 down-regulated genes. These genes were related to energy metabolism, signal transduction, cell proliferation, electron transport, cell adhesion, nucleotide-excision repair. The array results of Coxl7, DCTN2 and KDR were further verified by the real-time RT-PCR. Through the mitochondria respiration measurements, the activity of COXI in the native Tibetan placents were higher than that of ha-Han, there was no difference in COXIV activity between them. Conclusion: The altered mitochondrial related genes in the native Tibetan placents may have a role in the high altitude adaptation for fetuses through changing the activity of mitochondrial COX.

  9. POPULATION SYNCHRONY WITHIN AND AMONG LEPIDOPTERA SPECIES IN RELATION TO WEATHER, PHYLOGENY, AND LARVEL PHENOLOGY

    Science.gov (United States)

    1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...

  10. Csf2 Null Mutation Alters Placental Gene Expression and Trophoblast Glycogen Cell and Giant Cell Abundance in Mice1

    OpenAIRE

    Sferruzzi-Perri, Amanda N.; Macpherson, Anne M.; Roberts, Claire T.; Robertson, Sarah A.

    2009-01-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be ass...

  11. Alterations in penicillin binding protein gene of Streptococcus pneumoniae and their correlation with susceptibility patterns.

    Science.gov (United States)

    Ohsaki, Yoshinobu; Tachibana, Mineji; Nakanishi, Kyoko; Nakao, Shoko; Saito, Kumiko; Toyoshima, Eri; Sato, Maki; Takahashi, Toru; Osanai, Shinobu; Itoh, Yoshihisa; Kikuchi, Kenjiro

    2003-08-01

    Penicillin binding protein (pbp) gene alterations of 328 clinical isolates of Streptococcus pneumoniae were examined for a correlation with their antibiotic-resistance. The frequency of penicillin G (PEN-G) resistance was determined to clarify susceptibility to several antibiotics, namely PEN-G, ampicillin, sulbactam/ampicillin, cefozopram, panipenem (PAPM), clarithromycin (CLR), azithromycin (AZM) and levofloxacin (LVX). Oligonucleotide primers for three pbp genes (pbp1a, pbp2x and pbp2b) were used to detect mutations in pbp. Of the strains, 25.9% were classified as Pen-Gs, 68.0% as Pen-Gir and 6.1% as Pen-Gr. The polymerase chain reaction product for wild-type pbp1a was found in 185 isolates, that for wild-type pbp2x was found in 66 isolates and that for wild-type pbp2b was found in 213 isolates. None of these three genes was detectable in 100 isolates while all of them were detected in 64 isolates (1aw/2xw/2bw). Of those 64 isolates with 1aw/2xw/2bw, the minimum inhibitory concentration (MIC) of PEN-G was or =4.0 mg/l included one Pen-Gs and two Pen-Gir isolates. The MICs of CLR correlated significantly with those of AZM. The MIC of CLR was > or =1 mg/l for 216 isolates, and the MIC of AZM was > or =1 mg/l for 244 of them. These data suggested that PAPM may be effective against S. pneumoniae infection, although acquisition of resistance should be considered. LVX also seemed to be effective against S. pneumoniae.

  12. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  13. Relationship between Microsatellite Alterations of RASSF1A Gene and Development of Cervical Carcinoma

    Institute of Scientific and Technical Information of China (English)

    ZHAO Fu-xi; YAN Jie; LIU Run-hua; WANG Xi-ying; CUI Ke

    2007-01-01

    Objective: To explore the relationship between microsatellite alterations of RASSF1A gene and the development of cervical carcinoma, and its relationship with HPV16 infection. Methods: Two sites of microsatellite polymorphism of RASSF1A gene were selected. Polymerase chain reaction (PCR) technique was used to detect LOH and MSI in 50 cases of cervical carcinoma and 40 cases of cervical intraepithelial neoplasia (CIN), and to detect the infection state of HPV16. Results: At D3S1478 and D3S4604, the LOH rates of cervical carcinomas were 32.6% (14/43) and 48.9% (23/47), the MSI rates were 14% (6/43) and 19.1% (9/47), respectively. The LOH rates of CINs were 31.4% (11/35) and 39.5% (15/38), the MSI rates were 11.4% (4/35) and 15.8% (6/38), respectively. There were no significant differences between cervical carcinomas and CINs in respect to their positive rates of LOH and MSI at D3S1478 and D3S4604 (P>0.05). There were significant differences in LOH rates at D3S1478 and D3S4604 between the stage Ⅰ-Ⅱ and Ⅲ-Ⅳ cervical carcinomas and between the well/moderately differentiated cervical carcinomas and the poorly differentiated cervical carcinomas (P<0.05). The positive rates of LOH and MSI for CIN Ⅲ and noninvasive cervical carcinomas were higher than those in CIN Ⅰ-Ⅱ. The rates of the infection of HPV16 in cervical cancer was obviously higher than that in CIN and in normal cervical tissues (P<0.05), and the incidence of LOH of RASSF1A gene was higher in HPV16(+) than that in HPV16(-) (P<0.05). Conclusion: The RASSF1A gene change is a relatively late event in cervical carcinomas. The detection of LOH and MSI of RASSF1A gene might be helpful to the early diagnosis and the screening of cervical carcinoma. It might also be useful for predicting the prognosis of cervical carcinoma.

  14. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder

    Science.gov (United States)

    Fitzpatrick, Paula; Frazier, Jean A.; Cochran, David M.; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R. C.

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed.

  15. Gene expression alterations associated with outcome in aromatase inhibitor-treated ER+ early-stage breast cancer patients

    DEFF Research Database (Denmark)

    Gravgaard Thomsen, Karina Hedelund; Lyng, Maria Bibi; Elias, Daniel;

    2015-01-01

    Aromatase inhibitors (AI), either alone or together with chemotherapy, have become the standard adjuvant treatment for postmenopausal, estrogen receptor-positive (ER+) breast cancer. Although AIs improve overall survival, resistance is still a major clinical problem, thus additional biomarkers...... predictive of outcome of ER+ breast cancer patients treated with AIs are needed. Global gene expression analysis was performed on ER+ primary breast cancers from patients treated with adjuvant AI monotherapy; half experienced recurrence (median follow-up 6.7 years). Gene expression alterations were validated...... by qRT-PCR, and functional studies evaluating the effect of siRNA-mediated gene knockdown on cell growth were performed. Twenty-six genes, including TFF3, DACH1, RGS5, and GHR, were shown to exhibit altered expression in tumors from patients with recurrence versus non-recurrent (fold change ≥1.5, p

  16. Maladaptive neural synchrony in tinnitus: origin and restoration

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    2015-02-01

    Full Text Available Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane potential changes in local neural groups as reflected in the local field potentials, resulting in the presence of oscillatory brain waves in the EEG. Noise-induced hearing loss, often resulting in tinnitus, causes a reorganization of the tonotopic map in auditory cortex and increased spontaneous firing rates and neural synchrony. Spontaneous brain rhythms rely on neural synchrony. Abnormal neural synchrony in tinnitus appears to be confined to specific frequency bands of brain rhythms. Increases in delta-band activity are generated by deafferented/deprived neuronal networks resulting from hearing loss. Coordinated reset (CR stimulation was developed in order to specifically counteract such abnormal neuronal synchrony by desynchronization. The goal of acoustic CR neuromodulation is to desynchronize tinnitus-related abnormal delta band oscillations. CR neuromodulation does not require permanent stimulus delivery in order to achieve long-lasting desynchronization or even a full-blown anti-kindling but may have cumulative effects, i.e. the effect of different CR epochs separated by pauses may accumulate. Unlike other approaches, acoustic CR neuromodulation does not intend to reduce tinnitus-related neuronal activity by employing lateral inhibition. The potential efficacy of acoustic CR modulation was shown in a clinical proof of concept trial, where effects achieved in 12 weeks of treatment delivered 4-6h/day persisted through a preplanned 4-week therapy pause and showed sustained long-term effects after 10 months of therapy, leading to 75% responders.

  17. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Energy Technology Data Exchange (ETDEWEB)

    Picoli Souza, K. de [Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-24

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  18. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-06-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes.

  19. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Directory of Open Access Journals (Sweden)

    K. de Picoli Souza

    2014-08-01

    Full Text Available Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g and triiodothyronine (0.5-50 µg/100 g for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold. Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60% ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold, and decreased heart rate (5%, fast muscle myoglobin mRNA (30% and body weight (20% in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30% and body weight (14%. These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  20. Synchrony in broadband fluctuation and the 2008 financial crisis.

    Directory of Open Access Journals (Sweden)

    Der Chyan Lin

    Full Text Available We propose phase-like characteristics in scale-free broadband processes and consider fluctuation synchrony based on the temporal signature of significant amplitude fluctuation. Using wavelet transform, successful captures of similar fluctuation pattern between such broadband processes are demonstrated. The application to the financial data leading to the 2008 financial crisis reveals the transition towards a qualitatively different dynamical regime with many equity price in fluctuation synchrony. Further analysis suggests an underlying scale free "price fluctuation network" with large clustering coefficient.

  1. The local field potential reflects surplus spike synchrony

    DEFF Research Database (Denmark)

    Denker, Michael; Roux, Sébastien; Lindén, Henrik;

    2011-01-01

    While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions...... of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes...

  2. alpha-Globin genes: thalassemic and structural alterations in a Brazilian population

    Directory of Open Access Journals (Sweden)

    M.R.S.C. Wenning

    2000-09-01

    Full Text Available Seven unrelated patients with hemoglobin (Hb H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aaT]. Among the 27 patients with structural alterations, 15 (of Italian descent had Hb Hasharon (alpha47Asp->His associated with the -alpha3.7 deletion, 4 (of Italian descent were heterozygous for Hb J-Rovigo (alpha53Ala->Asp, 4 (3 Blacks and 1 Caucasian were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys associated with the alpha+-thalassemia, 1 (Black was heterozygous for Hb G-Pest (alpha74Asp->Asn, 1 (Caucasian was heterozygous for Hb Kurosaki (alpha7Lys->Glu, 1 (Caucasian was heterozygous for Hb Westmead (alpha122His->Gln, and 1 (Caucasian was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val. Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.

  3. Clinical Implications of Rabphillin-3A-Like Gene Alterations in Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Balananda-Dhurjati Kumar Putcha

    Full Text Available For the rabphillin-3A-like (RPH3AL gene, a putative tumor suppressor, the clinical significance of genetic alterations in breast cancers was evaluated. DNA and RNA were extracted from formalin-fixed, paraffin-embedded (FFPE cancers and matching normal tissues. DNA samples were assessed for loss of heterozygosity (LOH at the 17p13.3 locus of RPH3AL and the 17p13.1 locus of the tumor suppressor, TP53. RPH3AL was sequenced, and single nucleotide polymorphisms (SNPs were genotyped. RNA samples were evaluated for expression of RPH3AL, and FFPE tissues were profiled for its phenotypic expression. Alterations in RPH3AL were correlated with clinicopathological features, LOH of TP53, and patient survival. Of 121 cancers, 80 had LOH at one of the RPH3AL locus. LOH of RHP3AL was associated with nodal metastasis, advanced stage, large tumor size, and poor survival. Although ~50% were positive for LOH at the RPH3AL and TP53 loci, 19 of 105 exhibited LOH only at the RPH3AL locus. Of these, 12 were non-Hispanic Caucasians (Whites, 15 had large tumors, and 12 were older (>50 years. Patients exhibiting LOH at both loci had shorter survival than those without LOH at these loci (log-rank, P = 0.014. LOH at the TP53 locus alone was not associated with survival. Analyses of RPH3AL identified missense point mutations in 19 of 125 cases, a SNP (C>A in the 5'untranslated region at -25 (5'UTR-25 in 26 of 104, and a SNP (G>T in the intronic region at 43 bp downstream to exon-6 (intron-6-43 in 79 of 118. Genotype C/A or A/A of the SNP at 5'UTR-25 and genotype T/T of a SNP at intron-6-43 were predominantly in Whites. Low levels of RNA and protein expression of RPH3AL were present in cancers relative to normal tissues. Thus, genetic alterations in RPH3AL are associated with aggressive behavior of breast cancers and with short survival of patients.

  4. Feeding period restriction alters the expression of peripheral circadian rhythm genes without changing body weight in mice.

    Directory of Open Access Journals (Sweden)

    Hagoon Jang

    Full Text Available Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the expression of light-regulated hypothalamic circadian clock genes was unaffected by either a normal chow diet (NCD or a high-fat diet (HFD. In the liver, the expression pattern of circadian clock genes, including Bmal1, Clock, and Per2, was changed by different feeding period restrictions. Moreover, the expression of lipogenic genes, gluconeogenic genes, and fatty acid oxidation-related genes in the liver was also altered by feeding period restriction. Given that feeding period restriction does not affect body weight gain with a NCD or HFD, it is likely that the amount of food consumed might be a crucial factor in determining body weight. Collectively, these data suggest that feeding period restriction modulates the expression of peripheral circadian clock genes, which is uncoupled from light-sensitive hypothalamic circadian clock genes.

  5. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma.

    Directory of Open Access Journals (Sweden)

    Armand Valsesia

    Full Text Available Cancer genomes frequently contain somatic copy number alterations (SCNA that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes' in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.

  6. Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia.

    Directory of Open Access Journals (Sweden)

    Carla Maria P Ribeiro

    Full Text Available Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT modulates inflammatory responses in airways, well-differentiated primary cultures of human airway epithelia were exposed to AZT alone, an inflammatory stimulus consisting of soluble factors from cystic fibrosis airways, or AZT followed by the inflammatory stimulus. RNA microarrays were conducted to identify global and specific gene expression changes. Analysis of gene expression changes revealed that the AZT treatment alone altered the gene profile of the cells, primarily by significantly increasing the expression of lipid/cholesterol genes and decreasing the expression of cell cycle/mitosis genes. The increase in cholesterol biosynthetic genes was confirmed by increased filipin staining, an index of free cholesterol, after AZT treatment. AZT also affected genes with inflammatory annotations, but the effect was variable (both up- and down-regulation and gene specific. AZT pretreatment prevented the up-regulation of some genes, such as MUC5AC and MMP9, triggered by the inflammatory stimulus, but the up-regulation of other inflammatory genes, e.g., cytokines and chemokines, such as interleukin-8, was not affected. On the other hand, HLA genes were increased by AZT. Notably, secreted IL-8 protein levels did not reflect mRNA levels, and were, in fact, higher after AZT pretreatment in cultures exposed to the inflammatory stimulus, suggesting that AZT can affect inflammatory pathways other than by altering gene expression. These findings suggest that the specific effects of AZT on inflamed and non-inflamed airway epithelia are likely relevant to its clinical activity, and their apparent

  7. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring.

    Directory of Open Access Journals (Sweden)

    Subit Barua

    Full Text Available BACKGROUND: Studies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whether the amount of FA ingested during gestation alters gene expression in the newborn cerebral hemisphere, and if the increased exposure to FA during gestation and throughout the lifetime alters behavior in C57BL/6J mice. METHODS: Dams were fed FA either at 0.4 mg or 4 mg/kg diet throughout the pregnancy and the resulting pups were maintained on the diet throughout experimentation. Newborn pups brain cerebral hemispheres were used for microarray analysis. To confirm alteration of several genes, quantitative RT-PCR (qRT-PCR and Western blot analyses were performed. In addition, various behavior assessments were conducted on neonatal and adult offspring. RESULTS: Results from microarray analysis suggest that the higher dose of FA supplementation during gestation alters the expression of a number of genes in the newborns' cerebral hemispheres, including many involved in development. QRT-PCR confirmed alterations of nine genes including down-regulation of Cpn2, Htr4, Zfp353, Vgll2 and up-regulation of Xist, Nkx6-3, Leprel1, Nfix, Slc17a7. The alterations in the expression of Slc17a7 and Vgll2 were confirmed at the protein level. Pups exposed to the higher dose of FA exhibited increased ultrasonic vocalizations, greater anxiety-like behavior and hyperactivity. These findings suggest that although FA plays a significant role in mammalian cellular machinery, there may be a loss of benefit from higher amounts of FA. Unregulated high FA supplementation during pregnancy

  8. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    Science.gov (United States)

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  9. Circadian rhythm-dependent alterations of gene expression in Drosophila brain lacking fragile X mental retardation protein.

    Directory of Open Access Journals (Sweden)

    Shunliang Xu

    Full Text Available Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP. The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs, and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281 with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s underlying the altered circadian rhythms associated with loss of dFmr1.

  10. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    Directory of Open Access Journals (Sweden)

    Bauman William A

    2010-10-01

    Full Text Available Abstract Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days or 29 days later (35 days attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on

  11. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    Science.gov (United States)

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  12. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    Science.gov (United States)

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  13. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin.

    Science.gov (United States)

    Malakauskas, Sandra M; Quan, Hui; Fields, Timothy A; McCall, Shannon J; Yu, Ming-Jiun; Kourany, Wissam M; Frey, Campbell W; Le, Thu H

    2007-02-01

    Defects in renal proximal tubule transport manifest in a number of human diseases. Although variable in clinical presentation, disorders such as Hartnup disease, Dent's disease, and Fanconi syndrome are characterized by wasting of solutes commonly recovered by the proximal tubule. One common feature of these disorders is aminoaciduria. There are distinct classes of amino acid transporters located in the apical and basal membranes of the proximal tubules that reabsorb >95% of filtered amino acids, yet few details are known about their regulation. We present our physiological characterization of a mouse line with targeted deletion of the gene collectrin that is highly expressed in the kidney. Collectrin-deficient mice display a reduced urinary concentrating capacity due to enhanced solute clearance resulting from profound aminoaciduria. The aminoaciduria is generalized, characterized by loss of nearly every amino acid, and results in marked crystalluria. Furthermore, in the kidney, collectrin-deficient mice have decreased plasma membrane populations of amino acid transporter subtypes B(0)AT1, rBAT, and b(0,+)AT, as well as altered cellular distribution of EAAC1. Our data suggest that collectrin is a novel mediator of renal amino acid transport and may provide further insight into the pathogenesis of a number of human disease correlates. PMID:16985211

  14. Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons

    Directory of Open Access Journals (Sweden)

    Grimm Eleanor R

    2008-07-01

    Full Text Available Abstract Background Transient hyperthermic shifts in body temperature have been linked to the endogenous hormone calcitonin gene-related peptide (CGRP, which can increase sympathetic activation and metabolic heat production. Recent studies have demonstrated that these centrally mediated responses may result from CGRP dependent changes in the activity of thermoregulatory neurons in the preoptic and anterior regions of the hypothalamus (POAH. Results Using a tissue slice preparation, we recorded the single-unit activity of POAH neurons from the adult male rat, in response to temperature and CGRP (10 μM. Based on the slope of firing rate as a function of temperature, neurons were classified as either warm sensitive or temperature insensitive. All warm sensitive neurons responded to CGRP with a significant decrease in firing rate. While CGRP did not alter the firing rates of some temperature insensitive neurons, responsive neurons showed an increase in firing rate. Conclusion With respect to current models of thermoregulatory control, these CGRP dependent changes in firing rate would result in hyperthermia. This suggests that both warm sensitive and temperature insensitive neurons in the POAH may play a role in producing this hyperthermic shift in temperature.

  15. The Invalidation of HspB1 Gene in Mouse Alters the Ultrastructural Phenotype of Muscles.

    Science.gov (United States)

    Kammoun, Malek; Picard, Brigitte; Astruc, Thierry; Gagaoua, Mohammed; Aubert, Denise; Bonnet, Muriel; Blanquet, Véronique; Cassar-Malek, Isabelle

    2016-01-01

    Even though abundance of Hsp27 is the highest in skeletal muscle, the relationships between the expression of HspB1 (encoding Hsp27) and muscle characteristics are not fully understood. In this study, we have analysed the effect of Hsp27 inactivation on mouse development and phenotype. We generated a mouse strain devoid of Hsp27 protein by homologous recombination of the HspB1 gene. The HspB1-/- mouse was viable and fertile, showing neither apparent morphological nor anatomical alterations. We detected a gender dimorphism with marked effects in males, a lower body weight (P optical microscopy and transmission electron microscopy. Not any differences in the characteristics of muscle fibres (contractile and metabolic type, shape, perimeter, cross-sectional area) were detected except a trend for a higher proportion of small fibres. Different myosin heavy chains electrophoretic profiles were observed in the HspB1-/- mouse especially the presence of an additional isoform. Electron microscopy revealed ultrastructural abnormalities in the myofibrillar structure of the HspB1-/- mouse mutant mice (e.g. destructured myofibrils and higher gaps between myofibrils) especially in the m. Soleus. Combined with our previous data, these findings suggest that Hsp27 could directly impact the organization of muscle cytoskeleton at the molecular and ultrastructural levels. PMID:27512988

  16. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels.

    Science.gov (United States)

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J; Kier, Ann B; Schroeder, Friedhelm

    2016-09-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559

  17. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    International Nuclear Information System (INIS)

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (μg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl2) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 μg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 μg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 μg/g) but increased cGnRH-II mRNA at the lowest dose (5 μg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  18. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Sanchez, Brian C; Szabo, Nancy J; Denslow, Nancy D; Sepúlveda, Maria S

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (microg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl(2)) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 microg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 microg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 microg/g) but increased cGnRH-II mRNA at the lowest dose (5 microg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants. PMID:19781795

  19. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    Energy Technology Data Exchange (ETDEWEB)

    Martyniuk, Christopher J. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sanchez, Brian C. [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States); Szabo, Nancy J.; Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sepulveda, Maria S., E-mail: mssepulv@purdue.edu [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens ({mu}g/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl{sub 2}) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 {mu}g/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 {mu}g/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 {mu}g/g) but increased cGnRH-II mRNA at the lowest dose (5 {mu}g/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  20. Pathogenic LRRK2 mutations do not alter gene expression in cell model systems or human brain tissue.

    Directory of Open Access Journals (Sweden)

    Michael J Devine

    Full Text Available Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.

  1. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Directory of Open Access Journals (Sweden)

    Chen Yan-Hua

    2009-03-01

    Full Text Available Abstract Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.

  2. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  3. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    Science.gov (United States)

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  4. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  5. Ginseng Extracts Restore High-Glucose Induced Vascular Dysfunctions by Altering Triglyceride Metabolism and Downregulation of Atherosclerosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Gabriel Hoi-huen Chan

    2013-01-01

    Full Text Available The king of herbs, Panax ginseng, has been used widely as a therapeutic agent vis-à-vis its active pharmacological and physiological effects. Based on Chinese pharmacopeia Ben Cao Gang Mu and various pieces of literature, Panax ginseng was believed to exert active vascular protective effects through its antiobesity and anti-inflammation properties. We investigated the vascular protective effects of ginseng by administrating ginseng extracts to rats after the induction of diabetes. We found that Panax ginseng can restore diabetes-induced impaired vasorelaxation and can reduce serum triglyceride but not cholesterol level in the diabetic rats. The ginseng extracts also suppressed the expression of atherosclerosis-related genes and altered the expression of lipid-related genes. The results provide evidence that Panax ginseng improves vascular dysfunction induced by diabetes and the protective effects may possibly be due to the downregulation of atherosclerosis-related genes and altered lipid metabolism, which help to restore normal endothelium functions.

  6. Lack of SOD1 gene mutations and activity alterations in two Italian families with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Gestri, D; Cecchi, C; Tedde, A; Latorraca, S; Orlacchio, A; Grassi, E; Massaro, A M; Liguri, G; St George-Hyslop, P H; Sorbi, S

    2000-08-11

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal disorder, which results from the degeneration of motor neurons in the brain and spinal cord. Approximately 20% of the inherited autosomal dominant cases are due to mutations within the gene coding for Cu/Zn superoxide dismutase 1 (SOD1), a cytosolic homodimeric enzyme that catalyzes the dismutation of toxic superoxide anion. We investigated the presence of SOD1 gene mutations and activity alterations in two unrelated families of ALS patients from Elba, an island of central Italy. No mutation in SOD1 exon 1 to 5 and no activity alteration were observed in all members of the two analyzed ALS families (FALS). These data show an apparent heterogeneous distribution of ALS patients with SOD1 gene mutations among different populations and suggest that another genetic locus could be involved in the disease. PMID:10961653

  7. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Serafi

    Full Text Available BACKGROUND: Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. METHODS: We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. RESULTS: Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. CONCLUSION: This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  8. Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines.

    Science.gov (United States)

    Mirzaei, Mohammad Reza; Najafi, Ali; Arababadi, Mohammad Kazemi; Asadi, Malek Hosein; Mowla, Seyed Javad

    2014-10-01

    OCT4B1 is a newly discovered spliced variant of OCT4 which is primarily expressed in pluripotent and tumor cells. Based on our previous studies, OCT4B1 is significantly overexpressed in tumors, where it endows an anti-apoptotic property to tumor cells. However, the mechanism by which OCT4B1 regulates the apoptotic pathway is not yet elucidated. Here, we investigated the effects of OCT4B1 suppression on the expression alteration of 84 genes involved in apoptotic pathway. The AGS (gastric adenocarcinoma), 5637 (bladder tumor), and U-87MG (brain tumor) cell lines were transfected with OCT4B1 or irrelevant siRNAs. The expression level of apoptotic genes was then quantified using a human apoptosis panel-PCR kit. Our data revealed an almost similar pattern of alteration in the expression profile of apoptotic genes in all three studied cell lines, following OCT4B1 suppression. In general, the expression of more than 54 apoptotic genes (64 % of arrayed genes) showed significant changes. Among these, some up-regulated (CIDEA, CIDEB, TNFRSF1A, TNFRSF21, TNFRSF11B, TNFRSF10B, and CASP7) and down-regulated (BCL2, BCL2L11, TP73, TP53, BAD, TRAF3, TRAF2, BRAF, BNIP3L, BFAR, and BAX) genes had on average more than tenfold gene expression alteration in all three examined cell lines. With some minor exceptions, suppression of OCT4B1 caused upregulation of pro-apoptotic and down-regulation of anti-apoptotic genes in transfected tumor cells. Uncovering OCT4B1 down-stream targets could further elucidate its part in tumorigenesis, and could lead to finding a new approach to combat cancer, based on targeting OCT4B1. PMID:25008565

  9. The Spacing Principle for Unlearning Abnormal Neuronal Synchrony

    OpenAIRE

    Popovych, Oleksandr V.; Markos N Xenakis; Peter A. Tass

    2015-01-01

    Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, lear...

  10. Unconscious errors enhance prefrontal-occipital oscillatory synchrony

    NARCIS (Netherlands)

    M.X. Cohen; S. van Gaal; K.R. Ridderinkhof; V.A.F. Lamme

    2009-01-01

    The medial prefrontal cortex (MFC) is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signa

  11. A Case of Hand Waving: Action Synchrony and Person Perception

    Science.gov (United States)

    Macrae, C. Neil; Duffy, Oonagh K.; Miles, Lynden K.; Lawrence, Julie

    2008-01-01

    While previous research has demonstrated that people's movements can become coordinated during social interaction, little is known about the cognitive consequences of behavioral synchrony. Given intimate links between the systems that regulate perception and action, we hypothesized that the synchronization of movements during a dyadic interaction…

  12. Early development of synchrony in cortical activations in the human

    Science.gov (United States)

    Koolen, N.; Dereymaeker, A.; Räsänen, O.; Jansen, K.; Vervisch, J.; Matic, V.; Naulaers, G.; De Vos, M.; Van Huffel, S.; Vanhatalo, S.

    2016-01-01

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. PMID:26876605

  13. Phase synchrony reveals organization in human atrial fibrillation.

    Science.gov (United States)

    Vidmar, David; Narayan, Sanjiv M; Rappel, Wouter-Jan

    2015-12-15

    It remains unclear if human atrial fibrillation (AF) is spatially nonhierarchical or exhibits a hierarchy of organization sustained by sources. We utilize activation times obtained at discrete locations during AF to compute the phase synchrony between tissue regions, to examine underlying spatial dynamics throughout both atria. We construct a binary synchronization network and show that this network can accurately define regions of coherence in coarse-grained in silico data. Specifically, domains controlled by spiral waves exhibit regions of high phase synchrony. We then apply this analysis to clinical data from patients experiencing cardiac arrhythmias using multielectrode catheters to simultaneously record from a majority of both atria. We show that pharmaceutical intervention with ibutilide organizes activation by increasing the size of the synchronized domain in AF and quantify the increase in temporal organization when arrhythmia changes from fibrillation to tachycardia. Finally, in recordings from 24 patients in AF we show that the level of synchrony is spatially broad with some patients showing large spatially contiguous regions of synchronization, while in others synchrony is localized to small pockets. Using computer simulations, we show that this distribution is inconsistent with distributions obtained from simulations that mimic multiwavelet reentry but is consistent with mechanisms in which one or more spatially conserved spiral waves is surrounded by tissue in which activation is disorganized. PMID:26475585

  14. High-Resolution Analysis of Gene Copy Number Alterations in Human Prostate Cancer Using CGH on cDNA Microarrays: Impact of Copy Number on Gene Expression

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2004-05-01

    Full Text Available Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classical chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28 and loss (18 were found, their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13% and gains at iq and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, 74-76 Mbp from the p-telomere, which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, 17q (losses, at 3q, 5p, 6p (gains. Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P < .0001 overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.

  15. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH in rats

    Directory of Open Access Journals (Sweden)

    Giannini Augusto

    2010-05-01

    Full Text Available Abstract Background Azoxymethane (AOM or 1,2-dimethylhydrazine (DMH-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. Methods For gene expression analysis, 9 tumours (TUM and their paired normal mucosa (NM were hybridized on 4 × 44K Whole rat arrays (Agilent and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent and the results were analyzed by CGH Analytics (Agilent. Results Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC compared with NM: 183, 48, 39, 38, 36 and 32, respectively, while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively. Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. Conclusion The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a

  16. Coupling cellular oscillators: a mechanism that maintains synchrony against developmental noise in the segmentation clock.

    Science.gov (United States)

    Ishimatsu, Kana; Horikawa, Kazuki; Takeda, Hiroyuki

    2007-06-01

    A unique feature of vertebrate segmentation is its strict periodicity, which is governed by the segmentation clock consisting of numerous cellular oscillators. These cellular oscillators, driven by a negative-feedback loop of Hairy transcription factor, are linked through Notch-dependent intercellular coupling and display the synchronous expression of clock genes. Combining our transplantation experiments in zebrafish with mathematical simulations, we review how the cellular oscillators maintain synchrony and form a robust system that is resistant to the effects of developmental noise such as stochastic gene expression and active cell proliferation. The accumulated evidence indicates that the segmentation clock behaves as a "coupled oscillators," a mechanism that also underlies the synchronous flashing seen in fireflies.

  17. Genetic Association and Altered Gene Expression of Mir-155 in Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Rosanna Asselta

    2011-12-01

    Full Text Available Multiple sclerosis (MS is a complex autoimmune disease of the central nervous system characterized by chronic inflammation, demyelination, and axonal damage. As microRNA (miRNA-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response, miRNA deregulation may result in defects in immune tolerance. In this frame, we sought to explore the possible involvement of miRNAs in MS pathogenesis by monitoring the differential expression of 22 immunity-related miRNAs in peripheral blood mononuclear cells of MS patients and healthy controls, by using a microbead-based technology. Three miRNAs resulted >2 folds up-regulated in MS vs controls, whereas none resulted down-regulated. Interestingly, the most up-regulated miRNA (mir-155; fold change = 3.30; P = 0.013 was previously reported to be up-regulated also in MS brain lesions. Mir-155 up-regulation was confirmed by qPCR experiments. The role of mir-155 in MS susceptibility was also investigated by genotyping four single nucleotide polymorphisms (SNPs mapping in the mir-155 genomic region. A haplotype of three SNPs, corresponding to a 12-kb region encompassing the last exon of BIC (the B-cell Integration Cluster non-coding RNA, from which mir-155 is processed, resulted associated with the disease status (P = 0.035; OR = 1.36, 95% CI = 1.05–1.77, suggesting that this locus strongly deserves further investigations.

