WorldWideScience

Sample records for altered gaba levels

  1. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  2. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus

    DEFF Research Database (Denmark)

    Harvey, Brian H; Oosthuizen, Frasia; Brand, Linda

    2004-01-01

    . The NOS isoform involved, and the role of stress-mediated corticosterone release in NOS activation, was verified with the administration of selective iNOS and nNOS inhibitors, aminoguanidine (50 mg/kg/day i.p.) and 7-nitroindazole (12.5 mg/kg/day i.p.), and the steroid synthesis inhibitor, ketoconazole...... (24 mg/kg/day i.p.), administered for 21 days prior to and during the stress procedure. RESULTS: Stress evoked a sustained increase in NOS activity, but reduced NMDA receptor density and total GABA levels. Aminoguanidine or ketoconazole, but not 7-nitroindazole or saline, blocked stress-induced NOS...

  3. Regional alterations of brain biogenic amines and GABA/glutamate levels in rats following chronic lead exposure during neonatal development

    Energy Technology Data Exchange (ETDEWEB)

    Shailesh Kumar, M V; Desiraju, T [National Inst. of Mental Health and Neuro Sciences, Bangalore (India). Dept. of Neurophysiology

    1990-06-01

    Wistar rat pups were administered either a high dose of lead acetate (400 {mu}g lead-g body weight/day) or a low dose (100 {mu}g lead/g body weight/day) by gastric intubation, from 2 days through 60 days of age. The rats on both these doses exhibited statistically significant decreases in body and brain weights throughout the lead treatment period. A group of rats on high dose was also rehabilitated by discontinuing the lead from 60 days of age. In these rats, at 160 days of age, the body weight but not the brain weight recovered to normal levels. During the lead intake, the rats on high dose revealed significant elevations in the levels of noradrenaline (NA) in the hippocampus (HI), cerebellum (CE), hypothalamus (HY), brainstem (BS), and accumbens-striatum (SA). The elevated levels in all the above regions except in the HY persisted even after rehabilitation. The dopamine (DA) levels changed significantly in opposite directions in HY (elevation) and BS (reduction) during the lead treatment, and the HY recovered after rehabilitation. Under lead, the serotonin (5HT) levels were elevated significantly in the HI, BS and MC (motor cortex), while after rehabilitation the abnormality persisted only in the MC. Low dose lead treatment was also effective on the same areas of brain. In the low dose group, estimation of the levels of GABA and glutamate were also done, and a significant decrease of GABA in CE and glutamate in MC was observed. The differences observed in the neurotoxic effects (none or significant) of lead in the different regions for each of the transmitters (NA, DA, 5HT) supports the interesting conclusion that the vulnerability of the axon terminals of any given type is dependent on some regional factors, although the projections of the different regions originate from an apparently similar category of neurons in the brain stem. (orig.).

  4. Perisylvian GABA levels in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Atagün, Murat İlhan; Şıkoğlu, Elif Muazzez; Soykan, Çağlar; Serdar Süleyman, Can; Ulusoy-Kaymak, Semra; Çayköylü, Ali; Algın, Oktay; Phillips, Mary Louise; Öngür, Dost; Moore, Constance Mary

    2017-01-10

    The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy ( 1 H-MRS). Patients with schizophrenia (n=25), bipolar I disorder (BD-I; n=28) and bipolar II disorder (BD-II; n=20) were compared with healthy controls (n=30). 1 H-MRS data was acquired using a Siemens 3T whole body scanner to quantify right and left perisylvian structures' (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ 2 =9.62, df: 3, p=0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p=0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r 2 =0.68, p=0.006, n=33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. GABA Levels Are Decreased After Stroke and GABA Changes During Rehabilitation Correlate With Motor Improvement

    Science.gov (United States)

    Blicher, Jakob Udby; Near, Jamie; Næss-Schmidt, Erhard; Stagg, Charlotte J.; Johansen-Berg, Heidi; Nielsen, Jørgen Feldbæk; Østergaard, Leif; Ho, Yi-Ching Lynn

    2017-01-01

    Background and Objective γ-Aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the brain and is important in motor learning. We aimed to measure GABA content in primary motor cortex poststroke (using GABA-edited magnetic resonance spectroscopy [MRS]) and in relation to motor recovery during 2 weeks of constraint-induced movement therapy (CIMT). Methods Twenty-one patients (3-12 months poststroke) and 20 healthy subjects were recruited. Magnetic resonance imaging structural T1 and GABA-edited MRS were performed at baseline and after CIMT, and once in healthy subjects. GABA:creatine (GABA:Cr) ratio was measured by GABA-edited MRS. Motor function was measured using Wolf Motor Function Test (WMFT). Results Baseline comparison between stroke patients (n = 19) and healthy subjects showed a significantly lower GABA:Cr ratio in stroke patients (P GABA relative to N-acetylaspartic acid (NAA; P = .03). After 2 weeks of CIMT patients improved significantly on WMFT, but no consistent change across the group was observed for the GABA:Cr ratio (n = 17). However, the extent of improvement on WMFT correlated significantly with the magnitude of GABA:Cr changes (P GABA:Cr ratio being associated with better improvements in motor function. Conclusions In patients 3 to 12 months poststroke, GABA levels are lower in the primary motor cortex than in healthy subjects. The observed association between GABA and recovery warrants further studies on the potential use of GABA MRS as a biomarker in poststroke recovery. PMID:25055837

  6. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  7. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.

    Science.gov (United States)

    Dicken, Matthew S; Hughes, Alexander R; Hentges, Shane T

    2015-11-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [3H]GABA from rat brain nerve terminals.

    Science.gov (United States)

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Haufe, G; Kukhar, V

    2017-01-15

    Recently, we have shown that new fluorinated analogues of γ-aminobutyric acid (GABA), bioisosters of pregabalin (β-i-Bu-GABA), i.e. β-polyfluoroalkyl-GABAs (FGABAs), with substituents: β-CF 3 -β-OH (1), β-CF 3 (2); β-CF 2 CF 2 H (3), are able to increase the initial rate of [ 3 H]GABA uptake by isolated rat brain nerve terminals (synaptosomes), and this effect is higher than that of pregabalin. So, synthesized FGABAs are structural but not functional analogues of GABA. Herein, we assessed the effects of synthesized FGABAs (100μM) on the ambient level and exocytotic release of [ 3 H]GABA in nerve terminals and compared with those of pregabalin (100μM). It was shown that FGABAs 1-3 did not influence the ambient level of [ 3 H]GABA in the synaptosomal preparations, and this parameter was also not altered by pregabalin. During blockage of GABA transporters GAT1 by specific inhibitor NO-711, FGABAs and pregabalin also did not change ambient [ 3 H]GABA in synaptosomal preparations. Exocytotic release of [ 3 H]GABA from synaptosomes decreased in the presence of FGABAs 1-3 and pregabalin, and the effects of FGABAs 1 &3 were more significant than those of FGABAs 2 and pregabalin. FGABAs 1-3/pregabalin-induced decrease in exocytotic release of [ 3 H]GABA from synaptosomes was not a result of changes in the potential of the plasma membrane. Therefore, new synthesized FGABAs 1 &3 were able to decrease exocytotic release of [ 3 H]GABA from nerve terminals more effectively in comparison to pregabalin. Absence of unspecific side effects of FGABAs 1 &3 on the membrane potential makes these compounds perspective for medical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance.

    Science.gov (United States)

    Hoftman, Gil D; Volk, David W; Bazmi, H Holly; Li, Siyu; Sampson, Allan R; Lewis, David A

    2015-01-01

    Schizophrenia is a neurodevelopmental disorder with altered expression of GABA-related genes in the prefrontal cortex (PFC). However, whether these gene expression abnormalities reflect disturbances in postnatal developmental processes before clinical onset or arise as a consequence of clinical illness remains unclear. Expression levels for 7 GABA-related transcripts (vesicular GABA transporter [vGAT], GABA membrane transporter [GAT1], GABAA receptor subunit α1 [GABRA1] [novel in human and monkey cohorts], glutamic acid decarboxylase 67 [GAD67], parvalbumin, calretinin, and somatostatin [previously reported in human cohort, but not in monkey cohort]) were quantified in the PFC from 42 matched pairs of schizophrenia and comparison subjects and from 49 rhesus monkeys ranging in age from 1 week postnatal to adulthood. Levels of vGAT and GABRA1, but not of GAT1, messenger RNAs (mRNAs) were lower in the PFC of the schizophrenia subjects. As previously reported, levels of GAD67, parvalbumin, and somatostatin, but not of calretinin, mRNAs were also lower in these subjects. Neither illness duration nor age accounted for the levels of the transcripts with altered expression in schizophrenia. In monkey PFC, developmental changes in expression levels of many of these transcripts were in the opposite direction of the changes observed in schizophrenia. For example, mRNA levels for vGAT, GABRA1, GAD67, and parvalbumin all increased with age. Together with published reports, these findings support the interpretation that the altered expression of GABA-related transcripts in schizophrenia reflects a blunting of normal postnatal development changes, but they cannot exclude a decline during the early stages of clinical illness. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. GABA level, gamma oscillation, and working memory performance in schizophrenia

    OpenAIRE

    Chen, Chi-Ming A.; Stanford, Arielle D.; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C.; Lisanby, Sarah H.; Schroeder, Charles E.; Kegeles, Lawrence S.

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance ...

  11. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Guillermo Gonzalez-Burgos

    2011-01-01

    Full Text Available Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  12. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N; Lewis, David A

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  13. Anterior insula GABA levels correlate with emotional aspects of empathy: a proton magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Qianfeng Wang

    Full Text Available Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated.Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI and the anterior cingulate cortex (ACC and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI.Pearson correlation analyses (two-tailed showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05 and the personal distress score (r = 0.538, p<0.05 but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores.Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities.

  14. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia

    OpenAIRE

    Hashimoto, T; Arion, D; Unger, T; Maldonado-Avilés, JG; Morris, HM; Volk, DW; Mirnics, K; Lewis, DA

    2007-01-01

    In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmis...

  16. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  17. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    Science.gov (United States)

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  18. GABA+ levels in postmenopausal women with mild-to-moderate depression

    Science.gov (United States)

    Wang, Zhensong; Zhang, Aiying; Zhao, Bin; Gan, Jie; Wang, Guangbin; Gao, Fei; Liu, Bo; Gong, Tao; Liu, Wen; Edden, Richard A.E.

    2016-01-01

    Abstract Background: It is increasingly being recognized that alterations of the GABAergic system are implicated in the pathophysiology of depression. This study aimed to explore in vivo gamma-aminobutyric acid (GABA) levels in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and posterior-cingulate cortex (PCC) of postmenopausal women with depression using magnetic resonance spectroscopy (1H-MRS). Methods: Nineteen postmenopausal women with depression and thirteen healthy controls were enrolled in the study. All subjects underwent 1H-MRS of the ACC/mPFC and PCC using the “MEGA Point Resolved Spectroscopy Sequence” (MEGA-PRESS) technique. The severity of depression was assessed by 17-item Hamilton Depression Scale (HAMD). Quantification of MRS data was performed using Gannet program. Differences of GABA+ levels from patients and controls were tested using one-way analysis of variance. Spearman correlation coefficients were used to evaluate the linear associations between GABA+ levels and HAMD scores, as well as estrogen levels. Results: Significantly lower GABA+ levels were detected in the ACC/mPFC of postmenopausal women with depression compared to healthy controls (P = 0.002). No significant correlations were found between 17-HAMD/14-HAMA and GABA+ levels, either in ACC/mPFC (P = 0.486; r = 0.170/P = 0.814; r = −0.058) or PCC (P = 0.887; r = 0.035/ P = 0.987; r = −0.004) in the patients; there is also no significant correlation between GABA+ levels and estrogen levels in patients group (ACC/mPFC: P = 0.629, r = −0.018; PCC: P = 0.861, r = 0.043). Conclusion: Significantly lower GABA+ levels were found in the ACC/mPFC of postmenopausal women with depression, suggesting that the dysfunction of the GABAergic system may also be involved in the pathogenesis of depression in postmenopausal women. PMID:27684829

  19. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    Science.gov (United States)

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  20. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    Science.gov (United States)

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  1. Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia.

    Science.gov (United States)

    Lewis, David A; Hashimoto, Takanori; Morris, Harvey M

    2008-10-01

    Impairments in cognitive control, such as those involved in working memory, are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) in individuals with schizophrenia. This dysfunction appears to result, at least in part, from abnormalities in GABA-mediated neurotransmission. In this paper, we review recent findings indicating that the altered DLPFC circuitry in subjects with schizophrenia reflects changes in the expression of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission. Specifically, using a combination of methods, we found that subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding presynaptic regulators of GABA neurotransmission, neuropeptide markers of specific subpopulations of GABA neurons, and certain subunits of the GABA(A) receptor. In particular, alterations in the expression of the neuropeptide somatostatin suggested that GABA neurotransmission is impaired in the Martinotti subset of GABA neurons that target the dendrites of pyramidal cells. In contrast, none of the GABA-related transcripts assessed to date were altered in the DLPFC of monkeys chronically exposed to antipsychotic medications, suggesting that the effects observed in the human studies reflect the disease process and not its treatment. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia may be attributable to altered GABA neurotransmission in specific DLPFC microcircuits.

  2. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  3. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: Evidence for an altered maturational trajectory in ASD.

    Science.gov (United States)

    Port, Russell G; Gaetz, William; Bloy, Luke; Wang, Dah-Jyuu; Blaskey, Lisa; Kuschner, Emily S; Levy, Susan E; Brodkin, Edward S; Roberts, Timothy P L

    2017-04-01

    Autism spectrum disorder (ASD) is hypothesized to arise from imbalances between excitatory and inhibitory neurotransmission (E/I imbalance). Studies have demonstrated E/I imbalance in individuals with ASD and also corresponding rodent models. One neural process thought to be reliant on E/I balance is gamma-band activity (Gamma), with support arising from observed correlations between motor, as well as visual, Gamma and underlying GABA concentrations in healthy adults. Additionally, decreased Gamma has been observed in ASD individuals and relevant animal models, though the direct relationship between Gamma and GABA concentrations in ASD remains unexplored. This study combined magnetoencephalography (MEG) and edited magnetic resonance spectroscopy (MRS) in 27 typically developing individuals (TD) and 30 individuals with ASD. Auditory cortex localized phase-locked Gamma was compared to resting Superior Temporal Gyrus relative cortical GABA concentrations for both children/adolescents and adults. Children/adolescents with ASD exhibited significantly decreased GABA+/Creatine (Cr) levels, though typical Gamma. Additionally, these children/adolescents lacked the typical maturation of GABA+/Cr concentrations and gamma-band coherence. Furthermore, children/adolescents with ASD additionally failed to exhibit the typical GABA+/Cr to gamma-band coherence association. This altered coupling during childhood/adolescence may result in Gamma decreases observed in the adults with ASD. Therefore, individuals with ASD exhibit improper local neuronal circuitry maturation during a childhood/adolescence critical period, when GABA is involved in configuring of such circuit functioning. Provocatively a novel line of treatment is suggested (with a critical time window); by increasing neural GABA levels in children/adolescents with ASD, proper local circuitry maturation may be restored resulting in typical Gamma in adulthood. Autism Res 2017, 10: 593-607. © 2016 International Society for

  4. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  5. Development of psychopathology in deployed armed forces in relation to plasma GABA levels

    NARCIS (Netherlands)

    Schür, Remmelt R; Boks, Marco P; Geuze, Elbert; Prinsen, Hubertus C M T; Verhoeven-Duif, Nanda M; Joëls, Marian; Kahn, René S; Vermetten, Eric; Vinkers, Christiaan H

    2016-01-01

    The GABA system is pivotal for an adequate response to a stressful environment but has remained largely unexplored in this context. The present study investigated the relationship of prospectively measured plasma GABA levels with psychopathology symptoms in military deployed to Afghanistan at risk

  6. γ-amino butyric acid (GABA) level as an overall survival risk factor in breast cancer.

    Science.gov (United States)

    Brzozowska, Anna; Burdan, Franciszek; Duma, Dariusz; Solski, Janusz; Mazurkiewicz, Maria

    2017-09-21

    The γ-amino butyric acid (GABA) plays important role in the proliferation and migration of cancer cells. The aim of the study was to evaluate the level of GABA in breast cancer, in relation to clinical and epidemiological data. The study was conducted on 89 patients with breast cancer in stage I-II. GABA level was assessed using spectrofluorometric method in tumour homogenates. Immunoexpression of E-cadherin was evaluated histologically on paraffin fixed specimens. Overall and disease-free survival was assessed for a 15-year interval period. Median overall survival was significantly longer (127.2 months) in patients with a high level of GABA (>89.3 μg/1), compared with a group with a low level of the amino acid (106.4 months). Disease-free survival was insignificantly different - 99 and 109 months, respectively. A significantly longer overall survival (131.2 months) was seen among patients with a high level of GABA and positive E-cadherin immunoexpression, compared with a group characterized by a low level of GABA and lack of E-cadherin immunorectivity (98.1 months). The co-existence of negative immunoexpression of E-cadherin and low GABA concentration resulted in a six-fold increase in the risk of death (HR=6.03). GABA has a significant prognostic value in breast cancer. Co-existence of a low level of GABA and loss of E-cadherin immune-expression seems to be a new, independent, and negative prognostic marker of the neoplasm.

  7. Alteration of glutamate/GABA balance during acute alcohol intoxication in rats: effect of Xingnaojing injection.

    Science.gov (United States)

    Wei, Jingjing; Yao, Limei; Yang, Lei; Zhao, Wei; Shi, Si; Cai, Qingyan; Chen, Dingsheng; Li, Weirong; Wang, Qi

    2015-05-26

    Xingnaojing Injection (XNJI) is a modern Chinese formula came from famous Chinese medicine An Gong Niu Huang Pill. XNJI has been used for treatment of cerebral diseases and stroke in China, and is approved by the State Food and Drug Administration of China for the treatment of acute alcohol intoxication (AAI). XNJI belongs to the ethnopharmacological family of medicines. In this study, we investigated the mechanisms of the XNJI effect on AAI. To investigate the effects of XNJI on glutamate, gamma-aminobutyric acid (GABA) and related receptor in lateral hypothalamic area (LHA) of AAI rat. Adult male Sprague-Dawley rats were implanted with microdialysis probes in LHA. Rats were randomly divided into control, model, 1.36mg/kg XNJI, 0.68mg/kg XNJI and 0.34mg/kg XNJI groups. During microdialysis, baseline samples were collected from 1h to 2.5h; thereafter, the rats were given an intraperitoneal injection of 52% ethanol, 5.2g/kg, or saline for control group. Twenty minutes later, three doses of XNJI was given by unilateral injection respectively, while saline for control and model groups, and samples were collected for the next 4h. The extracellular glutamate and GABA levels were measured in the LHA by a high performance liquid chromatography coupled with fluorescence detector (HPLC-FLU). The expression levels of related receptors N-methyl-d-aspartate receptor (NR) subunit NR2A, NR2B and GABAA were analyzed by reverse transcription polymerase chain reaction (RT-PCR). Ethanol (5.2g/kg) significantly decreased the extracellular levels of glutamate and increased extracellular GABA in LHA. On the other hand ethanol significantly decreased NR2A and NR2B mRNAs expression, and increase GABAA mRNA expression. XNJI could increase the extracellular level of glutamate and decrease that of GABA; moreover, induced an increase in NR2A and NR2B mRNA expression, and a decrease in GABAA mRNA expression in LHA. The current changes in glutamate, GABA and mRNA expressions of related

  8. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies.

    Science.gov (United States)

    Schür, Remmelt R; Draisma, Luc W R; Wijnen, Jannie P; Boks, Marco P; Koevoets, Martijn G J C; Joëls, Marian; Klomp, Dennis W; Kahn, René S; Vinkers, Christiaan H

    2016-09-01

    The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy ((1) H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical (1) H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = -0.74, P = 0.001) and in depressed MDD patients (SMD = -0.52, P = 0.005), but not in remitted MDD patients (SMD = -0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = -0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future (1) H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that (1) H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders. Hum Brain Mapp 37:3337-3352, 2016. © 2016 Wiley Periodicals

  9. L-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia

    OpenAIRE

    Volk, David W.; Gonzalez-Burgos, Guillermo; Lewis, David A.

    2016-01-01

    Altered inhibition from parvalbumin-containing GABA neurons is thought to contribute to impaired gamma frequency oscillations and cognitive deficits in schizophrenia. Crabtree and colleagues report that proline dehydrogenase deficits produce excessive cytosolic levels of the GABA-mimetic L-proline which impairs GABA synthesis and gamma oscillations in a manner that mimics schizophrenia.

  10. Development of psychopathology in deployed armed forces in relation to plasma GABA levels.

    Science.gov (United States)

    Schür, Remmelt R; Boks, Marco P; Geuze, Elbert; Prinsen, Hubertus C; Verhoeven-Duif, Nanda M; Joëls, Marian; Kahn, René S; Vermetten, Eric; Vinkers, Christiaan H

    2016-11-01

    The GABA system is pivotal for an adequate response to a stressful environment but has remained largely unexplored in this context. The present study investigated the relationship of prospectively measured plasma GABA levels with psychopathology symptoms in military deployed to Afghanistan at risk for developing psychopathology following trauma exposure during deployment, including posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). Plasma GABA levels were measured in military personnel (N=731) one month prior to deployment (T0), and one (T1) and six months (T2) after deployment using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Mental health problems and depressive symptoms were measured with the Dutch revised Symptom Checklist (SCL-90) and PTSD symptoms with the Dutch Self-Rating Inventory for PTSD (SRIP). Six months after deployment increases in GABA concentrations were present in individuals who had developed mental health problems (T2: β=0.06, p=1.6×10 -2 , T1: β=4.7×10 -2 , p=0.13), depressive symptoms (T2: β=0.29, p=7.9×10 -3 , T1: β=0.23, p=0.072) and PTSD symptoms at T2 (T2: β=0.12, p=4.3×10 -2 , T1: β=0.11, p=0.13). Plasma GABA levels prior to and one month after deployment poorly predicted a high level of psychopathology symptoms either one or six months after deployment. The number of previous deployments, trauma experienced during deployment, childhood trauma, age and sex were not significantly associated with plasma GABA levels over time. Exclusion of subjects who either started or stopped smoking, alcohol or medication use between the three time points rendered the association of increasing GABA levels with the emergence of psychopathology symptoms more pronounced (mental health problems at T2: β=0.09, p=4.2×10 -3 ; depressive symptoms at T2: β=0.35, p=3.5×10 -3 , PTSD symptoms at T2: β=0.17, p=1.7×10 -2 ). To our knowledge, this is the first study to provide

  11. Chronic prenatal ethanol exposure alters hippocampal GABA(A) receptors and impairs spatial learning in the guinea pig.

    Science.gov (United States)

    Iqbal, U; Dringenberg, H C; Brien, J F; Reynolds, J N

    2004-04-02

    Chronic prenatal ethanol exposure (CPEE) can injure the developing brain, and may lead to the fetal alcohol syndrome (FAS). Previous studies have demonstrated that CPEE upregulates gamma-aminobutyric acid type A (GABA(A)) receptor expression in the cerebral cortex, and decreases functional synaptic plasticity in the hippocampus, in the adult guinea pig. This study tested the hypothesis that CPEE increases GABA(A) receptor expression in the hippocampus of guinea pig offspring that exhibit cognitive deficits in a hippocampal-dependent spatial learning task. Timed, pregnant guinea pigs were treated with ethanol (4 g/kg maternal body weight per day), isocaloric-sucrose/pair-feeding, or water throughout gestation. GABA(A) receptor subunit protein expression in the hippocampus was measured at two development ages: near-term fetus and young adult. In young adult guinea pig offspring, CPEE increased spontaneous locomotor activity in the open-field and impaired task acquisition in the Morris water maze. CPEE did not change GABA(A) receptor subunit protein expression in the near-term fetal hippocampus, but increased expression of the beta2/3-subunit of the GABA(A) receptor in the hippocampus of young adult offspring. CPEE did not change either [(3)H]flunitrazepam binding or GABA potentiation of [(3)H]flunitrazepam binding, but decreased the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding, to hippocampal GABA(A) receptors in adult offspring. Correlational analysis revealed a relationship between increased spontaneous locomotor activity and growth restriction in the hippocampus induced by CPEE. Similarly, an inverse relationship was found between performance in the water maze and the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding in the hippocampus. These data suggest that alterations in hippocampal GABA(A) receptor expression and pharmacological properties contribute to hippocampal-related behavioral and cognitive deficits

  12. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guanmei; Gao, Fei; Gong, Tao; Wang, Guangbin; Zhao, Bin [Shandong University, Shandong Medical Imaging Research Institute, Jinan (China); Edden, Richard A.E. [The Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Kennedy Krieger Institute, FM Kirby Center for Functional Brain Imaging, Baltimore, MD (United States); Li, Hao [Air Force General Hospital PLA, Beijing (China); Chen, Weibo [Philips Healthcare, Shanghai (China); Liu, Xiaohui [Shandong Provincial Hospital Affiliated to Shandong University, Department of Neurology, Jinan (China)

    2018-03-15

    To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. (orig.)

  13. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Cao, Guanmei; Gao, Fei; Gong, Tao; Wang, Guangbin; Zhao, Bin; Edden, Richard A.E.; Li, Hao; Chen, Weibo; Liu, Xiaohui

    2018-01-01

    To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. (orig.)

  14. Effects of treadmill running on extracellular basal levels of glutamate and GABA at dentate gyrus of streptozotocin-induced diabetic rats

    Science.gov (United States)

    Reisi, Parham; Alaei, Hojjatallah; Babri, Shirin; Sharifi, Mohammad Reza; Mohaddes, Gisue; Soleimannejad, Elaheh; Rashidi, Bahman

    2010-01-01

    BACKGROUND: The present study evaluated the effects of treadmill running on extracellular basal levels of glutamate and GABA at dentate gyrus of streptozotocin-induced diabetic rats. METHODS: After 12 weeks of diabetes induction and exercise period, extracellular levels of glutamate and GABA were investigated. RESULTS: The results showed that glutamate levels were significantly decreased in diabetes-rest group comparing to the control-rest and the diabetes-exercise groups. CONCLUSIONS: The findings support the possibility that treadmill running is helpful in alleviating neurotransmitter homeostasis and alterations in transmission in diabetes mellitus. PMID:21526077

  15. GABA(A) receptor modulation during adolescence alters adult ethanol intake and preference in rats.

    Science.gov (United States)

    Hulin, Mary W; Amato, Russell J; Winsauer, Peter J

    2012-02-01

    To address the hypothesis that GABA(A) receptor modulation during adolescence may alter the abuse liability of ethanol during adulthood, the effects of adolescent administration of both a positive and negative GABA(A) receptor modulator on adult alcohol intake and preference were assessed. Three groups of adolescent male rats received 12 injections of lorazepam (3.2 mg/kg), dehydroepiandrosterone (DHEA, 56 mg/kg), or vehicle on alternate days starting on postnatal day (PD) 35. After this time, the doses were increased to 5.6 and 100 mg/kg, respectively, for 3 more injections on alternate days. Subjects had access to 25 to 30 g of food daily, during the period of the first 6 injections, and 18 to 20 g thereafter. Food intake of each group was measured 60 minutes after food presentation, which occurred immediately after drug administration on injection days or at the same time of day on noninjection days. When subjects reached adulthood (PD 88), ethanol preference was determined on 2 separate occasions, an initial 3-day period and a 12-day period, in which increasing concentrations of ethanol were presented. During each preference test, intake of water, saccharin, and an ethanol/saccharin solution was measured after each 23-hour access period. During adolescence, lorazepam increased 60-minute food intake, and this effect was enhanced under the more restrictive feeding schedule. DHEA had the opposite effect on injection days, decreasing food intake compared with noninjection days. In adulthood, the lorazepam-treated group preferred the 2 lowest concentrations of ethanol/saccharin more than saccharin alone compared with vehicle-treated subjects, which showed no preference for any concentration of ethanol/saccharin over saccharin. DHEA-treated subjects showed no preference among the 3 solutions. These data demonstrate that GABA(A) receptor modulation during adolescence can alter intake and preference for ethanol in adulthood and highlights the importance of drug history

  16. GABA and glutamate levels in occlusal splint-wearing males with possible bruxism.

    Science.gov (United States)

    Dharmadhikari, Shalmali; Romito, Laura M; Dzemidzic, Mario; Dydak, Ulrike; Xu, Jun; Bodkin, Cynthia L; Manchanda, Shalini; Byrd, Kenneth E

    2015-07-01

    The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the pathophysiology of anxiety behavioural disorders such as panic disorder and post-traumatic stress disorder and is also implicated in the manifestation of tooth-grinding and clenching behaviours generally known as bruxism. In order to test whether the stress-related behaviours of tooth-grinding and clenching share similar underlying mechanisms involving GABA and other metabolites as do anxiety-related behavioural disorders, we performed a Magnetic Resonance Spectroscopy (MRS) study for accurate, in vivo metabolite quantification in anxiety-related brain regions. MRS was performed in the right hippocampus and right thalamus involved in the hypothalamic-pituitary-adrenal axis system, together with a motor planning region (dorsal anterior cingulate cortex/pre-supplementary motor area) and right dorsolateral prefrontal cortex (DLPFC). Eight occlusal splint-wearing men (OCS) with possible tooth-grinding and clenching behaviours and nine male controls (CON) with no such behaviour were studied. Repeated-measures ANOVA showed significant Group×Region interaction for GABA+ (p = 0.001) and glutamate (Glu) (p = 0.031). Between-group post hoc ANOVA showed significantly lower levels of GABA+ (p = 0.003) and higher levels of Glu (p = 0.002) in DLPFC of OCS subjects. These GABA+ and Glu group differences remained significant (GABA+, p = 0.049; Glu, p = 0.039) after the inclusion of anxiety as a covariate. Additionally, GABA and Glu levels in the DLPFC of all subjects were negatively related (Pearson's r = -0.75, p = 0.003). These findings indicate that the oral behaviours of tooth-grinding and clenching, generally known as bruxism, may be associated with disturbances in brain GABAergic and glutamatergic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cell and Receptor Type-Specific Alterations in Markers of GABA Neurotransmission in the Prefrontal Cortex of Subjects with Schizophrenia

    OpenAIRE

    Lewis, David A.; Hashimoto, Takanori; Morris, Harvey M.

    2008-01-01

    Impairments in cognitive control, such as those involved in working memory, are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) in individuals with schizophrenia. This dysfunction appears to result, at least in part, from abnormalities in GABA-mediated neurotransmission. In this paper, we review recent findings indicating that the altered DLPFC circuitry in subjects with schizophrenia reflects changes in the expression of genes that encode selective presynaptic and p...

  18. The effects of elevated endogenous GABA levels on movement-related network oscillations.

    Science.gov (United States)

    Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K

    2013-02-01

    The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis.

    Science.gov (United States)

    Nantes, Julia C; Proulx, Sébastien; Zhong, Jidan; Holmes, Scott A; Narayanan, Sridar; Brown, Robert A; Hoge, Richard D; Koski, Lisa

    2017-08-15

    Converging areas of research have implicated glutamate and γ-aminobutyric acid (GABA) as key players in neuronal signalling and other central functions. Further research is needed, however, to identify microstructural and behavioral links to regional variability in levels of these neurometabolites, particularly in the presence of demyelinating disease. Thus, we sought to investigate the extent to which regional glutamate and GABA levels are related to a neuroimaging marker of microstructural damage and to motor and cognitive performance. Twenty-one healthy volunteers and 47 people with multiple sclerosis (all right-handed) participated in this study. Motor and cognitive abilities were assessed with standard tests used in the study of multiple sclerosis. Proton magnetic resonance spectroscopy data were acquired from sensorimotor and parietal regions of the brains' left cerebral hemisphere using a MEGA-PRESS sequence. Our analysis protocol for the spectroscopy data was designed to account for confounding factors that could contaminate the measurement of neurometabolite levels due to disease, such as the macromolecule signal, partial volume effects, and relaxation effects. Glutamate levels in both regions of interest were lower in people with multiple sclerosis. In the sensorimotor (though not the parietal) region, GABA concentration was higher in the multiple sclerosis group compared to controls. Lower magnetization transfer ratio within grey and white matter regions from which spectroscopy data were acquired was linked to neurometabolite levels. When adjusting for age, normalized brain volume, MTR, total N-acetylaspartate level, and glutamate level, significant relationships were found between lower sensorimotor GABA level and worse performance on several tests, including one of upper limb motor function. This work highlights important methodological considerations relevant to analysis of spectroscopy data, particularly in the afflicted human brain. These findings

  20. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.

    Science.gov (United States)

    Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J

    2002-05-01

    Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.

  1. l-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia.

    Science.gov (United States)

    Volk, David W; Gonzalez-Burgos, Guillermo; Lewis, David A

    2016-12-01

    Altered inhibition from parvalbumin-containing GABA neurons is thought to contribute to impaired gamma frequency oscillations and cognitive deficits in schizophrenia. Crabtree and colleagues report that proline dehydrogenase deficits produce excessive cytosolic levels of the GABA-mimetic l-proline which impairs GABA synthesis and gamma oscillations in a manner that mimics schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    Science.gov (United States)

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  4. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    International Nuclear Information System (INIS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-01-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E GABA ). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g GABA-extra ) and experimentally identified, seizure-induced changes in g GABA-extra and E GABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g GABA-extra reduced the frequency and coherence of FS-BC firing when E GABA was shunting (−74 mV), but failed to alter average FS-BC frequency when E GABA

  5. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    Science.gov (United States)

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  7. GABA levels in the ventromedial prefrontal cortex during the viewing of appetitive and disgusting food images.

    Science.gov (United States)

    Padulo, Caterina; Delli Pizzi, Stefano; Bonanni, Laura; Edden, Richard A E; Ferretti, Antonio; Marzoli, Daniele; Franciotti, Raffaella; Manippa, Valerio; Onofrj, Marco; Sepede, Gianna; Tartaro, Armando; Tommasi, Luca; Puglisi-Allegra, Stefano; Brancucci, Alfredo

    2016-10-01

    Characterizing how the brain appraises the psychological dimensions of reward is one of the central topics of neuroscience. It has become clear that dopamine neurons are implicated in the transmission of both rewarding information and aversive and alerting events through two different neuronal populations involved in encoding the motivational value and the motivational salience of stimuli, respectively. Nonetheless, there is less agreement on the role of the ventromedial prefrontal cortex (vmPFC) and the related neurotransmitter release during the processing of biologically relevant stimuli. To address this issue, we employed magnetic resonance spectroscopy (MRS), a non-invasive methodology that allows detection of some metabolites in the human brain in vivo, in order to assess the role of the vmPFC in encoding stimulus value rather than stimulus salience. Specifically, we measured gamma-aminobutyric acid (GABA) and, with control purposes, Glx levels in healthy subjects during the observation of appetitive and disgusting food images. We observed a decrease of GABA and no changes in Glx concentration in the vmPFC in both conditions. Furthermore, a comparatively smaller GABA reduction during the observation of appetitive food images than during the observation of disgusting food images was positively correlated with the scores obtained to the body image concerns sub-scale of Body Uneasiness Test (BUT). These results are consistent with the idea that the vmPFC plays a crucial role in processing both rewarding and aversive stimuli, possibly by encoding stimulus salience through glutamatergic and/or noradrenergic projections to deeper mesencephalic and limbic areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Early changes in GABA and dlutamine levels and aminotransferase activity in rat brain after total-body γ-irradiation with absolutely lethal doses

    International Nuclear Information System (INIS)

    Rozanov, V.A.; Karpovich, G.A.

    1985-01-01

    The contents of gaama-aminobutyric acid (GABA) and glutamate (GL) as well as GABA-aspartate- and alanine aminotransferase activities were measured in rat cerebellum, cerebral cortex and truncus cerebri 1, 3, 6, 24 and 48 hr following total-body γ-irradiation ( 60 Co) with a dose of 30 Gy. All the indices under study changed in a similar way in the cortex and truncus cerebri while in the cerebellum, GABA level increased and GABA-α-ketoglutarate aminotransfearse activity decreased 60 min after irradiation. The levels of GABA and GL in the cortex and truncus cerebri decreased immediately and increased 24 hr after irradiation. Activity of aminotransferases changed in a phase manner: changes in aspartate- and alanine aminotransferase activity were more pronounced than those of GABA-α-ketoglutarate aminotransferase activity and correlated with the glutamate level changes

  9. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  10. No alterations of brain GABA after 6 months of treatment with atypical antipsychotic drugs in early-stage first-episode schizophrenia.

    Science.gov (United States)

    Goto, Naoki; Yoshimura, Reiji; Kakeda, Shingo; Moriya, Junji; Hori, Hikaru; Hayashi, Kenji; Ikenouchi-Sugita, Atsuko; Nakano-Umene, Wakako; Katsuki, Asuka; Nishimura, Joji; Korogi, Yukunori; Nakamura, Jun

    2010-12-01

    We investigated the effects of atypical antipsychotic drugs on GABA concentrations in early-stage, first-episode schizophrenia patients. Sixteen (8 males, 8 females; age, 30±11 years old) patients were followed up for six months. We also included 18 sex- and age-matched healthy control subjects. All patients were treated with atypical antipsychotic drugs (5 patients with risperidone, 5 patients with olanzapine, 4 patients with aripiprazole, and 2 patients with quetiapine). In all three regions measured (frontal lobe, left basal ganglia, and parieto-occipital lobe), no differences in GABA concentrations were observed in a comparison of pre-treatment levels and those six months after treatment. These results suggest that relatively short-term treatment with atypical antipsychotic drugs may not affect GABAergic neurotransmission; however, it is also possible that such treatment prevents further reductions in brain GABA levels in people with early-stage, first-episode schizophrenia. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Directory of Open Access Journals (Sweden)

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  12. Assessment of the Level of GABA and Some Trace Elements in Blood in Children who Suffer from Familial Febrile Convulsions

    Directory of Open Access Journals (Sweden)

    Osama N. Salah

    2014-03-01

    Full Text Available Febrile seizure is one of the most common neurological problems during childhood. The etiology and pathogenesis of febrile seizure remain unknown. However, several factors such as vitamin B6 deficiency, electrolyte disturbances, and reduction in serum zinc, selenium, magnesium levels, and low gamma - aminobutyric acid (GABA levels are thought to play a role in the pathogenesis of febrile seizure. The present study included twenty children from 10 families, 11 were male and 9 were female. Each family has at least 2 members with a history of febrile convulsion. All cases were subjected to the following: Determination of serum levels of copper, zinc, magnesium, selenium level in serum, and plasma level of γ-aminobytaric acid (GABA. Serum levels of selenium and GABA were statistically significantly low in comparison with controls. Serum copper was statistically significantly higher in cases than controls, while serum zinc showed no significant changes in the cases of febrile convulsion compared with the control group. The mean Zn level in the serum of febrile convulsion was found to be at lower level than in the control group. The serum magnesium was significantly low in cases than controls. The logistic regression model in our study shows that Selenium and Magnesium have protective effects, while Copper has causative effect.

  13. Diabetic brain or retina? Visual psychophysical performance in diabetic patients in relation to GABA levels in occipital cortex.

    Science.gov (United States)

    Sanches, Mafalda; Abuhaiba, Sulaiman I; d'Almeida, Otília C; Quendera, Bruno; Gomes, Leonor; Moreno, Carolina; Guelho, Daniela; Castelo-Branco, Miguel

    2017-06-01

    Visual impairment is one of the most feared complications of Type 2 Diabetes Mellitus. Here, we aimed to investigate the role of occipital cortex γ-aminobutyric acid (GABA) as a predictor of visual performance in type 2 diabetes. 18 type 2 diabetes patients were included in a longitudinal prospective one-year study, as well as 22 healthy age-matched controls. We collected demographic data, HbA1C and used a novel set of visual psychophysical tests addressing color, achromatic luminance and speed discrimination in both groups. Psychophysical tests underwent dimension reduction with principle component analysis into three synthetic variables: speed, achromatic luminance and color discrimination. A MEGA-PRESS magnetic resonance brain spectroscopy sequence was used to measure occipital GABA levels in the type 2 diabetes group. Retinopathy grading and retinal microaneurysms counting were performed in the type 2 diabetes group for single-armed correlations. Speed discrimination thresholds were significantly higher in the type 2 diabetes group in both visits; mean difference (95% confidence interval), [0.86 (0.32-1.40) in the first visit, 0.74 (0.04-1.44) in the second visit]. GABA from the occipital cortex predicted speed and achromatic luminance discrimination thresholds within the same visit (r = 0.54 and 0.52; p = 0.02 and 0.03, respectively) in type 2 diabetes group. GABA from the occipital cortex also predicted speed discrimination thresholds one year later (r = 0.52; p = 0.03) in the type 2 diabetes group. Our results suggest that speed discrimination is impaired in type 2 diabetes and that occipital cortical GABA is a novel predictor of visual psychophysical performance independently from retinopathy grade, metabolic control or disease duration in the early stages of the disease.

  14. Levels of glutamate, aspartate, GABA, and taurine in different regions of the cerebellum after x-irradiation-induced neuronal loss

    International Nuclear Information System (INIS)

    Rea, M.A.; McBride, W.J.; Rohde, B.H.

    1981-01-01

    The levels of glutamate (Glu), aspartate (Asp), gamma-amino-n-butyric acid (GABA), and taurine (Tau) were determined in the cortex, molecular layer, and deep nuclei of cerebella of adult rats exposed to X-irradiation at 12-15 days following birth (to prevent the acquisition of late-forming granule cells; 12-15x group) and 8-15 days following birth (to prevent the acquisition of granule and stellate cells; 8-15x group). Also, the levels of the four amino acids were measured in the crude synaptosomal fraction (P2) isolated from the whole cerebella of the control, 12-15x, and 8-15x groups. The level of Glu was significantly decreased by (1) 6-20% in the cerebellar cortex; (2) 15-20% in the molecular layer; and (3) 25-50% in the P2 fraction of the X-irradiated groups relative to control values. The content of Glu in the deep nuclei was not changed by X-irradiation treatment. Regional levels of Asp were unchanged by X-irradiation, while its level in P2 decreased by 15-30% after treatment. The levels of GABA and Tau in the molecular layer, deep nuclei, or P2 were not changed in the experimental groups. However, there was a 15% increase in the levels of GABA and Tau in the cerebellar cortex of the 8-15x group relative to control values. The data support the proposed role of glutamate as the excitatory transmitter released from the cerebellar granule cells but are inconclusive regarding a transmitter role for either Tau or GABA from cerebellar stellate cells

  15. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  16. GABA predicts visual intelligence.

    Science.gov (United States)

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-06

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    Science.gov (United States)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  18. In Vivo Measurements of Glutamate, GABA, and NAAG in Schizophrenia

    OpenAIRE

    Rowland, Laura M.; Kontson, Kimberly; West, Jeffrey; Edden, Richard A.; Zhu, He; Wijtenburg, S. Andrea; Holcomb, Henry H.; Barker, Peter B.

    2012-01-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, partic...

  19. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    Science.gov (United States)

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  20. Zero net flux estimates of septal extracellular glucose levels and the effects of glucose on septal extracellular GABA levels

    OpenAIRE

    Krebs-Kraft, Desiree L.; Rauw, Gail; Baker, Glen B.; Parent, Marise B.

    2009-01-01

    Although hippocampal infusions of glucose enhance memory, we have found repeatedly that septal glucose infusions impair memory when γ-aminobutyric acid (GABA) receptors are activated. For instance, hippocampal glucose infusions reverse the memory-impairing effects of co-infusions of the GABA agonist muscimol, whereas septal glucose infusions exacerbate memory deficits produced by muscimol. One potential explanation for these deleterious effects of glucose in the septum is that there are highe...

  1. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.

    Science.gov (United States)

    Rowland, Laura M; Kontson, Kimberly; West, Jeffrey; Edden, Richard A; Zhu, He; Wijtenburg, S Andrea; Holcomb, Henry H; Barker, Peter B

    2013-09-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia.

  2. Is plasma GABA level a biomarker of Post-Traumatic Stress Disorder (PTSD) severity? A preliminary study.

    Science.gov (United States)

    Trousselard, Marion; Lefebvre, Bertrand; Caillet, Lionel; Andruetan, Yann; de Montleau, Franck; Denis, Josiane; Canini, Frédéric

    2016-07-30

    An increased reactivity to the environment is observed in Post-Traumatic Stress Disorder (PTSD). It would be related to impairment of the Gamma Amino Butyric Acid (GABA) neurotransmission. The study aimed to evaluate plasma GABA concentration as a candidate for PTSD severity biomarker. This hypothesis was studied in 17 PTSD patients and 17 healthy Controls using classic and emotional Stroop paradigms. Plasma GABA concentrations were assessed before and after both Stroop tests to evaluate GABA basal tone and GABA reactivity (change in GABAp), respectively. During baseline, PTSD had lower plasma GABA concentrations than the Controls. After the Stroop conflicts GABA reactivity was also lower in PTSD than in the Controls. The GABA baseline tone was negatively correlated with the severity of the PTSD symptoms. This relation was only marginally observed for GABA reactivity. The results produced a trend due to the small size of the sample compared to the number of statistical results given. Altogether, the reduced GABA concentration observed in PTSD could be considered as a possible biomarker for PTSD severity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation.

    Science.gov (United States)

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    receptors in the central nervous system. The drug acts at the GABA(A) receptor benzodiazepine site, displaying high and intermediate affinities to various receptor regions. Structural features for tight binding were determined. The sedative and anticonvulsant activities are due to its action on the alpha-1-GABA(A) receptors. One of the common adverse responses to zolpidem is hallucinations. Proposed mechanisms comprise changes in the GABA(A) receptor, pharmacodynamic interactions involving serotonin and neuronal-weak photon emission processes entailing redox phenomena. Reports cite cases of abuse with cravings based on anxiolytic and stimulating actions. It is important to recognize that insight concerning processes at the fundamental, molecular level can translate into beneficial results involving both positive and adverse side effects. In order for this to occur, interdisciplinary interaction is necessary. Suggestions are made for future research aimed at testing the various hypotheses.

  4. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2018-05-01

    Full Text Available Gamma-aminobutyric acid (GABA may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass (Agrostis stolonifera to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar “Penncross” plants were treated with 0.5 mM GABA or water (untreated control as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night, drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3, POD, APX, HSP90, DHN3, and MT1 during heat stress and the expression of CDPK26, MAPK1, ABF3, WRKY75, MYB13, HSP70, MT1, 14-3-3, and genes (SOD, CAT, POD, APX, MDHAR, DHAR, and GR encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  5. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Peng, Yan; Huang, Bingru

    2018-05-31

    Gamma-aminobutyric acid (GABA) may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass ( Agrostis stolonifera ) to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar "Penncross") plants were treated with 0.5 mM GABA or water (untreated control) as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night), drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3 , POD , APX , HSP90 , DHN3 , and MT1 during heat stress and the expression of CDPK26 , MAPK1 , ABF3 , WRKY75 , MYB13 , HSP70 , MT1 , 14-3-3 , and genes ( SOD , CAT , POD , APX , MDHAR , DHAR , and GR ) encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  6. Use of 3H-muscimol for GABA receptor studies

    International Nuclear Information System (INIS)

    Snodgrass, S.R.

    1978-01-01

    It is stated that gamma aminobutyric acid (GABA) is a major transmitter in the mammalian central nervous system and studies of synaptic receptors for neurotransmitters have been useful in many areas of neuropharmacology. Although GABA receptors can be studied using 3 H-GABA itself, a ligand which does not bind to GABA uptake sites would be valuable for autoradiography and for other studies of receptor function. Muscimol (3-hydroxy-5-aminomethly-isoxazole) is a naturally occurring GABA analogue found in Amanita muscaria. It seems to enter the brain after peripheral injection. Evidence is here presented of the binding of 3 H-muscimol by brain tissue. The ability of muscimol to alter evoked release of GABA by synaptosomes was also of muscimol to alter evoked release of GABA by synaptosomes was also used to verify the ability of muscimol to alter the function of GABA neurones. (author)

  7. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    OpenAIRE

    Collins, Ann L.; Ma, Deqiong; Whitehead, Patrice L.; Martin, Eden R.; Wright, Harry H.; Abramson, Ruth K.; Hussman, John P.; Haines, Jonathan L.; Cuccaro, Michael L.; Gilbert, John R.; Pericak-Vance, Margaret A.

    2006-01-01

    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SN...

  8. Dynamics of epileptic activity in a peculiar case of childhood absence epilepsy and correlation with thalamic levels of GABA

    Directory of Open Access Journals (Sweden)

    Alberto Leal

    2016-01-01

    Significance: In a clinical case of CAE with EEG and fMRI-BOLD manifestations restricted to one hemisphere, we found an associated increase in thalamic GABA concentration consistent with a role for this abnormality in human CAE.

  9. Alteration of serum adropin level in preeclampsia.

    Science.gov (United States)

    Wang, Huihua; Gao, Bo; Wu, Zaigui; Wang, Hanzhi; Dong, Minyue

    2017-04-01

    To clarify the alterations in serum adropin and preptin concentrations in preeclampsia, we determined serum adropin and preptin levels in 29 women with normal pregnancy and 32 women with preeclampsia. We found that maternal age, body mass index and fetal gender were not significantly different between two groups; however, blood pressure, gestational age and neonatal birth weight were significantly different. Serum adropin levels were significantly increased in women with preeclampsia compared with those with normal pregnancy but there were no significant differences in preptin levels. An increase in maternal serum adropin level was found in preeclampsia, and this may be a compensation for pregnancy complicated with preeclampsia. Copyright © 2017 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  10. Turnover and release of GABA in rat cortical slices: effect of a GABA-T inhibitor, gabaculine

    International Nuclear Information System (INIS)

    Szerb, J.C.