  18. Parasitic castration by the digenian trematode Allopodocotyle sp. alters gene expression in the brain of the host mollusc Haliotis asinina.

    Science.gov (United States)

    Rice, Tamika; McGraw, Elizabeth; O'Brien, Elizabeth K; Reverter, Antonio; Jackson, Daniel J; Degnan, Bernard M

    2006-06-26

    Infection of molluscs by digenean trematode parasites typically results in the repression of reproduction -- the so-called parasitic castration. This is known to occur by altering the expression of a range of host neuropeptide genes. Here we analyse the expression levels of 10 members of POU, Pax, Sox and Hox transcription factor gene families, along with genes encoding FMRFamide, prohormone convertase and beta-tubulin, in the brain ganglia of actively reproducing (summer), non-reproducing (winter) and infected Haliotis asinina (a vetigastropod mollusc). A number of the regulatory genes are differentially expressed in parasitised H. asinina, but in only a few cases do expression patterns in infected animals match those occurring in animals where reproduction is normally repressed.

  19. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kirchner, Henriette; Sinha, Indranil; Gao, Hui;

    2016-01-01

    in four of these genes in liver of severely obese non-diabetic and type 2 diabetic patients, suggesting epigenetic regulation of transcription by altered ATF-DNA binding. CONCLUSION: Severely obese non-diabetic and type 2 diabetic patients have distinct alterations in the hepatic methylome...... and transcriptome, with hypomethylation of several genes controlling glucose metabolism within the ATF-motif regulatory site. Obesity appears to shift the epigenetic program of the liver towards increased glycolysis and lipogenesis, which may exacerbate the development of insulin resistance.......OBJECTIVE: Epigenetic modifications contribute to the etiology of type 2 diabetes. METHOD: We performed genome-wide methylome and transcriptome analysis in liver from severely obese men with or without type 2 diabetes and non-obese men to discover aberrant pathways underlying the development...

  20. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    DEFF Research Database (Denmark)

    Olesen, R H; Hyde, T M; Kleinman, J E;

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc...... participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African...... expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing...

  1. Phytoplasma adapt to the diverse environments of their plant and insect hosts by altering gene expression

    DEFF Research Database (Denmark)

    Makarova, Olga; MacLean, Allyson M.; Nicolaisen, Mogens

    2015-01-01

    Phytoplasmas are intracellular insect-transmitted phytopathogenic bacteria with small genomes. To understand how Aster Yellows phytoplasma strain witches' broom (AY-WB) adapts to their hosts, we performed qRT-PCR analysis of 179 in silico functionally annotated AY-WB genes that are likely to have...... a role in host adaptation. 74 genes were up-regulated in insects and included genes involved in stress response, phospholipid synthesis, malate and pyruvate metabolism, hemolysin and transporter genes, multiple copies of thymidylate kinase, sigma factor and Zn-proteases genes. In plants, 34 genes...

  2. Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla

    OpenAIRE

    Mayer, Catherine A.; Macklin, Wendy B.; Avishai, Nanthawan; Balan, Kannan; Wilson, Christopher G.; Miller, Martha J.

    2009-01-01

    Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al. 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plpmsd), and Plpnull mice, as well as shiverer (Mbpshi) mice, a myelin basic protein mutant. Current-voltage relation...

  3. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  4. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  5. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer.

    Science.gov (United States)

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC.

  6. Repeated intrauterine infusions of lipopolysaccharide alter gene expression and lifespan of the bovine corpus luteum.

    Science.gov (United States)

    Lüttgenau, J; Lingemann, B; Wellnitz, O; Hankele, A K; Schmicke, M; Ulbrich, S E; Bruckmaier, R M; Bollwein, H

    2016-08-01

    Inflammation of the uterus is associated with disturbed ovarian function and reduced reproductive performance in dairy cows. To investigate the influence of endometritis on the bovine corpus luteum, 8 heifers received intrauterine infusions with either phosphate-buffered saline (PBS; 9mL) or Escherichia coli lipopolysaccharide (LPS; 3µg/kg of body weight diluted in 9mL of PBS) at 6-h intervals from 12h before and until 9d after ovulation during 2 cycles in a random order (ovulation=d 1). An untreated cycle was examined before and after PBS and LPS cycles, and the mean values from both untreated cycles were used as control. In all cycles, blood sampling and ultrasonography of the ovaries were performed on d 0, 1, 2, 4, 6, 8, 9, 10, 12, 15, 18, and then every 2d until ovulation. Endometrial cells were collected for cytology and quantitative real-time reverse transcriptase PCR on d 0, 6, and 9, and on d 0 and 6, respectively, and luteal tissue was collected for quantitative real-time reverse transcriptase PCR on d 6 and 9. Both, PBS and LPS infusions induced subclinical endometritis, which was accompanied by increased endometrial mRNA abundance of proinflammatory cytokines IL1β, IL8, and tumor necrosis factor α. Additionally, LPS challenge induced premature luteolysis, which was characterized by increased plasma concentrations of PGF2α metabolite, decreased plasma progesterone concentrations, and reduced luteal size and blood flow compared with the control. The luteal mRNA expression of the LPS receptor TLR4, PGE synthase, and the apoptosis-related factor CASP3 were higher, and those of steroidogenic factors STAR and HSD3B, the PGF receptor, and the angiogenic factor VEGFA121 were lower after LPS challenge compared with the control. In conclusion, repeated intrauterine LPS infusions during the first 9d of the estrous cycle alter gene expression and shorten the lifespan of the bovine corpus luteum. PMID:27179870

  7. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass

    Science.gov (United States)

    Barkholt, Pernille; Pedersen, Philip J.; Hay-Schmidt, Anders; Jelsing, Jacob; Hansen, Henrik H.; Vrang, Niels

    2016-01-01

    Objective The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance. Methods Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain. Results RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption compared with sham operated controls. In the arcuate nucleus, RYGB surgery increased mRNA levels of orexigenic AgRP and NPY, whereas no change was observed in anorexigenic CART and POMC mRNA levels. A similar pattern was seen in food-restricted versus ad libitum fed rats. In contrast to a significant increase of orexigenic MCH mRNA levels in food-restricted animals, RYGB did not change MCH expression in the lateral hypothalamus. In the VTA, RYGB surgery induced a reduction in mRNA levels of TH and DAT, whereas no changes were observed in the substantia nigra relative to sham surgery. Conclusion RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats. PMID:27069869

  8. Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus.

    Science.gov (United States)

    Xu, Donglin; Zhong, Ting; Feng, Wendi; Zhou, Guohui

    2016-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector's death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress. PMID:27531640

  9. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish

    International Nuclear Information System (INIS)

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic–pituitary–thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46–0.72 mg kg−1, induced oxidative stress with H2O2 being increased by 1.4–2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3–1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. - Highlights: • 48 h-LC50 value of arsenite (AsIII) was 42 mg L−1 for zebrafish. • AsIII exposure elevated oxidative stress and caused oxidative damage in zebrafish. • AsIII exposure increased the content of thyroid hormone thyroxine. • AsIII exposure altered gene transcription in the HPT axis in zebrafish. - Short-term exposure of arsenite caused oxidative stress, disrupted thyroid endocrine system and altered gene transcription in the HPT axis in Zebrafish

  10. Gene expression alterations associated with outcome in aromatase inhibitor-treated ER+ early-stage breast cancer patients.

    Science.gov (United States)

    Thomsen, Karina G; Lyng, Maria B; Elias, Daniel; Vever, Henriette; Knoop, Ann S; Lykkesfeldt, Anne E; Lænkholm, Anne-Vibeke; Ditzel, Henrik J

    2015-12-01

    Aromatase inhibitors (AI), either alone or together with chemotherapy, have become the standard adjuvant treatment for postmenopausal, estrogen receptor-positive (ER+) breast cancer. Although AIs improve overall survival, resistance is still a major clinical problem, thus additional biomarkers predictive of outcome of ER+ breast cancer patients treated with AIs are needed. Global gene expression analysis was performed on ER+ primary breast cancers from patients treated with adjuvant AI monotherapy; half experienced recurrence (median follow-up 6.7 years). Gene expression alterations were validated by qRT-PCR, and functional studies evaluating the effect of siRNA-mediated gene knockdown on cell growth were performed. Twenty-six genes, including TFF3, DACH1, RGS5, and GHR, were shown to exhibit altered expression in tumors from patients with recurrence versus non-recurrent (fold change ≥1.5, p proliferation, growth, and development. TFF3, which encodes for trefoil factor 3 and is an estrogen-responsive oncogene shown to play a functional role in tamoxifen resistance and metastasis of ER+ breast cancer, was also shown to be upregulated in an AI-resistant cell line model, and reduction of TFF3 levels using TFF3-specific siRNAs decreased the growth of both the AI-resistant and -sensitive parental cell lines. Moreover, overexpression of TFF3 in parental AI-sensitive MCF-7/S0.5 cells resulted in reduced sensitivity to the AI exemestane, whereas TFF3 overexpression had no effect on growth in the absence of exemestane, indicating that TFF3 mediates growth and survival signals that abrogate the growth inhibitory effect of exemestane. We identified a panel of 26 genes exhibiting altered expression associated with disease recurrence in patients treated with adjuvant AI monotherapy, including TFF3, which was shown to exhibit a growth- and survival-promoting effect in the context of AI treatment.

  11. Respiratory syncytial virus (RSV infection in elderly mice results in altered antiviral gene expression and enhanced pathology.

    Directory of Open Access Journals (Sweden)

    Terianne M Wong

    Full Text Available Elderly persons are more susceptible to RSV-induced pneumonia than young people, but the molecular mechanism underlying this susceptibility is not well understood. In this study, we used an aged mouse model of RSV-induced pneumonia to examine how aging alters the lung pathology, modulates antiviral gene expressions, and the production of inflammatory cytokines in response to RSV infection. Young (2-3 months and aged (19-21 months mice were intranasally infected with mucogenic or non-mucogenic RSV strains, lung histology was examined, and gene expression was analyzed. Upon infection with mucogenic strains of RSV, leukocyte infiltration in the airways was elevated and prolonged in aged mice compared to young mice. Minitab factorial analysis identified several antiviral genes that are influenced by age, infection, and a combination of both factors. The expression of five antiviral genes, including pro-inflammatory cytokines IL-1β and osteopontin (OPN, was altered by both age and infection, while age was associated with the expression of 15 antiviral genes. Both kinetics and magnitude of antiviral gene expression were diminished as a result of older age. In addition to delays in cytokine signaling and pattern recognition receptor induction, we found TLR7/8 signaling to be impaired in alveolar macrophages in aged mice. In vivo, induction of IL-1β and OPN were delayed but prolonged in aged mice upon RSV infection compared to young. In conclusion, this study demonstrates inherent differences in response to RSV infection in young vs. aged mice, accompanied by delayed antiviral gene induction and cytokine signaling.

  12. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment

    Institute of Scientific and Technical Information of China (English)

    Airong Qian; Shengmeng Di; Xiang Gao; Wei Zhang; Zongcheng Tian; Jingbao Li; Lifang Hu; Pengfei Yang; Dachuan Yin; Peng Shang

    2009-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields.In this study,a special designed superconducting magnet,which can produce three apparent gravity levels (0,1,and 2 g),namely high magneto-gravitational environment (HMGE),was used to simulate space gravity environment.The effects of HMGE on osteoblast gene expression profile were investigated by microarray.Genes sensitive to diamagnetic levitation environment (0 g),gravity changes,and high magnetic field changes were sorted on the basis of typical cell func-tions.Cytoskeleton,as an intracellular load-bearing struc-ture,plays an important role in gravity perception.Therefore,13 cytoskeleton-related genes were chosen according to the results of microarray analysis,and the expressions of these genes were found to be altered under HMGE by real-time PCR.Based on the PCR results,the expressions of WASF2 (WAS protein family,member 2),WIPFI (WAS/WASL interacting protein family,member 1),paxillin:and talin 1 were further identified by western blot assay.Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels,and talin 1 and paxillin were sensitive to both magnetic field and gravity changes.Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskele-ton-related genes expression.The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  13. Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza

    Science.gov (United States)

    Viboud, Cécile; Bjørnstad, Ottar N.; Smith, David L.; Simonsen, Lone; Miller, Mark A.; Grenfell, Bryan T.

    2006-04-01

    Quantifying long-range dissemination of infectious diseases is a key issue in their dynamics and control. Here, we use influenza-related mortality data to analyze the between-state progression of interpandemic influenza in the United States over the past 30 years. Outbreaks show hierarchical spatial spread evidenced by higher pairwise synchrony between more populous states. Seasons with higher influenza mortality are associated with higher disease transmission and more rapid spread than are mild ones. The regional spread of infection correlates more closely with rates of movement of people to and from their workplaces (workflows) than with geographical distance. Workflows are described in turn by a gravity model, with a rapid decay of commuting up to around 100 km and a long tail of rare longer range flow. A simple epidemiological model, based on the gravity formulation, captures the observed increase of influenza spatial synchrony with transmissibility; high transmission allows influenza to spread rapidly beyond local spatial constraints.

  14. A minimal model of self-consistent partial synchrony

    Science.gov (United States)

    Clusella, Pau; Politi, Antonio; Rosenblum, Michael

    2016-09-01

    We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field.

  15. Detection of Gene Alteration for Color Vision Defects by Polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    According to the fact that the abnormalities of visual pigment genes were always involved in the changing of the exon 5, two oligonucleotide primers were designed to amplify the exon 5 of red pigment gene and green pigment gene. After electrophoresis of the PCR products digested with Rsal or Sau3A, the DNA fragments from the exon 5 of red pigment gene (RPG) and green pigment gene (GPG) were separated since there are different restriction endonuclease sites. On the other hand, we analyzed the exon 5 rela...

  16. Diaphragm Unloading via Controlled Mechanical Ventilation Alters the Gene Expression Profile

    OpenAIRE

    DeRuisseau, Keith C.; Shanely, R Andrew; Akunuri, Nagabhavani; Hamilton, Marc T.; Van Gammeren, Darin; Zergeroglu, A. Murat; McKenzie, Michael; Powers, Scott K.

    2005-01-01

    Rationale: Prolonged controlled mechanical ventilation results in diaphragmatic inactivity and promotes oxidative injury, atrophy, and contractile dysfunction in this important inspiratory muscle. However, the impact of controlled mechanical ventilation on global mRNA alterations in the diaphragm remains unknown.

  17. Exploring Mycobacterium tuberculosis infection-induced alterations in gene expression in macrophage by microarray hybridization

    Institute of Scientific and Technical Information of China (English)

    XIE; Jianping; (谢建平); LI; Yao; (李; 瑶); YUE; Jun; (乐; 军); XU; Yongzhong; (徐永忠); HUANG; Daqiang; (黄达蔷); LIANG; Li; (梁; 莉); WANG; Honghai; (王洪海)

    2003-01-01

    Tuberculosis remains a serious threat to public health. Its causative agent Mycobacte- rium tuberculosis is an intracellular pathogen which survives and replicates within cells of the host immune system, primarily macrophages. Knowledge of the bacteria-macrophage interaction can help to develop novel measures to combat the disease. The global gene expression of macro- phage following invasion by and growth of M. tuberculosis was studied by cDNA microarray. Of the 12800 human genes analyzed, totally 473 (3.7%) macrophage genes were differentially expressed after being infected by M. tuberculosis, among which, only 25 (5.2%, corresponding to less than 0.2% of the 12800 genes) genes were up-regulated, while others (94.8%) were down-regulated against the control. Of the 473 genes, 376 genes are registered in the GenBank, and 97 are novel genes. Expression of 5 up-regulated genes has been induced by more than 3-fold. 25 genes were down-regulated by more than 3-fold. Syndecan binding protein has been down-regu- lated up to 12.5-fold. The data gave an insight into the early gene expression in macrophage ensuing M. tuberculosis infection and a basis for further study.

  18. Heartbeat, embryo communication and hatching synchrony in snake eggs

    OpenAIRE

    Fabien Aubret; Gaëlle Blanvillain; Florent Bignon; Kok, Philippe J. R.

    2016-01-01

    Communication is central to life at all levels of complexity, from cells to organs, through to organisms and communities. Turtle eggs were recently shown to communicate with each other in order to synchronise their development and generate beneficial hatching synchrony. Yet the mechanism underlying embryo to embryo communication remains unknown. Here we show that within a clutch, developing snake embryos use heart beats emanating from neighbouring eggs as a clue for their metabolic level, in ...

  19. Bursting and Synchrony in Networks of Model Neurons

    CERN Document Server

    Geier, Christian; Elger, Christian E; Lehnertz, Klaus

    2016-01-01

    Bursting neurons are considered to be a potential cause of over-excitability and seizure susceptibility. The functional influence of these neurons in extended epileptic networks is still poorly understood. There is mounting evidence that the dynamics of neuronal networks is influenced not only by neuronal and synaptic properties but also by network topology. We investigate numerically the influence of different neuron dynamics on global synchrony in neuronal networks with complex connection topologies.

  20. Emotional lability and affective synchrony in borderline personality disorder.

    Science.gov (United States)

    Schoenleber, Michelle; Berghoff, Christopher R; Tull, Matthew T; DiLillo, David; Messman-Moore, Terri; Gratz, Kim L

    2016-07-01

    Extant research on emotional lability in borderline personality disorder (BPD) has focused almost exclusively on lability of individual emotions or emotion types, with limited research considering how different types of emotions shift together over time. Thus, this study examined the temporal dynamics of emotion in BPD at the level of both individual emotions (i.e., self-conscious emotions [SCE], anger, and anxiety) and mixed emotions (i.e., synchrony between emotions). One hundred forty-four women from the community completed a diagnostic interview and laboratory study involving 5 emotion induction tasks (each of which was preceded and followed by a 5-min resting period or neutral task). State ratings of SCE, anger, and anxiety were provided at 14 time points (before and after each laboratory task and resting period). Hierarchical linear modeling results indicate that women with BPD reported greater mean levels of SCE and Anxiety (but not Anger), and greater lability of Anxiety. Women with BPD also exhibited greater variability in lability of all 3 emotions (suggestive of within-group differences in the relevance of lability to BPD). Results also revealed synchrony (i.e., positive relations) between each possible pair of emotions, regardless of BPD status. Follow-up regression analyses suggest the importance of accounting for lability when examining the role of synchrony in BPD, as the relation of SCE-Anger synchrony to BPD symptom severity was moderated by Anger and SCE lability. Specifically, synchronous changes in SCE and Anger were associated with greater BPD symptom severity when large shifts in SCE were paired with minor shifts in Anger. (PsycINFO Database Record PMID:27362623

  1. Alteration of somatostatin receptor subtype 2 gene expression in pancreatic tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Ren-Yi Qin; Ru-Liang Fang; Manoj Kumar Gupta; Zheng-Ren Liu; Da-Yu Wang; Qing Chang; Yi-Bei Chen

    2004-01-01

    AIM: To explore the difference of somatostatin receptorsubtype 2 (SST2R) gene expression in pancreatic canceroustissue and its adjacent tissue, and the relationship betweenthe change of SST2R gene expression and pancreatic tumorangiogenesis related genes.METHODS: The expressions of SST2R, DPC4, p53 and ras genes in cancer tissues of 40 patients with primary pancreatic cancer, and the expression of SST2R gene in its adjacent tissue were determined by immunohistochemiscal LSAB method and EnVisionTM method. Chi-square test was used to analyze the difference in expression of SST2R in pancreatic cancer tissue and its adjacent tissue, and the correlation of SST2R gene expression with the expression of p53, ras and DPC4 genes.RESULTS: Of the tissue specimens from 40 patients with primary pancreatic cancer, 35 (87.5%) cancer tissues showed a negative expression of SST2R gene, whereas 34 (85%) a positive expression of SST2R gene in its adjacent tissues.Five (12.5%) cancer tissues and its adjacent tissues simultaneously expressed SST2R. The expression of SST2R gene was markedly higher in pancreatic tissues adjacent to cancer than in pancreatic cancer tissues (P<0.05). The expression rates of p53, ras and DPC4 genes were 50%,60% and 72.5%, respectively. There was a significant negative correlation of SST2R with p53 and ras genes (X12=9.33,X22=15.43, P<0.01), but no significant correlation with DPC4 gene (X2=2.08, P >0.05).CONCLUSION: There was a significant difference of SST2R gene expression in pancreatic cancer tissues and its adjacent tissues, which might be one cause for the different therapeutic effects of somatostatin and its analogs on pancreatic cancer patients. There were abnormal expressions of SST2R, DPC4, p53 and ras genes in pancreatic carcinogenesis, and moreover, the loss or decrease of SST2R gene expression was significantly negatively correlated with the overexpression of tumor angiogenesis correlated p53 and ras genes, suggesting that SST2R gene

  2. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder.

    Science.gov (United States)

    Fitzpatrick, Paula; Frazier, Jean A; Cochran, David M; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R C

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed. PMID:27630599

  3. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder

    Science.gov (United States)

    Fitzpatrick, Paula; Frazier, Jean A.; Cochran, David M.; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R. C.

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed. PMID:27630599

  4. Assessing instantaneous synchrony of nonlinear nonstationary oscillators in the brain.

    Science.gov (United States)

    Fine, Ananda S; Nicholls, David P; Mogul, David J

    2010-01-30

    Neuronal populations throughout the brain achieve levels of synchronous electrophysiological activity as a consequence of both normal brain function as well as during pathological states such as in epileptic seizures. Understanding this synchrony and being able to quantitatively assess the dynamics with which neuronal oscillators across the brain couple their activity is a critical component toward decoding such complex behavior. Commonly applied techniques to resolve relationships between oscillators typically make assumptions of linearity and stationarity that are likely not to be valid for complex neural signals. In this study, intracranial electroencephalographic activity was recorded bilaterally in both hippocampi and in anteromedial thalamus of rat under normal conditions and during hypersynchronous seizure activity induced by focal injection of the epileptogenic agent kainic acid. Nonlinear oscillators were first extracted using empirical mode decomposition. The technique of eigenvalue decomposition was used to assess global phase synchrony of the highest energy oscillators. The Hilbert analytical technique was then used to measure instantaneous phase synchrony of these oscillators as they evolved in time. To test the reliability of this method, we first applied it to a system of two coupled Rössler attractors under varying levels of coupling with small frequency mismatch. The application of these analytical techniques to intracranially recorded brain signals provides a means for assessing how complex oscillatory behavior in the brain evolves and changes during both normal activity and as a consequence of diseased states without making restrictive and possibly erroneous assumptions of the linearity and stationarity of the underlying oscillatory activity.

  5. Neural synchrony in cortical networks: history, concept and current status

    Directory of Open Access Journals (Sweden)

    Peter Uhlhaas

    2009-07-01

    Full Text Available Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.

  6. Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression

    Directory of Open Access Journals (Sweden)

    Landry Charles F

    2007-04-01

    Full Text Available Abstract Background Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain. Results Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes homer1a, arc, zif268, ngfi-b and c-fos in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues. Conclusion The results implicate correlated activity between the cortex and the striatum, especially the nucleus

  7. Gene expression alteration during redox-dependent enhancement of arsenic cytotoxicity by emodin in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Xiao Jing WANG; Jie YANG; Hui CANG; Yan Qiong ZOU; Jing YI

    2005-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone) could enhance the sensitivity of tumor cells to arsenic trioxide (As2O3)-induced apoptosis via generation of ROS,but the molecular mechanism has not been elucidated.Here,we carried out cDNA microarray-based global transcription profiling of HeLa cells in response to As2O3/emodin cotreatment,comparing with As2O3-only treatment.The results showed that the expression of a number of genes was substantially altered at two time points.These genes are involved in different aspects of cell function.In addition to redox regulation and apoptosis,ROS affect genes encoding proteins associated with cell signaling,organelle functions,cell cycle,cytoskeleton,etc.These data suggest that based on the cytotoxicity of As2O3,emodin mobilize every genomic resource through which the As2O3-induced apoptosis is facilitated.

  8. Treatment with analgesics after mouse sciatic nerve injury does not alter expression of wound healing-associated genes

    Institute of Scientific and Technical Information of China (English)

    Matt C Danzi; Dario Motti; Donna L Avison; John L Bixby; Vance P Lemmon

    2016-01-01

    Animal models of sciatic nerve injury are commonly used to study neuropathic pain as well as axon regen-eration. Administration of post-surgical analgesics is an important consideration for animal welfare, but the actions of the analgesic must not interfere with the scientiifc goals of the experiment. In this study, we show that treatment with either buprenorphine or acetaminophen following a bilateral sciatic nerve crush surgery does not alter the expression in dorsal root ganglion (DRG) sensory neurons of a panel of genes associated with wound healing. These ifndings indicate that the post-operative use of buprenorphine or acetaminophen at doses commonly suggested by Institutional Animal Care and Use Committees does not change the intrinsic gene expression response of DRG neurons to a sciatic nerve crush injury, for many wound healing-associated genes. Therefore, administration of post-operative analgesics may not confound the results of transcriptomic studies employing this injury model.

  9. Alterations of gene expression profiles induced by sulfur dioxide in rat lungs

    Institute of Scientific and Technical Information of China (English)

    MENG Ziqiang; QIN Guohua; BAI Juli; ZHANG Jianbiao; ZHANG Xin; YANG Zhenghua

    2007-01-01

    Sulfur dioxide (SO2) is a ubiquitous air pollutant presents in low concentrations in urban air and in higher concentrations in working environment.Few data are avail-able on the effects of being exposed to this pollutant on the molecular mechanism,although some biochemical changes in lipid metabolism,intermediary metabolism and oxidative stress have been detected.The present investigation aimed at analyzing the gene expression profiles of the lungs of Wistar rats short-term (20 ppm,6 h/day,for seven days) and long.term (5 ppm,1 h/day,for 30 days) exposed to SO2 by Affymetrix GeneChip (RAE230A) analysis.It was found that 31 genes,containing 18 known genes and 13 novel genes were up-regulated,and 31 genes,containing 20 known genes and 11 novel genes,were down-regulated in rats short-term exposed to SO2 compared with control rats.While there were 176 genes,containing 82 known genes and 94 novel genes were up-regulated,and 85 genes,containing 46 known genes and 39 novel genes,were down-regulated in rats long-term exposed to SO2 compared with control rats.It is suggested that:(1) SO2 exerts its effects by different mechanisms in vivo at high-dose short-term inhalation and at low-dose long-term inhalation;(2) a notable feature of the gene expression profile was the decreased expression of genes related to oxidative phosphorylation in lungs of rats short-term exposed to SO2,which shows high-dose short-term exposed to SO2 may cause the deterioration of mitochondrial functions;(3)discriminating genes in lungs of rats long-term exposed to SO2 included those involved in fatty acid metabolism,immune,inflammatory,oxidative stress,oncogene,tumor suppresser and extracellular matrix.The mechanism of low-dose long-term exposed to SO2 is more complex.

  10. Altered gene expression in the brain and liver of female fathead minnows Pimephales promelas Rafinesque exposed to fadrozole

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, Daniel L. [US EPA, Duluth, MN (United States); Knoebl, Iris [US EPA, Cincinnati, OH (United States); Larkin, Patrick [Sante Fe Community College, Gainesville, FL (United States); EcoArray, Alachua, FL (United States); Miracle, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carter, Barbara J. [EcoArray, Alachua, FL (United States); Denslow, Nancy D. [Univ. of Florida, Gainesville, FL (United States); Ankley, Gerald T. [US EPA, Duluth, MN (United States)

    2008-06-01

    The fathead minnow (Pimephales promelas) is a small fish species widely used for ecotoxicology research and regulatory testing in North America. This study used a novel 2000 gene oligonucleotide microarray to evaluate the effects of the aromatase inhibitor, fadrozole, on gene expression in the liver and brain tissue of exposed females. Exposure to 60 μg 1-1 fadrozole/L for 7 d, resulted in the significant (p<0.05; high-moderate agreement among multiple probes spotted on the array) up-regulation of approximately 47 genes in brain and 188 in liver, and the significant down-regulation of 61 genes in brain and 162 in liver. In particular, fadrozole exposure elicited significant up-regulation of five genes in brain involved in the cholesterol synthesis pathway and altered the expression of over a dozen cytoskeleton-related genes. In the liver, there was notable down-regulation of genes coding for vitellogenin precursors, vigillin, and fibroin-like ovulatory proteins which were consistent with an expected reduction in plasma estradiol concentrations as a result of fadrozole exposure and an associated reduction in measured plasma vitellogenin concentrations. These changes coincided with a general down-regulation of genes coding for non-mitochondrial ribosomal proteins and proteins that play a role in translation. With the exception of the fibroin-like ovulatory proteins, real-time PCR results largely corroborated the microarray responses. Overall, results of this study demonstrate the utility of high density oligonucleotide microarrays for unsupervised, discovery-driven, ecotoxicogenomics research with the fathead minnow and helped inform the subsequent development of a 22,000 gene microarray for the species.

  11. A single generation of domestication heritably alters the expression of hundreds of genes.

    Science.gov (United States)

    Christie, Mark R; Marine, Melanie L; Fox, Samuel E; French, Rod A; Blouin, Michael S

    2016-01-01

    The genetic underpinnings associated with the earliest stages of plant and animal domestication have remained elusive. Because a genome-wide response to selection can take many generations, the earliest detectable changes associated with domestication may first manifest as heritable changes to global patterns of gene expression. Here, to test this hypothesis, we measured differential gene expression in the offspring of wild and first-generation hatchery steelhead trout (Oncorhynchus mykiss) reared in a common environment. Remarkably, we find that there were 723 genes differentially expressed between the two groups of offspring. Reciprocal crosses reveal that the differentially expressed genes could not be explained by maternal effects or by chance differences in the background levels of gene expression among unrelated families. Gene-enrichment analyses reveal that adaptation to the novel hatchery environment involved responses in wound healing, immunity and metabolism. These findings suggest that the earliest stages of domestication may involve adaptation to highly crowded conditions. PMID:26883375

  12. A single generation of domestication heritably alters the expression of hundreds of genes.

    Science.gov (United States)

    Christie, Mark R; Marine, Melanie L; Fox, Samuel E; French, Rod A; Blouin, Michael S

    2016-01-01

    The genetic underpinnings associated with the earliest stages of plant and animal domestication have remained elusive. Because a genome-wide response to selection can take many generations, the earliest detectable changes associated with domestication may first manifest as heritable changes to global patterns of gene expression. Here, to test this hypothesis, we measured differential gene expression in the offspring of wild and first-generation hatchery steelhead trout (Oncorhynchus mykiss) reared in a common environment. Remarkably, we find that there were 723 genes differentially expressed between the two groups of offspring. Reciprocal crosses reveal that the differentially expressed genes could not be explained by maternal effects or by chance differences in the background levels of gene expression among unrelated families. Gene-enrichment analyses reveal that adaptation to the novel hatchery environment involved responses in wound healing, immunity and metabolism. These findings suggest that the earliest stages of domestication may involve adaptation to highly crowded conditions.

  13. Studies on the Photoperiod Sensitive Characters of Male Fertility Alteration of Peiai64S' Main Male Genic Sterile Gene

    Institute of Scientific and Technical Information of China (English)

    ZENG Han-lai; ZHANG Duan-pin; ZHANG Zhi-yu; YI Wen-kai; ZHU Xin; MENG Hui-jun

    2002-01-01

    Peiai64S, an indica male sterile rice with a male fertility alteration under different environments, is selected from the offspring of indica rice crossed with Nongken58S. Nongken58S, a japonica photoperiod sensitive genic male sterile rice (PGMS), deriving from a natural mutant plant individual of normal japonica rice variety, Nongken58, is used as a male sterile gene donor of Peiai64S. But Peiai64S is not a typical PGMS rice, the male fertility is sensitive to temperature just as thermo-sensitive genic male sterile rice (TGMS). We have selected typical PGMS plants in F2 population of Peiai64S × Nongken58, whose ratio of fertile plants to sterile plants is nearly 3:1. The sterility inheritance conformed to one pair of gene segregation model. The result indicates the main male sterile gene in Peiai64S is not other than the PGMS gene, and comes from Nongken58S. The genetic background affects effective expression of the PGMS gene. This suggests that we ought to focus on optimizing the genetic background of the PGMS gene in PGMS rice breeding, and select an ideal genetic background as a transgenic background in molecular breeding.