    1982-01-01

    The turnover and release of endogenous and labeled GABA were followed in rat cortical slices after incubation with [ 3 H]GABA. High performance liquid chromatography was used to measure endogenous GABA and to separate [ 3 H]GABA from its metabolites. During superfusion with 3 mM K + the slices rapidly lost their [ 3 H]GABA content while maintaining constant GABA levels. Exposure to 50 mM K + for 25 min caused an initial rapid rise in the release of both endogenous and [ 3 H]GABA followed by a more rapid decline in the release of the latter. The specific activity of released GABA was two to four times higher than that in the slices. Depolarization lead to a net synthesis of GABA. The GABA -T inhibitor, gabaculine, (5 micrometers) in vitro arrested the metabolism of [ 3 H]GABA and rapidly doubled the GABA content but did not significantly increase the high K + evoked release of endogenous GABA. In vivo pretreatment with 0.5 mM/kg gabaculine quadrupled GABA content and increased both the spontaneous and evoked release of endogenous GABA but while its Ca 2 + -dependent release increased by 50%, the Ca 2 + -independent release was enhanced sevenfold. This large Ca 2 + -independent release of GABA is likely to have different functional significance from the normal Ca 2 + -dependent release

  11. GABA transporter-1 deficiency confers schizophrenia-like behavioral phenotypes.

    Directory of Open Access Journals (Sweden)

    Zhe Yu

    Full Text Available The mechanism underlying the pathogenesis of schizophrenia remains poorly understood. The hyper-dopamine and hypo-NMDA receptor hypotheses have been the most enduring ideas. Recently, emerging evidence implicates alterations of the major inhibitory system, GABAergic neurotransmission in the schizophrenic patients. However, the pathophysiological role of GABAergic system in schizophrenia still remains dubious. In this study, we took advantage of GABA transporter 1 (GAT1 knockout (KO mouse, a unique animal model with elevated ambient GABA, to study the schizophrenia-related behavioral abnormalities. We found that GAT1 KO mice displayed multiple behavioral abnormalities related to schizophrenic positive, negative and cognitive symptoms. Moreover, GAT1 deficiency did not change the striatal dopamine levels, but significantly enhanced the tonic GABA currents in prefrontal cortex. The GABA(A receptor antagonist picrotoxin could effectively ameliorate several behavioral defects of GAT1 KO mice. These results identified a novel function of GAT1, and indicated that the elevated ambient GABA contributed critically to the pathogenesis of schizophrenia. Furthermore, several commonly used antipsychotic drugs were effective in treating the locomotor hyperactivity in GAT1 KO mice, suggesting the utility of GAT1 KO mice as an alternative animal model for studying schizophrenia pathogenesis and developing new antipsychotic drugs.

  12. GABA and glutamate in schizophrenia: A 7 T 1H-MRS study

    Directory of Open Access Journals (Sweden)

    Anouk Marsman

    2014-01-01

    In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning patients with schizophrenia.

  13. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats.

    Science.gov (United States)

    Tabassum, Saiqa; Ahmad, Saara; Madiha, Syeda; Khaliq, Saima; Shahzad, Sidrah; Batool, Zehra; Haider, Saida

    2017-05-01

    Glutamate (GLU) and gamma-amino butyric acid (GABA) are essential amino acids (AA) for brain function serving as excitatory and inhibitory neurotransmitter respectively. Their tablets are available in market for improving gut function and muscle performance. Despite of having a major role during memory formation and processing, effects of these tablets on brain functioning like learning and memory have not been investigated. Therefore, present study is aimed to investigate the effects of orally supplemented GLU and GABA on learning and memory performance and further to monitor related effects of these orally supplemented GLU and GABA on brain levels of these AA. Three groups of rats were supplemented orally with drinking water (control group) or suspension of tablets of GABA and Glutamate, respectively for four weeks. Cognitive performance was determined using behavioral tests (Novel object recognition test, Morris water maze, Passive avoidance test) measuring recognition, spatial reference and aversive memory. Levels of GLU, GABA and acetylcholine (ACh) were estimated in rat hippocampus. Results showed that chronic oral administration of GLU and GABA tablets has a significant impact on brain function and can alter GLU and GABA content in rat hippocampus. Compared to GABA, GLU supplementation specifically enhances memory performance via increasing ACh. Thus, GLU can be suggested as a useful supplement for improving learning and memory performance and neurochemical status of brain and in future could be effective in the treatment of neurological disorders affecting learning and memory performance.

  14. Altered levels of acetylcholinesterase in Alzheimer plasma.

    Directory of Open Access Journals (Sweden)

    María-Salud García-Ayllón

    Full Text Available BACKGROUND: Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE pose a major problem. PRINCIPAL FINDINGS: Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were approximately 20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G(1+G(2 forms and not G(4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer's disease (AD patients compared to age and gender-matched controls. This increase correlates with an increase in the G(1+G(2 forms, the subset of AChE species which are increased in Alzheimer's brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer's plasma, attributed in part to AChE-T subunits common in brain and CSF. CONCLUSION: Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.

  15. Brain GABA levels across psychiatric disorders : A systematic literature review and meta-analysis of 1H-MRS studies

    NARCIS (Netherlands)

    Schür, Remmelt R.; Draisma, Luc W R; Wijnen, Jannie P.; Boks, Marco P.; Koevoets, Martijn G J C; Joëls, Marian; Klomp, Dennis W.; Kahn, René S.; Vinkers, Christiaan H.

    2016-01-01

    The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy (1H-MRS) is

  16. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    Science.gov (United States)

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. In vivo evaluation of the hippocampal glutamate, GABA and the BDNF levels associated with spatial memory performance in a rodent model of neuropathic pain.

    Science.gov (United States)

    Saffarpour, S; Shaabani, M; Naghdi, N; Farahmandfar, M; Janzadeh, A; Nasirinezhad, F

    2017-06-01

    Patients with chronic pain usually suffer from learning and memory impairment which may significantly decrease their quality of life. Despite laboratory and clinical studies, the mechanism underlying this memory impairment remains elusive. We evaluated the effect of chronic pain on the glutamate and GABA levels and BDNF expression in the CA1 region of hippocampus as a possible explanation for memory impairment related to neuropathic pain. In this respect, 30 male rats were randomly allocated to 3 groups as control, sham and neuropathic. Neuropathic pain was induced by a chronic constriction injury of the sciatic nerve (CCI) and mechanical allodynia and the spatial memory was assessed using the Von Frey filaments and Morris water maze respectively. To determine the potential mechanisms, the in vivo extracellular levels of glutamate and γ-aminobutyric acid (GABA) were measured by microdialysis and the brain-derived neurotrophic factor (BDNF) expression was determined by using western blots technique in the hippocampus on days 14 and 21 post-CCI. We showed that CCI impaired spatial learning and memory in Morris water maze (MWM) task. BDNF expression level and glutamate concentration significantly decreased in rats with chronic constriction injury of the sciatic nerve (PGABA increased in hippocampal CA1 region (PGABA concentration and decrease in the glutamate and BDNF levels in the CA1 region of the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  19. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  20. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation

    OpenAIRE

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relati...

  1. Astrocytic GABA Transporters

    DEFF Research Database (Denmark)

    Schousboe, Arne; Wellendorph, Petrine; Frølund, Bente

    2017-01-01

    , and several of these compounds have been shown to exhibit pronounced anticonvulsant activity in a variety of animal seizure models. As proof of concept of the validity of this drug development approach, one GABA-transport inhibitor, tiagabine, has been developed as a clinically active antiepileptic drug......Inactivation of GABA-mediated neurotransmission is achieved by high-affinity transporters located at both GABAergic neurons and the surrounding astrocytes. Early studies of the pharmacological properties of neuronal and glial GABA transporters suggested that different types of transporters might...... be expressed in the two cell types, and such a scenario was confirmed by the cloning of four distinctly different GABA transporters from a number of different species. These GABA-transport entities have been extensively characterized using a large number of GABA analogues of restricted conformation...

  2. How and why does tomato accumulate a large amount of GABA in the fruit?

    Directory of Open Access Journals (Sweden)

    Mariko eTakayama

    2015-08-01

    Full Text Available γ-Aminobutyric acid (GABA has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate of the tricarboxylic acid (TCA cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD, GABA transaminase (GABA-T and succinic semialdehyde dehydrogenase (SSADH. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development.

  3. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.

    Science.gov (United States)

    Hashimoto, Takanori; Bazmi, H Holly; Mirnics, Karoly; Wu, Qiang; Sampson, Allan R; Lewis, David A

    2008-04-01

    Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.

  4. Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum.

    Science.gov (United States)

    Pae, Eung-Kwon; Yoon, Audrey J; Ahuja, Bhoomika; Lau, Gary W; Nguyen, Daniel D; Kim, Yong; Harper, Ronald M

    2011-12-01

    Perinatal hypoxia commonly causes brain injury in infants, but the time course and mechanisms underlying the preferential male injury are unclear. Intermittent hypoxia disturbs cerebellar γ-aminobutyric (GABA)-A receptor profiles during the perinatal period, possibly responding to transient excitatory processes associated with GABA(A) receptors. We examined whether hypoxic insults were particularly damaging to the male rodent cerebellum during a specific developmental time window. We evaluated cerebellar injury and GABA(A) receptor profiles following 5-h intermittent hypoxia (IH: 20.8% and 10.3% ambient oxygen, switched every 240s) or room-air control in groups of male and female rat pups on postnatal d 1-2, wk 1, or wk 3. The cerebella were harvested and compared between groups. The mRNA levels of GABA(A) receptors α6, normalized to a house-keeping gene GAPDH, and assessed using real-time reverse-transcriptase PCR assays were up-regulated by IH at wk 1, more extensively in male rats, with sex influencing the regulatory time-course. In contrast, GABA(A) α6 receptor protein expression levels, assessed using Western blot assays, reached a nadir at wk 1 in both male and female rats, possibly indicating involvement of a post-transcriptional mechanism. The extent of cerebellar damage and level of apoptosis, assessed by DNA fragmentation, were greatest in the wk 3 IH-exposed group. The findings suggest partial protection for female rats against early hypoxic insult in the cerebellum, and that down-regulation of GABA(A) receptors, rather than direct neural injury assessed by DNA fragmentation may modify cerebellar function, with potential later motor and other deficits. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. GABA and glutamate in schizophrenia: a 7 T ¹H-MRS study.

    Science.gov (United States)

    Marsman, Anouk; Mandl, René C W; Klomp, Dennis W J; Bohlken, Marc M; Boer, Vincent O; Andreychenko, Anna; Cahn, Wiepke; Kahn, René S; Luijten, Peter R; Hulshoff Pol, Hilleke E

    2014-01-01

    Schizophrenia is characterized by loss of brain volume, which may represent an ongoing pathophysiological process. This loss of brain volume may be explained by reduced neuropil rather than neuronal loss, suggesting abnormal synaptic plasticity and cortical microcircuitry. A possible mechanism is hypofunction of the NMDA-type of glutamate receptor, which reduces the excitation of inhibitory GABAergic interneurons, resulting in a disinhibition of glutamatergic pyramidal neurons. Disinhibition of pyramidal cells may result in excessive stimulation by glutamate, which in turn could cause neuronal damage or death through excitotoxicity. In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.

  6. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.

    Science.gov (United States)

    Zhao, Guo-Chao; Xie, Mi-Xue; Wang, Ying-Cun; Li, Jian-Yue

    2017-06-21

    To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.

  7. Functional loss of GABA transaminase (GABA-T expressed early leaf senescence under various stress conditions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Syed Uzma Jalil

    2017-06-01

    Full Text Available GABA-transaminase (GABA-T involved in carbon and nitrogen metabolism during the plant development process via GABA shunt and GABA-T mutant, which is defective in GABA catabolism, is ideal model to examine the role of GABA-T in plant development and leaf senescence of plant. We have characterized GABA transaminase knock out mutant pop2-1 that is transition and pop2-3 which is T-DNA insertion mutant of Arabidopsis thaliana during various stress conditions.The GABA-T knockout mutant plants displayed precocious leaf senescence, which was accompanied by the assays of physiological parameters of leaf senescence during various stress conditions. Furthermore, our physiological evidence indicates that pop2-1 and pop2-3 mutations rapidly decreased the efficiency of leaf photosynthesis, chlorophyll content, GABA content, GABA-T, and glutamate decarboxylase (GAD activity and on the other hand increases membrane ion leakage, malondialdehyde (MDA level in stress induced leaves. However, cell viability assay by trypan blue and insitu Hydrogen peroxidation assay by 3,3-diaminobenzidine (DAB in stress induced leaves also display that pop2-1 and pop2-3 mutant leaves show oversensitivity in response to different stress conditions as compared to wild type. These results strongly indicate that the loss-of-function of GABA transaminase gene induces early leaf senescence in Arabidopsis thaliana during various stress conditions.

  8. Zolpidem, A Clinical Hypnotic that Affects Electronic Transfer, Alters Synaptic Activity Through Potential Gaba Receptors in the Nervous System Without Significant Free Radical Generation

    Directory of Open Access Journals (Sweden)

    Peter Kovacic

    2009-01-01

    Full Text Available Zolpidem (trade name Ambien has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET, pharmacodynamics, structure activity relationships (SAR and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action.

  9. Effect of dietary protein and GABA on food intake, growth and tissue amino acids in cats.

    Science.gov (United States)

    Tews, J K; Rogers, Q R; Morris, J G; Harper, A E

    1984-02-01

    GABA at 5%, but not 3%, of a low protein diet depressed food intake and growth of kittens. Adaptation to high protein prevented these effects. When cats adapted to low or high protein were fed a meal containing GABA, plasma GABA concentration after 2 hr was 8-fold higher in the low than in the high protein group; clearance was almost complete within 6 hr. Concentrations of proline, branched-chain, other large neutral and basic (especially ornithine) amino acids increased more when cats were fed a high rather than a low protein meal; glycine decreased. At 6 hr, concentrations had consistently returned to initial levels only in the low protein group. Feeding the high protein diet ad lib increased tissue concentrations of threonine, proline and the branched-chain amino acids. Hepatic or renal GABA-aminotransferase activity was not altered in kittens fed the high protein diet. Kidney activity was 10-fold that of liver, which may contribute to the better tolerance of GABA by cats than by rats.

  10. Brain GABA and Glutamate Concentrations Following Chronic Gabapentin Administration: A Convenience Sample Studied During Early Abstinence From Alcohol

    Directory of Open Access Journals (Sweden)

    Dieter J. Meyerhoff

    2018-03-01

    Full Text Available Gabapentin (GBP, a GABA analog that may also affect glutamate (Glu production, can normalize GABA and Glu tone during early abstinence from alcohol, effectively treating withdrawal symptoms and facilitating recovery. Using in vivo magnetic resonance spectroscopy, we tested the degree to which daily GBP alters regional brain GABA and Glu levels in short-term abstinent alcohol-dependent individuals. Regional metabolite levels were compared between 13 recently abstinent alcohol-dependent individuals who had received daily GBP for at least 1 week (GBP+ and 25 matched alcohol-dependent individuals who had not received GBP (GBP−. Magnetic resonance spectra from up to five different brain regions were analyzed to yield absolute GABA and Glu concentrations. GABA and Glu concentrations in the parieto-occipital cortex were not different between GBP− and GBP+. Glu levels in anterior cingulate cortex, dorsolateral prefrontal cortex, and basal ganglia did not differ between GBP− and GBP+. However, in a subgroup of individuals matched on age, sex, and abstinence duration, GBP+ had markedly lower Glu in the frontal white matter (WM than GBP−, comparable to concentrations found in light/non-drinking controls. Furthermore, lower frontal WM Glu in GBP+ correlated with a higher daily GBP dose. Daily GBP treatment at an average of 1,600 mg/day for at least 1 week was not associated with altered cortical GABA and Glu concentrations during short-term abstinence from alcohol, but with lower Glu in frontal WM. GBP for the treatment of alcohol dependence may work through reducing Glu in WM rather than increasing cortical GABA.

  11. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.

    Science.gov (United States)

    Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J

    2011-10-30

    Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

  12. Big GABA: Edited MR spectroscopy at 24 research sites.

    Science.gov (United States)

    Mikkelsen, Mark; Barker, Peter B; Bhattacharyya, Pallab K; Brix, Maiken K; Buur, Pieter F; Cecil, Kim M; Chan, Kimberly L; Chen, David Y-T; Craven, Alexander R; Cuypers, Koen; Dacko, Michael; Duncan, Niall W; Dydak, Ulrike; Edmondson, David A; Ende, Gabriele; Ersland, Lars; Gao, Fei; Greenhouse, Ian; Harris, Ashley D; He, Naying; Heba, Stefanie; Hoggard, Nigel; Hsu, Tun-Wei; Jansen, Jacobus F A; Kangarlu, Alayar; Lange, Thomas; Lebel, R Marc; Li, Yan; Lin, Chien-Yuan E; Liou, Jy-Kang; Lirng, Jiing-Feng; Liu, Feng; Ma, Ruoyun; Maes, Celine; Moreno-Ortega, Marta; Murray, Scott O; Noah, Sean; Noeske, Ralph; Noseworthy, Michael D; Oeltzschner, Georg; Prisciandaro, James J; Puts, Nicolaas A J; Roberts, Timothy P L; Sack, Markus; Sailasuta, Napapon; Saleh, Muhammad G; Schallmo, Michael-Paul; Simard, Nicholas; Swinnen, Stephan P; Tegenthoff, Martin; Truong, Peter; Wang, Guangbin; Wilkinson, Iain D; Wittsack, Hans-Jörg; Xu, Hongmin; Yan, Fuhua; Zhang, Chencheng; Zipunnikov, Vadim; Zöllner, Helge J; Edden, Richard A E

    2017-10-01

    Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community

  13. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  14. Systematic Analysis of γ-Aminobutyric Acid (GABA) Metabolism and Function in the Social Amoeba Dictyostelium discoideum*

    Science.gov (United States)

    Wu, Yuantai; Janetopoulos, Chris

    2013-01-01

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several “early” developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development. PMID:23548898

  15. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn.

    Science.gov (United States)

    Grau, James W; Huang, Yung-Jen

    2018-04-07

    Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl - is down-regulated. This causes the intracellular concentration of Cl - to increase, reducing (and potentially reversing) the inward flow of Cl - through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The

  16. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-h Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Science.gov (United States)

    Chanana, Priyanka; Kumar, Anil

    2016-01-01

    Rationale: Panax quinquefolius (American Ginseng) is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid) plays an important role in sleep wake cycle homeostasis. Thus, there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems. Objective: The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation. Materials and Methods: Male laca mice were sleep deprived for 72-h by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100, and 200 mg/kg) was administered alone and in combination with GABA modulators (GABA Cl− channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist) for 8 days, starting 5 days prior to 72-h sleep deprivation period. Various behavioral (locomotor activity, mirror chamber test), biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels), mitochondrial complexes, neuroinflammation marker (Tumor Necrosis Factor, TNF-alpha), serum corticosterone, and histopathological sections of brains were assessed. Results: Seventy two hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behavior, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg) treatment restored the behavioral, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of GABA Cl− channel

  17. GABA Shunt in Durum Wheat

    Directory of Open Access Journals (Sweden)

    Petronia Carillo

    2018-02-01

    Full Text Available Plant responses to salinity are complex, especially when combined with other stresses, and involve many changes in gene expression and metabolic fluxes. Until now, plant stress studies have been mainly dealt only with a single stress approach. However, plants exposed to multiple stresses at the same time, a combinatorial approach reflecting real-world scenarios, show tailored responses completely different from the response to the individual stresses, due to the stress-related plasticity of plant genome and to specific metabolic modifications. In this view, recently it has been found that γ-aminobutyric acid (GABA but not glycine betaine (GB is accumulated in durum wheat plants under salinity only when it is combined with high nitrate and high light. In these conditions, plants show lower reactive oxygen species levels and higher photosynthetic efficiency than plants under salinity at low light. This is certainly relevant because the most of drought or salinity studies performed on cereal seedlings have been done in growth chambers under controlled culture conditions and artificial lighting set at low light. However, it is very difficult to interpret these data. To unravel the reason of GABA accumulation and its possible mode of action, in this review, all possible roles for GABA shunt under stress are considered, and an additional mechanism of action triggered by salinity and high light suggested.

  18. Anion transport and GABA signaling

    Directory of Open Access Journals (Sweden)

    Christian Andreas Huebner

    2013-10-01

    Full Text Available Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.

  19. GABA predicts inhibition of frequency-specific oscillations in schizophrenia.

    Science.gov (United States)

    Rowland, Laura M; Edden, Richard A E; Kontson, Kimberly; Zhu, He; Barker, Peter B; Hong, L Elliot

    2013-01-01

    This study is the first to show a relationship between in-vivo brain gamma-amino butyric acid (GABA) levels and auditory inhibitory electrophysiological measures in schizophrenia. Results revealed a strong association between GABA levels and gating of the theta-alpha and beta activities in schizophrenia.

  20. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    International Nuclear Information System (INIS)

    Guastella, J.; Stretton, A.O.

    1991-01-01

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA

  1. Sleep-promoting effects of a GABA/5-HTP mixture: Behavioral changes and neuromodulation in an invertebrate model.

    Science.gov (United States)

    Hong, Ki-Bae; Park, Yooheon; Suh, Hyung Joo

    2016-04-01

    This study was to investigate the sleep promoting effects of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP), by examining neuronal processes governing mRNA level alterations, as well as assessing neuromodulator concentrations, in a fruit fly model. Behavioral assays were applied to investigate subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep of two amino acids and GABA/5-HTP mixture with caffeine treated flies. Also, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. Subjective nighttime activity and sleep patterns of individual flies significantly decreased with 1% GABA treatment in conjunction with 0.1% 5-HTP treatment (pGABA/5-HTP mixture resulted in significant differences between groups related to sleep patterns (40%, plevels of the GABAB receptor (GABAB-R1) and serotonin receptor (5-HT1A), compared to the control group. In addition, GABA/5-HTP mixture significantly increased GABA levels 1h and 12h following treatment (2.1 fold and 1.2 fold higher than the control, respectively) and also increased 5-HTP levels (0 h: 1.01 μg/protein, 12h: 3.45 μg/protein). In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep to a greater extent than single administration of each amino acid, and that this modulation occurs via GABAergic and serotonergic signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Occipital GABA correlates with cognitive failures in daily life.

    Science.gov (United States)

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  3. Brain microdialysis of GABA and glutamate : What does it signify?

    NARCIS (Netherlands)

    Timmerman, W; Westerink, B.H.C.

    1997-01-01

    Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the

  4. Effect of Songyu Anshen Fang on expression of hypothalamic GABA ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of the Chinese compound, Songyu Anshen Fang (SYF) on levels of GABA and GABA(B) receptor proteins in insomniac rats induced by para-chlorophenylalanine (PCPA). Methods: All rats were randomly separated into either a control group, insomnia group, or a SYF group (at a dose of ...

  5. Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?

    Science.gov (United States)

    Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.

    2013-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003

  6. Tributyltin exposure alters cytokine levels in mouse serum.

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T; Shanker, Anil; Whalen, Margaret M

    2016-11-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, keratinocyte chemoattractant (KC), macrophage inflammatory protein 1β (MIP), MIP2 and regulated on activation normal T-cell-expressed and secreted (RANTES) was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40 and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in the serum of mice exposed to TBT for less than 24 h. Levels of IL1β, IL-12 βp40, IL-5 and IL-15 were also modulated in mouse serum, depending on the specific experiment and exposure level. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines.

  7. Tributyltin Exposure Alters Cytokine Levels in Mouse Serum

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T.; Shanker, Anil; Whalen, Margaret M.

    2016-01-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, KC, MIP1β, MIP2 and RANTES was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40, and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in serum of mice exposed to TBT for less than 24 hr. IL1-β, IL-12βp40, IL-5 and IL-15 were also modulated in mouse serum depending on the specific experiment and the exposure concentration. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES, and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines. PMID:27602597

  8. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways.

    Directory of Open Access Journals (Sweden)

    Edoardo Giacopuzzi

    Full Text Available Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171 between genes inside ROHs affected by low frequency functional homozygous variants (107 genes and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8 and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2. These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in

  9. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways.

    Science.gov (United States)

    Giacopuzzi, Edoardo; Gennarelli, Massimo; Minelli, Alessandra; Gardella, Rita; Valsecchi, Paolo; Traversa, Michele; Bonvicini, Cristian; Vita, Antonio; Sacchetti, Emilio; Magri, Chiara

    2017-01-01

    Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically

  10. Study of GABA in healthy volunteers: pharmacokinetics and pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Junfeng eLi

    2015-11-01

    Full Text Available Preclinical studies show that GABA exerts anti-diabetic effects in rodent models of type 1 diabetes. Because little is known about its absorption and effects in humans, we investigated the pharmacokinetics and pharmacodynamics of GABA in healthy volunteers. Twelve subjects were subjected to an open-labeled, three-period trial involving sequential oral administration of placebo, 2g GABA once, and 2g GABA three times/day for seven days, with a 7-day washout between each period. GABA was rapidly absorbed (Tmax: 0.5~1 h with the half-life (t1/2 of 5 h. No accumulation was observed after repeated oral GABA administration for 7 days. Remarkably, GABA significantly increased circulating insulin levels in the subjects under either fasting (1.6-fold, single dose; 2.0-fold, repeated dose; p<0.01 or fed conditions (1.4-fold, single dose; 1.6-fold, repeated dose; p<0.01. GABA also increased glucagon levels only under fasting conditions (1.3-fold, single dose, p<0.05; 1.5-fold, repeated dose, p<0.01. However, there were no significant differences in the insulin-to-glucagon ratio and no significant change in glucose levels in these healthy subjects during the study period. Importantly, GABA significantly decreased glycated albumin levels in the repeated dosing period. Subjects with repeated dosing showed an elevated incidence of minor adverse events in comparison to placebo or the single dosing period, most notably transitional discomforts such as dizziness and sore throat. However, there were no serious adverse events observed throughout the study. Our data show that GABA is rapidly absorbed and tolerated in human beings; its endocrine effects, exemplified by increasing islet hormonal secretion, suggest potential therapeutic benefits for diabetes.