  14. Chronic Exposure to Arsenic in the Drinking Water Alters the Expression of Immune Response Genes in Mouse Lung

    Science.gov (United States)

    Kozul, Courtney D.; Hampton, Thomas H.; Davey, Jennifer C.; Gosse, Julie A.; Nomikos, Athena P.; Eisenhauer, Phillip L.; Weiss, Daniel J.; Thorpe, Jessica E.; Ihnat, Michael A.; Hamilton, Joshua W.

    2009-01-01

    Background Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. Objectives The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. Methods C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Results Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. Conclusions These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung. PMID:19654921

  15. Adenovirus-induced alterations in host cell gene expression prior to the onset of viral gene expression.

    Science.gov (United States)

    Granberg, Fredrik; Svensson, Catharina; Pettersson, Ulf; Zhao, Hongxing

    2006-09-15

    In this report, we have studied gene expression profiles in human primary lung fibroblasts (IMR-90) during the very early phase of an adenovirus infection. Eight out of twelve genes with known functions encoded transcription factors linked to two major cellular processes; inhibition of cell growth (ATF3, ATF4, KLF4, KLF6 and ELK3) and immune response (NR4A1 and CEBPB), indicating that the earliest consequences of an adenovirus infection are growth arrest and induction of an immune response. A time course analysis showed that the induction of these immediate-early response genes was transient and suppressed after the onset of the adenovirus early gene expression. PMID:16860366

  16. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Caterina Fede

    2014-08-01

    Full Text Available Silica (SiO2 nanoparticles (NPs have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30 having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.

  17. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    Science.gov (United States)

    Fede, Caterina; Millino, Caterina; Pacchioni, Beniamina; Celegato, Barbara; Compagnin, Chiara; Martini, Paolo; Selvestrel, Francesco; Mancin, Fabrizio; Celotti, Lucia; Lanfranchi, Gerolamo; Mognato, Maddalena; Cagnin, Stefano

    2014-01-01

    Silica (SiO2) nanoparticles (NPs) have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30) having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with Ludox® silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes. PMID:25170680

  18. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  19. Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism

    Science.gov (United States)

    The availability of a representative gene ontology (GO) database is a prerequisite for a successful functional genomics study. Using online Blast2GO resources we constructed a GO database of Aspergillus flavus. Of the predicted total 13,485 A. flavus genes 8,987 were annotated with GO terms. The mea...

  20. Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas

    DEFF Research Database (Denmark)

    Wu, Kui; Zhang, Xin; Li, Fuqiang;

    2015-01-01

    The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13...... frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both...... primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma....

  1. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium.

    Science.gov (United States)

    Ferrari, S; Kitson, C; Farley, R; Steel, R; Marriott, C; Parkins, D A; Scarpa, M; Wainwright, B; Evans, M J; Colledge, W H; Geddes, D M; Alton, E W

    2001-09-01

    Nonviral vectors have been shown to be a safe and valid alternative to recombinant viruses for gene therapy of cystic fibrosis (CF). Nevertheless, gene transfer efficiency needs to be increased before clinical efficacy is likely in man. One barrier to increased efficacy is normal airway mucus. Using an ex vivo model of sheep tracheal epithelium, we show that this barrier can, in part, be overcome by treatment with the mucolytic agents, Nacystelyn or N-acetylcysteine using either a cationic lipid or a cationic polymer as the gene transfer agent. Further, in vivo application of either Nacystelyn or the anticholinergic glycopyrrolate, both clinically used agents, resulted in increased reporter gene expression in the mouse lung, but no significant correction of the bioelectric defect in CF null mice. These results, whilst unlikely to be sufficient in themselves to achieve clinically relevant gene therapy, may be a further useful step in the attainment of this goal.

  2. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium.

    Science.gov (United States)

    Ferrari, S; Kitson, C; Farley, R; Steel, R; Marriott, C; Parkins, D A; Scarpa, M; Wainwright, B; Evans, M J; Colledge, W H; Geddes, D M; Alton, E W

    2001-09-01

    Nonviral vectors have been shown to be a safe and valid alternative to recombinant viruses for gene therapy of cystic fibrosis (CF). Nevertheless, gene transfer efficiency needs to be increased before clinical efficacy is likely in man. One barrier to increased efficacy is normal airway mucus. Using an ex vivo model of sheep tracheal epithelium, we show that this barrier can, in part, be overcome by treatment with the mucolytic agents, Nacystelyn or N-acetylcysteine using either a cationic lipid or a cationic polymer as the gene transfer agent. Further, in vivo application of either Nacystelyn or the anticholinergic glycopyrrolate, both clinically used agents, resulted in increased reporter gene expression in the mouse lung, but no significant correction of the bioelectric defect in CF null mice. These results, whilst unlikely to be sufficient in themselves to achieve clinically relevant gene therapy, may be a further useful step in the attainment of this goal. PMID:11571577

  3. Alteration of consciousness in focal epilepsy: the global workspace alteration theory.

    Science.gov (United States)

    Bartolomei, Fabrice; McGonigal, Aileen; Naccache, Lionel

    2014-01-01

    Alteration of consciousness (AOC) is an important clinical manifestation of partial seizures that greatly impacts the quality of life of patients with epilepsy. Several theories have been proposed in the last fifty years. An emerging concept in neurology is the global workspace (GW) theory that postulates that access to consciousness (from several sensorial modalities) requires transient coordinated activity from associative cortices, in particular the prefrontal cortex and the posterior parietal associative cortex. Several lines of evidence support the view that partial seizures alter consciousness through disturbance of the GW. In particular, a nonlinear relation has been shown between excess of synchronization in the GW regions and the degree of AOC. Changes in thalamocortical synchrony occurring during the spreading of the ictal activity seem particularly involved in the mechanism of altered consciousness. This link between abnormal synchrony and AOC offers new perspectives in the treatment of the AOC since means of decreasing consciousness alteration in seizures could improve patients' quality of life.

  4. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  5. Altered gene expression profiles of NIH3T3 cells regulated by human lung cancer associated gene CT120

    Institute of Scientific and Technical Information of China (English)

    Xiang Huo HE; Jin Jun LI; Yi Hu XIE; Yun Tian TANG; Gen Fu YAO; Wen Xin QIN; Da Fang WAN; Jian Ren GU

    2004-01-01

    CT120, a novel membrane-associated gene implicated in lung carcinogenesis, was previously identified from chromosome 17p13.3 locus, a hot mutation spot involved in human malignancies. In the present study, we further determined that CT120 ectopic expression could promote cell proliferation activity of NIH3T3 cells using MTS assay, and monitored the downstream effects of CT120 in NIH3T3 cells with Atlas mouse cDNA expression arrays. Among 588known genes, 133 genes were found to be upregulated or downregulated by CT120. Two major signaling pathways involved in cell proliferation, cell survival and anti-apoptosis were overexpressed and activated in response to CT120:One is the Raf/MEK/Erk signal cascades and the other is the PI3K/Akt signal cascades, suggesting that CT120 might contribute, at least in part, to the constitutively activation of Erk and Akt in human lung caner cells. In addition, some tumor metastasis associated genes cathepsin B, cathepsin D, cathepsin L, MMP-2/TIMP-2 were also upregulated by CT120, upon which CT120 might be involved in tumor invasiveness and metastasis. In addition, CT120 might play an important role in tumor progression through modulating the expression of some candidate "Lung Tumor Progression"genes including B-Raf, Rab-2, BAX, BAG-1, YB-1, and Cdc42.

  6. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis.

    Directory of Open Access Journals (Sweden)

    Timothy A Chan

    2008-05-01

    Full Text Available BACKGROUND: The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation. METHODS AND FINDINGS: Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89% of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome. CONCLUSIONS: Using an unbiased genome

  7. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    2011-09-01

    Full Text Available Tuberculosis (TB treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4 inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH. Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.

  8. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells.

    Science.gov (United States)

    Grosse, Jirka; Wehland, Markus; Pietsch, Jessica; Ma, Xiao; Ulbrich, Claudia; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hauslage, Jens; Hemmersbach, Ruth; Braun, Markus; van Loon, Jack; Vagt, Nicole; Infanger, Manfred; Eilles, Christoph; Egli, Marcel; Richter, Peter; Baltz, Theo; Einspanier, Ralf; Sharbati, Soroush; Grimm, Daniela

    2012-02-01

    This study focused on the effects of short-term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft- und Raumfahrt) parabolic flight campaigns. Hoechst 33342 and acridine orange/ethidium bromide staining showed no signs of cell death in ECs after 31 parabolas (P31). Gene array analysis revealed 320 significantly regulated genes after the first parabola (P1) and P31. COL4A5, COL8A1, ITGA6, ITGA10, and ITGB3 mRNAs were down-regulated after P1. EDN1 and TNFRSF12A mRNAs were up-regulated. ADAM19, CARD8, CD40, GSN, PRKCA (all down-regulated after P1), and PRKAA1 (AMPKα1) mRNAs (up-regulated) provide a very early protective mechanism of cell survival induced by 22 s microgravity. The ABL2 gene was significantly up-regulated after P1 and P31, TUBB was slightly induced, but ACTA2 and VIM mRNAs were not changed. β-Tubulin immunofluorescence revealed a cytoplasmic rearrangement. Vibration had no effect. Hypergravity reduced CARD8, NOS3, VASH1, SERPINH1 (all P1), CAV2, ADAM19, TNFRSF12A, CD40, and ITGA6 (P31) mRNAs. These data suggest that microgravity alters the gene expression patterns and the cytoskeleton of ECs very early. Several gravisensitive signaling elements, such as AMPKα1 and integrins, are involved in the reaction of ECs to altered gravity.

  9. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  10. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    1987-01-01

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce sim

  11. Methyl-ß-cyclodextrin alters adipokine gene expression and glucose metabolism in swine adipose tissue

    Science.gov (United States)

    This study was designed to determine if metabolic stress as induced by methyl-ß-cyclodextrin (MCD) can alter cytokine expression in neonatal swine adipose tissue explants. Subcutaneous adipose tissue explants (100 ± 10 mg) were prepared from 21 day old pigs. Explants were incubated in medium 199 s...

  12. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice.

    Science.gov (United States)

    Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-15

    The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P 5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.

  13. Genetic and Epigenetic Alterations of DLC-1, a Candidate Tumor Suppressor Gene, in Nasopharyngeal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Dan PENG; Cai-Ping REN; Hong-Mei YI; Liang ZHOU; Xu-Yu YANG; Hui LI; Kai-Tai YAO

    2006-01-01

    The DLC-1 gene, located at the human chromosome region 8p22, behaves like a tumor suppressor gene and is frequently deleted in diverse tumors. The deletion of 8p22 is not an uncommon event in nasopharyngeal carcinoma (NPC), therefore we explored the expression levels of the DLC-1 gene in NPCs and NPC cell lines by reverse transcription-polymerase chain reaction. The results showed the mRNA level of DLC-1 was downregulated. To identify the mechanism of DLC-1 downregulation in NPC, we investigated the methylation status of the DLC-1 gene using methylation-specific PCR, and found that 79% (31 of 39) of the NPC tissues and two DLC-1 nonexpressing NPC cell lines, 6-10B and 5-8F, were methylated in the DLC-1 CpG island. Microsatellite PCR was also carried out, and loss of heterozygosity was found at four microsatellite sites (D8S552, D8S1754, D8S1790 and D8S549) covering the whole DLC-1 gene with ratios of 33% (4 of 12 informative cases), 18% (2 of 11), 5% (1 of 18), and 25% (3 of 12), respectively. Taken together, our results suggest that DLC-1 might be an NPC-related tumor suppressor gene affected by aberrant promoter methylation and gene deletion.

  14. Greig cephalopolysyndactyly syndrome: Altered phenotype of a contiguous gene syndrome by the presence of a chromosomal deletion

    Energy Technology Data Exchange (ETDEWEB)

    Hersh, J.H.; Williams, P.G.; Yen, F.F. [Univ. of Louisville, KY (United States)] [and others

    1994-09-01

    Greig cephalopolysyndactyly syndrome (GCPS) is characterized by craniofacial anomalies, broad thumbs and halluces, polydactyly of the hands and feet, and variable syndactyly. Intellectual abilities are usually normal. Inheritance is in an autosomal dominant fashion. The disorder has been mapped to chromosome 7p13, suggesting that the condition represents a contiguous gene syndrome (CGS). A male infant presented with multiple congenital anomalies, including omphalocele, dysgenesis of the corpus callosum, hydrocephalus, esotropia, broad thumbs and halluces, syndactyly, polydactyly of one foot, hypotonia and developmental delay. A de novo interstitial deletion of chromosome 7p was detected, 46,XY,del(7)(p13p15). Although clinical findings in this case were reminiscent of GCPS, and the chromosomal abnormality included the region assigned to the candidate gene for this syndrome, additional physical abnormalities were present, as well as cognitive deficits. Some of these features have been previously described in patients with chromosomal deletions of 7p. The chromosomal abnormality in our case provides supportive evidence of the gene locus in GCPS, and that GCPS represents a new CGS. However, a larger deletion, extending beyond the limits of the gene, significantly altered the phenotype. Isolation of the gene responsible for GCPS, and identification of additional patients with chromosomal abnormalities in this region of chromosome 7, should help to provide more accurate genotype-phenotype correlations.

  15. ALTERATION OF GENE EXPRESSION IN LEUKOCYTES FROM RECOMBINANT SOMATOTROPIN TREATED ANIMALS: SEARCHING FOR INSPECTION INDICATORS

    Directory of Open Access Journals (Sweden)

    NR Brizioli

    2008-12-01

    Full Text Available Besides immunochemical approaches, biomolecular studies can be carried out in order to discover a greater number of biological indicators to be exploited for the identification of bovines treated with recombinant somatotropin (rbST. With this aim, we analysed the expression of a number of genes related to the somatotropic axis in leucocytes from rbST treated cows and non-treated animals. Significant differences were observed in the genes IGF-1,IGFBP-1, IGFBP-4 and the I- 5’UTR variant of the GHR gene.

  16. Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation

    International Nuclear Information System (INIS)

    Mycoplasmas are the smallest microorganisms capable of self-replication. Our previous studies show that some mycoplasmas are able to induce malignant transformation of host mammalian cells. This malignant transformation is a multistage process with the early infection, reversible and irreversible stages, and similar to human tumor development in nature. The purpose of this study is to explore mechanisms for this malignant transformation. To better understand mechanisms for this unique process, we examined gene expression profiles of C3H cells at different stages of the mycoplasma-induced transformation using cDNA microarray technology. A total of 1185 genes involved in oncogenesis, apoptosis, cell growth, cell-cycle regulation, DNA repair, etc. were examined. Differences in the expression of these genes were compared and analyzed using the computer software AtlasImage. Among 1185 genes screened, 135 had aberrant expression at the early infection stage, 252 at the reversible stage and 184 at the irreversible stage. At the early infection stage, genes with increased expression (92 genes) were twice more than those with decreased expression (42 genes). The global gene expression at the reversible stage appeared to be more volatile than that at any other stages but still resembled the profile at the early infection stage. The expression profile at the irreversible stage shows a unique pattern of a wide range of expression levels and an increased number of expressing genes, especially the cancer-related genes. Oncogenes and tumor suppressors are a group of molecules that showed significant changes in expression during the transformation. The majority of these changes occurred in the reversible and irreversible stages. A prolonged infection by mycoplasmas lead to the expression of more cancer related genes at the irreversible stage. The results indicate that the expression profiles correspond with the phenotypic features of the cells in the mycoplasma induced

  17. An altered GABA-A receptor function in spinocerebellar ataxia type 6 and familial hemiplegic migraine type 1 associated with the CACNA1A gene mutation

    Directory of Open Access Journals (Sweden)

    Satoshi Kono

    2014-12-01

    General significance: An altered GABA-A receptor function has previously been reported in models of inherited murine cerebellar ataxia caused by a mutation in the CACNA1A gene. This study showed novel clinical characteristics of alteration in the GABA-A receptor in vivo, which may provide clinical evidence indicating a pathological mechanism common to neurological disorders associated with CACNA1A gene mutation.

  18. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth;

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  19. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis.

    Directory of Open Access Journals (Sweden)

    J Christopher States

    Full Text Available The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE(-/- mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE(-/- mice exposed to 49 ppm arsenic in utero from gestational day (GD 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a. Gene ontology (GO annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8 and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes

  20. Conditions that alter intracellular cAMP levels affect expression of the cAMP phosphodiesterase gene in Dictyostelium.

    OpenAIRE

    Riley, B B; Barclay, S L

    1990-01-01

    We examined expression of the Dictyostelium cAMP phosphodiesterase (PDE) gene under conditions that alter intracellular cAMP levels during in vitro differentiation of wild-type strain V12M2 and a sporogenous derivative, HB200. In control cultures, cellular PDE activity peaked at 6 hr and declined by 8 hr, while secreted PDE activity continued to increase through 8 hr. Lowering intracellular cAMP levels with caffeine or progesterone increased cellular and secreted PDE activities 2-fold, increa...

  1. Altered Gene Expression Pattern in Peripheral Blood Mononuclear Cells in Patients with Acute Myocardial Infarction

    OpenAIRE

    Marek Kiliszek; Beata Burzynska; Marcin Michalak; Monika Gora; Aleksandra Winkler; Agata Maciejak; Agata Leszczynska; Ewa Gajda; Janusz Kochanowski; Grzegorz Opolski

    2012-01-01

    BACKGROUND: Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI) is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients. METHODS AND RESULTS: Twe...

  2. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    OpenAIRE

    Manna, Sam; Harman, Ashley; Accari, Jessica; Barth, Christian

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice,...

  3. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3

    Directory of Open Access Journals (Sweden)

    Chan Wai-Yee

    2005-06-01

    Full Text Available Abstract Background Insensitivity of advanced-stage prostate cancer to androgen ablation therapy is a serious problem in clinical practice because it is associated with aggressive progression and poor prognosis. Targeted therapeutic drug discovery efforts are thwarted by lack of adequate knowledge of gene(s associated with prostate tumorigenesis. Therefore there is the need for studies to provide leads to targeted intervention measures. Here we propose that stable expression of U94, a tumor suppressor gene encoded by human herpesvirus 6A (HHV-6A, could alter gene expression and thereby inhibit the tumorigenicity of PC3 cell line. Microarray gene expression profiling on U94 recombinant PC3 cell line could reveal genes that would elucidate prostate cancer biology, and hopefully identify potential therapeutic targets. Results We have shown that stable expression of U94 gene in PC3 cell line inhibited its focus formation in culture, and tumorigenesis in nude mice. Moreover gene expression profiling revealed dramatic upregulation of FN 1 (fibronectin, 91 ± 16-fold, and profound downregulation of ANGPTL 4 (angiopoietin-like-4, 20 ± 4-fold in U94 recombinant PC3 cell line. Quantitative real-time polymerase chain reaction (QRT-PCR analysis showed that the pattern of expression of FN 1 and ANGPTL 4 mRNA were consistent with the microarray data. Based on previous reports, the findings in this study implicate upregulation of FN 1 and downregulation of ANGPTL 4 in the anti tumor activity of U94. Genes with cancer inhibitory activities that were also upregulated include SERPINE 2 (serine/cysteine protease inhibitor 2, 7 ± 1-fold increase and ADAMTS 1 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 7 ± 2-fold increase. Additionally, SPUVE 23 (serine protease 23 that is pro-tumorigenic was significantly downregulated (10 ± 1-fold. Conclusion The dramatic upregulation of FN 1 and downregulation of ANGPTL 4 genes in PC3 cell line

  4. Alterations in gene expression of proprotein convertases in human lung cancer have a limited number of scenarios.

    Directory of Open Access Journals (Sweden)

    Ilya V Demidyuk

    Full Text Available Proprotein convertases (PCs is a protein family which includes nine highly specific subtilisin-like serine endopeptidases in mammals. The system of PCs is involved in carcinogenesis and levels of PC mRNAs alter in cancer, which suggests expression status of PCs as a possible marker for cancer typing and prognosis. The goal of this work was to assess the information value of expression profiling of PC genes. Quantitative polymerase chain reaction was used for the first time to analyze mRNA levels of all PC genes as well as matrix metalloproteinase genes MMP2 and MMP14, which are substrates of PCs, in 30 matched pairs of samples of human lung cancer tumor and adjacent tissues without pathology. Significant changes in the expression of PCs have been revealed in tumor tissues: increased FURIN mRNA level (p<0.00005 and decreased mRNA levels of PCSK2 (p<0.007, PCSK5 (p<0.0002, PCSK7 (p<0.002, PCSK9 (p<0.00008, and MBTPS1 (p<0.00004 as well as a tendency to increase in the level of PCSK1 mRNA. Four distinct groups of samples have been identified by cluster analysis of the expression patterns of PC genes in tumor vs. normal tissue. Three of these groups covering 80% of samples feature a strong elevation in the expression of a single gene in cancer: FURIN, PCSK1, or PCSK6. Thus, the changes in the expression of PC genes have a limited number of scenarios, which may reflect different pathways of tumor development and cryptic features of tumors. This finding allows to consider the mRNAs of PC genes as potentially important tumor markers.

  5. Antenatal maternal long-term hypoxia: acclimatization responses with altered gene expression in ovine fetal carotid arteries.

    Directory of Open Access Journals (Sweden)

    Ravi Goyal

    Full Text Available In humans and other species, long-term hypoxia (LTH during pregnancy can lead to intrauterine growth restriction with reduced body/brain weight, dysregulation of cerebral blood flow (CBF, and other problems. To identify the signal transduction pathways and critical molecules, which may be involved in acclimatization to high altitude LTH, we conducted microarray with advanced bioinformatic analysis on carotid arteries (CA from the normoxic near-term ovine fetus at sea-level and those acclimatized to high altitude for 110+ days during gestation. In response to LTH acclimatization, in fetal CA we identified mRNA from 38 genes upregulated >2 fold (P2-fold (P<0.05. The major genes with upregulated mRNA were SLC1A3, Insulin-like growth factor (IGF binding protein 3, IGF type 2 receptor, transforming growth factor (TGF Beta-3, and genes involved in the AKT and BCL2 signal transduction networks. Most genes with upregulated mRNA have a common motif for Pbx/Knotted homeobox in the promoter region, and Sox family binding sites in the 3' un translated region (UTR. Genes with downregulated mRNA included those involved in the P53 pathway and 5-lipoxygenase activating proteins. The promoter region of all genes with downregulated mRNA, had a common 49 bp region with a binding site for DOT6 and TOD6, components of the RPD3 histone deacetylase complex RPD3C(L. We also identified miRNA complementary to a number of the altered genes. Thus, the present study identified molecules in the ovine fetus, which may play a role in the acclimatization response to high-altitude associated LTH.

  6. Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells.

    Science.gov (United States)

    Chen, Chin; Fang, Rixun; Davis, Corrine; Maravelias, Charalambos; Sibley, Eric

    2009-12-01

    Null mutant mice lacking the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) are apancreatic and survive only a few days after birth. The role of Pdx1 in regulating intestinal gene expression has therefore yet to be determined in viable mice with normal pancreatic development. We hypothesized that conditional inactivation of Pdx1 restricted to the intestinal epithelium would alter intestinal gene expression and cell differentiation. Pdx1(flox/flox);VilCre mice with intestine-specific Pdx1 inactivation were generated by crossing a transgenic mouse strain expressing Cre recombinase, driven by a mouse villin 1 gene promoter fragment, with a mutant mouse strain homozygous for loxP site-flanked Pdx1. Pdx1 protein is undetectable in all epithelial cells in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Goblet cell number and mRNA abundance for mucin 3 and mucin 13 genes in the proximal small intestine are comparable between Pdx1(flox/flox);VilCre and control mice. Similarly, Paneth cell number and expression of Paneth cell-related genes Defa1, Defcr-rs1, and Mmp7 in the proximal small intestine remain statistically unchanged by Pdx1 inactivation. Although the number of enteroendocrine cells expressing chromogranin A/B, gastric inhibitory polypeptide (Gip), or somatostatin (Sst) is unaffected in the Pdx1(flox/flox);VilCre mice, mRNA abundance for Gip and Sst is significantly reduced in the proximal small intestine. Conditional Pdx1 inactivation attenuates intestinal alkaline phosphatase (IAP) activity in the duodenal epithelium, consistent with an average 91% decrease in expression of the mouse enterocyte IAP gene, alkaline phosphatase 3 (a novel Pdx1 target candidate), in the proximal small intestine following Pdx1 inactivation. We conclude that Pdx1 is necessary for patterning appropriate gene expression in enterocytes and enteroendocrine cells of the proximal small intestine. PMID:19808654

  7. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells

    Science.gov (United States)

    Tahira, Kazunobu; Fukuda, Noboru; Aoyama, Takahiko; Tsunemi, Akiko; Matsumoto, Siroh; Nagura, Chinami; Matsumoto, Taro; Soma, Masayoshi; Shimba, Shigeki; Matsumoto, Yoshiaki

    2011-01-01

    Introduction The aim of this study was to investigate the association between the variation in expression profile of clock genes and obesity using peripheral blood mononuclear (PMN) cells. Material and methods The subjects comprised 10 obese patients and 10 healthy volunteers. Blood was collected at different time-points during the day and levels of blood sugar, IRI, adiponectin and leptin were determined. Peripheral blood mononuclear cells were sampled, and expression levels of brain and muscle Arnt-like protein-1 (BMAL1), Period (PER)1, PER2, Cryptochrome (CRY)1, CRY2, and REV-ERBα mRNA were quantified. Results During the day, the expression levels of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells of the obese group were all significantly higher compared to those in the non-obese group. In addition, expression of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells increased between 12:00 and 21:00 in the obese group. In PMN cells of both groups, PER1 gene expression showed a bimodal pattern, with high expression at 9:00 and 18:00. Conclusions Differences were observed in the expression profile variation of clock genes between the obese and non-obese groups. This study reveals the differences in clock gene expression profiles between obese and non-obese subjects, with evidence for two distinct chronotypes, and suggests a contribution of these chronotypes to fat accumulation in humans. PMID:22328874

  8. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells.

    Science.gov (United States)

    Velma, Venkatramreddy; Dasari, Shaloam R; Tchounwou, Paul B

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  9. Motor Deficits and Altered Striatal Gene Expression in aphakia(ak) Mice

    OpenAIRE

    Singh, Bhupinder; Wilson, Jean H.; Vasavada, Hema H; Guo, Zhenchao; Allore, Heather G.; Zeiss, Caroline J.

    2007-01-01

    Like humans with Parkinsons disease (PD), the ak mouse lacks the majority of the substantia nigra pars compacta (SNc) and experiences striatal denervation. The purpose of this study was to test whether motor abnormalities in the ak mouse progress over time, and whether motor function could be associated with temporal alterations in the striatal transcriptome. Ak and wt mice (28 to 180 days old) were tested using paradigms sensitive to nigrostriatal dysfunction. Results were analyzed using a l...

  10. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    Science.gov (United States)

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  11. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes

    Directory of Open Access Journals (Sweden)

    Chun Yao eLi

    2015-10-01

    Full Text Available Terpenoid indole alkaloid (TIA biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Towards this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a fine-tune regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

  12. Alterations in Fibronectin Type III Domain Containing 1 Protein Gene Are Associated with Hypertension.

    Directory of Open Access Journals (Sweden)

    Alan Y Deng

    Full Text Available Multiple quantitative trait loci (QTLs for blood pressure (BP have been detected in rat models of human polygenic hypertension. Great challenges confronting us include molecular identifications of individual QTLs. We first defined the chromosome region harboring C1QTL1 to a segment of 1.9 megabases that carries 9 genes. Among them, we identified the gene encoding the fibronectin type III domain containing 1 protein (Fndc1/activator of G protein signaling 8 (Ags8 to be the strongest candidate for C1QTL1, since numerous non-synonymous mutations are found. Moreover, the 5' Fndc1/Ags8 putative promoter contains numerous mutations that can account for its differential expression in kidneys and the heart, prominent organs in modulating BP, although the Fndc1/Ags8 protein was not detectable in these organs under our experimental conditions. This work has provided the premier evidence that Fndc1/Ags8 is a novel and strongest candidate gene for C1QTL1 without completely excluding other 8 genes in the C1QTL1-residing interval. If proven true by future in vivo function studies such as single-gene Fndc1/Ags8 congenics, transgenesis or targeted-gene modifications, it might represent a part of the BP genetic architecture that operates in the upstream position distant from the end-phase physiology of BP control, since it activates a Gbetagamma component in a signaling pathway. Its functional role could validate the concept that a QTL in itself can influence BP 'indirectly' by regulating other genes downstream in a pathway. The elucidation of the mechanisms initiated by Fndc/Ags8 variations will reveal novel insights into the BP modulation via a regulatory hierarchy.

  13. Collections of simultaneously altered genes as biomarkers of cancer cell drug response.

    Science.gov (United States)

    Masica, David L; Karchin, Rachel

    2013-03-15

    Computational analysis of cancer pharmacogenomics data has resulted in biomarkers predictive of drug response, but the majority of response is not captured by current methods. Methods typically select single biomarkers or groups of related biomarkers but do not account for response that is strictly dependent on many simultaneous genetic alterations. This shortcoming reflects the combinatorics and multiple-testing problem associated with many-body biologic interactions. We developed a novel approach, Multivariate Organization of Combinatorial Alterations (MOCA), to partially address these challenges. Extending on previous work that accounts for pairwise interactions, the approach rapidly combines many genomic alterations into biomarkers of drug response, using Boolean set operations coupled with optimization; in this framework, the union, intersection, and difference Boolean set operations are proxies of molecular redundancy, synergy, and resistance, respectively. The algorithm is fast, broadly applicable to cancer genomics data, is of immediate use for prioritizing cancer pharmacogenomics experiments, and recovers known clinical findings without bias. Furthermore, the results presented here connect many important, previously isolated observations.

  14. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  15. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  16. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  17. Regional Patterns of Cortical Phase Synchrony in the Resting State.

    Science.gov (United States)

    Casimo, Kaitlyn; Darvas, Felix; Wander, Jeremiah; Ko, Andrew; Grabowski, Thomas J; Novotny, Edward; Poliakov, Andrew; Ojemann, Jeffrey G; Weaver, Kurt E

    2016-07-01

    Synchronized phase estimates between oscillating neuronal signals at the macroscale level reflect coordinated activities between neuronal assemblies. Recent electrophysiological evidence suggests the presence of significant spontaneous phase synchrony within the resting state. The purpose of this study was to investigate phase synchrony, including directional interactions, in resting state subdural electrocorticographic recordings to better characterize patterns of regional phase interactions across the lateral cortical surface during the resting state. We estimated spontaneous phase locking value (PLV) as a measure of functional connectivity, and phase slope index (PSI) as a measure of pseudo-causal phase interactions, across a broad range of canonical frequency bands and the modulation of the amplitude envelope of high gamma (amHG), a band that is believed to best reflect the physiological processes giving rise to the functional magnetic resonance imaging BOLD signal. Long-distance interactions had higher PLVs in slower frequencies (≤theta) than in higher ones (≥beta) with amHG behaving more like slow frequencies, and a general trend of increasing frequency band of significant PLVs when moving across the lateral surface along an anterior-posterior axis. Moreover, there was a strong trend of frontal-to-parietal directional phase synchronization, measured by PSI across multiple frequencies. These findings, which are likely indicative of coordinated and structured spontaneous cortical interactions, are important in the study of time scales and directional nature of resting state functional connectivity, and may ultimately contribute to a better understanding of how spontaneous synchrony is linked to variation in regional architecture across the lateral cortical surface. PMID:27019319

  18. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence.