  11. Reduced γ-Aminobutyric Acid and Glutamate+Glutamine Levels in Drug-Naïve Patients with First-Episode Schizophrenia but Not in Those at Ultrahigh Risk

    Directory of Open Access Journals (Sweden)

    Junjie Wang

    2016-01-01

    Full Text Available Altered γ-aminobutyric acid (GABA, glutamate (Glu levels, and an imbalance between GABAergic and glutamatergic neurotransmissions have been involved in the pathophysiology of schizophrenia. However, it remains unclear how these abnormalities impact the onset and course of psychosis. In the present study, 21 drug-naïve subjects at ultrahigh risk for psychosis (UHR, 16 drug-naïve patients with first-episode schizophrenia (FES, and 23 healthy controls (HC were enrolled. In vivo GABA and glutamate+glutamine (Glx levels in the medial prefrontal cortex were measured using proton magnetic resonance spectroscopy. Medial prefrontal GABA and Glx levels in FES patients were significantly lower than those in HC and UHR, respectively. GABA and Glx levels in UHR were comparable with those in HC. In each group, there was a positive correlation between GABA and Glx levels. Reduced medial prefrontal GABA and Glx levels thus may play an important role in the early stages of schizophrenia.

  12. Reduced γ-Aminobutyric Acid and Glutamate+Glutamine Levels in Drug-Naïve Patients with First-Episode Schizophrenia but Not in Those at Ultrahigh Risk.

    Science.gov (United States)

    Wang, Junjie; Tang, Yingying; Zhang, Tianhong; Cui, Huiru; Xu, Lihua; Zeng, Botao; Li, Yu; Li, Gaiying; Li, Chunbo; Liu, Hui; Lu, Zheng; Zhang, Jianye; Wang, Jijun

    2016-01-01

    Altered γ -aminobutyric acid (GABA), glutamate (Glu) levels, and an imbalance between GABAergic and glutamatergic neurotransmissions have been involved in the pathophysiology of schizophrenia. However, it remains unclear how these abnormalities impact the onset and course of psychosis. In the present study, 21 drug-naïve subjects at ultrahigh risk for psychosis (UHR), 16 drug-naïve patients with first-episode schizophrenia (FES), and 23 healthy controls (HC) were enrolled. In vivo GABA and glutamate+glutamine (Glx) levels in the medial prefrontal cortex were measured using proton magnetic resonance spectroscopy. Medial prefrontal GABA and Glx levels in FES patients were significantly lower than those in HC and UHR, respectively. GABA and Glx levels in UHR were comparable with those in HC. In each group, there was a positive correlation between GABA and Glx levels. Reduced medial prefrontal GABA and Glx levels thus may play an important role in the early stages of schizophrenia.

  13. Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA.

    Science.gov (United States)

    Löscher, W; Fassbender, C P; Gram, L; Gramer, M; Hörstermann, D; Zahner, B; Stefan, H

    1993-03-01

    The novel antiepileptic drug vigabatrin (Sabril) acts by inhibiting degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), increasing the GABA concentrations in the brain. Because the GABA degrading enzyme GABA aminotransferase (GABA-T) is also present in peripheral tissues, including blood platelets, measurement of plasma GABA levels might be a useful indication of the pharmacological response to vigabatrin during therapeutic monitoring. However, because of the very low concentrations of GABA in plasma, the few methods available for plasma GABA analysis are time-consuming, difficult to perform and/or not selective enough because of potential interference with other plasma constituents. In the present study, a rapid, selective and sensitive amino acid analysis HPLC method has been developed for plasma GABA determination with fluorescence detection, using o-phthaldialdehyde as a precolumn derivatizing agent. By employing a 3 microns particle size reversed-phase column and a multi-step gradient system of two solvents, the very low endogenous concentration of GABA in human plasma could be reproducibly quantitated without interference of other endogenous compounds. Incubation of human plasma samples with GABA degrading enzyme(s) resulted in an almost total loss of the GABA peak, thus demonstrating the specificity of the method for GABA analysis. In addition to GABA and other endogenous amino acids, the HPLC method could be used to quantitate plasma levels of vigabatrin. Thus, this improved HPLC amino acid assay might be used to examine whether concomitant monitoring of plasma GABA and vigabatrin is useful for clinical purposes. This was examined in 20 epileptic patients undergoing chronic treatment with vigabatrin. The average plasma GABA level of these 20 patients did not differ significantly from non-epileptic controls. However, when epileptic patients were subdivided according to their clinical response to vigabatrin, vigabatrin responders

  14. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models.

    Science.gov (United States)

    Horder, Jamie; Petrinovic, Marija M; Mendez, Maria A; Bruns, Andreas; Takumi, Toru; Spooren, Will; Barker, Gareth J; Künnecke, Basil; Murphy, Declan G

    2018-05-25

    Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.

  15. Alterations in amino acid levels in mouse brain regions after adjunctive treatment of brexpiprazole with fluoxetine: comparison with (R)-ketamine.

    Science.gov (United States)

    Ma, Min; Ren, Qian; Fujita, Yuko; Yang, Chun; Dong, Chao; Ohgi, Yuta; Futamura, Takashi; Hashimoto, Kenji

    2017-11-01

    Brexpiprazole, a serotonin-dopamine activity modulator, is approved in the USA as an adjunctive therapy to antidepressants for treating major depressive disorders. Similar to the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine, the combination of brexpiprazole and fluoxetine has demonstrated antidepressant-like effects in animal models of depression. The present study was conducted to examine whether the combination of brexpiprazole and fluoxetine could affect the tissue levels of amino acids [glutamate, glutamine, γ-aminobutyric acid (GABA), D-serine, L-serine, and glycine] that are associated with NMDAR neurotransmission. The tissue levels of amino acids in the frontal cortex, striatum, hippocampus, and cerebellum were measured after a single [or repeated (14 days)] oral administration of vehicle, fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or a combination of the two drugs. Furthermore, we measured the tissue levels of amino acids after a single administration of the NMDAR antagonist (R)-ketamine. A single injection of the combination of fluoxetine and brexpiprazole significantly increased GABA levels in the striatum, the D-serine/L-serine ratio in the frontal cortex, and the glycine/L-serine ratio in the hippocampus. A repeated administration of the combination significantly altered the tissue levels of amino acids in all regions. Interestingly, a repeated administration of the combination significantly decreased the D-serine/L-serine ratio in the frontal cortex, striatum, and hippocampus. In contrast, a single administration of (R)-ketamine significantly increased the D-serine/L-serine ratio in the frontal cortex. These results suggested that alterations in the tissue levels of these amino acids may be involved in the antidepressant-like effects of the combination of brexpiprazole and fluoxetine.

  16. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  17. Dietary GABA and food selection by rats.

    Science.gov (United States)

    Tews, J K; Repa, J J; Harper, A E

    1986-01-01

    To obtain further information pertaining to amino acid-induced alterations in feeding behavior, studies were performed to examine the food choices made by rats fed low protein diets made more or less aversive by the addition of various amino acids. When rats were allowed to choose between two diets, they preferred a low protein control, threonine-imbalanced or nonprotein diet to one containing 2.5% gamma-aminobutyric acid (GABA). Acceptance increased when GABA content was lowered to 1.5%; rats preferred this diet when the alternative diet was made sufficiently aversive. There were large individual differences among rats selecting from pairs of unacceptable diets. Avoidance of, or preference for, a given diet is clearly affected by the relative aversive qualities of the offered pair of diets.

  18. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Ghazaleh Samoudi

    Full Text Available BACKGROUND: The vestibular system is connected to spinal, cerebellar and cerebral motor control structures and can be selectively activated with external electrodes. The resulting sensation of disturbed balance can be avoided by using stochastic stimulation patterns. Adding noise to the nervous system sometimes improves function. Small clinical trials suggest that stochastic vestibular stimulation (SVS may improve symptoms in Parkinson's disease. We have investigated this claim and possible mechanisms using the 6-hydroxydopamine (6-OHDA hemilesion model of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: Animals were tested in the accelerating rod test and the Montoya staircase test of skilled forelimb use. In 6-OHDA hemilesioned animals, SVS improved rod performance by 56±11 s. At group level L-DOPA treatment had no effect, but positive responders improved time on rod by 60±19 s. Skilled forelimb use was not altered by SVS. To investigate how SVS may influence basal ganglia network activity, intracerebral microdialysis was employed in four regions of interest during and after SVS. In presence of the γ-amino buturic acid (GABA transporter inhibitor NNC 711, SVS induced an increase in GABA to 150±15% of baseline in the substantia nigra (SN of unlesioned animals, but had no effect in the pedunculopontine nucleus (PPN, the striatum or the ventromedial thalamus (VM. Dopamine release remained stable in all areas, as did GABA and amine concentrations in the SN of unstimulated controls. Following SVS, a sustained increase in GABA concentrations was observed in the ipsilesional, but not in the contralesional SN of 6-OHDA hemilesioned rats. In contrast, L-DOPA treatment produced a similar increase of GABA in the ipsi- and contra-lesional SN. CONCLUSIONS/SIGNIFICANCE: SVS improves rod performance in a rat model of Parkinson's disease, possibly by increasing nigral GABA release in a dopamine independent way. We propose that SVS could be useful for

  19. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-hours Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Priyanka eChanana

    2016-03-01

    Full Text Available ABSTRACTRationale- Panax quinquefolius (American Ginseng is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid plays an important role in sleep wake cycle homeostasis. Thus there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems.Objective- The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-hours sleep deprivation induced anxiety like behaviour, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation.Materials and Methods- Male laca mice were sleep deprived for 72-hours by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100 and 200 mg/kg was administered alone and in combination with GABA modulators (GABA Cl- channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist for 8 days, starting five days prior to 72-hours sleep deprivation period. Various behavioural (locomotor activity, mirror chamber test, biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels, mitochondrial complexes, neuroinflammation marker (Tumour Necrosis Factor, TNF-alpha, serum corticosterone, and histopathological sections of brains were assessed. Results- 72-hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behaviour, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg treatment restored the behavioural, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of

  20. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    Science.gov (United States)

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  1. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size

    Science.gov (United States)

    Andersen, Lau Møller; Blicher, Jakob Udby

    2017-01-01

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  2. GABA Metabolism and Transport: Effects on Synaptic Efficacy

    Directory of Open Access Journals (Sweden)

    Fabian C. Roth

    2012-01-01

    Full Text Available GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.

  3. Inhalation of air polluted with gasoline vapours alters the levels of amino acid neurotransmitters in the cerebral cortex, hippocampus, and hypothalamus of the rat.

    Science.gov (United States)

    Kinawy, Amal A; Ezzat, Ahmed R; Al-Suwaigh, Badryah R

    2014-08-01

    This study was designed to investigate the impact of exposure to the vapours of two kinds of gasoline, a widely used fuel for the internal combustion engines on the levels of the amino acid neurotransmitters of the rat brain. Recent studies provide strong evidence for a causative role for traffic-related air pollution on morbidity outcomes as well as premature death (Health Effects Institute, 2009; Levy et al., 2010; von Stackelberg et al., 2013). Exposure to the vapours of gasoline or its constituents may be accidental, occupational by workers at fuel stations and factories, or through abuse as a mean of mood alteration (Fortenberry, 1985; Mc Garvey et al., 1999). Two kinds of gasoline that are common in Egypt have been used in this study. The first contains octane enhancers in the form of lead derivatives (leaded gasoline; G1) and the other contains methyl-tertiary butyl ether (MTBE) as the octane enhancer (unleaded gasoline; G2). The levels of the major excitatory (aspartic acid and glutamic acid) and the inhibitory (GABA and glycine) amino acid neurotransmitters were determined in the cerebral cortex, hippocampus, and hypothalamus. The current study revealed that the acute inhalation of air polluted with the two types of gasoline vapours (1/2 LC50 for 30 min) induced elevation in the levels of aspartic and glutamic acids along with a decrease in glycine and GABA in most studied brain areas. Chronic inhalation of both types of gasoline (a single daily 30-min session of 1/5 LC50 for 60 days) caused a significant increase in the aspartic and glutamic acid concentrations of the hippocampus without affecting the levels of GABA or glycine. Acute and chronic inhalation of either one of G1 and G2 vapours induced a disturbance and fluctuation in the levels of the free amino acids that act as excitatory and inhibitory neurotransmitters in the brain areas under investigation. These neurotransmitters are fundamental for the communicative functioning of the neurons and such

  4. A fluorescence-coupled assay for gamma aminobutyric acid (GABA reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA have been implicated in the pathogenesis of high grade neuroendocrine (NE neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1, was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  5. Synchronization by food access modifies the daily variations in expression and activity of liver GABA transaminase.

    Science.gov (United States)

    De Ita-Pérez, Dalia; Méndez, Isabel; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica; Díaz-Muñoz, Mauricio

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.

  6. Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

    Directory of Open Access Journals (Sweden)

    Dalia De Ita-Pérez

    2014-01-01

    Full Text Available Daytime restricted feeding (DRF is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO. Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.

  7. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  8. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    Science.gov (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  9. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus

    Science.gov (United States)

    Albers, H. Elliott; Walton, James C.; Gamble, Karen L.; McNeill, John K.; Hummer, Daniel L.

    2016-01-01

    Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker. PMID:27894927

  10. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  11. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  12. Alteration of plasma prednisolone levels by indomethacin and naproxen.

    OpenAIRE

    Rae, S A; Williams, I A; English, J; Baylis, E M

    1982-01-01

    Eleven patients with stable rheumatoid disease (RD) who were receiving regular corticosteroid therapy (CS) were investigated to discover the effect on plasma prednisolone levels of additional therapy with the non-steroidal anti-inflammatory (NSAI) drugs, indomethacin and naproxen. There was a highly significant (P less than 0.001) increase in free prednisolone levels after concurrent therapy with either indomethacin or naproxen for 2 weeks. Total prednisolone levels were unchanged. These resu...

  13. The Effect of Technology-Based Altered Readability Levels on Struggling Readers' Science Comprehension

    Science.gov (United States)

    Marino, Matthew T.; Coyne, Michael; Dunn, Michael

    2010-01-01

    This article reports findings from a study examining how altered readability levels affected struggling readers' (N = 288) comprehension of scientific concepts and vocabulary. Specifically, the researchers were interested in learning what effect altered readability levels have when low ability readers participate in a technology-based science…

  14. Neurotransmitters as food supplements: the effects of GABA on brain and behavior.

    Science.gov (United States)

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S; Alkemade, Anneke; Forstmann, Birte U; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.

  15. Activation induced changes in GABA: Functional MRS at 7T with MEGA-sLASER.

    Science.gov (United States)

    Chen, Chen; Sigurdsson, Hilmar P; Pépés, Sophia E; Auer, Dorothee P; Morris, Peter G; Morgan, Paul S; Gowland, Penny A; Jackson, Stephen R

    2017-08-01

    Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (-12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10min of hand-clenching, compared to an initial baseline level (GABA/tCr =0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7T. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Alteration of plasma prednisolone levels by indomethacin and naproxen.

    Science.gov (United States)

    Rae, S A; Williams, I A; English, J; Baylis, E M

    1982-01-01

    Eleven patients with stable rheumatoid disease (RD) who were receiving regular corticosteroid therapy (CS) were investigated to discover the effect on plasma prednisolone levels of additional therapy with the non-steroidal anti-inflammatory (NSAI) drugs, indomethacin and naproxen. There was a highly significant (P less than 0.001) increase in free prednisolone levels after concurrent therapy with either indomethacin or naproxen for 2 weeks. Total prednisolone levels were unchanged. These results could provide an explanation for clinical reports that these two NSAI drugs possess a steroid-sparing effect. PMID:7126420

  17. Somite chrondrogenesis: alterations in cyclic AMP levels and proteoglycan synthesis

    International Nuclear Information System (INIS)

    Vasan, Nagaswamistri; Lamb, K.M.; Heick, A.E.

    1985-01-01

    Cyclic AMP (cAMP) levels have been shown to have a positive influence on chondrogenesis in limb buds and pelvic cartilage. In the present study the level of cAMP was measured during somite chondrogenesis in vitro and found to decrease from 1.38 pmol/μg DNA on day 0 to 0.9 pmol/μg DNA on day 6. Inclusion of notochord with somites caused a marked recution, with levels decreasing from 1.41 pmol/μg DNA on day 0 to 0.36 pmol/μg DNA on day 6. Concurrently, the incorporation of radioactive sulfate into sulfated glycosaminoglycans increased from day 3 to day 6 by 38% in somite and 77% in somite-notochord explants. The aggregation of proteoglycans was analyzed by gel chromatography and found to increase with a corresponding decrease in cAMP levels. The result indicate that a decrease in cAMP levels may be necessary for chondrogenic expression in somites. (author)

  18. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  19. GABA, a natural immunomodulator of T lymphocytes

    DEFF Research Database (Denmark)

    Bjurstöm, Helen; Wang, Junyang; Ericsson, Ida

    2008-01-01

    gamma-aminobutyric acid (GABA) is the main neuroinhibitory transmitter in the brain. Here we show that GABA in the extracellular space may affect the fate of pathogenic T lymphocytes entering the brain. We examined in encephalitogenic T cells if they expressed functional GABA channels that could...

  20. Segregation of acetylcholine and GABA in the rat superior cervical ganglia: functional correlation.

    Directory of Open Access Journals (Sweden)

    Diana eElinos

    2016-04-01

    Full Text Available Sympathetic neurons have the capability to segregate their neurotransmitters (NTs and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh and other classical NTs such as gamma aminobutyric acid (GABA. Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX. We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region show larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons.

  1. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study.

    Science.gov (United States)

    Rowland, L M; Krause, B W; Wijtenburg, S A; McMahon, R P; Chiappelli, J; Nugent, K L; Nisonger, S J; Korenic, S A; Kochunov, P; Hong, L E

    2016-02-01

    Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared with older control participants. One-hundred forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia (n=31) compared with the older control (n=37) group (P=0.003) but not between the younger control (n=40) and schizophrenia (n=29) groups (P=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared with the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age.

  2. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats.

    Science.gov (United States)

    Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak

    2005-11-01

    Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.

  3. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  4. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    Science.gov (United States)

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  5. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    Science.gov (United States)

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  6. Alteration in serum osteocalcin levels in patients with diabetic nephropathy

    International Nuclear Information System (INIS)

    Salem, E.S.; Abdel-Messeih, Ph.L.; Mansour, H.H.

    2013-01-01

    The fact that bone mass density (BMD) is not useful for assessing fracture risk in diabetic patients (DM) seems problematic, because those populations are increasing in every country. Osteocalcin (OC) is synthesized by osteoblasts and is considered to be a marker of bone formation. The present study was carried out to evaluate the usefulness of OC as noninvasive biomarker of bone formation in diabetes mellitus type 2 (uncomplicated) and diabetic nephropathy. Immunoradiometric assay(IRMA) was used for the quantitative measurement of human intact OC both N-terminal and C-terminal fragments in the serum of the control and the studied groups. OC levels in the uncomplicated diabetic group were significantly lower while in the diabetic nephropathy group was significantly higher compared to control values . There was a weak negative correlation between OC and both fasting blood glucose and glycated Hb% in the diabetic group. In diabetic nephropathy patients, a weak positive correlation was observed between OC and protein creatinine ratio. The results concluded that changes in bone remodelling marker OC are present in both DM type 2 and diabetic nephropathy explaining osteopenia and osteoporosis observed in both cases.Therefore, an effective glycaemic control should be the hallmark of prevention and treatment of diabetes mellitus induced osteoporosis

  7. Cocaine Dysregulates Opioid Gating of GABA Neurotransmission in the Ventral Pallidum

    Science.gov (United States)

    Scofield, Michael D.; Rice, Kenner C.; Cheng, Kejun; Roques, Bernard P.

    2014-01-01

    The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse. PMID:24431463

  8. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients.

    Science.gov (United States)

    Arrúe, Aurora; Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; González-Torres, Miguel A; Goienetxea, Biotza; Zamalloa, Maria I; Anguiano, Juan B; Guimón, José

    2010-02-01

    We have determined the plasma (p) concentration of gamma-aminobutyric acid (GABA) and the dopamine metabolite homovanillic acid (HVA), and the pHVA/pGABA ratio in schizophrenic and bipolar patients. The research was undertaken in a geographic area with an ethnically homogeneous population. The HVA plasma concentrations were significantly elevated in the schizophrenic patients compared to the bipolar patients. The levels of pGABA was significantly lower in the two groups of patients compared to the control group, while the pHVA/pGABA ratio was significantly greater in the both groups of patients compared to the controls. As the levels of pHVA and pGABA are partially under genetic control it is better to compare their concentrations within an homogeneous population. The values of the ratio pHVA/pGABA are compatible with the idea of an abnormal dopamine-GABA interaction in schizophrenic and bipolar patients. The pHVA/pGABA ratio may be a good peripheral marker in psychiatric research.

  9. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Directory of Open Access Journals (Sweden)

    Matthew J Fogarty

    Full Text Available Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E day 13 and birth (postnatal day 0. Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study. For respiratory-based motor neurons (hypoglossal and phrenic motor pools, we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic and muscle innervations (55% decrease. By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase and muscle innervations (99% increase; however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to

  10. GABA system in schizophrenia and mood disorders. A mini review on third generation imaging studies

    Directory of Open Access Journals (Sweden)

    Chiara eChiapponi

    2016-04-01

    Full Text Available Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ, bipolar disorder (BD and major depressive disorder (MDD. We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis.In SZ unimodal studies gave mixed results, as increased, decreased or unaltered GABA levels were reported depending on region, disease phase and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients, mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signalling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ.Unimodal studies in BD revealed, again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls, nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate and N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology.Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy and functional-biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving

  11. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    Directory of Open Access Journals (Sweden)

    Evert eBoonstra

    2015-10-01

    Full Text Available The food supplement version of gamma-aminobutyric acid (GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood brain barrier (BBB, but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.

  12. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2018-02-01

    Lactobacillus brevis is an efficient cell factory for producing bioactive γ-aminobutyric acid (GABA) by its gad operon-encoded glutamic acid decarboxylase (GAD) system. However, little mechanistic insights have been reported on the effects of carbohydrate, oxygen and early acidification on GABA production machinery in Lb. brevis. In the present study, GABA production from Lb. brevis was enhanced by accessible carbohydrates. Fast growth of this organism was stimulated by maltose and xylose. However, its GABA production was highly suppressed by oxygen exposure, but was fully restored by anaerobiosis that up-regulated the expression of gad operon in Lb. brevis cells. Although the level of cytosolic acidity was suitable for the functioning of GadA and GadB, early acidification of the medium (ipH 5 and ipH 4) restored GABA synthesis strictly in aerated cells of Lb. brevis because the expression of gad operon was not up-regulated in them. We conclude that GABA production machinery in Lb. brevis could be restored by accessible carbohydrates, anaerobiosis and early acidification. This will be of interest for controlling fermentation for synthesis of GABA and manufacturing GABA-rich fermented vegetables. Copyright © 2017. Published by Elsevier Ltd.

  13. Insulin reduces neuronal excitability by turning on GABA(A channels that generate tonic current.

    Directory of Open Access Journals (Sweden)

    Zhe Jin

    Full Text Available Insulin signaling to the brain is important not only for metabolic homeostasis but also for higher brain functions such as cognition. GABA (γ-aminobutyric acid decreases neuronal excitability by activating GABA(A channels that generate phasic and tonic currents. The level of tonic inhibition in neurons varies. In the hippocampus, interneurons and dentate gyrus granule cells normally have significant tonic currents under basal conditions in contrast to the CA1 pyramidal neurons where it is minimal. Here we show in acute rat hippocampal slices that insulin (1 nM "turns on" new extrasynaptic GABA(A channels in CA1 pyramidal neurons resulting in decreased frequency of action potential firing. The channels are activated by more than million times lower GABA concentrations than synaptic channels, generate tonic currents and show outward rectification. The single-channel current amplitude is related to the GABA concentration resulting in a single-channel GABA affinity (EC(50 in intact CA1 neurons of 17 pM with the maximal current amplitude reached with 1 nM GABA. They are inhibited by GABA(A antagonists but have novel pharmacology as the benzodiazepine flumazenil and zolpidem are inverse agonists. The results show that tonic rather than synaptic conductances regulate basal neuronal excitability when significant tonic conductance is expressed and demonstrate an unexpected hormonal control of the inhibitory channel subtypes and excitability of hippocampal neurons. The insulin-induced new channels provide a specific target for rescuing cognition in health and disease.

  14. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model.

    Science.gov (United States)

    Marques, T M; Patterson, E; Wall, R; O'Sullivan, O; Fitzgerald, G F; Cotter, P D; Dinan, T G; Cryan, J F; Ross, R P; Stanton, C

    2016-06-01

    The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (Pfood intake. Insulin was decreased (P0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.

  15. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    Science.gov (United States)

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  16. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis.

    Science.gov (United States)

    Egerton, A; Modinos, G; Ferrera, D; McGuire, P

    2017-06-06

    Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy ( 1 H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1 H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABA A /benzodiazepine receptor (GABA A /BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1 H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I 2 >50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABA A /BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.

  17. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder.

    Science.gov (United States)

    Huber, Rebekah S; Kondo, Douglas G; Shi, Xian-Feng; Prescot, Andrew P; Clark, Elaine; Renshaw, Perry F; Yurgelun-Todd, Deborah A

    2018-01-01

    Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1 H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1 H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p NAA and GABA levels increased. Small sample size and lack of control for medications. These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    Science.gov (United States)

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  19. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  20. Effect of NAD on binding and liberation of 14C-GABA in administration of the convulsion producing drug

    International Nuclear Information System (INIS)

    Fomenko, A.I.; Stepanenko, S.P.; Parkhomets, P.K.; Donchenko, G.V.