    Science.gov (United States)

    Li, Man; Du, Wei; Shao, Feng; Wang, Weiwen

    2016-10-15

    Early life adversity, such as social isolation, causes a variety of changes to the development of cognitive abilities and the nervous system. Increasing evidence has shown that epigenetic modifications mediate gene-environment interactions throughout the lifespan. In this study, we investigated the effect of adolescent social isolation on cognitive behaviours and epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene. Male Sprague Dawley rats were randomly assigned to either group-reared or isolation-reared conditions during post-natal days (PNDs) 21-34. On PND 56, all rats underwent behavioural testing and were then sacrificed for biochemical testing. Adolescent social isolation induced impaired PPI. Regarding BDNF, the isolation-reared rats demonstrated increased BDNF mRNA levels, H3 acetylation at the BDNF gene and BDNF protein expression in the medial prefrontal cortex (mPFC). In contrast, the BDNF mRNA levels, H3 acetylation of the BDNF gene and BDNF protein expression were decreased in the hippocampus of the isolation-reared rats. The present study indicated that epigenetic regulation of BDNF may be one of the molecular mechanisms that mediated the cognitive dysfunction. Moreover, the interaction between the mPFC and hippocampus might play an important role in the regulation of cognitive behaviour. PMID:27435421

  19. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shibata

    2012-06-01

    Full Text Available Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species.

  20. A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cuperus, Josh T; Lo, Russell S; Shumaker, Lucia; Proctor, Julia; Fields, Stanley

    2015-07-17

    Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We identify variants of the Escherichia coli tet operator (tetO) sequence that bind a TetR-VP16 activator with differential affinity and therefore result in different TetR-VP16 activator-driven expression. By recombining these variants upstream of the genes of a pathway, we generate unique combinations of expression levels. Here, we built a tetO toolkit, which includes the I-OnuI homing endonuclease to create double-strand breaks, which increases homologous recombination by 10(5); a plasmid carrying six variant tetO sequences flanked by I-OnuI sites, uncoupling transformation and recombination steps; an S. cerevisiae-optimized TetR-VP16 activator; and a vector to integrate constructs into the yeast genome. We introduce into the S. cerevisiae genome the three crt genes from Erwinia herbicola required for yeast to synthesize lycopene and carry out the recombination process to produce a population of cells with permutations of tetO variants regulating the three genes. We identify 0.7% of this population as making detectable lycopene, of which the vast majority have undergone recombination at all three crt genes. We estimate a rate of ∼20% recombination per targeted site, much higher than that obtained in other studies. Application of this toolkit to medically or industrially important end products could reduce the time and labor required to optimize the expression of a set of metabolic genes. PMID:25742460

  1. Shadows of artistry: cortical synchrony during perception and imagery of visual art.

    Science.gov (United States)

    Bhattacharya, Joydeep; Petsche, Hellmuth

    2002-04-01

    Functional and topographical differences between two groups, artists and non-artists, during the performances of visual perception and imagery of paintings were presented by means of EEG phase synchrony analysis. In artists as compared with non-artists, significantly higher phase synchrony was found in the high frequency beta and gamma bands during the perception of the paintings; in the low frequency bands (primarily delta), phase synchrony was mostly enhanced during imagery. Strong decreases in phase synchrony of alpha were found primarily in artists for both tasks. The right hemisphere was found to present higher synchrony than the left in artists, whereas hemispheric asymmetry was less significant in non-artists. In the artists, enhanced synchrony in the high frequency band is most likely due to their enhanced binding capabilities of numerous visual attributes, and enhanced synchrony in the low frequency band seems to be due to the higher involvement of long-term visual memory mostly in imagery. Thus, the analysis of phase synchrony from EEG signals yields new information about the dynamical co-operation between neuronal assemblies during the cognition of visual art. PMID:11958960

  2. Nonverbal Synchrony in Psychotherapy: Coordinated Body Movement Reflects Relationship Quality and Outcome

    Science.gov (United States)

    Ramseyer, Fabian; Tschacher, Wolfgang

    2011-01-01

    Objective: The authors quantified nonverbal synchrony--the coordination of patient's and therapist's movement--in a random sample of same-sex psychotherapy dyads. The authors contrasted nonverbal synchrony in these dyads with a control condition and assessed its association with session-level and overall psychotherapy outcome. Method: Using an…

  3. One in the Dance: Musical Correlates of Group Synchrony in a Real-World Club Environment

    Science.gov (United States)

    Ellamil, Melissa; Berson, Joshua; Wong, Jen; Buckley, Louis; Margulies, Daniel S.

    2016-01-01

    Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100–150 beats per minute). Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm) and of the music (song popularity). These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life. PMID:27764167

  4. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters.

    Science.gov (United States)

    Ikeno, Tomoko; Nelson, Randy J

    2015-02-01

    In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.

  5. Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis

    Directory of Open Access Journals (Sweden)

    João Miguel Carvas

    2012-08-01

    Full Text Available Period2 (Per2 is an important component of the circadian clock. Mutation of this gene is associated with vascular endothelial dysfunction and altered glucose metabolism. The aim of this study is to further characterize whole body glucose homeostasis and endothelial NO production in response to insulin in the mPer2Brdm1 mice. We show that mPer2Brdm1 mice exhibit compromised insulin receptor activation and Akt signaling in various tissues including liver, fat, heart, and aortas with a tissue-specific heterogeneous diurnal pattern, and decreased insulin-stimulated endothelial NO release in the aortas in both active and inactive phases of the animals. As compared to wild type mice, the mPer2Brdm1 mice reveal hyperinsulinemia, hypoglycemia with lower fasting hepatic glycogen content and glycogen synthase level, no difference in glucose tolerance and insulin tolerance. The mPer2Brdm1 mice do not show increased predisposition to obesity either on normal chow or high fat diet compared to wild type controls. Thus, mice with Per2 gene mutation show altered glucose homeostasis and compromised insulin-stimulated endothelial NO release, independently of obesity.

  6. Metabolite Fingerprinting in Transgenic Nicotiana tabacum Altered by the Escherichia coli Glutamate Dehydrogenase Gene

    Directory of Open Access Journals (Sweden)

    R. Mungur

    2005-01-01

    Full Text Available With about 200 000 phytochemicals in existence, identifying those of biomedical significance is a mammoth task. In the postgenomic era, relating metabolite fingerprints, abundances, and profiles to genotype is also a large task. Ion analysis using Fourier transformed ion cyclotron resonance mass spectrometry (FT-ICR-MS may provide a high-throughput approach to measure genotype dependency of the inferred metabolome if reproducible techniques can be established. Ion profile inferred metabolite fingerprints are coproducts. We used FT-ICR-MS-derived ion analysis to examine gdhA (glutamate dehydrogenase (GDH; EC 1.4.1.1 transgenic Nicotiana tabacum (tobacco carrying out altered glutamate, amino acid, and carbon metabolisms, that fundamentally alter plant productivity. Cause and effect between gdhA expression, glutamate metabolism, and plant phenotypes was analyzed by 13NH4+ labeling of amino acid fractions, and by FT-ICR-MS analysis of metabolites. The gdhA transgenic plants increased 13N labeling of glutamate and glutamine significantly. FT-ICR-MS detected 2 012 ions reproducible in 2 to 4 ionization protocols. There were 283 ions in roots and 98 ions in leaves that appeared to significantly change abundance due to the measured GDH activity. About 58% percent of ions could not be used to infer a corresponding metabolite. From the 42% of ions that inferred known metabolites we found that certain amino acids, organic acids, and sugars increased and some fatty acids decreased. The transgene caused increased ammonium assimilation and detectable ion variation. Thirty-two compounds with biomedical significance were altered in abundance by GDH including 9 known carcinogens and 14 potential drugs. Therefore, the GDH transgene may lead to new uses for crops like tobacco.

  7. Alterations of renal phenotype and gene expression profiles due to protein overload in NOD-related mouse strains

    Directory of Open Access Journals (Sweden)

    Agarwal Anupam

    2005-12-01

    Full Text Available Abstract Background Despite multiple causes, Chronic Kidney Disease is commonly associated with proteinuria. A previous study on Non Obese Diabetic mice (NOD, which spontaneously develop type 1 diabetes, described histological and gene expression changes incurred by diabetes in the kidney. Because proteinuria is coincident to diabetes, the effects of proteinuria are difficult to distinguish from those of other factors such as hyperglycemia. Proteinuria can nevertheless be induced in mice by peritoneal injection of Bovine Serum Albumin (BSA. To gain more information on the specific effects of proteinuria, this study addresses renal changes in diabetes resistant NOD-related mouse strains (NON and NOD.B10 that were made to develop proteinuria by BSA overload. Methods Proteinuria was induced by protein overload on NON and NOD.B10 mouse strains and histology and microarray technology were used to follow the kidney response. The effects of proteinuria were assessed and subsequently compared to changes that were observed in a prior study on NOD diabetic nephropathy. Results Overload treatment significantly modified the renal phenotype and out of 5760 clones screened, 21 and 7 kidney transcripts were respectively altered in the NON and NOD.B10. Upregulated transcripts encoded signal transduction genes, as well as markers for inflammation (Calmodulin kinase beta. Down-regulated transcripts included FKBP52 which was also down-regulated in diabetic NOD kidney. Comparison of transcripts altered by proteinuria to those altered by diabetes identified mannosidase 2 alpha 1 as being more specifically induced by proteinuria. Conclusion By simulating a component of diabetes, and looking at the global response on mice resistant to the disease, by virtue of a small genetic difference, we were able to identify key factors in disease progression. This suggests the power of this approach in unraveling multifactorial disease processes.

  8. ALTERED HEPATIC GENE EXPRESSION IN MORBIDLY OBESE WOMEN AND ITS IMPLICATIONS FOR SUSCEPTIBILITY TO OTHER DISEASES

    Science.gov (United States)

    The objective of this study was to determine the molecular bases of disordered hepatic function and disease susceptibility in obesity. We compared global gene expression in liver biopsies from morbidly obese (MO) women undergoing gastric bypass (GBP) surgery with that of women un...

  9. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Gao, Shan; Worm, Jesper; Guldberg, Per;

    2004-01-01

    Loss of histo-blood group A and B antigen expression is a frequent event in oral carcinomas and is associated with decreased activity of glycosyltransferases encoded by the ABO gene. We examined 30 oral squamous cell carcinomas for expression of A and B antigens and glycosyltransferases. We also...

  10. Female Aging Alters Expression of Human Cumulus Cells Genes that Are Essential for Oocyte Quality

    Directory of Open Access Journals (Sweden)

    Tamadir Al-Edani

    2014-01-01

    Full Text Available Impact of female aging is an important issue in human reproduction. There was a need for an extensive analysis of age impact on transcriptome profile of cumulus cells (CCs to link oocyte quality and developmental potential with patient’s age. CCs from patients of three age groups were analyzed individually using microarrays. RT-qPCR validation was performed on independent CC cohorts. We focused here on pathways affected by aging in CCs that may explain the decline of oocyte quality with age. In CCs collected from patients >37 years, angiogenic genes including ANGPTL4, LEPR, TGFBR3, and FGF2 were significantly overexpressed compared to patients of the two younger groups. In contrast genes implicated in TGF-β signaling pathway such as AMH, TGFB1, inhibin, and activin receptor were underexpressed. CCs from patients whose ages are between 31 and 36 years showed an overexpression of genes related to insulin signaling pathway such as IGFBP3, PIK3R1, and IGFBP5. A bioinformatic analysis was performed to identify the microRNAs that are potential regulators of the differentially expressed genes of the study. It revealed that the pathways impacted by age were potential targets of specific miRNAs previously identified in our CCs small RNAs sequencing.

  11. The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription.

    Science.gov (United States)

    Fan, Jianhua; Cui, Yanbin; Zhou, Yang; Wan, Minxi; Wang, Weiliang; Xie, Jingli; Li, Yuanguang

    2014-07-01

    Heterotrophy to photoautotrophy transition leads to the accumulation of lipids in Chlorella, which has potential to produce both healthy food and biofuels. Therefore, it is of key interest to study the metabolism shift and gene expression changes that influenced by the transition. Both total and neutral lipids contents were increased rapidly within 48 h after the switch to light environment, from 24.5% and 18.0% to 35.3% and 27.4%, respectively, along with the sharp decline of starch from 42.3% to 10.4% during 24h photoinduction phase. By analyzing the correlation between lipid content and gene expression, results revealed several genes viz. me g3137, me g6562, pepc g6833, dgat g3280 and dgat g7566, which encode corresponding enzymes in the de novo lipid biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. These results represented the feasibility of lipid production through trophic converting cultivation.

  12. Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt's lymphoma

    NARCIS (Netherlands)

    Salaverria, Itziar; Zettl, Andreas; Bea, Silvia; Hartmann, Elena M.; Dave, Sandeep S.; Wright, George W.; Boerma, Evert-Jan; Kluin, Philip M.; Ott, German; Chan, Wing C.; Weisenburger, Dennis D.; Lopez-Guillermo, Armando; Gascoyne, Randy D.; Delabie, Jan; Rimsza, Lisa M.; Braziel, Rita M.; Jaffe, Elaine S.; Staudt, Louis M.; Mueller-Hermelink, Hans Konrad; Campo, Elias; Rosenwald, Andreas

    2008-01-01

    Background Burkitt's lymphoma is an aggressive B-cell lymphoma characterized by typical morph 0 logical, immunophenotypic and molecular features. Gene expression profiling provided a molecular signature of Burkitt's lymphoma, but also demonstrated that a subset of aggressive B-cell lymphomas not ful

  13. The human insulin gene linked polymorphic region exhibits an altered DNA structure

    Energy Technology Data Exchange (ETDEWEB)

    Hammond-Kosack, M.C.U.; Docherty, K.; Kilpatrick, M.W. (Univ. of Birmingham (United Kingdom)); Dobrinski, B.; Lurz, R. (Max-Planck-Inst., Berlin (West Germany))

    1992-01-25

    Regulation of transcription of the human insulin gene appears to involve a series of DNA sequences in the 5{prime} region. Hypersensitivity to DNA structural probes has previously been demonstrated in regulatory regions of cloned genomic DNA fragments, and been correlated with gene activity. To investigate the structure of the DNA in the human insulin gene, bromoacetaldehyde and S1 nuclease were reacted with a supercoiled plasmid containing a 5kb genomic insulin fragment. Both probes revealed the human insulin gene linked polymorphic region (ILPR), a region ({minus}363) upstream of the transcriptional start site which contains multiple repeats of a 14-15mer oligonucleotide with the consensus sequence ACAGGGGT(G/C)(T/C)GGGG, as the major hypersensitive site. Fine mapping and electron microscopic analysis both show a very different behavior of the two DNA strands in the region of the ILPR and suggest the G-rich strand may be adopting a highly structured conformation with the complementary strand remaining largely single stranded.

  14. Cataloging altered gene expression in young and senescent cells using enhanced differential display

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Feng, Junli; Andrews, William H.; Enlow, Brett E.; Saati, Shahin M.; Tonkin, Leath A.; Funk, Walter D.; Villeponteau, Bryant

    1995-01-01

    Recently, a novel PCR-based technique, differential display (DD), has facilitated the study of differentially expressed genes at the mRNA level. We report here an improved version of DD, which we call Enhanced Differential Display (EDD). We have modified the technique to enhance reproducibility and

  15. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum.

    Science.gov (United States)

    Dierck, Robrecht; De Keyser, Ellen; De Riek, Jan; Dhooghe, Emmy; Van Huylenbroeck, Johan; Prinsen, Els; Van Der Straeten, Dominique

    2016-01-01

    transition and an increased expression in C18 with continuous vegetative growth. These results offer a case study for Chrysanthemum, showing an altered cytokinin to auxin balance and differential gene expression between vegetative growth with apical dominance and transition to generative growth with loss of apical dominance and axillary bud outgrowth. This suggests a conservation of several aspects of the hormonal and genetical regulation of bud outgrowth in Chrysanthemum. Furthermore, 15 previously uncharacterised genes in chrysanthemum, were described in this study. Of those genes involved in axillary bud outgrowth we identified CmDRM1, CmBRC1 and CmMAX1 as having an altered expression preceding axillary bud outgrowth, which could be useful as markers for bud activity. PMID:27557329

  16. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study

    Directory of Open Access Journals (Sweden)

    Ji Xinglai

    2010-08-01

    Full Text Available Abstract Background We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. Methods We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR, and real time quantitative reverse transcriptase PCR (qRT-PCR analyses on a number of genes of both regions with both human and mouse colon tumors. Results These two regions (5q22.2 and 18q21.1-q21.2 are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. Conclusions These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC

  17. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study

    International Nuclear Information System (INIS)

    We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates

  18. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer

    International Nuclear Information System (INIS)

    The expression of a specific set of genes controls the different structures of heparan sulfate proteoglycans (HSPGs), which are involved in the growth, invasion and metastatic properties of cancerous cells. The purpose of this study is to increase knowledge of HSPG alterations in breast cancer. Twenty-three infiltrating ductal adenocarcinomas (IDCs), both metastatic and non-metastatic were studied. A transcriptomic approach to the structure of heparan sulfate (HS) chains was used, employing qPCR to analyze both the expression of the enzymes involved in their biosynthesis and editing, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate chains, we extended the study to include the genes involved in the biosynthesis of these glycosaminoglycans. Histochemical techniques were also used to analyze tissular expression of particular genes showing significant expression differences, of potential interest. No significant change in transcription was detected in approximately 70% of analyzed genes. However, 13 demonstrated changes in both tumor types (40% showing more intense deregulation in the metastatic), while 5 genes showed changes only in non-metastatic tumors. Changes were related to 3 core proteins: overexpression of syndecan-1 and underexpression of glypican-3 and perlecan. HS synthesis was affected by lower levels of some 3-O-sulfotransferase transcripts, the expression of NDST4 and, only in non metastatic tumors, higher levels of extracellular sulfatases. Furthermore, the expression of chondroitin sulfate also was considerably affected, involving both the synthesis of the saccharidic chains and sulfations at all locations. However, the pro-metastatic enzyme heparanase did not exhibit significant changes in mRNA expression, although in metastatic tumors it appeared related to increased levels of the most stable form of mRNA. Finally, the expression of heparanase 2, which displays anti-metastatic features

  19. Microarray analysis reveals higher gestational folic Acid alters expression of genes in the cerebellum of mice offspring-a pilot study.

    Science.gov (United States)

    Barua, Subit; Kuizon, Salomon; Chadman, Kathryn K; Brown, W Ted; Junaid, Mohammed A

    2015-01-01

    Folate is a water-soluble vitamin that is critical for nucleotide synthesis and can modulate methylation of DNA by altering one-carbon metabolism. Previous studies have shown that folate status during pregnancy is associated with various congenital defects including the risk of aberrant neural tube closure. Maternal exposure to a methyl supplemented diet also can alter DNA methylation and gene expression, which may influence the phenotype of offspring. We investigated if higher gestational folic acid (FA) in the diet dysregulates the expression of genes in the cerebellum of offspring in C57BL/6 J mice. One week before gestation and throughout the pregnancy, groups of dams were supplemented with FA either at 2 mg/kg or 20 mg/kg of diet. Microarray analysis was used to investigate the genome wide gene expression profile in the cerebellum from day old pups. Our results revealed that exposure to the higher dose FA diet during gestation dysregulated expression of several genes in the cerebellum of both male and female pups. Several transcription factors, imprinted genes, neuro-developmental genes and genes associated with autism spectrum disorder exhibited altered expression levels. These findings suggest that higher gestational FA potentially dysregulates gene expression in the offspring brain and such changes may adversely alter fetal programming and overall brain development. PMID:25629700

  20. Microarray Analysis Reveals Higher Gestational Folic Acid Alters Expression of Genes in the Cerebellum of Mice Offspring—A Pilot Study

    Directory of Open Access Journals (Sweden)

    Subit Barua

    2015-01-01

    Full Text Available Folate is a water-soluble vitamin that is critical for nucleotide synthesis and can modulate methylation of DNA by altering one-carbon metabolism. Previous studies have shown that folate status during pregnancy is associated with various congenital defects including the risk of aberrant neural tube closure. Maternal exposure to a methyl supplemented diet also can alter DNA methylation and gene expression, which may influence the phenotype of offspring. We investigated if higher gestational folic acid (FA in the diet dysregulates the expression of genes in the cerebellum of offspring in C57BL/6 J mice. One week before gestation and throughout the pregnancy, groups of dams were supplemented with FA either at 2 mg/kg or 20 mg/kg of diet. Microarray analysis was used to investigate the genome wide gene expression profile in the cerebellum from day old pups. Our results revealed that exposure to the higher dose FA diet during gestation dysregulated expression of several genes in the cerebellum of both male and female pups. Several transcription factors, imprinted genes, neuro-developmental genes and genes associated with autism spectrum disorder exhibited altered expression levels. These findings suggest that higher gestational FA potentially dysregulates gene expression in the offspring brain and such changes may adversely alter fetal programming and overall brain development.

  1. PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity.

    Science.gov (United States)

    Borlak, J; Thum, T

    2002-12-01

    1. Polychlorinated biphenyls (PCBs) are well-known environmental pollutants that bioaccumulate mainly in the fatty tissue of animals and humans. Although contamination occurs primarily via the food chain, waste combustion leads to airborne PCBs. From epidemiological studies, there is substantial evidence that cardiovascular disease is linked to air pollution, but little is known about the underlying molecular events. 2. We investigated the effects of Aroclor 1254, a complex mixture of >80 PCB isomers and congeners, on the expression of nuclear transcription factors (GATA-4, Nkx-2.5, MEF-2c, OCT-1) and of downstream target genes (atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac and alpha-skeletal actin), which play an important role in cardiac biology. 3. We treated cultures of primary cardiomyocytes of adult rats with Aroclor 1254 (10.0 micro M) and found significant induction of the transcription factor genes GATA-4 and MEF-2c and of genes regulated by these factors, i.e. atrial natriuretic peptide, brain-type natriuretic peptide, alpha- and beta-myosin heavy chain, and skeletal alpha actin. 4. We have shown PCBs to modulate expression of genes coding for programmes of cellular differentiation and stress (e.g. atrial natriuretic peptide, brain-type natriuretic peptide) and these alterations may be important in the increase of cardiovascular disease in polluted areas.

  2. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  3. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins

    International Nuclear Information System (INIS)

    We have recently reported the possible imatinib-resistant mechanism; long-term exposure of leukemia cells to imatinib downregulated levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) via hypermethylation of its promoter region (Leukemia 2010; 24: 1631). The present study explored the molecular mechanisms by which imatinib caused methylation on the promoter region of this tumor suppressor gene in leukemia cells. Real-time reverse transcription PCR found that long-term exposure of chronic eosinophilic leukemia EOL-1 cells expressing FIP1L1/platelet-derived growth factor receptor-α to imatinib induced expression of DNA methyltransferase 3A (DNMT3A) and histone-methyltransferase enhancer of zeste homolog 2 (EZH2), a family of polycomb group, thereby increasing methylation of the gene. Immunoprecipitation assay found the increased complex formation of DNMT3A and EZH2 proteins in these cells. Moreover, chromatin immunoprecipitation assay showed that amounts of both DNMT3A and EZH2 proteins bound around the promoter region of PTEN gene were increased in EOL-1 cells after exposure to imatinib. Furthermore, we found that levels of DNMT3A and EZH2 were strikingly increased in leukemia cells isolated from individuals with chronic myelogenous leukemia (n=1) and Philadelphia chromosome-positive acute lymphoblastic leukemia (n=2), who relapsed after treatment with imatinib compared with those isolated at their initial presentation. Taken together, imatinib could cause drug-resistance via recruitment of polycomb gene complex to the promoter region of the PTEN and downregulation of this gene's transcripts in leukemia patients

  4. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Carla P. Coelho

    2014-05-01

    Full Text Available Agriculturally important grasses such as rice, maize and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  5. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    Science.gov (United States)

    Coelho, Carla P.; Minow, Mark A. A.; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members. PMID:24904616

  6. Altered expression of the IQGAP1 gene in human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.E.; Palmisano, W.A.; Lechner, J.F. [and others

    1995-12-01

    IQGAP1 is a GTPase activation protein that accelerates GTP hydrolysis by normal p21 ras proteins. Therefore, IQGAP1 could act as an upstream affector of p21 ras activity by convert in excess amounts of active GTP-21 ras to inactive GDP-21 ras. IQGAP1 displays extensive sequence similarity to the catalytic domain of all previously reported ras GAPs, including the tumor suppressor gene protein neurofibromatosis type 1 (NF1). It has been shown that abnormal NF1 protein cannot negatively regulate the activity of ras proteins in neuroblast cells. This observation supports the hypothesis that NF1 is a tumor suppressor gene whose product acts upstream of ras. IQGAP1 is primarily expressed in lung, where it may play a role similar to NF1 in regulating the activity of H-ras or K-ras proteins. IQGAP1 functions as other GAPs by controlling the activity of ras.

  7. Analysis and interpretation of RNA splicing alterations in genes involved in genetic disorders.

    Science.gov (United States)

    Vreeswijk, Maaike P G; van der Klift, Heleen M

    2012-01-01

    Germ line mutations in genes involved in hereditary cancer syndromes, such as BRCA1 and BRCA2 in breast cancer and MSH2, MSH6, MLH1, and PSM2 in hereditary nonpolyposis colorectal cancer (HNPCC, more recently indicated as Lynch syndrome), confer a high risk to develop cancer. Mutation analysis in these genes has resulted in the identification of a large number of sequence variants, of which mutations causing frame shifts and nonsense codons are considered undoubtedly to be pathogenic. Many variants, however, cannot be classified as either disease-causing mutations or neutral variants and are therefore called unclassified variants (UVs). A subset of these variants may have an effect on RNA splicing. Appropriate RNA analysis will enable the characterization of the exact molecular nature of this effect and hence, is essential to determine the clinical relevance of the genomic variant. This chapter describes the design and implementation of RNA analysis as an indispensible tool in today's clinical diagnostic setting.

  8. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  9. Patent ductus arteriosus ligation alters pulmonary gene expression in preterm baboons

    OpenAIRE

    Waleh, Nahid; McCurnin, Donald C.; Yoder, Bradley A.; Shaul, Philip W.; Clyman, Ronald I.

    2011-01-01

    Ibuprofen-induced ductus closure improves pulmonary mechanics and increases alveolar surface area in premature baboons compared with baboons with a persistent patent ductus arteriosus (PDA). Ibuprofen-treatment has no effect on the expression of genes that regulate pulmonary inflammation but does increase the expression of alpha-ENaC (the transepithelial sodium channel that is critical for alveolar water clearance). Although ligation eliminates the PDA, it does not improve pulmonary mechanics...

  10. Selective alteration of gene expression in response to natural and synthetic retinoids.

    OpenAIRE

    Brand, Céline; Ségard, Pascaline; Plouvier, Pascal; Formstecher, Pierre; Danzé, Pierre-Marie; Lefebvre, Philippe

    2002-01-01

    BACKGROUND: Retinoids are very potent inducers of cellular differentiation and apoptosis, and are efficient anti-tumoral agents. Synthetic retinoids are designed to restrict their toxicity and side effects, mostly by increasing their selectivity toward each isotype of retinoic acids receptors (RARalpha,beta, gamma and RXRalpha, beta, gamma). We however previously showed that retinoids displayed very different abilities to activate retinoid-inducible reporter genes, and that these differential...

  11. Identification of genes whose expression is altered by obesity throughout the arterial tree

    OpenAIRE

    Padilla, Jaume; Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold

    2014-01-01

    We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the...

  12. Frequent biclonality and Ig gene alterations among B cell lymphomas that show multiple histologic forms

    OpenAIRE

    1985-01-01

    Configurations of Ig gene DNA were examined in multiple biopsy specimens from seven cases of human B cell lymphoma that showed histologic differences among the specimens within each case. Analysis by Southern blot hybridizations with DNA probes for each of the three Ig loci revealed that the configurations of DNA within these loci were identical among the specimens in two of the cases. This result indicated the monoclonality of these lymphomas, despite differences in histology between biopsy ...

  13. Alteration in expression of the rat mitochondrial ATPase 6 gene during Pneumocystis carinii infection

    Directory of Open Access Journals (Sweden)

    Bartlett Marilyn S

    2001-06-01

    Full Text Available Abstract Background Pneumocystis carinii causes pneumonia in immunocompromised patients with a high morbidity and mortality rate, but the interaction between this organism and the host cell is not well understood. The purpose of this research was to study the response of host cells to P. carinii infection on a molecular level. Results The technique of mRNA differential display was used to detect genes whose expression may be affected by P. carinii infection. The nucleotide sequence of one differentially displayed DNA fragment was found to be identical to that of the rat mitochondrial ATPase 6 gene, which is a subunit of the F0F1-ATP synthase complex. A four-fold increase in expression of this gene was verified by Northern blot analysis of total RNA extracted from P. carinii-infected rat lung versus that from mock-infected rat lung. Localization of the cells containing ATPase 6 mRNA was accomplished by in situ hybridization. In sections of non-infected rat lung, these cells were found lining the distal parts of the respiratory tree and in apical areas of the alveoli. Histological location of these cells suggested that they were Clara cells and type II pneumocytes. This hypothesis was confirmed by co-localizing the mRNAs for ATPase 6 and surfactant protein B (SP-B to the same cells by two-color fluorescent in situ hybridization. Conclusions The ATPase 6 gene is over expressed during P. carinii infection, and type II pneumocytes and Clara cells are the cell types responsible for this over-expression.

  14. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA

    OpenAIRE

    Sarro, Emma C.; Sullivan, Regina M.; Barr, Gordon

    2013-01-01

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpa...

  15. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens

    OpenAIRE

    Zhao, Changjiu; Eisinger, Brian Earl; Driessen, Terri M.; Gammie, Stephen C.

    2014-01-01

    Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relat...

  16. Methamphetamine-induced dopamine-independent alterations in striatal gene expression in the 6-hydroxydopamine hemiparkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA-denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH (2.5 mg/kg known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT and 5-hydroxyindoleacetic acid (5-HIAA levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (±1.7-fold, p<0.025 in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection

  17. Identification of Four Mouse Diabetes Candidate Genes Altering β-Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Oliver Kluth

    2015-09-01

    Full Text Available Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO mice, in contrast to diabetes-resistant C57BL/6J (B6-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3 or B6 (Ifi202b. Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice.

  18. Identification of Four Mouse Diabetes Candidate Genes Altering β-Cell Proliferation

    Science.gov (United States)

    Kamitz, Anne; Jähnert, Markus; Vogel, Heike; Scherneck, Stephan; Schulze, Matthias; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Joost, Hans-Georg; Schürmann, Annette

    2015-01-01

    Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice. PMID:26348837

  19. Tomato Fruit Development and Ripening Are Altered by the Silencing of LeEIN2 Gene

    Institute of Scientific and Technical Information of China (English)

    Hong-Liang Zhu; Ben-Zhong Zhu; Yi Shao; Xiao-Guang Wang; Xi-Jin Lin; Yuan-Hong Xie; Ying-Cong Li; Hong-Yan Gao; Yun-Bo Luo

    2006-01-01

    Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis,which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expression during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition,there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.

  20. Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy.