    1993-01-01

    Administration of corazole into animals led to a decrease in content of NAD and gamma-aminobutyric acid (GABA) in brain. Under these conditions, binding of 14 C-GABA was increased and its liberation was inhibited in the synaptosomes of the brain cortex. Additional administration of incotinamide, accompanied by considerable increase in content of NAD and GABA, caused a decrease in accumulation of exogenous GABA in the synaptosomes and removed the effects produced by the convulsant agent. Kinetics of 14 C-GABA binding in the presence of NAD demonstrated that the more effective inhibition of the binding occurred in the animals treated with the convulsant drug. NAD appears to affect the GABA-ergic transmission at the postsynaptic level

  1. Decreased Hepatocyte Growth Factor (HGF) and Gamma Aminobutyric Acid (GABA) in Individuals with Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Russo, Anthony J; Pietsch, Stefanie C

    2013-01-01

    There is support for the role of gamma aminobutyric acid (GABA) in the etiology of mood disorders. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF and GABA as well as symptom severity in individuals with obsessive-compulsive disorder (OCD). Plasma from 15 individuals with OCD (9 males, 6 females;, mean age 38.7 years) and 17 neurotypical controls (10 males, 7 females; mean age 35.2 years) was assessed for HGF, GABA, urokinase plasminogen activator (uPA), and urokinase plasminogen activator receptor (uPAR) concentration using enzyme-linked immunosorbest assays ELISAs. Symptom severity was assessed in these OCD individuals and compared with HGF and GABA concentrations. In this preliminary study, individuals with OCD had significantly decreased HGF levels, decreased plasma levels of GABA and decreased uPA. We found that both uPA and uPAR levels correlate with HGF. Both low uPA and low uPAR levels correlate with high symptom severity in individuals with OCD. Low GABA levels in OCD individuals also correlate with high symptom severity. These results demonstrate a preliminary association between HGF, GABA, uPA levels, and OCD and suggest that plasma GABA and uPA levels are related to symptom severity in individuals with OCD.

  2. GABA interaction with lipids in organic medium

    International Nuclear Information System (INIS)

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-01-01

    The interaction of 3 H-GABA and 14 C-glutamate with lipids in an aqueous organic partition system was studied. With this partition system 3 H-GABA and 14 C-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between 3 H-GABA-lipids. The apparent dissociation constants (K/sub d/) for 3 H-GABA-lipids or 14 C-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, β-alanine and glycine displaced 3 H-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 μM were required and in the partition system 3 H-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables

  3. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Maroschik, Belinda; Gürtler, Anne; Krämer, Anne; Rößler, Ute; Gomolka, Maria; Hornhardt, Sabine; Mörtl, Simone; Friedl, Anna A

    2014-01-01

    Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them. A lymphoblastoid cell line established from a normal donor was used to screen for alterations in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as acetylation at H3K9, H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 15 min, 1 h and 24 h after irradiation with 2 Gy and 10 Gy. The variability of alterations in acetylation marks was in addition investigated in a panel of lymphoblastoid cell lines with differing radiosensitivity established from lung cancer patients. The screening procedure demonstrated consistent hypomethylation at H3K4me3 and hypoacetylation at all acetylation marks tested. In the panel of lymphoblastoid cell lines, however, a high degree of inter-individual variability became apparent. Radiosensitive cell lines showed more pronounced and longer lasting H4K16 hypoacetylation than radioresistant lines, which correlates with higher levels of residual γ-H2AX foci after 24 h. So far, the factors affecting extent and duration of radiation-induced histone alterations are poorly defined. The present work hints at a high degree of inter-individual variability and a potential correlation of DNA damage repair capacity and alterations in PTM levels

  4. Altered level of consciousness: evidence-based management in the emergency department [digest].

    Science.gov (United States)

    Song, Joo Lee; Wang, Vincent J; Vazquez, Michelle N

    2017-01-22

    A child who presents to the emergency department with an altered level of consciousness can be clinically unstable and can pose a great diagnostic challenge. The emergency clinician must quickly develop a wide differential of possible etiologies in order to administer potentially life-saving medications or interventions. The history, physical examination, and appropriate diagnostic tests can aid greatly in rapidly narrowing the differential diagnosis. Once initial stabilization, workup, and first-line interventions are completed, most patients who present with unresolved or unidentified altered level of consciousness should be admitted for further evaluation and close monitoring. This issue provides a review of the etiologies of altered level of consciousness as well as guidance for the management and disposition of patients with this condition. [Points & Pearls is a digest of Pediatric Emergency Medicine Practice].

  5. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  6. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    International Nuclear Information System (INIS)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-01-01

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1 H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  7. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses

    Directory of Open Access Journals (Sweden)

    E. Popova

    2014-01-01

    Full Text Available In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG. The role of gamma-aminobutyric acid (GABA, acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.

  8. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  9. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice.

    Science.gov (United States)

    Nguyen, Hoang Thi Thanh; Bhattarai, Janardhan Prasad; Park, Soo Joung; Lee, Jeong Chae; Cho, Dong Hyu; Han, Seong Kyu

    2015-07-01

    Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were

  10. Determination and comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of Chinese tea.

    Science.gov (United States)

    Zhao, Ming; Ma, Yan; Wei, Zhen-zhen; Yuan, Wen-xia; Li, Ya-li; Zhang, Chun-hua; Xue, Xiao-ting; Zhou, Hong-jie

    2011-04-27

    Two previous studies have reported that pu-erh tea contains a high level of γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system and has several physiological functions. However, two other researchers have demonstrated that the GABA content of several pu-erh teas was low. Due to the high value and health benefits of GABA, analysis of mass-produced pu-erh tea is necessary to determine whether it is actually enriched with GABA. A high-performance liquid chromatography (HPLC) method was developed for the determination of GABA in tea, the results of which were verified by amino acid analysis using an Amino Acid Analyzer (AAA). A total of 114 samples of various types of Chinese tea, including 62 pu-erh teas, 13 green teas, 8 oolong teas, 8 black teas, 3 white teas, 4 GABA teas, and 16 process samples from two industrial fermentations of pu-erh tea (including the raw material and the first to seventh turnings), were analyzed using HPLC. Statistical analysis demonstrated that the GABA content in pu-erh tea was significantly lower than that in other types of tea (p GABA content decreased during industrial fermentation of pu-erh tea (p GABA was not a major bioactive constituent and resolved the disagreement GABA content in pu-erh tea. In addition, the GABA content in white tea was found to be significantly higher than that in the other types of tea (p GABA-enriched white tea.

  11. GABA not only a neurotransmitter: osmotic regulation by GABAAR signalling

    Directory of Open Access Journals (Sweden)

    Tiziana eCesetti

    2012-01-01

    Full Text Available In neurons the anionic channel γ-aminobutyric (GABA A receptor (GABAAR plays a central role in mediating both the neurotrophic and neurotransmitter role of GABA. Activation of this receptor by GABA also affects the function of non-neuronal cells in the central nervous system (CNS, as GABAARs are expressed in mature macroglia and in almost all progenitor types, including neural stem cells. The relevance of GABA signalling in non-neuronal cells has been comparatively less investigated than in neurons. However, it is becoming increasingly evident that these cells are direct targets of GABA regulation. In non-neuronal cells GABAAR activation leads to influx or efflux of chloride (Cl- depending on the electrochemical gradient. Ion transport is indissolubly associated to water fluxes across the plasma membrane and plays a key role in brain physiology. Therefore, GABAAR could affect osmotic tension in the brain by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signalling could affect the movement of water also by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. This regulation has consequences at the cellular level as it modulates cell volume and activates multiple intracellular signalling mechanisms important for cell proliferation, maturation and survival. It may also have consequences at the systemic level. For example, it may indirectly control neuronal excitability, by regulating the extracellular space and interstitial concentration of Cl-, and contribute to brain water homeostasis. Therefore, GABAergic osmotic regulation should be taken into account during the treatment of pathologies requiring the administration of GABAAR modulators and for the development of therapies for diseases causing water unbalance in the brain.

  12. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase

    Science.gov (United States)

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-01-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca2+-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca2+ increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca2+-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca2+-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes. PMID:24799560

  13. GABA abnormalities in schizophrenia: a methodological review of in vivo studies.

    Science.gov (United States)

    Taylor, Stephan F; Tso, Ivy F

    2015-09-01

    Abnormalities of GABAergic interneurons are some of the most consistent findings from post-mortem studies of schizophrenia. However, linking these molecular deficits with in vivo observations in patients - a critical goal in order to evaluate interventions that would target GABAergic deficits - presents a challenge. Explanatory models have been developed based on animal work and the emerging experimental literature in schizophrenia patients. This literature includes: neuroimaging ligands to GABA receptors, magnetic resonance spectroscopy (MRS) of GABA concentration, transcranial magnetic stimulation of cortical inhibitory circuits and pharmacologic probes of GABA receptors to dynamically challenge the GABA system, usually in combination with neuroimaging studies. Pharmacologic challenges have elicited behavioral changes, and preliminary studies of therapeutic GABAergic interventions have been conducted. This article critically reviews the evidence for GABAergic dysfunction from each of these areas. These methods remain indirect measures of GABAergic function, and a broad array of dysfunction is linked with the putative GABAergic measures, including positive symptoms, cognition, emotion, motor processing and sensory processing, covering diverse brain areas. Measures of receptor binding have not shown replicable group differences in binding, and MRS assays of GABA concentration have yielded equivocal evidence of large-scale alteration in GABA concentration. Overall, the experimental base remains sparse, and much remains to be learned about the role of GABAergic interneurons in healthy brains. Challenges with pharmacologic and functional probes show promise, and may yet enable a better characterization of GABAergic deficits in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies.

    Science.gov (United States)

    Rheims, Sylvain; Holmgren, Carl D; Chazal, Genevieve; Mulder, Jan; Harkany, Tibor; Zilberter, Tanya; Zilberter, Yuri

    2009-08-01

    In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.

  15. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.

    Science.gov (United States)

    Ando, Akira; Nakamura, Toshihide

    2016-10-01

    γ-Aminobutyric acid (GABA) is consumed by yeasts during fermentation. To prevent GABA reduction in bread dough, a baker's yeast mutant AY77 deficient in GABA assimilation was characterized and utilized for wheat dough fermentation. An amber mutation in the DAL81 gene, which codes for a positive regulator of multiple nitrogen degradation pathways, was found in the AY77 strain. The qPCR analyses of genes involved in nitrogen utilization showed that transcriptional levels of the UGA1 and DUR3 genes encoding GABA transaminase and urea transporter, respectively, are severely decreased in the AY77 cells. The AY77 strain cultivated by fed-batch culture using cane molasses exhibited inferior gas production during dough fermentation compared to that of wild-type strain AY13. However, when fed with molasses containing 0.5% ammonium sulfate, the mutant strain exhibited gas production comparable to that of the AY13 strain. In contrast to the AY13 strain, which completely consumed GABA in dough within 5 h, the AY77 strain consumed no GABA under either culture condition. Dough fermentation with the dal81 mutant strain should be useful for suppression of GABA reduction in breads. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    Science.gov (United States)

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  17. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade

    Directory of Open Access Journals (Sweden)

    Gregg W. Crabtree

    2016-10-01

    Full Text Available Proline dehydrogenase (PRODH, which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease.

  18. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.

    Science.gov (United States)

    Crabtree, Gregg W; Park, Alan J; Gordon, Joshua A; Gogos, Joseph A

    2016-10-04

    Proline dehydrogenase (PRODH), which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana

    OpenAIRE

    Jalil, Syed Uzma; Ahmad, Iqbal; Ansari, Mohammad Israil

    2017-01-01

    GABA-transaminase (GABA-T) involved in carbon and nitrogen metabolism during the plant development process via GABA shunt and GABA-T mutant, which is defective in GABA catabolism, is ideal model to examine the role of GABA-T in plant development and leaf senescence of plant. We have characterized GABA transaminase knock out mutant pop2-1 that is transition and pop2-3 which is T-DNA insertion mutant of Arabidopsis thaliana during various stress conditions.The GABA-T knockout mutant plants disp...

  20. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes.

    Science.gov (United States)

    Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang

    2017-06-01

    This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.

  1. The effects of altered levels of UV-B radiation on an Antarctic grass and lichen

    NARCIS (Netherlands)

    Lud, D.; Huiskes, A.H.L.; Moerdijk-Poortvliet, T.C.W.; Rozema, J.J.

    2001-01-01

    We report a long-term experiment on the photosynthetic response of natural vegetation of Deschampsia antarctica (Poaceae) and Turgidosculum complicatulum (Lichenes) to altered UV-B levels on Leonie Island, Antarctica. UV-B above the vegetation was reduced by filter screens during two seasons. Half

  2. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, C.S. [Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I. [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-02

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  3. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    International Nuclear Information System (INIS)

    Bitencourt, C.S.; Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I.

    2012-01-01

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production

  4. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Kegeles, Lawrence S; Mao, Xiangling; Stanford, Arielle D; Girgis, Ragy; Ojeil, Najate; Xu, Xiaoyan; Gil, Roberto; Slifstein, Mark; Abi-Dargham, Anissa; Lisanby, Sarah H; Shungu, Dikoma C

    2012-05-01

    Postmortem studies have found evidence of γ-aminobutyric acid (GABA) deficits in fast-spiking, parvalbumin-positive interneurons in the prefrontal cortex in schizophrenia. Magnetic resonance spectroscopy studies in unmedicated patients have reported glutamine or glutamate-glutamine (Glx) elevations in this region. Abnormalities in these transmitters are thought to play a role in cognitive impairments in the illness. To measure GABA and Glx levels in vivo in 2 prefrontal brain regions in unmedicated and medicated patients with schizophrenia and healthy controls. Case-control study. Inpatient psychiatric research unit and associated outpatient clinic. Sixteen unmedicated patients with schizophrenia, 16 medicated patients, and 22 healthy controls matched for age, sex, ethnicity, parental socioeconomic status, and cigarette smoking. Proton magnetic resonance spectroscopy with a 3-T system and the J-edited spin-echo difference method. The GABA and Glx levels were measured in the dorsolateral and medial prefrontal cortex and normalized to the simultaneously acquired water signal. Working memory performance was assessed in all subjects. The GABA and Glx concentrations determined by proton magnetic resonance spectroscopy. In the medial prefrontal cortex region, 30% elevations were found in GABA (P = .02) and Glx (P = .03) levels in unmedicated patients compared with controls. There were no alterations in the medicated patients or in either group in the dorsolateral prefrontal cortex. Both regions showed correlations between GABA and Glx levels in patients and controls. No correlations with working memory performance were found. To our knowledge, this study presents the first GABA concentration measurements in unmedicated patients with schizophrenia, who showed elevations in both GABA and Glx levels in the medial prefrontal cortex but not the dorsolateral prefrontal cortex. Medicated patients did not show these elevations, suggesting possible normalization of levels with

  5. Chronic scream sound exposure alters memory and monoamine levels in female rat brain.

    Science.gov (United States)

    Hu, Lili; Zhao, Xiaoge; Yang, Juan; Wang, Lumin; Yang, Yang; Song, Tusheng; Huang, Chen

    2014-10-01

    Chronic scream sound alters the cognitive performance of male rats and their brain monoamine levels, these stress-induced alterations are sexually dimorphic. To determine the effects of sound stress on female rats, we examined their serum corticosterone levels and their adrenal, splenic, and thymic weights, their cognitive performance and the levels of monoamine neurotransmitters and their metabolites in the brain. Adult female Sprague-Dawley rats, with and without exposure to scream sound (4h/day for 21 day) were tested for spatial learning and memory using a Morris water maze. Stress decreased serum corticosterone levels, as well as splenic and adrenal weight. It also impaired spatial memory but did not affect the learning ability. Monoamines and metabolites were measured in the prefrontal cortex (PFC), striatum, hypothalamus, and hippocampus. The dopamine (DA) levels in the PFC decreased but the homovanillic acid/DA ratio increased. The decreased DA and the increased 5-hydroxyindoleacetic acid (5-HIAA) levels were observed in the striatum. Only the 5-HIAA level increased in the hypothalamus. In the hippocampus, stress did not affect the levels of monoamines and metabolites. The results suggest that scream sound stress influences most physiologic parameters, memory, and the levels of monoamine neurotransmitter and their metabolites in female rats. Copyright © 2014. Published by Elsevier Inc.

  6. The GABA uptake inhibitor beta-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis.

    Science.gov (United States)

    Ishiwari, Keita; Mingote, Susana; Correa, Merce; Trevitt, Jennifer T; Carlson, Brian B; Salamone, John D

    2004-12-30

    Substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia that receives GABAergic projections from neostriatum and globus pallidus. Previous research has shown that local pharmacological manipulations of GABA in SNr can influence tremulous jaw movements in rats. Tremulous jaw movements are defined as rapid vertical deflections of the lower jaw that resemble chewing but are not directed at a particular stimulus, and evidence indicates that these movements share many characteristics with parkinsonian tremor in humans. In order to investigate the role of GABA in motor functions related to tremor, the present study tested the GABA uptake blocker beta-alanine for its ability to reduce pilocarpine-induced tremulous jaw movements. In a parallel experiment, the effect of an active dose of beta-alanine on dialysate levels of GABA in SNr was assessed using microdialysis methods. GABA levels in dialysis samples were measured using high performance liquid chromatography with electrochemical detection. beta-Alanine (250-500 mg/kg) significantly reduced tremulous jaw movements induced by pilocarpine (4.0 mg/kg). Moreover, systemic administration of beta-alanine at a dose that reduced tremulous jaw movements (500 mg/kg) resulted in a substantial increase in extracellular levels of GABA in SNr compared to the pre-injection baseline. Thus, the present results are consistent with the hypothesis that GABAergic tone in SNr plays a role in the regulation of tremulous jaw movements. This research may lead to a better understanding of how parkinsonian symptoms are modulated by SNr GABA mechanisms.

  7. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, P; Frølund, B; Frydenvang, Karla Andrea

    2000-01-01

    demonstrated that neuronal and glial GABA transport mechanisms have dissimilar substrate specificities. With GABA transport mechanisms as pharmacological targets, strategies for pharmacological interventions with the purpose of stimulating GABA neurotransmission seem to be (1) effective blockade of neuronal......, tiagabine (49) containing (R)-nipecotic acid (24) as the GABA transport carrier-recognizing structure element, is now marketed as an antiepileptic agent....

  9. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  10. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Directory of Open Access Journals (Sweden)

    Meeri Eeva-Liisa Mäkinen

    2018-03-01

    Full Text Available The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging and temporal resolution microelectrode array (MEA. We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

  11. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Science.gov (United States)

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  12. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression.

    Science.gov (United States)

    Yoon, Jong H; Maddock, Richard J; Rokem, Ariel; Silver, Michael A; Minzenberg, Michael J; Ragland, J Daniel; Carter, Cameron S

    2010-03-10

    The neural mechanisms underlying cognitive deficits in schizophrenia remain essentially unknown. The GABA hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We used magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n = 16), we found a highly significant positive correlation (r = 0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r = -0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS.

  13. Altered brain arginine metabolism in schizophrenia.

    Science.gov (United States)

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-08-16

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease.

  14. Endogenous concentrations, pharmacokinetics, and selected pharmacodynamic effects of a single dose of exogenous GABA in horses.

    Science.gov (United States)

    Knych, H K; Steinmetz, S J; McKemie, D S

    2015-04-01

    The anti-anxiety and calming effects following activation of the GABA receptor have been exploited in performance horses by administering products containing GABA. The primary goal of the study reported here was to describe endogenous concentrations of GABA in horses and the pharmacokinetics, selected pharmacodynamic effects, and CSF concentrations following administration of a GABA-containing product. The mean (±SD) endogenous GABA level was 36.4 ± 12.5 ng/mL (n = 147). Sixteen of these horses received a single intravenous and oral dose of GABA (1650 mg). Blood, urine, and cerebrospinal fluid (n = 2) samples were collected at time 0 and at various times for up to 48 h and analyzed using LC-MS. Plasma clearance and volume of distribution was 155.6 and 147.6 L/h and 0.154 and 7.39 L for the central and peripheral compartments, respectively. Terminal elimination half-life was 22.1 (intravenous) and 25.1 (oral) min. Oral bioavailability was 9.81%. Urine GABA concentrations peaked rapidly returning to baseline levels by 3 h. Horses appeared behaviorally unaffected following oral administration, while sedative-like changes following intravenous administration were transient. Heart rate was increased for 1 h postintravenous administration, and gastrointestinal sounds decreased for approximately 30 min following both intravenous and oral administration. Based on a limited number of horses and time points, exogenously administered GABA does not appear to enter the CSF to an appreciable extent. © 2014 John Wiley & Sons Ltd.

  15. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels

    OpenAIRE

    Brembs, Björn; Christiansen, F.; Pflüger, J.; Duch, C.

    2007-01-01

    Insect flight is one of the fastest, most intense and most energy-demanding motor behaviors. It is modulated on multiple levels by the biogenic amine octopamine. Within the CNS, octopamine acts directly on the flight central pattern generator, and it affects motivational states. In the periphery, octopamine sensitizes sensory receptors, alters muscle contraction kinetics, and enhances flight muscle glycolysis. This study addresses the roles for octopamine and its precursor tyramine in flight ...

  16. Early life stress is a risk factor for excessive alcohol drinking and impulsivity in adults and is mediated via a CRF/GABA(A) mechanism.

    Science.gov (United States)

    Gondré-Lewis, Marjorie C; Warnock, Kaitlin T; Wang, Hong; June, Harry L; Bell, Kimberly A; Rabe, Holger; Tiruveedhula, Veera Venkata Naga Phani Babu; Cook, James; Lüddens, Hartmut; Aurelian, Laure; June, Harry L

    2016-01-01

    Childhood stress and trauma are associated with substance use disorders in adulthood, but the neurological changes that confer increased vulnerability are largely unknown. In this study, maternal separation (MS) stress, restricted to the pre-weaning period, was used as a model to study mechanisms of protracted effects of childhood stress/traumatic experiences on binge drinking and impulsivity. Using an operant self-administration model of binge drinking and a delay discounting assay to measure impulsive-like behavior, we report that early life stress due to MS facilitated acquisition of binge drinking and impulsivity during adulthood in rats. Previous studies have shown heightened levels of corticotropin releasing factor (CRF) after MS, and here, we add that MS increased expression levels of GABA(A) α2 subunit in central stress circuits. To investigate the precise role of these circuits in regulating impulsivity and binge drinking, the CRF1 receptor antagonist antalarmin and the novel GABA(A) α2 subunit ligand 3-PBC were infused into the central amygdala (CeA) and medial prefrontal cortex (mPFC). Antalarmin and 3-PBC at each site markedly reduced impulsivity and produced profound reductions on binge-motivated alcohol drinking, without altering responding for sucrose. Furthermore, whole-cell patch-clamp studies showed that low concentrations of 3-PBC directly reversed the effect of relatively high concentrations of ethanol on α2β3γ2 GABA(A) receptors, by a benzodiazepine site-independent mechanism. Together, our data provide strong evidence that maternal separation, i.e. early life stress, is a risk factor for binge drinking, and is linked to impulsivity, another key risk factor for excessive alcohol drinking. We further show that pharmacological manipulation of CRF and GABA receptor signaling is effective to reverse binge drinking and impulsive-like behavior in MS rats. These results provide novel insights into the role of the brain stress systems in the

  17. Alterations of neurotransmitter norepinephrine and gamma-aminobutyric acid correlate with murine behavioral perturbations related to bisphenol A exposure.

    Science.gov (United States)

    Ogi, Hiroshi; Itoh, Kyoko; Ikegaya, Hiroshi; Fushiki, Shinji

    2015-09-01

    Humans are commonly exposed to endocrine-disrupting chemical bisphenol A (BPA), giving rise to concern over the psychobehavioral effects of BPA. The aim of this study was to investigate the effects of prenatal and lactational BPA exposure on neurotransmitters, including norepinephrine (NE), gamma-aminobutyric acid (GABA) and glutamate (Glu), and to assess the association with behavioral phenotypes. C57BL/6J mice were orally administered with BPA (500 μg/bwkg/day) or vehicle daily from embryonic day 0 to postnatal week 3 (P3W), through their dams. The IntelliCage behavioral experiments were conducted from P11W to P15W. At around P14-16W, NE, GABA and Glu levels in nine brain regions were measured by high performance liquid chromatography. Furthermore, the associations between the neurotransmitter levels and the behavioral indices were statistically analyzed. In females exposed to BPA, the GABA and Glu levels in almost all regions, and the NE levels in the cortex, hypothalamus and thalamus were higher than those in the controls. In males exposed to BPA, the GABA levels in the amygdala and hippocampus showed lower values, while Glu levels were higher in some regions, compared with the controls. In regard to the associations, the number of "diurnal corner visits without drinking" was correlated with the NE levels in the cortex and thalamus in females. The "nocturnal corner visit duration without drinking" was correlated with the GABA level in the hippocampus in males. These results suggest that prenatal and lactational exposure to low doses of BPA might modulate the NE, GABA and Glu systems, resulting in behavioral alterations. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  19. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  20. Genetics Home Reference: GABA-transaminase deficiency

    Science.gov (United States)

    ... Description GABA-transaminase deficiency is a brain disease (encephalopathy) that begins in infancy. Babies with this disorder ... genetic testing? What is precision medicine? What is newborn screening? New Pages LMNA-related congenital muscular dystrophy ...

  1. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    International Nuclear Information System (INIS)

    Dasari, Sameera; Yuan, Yukun

    2009-01-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca 2+ ] e or application of the GABA A receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.

  2. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    Science.gov (United States)

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  3. In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients.

    Science.gov (United States)

    Frankle, W Gordon; Cho, Raymond Y; Prasad, Konasale M; Mason, N Scott; Paris, Jennifer; Himes, Michael L; Walker, Christopher; Lewis, David A; Narendran, Rajesh

    2015-11-01

    Postmortem studies in schizophrenia reveal alterations in gene products that regulate the release and extracellular persistence of GABA. However, results of in vivo studies of schizophrenia measuring total tissue GABA with magnetic resonance spectroscopy (MRS) have been inconsistent. Neither the postmortem nor the MRS studies directly address the physiological properties of GABA neurotransmission. The present study addresses this question through an innovative positron emission tomography (PET) paradigm. The binding of [(11)C]flumazenil, a benzodiazepine-specific PET radiotracer, was measured before and after administration of tiagabine (0.2 mg/kg of body weight), a GABA membrane transporter (GAT1) blocker, in 17 off-medication patients with schizophrenia and 22 healthy comparison subjects. Increased extracellular GABA, through GAT1 blockade, enhances the affinity of GABAA receptors for benzodiazepine ligands, detected as an increase in [(11)C]flumazenil tissue distribution volume (VT). [(11)C]Flumazenil VT was significantly increased across all cortical brain regions in the healthy comparison group but not in the schizophrenia group. This lack of effect was most prominent in the antipsychotic-naive schizophrenia group. In this subgroup, [(11)C]flumazenil ΔVT in the medial temporal lobe was correlated with positive symptoms, and baseline [(11)C]flumazenil VT in the medial temporal lobe was negatively correlated with visual learning. In the healthy comparison group but not the schizophrenia group, [(11)C]flumazenil ΔVT was positively associated with gamma-band oscillation power. This study demonstrates, for the first time, an in vivo impairment in GABA transmission in schizophrenia, most prominent in antipsychotic-naive individuals. The impairment in GABA transmission appears to be linked to clinical symptoms, disturbances in cortical oscillations, and cognition.

  4. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER High pressure germination of Bacillus subtilis spores with W911NF-09-l-0286 alterations in levels and types of...A moderate high pressure (mHP) of 150 megaPascals (MPa) triggers germination of Bacillus subtilis spores via germinant receptors (GRs), while...germination by a very high pressure (vHP) of550 MPa is GR-independent. The mHP and vHP germination of Bacillus subtilis spores with different levels ofGRs

  5. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment.

    Science.gov (United States)

    Huang, Dandan; Liu, Dan; Yin, Jianzhong; Qian, Tianyi; Shrestha, Susan; Ni, Hongyan

    2017-07-01

    To explore the changes of glutamate-glutamine (Glx) and gamma-aminobutyric acid (GABA) in the brain in normal old age and cognitive impairment using magnetic resonance spectroscopy (MRS). Seventeen normal young controls (NYC), 15 normal elderly controls (NEC), 21 patients with mild cognitive impairment (MCI) and 17 with Alzheimer disease (AD) patients were included in this study. Glx and GABA+ levels in the anterior cingulate cortex (ACC) and right hippocampus (rHP) were measured by using a MEGA-PRESS sequence. Glx/Cr and GABA+/Cr ratios were compared between NYC and NEC and between the three elderly groups using analysis of covariance (ANCOVA); the tissue fractions of voxels were used as covariates. The relationships between metabolite ratios and cognitive performance were analysed using Spearman correlation coefficients. For NEC and NYC groups, Glx/Cr and GABA+/Cr ratios were lower in NEC in ACC and rHP. For the three elderly groups, Glx/Cr ratio was lower in AD in ACC compared to NEC and MCI; Glx/Cr ratio was lower in AD in rHP compared to NEC. There was no significant decrease for GABA+/Cr ratio. Glx and GABA levels may decrease simultaneously in normal aged, and Glx level decreased predominantly in AD, and it is helpful in the early diagnosis of AD. • Glx and GABA levels may decrease simultaneously in normal aged. • Glx level may decrease predominantly in Alzheimer disease. • The balance in excitatory-inhibitory systems may be broken in AD. • Decreased Glx level may be helpful in early diagnosis of AD.

  6. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.

    Science.gov (United States)

    Yoon, Jong H; Grandelis, Anthony; Maddock, Richard J

    2016-11-16

    behavioral capabilities in humans, this finding could have a significant impact on our understanding of the neural basis of complex human behavior. Furthermore, this finding suggests that efforts to preserve or increase brain GABA levels could be fruitful in remediating WM-related deficits associated with neuropsychiatric conditions. Copyright © 2016 the authors 0270-6474/16/3611788-07$15.00/0.

  7. Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells

    Science.gov (United States)

    Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.

    2017-07-01

    Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.

  8. The role of GABA in the hypoxia tolerance of the epaulette shark

    International Nuclear Information System (INIS)

    Wise, G.; Mulvey, J.; Renshaw, G.M.C.; Dodd, P.R.

    1998-01-01

    Full text: The epaulette shark responds to hypoxia with brain hypometabolism which is correlated with increased levels of gamma-aminobutyric acid (GABA). We examined GABA-like immunoreactivity (GABA-IR) and the density and binding characteristics of GABA A receptors in the Epaulette shark brainstem. These studies were conducted to investigate changes in response to hypoxia. Experimental animals were exposed to eight cycles of an extreme hypoxic regimen (5% of normoxia). Animals were anaesthetised with 80mg/L of MS222 and the brain was dissected and processed either for immunohistochemistry or receptor ligand binding. Membranes were prepared at 4 deg C according to a previously reported protocol and the binding characteristics of [ 3 H]flunitrazeparn ([ 3 H]FNZ) were examined using an in vitro centrifugation assay. We report on the effect of hypoxia on specific [ 3 H]FNZ binding characteristics. GABA-IR was detected using a primary antibody dilution of 1:15 000 and the Vector ABC method. We report that an overall increase in the optical density of GABA-IR occurs with significant increases in three out of the four brainstem nuclei examined in experimental animals. The results of these studies are discussed in conjunction with the hypoxia-tolerance .of the epaulette shark. Copyright (1998) Australian Neuroscience Society

  9. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    Science.gov (United States)

    Carvill, Gemma L.; McMahon, Jacinta M.; Schneider, Amy; Zemel, Matthew; Myers, Candace T.; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L.; Leventer, Richard J.; Møller, Rikke S.; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ∼4% of unsolved MAE cases. PMID:25865495

  10. Novel GABA receptor pesticide targets.

    Science.gov (United States)

    Casida, John E; Durkin, Kathleen A

    2015-06-01

    The γ-aminobutyric acid (GABA) receptor has four distinct but overlapping and coupled targets of pesticide action importantly associated with little or no cross-resistance. The target sites are differentiated by binding assays with specific radioligands, resistant strains, site-directed mutagenesis and molecular modeling. Three of the targets are for non-competitive antagonists (NCAs) or channel blockers of widely varied chemotypes. The target of the first generation (20th century) NCAs differs between the larger or elongated compounds (NCA-IA) including many important insecticides of the past (cyclodienes and polychlorocycloalkanes) or present (fiproles) and the smaller or compact compounds (NCA-IB) highly toxic to mammals and known as cage convulsants, rodenticides or chemical threat agents. The target of greatest current interest is designated NCA-II for the second generation (21st century) of NCAs consisting for now of isoxazolines and meta-diamides. This new and uniquely different NCA-II site apparently differs enough between insects and mammals to confer selective toxicity. The fourth target is the avermectin site (AVE) for allosteric modulators of the chloride channel. NCA pesticides vary in molecular surface area and solvent accessible volume relative to avermectin with NCA-IBs at 20-22%, NCA-IAs at 40-45% and NCA-IIs at 57-60%. The same type of relationship relative to ligand-docked length is 27-43% for NCA-IBs, 63-71% for NCA-IAs and 85-105% for NCA-IIs. The four targets are compared by molecular modeling for the Drosophila melanogaster GABA-R. The principal sites of interaction are proposed to be: pore V1' and A2' for NCA-IB compounds; pore A2', L6' and T9' for NCA-IA compounds; pore T9' to S15' in proximity to M1/M3 subunit interface (or alternatively an interstitial site) for NCA-II compounds; and M1/M3, M2 interfaces for AVE. Understanding the relationships of these four binding sites is important in resistance management and in the discovery and use

  11. GABA(A) receptor- and GABA transporter polymorphisms and risk for essential tremor

    DEFF Research Database (Denmark)

    Thier, S; Kuhlenbäumer, G; Lorenz, D

    2011-01-01

    Background:  Clinical features and animal models of essential tremor (ET) suggest gamma-aminobutyric acid A receptor (GABA(A) R) subunits and GABA transporters as putative candidate genes. Methods:  A total of 503 ET cases and 818 controls were investigated for an association between polymorphisms...

  12. FEMALE MICE ARE RESISTANT TO Fabp1 GENE ABLATION-INDUCED ALTERATIONS IN BRAIN ENDOCANNABINOID LEVELS

    Science.gov (United States)

    Martin, Gregory G.; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K.; Dangott, Lawrence J.; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J.; Kier, Ann B.; Schroeder, Friedhelm

    2017-01-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing ECs, i.e arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: i) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; ii) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or iii) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559

  13. Gaba /SUB a/ vs gaba /SUB b/ modulation of septal-hippocampal interconnections

    International Nuclear Information System (INIS)

    Blaker, W.D.; Cheney, D.L.; Costa, E.

    1986-01-01

    The authors perform studies to correlate pharmacologically induced decreases in the hippocampal TR /SUB ACh/ with changes in extinction of a foodreinforced lever press response. The authors differentiate the behavioral effects elicited by GABAergic vs. non-GABAergic inhibition of hippocampal cholinergic activity as well as show that GABA /SUB A/ receptor activation in the septum produces a behavioral-biochemical profile different from that elicited by GABA /SUB B/ receptor activation. To characterize GABA receptors tritium-GABA binding was performed in rats injected bilaterally with 1 ug kainic acid into the ventral and dorsal hippocampi. Representative cumulative recorder tracings showing the effect of varius intraseptal doses of the GABA /SUB A/ agonist muscimol on extinction after CRF training are show for one experiment. The most marked differences between muscimol and saline treated rats were seen in the extinction response patterns

  14. The effect of altered 5-hydroxytryptamine levels on beta-endorphin

    Science.gov (United States)

    Soliman, Karam F. A.; Mash, Deborah C.; Walker, Charles A.

    1986-01-01

    The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin 5-prime, 7-prime-dihydroxytryptamine with desmethylimipramine pretreatment significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.

  15. Altered expression of genes involved in GABAergic transmission and neuromodulation of granule cell activity in the cerebellum of schizophrenia patients.

    Science.gov (United States)

    Bullock, W Michael; Cardon, Karen; Bustillo, Juan; Roberts, Rosalinda C; Perrone-Bizzozero, Nora I

    2008-12-01

    Deficits in gamma-aminobutyric acid (GABA) signaling have been described in the prefrontal cortex, limbic system, and cerebellum in individuals with schizophrenia. The purpose of the present study was to further investigate cerebellar gene expression alterations as they relate to decreases in GABAergic transmission by examining the expression of GABAergic markers, N-methyl-d-aspartic-acid (NMDA) receptor subunits, and cerebellum neuromodulators in individuals with schizophrenia. Subjects were postmortem men with a diagnosis of schizophrenia (N=13) and a postmortem interval-matched non-psychiatric male comparison group (N=13). The authors utilized real-time-quantitative polymerase chain reaction (PCR) to measure mRNA levels of the following GABAergic markers: glutamic acid decarboxylase (GAD) 65 and 67; GABA plasma membrane transporter-1 (GAT-1); GABA type A (GABA(A)) receptor subunits alpha(6), beta(3), and delta; and parvalbumin. In addition, real-time-quantitative PCR was utilized to assess mRNA levels of the NMDA receptor (NR) subunits NR1, NR2-A, NR2-B, NR2-C, and NR2-D as well as the cerebellar neuromodulators glutamate receptor (GluR)-6, kainate-preferring glutamate receptor subunit-2 (KA2), metabotropic glutamate receptor (mGluR)-2 and mGluR3, and neuronal nitric oxide synthase. Measurements for mRNA levels were determined using lateral cerebellar hemisphere tissue from both schizophrenia and comparison subjects. Schizophrenia subjects showed significant decreases in mRNA levels of GAD(67), GAD(65), GAT-1, mGluR2, and neuronal nitric oxide synthase. Increases in GABA(A)-alpha(6 )and GABA(A)-delta as well as GluR6 and KA2 were also observed. Medication effects on the expression of the same genes were examined in rats treated with either haloperidol (Sprague-Dawley rats [N=16]) or clozapine (Long-Evans rats [N=20]). Both haloperidol and clozapine increased the levels of GAD(67) in the cerebellum and altered the expression of other cerebellar mRNAs. These

  16. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.

    Science.gov (United States)

    Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana

    2016-05-01

    Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

  17. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins.

    Science.gov (United States)

    Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit

    2015-01-01

    Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Effect of THIP and SL 76002, two clinically experimented GABA-mimetic compounds, on anterior pituitary GABA receptors and prolactin secretion in the rat

    International Nuclear Information System (INIS)

    Apud, J.A.; Masotto, C.; Racagni, G.

    1987-01-01

    In the present study, the ability of three direct GABA agonists, muscimol, THIP and SL 76002 to displace 3 H-GABA binding from anterior pituitary and medio-basal hypothalamus membranes was evaluated. Further, the effect of both THIP and SL 76002 on baseline prolactin levels or after stimulation of hormone release with haloperidol has been also studied. Either muscimol, THIP or SL 76002 have shown to posses 7-, 7- and 3-fold higher affinity, respectively, for the central nervous system than for the anterior pituitary 3 H-GABA binding sites. Moreover, THIP and SL 76002 have demonstrated to be respectively, 25- and 1000- fold less potent than muscimol in inhibiting 3 H- GABA binding at the level of the anterior pituitary and about 25- and 2700-fold less potent at the level of the medio-basal hypothalamus. Under basal conditions, either THIP or SL 76002 were ineffective to reduce prolactin release. However, after stimulation of prolactin secretion through blockade of the dopaminergic neurotransmission with haloperidol (0.1 mg/kg), both THIP (10 mg/kg) and SL 76002 (200 mg/kg) significantly counteracted the neuroleptic-induced prolactin rise with a potency which is in line with their ability to inhibit 3 H-GABA binding in the anterior pituitary. The present results indicate that both compounds inhibit prolactin release under specific experimental situations probably through a GABAergic mechanism. In view of the endocrine effects of these GABA-mimetic compounds, the possibility arises for an application of these type of drugs in clinical neuroendocrinology. 35 references, 3 figures, 2 tables

  19. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion.

    Science.gov (United States)

    Balz, Johanna; Keil, Julian; Roa Romero, Yadira; Mekle, Ralf; Schubert, Florian; Aydin, Semiha; Ittermann, Bernd; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-15

    In everyday life we are confronted with inputs of multisensory stimuli that need to be integrated across our senses. Individuals vary considerably in how they integrate multisensory information, yet the neurochemical foundations underlying this variability are not well understood. Neural oscillations, especially in the gamma band (>30Hz) play an important role in multisensory processing. Furthermore, gamma-aminobutyric acid (GABA) neurotransmission contributes to the generation of gamma band oscillations (GBO), which can be sustained by activation of metabotropic glutamate receptors. Hence, differences in the GABA and glutamate systems might contribute to individual differences in multisensory processing. In this combined magnetic resonance spectroscopy and electroencephalography study, we examined the relationships between GABA and glutamate concentrations in the superior temporal sulcus (STS), source localized GBO, and illusion rate in the sound-induced flash illusion (SIFI). In 39 human volunteers we found robust relationships between GABA concentration, GBO power, and the SIFI perception rate (r-values=0.44 to 0.53). The correlation between GBO power and SIFI perception rate was about twofold higher when the modulating influence of the GABA level was included in the analysis as compared to when it was excluded. No significant effects were obtained for glutamate concentration. Our study suggests that the GABA level shapes individual differences in audiovisual perception through its modulating influence on GBO. GABA neurotransmission could be a promising target for treatment interventions of multisensory processing deficits in clinical populations, such as schizophrenia or autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Production of gaba (γ - aminobutyric acid by microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    2012-12-01

    Full Text Available GABA (γ-aminobutyric acid is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB, which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  1. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  2. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels?

    Science.gov (United States)

    O'Sullivan, E; Barrett, E; Grenham, S; Fitzgerald, P; Stanton, C; Ross, R P; Quigley, E M M; Cryan, J F; Dinan, T G

    2011-09-01

    Brain-derived neurotrophic factor (BDNF) is of interest because of its putative role in stress and psychiatric disorders. Maternal separation is used as an animal model of early-life stress and of irritable bowel syndrome (IBS). Animals exposed to the paradigm show altered gut function together with heightened levels of arousal and corticosterone. Some probiotic organisms have been shown to be of benefit in IBS and influence the brain-gut axis. Our objective was to investigate the effects of maternal separation on BDNF under basal conditions and in response to the probiotic Bifidobacterium breve 6330. The study implemented the maternal separation model which we have previously described. Polymerase chain reaction and in situ hybridisation were performed to measure the effect of maternal separation on both BDNF total variants and BDNF splice variant (exon) IV in the hippocampus. Maternally separated and non-separated rats were treated with B. breve 6330, to investigate the effect of this probiotic on BDNF total variant and BDNF exon IV expression. Maternal separation increased BDNF total variants (Pbreve 6330 increased BDNF total variants (Pbreve 6330 did not alter BDNF levels in the maternally separated rats. Maternal separation caused a marked increase in BDNF in the hippocampus. While B. breve 6330 influenced BDNF in normal animals, it had no significant effect on BDNF in those which were maternally separated. We have demonstrated that an orally administered probiotic can influence hippocampal BDNF.

  4. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria.

    Science.gov (United States)

    Tung, Yi-Ting; Lee, Bao-Hong; Liu, Chin-Feng; Pan, Tzu-Ming

    2011-01-01

    Gamma-aminobutyric acid (GABA) and angiotensin-converting enzyme inhibitor (ACEI) are compounds which can influence hypertension. The goal of this study is to optimize the culture condition for GABA and ACEI production by Lactobacillus plantarum NTU 102 fermented skim milk. In this study, we used 3-factor-3-level Box-Behnken design combining with response surface methodology, where the 3 factors represent the concentration of skim milk, the concentration of monosodium glutamate, and culture temperature. Best conditions for GABA and ACEI production differed. The results indicated that L. plantarum NTU 102 produced the highest combined levels of GABA and ACEI at 37 °C, in milk having 8% to 12% nonfat solids supplemented with 0.6% to 1% MSG. Agitation of the medium during fermentation had no effect on GABA or ACEI production but extended incubation (up to 6 d) increases levels of the bioactive compounds. L. plantarum NTU 102 fermented products may be a potential functional food source for regulating hypertension. © 2011 Institute of Food Technologists®

  6. Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: the potential impact of GABA concentration in the visual cortex.

    Science.gov (United States)

    Kelemen, Oguz; Kiss, Imre; Benedek, György; Kéri, Szabolcs

    2013-12-02

    Schizophrenia is characterized by anomalous perceptual experiences (e.g., sensory irritation, inundation, and flooding) and specific alterations in visual perception. We aimed to investigate the effects of short-term antipsychotic medication on these perceptual alterations. We assessed 28 drug-naïve first episode patients with schizophrenia and 20 matched healthy controls at baseline and follow-up 8 weeks later. Contrast sensitivity was measured with steady- and pulsed-pedestal tests. Participants also received a motion coherence task, the Structured Interview for Assessing Perceptual Anomalies (SIAPA), and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Proton magnetic resonance spectroscopy was used to measure gamma-aminobutyric acid (GABA) levels in the occipital cortex (GABA/total creatine [Cr] ratio). Results revealed that, comparing baseline and follow-up values, patients with schizophrenia exhibited a marked sensitivity reduction on the steady-pedestal test at low spatial frequency. Anomalous perceptual experiences were also significantly ameliorated. Antipsychotic medications had no effect on motion perception. RBANS scores showed mild improvements. At baseline, but not at follow-up, patients with schizophrenia outperformed controls on the steady-pedestal test at low spatial frequency. The dysfunction of motion perception (higher coherence threshold in patients relative to controls) was similar at both assessments. There were reduced GABA levels in schizophrenia at both assessments, which were not related to perceptual functions. These results suggest that antipsychotics dominantly affect visual contrast sensitivity and anomalous perceptual experiences. The prominent dampening effect on low spatial frequency in the steady-pedestal test might indicate the normalization of putatively overactive magnocellular retino-geniculo-cortical pathways. © 2013.

  7. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1.

    Science.gov (United States)

    Ribeiro, Maria J; Violante, Inês R; Bernardino, Inês; Edden, Richard A E; Castelo-Branco, Miguel

    2015-03-01

    Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and

  8. Audiovisual associations alter the perception of low-level visual motion

    Directory of Open Access Journals (Sweden)

    Hulusi eKafaligonul

    2015-03-01

    Full Text Available Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role.

  9. Effect of Songyu Anshen Fang on expression of hypothalamic GABA ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. Available online ... GABA and GABA(B) receptor proteins in insomniac rats induced by ..... induced by PCPA; ***p < 0.001 vs Saline group ; ###p.

  10. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  11. Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA.

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N

    2009-12-02

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.

  12. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    Science.gov (United States)

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy.

    Science.gov (United States)

    Gao, Fei; Wang, Guangbin; Ma, Wen; Ren, Fuxin; Li, Muwei; Dong, Yuling; Liu, Cheng; Liu, Bo; Bai, Xue; Zhao, Bin; Edden, Richard A E

    2015-02-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 kHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2 and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm(3) volumes centered on the left and right Heschl's gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = -0.57, p = 0.02), while a similar trend was found in the control group (r = -0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis and suggest a potential treatment target for presbycusis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  15. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    Science.gov (United States)

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. Copyright © 2013 Wiley Periodicals, Inc.

  16. Induction of the GABA cell phenotype: an in vitro model for studying neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Sivan Subburaju

    Full Text Available Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD₆₇ (GAD1 expression and may play a role in γ-amino butyric acid (GABA dysfunction in schizophrenia (SZ and bipolar disorder (BD. To obtain a more detailed understanding of how GAD₆₇ regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD₆₇ and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD₆₇-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2 and the post-synaptic density protein 95 (PSD95. The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD₆₇, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of "differentiated" HiB5 neurons. In the presence of Ca²⁺ and K⁺, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD₆₅, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD₆₇ regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD₆₇ regulation in the adult hippocampus.

  17. GABA signalling during development: new data and old questions.

    Science.gov (United States)

    Varju, P; Katarova, Z; Madarász, E; Szabó, G

    2001-08-01

    In addition to being the major inhibitory neurotransmitter, gamma-aminobutyric acid (GABA) is thought to play a morphogenetic role in embryonic development. During the last decade, considerable progress has been made in elucidating the molecular mechanisms involved in GABA synthesis and biological action. The present review is an attempt to summarise recent results on the ontogeny of the different components of embryonic GABA signalling with an emphasis on the synthesis of GABA by different molecular forms of glutamic acid decarboxylase (GAD).

  18. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity

    DEFF Research Database (Denmark)

    Bolvig, T; Larsson, O M; Pickering, D S

    1999-01-01

    The inhibitory action of bicyclic isoxazole gamma-aminobutyric acid (GABA) analogues and their 4,4-diphenyl-3-butenyl (DPB) substituted derivatives has been investigated in cortical neurones and astrocytes as well as in human embryonic kidney (HEK 293) cells transiently expressing either mouse GA...... anticonvulsant activity, lack of proconvulsant activity and the ability of THPO to increase extracellular GABA concentration, indicate that these bicyclic isoxazole GABA analogues and their DPB derivatives may be useful lead structures in future search for new antiepileptic drugs....

  19. Opioid modulation of GABA release in the rat inferior colliculus

    Directory of Open Access Journals (Sweden)

    Forge Andrew

    2004-09-01

    Full Text Available Abstract Background The inferior colliculus, which receives almost all ascending and descending auditory signals, plays a crucial role in the processing of auditory information. While the majority of the recorded activities in the inferior colliculus are attributed to GABAergic and glutamatergic signalling, other neurotransmitter systems are expressed in this brain area including opiate peptides and their receptors which may play a modulatory role in neuronal communication. Results Using a perfusion protocol we demonstrate that morphine can inhibit KCl-induced release of [3H]GABA from rat inferior colliculus slices. DAMGO ([D-Ala(2, N-Me-Phe(4, Gly(5-ol]-enkephalin but not DADLE ([D-Ala2, D-Leu5]-enkephalin or U69593 has the same effect as morphine indicating that μ rather than δ or κ opioid receptors mediate this action. [3H]GABA release was diminished by 16%, and this was not altered by the protein kinase C inhibitor bisindolylmaleimide I. Immunostaining of inferior colliculus cryosections shows extensive staining for glutamic acid decarboxylase, more limited staining for μ opiate receptors and relatively few neurons co-stained for both proteins. Conclusion The results suggest that μ-opioid receptor ligands can modify neurotransmitter release in a sub population of GABAergic neurons of the inferior colliculus. This could have important physiological implications in the processing of hearing information and/or other functions attributed to the inferior colliculus such as audiogenic seizures and aversive behaviour.