    Science.gov (United States)

    Stubbs, Sarah H; Conrad, Nicholas K

    2015-01-01

    Pre-mRNA processing is mechanistically linked to transcription with RNA pol II serving as a platform to recruit RNA processing factors to nascent transcripts. The TREX complex member, REF/Aly, has been suggested to play roles in transcription and nuclear RNA stability in addition to its more broadly characterized role in mRNA export. We employed RNA-seq to identify a subset of transcripts with decreased expression in both nuclear and cytoplasmic fractions upon REF/Aly knockdown, which implies that REF/Aly affects their expression upstream of its role in mRNA export. Transcription inhibition experiments and metabolic labeling assays argue that REF/Aly does not affect stability of selected candidate transcripts. Instead, ChIP assays and nuclear run-on analysis reveal that REF/Aly depletion diminishes the transcription of these candidate genes. Furthermore, we determined that REF/Aly binds directly to candidate transcripts, supporting a direct effect of REF/Aly on candidate gene transcription. Taken together, our data suggest that the importance of REF/Aly is not limited to RNA export, but that REF/Aly is also critical for gene expression at the level of transcription. Our data are consistent with the model that REF/Aly is involved in linking splicing with transcription efficiency.

  1. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Qing Liu

    Full Text Available The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb and male (18.04 ppb fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  2. The spacing principle for unlearning abnormal neuronal synchrony.

    Directory of Open Access Journals (Sweden)

    Oleksandr V Popovych

    Full Text Available Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session. To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.

  3. Local variations in spatial synchrony of influenza epidemics.

    Directory of Open Access Journals (Sweden)

    James H Stark

    Full Text Available BACKGROUND: Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. METHODOLOGY AND FINDINGS: We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation=62%. Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. CONCLUSIONS: These findings highlight the complex nature of influenza spread across multiple geographic scales.

  4. Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression.

    Directory of Open Access Journals (Sweden)

    Jackson J Cone

    Full Text Available The development of diet-induced obesity (DIO can potently alter multiple aspects of dopamine signaling, including dopamine transporter (DAT expression and dopamine reuptake. However, the time-course of diet-induced changes in DAT expression and function and whether such changes are dependent upon the development of DIO remains unresolved. Here, we fed rats a high (HFD or low (LFD fat diet for 2 or 6 weeks. Following diet exposure, rats were anesthetized with urethane and striatal DAT function was assessed by electrically stimulating the dopamine cell bodies in the ventral tegmental area (VTA and recording resultant changes in dopamine concentration in the ventral striatum using fast-scan cyclic voltammetry. We also quantified the effect of HFD on membrane associated DAT in striatal cell fractions from a separate group of rats following exposure to the same diet protocol. Notably, none of our treatment groups differed in body weight. We found a deficit in the rate of dopamine reuptake in HFD rats relative to LFD rats after 6 but not 2 weeks of diet exposure. Additionally, the increase in evoked dopamine following a pharmacological challenge of cocaine was significantly attenuated in HFD relative to LFD rats. Western blot analysis revealed that there was no effect of diet on total DAT protein. However, 6 weeks of HFD exposure significantly reduced the 50 kDa DAT isoform in a synaptosomal membrane-associated fraction, but not in a fraction associated with recycling endosomes. Our data provide further evidence for diet-induced alterations in dopamine reuptake independent of changes in DAT production and demonstrates that such changes can manifest without the development of DIO.

  5. An altered antioxidant balance occurs in Down syndrome fetal organs: implications for the "gene dosage effect" hypothesis.

    Science.gov (United States)

    de Haan, J B; Susil, B; Pritchard, M; Kola, I

    2003-01-01

    Down syndrome (DS) is the congenital birth defect responsible for the greatest number of individuals with mental retardation. It arises due to trisomy of human chromosome 21 (HSA21) or part thereof. To date there have been limited studies of HSA21 gene expression in trisomy 21 conceptuses. In this study we investigate the expression of the HSA21 antioxidant gene, Cu/Zn-superoxide dismutase-1 (SOD1) in various organs of control and DS aborted conceptuses. We show that SOD1 mRNA levels are elevated in DS brain, lung, heart and thymus. DS livers show decreased SOD1 mRNA expression compared with controls. Since non-HSA21 antioxidant genes are reported to be concomitantly upregulated in certain DS tissues, we examined the expression of glutathione peroxidase-1 (GPX1) in control and DS fetal organs. Interestingly, GPX1 expression was unchanged in the majority of DS organs and decreased in DS livers. We examined the SOD1 to GPX1 mRNA ratio in individual organs, as both enzymes form part of the body's defense against oxidative stress, and because a disproportionate increase of SOD1 to GPX1 results in noxious hydroxyl radical damage. All organs investigated show an approximately 2-fold increase in the SOD1 to GPX1 mRNA ratio. We propose that it is the altered antioxidant ratio that contributes to certain aspects of the DS phenotype.

  6. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  7. The Functional Angiotensin Converting Enzyme Gene I/D Polymorphism Does not Alter Susceptibility to Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Whitcomb DC

    2004-11-01

    Full Text Available CONTEXT: Alterations of the renin-angiotensin system have been implicated in the pathogenesis of various diseases. The angiotensin converting enzyme is a key enzyme in the renin-angiotensin system. A deletion polymorphism of a 287-bp fragment of intron 16 of the angiotensin converting enzyme gene allele results in higher levels of circulating enzyme. ACE deletion genotype has been linked to heart diseases, sarcoidosis and liver fibrosis. The pancreatic renin-angiotensin system plays a role in the development of pancreatic fibrosis and ACE inhibitors decrease pancreatic fibrosis in experimental models. OBJECTIVES: We investigated the frequency of the ACE gene insertion/deletion polymorphism in chronic pancreatitis patients and controls. PATIENTS: Subjects with familial pancreatitis (n=51, sporadic chronic pancreatitis (n=104, and healthy controls (n=163 were evaluated. MAIN OUTCOME MEASURE: The presence of ACE insertion/deletion polymorphism. RESULTS: The frequency of the ACE gene deletion allele was similar in familial pancreatitis (49.0% sporadic pancreatitis (51.0% and controls (55.8%. Furthermore, there was no significant difference in clinical features between patients with ACE-insertion or insertion/deletion genotypes vs. patients with ACE-deletion genotype. CONCLUSION: We conclude that the ACE deletion genotype does not make a significant contribution to the pathogenesis and the progression of chronic pancreatitis.

  8. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  9. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense

    Directory of Open Access Journals (Sweden)

    Marta Francisco

    2016-07-01

    Full Text Available A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL, may provide direct feedback regulation, linking defense metabolism outputs to the growth and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 µM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  10. Alterations in gene expression and steroidogenesis in the testes of transient cerebral ischemia in male rats

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bing-hai; GUO Yan-qin; LI Hong-zhi; LIU Jie-ting; WU Dan; YUAN Xiao-huan; LI Rong-wen; GUAN Li-xin

    2012-01-01

    Background Serum testosterone levels have been found lower in acute ischemic stroke male patients.However,the exact mechanism remains unclear.In the present study,we measured serum testosterone levels,steroidogenesisrelated genes and Leydig cells number in experimental transient cerebral ischemia male rats to elucidate the mechanism.Methods The middle cerebral arteries of adult male Sprague-Dawley rats were sutured for 120 minutes and then sacrificed after 24 hours.Blood was collected for measurement of serum testosterone,follicular stimulating hormone and estradiol levels,and testes were collected for measurement of steroidogenesis-retated gene mRNA levels and number of Leydig cells.Results Serum testosterone levels in rats after cerebral ischemia were significantly lower (0.53±0.16) ng/ml,n=7,mean±SE) compared with control ((2.33±0.60) ng/ml,n=7),while serum estradiol and follicular stimulating hormone levels did not change.The mRNA levels for luteinizing hormone receptor (Lhcgr),scavenger receptor class B member 1 (Scarb1),steroidogenic acute regulatory protein (StAR),cholesterol side chain cleavage enzyme (Cyp11a1),3β-hydroxysteroid dehydrogenase 1 (HSD311),17α-hydroxylese/20-lyase (Cyp17a1) and membrane receptor c-kit (kit) were significantly downregulated by cerebral ischemia,while luteinizing hormone,Kit ligand (KitL),17β-hydrosteroid dehydrogenase 3 (HSD17β3) and 5α-reductase (Srd5a1) were not affected.We also observed that,relative to control,the Leydig cell number did not change.Conclusions These results indicate that transient cerebral ischemia in the brain results in lower expression levels of steroidogenesis-related genes and thus lower serum testosterone level.Transient cerebral ischemia did not lower the number of Leydig cells.

  11. Association of a Human FABP1 Gene Promoter Region Polymorphism with Altered Serum Triglyceride Levels.

    Science.gov (United States)

    Peng, Xian-E; Wu, Yun-Li; Zhu, Yi-Bing; Huang, Rong-Dong; Lu, Qing-Qing; Lin, Xu

    2015-01-01

    Liver fatty acid-binding protein (L-FABP), also known as fatty acid-binding protein 1 (FABP1), is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD) and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs) of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182) from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032).Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05). The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01). In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = -0.320, P = 0.003), while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014). Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans. PMID:26439934

  12. Association of a Human FABP1 Gene Promoter Region Polymorphism with Altered Serum Triglyceride Levels.

    Directory of Open Access Journals (Sweden)

    Xian-E Peng

    Full Text Available Liver fatty acid-binding protein (L-FABP, also known as fatty acid-binding protein 1 (FABP1, is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182 from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032.Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05. The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01. In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = -0.320, P = 0.003, while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014. Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans.

  13. Peripheral blood leukocytes of cows with subclinical endometritis show an altered cellular composition and gene expression.

    Science.gov (United States)

    Düvel, Anna; Maaß, Janine; Heppelmann, Maike; Hussen, Jamal; Koy, Mirja; Piechotta, Marion; Sandra, Olivier; Smith, David G E; Sheldon, Iain Martin; Dieuzy-Labaye, Isabelle; Zieger, Peter; Schuberth, Hans Joachim

    2014-04-15

    Subclinical endometritis (SCE) is an important postpartum disease in dairy cows, but conventional cytobrush diagnosis often gives imprecise results. The aim of this study was to analyze disease-associated changes in peripheral blood as potential diagnostic parameters. Cellular subpopulations of blood leukocytes from cows with or without SCE (45-55 days postpartum) were flow-cytometrically quantified. Gene expression of whole blood leukocytes was assessed by PAXgene analysis. Subclinical endometritis cows showed significantly higher number of blood mononuclear cells and neutrophils. Among mononuclear cells, numbers of B-cells, NK-cells, and CD172a-positive monocytes were significantly elevated. Compared with non-SCE cows, blood leukocytes of SCE cows significantly expressed higher copy numbers of CXCL8, TNF, and IL12. To test whether circulating plasma factors are responsible for these changes, leukocytes, polymorphonuclear cells, and monocyte subpopulations (classical, intermediate, nonclassical) of healthy cows were stimulated with plasma of SCE and non-SCE cows. Although gene expression of whole leukocytes and polymorphonuclear cells remained unaltered, plasma from SCE animals significantly elevated expressed messenger RNA copy numbers of CXCL8, CXCL1, and IL1B in intermediate monocytes. In conclusion, elevated number of selected mononuclear subpopulations in peripheral blood and enhanced expression of distinct genes encoding for inflammatory mediators in blood leukocytes reflect the subclinical uterine inflammatory process in cows. Whether the observed changes in the periphery of SCE cows are the consequence of the uterine inflammatory process, or whether they affect the pathogenesis of the disease is currently unknown. PMID:24560452

  14. Cloning of the altered mRNA stability (ams) gene of Escherichia coli K-12.

    OpenAIRE

    Claverie-Martin, F; Diaz-Torres, M R; Yancey, S D; Kushner, S R

    1989-01-01

    A temperature-sensitive mutation in the ams gene of Escherichia coli causes an increase in the chemical half-life of pulse-labeled RNA at the nonpermissive temperature. Using lambda clones containing DNA fragments from the 23- to 24-min region on the E. coli chromosome, we have isolated a 5.8-kilobase DNA fragment which, when present in a low-copy-number plasmid, complements the conditional lethality and increased mRNA stability associated with the ams-1 mutation. The approximate initiation s...

  15. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria x ananassa).

    Science.gov (United States)

    Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O

    2009-01-01

    The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria x ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus.

  16. Leber Hereditary Optic Neuropathy: Do Folate Pathway Gene Alterations Influence the Expression of Mitochondrial DNA Mutation?

    Directory of Open Access Journals (Sweden)

    A Aleyasin

    2010-09-01

    Full Text Available "nBackground: Leber hereditary optic neuropathy (LHON is an inherited form of bilateral optic atrophy leading to the loss of central vision.  The primary cause of vision loss is mutation in the mitochondrial DNA (mtDNA, however, unknown secon­dary genetic and/or epigenetic risk factors are suggested to influence its neuropathology.  In this study folate gene polymor­phisms were examined as a possible LHON secondary genetic risk factor in Iranian patients."nMethods: Common polymorphisms in the MTHFR (C677T and A1298C and MTRR (A66G genes were tested in 21 LHON patients and 150 normal controls."nResults:  Strong associations were observed between the LHON syndrome and C677T (P= 0.00 and A66G (P= 0.00 polymor­phisms.  However, no significant association was found between A1298C (P =0.69 and the LHON syndrome."nConclusion: This is the first study that shows MTHFR C677T and MTRR A66G polymorphisms play a role in the etiology of the LHON syndrome.  This finding may help in the better understanding of mechanisms involved in neural degeneration and vision loss by LHON and hence the better treatment of patients.

  17. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes.

    Directory of Open Access Journals (Sweden)

    Carlos C Barros

    Full Text Available The Kallikrein-Kinin System (KKS has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM, we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO. Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

  18. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  19. MUC5AC/β-catenin expression and KRAS gene alteration in laterally spreading colorectal tumors

    Institute of Scientific and Technical Information of China (English)

    Kosaburo Nakae; Hiroyuki Mitomi; Tsuyoshi Saito; Michiko Takahashi; Takashi Morimoto; Yasuhiro Hidaka; Naoto Sakamoto

    2012-01-01

    To clarify differences in mucin phenotype,proliferative activity and oncogenetic alteration among subtypes of colorectal laterally spreading tumor (LST).METHODS:LSTs,defined as superficial elevated lesions greater than 10 mm in diameter with a low vertical axis,were macroscopically classified into two subtypes:(1) a granular type (Gr-LST) composed of superficially spreading aggregates of nodules forming a flat-based lesion with a granulonodular and uneven surface; and (2) a non-granular type (NGr-LST) with a flat smooth surface and an absence of granulonodular formation.A total of 69 LSTs,comprising 36 Gr-LSTs and 33 NGr-LSTs,were immunohistochemically stained with MUC2,MUC5AC,MUC6,CD10 (markers of gastrointestinal cell lineage),p53,β-catenin and Ki-67 antibodies,and examined for alteration in exon 1 of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and exon 15 of v-raf murine sarcoma viral oncogene homologue B1 (BRAF) by polymerase chain reaction followed by direct sequencing.RESULTS:Histologically,15 Gr-LST samples were adenomas with low-grade dysplasia (LGD),12 were highgrade dysplasia (HGD) and 9 were adenocarcinomas invading the submucosa (INV),while 12 NGr-LSTs demonstrated LGD,14 HGD and 7 INV.In the proximal colon,MUC5AC expression was significantly higher in the Gr-type than the NGr-type.MUC6 was expressed only in NGr-LST.MUC2 or CD10 did not differ,P53 expression demonstrated a significant stepwise increment in progression through LGD-HGD-INV with both types of LST.Nuclear β-catenin expression was significantly higher in the NGr-type.Ki-67 expression was significantly higher in the Gr-type in the lower one third zone of the tumor.In proximal,but not distal colon tumors,the incidence of KRAS provided mutation was significantly higher in the Gr-type harboring a specific mutational pattern (G12V).BRAF mutations (V600E) were detected only in two Gr-LSTs.CONCLUSION:The two subtypes of LST,especially in the proximal colon,have differing

  20. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    International Nuclear Information System (INIS)

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  1. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States); Rise, Matthew L. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Spitsbergen, Jan M. [Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331 (United States); Hori, Tiago S. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Mieritz, Mark; Geis, Steven [Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706 (United States); McGraw, Joseph E. [School of Pharmacy, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097 (United States); Goetz, Giles [School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle, WA 98195 (United States); Larson, Jeremy; Hutz, Reinhold J. [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); Carvan, Michael J., E-mail: carvanmj@uwm.edu [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States)

    2013-09-15

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  2. Cadmium chloride alters mRNA levels of angiogenesis related genes in primary human endometrial endothelial cells grown in vitro.

    Science.gov (United States)

    Helmestam, Malin; Stavreus-Evers, Anneli; Olovsson, Matts

    2010-11-01

    Cadmium, is known to cause adverse reproductive effects, and classified as an endocrine disrupting chemical (EDC). Human endometrial endothelial cells (HEEC) have a key role in the regulation of endometrial angiogenesis. These cells are known to express estrogen receptors, a feature that makes them potential targets for EDCs such as cadmium. We have designed a co-culture system, in which HEEC were grown in the same cell culture medium as endometrial stromal cells but in separate, communicating chambers. With quantitative PCR, we investigated changes in mRNA expression of genes associated with angiogenesis, sex steroids and endothelial cell specific functions. We found that cadmium altered the mRNA expression of the two important angiogenic molecules VEGF-A and PLGF. Cadmium might thus affect endometrial angiogenesis and as a consequence cause endometrial dysfunction with an increased risk for fertility problems. PMID:20580663

  3. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats.

    Science.gov (United States)

    El-Terras, Adel; Soliman, Mohamed Mohamed; Alkhedaide, Adel; Attia, Hossam Fouad; Alharthy, Abdullah; Banaja, Abdel Elah

    2016-04-01

    In Saudi Arabia, the consumption of carbonated soft drinks is common and often occurs with each meal. Carbonated soft drink consumption has been shown to exhibit effects on the liver, kidney and bone. However, the effects of these soft drinks on brain activity have not been widely examined, particularly at the gene level. Therefore, the current study was conducted with the aim of evaluating the effects of chronic carbonated soft drink consumption on oxidative stress, brain gene biomarkers associated with aggression and brain histology. In total, 40 male Wistar rats were divided into four groups: Group 1 served as a control and was provided access to food and water ad libitum; and groups 2‑4 were given free access to food and carbonated soft drinks only (Cola for group 2, Pepsi for group 3 and 7‑UP for group 4). Animals were maintained on these diets for 3 consecutive months. Upon completion of the experimental period, animals were sacrificed and serological and histopathological analyses were performed on blood and tissues samples. Reverse transcription‑polymerase chain reaction was used to analyze alterations in gene expression levels. Results revealed that carbonated soft drinks increased the serum levels of malondialdehyde (MDA). Carbonated soft drinks were also observed to downregulate the expression of antioxidants glutathione reductase (GR), catalase and glutathione peroxidase (GPx) in the brain when compared with that in the control rats. Rats administered carbonated soft drinks also exhibited decreased monoamine oxidase A (MAO‑A) and acetylcholine esterase (AChE) serum and mRNA levels in the brain. In addition, soft drink consumption upregulated mRNA expression of dopamine D2 receptor (DD2R), while 5-hydroxytryptamine transporter (5‑HTT) expression was decreased. However, following histological examination, all rats had a normal brain structure. The results of this study demonstrated that that carbonated soft drinks induced oxidative stress and

  4. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. PMID:25454367

  5. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression.

    Science.gov (United States)

    Ghosh, S; Dai, C; Brown, K; Rajendiran, E; Makarenko, S; Baker, J; Ma, C; Halder, S; Montero, M; Ionescu, V A; Klegeris, A; Vallance, B A; Gibson, D L

    2011-07-01

    Individuals vary in their resistance to enteric infections. The role of the intestinal microbiota in altering susceptibility to enteric infection is relatively unknown. Previous studies have identified that C3H/HeOuJ mice suffer 100% mortality during Citrobacter rodentium-induced colitis, whereas C57BL/6 mice recover from infection. The basis for their differences in susceptibility is unclear and has been mainly attributed to differences in host genetics. This study investigated the role of the intestinal microbiota in altering susceptibility to C. rodentium-induced colitis. When the feces of C57BL/6 mice were gavaged into antibiotic treated C3H/HeOuJ mice, the C57BL/6 microflora led to a complete reversal in mortality patterns where 100% of the C3H/HeOuJ mice survived infection. This protection corresponded with reduced colonic pathology and less systemic pathogen load and was associated with increased inflammatory and redox responses with reduced epithelial cell death. C3H/HeOuJ mice are normally susceptible to infection-induced dehydration due to defective expression of colonic ion transporters such as Dra, CA IV, and CA I; expression of these genes was normalized when C3H/HeOuJ mice were colonized with the C57BL/6 microflora. Together, these data reveal that the colonic microbiota play a critical role in protecting against intestinal infection by inducing proinflammatory and prooxidant responses that control pathogen load as well as ion transporter gene expression previously shown to prevent fatal dehydration. Protection of mice from lethal colitis was associated with higher levels of bacteria from Bacteroidetes. This study reveals that the microbiota is sufficient to overcome inherent genetic susceptibility patterns in C3H/HeOuJ mice that cause mortality during C. rodentium infection.

  6. Homologs to Cry toxin receptor genes in a de novo transcriptome and their altered expression in resistant Spodoptera litura larvae.

    Science.gov (United States)

    Gong, Liang; Wang, Huidong; Qi, Jiangwei; Han, Lanzhi; Hu, Meiying; Jurat-Fuentes, Juan Luis

    2015-07-01

    Insect resistance threatens sustainability of insecticides based on Cry proteins from the bacterium Bacillus thuringiensis (Bt). Since high levels of resistance to Cry proteins involve alterations in Cry-binding midgut receptors, their identification is needed to develop resistance management strategies. Through Illumina sequencing we generated a transcriptome containing 16,161 annotated unigenes for the Oriental leafworm (Spodoptera litura). Transcriptome mining identified 6 contigs with identity to reported lepidopteran Cry toxin receptors. Using PCR we confirmed their expression during the larval stage and compared their quantitative expression in larvae from susceptible and a field-derived Cry1Ca resistant strain of S. litura. Among reduced transcript levels detected for most tested contigs in the Cry1Ca-resistant S. litura larvae, the most dramatic reduction (up to 99%) was detected for alkaline phosphatase contigs. This study significantly expands S. litura transcriptomic resources and provides preliminary identification of putative receptor genes with altered expression in S. litura resistant to Cry1Ca toxin. PMID:25981133

  7. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA.

    Science.gov (United States)

    O'Brown, Natasha M; Summers, Brian R; Jones, Felicity C; Brady, Shannon D; Kingsley, David M

    2015-01-01

    Armor plate changes in sticklebacks are a classic example of repeated adaptive evolution. Previous studies identified ectodysplasin (EDA) gene as the major locus controlling recurrent plate loss in freshwater fish, though the causative DNA alterations were not known. Here we show that freshwater EDA alleles have cis-acting regulatory changes that reduce expression in developing plates and spines. An identical T → G base pair change is found in EDA enhancers of divergent low-plated fish. Recreation of the T → G change in a marine enhancer strongly reduces expression in posterior armor plates. Bead implantation and cell culture experiments show that Wnt signaling strongly activates the marine EDA enhancer, and the freshwater T → G change reduces Wnt responsiveness. Thus parallel evolution of low-plated sticklebacks has occurred through a shared DNA regulatory change, which reduces the sensitivity of an EDA enhancer to Wnt signaling, and alters expression in developing armor plates while preserving expression in other tissues. PMID:25629660

  8. Exploring the phenotypic expression of a regulatory proteome- altering gene by spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Munck, L.; Nielsen, J.P.; Møller, B.;

    2001-01-01

    electrophoresis, resulting in a radically changed amino acid and chemical composition. A synergy interval partial least squares regression model (si-PLSR) is tested to select combinations of spectral segments which have a high correlation to defined chemical components indicative of the lys3a gene, such as direct...... spectroscopic sensor from the chemical physical fingerprint. The PLS algorithm chooses spectral intervals: which combine both direct and indirect proteome effects. This explains the robustness of NIR spectral predictions by PLSR for a wide range of chemical components. The new option of using spectroscopy......, analytical chemistry and chemometrics in modeling the genetically based covariance of physical/chemical fingerprints of the intact phenotype in plant breeding and biotechnology is discussed....

  9. Postnatal events in intestinal gene expression and splenic cell composition is altered in NOD mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Kristensen, Matilde Bylov;

    2013-01-01

    free mice, certain chemokines, including Cxcl2 encoding macrophage inflammatory protein (MIP)-2 and involved in attraction of neutrophils was downregulated in the gut epithelium. The non-obese diabetes (NOD) mouse is widely used as a model for studying the pathogenesis of T1D. The neonatal gut...... microbiota seems to play an important role in the development and control of T1D. We hypothesized that NOD mice in the perinatal period respond differently than mice not prone to develop T1D (C57/Bl6), and we investigated the differences in postnatal expression of genes in gut, spleen, liver and pancreas......Evidence suggests that colonisation pattern of the gut in the early postnatal period is highly correlated with the risk of developing type 1 diabetes (T1D). We have recently shown that colonization in SPF mice accelerates gut maturation and that at postnatal day (PND) 1, in comparison with germ...

  10. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas).

    Science.gov (United States)

    Noël, Marie; Loseto, Lisa L; Helbing, Caren C; Veldhoen, Nik; Dangerfield, Neil J; Ross, Peter S

    2014-01-01

    High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies. PMID:24490950

  11. Rate-synchrony relationship between input and output of spike trains in neuronal networks

    Science.gov (United States)

    Wang, Sentao; Zhou, Changsong

    2010-01-01

    Neuronal networks interact via spike trains. How the spike trains are transformed by neuronal networks is critical for understanding the underlying mechanism of information processing in the nervous system. Both the rate and synchrony of the spikes can affect the transmission, while the relationship between them has not been fully understood. Here we investigate the mapping between input and output spike trains of a neuronal network in terms of firing rate and synchrony. With large enough input rate, the working mode of the neurons is gradually changed from temporal integrators into coincidence detectors when the synchrony degree of input spike trains increases. Since the membrane potentials of the neurons can be depolarized to near the firing threshold by uncorrelated input spikes, small input synchrony can cause great output synchrony. On the other hand, the synchrony in the output may be reduced when the input rate is too small. The case of the feedforward network can be regarded as iterative process of such an input-output relationship. The activity in deep layers of the feedforward network is in an all-or-none manner depending on the input rate and synchrony.

  12. Age-dependent change in executive function and gamma 40 Hz phase synchrony.

    Science.gov (United States)

    Paul, Robert H; Clark, C Richard; Lawrence, Jeffrey; Goldberg, Elkhonon; Williams, Leanne M; Cooper, Nicholas; Cohen, Ronald A; Brickman, Adam M; Gordon, Evian

    2005-03-01

    Decline in cognitive function is well recognized, yet few neurophysiological correlates of age-related cognitive decline have been identified. In this study we examined the impact of age on neurocognitive function and Gamma phase synchrony among 550 normal subjects (aged 11-70). Gamma phase synchrony was acquired to targets in the auditory oddball paradigm. The two tasks of executive function were switching of attention and an electronic maze. Subjects were divided into four age groups, which were balanced for sex. We hypothesized that reduced cognitive performance among older healthy individuals would be associated with age-related changes in gamma phase synchrony. Results showed a significant decrease in executive function in the oldest (51-70 years) age group. ANOVAs of age-by-frontal Gamma synchrony also showed a significant effect of age on Gamma phase synchrony in the left frontal region that corresponded modestly to the age effect found on executive task performance, with reduced performance associated with increased gamma synchrony. The results indicate that age-related changes in cognitive function evident among elderly individuals may in part be related to decreased ability to integrate information and this may be reflected as a compensatory increase in gamma synchrony in frontal regions of the brain. PMID:16035141

  13. Gut bacteria alteration in obese people and its relationship with gene polymorphism

    Institute of Scientific and Technical Information of China (English)

    Hao-Jiang Zuo; Zhi-Mei Xie; Wei-Wei Zhang; Yong-Ru Li; Wei Wang; Xiao-Bei Ding; Xiao-Fang Pei

    2011-01-01

    AIM:To investigate the differences in cultivable gut bacteria and peroxisome proliferator-activated receptor γ2 (PPAR-γ2 ) gene Pro12Ala variation in obese and normal-weight Chinese people. METHODS:Using culture methods,the amounts of Escherichia coli ,Enterococci ,Bacteroides ,Lactobacilli ,Bifidobacteria and Clostridium perfringens (C.perfringens ) in the feces of 52 obese participants [body mass index (BMI):≥ 28 kg/m2] and 52 participants of normalweight (BMI:18.5-24 kg/m2) were obtained.Study participants completed comprehensive questionnaires and underwent clinical laboratory tests.The polymerase chain reaction-restriction fragment length polymorphism (PCR-PFLP) assay was used to analyze PPAR-γ2 gene Pro12Ala variation. RESULTS:The obese group exhibited a lower amount of C.perfringens (6.54 ± 0.65 vs 6.94 ± 0.57,P = 0.001) and Bacteroides (9.81 ± 0.58 vs 10.06 ± 0.39,P = 0.012) than their normal-weight counterparts.No major differences were observed in Pro12Ala genotype distribution between the two groups; however,obese individuals with a Pro/Ala genotype had a significantly lower level of Bacteroides (9.45 ± 0.62 vs 9.93 ± 0.51,P = 0.027) than those with a Pro/Pro genotype.In addition, the obese group demonstrated a higher stool frequency (U = 975,P < 0.001) and a looser stool (U = 1062,P = 0.015) than the normal-weight group. CONCLUSION:Our results indicated interactions among cultivable gut flora,host genetic factors and obese phenotype and this might be helpful for obesity prevention.

  14. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG.

    Science.gov (United States)

    Dauwels, J; Vialatte, F; Musha, T; Cichocki, A

    2010-01-01

    It is well known that EEG signals of Alzheimer's disease (AD) patients are generally less synchronous than in age-matched control subjects. However, this effect is not always easily detectable. This is especially the case for patients in the pre-symptomatic phase, commonly referred to as mild cognitive impairment (MCI), during which neuronal degeneration is occurring prior to the clinical symptoms appearance. In this paper, various synchrony measures are studied in the context of AD diagnosis, including the correlation coefficient, mean-square and phase coherence, Granger causality, phase synchrony indices, information-theoretic divergence measures, state space based measures, and the recently proposed stochastic event synchrony measures. Experiments with EEG data show that many of those measures are strongly correlated (or anti-correlated) with the correlation coefficient, and hence, provide little complementary information about EEG synchrony. Measures that are only weakly correlated with the correlation coefficient include the phase synchrony indices, Granger causality measures, and stochastic event synchrony measures. In addition, those three families of synchrony measures are mutually uncorrelated, and therefore, they each seem to capture a specific kind of interdependence. For the data set at hand, only two synchrony measures are able to convincingly distinguish MCI patients from age-matched control patients, i.e., Granger causality (in particular, full-frequency directed transfer function) and stochastic event synchrony. Those two measures are used as features to distinguish MCI patients from age-matched control subjects, yielding a leave-one-out classification rate of 83%. The classification performance may be further improved by adding complementary features from EEG; this approach may eventually lead to a reliable EEG-based diagnostic tool for MCI and AD.

  15. Microarray Analysis Reveals Higher Gestational Folic Acid Alters Expression of Genes in the Cerebellum of Mice Offspring—A Pilot Study

    OpenAIRE

    Subit Barua; Salomon Kuizon; Chadman, Kathryn K.; W. Ted Brown; Mohammed A. Junaid

    2015-01-01

    Folate is a water-soluble vitamin that is critical for nucleotide synthesis and can modulate methylation of DNA by altering one-carbon metabolism. Previous studies have shown that folate status during pregnancy is associated with various congenital defects including the risk of aberrant neural tube closure. Maternal exposure to a methyl supplemented diet also can alter DNA methylation and gene expression, which may influence the phenotype of offspring. We investigated if higher gestational fo...