  20. Opioid modulation of GABA release in the rat inferior colliculus

    Science.gov (United States)

    Tongjaroenbungam, Walaiporn; Jongkamonwiwat, Nopporn; Cunningham, Joanna; Phansuwan-Pujito, Pansiri; Dodson, Hilary C; Forge, Andrew; Govitrapong, Piyarat; Casalotti, Stefano O

    2004-01-01

    Background The inferior colliculus, which receives almost all ascending and descending auditory signals, plays a crucial role in the processing of auditory information. While the majority of the recorded activities in the inferior colliculus are attributed to GABAergic and glutamatergic signalling, other neurotransmitter systems are expressed in this brain area including opiate peptides and their receptors which may play a modulatory role in neuronal communication. Results Using a perfusion protocol we demonstrate that morphine can inhibit KCl-induced release of [3H]GABA from rat inferior colliculus slices. DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin) but not DADLE ([D-Ala2, D-Leu5]-enkephalin or U69593 has the same effect as morphine indicating that μ rather than δ or κ opioid receptors mediate this action. [3H]GABA release was diminished by 16%, and this was not altered by the protein kinase C inhibitor bisindolylmaleimide I. Immunostaining of inferior colliculus cryosections shows extensive staining for glutamic acid decarboxylase, more limited staining for μ opiate receptors and relatively few neurons co-stained for both proteins. Conclusion The results suggest that μ-opioid receptor ligands can modify neurotransmitter release in a sub population of GABAergic neurons of the inferior colliculus. This could have important physiological implications in the processing of hearing information and/or other functions attributed to the inferior colliculus such as audiogenic seizures and aversive behaviour. PMID:15353008

  1. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Science.gov (United States)

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-10-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

  2. Restraint stress in lactating mice alters the levels of sulfur-containing amino acids in milk.

    Science.gov (United States)

    Nishigawa, Takuma; Nagamachi, Satsuki; Ikeda, Hiromi; Chowdhury, Vishwajit S; Furuse, Mitsuhiro

    2018-03-30

    It is well known that maternal stress during the gestation and lactation periods induces abnormal behavior in the offspring and causes a lowering of the offspring's body weight. Various causes of maternal stress during the lactation period, relating to, for example, maternal nutritional status and reduced maternal care, have been considered. However, little is known about the effects on milk of maternal stress during the lactation period. The current study aimed to determine whether free amino acids, with special reference to sulfur-containing amino acids in milk, are altered by restraint stress in lactating mice. The dams in the stress group were restrained for 30 min at postnatal days 2, 4, 6, 8, 10 and 12. Restraint stress caused a reduction in the body weight of lactating mice. The concentration of taurine and cystathionine in milk was significantly higher in the stress group, though stress did not alter their concentration in maternal plasma. The ratio of taurine concentration in milk to its concentration in maternal plasma was significantly higher in the stress group, suggesting that stress promoted taurine transportation into milk. Furthermore, taurine concentration in milk was positively correlated with corticosterone levels in plasma. In conclusion, restraint stress in lactating mice caused the changes in the metabolism and in the transportation of sulfur-containing amino acids and resulted in higher taurine concentration in milk. Taurine concentration in milk could also be a good parameter for determining stress status in dams.

  3. Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro

    International Nuclear Information System (INIS)

    Basavarajappa, Mallikarjuna S.; Craig, Zelieann R.; Hernandez-Ochoa, Isabel; Paulose, Tessie; Leslie, Traci C.; Flaws, Jodi A.

    2011-01-01

    The organochlorine pesticide methoxychlor (MXC) is a known endocrine disruptor that affects adult rodent females by causing reduced fertility, persistent estrus, and ovarian atrophy. Since MXC is also known to target antral follicles, the major producer of sex steroids in the ovary, the present study was designed to test the hypothesis that MXC decreases estradiol (E 2 ) levels by altering steroidogenic and metabolic enzymes in the antral follicles. To test this hypothesis, antral follicles were isolated from CD-1 mouse ovaries and cultured with either dimethylsulfoxide (DMSO) or MXC. Follicle growth was measured every 24 h for 96 h. In addition, sex steroid hormone levels were measured using enzyme-linked immunosorbent assays (ELISA) and mRNA expression levels of steroidogenic enzymes as well as the E 2 metabolic enzyme Cyp1b1 were measured using qPCR. The results indicate that MXC decreased E 2 , testosterone, androstenedione, and progesterone (P 4 ) levels compared to DMSO. In addition, MXC decreased expression of aromatase (Cyp19a1), 17β-hydroxysteroid dehydrogenase 1 (Hsd17b1), 17α-hydroxylase/17,20-lyase (Cyp17a1), 3β hydroxysteroid dehydrogenase 1 (Hsd3b1), cholesterol side-chain cleavage (Cyp11a1), steroid acute regulatory protein (Star), and increased expression of Cyp1b1 enzyme levels. Thus, these data suggest that MXC decreases steroidogenic enzyme levels, increases metabolic enzyme expression and this in turn leads to decreased sex steroid hormone levels. - Highlights: → MXC inhibits steroidogenesis → MXC inhibits steroidogenic enzymes → MXC induces metabolic enzymes

  4. Altered Levels of Serum Zinc and Cadmium in Patients with Chronic Vesiculobullous Hand and Feet Dermatitis

    Directory of Open Access Journals (Sweden)

    Swastika Suvirya

    2016-01-01

    Full Text Available Micronutrients serve many important functions in our body and altered levels of heavy and trace metals are associated with cutaneous and systemic disorders. Vesicular palmoplantar eczema is an entity whose etiopathogenesis is a mystery. In this prospective case-noncase study blood levels of Zinc and Cadmium in 37 patients of chronic vesiculobullous hand dermatitis were estimated and compared with 40 noncases with similar age and gender distributions. Low serum Zinc levels were found in patients as compared to noncases. The mean difference of serum Zinc between the case and noncase groups was 27.26; the mean value of serum Zinc between the two groups was statistically significant (p<0.0001. However, elevated Cadmium levels were detected in only 5 patients and in none of the noncases. The mean concentration of serum Cadmium was 2.32±0.38 μg/dL, with a range of 1.90–2.80 μg/dL for the five cases in whom Cadmium was detected. Various toxic and trace metals can interact by influencing each other’s absorption, retention, distribution, and bioavailability in the body. The clinical significance of this finding lies in the possible beneficial role of Zinc supplementation in the therapy of chronic vesiculobullous hand dermatitis.

  5. Electrical stimulation of the substantia nigra reticulata : Detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats

    NARCIS (Netherlands)

    Timmerman, W; Westerink, B.H.C.

    A combination of electrical stimulation and microdialysis was used to study the nigrothalamic gamma aminobutyric acid (GABA)ergic system and its regulatory mechanisms in awake rats. Extracellular GABA levels in the ventromedial nucleus of the thalamus were detected in S-min fractions collected

  6. GABA-ergic neurons in the leach central nervous system

    International Nuclear Information System (INIS)

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10 -5 M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3 H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  7. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    Science.gov (United States)

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  8. GABA sensitivity of spectrally classified horizontal cells in goldfish retina

    NARCIS (Netherlands)

    Verweij, J.; Kamermans, M.; Negishi, K.; Spekreijse, H.

    1998-01-01

    We studied the GABA sensitivity of horizontal cells in the isolated goldfish retina. After the glutamatergic input to the horizontal cells was blocked with DNQX, GABA depolarized the monophasic and biphasic horizontal cells. The pharmacology of these GABA-induced depolarizations was tested with the

  9. Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model

    DEFF Research Database (Denmark)

    Sickmann, Helle Mark; Waagepetersen, Helle S.; Schousboe, Arne

    2012-01-01

    -(13)C]glucose was used to monitor metabolism. Brain levels of (13)C labeling in glucose, lactate, alanine, glutamate, GABA, glutamine and aspartate were determined. Our results show that inhibition of brain glycogen metabolism reduced the amounts of glutamate in both the control and type 2 diabetes......The number of people suffering from diabetes is hastily increasing and the condition is associated with altered brain glucose homeostasis. Brain glycogen is located in astrocytes and being a carbohydrate reservoir it contributes to glucose homeostasis. Furthermore, glycogen has been indicated...... to be important for proper neurotransmission under normal conditions. Previous findings from our laboratory suggested that glucose metabolism was reduced in type 2 diabetes, and thus we wanted to investigate more specifically how brain glycogen metabolism contributes to maintain energy status in the type 2...

  10. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    Directory of Open Access Journals (Sweden)

    Florence P. Varodayan

    2013-12-01

    Full Text Available Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces the Vamp2 gene, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1 to induce Vamp2 gene expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function.

  11. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    Science.gov (United States)

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  12. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    Science.gov (United States)

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Lewis, David A

    2008-09-01

    Synchronization of neuronal activity in the neocortex may underlie the coordination of neural representations and thus is critical for optimal cognitive function. Because cognitive deficits are the major determinant of functional outcome in schizophrenia, identifying their neural basis is important for the development of new therapeutic interventions. Here we review the data suggesting that phasic synaptic inhibition mediated by specific subtypes of cortical gamma-aminobutyric acid (GABA) neurons is essential for the production of synchronized network oscillations. We also discuss evidence indicating that GABA neurotransmission is altered in schizophrenia and propose mechanisms by which such alterations can decrease the strength of inhibitory connections in a cell-type-specific manner. We suggest that some alterations observed in the neocortex of schizophrenia subjects may be compensatory responses that partially restore inhibitory synaptic efficacy. The findings of altered neural synchrony and impaired cognitive function in schizophrenia suggest that such compensatory responses are insufficient and that interventions aimed at augmenting the efficacy of GABA neurotransmission might be of therapeutic value.

  14. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    International Nuclear Information System (INIS)

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A.

    1991-01-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ( 125 I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease

  15. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism.

    Science.gov (United States)

    Fatemi, S Hossein; Folsom, Timothy D

    2015-09-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice.

    Science.gov (United States)

    Sivilia, S; Mangano, C; Beggiato, S; Giuliani, A; Torricella, R; Baldassarro, V A; Fernandez, M; Lorenzini, L; Giardino, L; Borelli, A C; Ferraro, L; Calzà, L

    2016-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 gene (CDKL5) are associated to severe neurodevelopmental alterations including motor symptoms. In order to elucidate the neurobiological substrate of motor symptoms in CDKL5 syndrome, we investigated the motor function, GABA and glutamate pathways in the cerebellum of CDKL5 knockout female mice. Behavioural data indicate that CDKL5-KO mice displayed impaired motor coordination on the Rotarod test, and altered steps, as measured by the gait analysis using the CatWalk test. A higher reduction in spontaneous GABA efflux, than that in glutamate, was observed in CDKL5-KO mouse cerebellar synaptosomes, leading to a significant increase of spontaneous glutamate/GABA efflux ratio in these animals. On the contrary, there were no differences between groups in K(+) -evoked GABA and glutamate efflux. The anatomical analysis of cerebellar excitatory and inhibitory pathways showed a selective defect of the GABA-related marker GAD67 in the molecular layer in CDKL5-KO mice, while the glutamatergic marker VGLUT1 was unchanged in the same area. Fine cerebellar structural abnormalities such as a reduction of the inhibitory basket 'net' estimated volume and an increase of the pinceau estimated volume were also observed in CDKL5-KO mice. Finally, the BDNF mRNA expression level in the cerebellum, but not in the hippocampus, was reduced compared with WT animals. These data suggest that CDKL5 deletion during development more markedly impairs the establishment of a correct GABAergic cerebellar network than that of glutamatergic one, leading to the behavioural symptoms associated with CDKL5 mutation. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    International Nuclear Information System (INIS)

    Marley, R.J.

    1987-01-01

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for 3 H-GABA binding sites is greater in SS cerebellar tissue and 3 H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of 3 H-flunitrazepma binding is greater in SS mice. Ethanol also enhances 3 H-flunitrazepam binding and increases the levels of 3 H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures

  18. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Inka Ristow

    Full Text Available A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC and in a control region, the pregenual anterior cingulate cortex (pgACC in pedophilic sex offenders (N = 13 and matched controls (N = 13 using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS. In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel (p < 0.04. Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = −0.689. In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control. Keywords: Child sexual abuse, Dorsal anterior cingulate cortex, GABA, Magnetic resonance spectroscopy, Pedophilic sex offenders

  19. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    Science.gov (United States)

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  1. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    International Nuclear Information System (INIS)

    Kato, K.; Fukuda, H.

    1985-01-01

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with 3 H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with 3 H-muscimol and 3 H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables

  2. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    DEFF Research Database (Denmark)

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent

    2016-01-01

    unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na(+) concentrations and a consequent increase in astrocytic Ca(2+) through Na(+)/Ca(2+) exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal...

  3. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  4. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1 H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  5. Elevated CO{sub 2} levels and herbivore damage alter host plant preferences

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, J. [Lund Univ., Dept. of Animal Ecology, Lund (Sweden); Anderson, Peter, Swedish Univ. of Agricultural Sciences, Dept. of Crop Sciences, Alnarp (SE)); Oleszek, W.; Stochmal, Anna [Inst. of Soil Science and Plant Cultivation, Dept. of Biochemistry, Pulawy (Poland); Agrell, Cecilia [Lund Univ., Dept. of Chemical Ecology and Ecotoxicology, Lund (Sweden)

    2006-01-01

    Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO{sub 2} conditions. To determine strength and effects of herbivore-induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO{sub 2} and damage effects on larval host plant preferences were determined through dual-choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO{sub 2} enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO{sub 2} conditions), but CO{sub 2} enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO{sub 2} levels had no effect on the herbivore-induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO{sub 2} level, and lowest for larvae on damaged alfalfa from the high CO{sub 2} treatment. Development time increased on damaged cotton irrespectively of CO{sub 2} treatment, and on damaged alfalfa in the elevated CO{sub 2} treatment. (au) These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore-induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter

  6. GABA content within the ventromedial prefrontal cortex is related to trait anxiety.

    Science.gov (United States)

    Delli Pizzi, Stefano; Padulo, Caterina; Brancucci, Alfredo; Bubbico, Giovanna; Edden, Richard A; Ferretti, Antonio; Franciotti, Raffaella; Manippa, Valerio; Marzoli, Daniele; Onofrj, Marco; Sepede, Gianna; Tartaro, Armando; Tommasi, Luca; Puglisi-Allegra, Stefano; Bonanni, Laura

    2016-05-01

    The ventromedial prefrontal cortex (vmPFC) plays a key role in emotion processing and regulation. vmPFC dysfunction may lead to disinhibition of amygdala causing high anxiety levels. γ-Aminobutyric acid (GABA) inter-neurons within vmPFC shape the information flow to amygdala. Thus, we hypothesize that GABA content within vmPFC could be relevant to trait anxiety. Forty-three healthy volunteers aged between 20 and 88 years were assessed for trait anxiety with the Subscale-2 of the State-Trait-Anxiety Inventory (STAI-Y2) and were studied with proton magnetic resonance spectroscopy to investigate GABA and Glx (glutamate+glutamine) contents within vmPFC. Total creatine (tCr) was used as internal reference. Partial correlations assessed the association between metabolite levels and STAI-Y2 scores, removing the effect of possible nuisance factors including age, educational level, volumes of gray matter and white matter within magnetic resonance spectroscopy voxel. We observed a positive relationship between GABA/tCr and STAI-Y2 scores. No significant relationships were found between Glx/tCr and STAI-Y2 and between tCr/water and STAI-Y2. No differences were found between males and females as regards to age, STAI-Y2, GABA/tCr, Glx/tCr, tCr/water, gray matter and white matter volumes. We suggest a close relationship between GABA content within vmPFC and trait anxiety providing new insights in the physiology of emotional brain. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Glutamate and GABA in appetite regulation

    Directory of Open Access Journals (Sweden)

    Teresa Cardoso Delgado

    2013-08-01

    Full Text Available Appetite is regulated by a coordinated interplay between gut, adipose tissue and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms.Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the

  8. Alteration of sperm quality and hormone levels by polycyclic aromatic hydrocarbons on airborne particulate particles.

    Science.gov (United States)

    Jeng, Hueiwang Anna; Yu, Liang

    2008-06-01

    The objective of this study was to assess whether polycyclic aromatic hydrocarbons (PAHs) affect male reproductive functions in vivo. Male reproductive parameters included testis weight, sperm counts and motility, circulating follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. The average body weight, testis weight, and epididymis weight in the exposed group were not significantly lower than that in the control group (p sperm in the PAH-exposed groups were significantly lower than those in the control group. The motility of sperm in the PAH-exposed groups was significantly less than those in the control group. Plasma LH concentrations increased at the end of the exposure period and continued to increase after post-cessation of exposure to PAHs. Testosterone decreased at the end of the exposure period and increased after post-cessation of exposure. However, the follicle-stimulation hormone level remained relatively stable during the study period. The present study showed that PAHs can compromise sperm functions and alter endocrine hormone levels.

  9. Running wheel training does not change neurogenesis levels or alter working memory tasks in adult rats

    Directory of Open Access Journals (Sweden)

    Cesar A. Acevedo-Triana

    2017-05-01

    Full Text Available Background Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis, causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. Methods An experimental design with two groups was developed: the experimental group (n = 12 was subject to a forced exercise program for five days, whereas the control group (n = 9 stayed in the home cage. Six to eight weeks after training, the rats’ working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. Results No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding, or in the levels of BrdU positive cells. Discussion Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level.

  10. Venous plasma levels of endothelin-1 are not altered immediately after nitroglycerin infusion in healthy subjects

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg; Emmeluth, C

    1995-01-01

    before and immediately (5-30 s) after 80 min infusion of NTG (glyceryl trinitrate) or saline in 12 healthy subjects. On two different days separated by at least 1 week, NTG in four different doses, 0.015, 0.25, 1.0, and 2.0 micrograms. kg-1. min-1, or placebo (isotonic saline) was infused successively...... for 20 min each dose. During the infusion blood pressure and heart rate were measured. NTG infusion significantly decreased systolic blood pressure from 112.4 to 103.4 mmHg and pulse pressure from 39.3 to 29.5 mmHg. Heart rate increased from 62.7 to 73.1 beats. min-1. No changes in endothelin-1 plasma...... levels were induced by NTG infusion (2.4 pg.ml-1 before NTG vs. 2.7 pg.ml-1 after NTG) and placebo infusion also did not affect plasma endothelin-1. It is concluded that venous plasma levels of endothelin-1 are not altered immediately after NTG infusion....

  11. Does exposure to very high levels of natural radiation induce hematological alterations in humans?

    International Nuclear Information System (INIS)

    Ghiassi-Nejad, M.

    2003-01-01

    Full text: It has long been known that total body exposure to moderate doses decrease the number of circulating erythrocytes, platelets, granulocytes, and lymphocytes. However, data on hematopoietic effects of exposure to very low doses of ionizing radiation in humans are scarce. Recently it has been reported that hematological parameters have significant positive associations with the radiation dose received by residents lived near a nuclear power plant. Ramsar, a city in northern Iran, has some inhabited areas with the highest levels of natural radiation studied so far. A population of about 2000 is exposed to average annual radiation levels of 10.2 mGy y -1 and the highest recorded external gamma dose rates are about 130 mGy y -1 . In this study, hematological parameters such as counts of leukocytes, lymphocytes, monocytes, granulocytes, red blood cells, hemoglobin, hematocrit, MCV, MCH, MCHC, RDW, PLT, and MPV were measured in the inhabitants. The results of this study indicated that there was no any statistically significant alteration in hematological parameters of the inhabitants of very high background radiation areas of Ramsar compared to those of a neighboring control area

  12. Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: implications for schizophrenia and its modeling.

    Science.gov (United States)

    Sotoyama, Hidekazu; Namba, Hisaaki; Chiken, Satomi; Nambu, Atsushi; Nawa, Hiroyuki

    2013-08-01

    Previous studies on a cytokine model for schizophrenia reveal that the hyperdopaminergic innervation and neurotransmission in the globus pallidus (GP) is involved in its behavioral impairments. Here, we further explored the physiological consequences of the GP abnormality in the indirect pathway, using the same schizophrenia model established by perinatal exposure to epidermal growth factor (EGF). Single-unit recordings revealed that the neural activity from the lateral GP was elevated in EGF-treated rats in vivo and in vitro (i.e., slice preparations), whereas the central area of the GP exhibited no significant differences. The increase in the pallidal activity was normalized by subchronic treatment with risperidone, which is known to ameliorate their behavioral deficits. We also monitored extracellular GABA concentrations in the substantia nigra, one of the targets of pallidal efferents. There was a significant increase in basal GABA levels in EGF-treated rats, whereas high potassium-evoked GABA effluxes and glutamate levels were not affected. A neurotoxic lesion in the GP of EGF-treated rats normalized GABA concentrations to control levels. Corroborating our in vivo results, GABA release from GP slices was elevated in EGF-treated animals. These findings suggest that the hyperactivity and enhanced GABA release of GP neurons represent the key pathophysiological features of this cytokine-exposure model for schizophrenia. © 2013 International Society for Neurochemistry.

  13. How and why does tomato accumulate a large amount of GABA in the fruit?

    OpenAIRE

    Takayama, Mariko; Ezura, Hiroshi

    2015-01-01

    γ-Aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehy...

  14. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    International Nuclear Information System (INIS)

    Zou, Yani; Leu, David; Chui, Jennifer; Fike, John R.; Huang, Ting-Ting

    2013-01-01

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted

  15. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    Science.gov (United States)

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  16. GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications.

    Science.gov (United States)

    Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel

    2009-08-01

    Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of

  17. Mechanisms of hydrothermal alteration in a granitic rock. Consequences for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Parneix, J.C.

    1987-06-01

    The study of hydrothermal alteration in the Auriat granitic rock (France, Massif-Central) has evidenced three main events: - a pervasive chloritisation of biotites in some parts of the drill-core, - an alteration localized around subvertical cracks and superimposed on previously chloritized or unaltered granite, - an alteration localized around subhorizontal cracks cross-cutting the preceding ones. The second type of alteration, produced by a geothermal system, gives the most interesting results to be applied to the nuclear radwaste disposal problem. Among primary minerals of granite, only biotite (or chlorite) and oligoclase are intensively altered. Therefore, the chemical composition of these minerals induces the nature of secondary parageneses. These, associated to the subvertical cracks network, indicate a thermal gradient of 150 C/Km. The geochemical code has allowed to corroborate that the thermal gradient was responsible for the occurrence of different parageneses with depth. Moreover, it was shown that the variable mineralogy around cracks was due to a thermal profile established at equilibrium between the rock and the fluid. Therefore, the extent of the alteration was proportional to the thermal power of the fluid. A dissolution and next a precipitation phase of new minerals characterize hydrothermal alteration, which is due to the thermal power emitted by radioactive waste and linked with the evolution of temperature during time. This alteration provokes two favourable events to storage: decrease of rock porosity and increase of sorption capacity [fr

  18. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels

    Science.gov (United States)

    Li, Shao-Jun; Ou, Chao-Yan; He, Sheng-Nan; Huang, Xiao-Wei; Luo, Hai-Lan; Meng, Hao-Yang; Lu, Guo-Dong; Jiang, Yue-Ming; Vieira Peres, Tanara; Luo, Yi-Ni; Deng, Xiang-Fa

    2017-01-01

    Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism. PMID:28394286

  19. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels

    DEFF Research Database (Denmark)

    Young, Stephanie Z; Platel, Jean-Claude; Nielsen, Jakob V

    2010-01-01

    In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca(2+) levels and tonic GABA(A) receptor activation. However, it is unknown whether, and if so how, GABA(A) receptor activity regulates...... intracellular Ca(2+) dynamics in SVZ astrocytes. To monitor Ca(2+) activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABA(A) receptor activation...... induced Ca(2+) increases in 40-50% of SVZ astrocytes. GABA(A)-induced Ca(2+) increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC). The L-type Ca(2+) channel activator BayK 8644 increased the percentage of GABA(A)-responding astrocyte...

  20. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism.

    Science.gov (United States)

    Rossokhin, Alexey V; Sharonova, Irina N; Bukanova, Julia V; Kolbaev, Sergey N; Skrebitsky, Vladimir G

    2014-11-01

    GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics. In this study, we combined electrophysiological and modeling approaches to investigate the peculiarities of PNG blockade of GABA-activated currents recorded from isolated rat Purkinje cells and to predict the PNG binding site. Whole-cell patch-сlamp recording and fast application system was used in the electrophysiological experiments. PNG block developed after channel activation and increased with membrane depolarization suggesting that the ligand binds within the open channel pore. PNG blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC50 value of 1.12mM at -70mV. The termination of GABA and PNG co-application was followed by a transient tail current. Protection of the tail current from bicuculline block and dependence of its kinetic parameters on agonist affinity suggest that PNG acts as a sequential open channel blocker that prevents agonist dissociation while the channel remains blocked. We built the GABA(A)R models based on nAChR and GLIC structures and performed an unbiased systematic search of the PNG binding site. Monte-Carlo energy minimization was used to find the lowest energy binding modes. We have shown that PNG binds close to the intracellular vestibule. In both models the maximum contribution to the energy of ligand-receptor interactions revealed residues located on the level of 2', 6' and 9' rings formed by a bundle of M2 transmembrane segments, indicating that these residues most likely participate in PNG binding. The predicted structural models support the described mechanism of PNG block. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    Science.gov (United States)

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  2. Role of GABA Deficit in Sensitivity to the Psychotomimetic Effects of Amphetamine.