  16. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  17. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    Science.gov (United States)

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  18. Exposure to Hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    David eRoquis

    2014-07-01

    Full Text Available Schistosoma mansoni is a parasitic plathyhelminth responsible for intestinal schistosomiasis (or bilharziasis, a disease affecting 67 million people worldwide and causing an important economic burden. The schistosomicides hycanthone, and its later proxy oxamniquine, were widely used for treatments in endemic areas during the 20th century. Recently, the mechanism of action, as well as the genetic origin of a stably and Mendelian inherited resistance for both drugs was elucidated in two strains. However, several observations suggested early on that alternative mechanisms might exist, by which resistance could be induced for these two drugs in sensitive lines of schistosomes. This induced resistance appeared rapidly, within the first generation, but was metastable (not stably inherited. Epigenetic inheritance could explain such a phenomenon and we therefore re-analyzed the historical data with our current knowledge of epigenetics. In addition, we performed new experiments such as ChIP-seq on hycanthone treated worms. We found distinct chromatin structure changes between sensitive worms and induced resistant worms from the same strain. No specific pathway was discovered, but genes in which chromatin structure modification were observed are mostly associated with transport and catabolism, which makes sense in the context of the elimination of the drug. Specific differences were observed in the repetitive compartment of the genome. We finally describe what types of experiments are needed to understand the complexity of heritability that can be based on genetic and/or epigenetic mechanisms for drug resistance in schistosomes.

  19. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  20. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    Science.gov (United States)

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. PMID:24503577

  1. Omega-3 Fatty Acid Enriched Chevon (Goat Meat Lowers Plasma Cholesterol Levels and Alters Gene Expressions in Rats

    Directory of Open Access Journals (Sweden)

    Mahdi Ebrahimi

    2014-01-01

    Full Text Available In this study, control chevon (goat meat and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n=10 in each group for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P<0.05 in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.

  2. The mutated S1-haplotype in sour cherry has an altered S-haplotype-specific F-box protein gene.

    Science.gov (United States)

    Hauck, Nathanael R; Ikeda, Kazuo; Tao, Ryutaro; Iezzoni, Amy F

    2006-01-01

    Gametophytic self-incompatibility (GSI) is an outcrossing mechanism in flowering plants that is genetically controlled by 2 separate genes located at the highly polymorphic S-locus, termed S-haplotype. This study characterizes a pollen part mutant of the S(1)-haplotype present in sour cherry (Rosaceae, Prunus cerasus L.) that contributes to the loss of GSI. Inheritance of S-haplotypes from reciprocal interspecific crosses between the self-compatible sour cherry cultivar Ujfehértói Fürtös carrying the mutated S(1)-haplotype (S(1)'S(4)S(d)S(null)) and the self-incompatible sweet cherry (Prunus avium L.) cultivars carrying the wild-type S(1)-haplotype revealed that the mutated S(1)-haplotype confers unilateral incompatibility with a functional pistil component and a nonfunctional pollen component. The altered sour cherry S(1)-haplotype pollen part mutant, termed S(1)', contains a 615-bp Ds-like element within the S(1)-haplotype-specific F-box protein gene (SFB(1)'). This insertion generates a premature in-frame stop codon that would result in a putative truncated SFB(1) containing only 75 of the 375 amino acids present in the wild-type SFB(1). S(1)' along with 2 other previously characterized Prunus S-haplotype mutants, S(f) and S(6m), illustrate that mobile element insertion is an evolutionary force contributing to the breakdown of GSI. PMID:16985081

  3. Dispersal and noise: Various modes of synchrony in ecological oscillators

    KAUST Repository

    Bressloff, Paul C.

    2012-10-21

    We use the theory of noise-induced phase synchronization to analyze the effects of dispersal on the synchronization of a pair of predator-prey systems within a fluctuating environment (Moran effect). Assuming that each isolated local population acts as a limit cycle oscillator in the deterministic limit, we use phase reduction and averaging methods to derive a Fokker-Planck equation describing the evolution of the probability density for pairwise phase differences between the oscillators. In the case of common environmental noise, the oscillators ultimately synchronize. However the approach to synchrony depends on whether or not dispersal in the absence of noise supports any stable asynchronous states. We also show how the combination of partially correlated noise with dispersal can lead to a multistable steady-state probability density. © 2012 Springer-Verlag Berlin Heidelberg.

  4. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  5. SPIKY: A graphical user interface for monitoring spike train synchrony

    CERN Document Server

    Bozanic, Nebojsa

    2014-01-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface which facilitates the applicati...

  6. Bistability of patterns of synchrony in Kuramoto oscillators with inertia

    Science.gov (United States)

    Belykh, Igor V.; Brister, Barrett N.; Belykh, Vladimir N.

    2016-09-01

    We study the co-existence of stable patterns of synchrony in two coupled populations of identical Kuramoto oscillators with inertia. The two populations have different sizes and can split into two clusters where the oscillators synchronize within a cluster while there is a phase shift between the dynamics of the two clusters. Due to the presence of inertia, which increases the dimensionality of the oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We derive analytical conditions for the co-existence of stable two-cluster patterns with constant and oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability of the phase shifts, is described by a driven pendulum equation. We also discuss the implications of our stability results to the stability of chimeras.

  7. Heartbeat, embryo communication and hatching synchrony in snake eggs.

    Science.gov (United States)

    Aubret, Fabien; Blanvillain, Gaëlle; Bignon, Florent; Kok, Philippe J R

    2016-01-01

    Communication is central to life at all levels of complexity, from cells to organs, through to organisms and communities. Turtle eggs were recently shown to communicate with each other in order to synchronise their development and generate beneficial hatching synchrony. Yet the mechanism underlying embryo to embryo communication remains unknown. Here we show that within a clutch, developing snake embryos use heart beats emanating from neighbouring eggs as a clue for their metabolic level, in order to synchronise development and ultimately hatching. Eggs of the water snake Natrix maura increased heart rates and hatched earlier than control eggs in response to being incubated in physical contact with more advanced eggs. The former produced shorter and slower swimming young than their control siblings. Our results suggest potential fitness consequences of embryo to embryo communication and describe a novel driver for the evolution of egg-clustering behaviour in animals. PMID:26988725

  8. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus

    Science.gov (United States)

    Shukitt-Hale, Barbara; Lau, Francis C.; Carey, Amanda N.; Galli, Rachel L.; Spangler, Edward L.; Ingram, Donald K.; Joseph, James A.

    2016-01-01

    Cognitive impairment in age-related neurodegenerative diseases such as Alzheimer's disease may be partly due to long-term exposure and increased susceptibility to inflammatory insults. In the current study, we investigated whether polyphenols in blueberries can reduce the deleterious effects of inflammation induced by central administration of kainic acid by altering the expression of genes associated with inflammation. To this end, 4-month-old male Fischer-344 (F344) rats were fed a control, 0.015% piroxicam (an NSAID) or 2% blueberry diet for 8 weeks before either Ringer's buffer or kainic acid was bilaterally micro-infused into the hippocampus. Two weeks later, following behavioral evaluation, the rats were killed and total RNA from the hippocampus was extracted and used in real-time quantitative RT-PCR (qRT-PCR) to analyze the expression of inflammation-related genes. Kainic acid had deleterious effects on cognitive behavior as kainic acid-injected rats on the control diet exhibited increased latencies to find a hidden platform in the Morris water maze compared to Ringer's buffer-injected rats and utilized non-spatial strategies during probe trials. The blueberry diet, and to a lesser degree the piroxicam diet, was able to improve cognitive performance. Immunohistochemical analyses of OX-6 expression revealed that kainic acid produced an inflammatory response by increasing the OX-6 positive areas in the hippocampus of kainic acid-injected rats. Kainic acid up-regulated the expression of the inflammatory cytokines IL-1β and TNF-α, the neurotrophic factor IGF-1, and the transcription factor NF-κB. Blueberry and piroxicam supplementations were found to attenuate the kainic acid-induced increase in the expression of IL-1β, TNF-α, and NF-κB, while only blueberry was able to augment the increased IGF-1 expression. These results indicate that blueberry polyphenols attenuate learning impairments following neurotoxic insult and exert anti-inflammatory actions

  9. Over-expression of the Hybrid Aspen Homeobox PttKN1 Gene in Red Leaf Beet Induced Altered Coloration of Leaves

    Directory of Open Access Journals (Sweden)

    Quanle XU

    2015-04-01

    Full Text Available PttKN1 (Populus tremula × tremuloides KNOTTED1 gene belongs to the KNOXI gene family. It plays an important role in plant development, typically in meristem initiation, maintenance and organogenesis, and potentially in plant coloration. To investigate the gene functions further, it was introduced into red leaf beet by the floral dip method mediated via Agrobacterium tumefaciens. The transformants demonstrated typical phenotypes as with other PttKN1 transformants. These alterations were very different from the morphology of the wild type. Among them, morphological modification of changed color throughout the entire plant from claret of wild type to yellowish green was the highlight in those transgenic PttKN1-beet plants. The result of spraying selection showed that the PttKN1-beet plants had kanamycin resistance. PCR assay of the 35S-Promoter, NPTII and PttKN1 gene, PCR-Southern analysis of the NPTII and PttKN1 gene showed that the foreign PttKN1 gene had successfully integrated into the genome of beet plant. Furthermore, the results of RT-PCR analysis showed that the gene was ectopic expressed in transgenic plants. These data suggested that there is a correlation between the ectopic expression of PttKN1 gene and morphological alterations of beet plants. Pigment content assay showed that betaxanthins concentrations shared little difference between wild type and transgenic lines, while betacyanins content in transgenic plants was sharply decreased, indicating that the altered plant coloration of the transgenic beet plants may be caused by the changed betacyanins content. The tyrosinase study suggested that the sharply decreased of betacyanins content in transgenic plants was caused via the decreased tyrosinase level. Therefore, the reason for the altered plant coloration may be due to partial inhibition of betacyanin biosynthesis that was induced via the pleiotropic roles of PttKN1 gene.

  10. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future. PMID:25600535

  11. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future.

  12. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P < 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin-like protein, potential reductase-flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation. PMID:23194472

  13. Altered behavior in mice with deletion of the alpha2-antiplasmin gene.

    Directory of Open Access Journals (Sweden)

    Eri Kawashita

    Full Text Available BACKGROUND: The α2-antiplasmin (α2AP protein is known to be a principal physiological inhibitor of plasmin, and is expressed in various part of the brain, including the hippocampus, cortex, hypothalamus and cerebellum, thus suggesting a potential role for α2AP in brain functions. However, the involvement of α2AP in brain functions is currently unclear. OBJECTIVES: The goal of this study was to investigate the effects of the deletion of the α2AP gene on the behavior of mice. METHODS: The motor function was examined by the wire hang test and rotarod test. To evaluate the cognitive function, a repeated rotarod test, Y-maze test, Morris water maze test, passive or shuttle avoidance test and fear conditioning test were performed. An open field test, dark/light transition test or tail suspension test was performed to determine the involvement of α2AP in anxiety or depression-like behavior. RESULTS AND CONCLUSIONS: The α2AP knockout (α2AP-/- mice exhibited impaired motor function compared with α2AP+/+ mice. The α2AP-/- mice also exhibited impairments in motor learning, working memory, spatial memory and fear conditioning memory. Furthermore, the deletion of α2AP induced anxiety-like behavior, and caused an anti-depression-like effect in tail suspension. Therefore, our findings suggest that α2AP is a crucial mediator of motor function, cognitive function, anxiety-like behavior and depression-like behavior, providing new insights into the role of α2AP in the brain functions.

  14. Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells

    Directory of Open Access Journals (Sweden)

    Hillegass Jedd M

    2010-09-01

    Full Text Available Abstract Background Exposures to an amphibole fiber in Libby, Montana cause increases in malignant mesothelioma (MM, a tumor of the pleural and peritoneal cavities with a poor prognosis. Affymetrix microarray/GeneSifter analysis was used to determine alterations in gene expression of a human mesothelial cell line (LP9/TERT-1 by a non-toxic concentration (15×106 μm2/cm2 of unprocessed Libby six-mix and negative (glass beads and positive (crocidolite asbestos controls. Because manganese superoxide dismutase (MnSOD; SOD2 was the only gene upregulated significantly (p 6 μm2/cm2 and toxic concentrations (75×106 μm2/cm2 of Libby six-mix. Results Exposure to 15×106 μm2/cm2 Libby six-mix elicited significant (p SOD2; 4-fold at 8 h and 111 gene changes at 24 h, including a 5-fold increase in SOD2. Increased levels of SOD2 mRNA at 24 h were also confirmed in HKNM-2 normal human pleural mesothelial cells by qRT-PCR. SOD2 protein levels were increased at toxic concentrations (75×106 μm2/cm2 of Libby six-mix at 24 h. In addition, levels of copper-zinc superoxide dismutase (Cu/ZnSOD; SOD1 protein were increased at 24 h in all mineral groups. A dose-related increase in SOD2 activity was observed, although total SOD activity remained unchanged. Dichlorodihydrofluorescein diacetate (DCFDA fluorescence staining and flow cytometry revealed a dose- and time-dependent increase in reactive oxygen species (ROS production by LP9/TERT-1 cells exposed to Libby six-mix. Both Libby six-mix and crocidolite asbestos at 75×106 μm2/cm2 caused transient decreases (p HO-1 in LP9/TERT-1 and HKNM-2 cells. Conclusions Libby six-mix causes multiple gene expression changes in LP9/TERT-1 human mesothelial cells, as well as increases in SOD2, increased production of oxidants, and transient decreases in intracellular GSH. These events are not observed at equal surface area concentrations of nontoxic glass beads. Results support a mechanistic basis for the importance of SOD2

  15. Genes e epilepsia I: epilepsia e alterações genéticas Genes and epilepsy I: epilepsy and genetic alterations

    Directory of Open Access Journals (Sweden)

    Daniel L. G. Gitaí

    2008-06-01

    hypersynchronous electrical activity, preferentially in cortical areas, caused by panoply of structural and neurochemical dysfunctions. Recent advances in the field have focused on the molecular mechanisms involved in the epileptogenic process. OBJECTIVES: In the present review, we describe the main genetic alterations associated to the process of epileptogenesis and discuss the new findings that are shedding light on the molecular substrates of monogenic idiopathic epilepsies (MIE and on genetically complex epilepsies (GCE. RESULTS AND CONCLUSION: Linkage and association studies have shown that mutations in ion channel genes are the main causes of MIE and of predisposition for GCE. Moreover, mutations in genes involved in neuronal migration, glycogen metabolism and respiratory chain are associated to other syndromes involving seizures. Therefore, different gene classes contribute to the epileptic trait. The identification of epilepsy-related gene families can help us understand the molecular mechanisms of neuronal hyperexcitability and recognize markers of early diagnosis as well as new treatments for these epilepsies.

  16. Building trust: Heart rate synchrony and arousal during joint action increased by public goods game.

    Science.gov (United States)

    Mitkidis, Panagiotis; McGraw, John J; Roepstorff, Andreas; Wallot, Sebastian

    2015-10-01

    The physiological processes underlying trust are subject of intense interest in the behavioral sciences. However, very little is known about how trust modulates the affective link between individuals. We show here that trust has an effect on heart rate arousal and synchrony, a result consistent with research on joint action and experimental economics. We engaged participants in a series of joint action tasks which, for one group of participants, was interleaved with a PGG, and measured their heart synchrony and arousal. We found that the introduction of the economic game shifted participants' attention to the dynamics of the interaction. This was followed by increased arousal and synchrony of heart rate profiles. Also, the degree of heart rate synchrony was predictive of participants' expectations regarding their partners in the economic game. We conclude that the above changes in physiology and behavior are shaped by the valuation of other people's social behavior, and ultimately indicate trust building process. PMID:26037635

  17. Cluster Synchrony in Systems of Coupled Phase Oscillators with Higher-Order Coupling

    CERN Document Server

    Skardal, Per Sebastian; Restrepo, Juan G

    2011-01-01

    We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction technique of Ott and Antonsen \\cite{OA1} and find an analytic description of the degree of cluster synchrony valid on a globally attracting manifold. Shaped by this manifold, there is an infinite family of steady-state distributions of oscillators, resulting in a high degree of multi-stability in the cluster asymmetry. We also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems displaying cluster synchrony can be used to encode and store data.

  18. Stress and inflammatory gene networks in bovine liver are altered by plane of dietary energy during late pregnancy.

    Science.gov (United States)

    Khan, M Jawad; Jacometo, Carolina B; Riboni, Mario Vailati; Trevisi, Erminio; Graugnard, Daniel E; Corrêa, Marcio N; Loor, Juan J

    2015-09-01

    The prepartal dietary energy level is tightly correlated with the degree of tissue mobilization that the animal experiences around parturition (giving birth). To better understand the link between the dry period dietary energy management and the inflammatory status around parturition, 12 multiparous Holstein cows were fed for the entire dry period either a high-wheat straw/lower-energy diet to supply at least 100% of the calculated net energy for lactation (NEL) (control, CON) or a higher-energy diet to supply >140% of NEL (overfed, OVE). The blood was sampled throughout the transition period for biomarker analyses. Liver tissue samples were taken on days -14, 7, 14, and 30 relative to parturition for triacylglycerol (TAG) composition and gene expression analysis. Fifty genes involved in inflammation, endoplasmic reticulum (ER), and oxidative stress, and cell cycle and growth were evaluated. Although blood biomarkers did not reveal signs of a greater inflammatory status compared with OVE, CON cows had a greater activation of the intrahepatic unfolded protein response prepartum. However, postpartum mRNA profiling indicated that the OVE group experienced a mild but sustained level of ER stress, with higher oxidative stress and impairment of antioxidant mechanisms. After parturition, inflammation-related genes were upregulated in OVE cows compared with CON. However, CON cows experienced a gradual increase in expression of key inflammatory transcription regulators up to 30 days postpartum which agreed with the lower plasma albumin and cholesterol, suggesting an inflammatory state. Data underscored that ER stress is not necessarily linked with inflammation during the peripartal period. Gene expression data also suggest that prepartum overnutrition could have negative effects on normal cell cycle activity. Overall, allowing cows to overconsume energy prepartum increased the hepatic pro-inflammatory response prepartum and up to the point of parturition. Subsequently, cows

  19. Alterations of physiology and gene expression due to long-term magnesium-deficiency differ between leaves and roots of Citrus reticulata.

    Science.gov (United States)

    Jin, Xiao-Lin; Ma, Cui-Lan; Yang, Lin-Tong; Chen, Li-Song

    2016-07-01

    Seedlings of Ponkan (Citrus reticulata) were irrigated with nutrient solution containing 0 (Mg-deficiency) or 1mM MgSO4 (control) every two day for 16 weeks. Thereafter, we examined magnesium (Mg)-deficiency-induced changes in leaf and root gas exchange, total soluble proteins and gene expression. Mg-deficiency lowered leaf CO2 assimilation, and increased leaf dark respiration. However, Mg-deficient roots had lower respiration. Total soluble protein level was not significantly altered by Mg-deficiency in roots, but was lower in Mg-deficient leaves than in controls. Using cDNA-AFLP, we obtained 70 and 71 differentially expressed genes from leaves and roots. These genes mainly functioned in signal transduction, stress response, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, nucleic acid, and protein metabolisms. Lipid metabolism (Ca(2+) signals)-related Mg-deficiency-responsive genes were isolated only from roots (leaves). Although little difference existed in the number of Mg-deficiency-responsive genes between them both, most of these genes only presented in Mg-deficient leaves or roots, and only four genes were shared by them both. Our data clearly demonstrated that Mg-deficiency-induced alterations of physiology and gene expression greatly differed between leaves and roots. In addition, we focused our discussion on the causes for photosynthetic decline in Mg-deficient leaves and the responses of roots to Mg-deficiency. PMID:27163764

  20. Measuring Group Synchrony: A Cluster-Phase Method for Analyzing Multivariate Movement Time-Series

    Directory of Open Access Journals (Sweden)

    Michael eRichardson

    2012-10-01

    Full Text Available A new method for assessing group synchrony is introduced as being potentially useful for objectively determining degree of group cohesiveness or entitativity. The cluster-phase method of Frank and Richardson (2010 was used to analyze movement data from the rocking chair movements of six-member groups who rocked their chairs while seated in a circle facing the center. In some trials group members had no information about others’ movements (their eyes were shut or they had their eyes open and gazed at a marker in the center of the group. As predicted, the group level synchrony measure was able to distinguish between situations where synchrony would have been possible and situations where it would be impossible. Moreover, other aspects of the analysis illustrated how the cluster phase measures can be used to determine the type of patterning of group synchrony, and, when integrated with multi-level modeling, can be used to examine individual-level differences in synchrony and dyadic level synchrony as well.

  1. Temporally increasing spatial synchrony of North American temperature and bird populations

    Science.gov (United States)

    Koenig, Walter D.; Liebhold, Andrew M.

    2016-06-01

    The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics. So far, however, little attention has been given to temporal changes in spatial synchrony--the coincident change in abundance or value across the landscape--despite the importance of environmental synchrony as a driver of population trends and the central role of environmental variability in population rescue and extinction. Here we demonstrate that across North America, spatial synchrony of a significant proportion of 49 widespread North American wintering bird species has increased over the past 50 years--the period encompassing particularly intense anthropogenic effects in climate--paralleling significant increases in spatial synchrony of mean maximum air temperature. These results suggest the potential for increased spatial synchrony in environmental factors to be affecting a wide range of ecological phenomena. These effects are likely to vary, but for North American wildlife species, increased spatial synchrony driven by environmental factors may be the basis for a previously unrecognized threat to their long-term persistence in the form of more synchronized population dynamics reducing the potential for demographic rescue among interacting subpopulations.

  2. Audiovisual Temporal Recalibration for Speech in Synchrony Perception and Speech Identification

    Science.gov (United States)

    Asakawa, Kaori; Tanaka, Akihiro; Imai, Hisato

    We investigated whether audiovisual synchrony perception for speech could change after observation of the audiovisual temporal mismatch. Previous studies have revealed that audiovisual synchrony perception is re-calibrated after exposure to a constant timing difference between auditory and visual signals in non-speech. In the present study, we examined whether this audiovisual temporal recalibration occurs at the perceptual level even for speech (monosyllables). In Experiment 1, participants performed an audiovisual simultaneity judgment task (i.e., a direct measurement of the audiovisual synchrony perception) in terms of the speech signal after observation of the speech stimuli which had a constant audiovisual lag. The results showed that the “simultaneous” responses (i.e., proportion of responses for which participants judged the auditory and visual stimuli to be synchronous) at least partly depended on exposure lag. In Experiment 2, we adopted the McGurk identification task (i.e., an indirect measurement of the audiovisual synchrony perception) to exclude the possibility that this modulation of synchrony perception was solely attributable to the response strategy using stimuli identical to those of Experiment 1. The characteristics of the McGurk effect reported by participants depended on exposure lag. Thus, it was shown that audiovisual synchrony perception for speech could be modulated following exposure to constant lag both in direct and indirect measurement. Our results suggest that temporal recalibration occurs not only in non-speech signals but also in monosyllabic speech at the perceptual level.

  3. Mate guarding and territorial aggression vary with breeding synchrony in golden whistlers ( Pachycephala pectoralis)

    Science.gov (United States)

    van Dongen, Wouter F. D.

    2008-06-01

    Male paternity assurance behaviour during the female fertile period has been widely documented amongst birds. In contrast, how sex-specific behavioural strategies vary with local breeding synchrony levels remains largely unknown. This is important because, in many species, intra-population patterns of extra-pair fertilisation rates, and hence cuckoldry risk, are known to vary with the number of simultaneously fertile females. Each sex may therefore differ in how they behave towards male conspecifics during different degrees of breeding synchrony. Here I provide evidence of such sex-specific differences in the golden whistler ( Pachycephala pectoralis), a species in which within-pair paternity assurance is negatively associated with breeding synchrony. Via simulated territorial intrusions using decoy males, I show that males, but not females, increase levels of aggression to male intruders during periods of low synchrony, possibly because cuckoldry risk is greatest during this period. In addition, males appear to invest more effort into mate guarding after, but not before, territorial intrusions during this period. These inter-sexual differences may reflect conflicts in interest between the sexes, with females consistently showing interest in males during the fertile period regardless of synchrony levels and males investing more resources into expelling intruders when the risk of paternity loss is greatest. This study thus provides evidence that males may be able to detect variation in breeding synchrony and cuckoldry risk and adjust their paternity assurance behaviour accordingly.

  4. Alterations in Hepatic FGF21, Co-Regulated Genes, and Upstream Metabolic Genes in Response to Nutrition, Ketosis and Inflammation in Peripartal Holstein Cows.

    Directory of Open Access Journals (Sweden)

    Haji Akbar

    Full Text Available In rodents, fibroblast growth factor 21 (FGF21 has emerged as a key metabolic regulator produced by liver. To gather preliminary data on the potential importance of FGF1, co-regulated genes, and upstream metabolic genes, we examined the hepatic mRNA expression in response to nutrition and inflammation in dairy cows. In experiment 1, induction of ketosis through feed restriction on d 5 postpartum upregulated FGF21, its co-receptor KLB, and PPARA but only elicited a numerical increase in serum FGF21 concentration. In experiment 2, cows in control (CON or receiving 50 g/d of L-carnitine (C50 from -14 through 21 d had increased FGF21, PPARA, and NFIL3 on d 10 compared with d 2 postpartum. In contrast, compared with CON and C50, 100 g/d L-carnitine (C100 resulted in lower FGF21, KLB, ANGPTL4, and ARNTL expression on d 10. In experiment 3, cows were fed during the dry period either a higher-energy (OVE; 1.62 Mcal/kg DM or lower-energy (CON; 1.34 Mcal/kg DM diet and received 0 (OVE:N, CON:N or 200 μg of LPS (OVE:Y, CON:Y into the mammary gland at d 7 postpartum. For FGF21 mRNA expression in CON, the LPS challenge (CON:Y prevented a decrease in expression between d 7 and 14 postpartum such that cows in CON:N had a 4-fold lower expression on d 14 compared with d 7. The inflammatory stimulus induced by LPS in CON:Y resulted in upregulation of PPARA on d 14 to a similar level as cows in OVE:N. In OVE:Y, expression of PPARA was lower than CON:N on d 7 and remained unchanged on d 14. On d 7, LPS led to a 4-fold greater serum FGF21 only in OVE but not in CON cows. In fact, OVE:Y reached the same serum FGF21 concentration as CON:N, suggesting a carryover effect of dietary energy level on signaling mechanisms within liver. Overall, results indicate that nutrition, ketosis, and inflammation during the peripartal period can alter hepatic FGF21, co-regulated genes, and upstream metabolic genes to various extents. The functional outcome of these changes merits

  5. Dietary intake alters behavioural recovery and gene expression profiles in the brain of juvenile rats that have experienced a concussion

    Directory of Open Access Journals (Sweden)

    Richelle eMychasiuk

    2015-02-01

    Full Text Available Concussion and mild traumatic brain injury (mTBI research has made minimal progress diagnosing who will suffer from lingering symptomology or generating effective treatment strategies. Research demonstrates that dietary intake affects many biological systems including brain and neurological health. This study determined if exposure to a high fat diet (HFD or caloric restriction (CR altered post-concussion susceptibility or resiliency using a rodent model of pediatric concussion. Rats were maintained on HFD, CR, or standard diet (STD throughout life (including the prenatal period and weaning. At postnatal day 30, male and female rats experienced a concussion or a sham injury which was followed by 17 days of testing. Prefrontal cortex and hippocampus tissue was collected for molecular profiling. Gene expression changes in BDNF, CREB, DNMT1, FGF-2, IGF1, LEP, PGC-1α, SIRT1, Tau, and TERT were analyzed with respect to injury and diet. Analysis of telomere length (TL using peripheral skin cells and brain tissue found that TL in skin significantly correlated with TL in brain tissue and TL was affected by dietary intake and injury status. With respect to mTBI outcomes, diet was correlated with recovery as animals on the HFD often displayed poorer performance than animals on the CR diet. Molecular analysis demonstrated that diet induced epigenetic changes that can be associated with differences in individual predisposition and resiliency to post-concussion syndrome.

  6. Differences in gene expression and alterations in cell cycle of acute myeloid leukemia cell lines after treatment with JAK inhibitors.

    Science.gov (United States)

    Gunerka, Pawel; Dymek, Barbara; Stanczak, Aleksandra; Bujak, Anna; Grygielewicz, Paulina; Turowski, Pawel; Dzwonek, Karolina; Lamparska-Przybysz, Monika; Pietrucha, Tadeusz; Wieczorek, Maciej

    2015-10-15

    Janus kinase (JAK) inhibitors are a promising treatment strategy in several hematological malignancies and autoimmune diseases. A number of inhibitors are in clinical development, and two have already reached the market. Unfortunately, all of them are burdened with different toxicity profiles. To check if the JAK inhibitors of different selectivity evoke different responses on JAK2-dependent and independent cells, we have used three acute myeloid leukemia cell lines with confirmed JAK2 mutation status. We have found that JAK inhibitors exert distinct effect on the expression of BCLXL, CCND1 and c-MYC genes, regulated by JAK pathway, in JAK2 wild type cells in comparison to JAK2 V617F-positive cell lines. Moreover, cell cycle analysis showed that inhibitors alter the cycle by arresting cells in different phases. Our results suggest that observed effect of JAK2 inhibitors on transcription and cell cycle level in different cell lines are associated not with activity within JAK family, but presumably with other off-target activities. PMID:26300391

  7. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Lewis H Ziska

    Full Text Available Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2 from an early 20(th century concentration (300 µmol mol(-1 to current (400 µmol mol(-1 and projected, mid-21(st century (600 µmol mol(-1 values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  8. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression.

    Science.gov (United States)

    Ferris, Jacqueline; Mahboubi, Kiana; MacLusky, Neil; King, W Allan; Favetta, Laura A

    2016-01-01

    Alterations in the oocyte's environment can negatively affect embryo development. Oocyte quality, which can determine embryonic viability, is easily perturbed, thus factors affecting normal oocyte maturation are a concern. Bisphenol A (BPA) is an endocrine disrupting chemical that elicits a variety of reproductive effects. BPA has previously been found to disrupt meiosis, however the embryonic effects in mammals are not well documented. Here, bovine oocytes were matured in vitro with and without BPA treatment. Resulting embryos exhibited decreased embryonic development rates, increased apoptosis, and a skewed sex ratio. Gene expression in blastocysts was not altered, whereas treatment with 15ng/mL BPA resulted in increased expression of several of the genes studies, however this increase was largely due to a vehicle effect. BPA exposure during oocyte maturation in vitro can therefore, in a dose-dependent way, decrease oocyte and embryo quality and developmental potential and affect gene expression of developmentally important transcripts. PMID:26686065

  9. A Framework for Group Key Management Protocol Assessment Independent of View Synchrony

    Directory of Open Access Journals (Sweden)

    David Manz

    2010-01-01

    Full Text Available Problem statement: As group key management extended into the area of large dynamic networks, complex issues emerged involving the many operations that run over several network topologies. The issues that occurred due to multiple topologies were also compounded by differing views of the network, taken at different time slices or positions within the network. This was especially complex when figuring in mobile, ad-hoc networks. View synchrony is the current operational technique, or assumption, applied to group key exchange protocols. However, before this analysis view synchrony was just that, an assumption and the literature for group key exchange lacked an inquiry into what could happen when view synchrony was removed. Current group key management protocols rely on view synchrony and yet all protocols vary in requisite operational descriptions and performance measures. In this study, a framework for group key management protocol operations and performance measures was defined and examined how that framework could be used to compare and contrast existing protocols with and, more importantly, without view synchrony. Approach: Current literature lacked categories by which to quantify the performance metric of the protocols. This study first defined the dynamic key operations that all protocols share. By these definitions, group key management protocols were directly compared. Once definitions existed, this study assembled a list of costs that every protocol requires to establish and share keys across the dynamic group. These results provided an understanding of view synchrony's role and whether or not it should be solely relied on in these current protocols. Results: The prior conclusion that view synchrony was an integral part of all group key management protocols was shattered, when seen through the lens of communication costs and assumptions in wireless ad-hoc networks. View synchrony, as an assumed part of all group key management was

  10. Variation in population synchrony in a multi-species seabird community: response to changes in predator abundance

    OpenAIRE

    Robertson, Gail S.; Mark Bolton; Paul Morrison; Pat Monaghan

    2015-01-01

    Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual c...

  11. Nonverbal synchrony of head- and body-movement in psychotherapy: different signals have different associations with outcome

    Directory of Open Access Journals (Sweden)

    Fabian eRamseyer

    2014-09-01

    Full Text Available Objective: The coordination of patient’s and therapist’s bodily movement – nonverbal synchrony – has been empirically shown to be associated with psychotherapy outcome. This finding was based on dynamic movement patterns of the whole body. The present paper is a new analysis of an existing dataset (Ramseyer & Tschacher, 2011, which extends previous findings by differentiating movements pertaining to head and upper-body regions. Method: In a sample of 70 patients (37 female, 33 male treated at an outpatient psychotherapy clinic, we quantified nonverbal synchrony with an automated objective video-analysis algorithm (Motion Energy Analysis, MEA. Head- and body-synchrony was quantified during the initial 15 minutes of video-recorded therapy sessions. Micro-outcome was assessed with self-report post-session questionnaires provided by patients and their therapists. Macro-outcome was measured with questionnaires that quantified attainment of treatment goals and changes in experiencing and behavior at the end of therapy. Results: The differentiation of head- and body-synchrony showed that these two facets of motor coordination were differentially associated with outcome. Head-synchrony predicted global outcome of therapy, while body-synchrony did not, and body-synchrony predicted session outcome, while head-synchrony did not. Conclusions: The results pose an important amendment to previous findings, which showed that nonverbal synchrony embodied both outcome and interpersonal variables of psychotherapy dyads. The separation of head- and body-synchrony suggested that distinct mechanisms may operate in these two regions: Head-synchrony embodied phenomena with a long temporal extension (overall therapy success, while body-synchrony embodied phenomena of a more immediate nature (session-level success. More explorations with fine-grained analyses of synchronized phenomena in nonverbal behavior may shed additional light on the embodiment of

  12. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  13. Rhythm and interpersonal synchrony in early social development.

    Science.gov (United States)

    Trainor, Laurel J; Cirelli, Laura

    2015-03-01

    Adults who engage in synchronous movement to music later report liking each other better, remembering more about each other, trusting each other more, and are more likely to cooperate with each other compared to adults who engage in asynchronous movements. Although poor motor coordination limits infants' ability to entrain to a musical beat, they perceive metrical structure in auditory rhythm patterns, their movements are affected by the tempo of music they hear, and if they are bounced by an adult to a rhythm pattern, the manner of this bouncing can affect their auditory interpretation of the meter of that pattern. In this paper, we review studies showing that by 14 months of age, infants who are bounced in synchrony with an adult subsequently show more altruistic behavior toward that adult in the form of handing back objects "accidentally" dropped by the adult compared to infants who are bounced asynchronously with the adult. Furthermore, increased helpfulness is directed at the synchronized bounce partner, but not at a neutral stranger. Interestingly, however, helpfulness does generalize to a "friend" of the synchronized bounce partner. In sum, synchronous movement between infants and adults has a powerful effect on infants' expression of directed prosocial behavior. PMID:25773616

  14. Synchrony and motor mimicking in chimpanzee observational learning.

    Science.gov (United States)

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-01-01

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function. PMID:24923651

  15. Interaction between Olfaction and Gustation by Using Synchrony Perception Task

    Directory of Open Access Journals (Sweden)

    Tatsu Kobayakawa

    2011-10-01

    Full Text Available It seems that interaction between olfaction (smell sensation and gustation (taste sensation will stronger than other interactions among five senses, although no one has ever confirmed psychophysically. In this study, we utilized synchrony perception task to confirm this specificity comparing control condition, interaction between vision and olfaction and one between vision and gustation. We used NaCl as taste stimuli and flavor from bubbling chicken stock as olfactory stimuli. We used taste stimulator which was able to present pure gustation without tactile stimuli, and smell stimulator with original developed real time stimulus monitoring. We used LED for vision stimuli. Timing of both stimuli was shifted from −1000 ms to +1000ms with each other, and participants were instructed to judge synchronicity. Control conditions revealed that olfaction and gustation has almost equivalent temporal resolution to other sensations. And probability distribution between olfaction and gustation was quite different from other interactions including vision. These results shows interaction between olfaction and gustation is more specific.

  16. Hippocampo-cerebellar theta band phase synchrony in rabbits.

    Science.gov (United States)

    Wikgren, J; Nokia, M S; Penttonen, M

    2010-02-17

    Hippocampal functioning, in the form of theta band oscillation, has been shown to modulate and predict cerebellar learning of which rabbit eyeblink conditioning is perhaps the most well-known example. The contribution of hippocampal neural activity to cerebellar learning is only possible if there is a functional connection between the two structures. Here, in the context of trace eyeblink conditioning, we show (1) that, in addition to the hippocampus, prominent theta oscillation also occurs in the cerebellum, and (2) that cerebellar theta oscillation is synchronized with that in the hippocampus. Further, the degree of phase synchrony (PS) increased both as a response to the conditioning stimuli and as a function of the relative power of hippocampal theta oscillation. However, the degree of PS did not change as a function of either training or learning nor did it predict learning rate as the hippocampal theta ratio did. Nevertheless, theta band synchronization might reflect the formation of transient neural assemblies between the hippocampus and the cerebellum. These findings help us understand how hippocampal function can affect eyeblink conditioning, during which the critical plasticity occurs in the cerebellum. Future studies should examine cerebellar unit activity in relation to hippocampal theta oscillations in order to discover the detailed mechanisms of theta-paced neural activity. PMID:19945512

  17. Movement Synchrony Forges Social Bonds across Group Divides

    Science.gov (United States)

    Tunçgenç, Bahar; Cohen, Emma

    2016-01-01

    Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one's in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs. PMID:27303341

  18. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  19. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species. PMID:23832493

  20. Age-Related Alterations in the Expression of Genes and Synaptic Plasticity Associated with Nitric Oxide Signaling in the Mouse Dorsal Striatum

    Directory of Open Access Journals (Sweden)

    Aisa N. Chepkova

    2015-01-01

    Full Text Available Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old to old (18–24 months of age animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age. Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state.

  1. Signs of Selection in Synonymous Sites of the Mitochondrial Cytochrome b Gene of Baikal Oilfish (Comephoridae by mRNA Secondary Structure Alterations

    Directory of Open Access Journals (Sweden)

    Veronika I. Teterina

    2015-01-01

    Full Text Available Studies over the past decade have shown a significant role of synonymous mutations in posttranscriptional regulation of gene expression, which is particularly associated with messenger RNA (mRNA secondary structure alterations. Most studies focused on prokaryote genomes and the nuclear genomes of eukaryotes while little is known about the regulation of mitochondrial DNA (mtDNA gene expression. This paper reveals signs of selection in synonymous sites of the mitochondrial cytochrome b gene (Cytb of Baikal oilfish or golomyankas (Comephoridae directed towards altering the secondary structure of the mRNA and probably altering the character of mtDNA gene expression. Our findings are based on comparisons of intraspecific genetic variation patterns of small golomyanka (Comephorus dybowski and two genetic groups of big golomyanka (Comephorus dybowskii. Two approaches were used: (i analysis of the distribution of synonymous mutations between weak-AT (W and strong-GC (S nucleotides within species and groups in accordance with mutation directions from central to peripheral haplotypes and (ii approaches based on the predicted mRNA secondary structure.

  2. Chemotherapy Agents Alter Plasma Lipids in Breast Cancer Patients and Show Differential Effects on Lipid Metabolism Genes in Liver Cells.

    Science.gov (United States)

    Sharma, Monika; Tuaine, Jo; McLaren, Blair; Waters, Debra L; Black, Katherine; Jones, Lynnette M; McCormick, Sally P A

    2016-01-01

    Cardiovascular complications have emerged as a major concern for cancer patients. Many chemotherapy agents are cardiotoxic and some appear to also alter lipid profiles, although the mechanism for this is unknown. We studied plasma lipid levels in 12 breast cancer patients throughout their chemotherapy. Patients received either four cycles of doxorubicin and cyclophosphamide followed by weekly paclitaxel or three cycles of epirubicin, cyclophosphamide and 5'-fluorouracil followed by three cycles of docetaxel. Patients demonstrated a significant reduction (0.32 mmol/L) in high density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA1) levels (0.18 g/L) and an elevation in apolipoprotein B (apoB) levels (0.15 g/L) after treatment. Investigation of the individual chemotherapy agents for their effect on genes involved in lipoprotein metabolism in liver cells showed that doxorubicin decreased ATP binding cassette transporter A1 (ABCA1) via a downregulation of the peroxisomal proliferator activated receptor γ (PPARγ) and liver X receptor α (LXRα) transcription factors. In contrast, ABCA1 levels were not affected by cyclophosphamide or paclitaxel. Likewise, apoA1 levels were reduced by doxorubicin and remained unaffected by cyclophosphamide and paclitaxel. Doxorubicin and paclitaxel both increased apoB protein levels and paclitaxel also decreased low density lipoprotein receptor (LDLR) protein levels. These findings correlate with the observed reduction in HDL-C and apoA1 and increase in apoB levels seen in these patients. The unfavourable lipid profiles produced by some chemotherapy agents may be detrimental in the longer term to cancer patients, especially those already at risk of cardiovascular disease (CVD). This knowledge may be useful in tailoring effective follow-up care plans for cancer survivors.

  3. Altered microRNA Expression Profiles and Regulation of INK4A/CDKN2A Tumor Suppressor Genes in Canine Breast Cancer Models.

    Science.gov (United States)

    Lutful Kabir, Farruk Mohammad; DeInnocentes, Patricia; Bird, Richard Curtis

    2015-12-01

    microRNA (miRNA) expression profiling of cancer versus normal cells may reveal the characteristic regulatory features that can be correlated to altered gene expression in both human and animal models of cancers. In this study, the comprehensive expression profiles of the 277 highly characterized miRNAs from the canine genome were evaluated in spontaneous canine mammary tumor (CMT) models harboring defects in a group of cell cycle regulatory and potent tumor suppressor genes of INK4/CDKN2 family including p16/INK4A, p14ARF, and p15/INK4B. A large number of differentially expressed miRNAs were identified in three CMT cell lines to potentially target oncogenes, tumor suppressor genes and cancer biomarkers. A group of the altered miRNAs were identified by miRNA target prediction tools for regulation of the INK4/CDKN2 family tumor suppressor genes. miRNA-141 was experimentally validated for INK4A 3'-UTR target binding in the CMT cell lines providing an essential mechanism for the post-transcriptional regulation of the INK4A tumor suppressor gene in CMT models. A well-recognized group of miRNAs including miR-21, miR-155, miR-9, miR-34a, miR-143/145, and miR-31 were found to be altered in both CMTs and human breast cancer. These altered miRNAs might serve as potential targets for advancing the development of future therapeutic reagents. These findings further strengthen the validity and use of canine breast cancers as appropriate models for the study of human breast cancers. PMID:26095675

  4. Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro.

    Science.gov (United States)

    Chiang, I-Tsang; Wang, Wei-Shu; Liu, Hsin-Chung; Yang, Su-Tso; Tang, Nou-Ying; Chung, Jing-Gung

    2015-10-01

    and invasion. In conclusion, gene alterations provide information regarding the cytotoxic mechanism of curcumin at the genetic level and provide additional biomarkers or targets for the treatment of human lung cancer. PMID:26238775

  5. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    Science.gov (United States)

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. PMID:25075043

  6. Spatial patterning and floral synchrony among trillium populations with contrasting histories of herbivory

    Directory of Open Access Journals (Sweden)

    Christopher R. Webster

    2015-02-01

    Full Text Available We investigated the spatial patterning and floral synchrony within and among populations of a non-clonal, forest understory herb, Trillium catesbaei. Two populations of T. catesbaei within Great Smoky Mountains National Park were monitored for five years: Cades Cove (high deer abundance and Whiteoak Sink (low deer abundance. All individuals within each population were mapped during year one and five. Only flowering and single-leaf juveniles were mapped during intervening years. Greater distances between flowering plants (plants currently in flower and substantially lower population densities and smaller patch sizes were observed at Cades Cove versus Whiteoak Sink. However, with the exception of flowering plants, contrasting histories of herbivory did not appear to fundamentally alter the spatial patterning of the T. catesbaei population at Cades Cove, an area with a long and well-documented history of deer overabundance. Regardless of browse history, non-flowering life stages were significantly clustered at all spatial scales examined. Flowering plants were clustered in all years at Whiteoak Sink, but more often randomly distributed at Cades Cove, possibly as a result of their lower abundance. Between years, however, there was a positive spatial association between the locations of flowering plants at both sites. Flowering rate was synchronous between sites, but lagged a year behind favorable spring growing conditions, which likely allowed plants to allocate photosynthate from a favorable year towards flowering the subsequent year. Collectively, our results suggest that chronically high levels of herbivory may be associated with spatial patterning of flowering within populations of a non-clonal plant. They also highlight the persistence of underlying spatial patterns, as evidenced by high levels of spatial clustering among non-flowering individuals, and the pervasive, although muted in a population subjected to chronic herbivory, influence of

  7. Synchrony in Psychotherapy: A Review and an Integrative Framework for the Therapeutic Alliance

    Science.gov (United States)

    Koole, Sander L.; Tschacher, Wolfgang

    2016-01-01

    During psychotherapy, patient and therapist tend to spontaneously synchronize their vocal pitch, bodily movements, and even their physiological processes. In the present article, we consider how this pervasive phenomenon may shed new light on the therapeutic relationship– or alliance– and its role within psychotherapy. We first review clinical research on the alliance and the multidisciplinary area of interpersonal synchrony. We then integrate both literatures in the Interpersonal Synchrony (In-Sync) model of psychotherapy. According to the model, the alliance is grounded in the coupling of patient and therapist’s brains. Because brains do not interact directly, movement synchrony may help to establish inter-brain coupling. Inter-brain coupling may provide patient and therapist with access to another’s internal states, which facilitates common understanding and emotional sharing. Over time, these interpersonal exchanges may improve patients’ emotion-regulatory capacities and related therapeutic outcomes. We discuss the empirical assessment of interpersonal synchrony and review preliminary research on synchrony in psychotherapy. Finally, we summarize our main conclusions and consider the broader implications of viewing psychotherapy as the product of two interacting brains. PMID:27378968

  8. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird.

    Science.gov (United States)

    Riehl, Christina

    2016-08-01

    Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10-year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early-hatching nestlings are more likely to be killed by adult group members, whereas late-hatching nestlings are more likely to starve due competition with their older nest-mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter-strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups.

  9. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird.

    Science.gov (United States)

    Riehl, Christina

    2016-08-01

    Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10-year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early-hatching nestlings are more likely to be killed by adult group members, whereas late-hatching nestlings are more likely to starve due competition with their older nest-mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter-strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups. PMID:27346386

  10. Making children laugh: parent-child dyadic synchrony and preschool attachment.

    Science.gov (United States)

    Bureau, Jean-FrançOis; Yurkowski, Kim; Schmiedel, Sabrina; Martin, Jodi; Moss, Ellen; Pallanca, Dominique

    2014-01-01

    The current study examined whether dyadic synchrony of father-child and mother-child interactions in a playful context were associated with attachment organization in preschool children. One hundred seven children (48 boys, Mage = 46.67 months, SD = 8.57) and their mothers and fathers (counterbalanced order of lab visits) participated in a playful interaction without toys (Laughing Task procedure). Playful interactions were coded based on the degree to which the dyads demonstrated a variety of behavior representing dyadic synchrony and task management. Children's attachment behavior toward fathers and mothers was observed in a modified separation-reunion procedure adapted for the preschool period. Results demonstrate that mothers and fathers are similar in their effort to arouse and engage their child in a playful context, but mothers achieved a greater synchrony with their child. Disorganized attachment to either mother or father is linked with a lack of synchrony in dyadic interaction. Findings are in contrast with prevailing theory, suggesting that despite gender-related differences in parental playful behaviors, dyadic synchrony is equally important in both mother- and father-child relationships for the development of organized social and affectional bonds. PMID:25798498

  11. Synchrony Between Sensory and Cognitive Networks is Associated with Subclinical Variation in Autistic Traits

    Directory of Open Access Journals (Sweden)

    Jacob eYoung

    2015-03-01

    Full Text Available Individuals with autistic spectrum disorders exhibit distinct personality traits linked to attentional, social, and affective functions, and those traits are expressed with varying levels of severity in the neurotypical and subclinical population. Variation in autistic traits has been linked to reduced functional and structural connectivity (i.e., underconnectivity, or reduced synchrony with neural networks modulated by attentional, social, and affective functions. Yet, it remains unclear whether reduced synchrony between these neural networks contributes to autistic traits. To investigate this issue, we used functional magnetic resonance imaging to record brain activation while neurotypical participants who varied in their subclinical scores on the Autism-Spectrum Quotient (AQ viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces and of landscape scenes. We used independent component analysis combined with a spatiotemporal regression to quantify synchrony between neural networks. Our results indicated that decreased synchrony between the executive control network and a face-scene network predicted higher scores on the AQ. This relationship was not explained by individual differences in head motion, preferences for faces, or personality variables related to social cognition. Our findings build on clinical reports by demonstrating that reduced synchrony between distinct neural networks contributes to a range of subclinical autistic traits.

  12. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    Science.gov (United States)

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space. PMID:26226930

  13. Temporal Synchrony Detection and Associations with Language in Young Children with ASD

    Directory of Open Access Journals (Sweden)

    Elena Patten

    2014-01-01

    Full Text Available Temporally synchronous audio-visual stimuli serve to recruit attention and enhance learning, including language learning in infants. Although few studies have examined this effect on children with autism, it appears that the ability to detect temporal synchrony between auditory and visual stimuli may be impaired, particularly given social-linguistic stimuli delivered via oral movement and spoken language pairings. However, children with autism can detect audio-visual synchrony given nonsocial stimuli (objects dropping and their corresponding sounds. We tested whether preschool children with autism could detect audio-visual synchrony given video recordings of linguistic stimuli paired with movement of related toys in the absence of faces. As a group, children with autism demonstrated the ability to detect audio-visual synchrony. Further, the amount of time they attended to the synchronous condition was positively correlated with receptive language. Findings suggest that object manipulations may enhance multisensory processing in linguistic contexts. Moreover, associations between synchrony detection and language development suggest that better processing of multisensory stimuli may guide and direct attention to communicative events thus enhancing linguistic development.

  14. Population synchrony of a native fish across three Laurentian Great Lakes: Evaluating the effects of dispersal and climate

    Science.gov (United States)

    Bunnell, D.B.; Adams, J.V.; Gorman, O.T.; Madenjian, C.P.; Riley, S.C.; Roseman, E.F.; Schaeffer, J.S.

    2010-01-01

    Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance. ?? Springer-Verlag 2009.

  15. Mutations in Tau Gene Exon 10 Associated with FTDP-17 Alter the Activity of an Exonic Splicing Enhancer to Interact with Tra2β*

    OpenAIRE

    Jiang, Zhihong; Tang, Hao; Havlioglu, Necat; Zhang, Xiaochun; Stamm, Stefan; Yan, Riqiang; Jane Y Wu

    2003-01-01

    Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. Th...

  16. Perceived synchrony for realistic and dynamic audiovisual events.

    Science.gov (United States)

    Eg, Ragnhild; Behne, Dawn M

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli.

  17. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    OpenAIRE

    Derek A Hamilton; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Rep...

  18. Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome

    OpenAIRE

    Paul M. Neilsen; Noll, Jacqueline E.; Suetani, Rachel J; Schulz, Renee B.; Al-Ejeh, Fares; Evdokiou, Andreas; Lane, David P; David F. Callen

    2011-01-01

    Mutations in the TP53 gene commonly result in the expression of a full-length protein that drives cancer cell invasion and metastasis. Herein, we have deciphered the global landscape of transcriptional regulation by mutant p53 through the application of a panel of isogenic H1299 derivatives with inducible expression of several common cancer-associated p53 mutants. We found that the ability of mutant p53 to alter the transcriptional profile of cancer cells is remarkably conserved across differ...

  19. Dysregulation of sirtuins and key metabolic genes in skeletal muscle of pigs with intrauterine growth restriction is associated to alterations of circulating IGF-1

    OpenAIRE

    Pirola, Luciano; Chriett, S.; Le Huërou-Luron, Isabelle; Vidal, H.

    2015-01-01

    Background and aims: [br/] Prenatal and early postnatal lives are important determinants of future health, and intrauterine growth restriction (IUGR) - associated low birth weight predisposes to the development of metabolic and cardiovascular disease in adult life, but the mechanisms are largely unknown.We hypothesize here that IUGR might confer gene expression alterations, predisposing to metabolic disease.[br/] Materials and methods:[br/] Using a porcine model of spontaneous IUGR, ...

  20. Overexpression of the IGF-II/M6P receptor in mouse fibroblast cell lines differentially alters expression profiles of genes involved in Alzheimer's disease-related pathology.

    Directory of Open Access Journals (Sweden)

    Yanlin Wang

    Full Text Available Alzheimer's disease (AD is the most common type of senile dementia affecting elderly people. The processing of amyloid precursor protein (APP leading to the generation of β-amyloid (Aβ peptide contributes to neurodegeneration and development of AD pathology. The endocytic trafficking pathway, which comprises of the endosomes and lysosomes, acts as an important site for Aβ generation, and endocytic dysfunction has been linked to increased Aβ production and loss of neurons in AD brains. Since insulin-like growth factor-II (IGF-II receptor plays a critical role in the transport of lysosomal enzymes from the trans-Golgi network to endosomes, it is likely that the receptor may have a role in regulating Aβ metabolism in AD pathology. However, very little is known on how altered levels of the IGF-II receptor can influence the expression/function of various molecules involved in AD pathology. To address this issue, we evaluated the expression profiles of 87 selected genes related to AD pathology in mouse fibroblast MS cells that are deficient in murine IGF-II receptor and corresponding MS9II cells overexpressing ∼ 500 times the human IGF-II receptors. Our results reveal that an elevation in IGF-II receptor levels alters the expression profiles of a number of genes including APP as well as enzymes regulating Aβ production, degradation and clearance mechanisms. Additionally, it influences the expression of various lysosomal enzymes and protein kinases that are involved in Aβ toxicity. IGF-II receptor overexpression also alters expression of several genes involved in intracellular signalling as well as cholesterol metabolism, which play a critical role in AD pathology. The altered gene profiles observed in this study closely match with the corresponding protein levels, with a few exceptions. These results, taken together, suggest that an elevation in IGF-II receptor levels can influence the expression profiles of transcripts as well as proteins

  1. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol.

    Science.gov (United States)

    Bubier, Jason A; Wilcox, Troy D; Jay, Jeremy J; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol.

  2. Cross-species integrative functional genomics in GeneWeaver reveals a role for Pafah1b1 in altered response to alcohol

    Directory of Open Access Journals (Sweden)

    Jason A Bubier

    2016-01-01

    Full Text Available Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or ‘whole genome’ functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, GeneWeaver (http://www.geneweaver.org, couples curated results from genomic studies to graph theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver’s database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated for alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol.

  3. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol.

    Science.gov (United States)

    Bubier, Jason A; Wilcox, Troy D; Jay, Jeremy J; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol. PMID:26834590

  4. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    Directory of Open Access Journals (Sweden)

    Sarah A Gerson

    Full Text Available In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early music perception and cognition.

  5. Detection of transient synchrony across oscillating receptors by the central electrosensory system of mormyrid fish

    Science.gov (United States)

    Vélez, Alejandro; Carlson, Bruce A

    2016-01-01

    Recently, we reported evidence for a novel mechanism of peripheral sensory coding based on oscillatory synchrony. Spontaneously oscillating electroreceptors in weakly electric fish (Mormyridae) respond to electrosensory stimuli with a phase reset that results in transient synchrony across the receptor population (Baker et al., 2015). Here, we asked whether the central electrosensory system actually detects the occurrence of synchronous oscillations among receptors. We found that electrosensory stimulation elicited evoked potentials in the midbrain exterolateral nucleus at a short latency following receptor synchronization. Frequency tuning in the midbrain resembled peripheral frequency tuning, which matches the intrinsic oscillation frequencies of the receptors. These frequencies are lower than those in individual conspecific signals, and instead match those found in collective signals produced by groups of conspecifics. Our results provide further support for a novel mechanism for sensory coding based on the detection of oscillatory synchrony among peripheral receptors. DOI: http://dx.doi.org/10.7554/eLife.16851.001 PMID:27328322

  6. Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network

    Directory of Open Access Journals (Sweden)

    Holger eFinger

    2014-01-01

    Full Text Available Synchronization has been suggested as a mechanism of binding distributed feature representations facilitating segmentation of visual stimuli. Here we investigate this concept based on unsupervised learning using natural visual stimuli. We simulate dual-variable neural oscillators with separate activation and phase variables. The binding of a set of neurons is coded by synchronized phase variables. The network of tangential synchronizing connections learned from the induced activations exhibits small-world properties and allows binding even over larger distances. We evaluate the resulting dynamic phase maps using segmentation masks labeled by human experts. Our simulation results show a continuously increasing phase synchrony between neurons within the labeled segmentation masks. The evaluation of the network dynamics shows that the synchrony between network nodes establishes a relational coding of the natural image inputs. This demonstrates that the concept of binding by synchrony is applicable in the context of unsupervised learning using natural visual stimuli.

  7. The Structure of Parent-Child Dyadic Synchrony in Toddlerhood and Children's Communication Competence and Self-Control

    Science.gov (United States)

    Lindsey, Eric W.; Cremeens, Penny R.; Colwell, Malinda J.; Caldera, Yvonne M.

    2009-01-01

    The aim of the present investigation was to examine parent-child synchrony and its link to children's communicative competence and self-control. Data were collected from 80 families with toddler age children (41 girls, 39 boys) during a laboratory assessment. Five components of parent-child dyadic synchrony were assessed during a semi-structured…

  8. The candidate tumor suppressor CST6 alters the gene expression profile of human breast carcinoma cells: Down-regulation of the potent mitogenic, motogenic, and angiogenic factor autotaxin

    International Nuclear Information System (INIS)

    We recently coined CST6 as a novel candidate tumor suppressor gene for breast cancer. CST6 indeed is expressed in the normal human breast epithelium, but little or not at all in breast carcinomas and breast cancer cell lines. Moreover, ectopic expression of CST6 in human breast cancer cells suppressed cell proliferation, migration, invasion, and orthotopic tumor growth. To obtain insights into the molecular mechanism by which CST6 exhibits its pleiotropic effects on tumor cells, we compared global gene expression profiles in mock- and CST6-transfected human MDA-MB-435S cells. Out of 12,625 transcript species, 61 showed altered expression. These included genes for extracellular matrix components, cytokines, kinases, and phosphatases, as well as several key transcription factors. TaqMan PCR assays were used to confirm the microarray data for 7 out of 11 genes. One down-regulated gene product, secreted autotaxin/lyso-phospholipase D, was of particular interest because its down-regulation by CST6 could explain most of CST6's effect on the breast cancer cells. This study thus provides First evidence that CST6 plays a role in the modulation of genes, particularly, genes that are highly relevant to breast cancer progression

  9. More than reflections: empathy in motivational interviewing includes language style synchrony between therapist and client.

    Science.gov (United States)

    Lord, Sarah Peregrine; Sheng, Elisa; Imel, Zac E; Baer, John; Atkins, David C

    2015-05-01

    Empathy is a basic psychological process that involves the development of synchrony in dyads. It is also a foundational ingredient in specific, evidence-based behavioral treatments like motivational interviewing (MI). Ratings of therapist empathy typically rely on a gestalt, "felt sense" of therapist understanding and the presence of specific verbal behaviors like reflective listening. These ratings do not provide a direct test of psychological processes like behavioral synchrony that are theorized to be an important component of empathy in psychotherapy. To explore a new objective indicator of empathy, we hypothesized that synchrony in language style (i.e., matching how statements are phrased) between client and therapists would predict gestalt ratings of empathy over and above the contribution of reflections. We analyzed 122 MI transcripts with high and low empathy ratings based on the Motivational Interviewing Treatment Integrity global rating scale. Linguistic inquiry and word count was used to estimate language style synchrony (LSS) of adjacent client and therapist talk turns. High-empathy sessions showed greater LSS across 11 language style categories compared with low-empathy sessions (pempathy versus low-empathy sessions (d=0.62). Regression analyses showed that LSS was predictive of empathy ratings over and above reflection counts; a 1 SD increase in LSS is associated with a 2.4 times increase in the odds of a high-empathy rating, controlling for therapist reflections (odds ratio=2.4; 95% CI: 1.36; 4.24, pempathy ratings are related to synchrony in language style, over and above synchrony of content as measured by therapist reflections. Novel indicators of therapist empathy may have implications for the study of MI process as well as the training of therapists.

  10. Long-range synchrony in the gamma band: role in music perception.

    Science.gov (United States)

    Bhattacharya, J; Petsche, H; Pereda, E

    2001-08-15

    Synchronization seems to be a central mechanism for neuronal information processing within and between multiple brain areas. Furthermore, synchronization in the gamma band has been shown to play an important role in higher cognitive functions, especially by binding the necessary spatial and temporal information in different cortical areas to build a coherent perception. Specific task-induced (evoked) gamma oscillations have often been taken as an indication of synchrony, but the presence of long-range synchrony cannot be inferred from spectral power in the gamma range. We studied the usefulness of a relatively new measure, called similarity index to detect asymmetric interdependency between two brain regions. Spontaneous EEG from two groups-musicians and non-musicians-were recorded during several states: listening to music, listening to text, and at rest (eyes closed and eyes open). While listening to music, degrees of the gamma band synchrony over distributed cortical areas were found to be significantly higher in musicians than non-musicians. Yet no differences between these two groups were found at resting conditions and while listening to a neutral text. In contrast to the degree of long-range synchrony, spectral power in the gamma band was higher in non-musicians. The degree of spatial synchrony, a measure of signal complexity based on eigen-decomposition method, was also significantly increased in musicians while listening to music. As compared with non-musicians, the finding of increased long-range synchrony in musicians independent of spectral power is interpreted as a manifestation of a more advanced musical memory of musicians in binding together several features of the intrinsic complexity of music in a dynamical way. PMID:11487656

  11. Nested synchrony – a novel cross-scale interaction among neuronal oscillations

    Directory of Open Access Journals (Sweden)

    Simo eMonto

    2012-09-01

    Full Text Available Neuronal interactions form the basis for our brain function, and oscillations and synchrony are the principal candidates for mediating them in the cortical networks. Phase synchrony, where oscillatory neuronal ensembles directly synchronize their phases, enables precise integration between separated brain regions. However, it is unclear how neuronal interactions are dynamically coordinated in space and over time. Cross-scale effects have been proposed to be responsible for linking levels of processing hierarchy and to regulate neuronal dynamics. Most notably, nested oscillations, where the phase of a neuronal oscillation modulates the amplitude of a faster one, may locally integrate neuronal activities in distinct frequency bands. Yet, hierarchical control of inter-areal synchrony could provide a more comprehensive view to the dynamical structure of oscillatory interdependencies in the human brain.In this study, the notion of nested oscillations is extended to a cross-frequency and inter-areal model of oscillatory interactions. In this model, the phase of a slower oscillation modulates inter-areal synchrony in a higher frequency band. This would allow cross-scale integration of global interactions and, thus, offers a mechanism for binding distributed neuronal activities.We show that inter-areal phase synchrony can be modulated by the phase of a slower neuronal oscillation using magnetoencephalography. This effect is the most pronounced at frequencies below 35 Hz. Importantly, changes in oscillation amplitudes did not explain the findings. We expect that the novel cross-frequency interaction could offer new ways to understand the flexible but accurate dynamic organization of ongoing neuronal oscillations and synchrony.

  12. Detection of the short-term preseizure changes in EEG recordings using complexity and synchrony analysis

    Institute of Scientific and Technical Information of China (English)

    JIA Wenyan; KONG Na; MA Jun; LIU Hesheng; GAO Xiaorong; GAO Shangkai; YANG Fusheng

    2006-01-01

    An important consideration in epileptic seizure prediction is proving the existence of a pre-seizure state that can be detected using various signal processing algorithms. In the analyses of intracranial electroencephalographic (EEG)recordings of four epilepsy patients, the short-term changes in the measures of complexity and synchrony were detected before the majority of seizure events across the sample patient population. A decrease in complexity and increase in phase synchrony appeared several minutes before seizure onset and the changes were more pronounced in the focal region than in the remote region. This result was also validated statistically using a surrogate data method.

  13. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection

    Directory of Open Access Journals (Sweden)

    Griffiths Jonathan S

    2008-07-01

    Full Text Available Abstract Background Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV. To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Results Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q ≤ 0.05 up- (≥ 2.5 fold and downregulated (≤ -2.5 fold, respectively. Genes associated with soluble sugar, starch and amino acid, intracellular membrane/membrane-bound organelles, chloroplast, and protein fate were upregulated, while genes related to development/storage proteins, protein synthesis and translation, and cell wall-associated components were downregulated. These gene expression changes were associated with PPV infection and symptom development. Further transcriptional profiling of protoplasts transfected with a PPV infectious clone revealed the upregulation of defence and cellular signalling genes as early as 6 hours post transfection. A cross sequence comparison analysis of genes differentially regulated by PPV-infected Arabidopsis leaves against uniEST sequences derived from PPV-infected leaves of Prunus persica, a natural host of PPV, identified orthologs related to defence, metabolism and protein synthesis. The cross comparison of genes differentially regulated by PPV infection and by the infections of other positive sense RNA viruses revealed a common set of 416 genes

  14. Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice.

    Science.gov (United States)

    Beraki, S; Aronsson, F; Karlsson, H; Ogren, S O; Kristensson, K

    2005-03-01

    Epidemiological studies have indicated a link between certain neuropsychiatric diseases and exposure to viral infections. In order to examine long-term effects on behavior and gene expression in the brain of one candidate virus, we have used a model involving olfactory bulb injection of the neuro-adapted influenza A virus strain, WSN/33, in C57Bl/6 mice. Following this olfactory route of invasion, the virus targets neurons in the medial habenular, midline thalamic and hypothalamic nuclei as well as monoaminergic neurons in the brainstem. The mice survive and the viral infection is cleared from the brain within 12 days. When tested 14-20 weeks after infection, the mice displayed decreased anxiety in the elevated plus-maze and impaired spatial learning in the Morris water maze test. Elevated transcriptional activity of two genes encoding synaptic regulatory proteins, regulator of G-protein signaling 4 and calcium/calmodulin-dependent protein kinase IIalpha, was found in the amygdala, hypothalamus and cerebellum. It is of particular interest that the gene encoding RGS4, which has been related to schizophrenia, showed the most pronounced alteration. This study indicates that a transient influenza virus infection can cause persistent changes in emotional and cognitive functions as well as alterations in the expression of genes involved in the regulation of synaptic activities.

  15. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure

    Directory of Open Access Journals (Sweden)

    Stoll Doris

    2008-08-01

    Full Text Available Abstract Background The cysteine and glycine rich protein 2 (CRP2 encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype. Results A ~17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated. Using this construct we confirmed the recently determined chromosomal localization (Chromosome 10, best fit location between markers D10Mit203 proximal and D10Mit150 central. A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction and survival. However, detailed histological and electron microscopic studies reveal that CRP2-deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the cellular level. Although the expression of several intercalated disc-associated proteins such as β-catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective proteins was changed within heart tissue. Conclusion We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte thickness and hypertrophy.

  16. Ultra-highly diluted plant extracts of Hydrastis canadensis and Marsdenia condurango induce epigenetic modifications and alter gene expression profiles in HeLa cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Santu Kumar Saha; Sourav Roy; Anisur Rahman Khuda-Bukhsh

    2015-01-01

    OBJECTIVE: Methylation-specific epigenetic process and gene expression profiles of HeLa cel s treated with ultra-high dilutions (HDs) of two plant extracts, Hydrastis canadensis (HC-30) and Marsdenia condurango (Condu-30), diluted 1060 times, were analyzed against placebo 30C (Pl-30) for alterations in gene profiles linked to epigenetic modifications. METHODS: Separate groups of cel s were subjected to treatment of Condu-30, HC-30, and Pl-30 prepared by serial dilutions and succussions. Global microarray data recorded on Affymetrix platform, using 25-mer probes were provided by iLifeDiscoveries, India. Slides were scanned with 3000 7G microarray scanner and raw data sets were extracted from Cel (raw intensity) files. Analyses of global microarray data profile, differential gene expression, fold change and clusters were made using GeneSpring GX12.5 software and standard normalization procedure. Before microarray study, concentration of RNA (ng/μL), RIN value and rRNA ratio for al the samples were analysed by Agilant Bioanalyzer 2100. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative RT-PCR were done for analyzing SMAD-4 expression. Fluorescence-activated cel sorting study was further made to elucidate fate of cel s at divisional stages. Methylation-specific restriction enzyme assay was conducted for ascertaining methylation status of DNA at specific sites. RESULTS: HDs of HC-30 and Condu-30 differential y altered methylation in specific regions of DNA and expression profiles of certain genes linked to carcinogenesis, as compared to Pl-30. Two separate cut sites were found in genomic DNA of untreated and placebo-treated HeLa cel s when digested with McrBC, compared to a single cut observed in Condu-30-treated genomic DNA. SMAD-4 gene expression validated the expression pattern observed in microarray profile. Methylation-specific restriction enzyme assay elucidated differential epigenetic modifications in drug-treated and control cel s

  17. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    Science.gov (United States)

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring. PMID:18713641

  18. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p 1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart.

  19. Frequent loss and alteration of the MOXD2 gene in catarrhines and whales: a possible connection with the evolution of olfaction.

    Science.gov (United States)

    Kim, Dong Seon; Wang, Yao; Oh, Hye Ji; Lee, Kangseok; Hahn, Yoonsoo

    2014-01-01

    The MOXD2 gene encodes a membrane-bound monooxygenase similar to dopamine-β-hydroxylase, and has been proposed to be associated with olfaction. In this study, we analyzed MOXD2 genes from 64 mammalian species, and identified loss-of-function mutations in apes (humans, Sumatran and Bornean orangutans, and five gibbon species from the four major gibbon genera), toothed whales (killer whales, bottlenose dolphins, finless porpoises, baijis, and sperm whales), and baleen whales (minke whales and fin whales). We also identified a shared 13-nt deletion in the last exon of Old World cercopithecine monkeys that results in conversion of a membrane-bound protein to a soluble form. We hypothesize that the frequent inactivation and alteration of MOXD2 genes in catarrhines and whales may be associated with the evolution of olfaction in these clades. PMID:25102179

  20. Frequent loss and alteration of the MOXD2 gene in catarrhines and whales: a possible connection with the evolution of olfaction.

    Science.gov (United States)

    Kim, Dong Seon; Wang, Yao; Oh, Hye Ji; Lee, Kangseok; Hahn, Yoonsoo

    2014-01-01

    The MOXD2 gene encodes a membrane-bound monooxygenase similar to dopamine-β-hydroxylase, and has been proposed to be associated with olfaction. In this study, we analyzed MOXD2 genes from 64 mammalian species, and identified loss-of-function mutations in apes (humans, Sumatran and Bornean orangutans, and five gibbon species from the four major gibbon genera), toothed whales (killer whales, bottlenose dolphins, finless porpoises, baijis, and sperm whales), and baleen whales (minke whales and fin whales). We also identified a shared 13-nt deletion in the last exon of Old World cercopithecine monkeys that results in conversion of a membrane-bound protein to a soluble form. We hypothesize that the frequent inactivation and alteration of MOXD2 genes in catarrhines and whales may be associated with the evolution of olfaction in these clades.

  1. CALL interrupted in a patient with non-specific mental retardation: gene dosage-dependent alteration of murine brain development and behavior.

    Science.gov (United States)

    Frints, Suzanna G M; Marynen, Peter; Hartmann, Dieter; Fryns, Jean-Pierre; Steyaert, Jean; Schachner, Melitta; Rolf, Bettina; Craessaerts, Katleen; Snellinx, An; Hollanders, Karen; D'Hooge, Rudi; De Deyn, Peter P; Froyen, Guy

    2003-07-01

    Investigation of MR patients with 3p aberrations led to the identification of the translocation breakpoint in intron five of the neural Cell Adhesion L1-Like (CALL or CHL1) gene in a man with non-specific mental retardation and 46,Y, t(X;3)(p22.1;p26.3). The Xp breakpoint does not seem to affect a known or predicted gene. Moreover, a fusion transcript with the CALL gene could not be detected and no mutations were identified on the second allele. CALL is highly expressed in the central and peripheral nervous system, like the mouse ortholog 'close homolog to L1' (Chl1). Chl1 expression levels in the hippocampus of Chl1(+/-) mice were half of those obtained in wild-type littermates, reflecting a gene dosage effect. Timm staining and synaptophysin immunohistochemistry of the hippocampus showed focal groups of ectopic mossy fiber synapses in the lateral CA3 region, outside the trajectory of the infra-pyramidal mossy fiber bundle in Chl1(-/-) and Chl1(+/-) mice. Behavioral assessment demonstrated mild alterations in the Chl1(-/-) animals. In the probe trial of the Morris Water Maze test, Chl1(-/-) mice displayed an altered exploratory pattern. In addition, these mice were significantly more sociable and less aggressive as demonstrated in social exploration tests. The Chl1(+/-) mice showed a phenotypic spectrum ranging from wild-type to knockout behavior. We hypothesize that a 50% reduction of CALL expression in the developing brain results in cognitive deficits. This suggests that the CALL gene at 3p26.3 is a prime candidate for an autosomal form of mental retardation. So far, mutation analysis of the CALL gene in patients with non-specific MR did not reveal any disease-associated mutations.

  2. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response.

    Directory of Open Access Journals (Sweden)

    Indroneal Banerjee

    2014-02-01

    Full Text Available Recent interest has focused on the importance of the nucleus and associated nucleoskeleton in regulating changes in cardiac gene expression in response to biomechanical load. Mutations in genes encoding proteins of the inner nuclear membrane and nucleoskeleton, which cause cardiomyopathy, also disrupt expression of a biomechanically responsive gene program. Furthermore, mutations in the outer nuclear membrane protein Nesprin 1 and 2 have been implicated in cardiomyopathy. Here, we identify for the first time a role for the outer nuclear membrane proteins, Nesprin 1 and Nesprin 2, in regulating gene expression in response to biomechanical load. Ablation of both Nesprin 1 and 2 in cardiomyocytes, but neither alone, resulted in early onset cardiomyopathy. Mutant cardiomyocytes exhibited altered nuclear positioning, shape, and chromatin positioning. Loss of Nesprin 1 or 2, or both, led to impairment of gene expression changes in response to biomechanical stimuli. These data suggest a model whereby biomechanical signals are communicated from proteins of the outer nuclear membrane, to the inner nuclear membrane and nucleoskeleton, to result in changes in gene expression required for adaptation of the cardiomyocyte to changes in biomechanical load, and give insights into etiologies underlying cardiomyopathy consequent to mutations in Nesprin 1 and 2.

  3. Genetic Exchange in an Arbuscular Mycorrhizal Fungus Results in Increased Rice Growth and Altered Mycorrhiza-Specific Gene Transcription▿†

    Science.gov (United States)

    Colard, Alexandre; Angelard, Caroline; Sanders, Ian R.

    2011-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate symbionts with most terrestrial plants. They improve plant nutrition, particularly phosphate acquisition, and thus are able to improve plant growth. In exchange, the fungi obtain photosynthetically fixed carbon. AMF are coenocytic, meaning that many nuclei coexist in a common cytoplasm. Genetic exchange recently has been demonstrated in the AMF Glomus intraradices, allowing nuclei of different Glomus intraradices strains to mix. Such genetic exchange was shown previously to have negative effects on plant growth and to alter fungal colonization. However, no attempt was made to detect whether genetic exchange in AMF can alter plant gene expression and if this effect was time dependent. Here, we show that genetic exchange in AMF also can be beneficial for rice growth, and that symbiosis-specific gene transcription is altered by genetic exchange. Moreover, our results show that genetic exchange can change the dynamics of the colonization of the fungus in the plant. Our results demonstrate that the simple manipulation of the genetics of AMF can have important consequences for their symbiotic effects on plants such as rice, which is considered the most important crop in the world. Exploiting natural AMF genetic variation by generating novel AMF genotypes through genetic exchange is a potentially useful tool in the development of AMF inocula that are more beneficial for crop growth. PMID:21784911

  4. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids

    NARCIS (Netherlands)

    Mach Casellas, N.; Jacobs, A.A.A.; Kruijt, L.; Baal, van J.; Smits, M.A.

    2011-01-01

    The aim of this study was to determine the effects of unprotected dietary unsaturated fatty acids (UFA) from different plant oils on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in grazing dairy cows suppl

  5. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    NARCIS (Netherlands)

    Sharifi, S.; Daghighi, S.; Motazacker, M. M.; Badlou, B.; Sanjabi, B.; Akbarkhanzadeh, A.; Rowshani, A. T.; Laurent, S.; Peppelenbosch, M. P.; Rezaee, F.

    2013-01-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene

  6. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jin Nam

    Full Text Available Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3-3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster I and suppression of genes associated with musculoskeletal development and function (Cluster IV. Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II and downregulation of genes associated with musculoskeletal disorders (Cluster IV. The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III. These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-κB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously

  7. Speaker detection for conversational robots using synchrony between audio and video

    NARCIS (Netherlands)

    A. Noulas; G. Englebienne; B. Terwijn; B. Kröse

    2010-01-01

    This paper compares different methods for detecting the speaking person when multiple persons are interacting with a robot. We evaluate the state-of-the-art speaker detection methods on the iCat robot. These methods use the synchrony between audio and video to locate the most probable speaker. We co

  8. Population fluctuations and synchrony of grassland butterflies in relation to species traits.

    Directory of Open Access Journals (Sweden)

    Markus Franzén

    Full Text Available Population fluctuations and synchrony influence population persistence; species with larger fluctuations and more synchronised population fluctuations face higher extinction risks. Here, we analyse the effect of diet specialisation, mobility, length of the flight period, and distance to the northern edge of the species' distribution in relation to between-year population fluctuations and synchrony of butterfly species. All butterfly species associated with grasslands were surveyed over five successive years at 19 grassland sites in a forest-dominated landscape (50 km(2 in southern Sweden. At both the local and regional level, we found larger population fluctuations in species with longer flight periods. Population fluctuations were more synchronous among localities in diet specialists. Species with a long flight period might move more to track nectar resources compared to species with shorter flight period, and if nectar sources vary widely between years and localities it may explain that population fluctuations increase with increasing flight length. Diet generalists can use different resources (in this case host plants at different localities and this can explain the lower synchrony in population fluctuations among generalist species. Higher degree of synchrony is one possible explanation for the higher extinction risks that have been observed for more specialised species. Therefore, diet specialists are more often threatened and require more conservation efforts than generalists.

  9. Functioning within a relationship : Mother-infant synchrony and infant sleep

    NARCIS (Netherlands)

    de Graag, Jolien A.; Cox, Ralf F. A.; Hasselman, Fred; Jansen, Jarno; de Weerth, Carolina

    2012-01-01

    The aim of this study was to investigate the coupling of the biological system of infant sleep and the social system of mother-infant synchrony. Before birth and shortly after birth the systems appear to be connected, but it is unclear whether this remains the case over time. This study therefore ex

  10. Coherence in consciousness: paralimbic gamma synchrony of self-reference links conscious experiences

    DEFF Research Database (Denmark)

    Lou, Hans C; Gross, Joachim; Biermann-Ruben, Katja;

    2010-01-01

    that interaction in the circuitry may bind conscious experiences with widely different degrees of self-reference through synchrony of high frequency oscillations as a common neural event. This hypothesis was confirmed with magneto-encephalography (MEG). The observed coupling between the neural events in conscious...

  11. The Critical Role of Temporal Synchrony in the Salience of Intersensory Redundancy during Prenatal Development

    Science.gov (United States)

    Jaime, Mark; Bahrick, Lorraine; Lickliter, Robert

    2010-01-01

    We explored the amount and timing of temporal synchrony necessary to facilitate prenatal perceptual learning using an animal model, the bobwhite quail. Quail embryos were exposed to various audiovisual combinations of a bobwhite maternal call paired with patterned light during the late stages of prenatal development and were tested postnatally for…

  12. High Frequency Synchrony in the Cerebellar Cortex during Goal Directed Movements

    Directory of Open Access Journals (Sweden)

    Jonathan David Groth

    2015-07-01

    Full Text Available The cerebellum is involved in sensory-motor integration and cognitive functions. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150-350Hz in the cerebellar cortex in a behavioral context. To this end, we recorded from the paramedian lobule in rats using micro electro-corticogram (µ-ECoG electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. The size and location of these patches on the cortical surface are in agreement with the sensory evoked granular layer patches originally reported by Welker’s lab (Shambes, 1978. Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex.

  13. Nuclei accumbens phase synchrony predicts decision-making reversals following negative feedback

    NARCIS (Netherlands)

    M.X. Cohen; N. Axmacher; D. Lenartz; C.E. Elger; V. Sturm; T.E. Schlaepfer

    2009-01-01

    The nucleus accumbens plays a key role in reinforcement-guided behaviors. Here, we report that electrophysiological oscillatory phase synchrony between the two nuclei accumbens may play a crucial role in using negative feedback to guide decision making. We recorded local field potentials from the hu

  14. Synchrony and Specificity in the Maternal and the Paternal Brain: Relations to Oxytocin and Vasopressin

    Science.gov (United States)

    Atzil, Shir; Hendler, Talma; Zagoory-Sharon, Orna; Winetraub, Yonatan; Feldman, Ruth

    2012-01-01

    Objective: Research on the neurobiology of parenting has defined "biobehavioral synchrony," the coordination of biological and behavioral responses between parent and child, as a central process underpinning mammalian bond formation. Bi-parental rearing, typically observed in monogamous species, is similarly thought to draw on mechanisms of…

  15. Physical and Relational Aggression in Young Children: The Role of Mother-Child Interactional Synchrony

    Science.gov (United States)

    Ambrose, Holly N.; Menna, Rosanne

    2013-01-01

    This study examined the relationships between the quality of parent-child interactions, specifically interactional synchrony (IS), and physical and relational aggression in young children. Seventy-three children (3-6 years; 44 males, 29 females) and their mothers participated in this study. The children's level of aggression was assessed through…

  16. Deletion of glucose-inhibited division (gidA) gene alters the morphological and replication characteristics of Salmonella enterica Serovar typhimurium.

    Science.gov (United States)

    Shippy, Daniel C; Heintz, Joseph A; Albrecht, Ralph M; Eakley, Nicholas M; Chopra, Ashok K; Fadl, Amin A

    2012-06-01

    Salmonella is an important food-borne pathogen that continues to plague the United States food industry. Characterization of bacterial factors involved in food-borne illnesses could help develop new ways to control salmonellosis. We have previously shown that deletion of glucose-inhibited division gene (gidA) significantly altered the virulence potential of Salmonella in both in vitro and in vivo models of infection. Most importantly, the gidA mutant cells displayed a filamentous morphology compared to the wild-type Salmonella cells. In our current study, we investigated the role of GidA in Salmonella cell division using fluorescence and electron microscopy, transcriptional, and proteomic assays. Scanning electron microscopy data indicated a filamentous morphology with few constrictions in the gidA mutant cells. The filamentation of the gidA mutant cells is most likely due to the defect in chromosome segregation, with little to no sign of septa formation observed using fluorescence and transmission electron microscopy. Furthermore, deletion of gidA altered the expression of many genes and proteins responsible for cell division and chromosome segregation as indicated by global transcriptional profiling and semi-quantitative western blot analysis. Taken together, our data indicate GidA as a potential regulator of Salmonella cell division genes.

  17. Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interactions in group a Streptococcus carrier strains.

    Science.gov (United States)

    Flores, Anthony R; Olsen, Randall J; Wunsche, Andrea; Kumaraswami, Muthiah; Shelburne, Samuel A; Carroll, Ronan K; Musser, James M

    2013-11-01

    Humans commonly carry pathogenic bacteria asymptomatically, but the molecular factors underlying microbial asymptomatic carriage are poorly understood. We previously reported that two epidemiologically unassociated serotype M3 group A Streptococcus (GAS) carrier strains had an identical 12-bp deletion in the promoter of the gene encoding Mga, a global positive gene regulator. Herein, we report on studies designed to test the hypothesis that the identified 12-bp deletion in the mga promoter alters GAS virulence, thereby potentially contributing to the asymptomatic carrier phenotype. Using allelic exchange, we introduced the variant promoter into a serotype M3 invasive strain and the wild-type promoter into an asymptomatic carrier strain. Compared to strains with the wild-type mga promoter, we discovered that strains containing the promoter with the 12-bp deletion produced significantly fewer mga and Mga-regulated gene transcripts. Consistent with decreased mga transcripts, strains containing the variant mga promoter were also significantly less virulent in in vivo and ex vivo models of GAS disease. Further, we provide evidence that the pleiotropic regulator protein CodY binds to the mga promoter and that the 12-bp deletion in the mga promoter reduces CodY-mediated mga transcription. We conclude that the naturally occurring 12-bp deletion in the mga promoter significantly alters the pathogen-host interaction of these asymptomatic carrier strains. Our findings provide new insight into the molecular basis of the carrier state of an important human pathogen. PMID:23980109

  18. Simulating the Effect of Reinforcement Learning on Neuronal Synchrony and Periodicity in the Striatum.

    Science.gov (United States)

    Hélie, Sébastien; Fleischer, Pierson J

    2016-01-01

    The study of rhythms and oscillations in the brain is gaining attention. While it is unclear exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely that synchrony is related to normal and abnormal brain states and possibly cognition. In this article, we explore the relationship between basal ganglia (BG) synchrony and reinforcement learning. We simulate a biologically-realistic model of the striatum initially proposed by Ponzi and Wickens (2010) and enhance the model by adding plastic cortico-BG synapses that can be modified using reinforcement learning. The effect of reinforcement learning on striatal rhythmic activity is then explored, and disrupted using simulated deep brain stimulation (DBS). The stimulator injects current in the brain structure to which it is attached, which affects neuronal synchrony. The results show that training the model without DBS yields a high accuracy in the learning task and reduced the number of active neurons in the striatum, along with an increased firing periodicity and a decreased firing synchrony between neurons in the same assembly. In addition, a spectral decomposition shows a stronger signal for correct trials than incorrect trials in high frequency bands. If the DBS is ON during the training phase, but not the test phase, the amount of learning in the model is reduced, along with firing periodicity. Similar to when the DBS is OFF, spectral decomposition shows a stronger signal for correct trials than for incorrect trials in high frequency domains, but this phenoemenon happens in higher frequency bands than when the DBS is OFF. Synchrony between the neurons is not affected. Finally, the results show that turning the DBS ON at test increases both firing periodicity and striatal synchrony, and spectral decomposition of the signal show that neural activity synchronizes with the DBS fundamental frequency (and its harmonics). Turning the DBS ON during the test phase results in chance

  19. Simulating the effect of reinforcement learning on neuronal synchrony and periodicity in the striatum

    Directory of Open Access Journals (Sweden)

    Sebastien eHelie

    2016-04-01

    Full Text Available The study of rhythms and oscillations in the brain is gaining attention. While it is unclear exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely that synchrony is related to normal and abnormal brain states and possibly cognition. In this article, we explore the relationship between basal ganglia (BG synchrony and reinforcement learning. We simulate a biologically-realistic model of the striatum initially proposed by Ponzi and Wickens (2010 and enhance the model by adding plastic cortico-BG synapses that can be modified using reinforcement learning. The effect of reinforcement learning on striatal rhythmic activity is then explored, and disrupted using simulated deep brain stimulation (DBS. The stimulator injects current in the brain structure to which it is attached, which affects neuronal synchrony. The results show that training the model without DBS yields a high accuracy in the learning task and reduced the number of active neurons in the striatum, along with an increased firing periodicity and a decreased firing synchrony between neurons in the same assembly. In addition, a spectral decomposition shows a stronger signal for correct trials than incorrect trials in high frequency bands. If the DBS is ON during the training phase, but not the test phase, the amount of learning in the model is reduced, along with firing periodicity. Similar to when the DBS is OFF, spectral decomposition shows a stronger signal for correct trials than for incorrect trials in high frequency domains, but this phenoemenon happens in higher frequency bands than when the DBS is OFF. Synchrony between the neurons is not affected. Finally, the results show that turning the DBS ON at test increases both firing periodicity and striatal synchrony, and spectral decomposition of the signal show that neural activity synchronizes with the DBS fundamental frequency (and its harmonics. Turning the DBS ON during the test phase results

  20. Five patients with biochemical and/or clinical generalized glucocorticoid resistance without alterations in the glucocorticoid receptor gene

    NARCIS (Netherlands)

    N.A.T.M. Huizenga (Nannette); P. de Lange (Pieter); J.W. Koper (Jan); W.W. de Herder (Wouter); R. Abs; J.H. Kasteren; F.H. de Jong (Frank); S.W.J. Lamberts (Steven)

    2000-01-01

    textabstractCortisol resistance (CR) is a rare disease characterized by a generalized reduced sensitivity of end-organs to the actions of glucocorticoids (GCs). GC effects are mediated by the GC receptor (GR). The molecular alterations in CR described thus far were loca

  1. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Valerie W Hu

    Full Text Available Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  2. Don't worry, be (moderately) happy: Mothers' anxiety and positivity during pregnancy independently predict lower mother-infant synchrony.

    Science.gov (United States)

    Moore, Ginger A; Quigley, Kelsey M; Voegtline, Kristin M; DiPietro, Janet A

    2016-02-01

    Maternal positivity and mother-infant synchrony have been linked, independently, to beneficial infant outcomes; however, research that has examined relations between the two has found that higher positivity is associated with lower synchrony. Methodological issues may inform this counter-intuitive association and clinical theory supports its validity. This study examined the theory that heightened positivity associated with anxiety is a way of avoiding negative emotion and contributes to lower synchrony because it interferes with appropriate responding to infant cues. We examined mothers' (N=75) self-reported anxiety and verbal expression of positivity during pregnancy in relation to mother-infant synchrony at 6 months post-partum. Verbal positivity was assessed using linguistic analysis of interviews about pregnancy experiences. Mother and infant affect and gaze were coded during interaction and synchrony was computed as the correlation between mother and infant behaviors. Higher verbal positivity and anxiety during pregnancy independently predicted lower mother-infant synchrony, suggesting distinct pathways to the same degree of synchrony with potentially different consequences for infant development.

  3. Don't worry, be (moderately) happy: Mothers' anxiety and positivity during pregnancy independently predict lower mother-infant synchrony.

    Science.gov (United States)

    Moore, Ginger A; Quigley, Kelsey M; Voegtline, Kristin M; DiPietro, Janet A

    2016-02-01

    Maternal positivity and mother-infant synchrony have been linked, independently, to beneficial infant outcomes; however, research that has examined relations between the two has found that higher positivity is associated with lower synchrony. Methodological issues may inform this counter-intuitive association and clinical theory supports its validity. This study examined the theory that heightened positivity associated with anxiety is a way of avoiding negative emotion and contributes to lower synchrony because it interferes with appropriate responding to infant cues. We examined mothers' (N=75) self-reported anxiety and verbal expression of positivity during pregnancy in relation to mother-infant synchrony at 6 months post-partum. Verbal positivity was assessed using linguistic analysis of interviews about pregnancy experiences. Mother and infant affect and gaze were coded during interaction and synchrony was computed as the correlation between mother and infant behaviors. Higher verbal positivity and anxiety during pregnancy independently predicted lower mother-infant synchrony, suggesting distinct pathways to the same degree of synchrony with potentially different consequences for infant development. PMID:26705933

  4. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF, which can provide three apparent gravity levels (μ-g, 1-g, and 2-g, was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84 were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  5. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Science.gov (United States)

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  6. Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in transgenic tobacco

    Indian Academy of Sciences (India)

    Jie Qin; Kaijing Zuo; Jingya Zhao; Hua Ling; Youfang Cao; Chengxiang Qiu; Fupeng Li; Xiaofen Sun; Kexuan Tang

    2006-06-01

    GbERF belongs to the ERF (ethylene responsive factor) family of transcription factors and regulates the GCC-box containing pathogen-related (PR) genes in the ethylene signal transduction pathway. To study the function of GbERF in the process of biotic stress, transgenic tobacco plants expressing GbERF were generated. Overexpression of GbERF did not change transgenic plant’s phenotype and endogenous ethylene level. However, the expression profile of some ethylene-inducible GCC-box and non-GCC-box containing genes was altered, such as PR1b, PR2, PR3, PR4, Osmotin, CHN50, ACC oxidase and ACC synthase genes. These data indicate that the cotton GbERF could act as a transcriptional activator or repressor to regulate the differential expression of ethylene-inducible genes via GCC and non-GCC cis-elements. Moreover, the constitutive expression of GbERF in transgenic tobacco enhanced the plant’s resistance to Pseudomonas syringae pv tabaci infection. In conclusion, GbERF mediates the expression of a wide array of PR and ethylene-responsive genes and plays an important role in the plant’s response to biotic stress.

  7. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes.

    Directory of Open Access Journals (Sweden)

    Stella A G D Salvo

    Full Text Available Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.

  8. Medial prefrontal cortex: genes linked to bipolar disorder and schizophrenia have altered expression in the highly social maternal phenotype

    Directory of Open Access Journals (Sweden)

    Brian E Eisinger

    2014-04-01

    Full Text Available The transition to motherhood involves CNS changes that modify sociability and affective state. However, these changes also put females at risk for postpartum depression and psychosis, which impairs parenting abilities and adversely affects children. Thus, changes in expression and interactions in a core subset of genes may be critical for emergence of a healthy maternal phenotype, but inappropriate changes of the same genes could put women at risk for postpartum disorders. This study evaluated microarray gene expression changes in medial prefrontal cortex (mPFC, a region implicated in both maternal behavior and psychiatric disorders. Postpartum mice were compared to virgin controls housed with females and isolated for identical durations. Using the Modular Single-set Enrichment Test (MSET, we found that the genetic landscape of maternal mPFC bears statistical similarity to gene databases associated with schizophrenia (5 of 5 sets and bipolar disorder (BPD, 3 of 3 sets. In contrast to previous studies of maternal lateral septum and medial preoptic area, enrichment of autism and depression-linked genes was not significant (2 of 9 sets, 0 of 4 sets. Among genes linked to multiple disorders were fatty acid binding protein 7 (Fabp7, glutamate metabotropic receptor 3 (Grm3, platelet derived growth factor, beta polypeptide (Pdgfrb, and nuclear receptor subfamily 1, group D, member 1 (Nr1d1. RT-qPCR confirmed these gene changes as well as FMS-like tyrosine kinase 1 (Flt1 and proenkephalin (Penk. Systems-level methods revealed involvement of developmental gene