    Science.gov (United States)

    Ahn, Kyung-Heup; Sewell, Andrew; Elander, Jacqueline; Pittman, Brian; Ranganathan, Mohini; Gunduz-Bruce, Handan; Krystal, John; D'Souza, Deepak Cyril

    2015-11-01

    Some schizophrenia patients are more sensitive to amphetamine (AMPH)-induced exacerbations in psychosis-an effect that correlates with higher striatal dopamine release. This enhanced vulnerability may be related to gamma-aminobutyric acid (GABA) deficits observed in schizophrenia. We hypothesized that a pharmacologically induced GABA deficit would create vulnerability to the psychotomimetic effects to the 'subthreshold' dose of AMPH in healthy subjects, which by itself would not induce clinically significant increase in positive symptoms. To test this hypothesis, a GABA deficit was induced by intravenous infusion of iomazenil (IOM; 3.7 μg/kg), an antagonist and partial inverse agonist of benzodiazepine receptor. A subthreshold dose of AMPH (0.1 mg/kg) was administered by intravenous infusion. Healthy subjects received placebo IOM followed by placebo AMPH, active IOM followed by placebo AMPH, placebo IOM followed by active AMPH, and active IOM followed by active AMPH in a randomized, double-blind crossover design over 4 test days. Twelve healthy subjects who had a subclinical response to active AMPH alone were included in the analysis. Psychotomimetic effects (Positive and Negative Syndrome Scale (PANSS)), perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)), and subjective effects (visual analog scale) were captured before and after the administration of drugs. IOM significantly augmented AMPH-induced peak changes in PANSS positive symptom subscale and both subjective and objective CADSS scores. There were no pharmacokinetic interactions. In conclusion, GABA deficits increased vulnerability to amphetamine-induced psychosis-relevant effects in healthy subjects, suggesting that pre-existing GABA deficits may explain why a subgroup of schizophrenia patients are vulnerable to AMPH.

  3. Genetic KCa3.1-deficiency produces locomotor hyperactivity and alterations in cerebral monoamine levels.

    Directory of Open Access Journals (Sweden)

    Kate Lykke Lambertsen

    Full Text Available The calmodulin/calcium-activated K(+ channel KCa3.1 is expressed in red and white blood cells, epithelia and endothelia, and possibly central and peripheral neurons. However, our knowledge about its contribution to neurological functions and behavior is incomplete. Here, we investigated whether genetic deficiency or pharmacological activation of KCa3.1 change behavior and cerebral monoamine levels in mice.In the open field test, KCa3.1-deficiency increased horizontal activity, as KCa3.1(-/- mice travelled longer distances (≈145% of KCa3.1(+/+ and at higher speed (≈1.5-fold of KCa3.1(+/+. Working memory in the Y-maze was reduced by KCa3.1-deficiency. Motor coordination on the rotarod and neuromuscular functions were unchanged. In KCa3.1(-/- mice, HPLC analysis revealed that turn-over rates of serotonin were reduced in frontal cortex, striatum and brain stem, while noradrenalin turn-over rates were increased in the frontal cortex. Dopamine turn-over rates were unaltered. Plasma catecholamine and corticosterone levels were unaltered. Intraperitoneal injections of 10 mg/kg of the KCa3.1/KCa2-activator SKA-31 reduced rearing and turning behavior in KCa3.1(+/+ but not in KCa3.1(-/- mice, while 30 mg/kg SKA-31 caused strong sedation in 50% of the animals of either genotypes. KCa3.1(-/- mice were hyperactive (≈+60% in their home cage and SKA-31-administration reduced nocturnal physical activity in KCa3.1(+/+ but not in KCa3.1(-/- mice.KCa3.1-deficiency causes locomotor hyperactivity and altered monoamine levels in selected brain regions, suggesting a so far unknown functional link of KCa3.1 channels to behavior and monoaminergic neurotransmission in mice. The tranquilizing effects of low-dose SKA-31 raise the possibility to use KCa3.1/KCa2 channels as novel pharmacological targets for the treatment of neuropsychiatric hyperactivity disorders.

  4. Distribution and ultrastructure of neurons in opossum piriform cortex displaying immunoreactivity to GABA and GAD and high-affinity tritiated GABA uptake

    International Nuclear Information System (INIS)

    Haberly, L.B.; Hansen, D.J.; Feig, S.L.; Presto, S.

    1987-01-01

    GABAergic neurons have been identified in the piriform cortex of the opossum at light and electron microscopic levels by immunocytochemical localization of GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase and by autoradiographic visualization of high-affinity 3 H-GABA uptake. Four major neuron populations have been distinguished on the basis of soma size, shape, and segregation at specific depths and locations: large horizontal cells in layer Ia of the anterior piriform cortex, small globular cells with thin dendrites concentrated in layers Ib and II of the posterior piriform cortex, and multipolar and fusiform cells concentrated in the deep part of layer III in anterior and posterior parts of the piriform cortex and the subjacent endopiriform nucleus. All four populations were well visualized with both antisera, but the large layer Ia horizontal cells displayed only very light 3 H-GABA uptake, thus suggesting a lack of local axon collaterals or lack of high-affinity GABA uptake sites. The large, ultrastructurally distinctive somata of layer Ia horizontal cells receive a very small number of symmetrical synapses; the thin, axonlike dendrites of small globular cells are exclusively postsynaptic and receive large numbers of both symmetrical and asymmetrical synapses, in contrast to somata which receive a small number of both types; and the deep multipolar and fusiform cells receive a highly variable number of symmetrical and asymmetrical synapses on somata and proximal dendrites. Labeled puncta of axon terminal dimensions were found in large numbers in the neuropil surrounding pyramidal cell somata in layer II and in the endopiriform nucleus. Moderately large numbers of labeled puncta were found in layer I at the depth of pyramidal cell apical dendrites with greater numbers in layer Ia at the depth of distal apical segments than in layer Ib

  5. GABA shapes the dynamics of bistable perception.

    Science.gov (United States)

    van Loon, Anouk M; Knapen, Tomas; Scholte, H Steven; St John-Saaltink, Elexa; Donner, Tobias H; Lamme, Victor A F

    2013-05-06

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual inhibition between stimulus-selective neural populations in visual cortex plays a key role in these spontaneous perceptual fluctuations. However, a direct link between neural inhibition and bistable perception has not yet been established experimentally. Here, we link perceptual dynamics in three distinct bistable visual illusions (binocular rivalry, motion-induced blindness, and structure from motion) to measurements of gamma-aminobutyric acid (GABA) concentrations in human visual cortex (as measured with magnetic resonance spectroscopy) and to pharmacological stimulation of the GABAA receptor by means of lorazepam. As predicted by a model of neural interactions underlying bistability, both higher GABA concentrations in visual cortex and lorazepam administration induced slower perceptual dynamics, as reflected in a reduced number of perceptual switches and a lengthening of percept durations. Thus, we show that GABA, the main inhibitory neurotransmitter, shapes the dynamics of bistable perception. These results pave the way for future studies into the competitive neural interactions across the visual cortical hierarchy that elicit conscious perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Novel agents acting on GABA2 receptors: potential cognitive enhancers

    International Nuclear Information System (INIS)

    Chebib, M.

    2001-01-01

    γ- Aminobutyric acid (GABA) is a low molecular weight ammo acid found throughout the central and peripheral nervous systems. It is a very flexible molecule and thus can attain a number of low-energy conformations which are recognised by a series of enzymes, receptors and transporter systems. This article will concentrate on the effects of GABA C as the major inhibitory neurotransmitter in the brain. GABA C receptors belong to the superfamily of ligand-gated ion channels that include nicotinic acetylcholine, GABA A , strychnine-sensitive glycine, and serotonin type 3 receptors. The compound outlined in this article provide us with novel leads for the design and development of compounds that may be selective for GABA receptors. Such compounds will help in the study of GABA C receptors both in vitro and in vivo, providing an insight into the role these receptors play in the brain

  7. GABA shunt in the callus cells derived from soybean cotyledon

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, M; Nakano, Y; Kitaoka, S [Osaka Prefectural Univ., Sakai (Japan). Coll. of Agriculture

    1975-01-01

    In the growing callus cells from soybean cotyledon, the activities of glutamate decarboxylase and GABA transaminase were increased in the early phase of the callus growth on the Miller agar medium. Succinate dehydrogenase activity was also changed in a similar manner. From these and the additional evidences that GABA transaminase was probably localized in the mitochondria, it has been made clear that the GABA shunt (GABA by-pass pathway) is operative and contributes to the respiratory metabolism in growing callus cells. Feeding young callus cells with GABA-U-/sup 14/C for 24 hr actually resulted in finding 53% of the taken up radioactivity in released carbon dioxide. Considerable parts of the taken up radioactivity were found in amino acids and proteins which should have been formed via the GABA shunt also.

  8. Nerve Regenerative Effects of GABA-B Ligands in a Model of Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Valerio Magnaghi

    2014-01-01

    Full Text Available Neuropathic pain arises as a direct consequence of a lesion or disease affecting the peripheral somatosensory system. It may be associated with allodynia and increased pain sensitivity. Few studies correlated neuropathic pain with nerve morphology and myelin proteins expression. Our aim was to test if neuropathic pain is related to nerve degeneration, speculating whether the modulation of peripheral GABA-B receptors may promote nerve regeneration and decrease neuropathic pain. We used the partial sciatic ligation- (PSL- induced neuropathic model. The biochemical, morphological, and behavioural outcomes of sciatic nerve were analysed following GABA-B ligands treatments. Simultaneous 7-days coadministration of baclofen (10 mg/kg and CGP56433 (3 mg/kg alters tactile hypersensitivity. Concomitantly, specific changes of peripheral nerve morphology, nerve structure, and myelin proteins (P0 and PMP22 expression were observed. Nerve macrophage recruitment decreased and step coordination was improved. The PSL-induced changes in nociception correlate with altered nerve morphology and myelin protein expression. Peripheral synergic effects, via GABA-B receptor activation, promote nerve regeneration and likely ameliorate neuropathic pain.

  9. Probing GABA Receptor Function in Schizophrenia with Iomazenil

    OpenAIRE

    Ahn, Kyungheup; Gil, Roberto; Seibyl, John; Sewell, Richard Andrew; D'Souza, Deepak Cyril

    2010-01-01

    Several lines of evidence from post-mortem, brain imaging, and genetic studies in schizophrenia patients suggest that Gamma-amino butyric acid (GABA) deficits may contribute to the pathophysiology of schizophrenia. Pharmacological induction of a transient GABA-deficit state has been shown to enhance vulnerability of healthy subjects to the psychotomimetic effects of various drugs. Exacerbating or creating a GABA deficit was hypothesized to induce or unmask psychosis in schizophrenia patients,...

  10. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    Science.gov (United States)

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. γ-Aminobutyric acid (GABA) signalling in plants.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Gilliham, Matthew; Xu, Bo

    2017-05-01

    The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABA A receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.

  12. Acute effects of sodium valproate and gamma-vinyl GABA on regional amino acid metabolism in the rat brain: incorporation of 2-[14C]glucose into amino acids.

    Science.gov (United States)

    Chapman, A G; Riley, K; Evans, M C; Meldrum, B S

    1982-09-01

    Amino acid concentrations have been determined in rat brain regions (cortex, striatum, cerebellum, and hippocampus) by HPLC after administration of acute anticonvulsant doses of sodium valproate (400 mg/kg, i.p.) and gamma-vinyl-GABA (1 g/kg, i.p.). After valproate administration the GABA level increases only in the cortex; aspartic acid concentration decreases in the cortex and hippocampus, and glutamic acid decreases in the hippocampus and striatum and increases in the cortex and cerebellum. There are no changes in the concentrations of glutamine, taurine, glycine, serine, and alanine following valproate administration. Only the GABA level increases in all the regions after gamma-vinyl-GABA administration. Cortical analyses 2, 4 and 10 minutes after pulse labeling with 2-[14C]glucose, i.v., show no change in the rate of cortical glucose utilization in the valproate treated group. The rate of labeling of glutamic acid is also unchanged, but the rate of labeling of GABA is reduced following valproate administration. After gamma-vinyl-GABA administration there is no change in the rate of labeling of GABA. These biochemical findings can be interpreted in terms of a primary anticonvulsant action of valproate on membrane receptors with secondary effects on the metabolism of amino acid neurotransmitters. This contrasts with the primary action of gamma-vinyl-GABA on GABA-transaminase activity.

  13. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    Science.gov (United States)

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  14. Role of GABA(B) receptors in learning and memory and neurological disorders.

    Science.gov (United States)

    Heaney, Chelcie F; Kinney, Jefferson W

    2016-04-01

    Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. GABA regulates the rat hypothalamic-pituitary-adrenocortical axis via different GABA-A receptor alpha-subtypes

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bundzikova, Jana; Larsen, Marianne Hald

    2008-01-01

    dependent on the composition of the GABA-A receptor subunits through which they act. We show here that positive modulators of alpha(1)-subtype containing GABA-A receptors with zolpidem (10 mg/kg) increase HPA activity in terms of increase in plasma corticosterone and induction of Fos in the PVN, whereas...... after positive modulation of GABA-A receptors composed of alpha(1)-subunit(s) affects a selective afferent system than the PVN, which is distinct from another afferent system(s) activated by non alpha(1)-containing GABA-A receptors....

  16. Phenotypic and chemotypic characterization of GABA-shunt mutants in Arabidopsis thaliana

    OpenAIRE

    Mekonnen, Dereje Worku

    2013-01-01

    Gamma-Aminobutyric acid (GABA) is a four carbon non protein amino acid, and the pathway that involves its production and degradation is called the GABA shunt. The GABA shunt is a short enzymatic pathway that involves three enzymes: glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semi aldehyde dehydrogenase (SSADH). GABA shunt is conserved almost in all organisms studied so far. The pathway starts in the cytosol and finishes in mitochondria in higher organisms like plant...

  17. Actions of Agonists, Fipronil and Ivermectin on the Predominant In Vivo Splice and Edit Variant (RDLbd, I/V) of the Drosophila GABA Receptor Expressed in Xenopus laevis Oocytes

    Science.gov (United States)

    Suwanmanee, Siros; Buckingham, Steven David; Biggin, Philip; Sattelle, David

    2014-01-01

    Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin) mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides. PMID:24823815

  18. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex.

    Science.gov (United States)

    Ristow, Inka; Li, Meng; Colic, Lejla; Marr, Vanessa; Födisch, Carina; von Düring, Felicia; Schiltz, Kolja; Drumkova, Krasimira; Witzel, Joachim; Walter, Henrik; Beier, Klaus; Kruger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin

    2018-01-01

    A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders ( N  = 13) and matched controls ( N  = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel ( p  < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.

  19. Gaba mediated long-term depression (LTD) in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Della Torre, G; Zampolini, M; Pettorossi, V E

    1995-01-01

    As previously demonstrated, high frequency stimulation (HFS) of the primary vestibular afferents always induces a clear, long lasting depression of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the medial vestibular nuclei (MVN). The induction of the HFS effect was mediated by the activation of glutamate NMDA receptors, since it was blocked by AP5. The mechanisms at the basis of such a depression were studied. Our results demonstrate that Gaba, acting on both GabaA and GabaB receptors, is involved in mediating this phenomenon. In fact, HFS applied during Bicuculline and Saclofen perfusion, was no longer able to induce an N2 depression, but provoked a slight potentiation. However, the N2 depression clearly emerged after drug wash-out. Furthermore, Bicuculline and Saclofen fully abolished the N2 depression and highlighted the potentiation, when administered after HFS. The possibility that the N2 depression is the result of a homosynaptic LTD can be excluded on the basis of our results. On the contrary, our findings suggest that the depression is due to an enhancement of the Gaba inhibitory effect due to an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  20. Cerebrospinal fluid GABA concentration: relationship with impulsivity and history of suicidal behavior, but not aggression, in human subjects.

    Science.gov (United States)

    Lee, Royce; Petty, Frederick; Coccaro, Emil F

    2009-01-01

    The objective of this study was to assess the relationship between cerebrospinal fluid concentrations of the neurotransmitter gamma-aminobutyric acid (GABA) and measures of impulsivity and related behaviors (aggression and suicidality) in healthy volunteer and personality disordered subjects. CSF GABA levels, and measures of impulsivity, aggression, and history of suicidal behavior were obtained by morning lumbar puncture in 57 healthy volunteer subjects and in subjects with personality disorder. CSF GABA levels were not found to correlate with measures of aggression but were found to correlate directly with measures of impulsivity; e.g., a composite measure of impulsivity in all subjects (r=0.35, df=46, P=0.015) and in personality disordered subjects examined separately (r=0.39, df=30, P=0.029). In the personality disorder group, CSF GABA levels were higher among subjects with a history of suicidal behavior compared with those without this history. These data suggest that central GABAergic function correlates directly with impulsiveness and history of suicidal behavior, but not aggressiveness, in personality disordered subjects. This may be consistent with observations that high doses of benzodiazepines can lead to "behavioral disinhibition" in human subjects. Further work assessing this and other aspects of the central GABA system in personality disordered subjects are warranted.

  1. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content

    OpenAIRE

    TIANSAWANG,Kasarin; LUANGPITUKSA,Pairoj; VARANYANOND,Warunee; HANSAWASDI,Chanida

    2016-01-01

    Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber con...

  2. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress.

  3. Work above shoulder level and degenerative alterations of the rotator cuff tendons

    DEFF Research Database (Denmark)

    Svendsen, Susanne Wulff; Gelineck, John; Mathiassen, S.E.

    2004-01-01

    Objective To determine whether work performed with the arms in a highly elevated position is associated with alterations in the rotator cuff tendons as assessed by magnetic resonance imaging (MRI). Methods A cross-sectional study was performed in a historical cohort of male machinists, car...... mechanics, and house painters. The participants were right-handed, ages 40–50 years, and had been employed in their trades for not less than 10 years. Seventy-one percent of invited subjects participated (136 of 192). Lifetime upper arm elevation was assessed by direct measurements combined with individual...... work histories obtained by questionnaire and from registry data. Supraspinatus tendinopathy was evidenced by MRI signal intensity changes and morphologic alterations. Infraspinatus and subscapularis tendinopathy were also assessed. Additional outcomes were acromioclavicular joint degeneration...

  4. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    Science.gov (United States)

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  5. Release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices: comparison with endogenous and exogenous labeled GABA

    International Nuclear Information System (INIS)

    Szerb, J.C.

    1983-01-01

    To compare the storage and release of endogenous GABA, of [ 3 H]GABA formed endogenously from glutamate, and of exogenous [ 14 C]GABA, hippocampal slices were incubated with 5 microCi/ml [3,4- 3 H]1-glutamate and 0.5 microCi/ml [U- 14 C]GABA and then were superfused in the presence or absence of Ca + with either 50 mM K + or 50 microM veratridine. Exogenous [ 14 C]GABA content of the slices declined spontaneously while endogenous GABA and endogenously formed [ 3 H]GABA stayed constant over a 48 min period. In the presence of Ca + 50 mM K + and in the presence or absence of Ca2 + veratridine released exogenous [ 14 C]GABA more rapidly than endogenous or endogenously formed [ 3 H]GABA, the release of the latter two occurring always in parallel. The initial specific activity of released exogenous [ 14 C]GABA was three times, while that of endogenously formed [ 3 H]GABA was only 50% higher than that in the slices. The observation that endogenous GABA and [ 3 H]GABA formed endogenously from glutamate are stored and released in parallel but differently from exogenous labelled GABA, suggests that exogenous [ 3 H] glutamate can enter a glutamate pool that normally serves as precursor of GABA

  6. RESTRAIN OF FEAR: PARTICIPATION OF GABA NEUROTRANSMITTER SYSTEM

    Directory of Open Access Journals (Sweden)

    Galina I. Shulgina

    2013-07-01

    Full Text Available In experiences on rats in the conditions of free behavior at development of a conditioned of passive avoidanсe reflex (the first series and a defensive reflex and a conditional inhibition (the second series it is revealed, and elaboration of internal inhibition and Phenibut – a nonspecific agonist of GAMKA and GAMKB receptors cause in experimental animals weakening of freezing arising in a dangerous situation, and a disinhibition of research behavior. Results of experiences in the accounting of data of the literature allow to assume that both factors, and elaboration of internal inhibition, and Phenibut weaken freezing – the phenomenon used in experiments as a biological analog of fear, owing to increase of level of activity of the GABA neurotransmitter system of a brain.

  7. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    Science.gov (United States)

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Effects of disrupting medial prefrontal cortex GABA transmission on decision-making in a rodent gambling task.

    Science.gov (United States)

    Paine, T A; O'Hara, A; Plaut, B; Lowes, D C

    2015-05-01

    Decision-making is a complex cognitive process that is mediated, in part, by subregions of the medial prefrontal cortex (PFC). Decision-making is impaired in a number of psychiatric conditions including schizophrenia. Notably, people with schizophrenia exhibit reductions in GABA function in the same PFC areas that are implicated in decision-making. For example, expression of the GABA-synthesizing enzyme GAD67 is reduced in the dorsolateral PFC of people with schizophrenia. The goal of this experiment was to determine whether disrupting cortical GABA transmission impairs decision-making using a rodent gambling task (rGT). Rats were trained on the rGT until they reached stable performance and then were implanted with guide cannulae aimed at the medial PFC. Following recovery, the effects of intra-PFC infusions of the GABAA receptor antagonist bicuculline methiodide (BMI) or the GABA synthesis inhibitor L-allylglycine (LAG) on performance on the rGT were assessed. Intracortical infusions of BMI (25 ng/μl/side), but not LAG (10 μg/μl/side), altered decision-making. Following BMI infusions, rats made fewer advantageous choices. Follow-up experiments suggested that the change in decision-making was due to a change in the sensitivity to the punishments, rather than a change in the sensitivity to reward magnitudes, associated with each outcome. LAG infusions increased premature responding, a measure of response inhibition, but did not affect decision-making. Blocking GABAA receptors, but not inhibiting cortical GABA synthesis, within the medial PFC affects decision-making in the rGT. These data provide proof-of-concept evidence that disruptions in GABA transmission can contribute to the decision-making deficits in schizophrenia.

  9. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana.

    Science.gov (United States)

    Friend, Lindsey; Weed, Jared; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac; Edwards, Jeffrey G

    2017-11-08

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ 9 -tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ 9 -tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ 9 -tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ 9 -tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ 9 -tetrahydrocannabinol use. Copyright © 2017 the

  10. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  11. The effect of fermented buckwheat on producing l-carnitine- and γ-aminobutyric acid (GABA)-enriched designer eggs.

    Science.gov (United States)

    Park, Namhyeon; Lee, Tae-Kyung; Nguyen, Thi Thanh Hanh; An, Eun-Bae; Kim, Nahyun M; You, Young-Hyun; Park, Tae-Sub; Kim, Doman

    2017-07-01

    The potential of fermented buckwheat as a feed additive was studied to increase l-carnitine and γ-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine and glutamate, which are precursors for the synthesis of l-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce l-carnitine and GABA that exert positive effects such as enhanced metabolism, antioxidant activities, immunity and blood pressure control. A novel analytical method for simultaneously detecting l-carnitine and GABA was developed using liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 times more l-carnitine and GABA respectively compared with normal buckwheat. Compared with the control, the fermented buckwheat extract-fed group showed enriched l-carnitine (13.6%) and GABA (8.4%) in the yolk, though only l-carnitine was significantly different (P < 0.05). Egg production (9.4%), albumen weight (2.1%) and shell weight (5.8%) were significantly increased (P < 0.05). There was no significant difference in yolk weight, and total cholesterol (1.9%) and triglyceride (4.9%) in the yolk were lowered (P < 0.05). Fermented buckwheat as a feed additive has the potential to produce l-carnitine- and GABA-enriched designer eggs with enhanced nutrition and homeostasis. These designer eggs pose significant potential to be utilized in superfood production and supplement industries. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  13. Fiat lux! Phylogeny and bioinformatics shed light on GABA functions in plants.

    Science.gov (United States)

    Renault, Hugues

    2013-06-01

    The non-protein amino acid γ-aminobutyric acid (GABA) accumulates in plants in response to a wide variety of environmental cues. Recent data point toward an involvement of GABA in tricarboxylic acid (TCA) cycle activity and respiration, especially in stressed roots. To gain further insights into potential GABA functions in plants, phylogenetic and bioinformatic approaches were undertaken. Phylogenetic reconstruction of the GABA transaminase (GABA-T) protein family revealed the monophyletic nature of plant GABA-Ts. However, this analysis also pointed to the common origin of several plant aminotransferases families, which were found more similar to plant GABA-Ts than yeast and human GABA-Ts. A computational analysis of AtGABA-T co-expressed genes was performed in roots and in stress conditions. This second approach uncovered a strong connection between GABA metabolism and glyoxylate cycle during stress. Both in silico analyses open new perspectives and hypotheses for GABA metabolic functions in plants.

  14. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    Sandeep eKumar

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  15. Environmental prenatal stress eliminates brain and maternal behavioral sex differences and alters hormone levels in female rats.

    Science.gov (United States)

    Del Cerro, M C R; Ortega, E; Gómez, F; Segovia, S; Pérez-Laso, C

    2015-07-01

    Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings.

    Science.gov (United States)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    2017-03-15

    The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio A. Rosales-Corral

    2012-01-01

    Full Text Available Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-ß (Aß generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-ß (Aß. The purpose was to determine how Aß may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aß in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid ß was injected, favoring an endogenous anti-inflammatory pathway.

  18. Measurement of release of endogenous GABA and catabolites of [3H]GABA from synaptosomal preparations using ion-exchange chromatography

    International Nuclear Information System (INIS)

    Grove, J.; Gardner, C.R.; Richards, M.H.

    1982-01-01

    Picomole quantities of endogenous GABA in acidified superfusates of synaptosomal preparations have been measured using micro-bore ion-exchange chromatography and post-column formation of the fluorescent iso-indole derivative. Using this technique superfusates have been analyzed directly, without further manipulations, to investigate the release of endogenous GABA. Spontaneous release of GABA was 2-5 pmol/200 microliters superfusate increasing to 20 pmol/200 microliters with potassium stimulation. When gamma-vinyl GABA (RMI 71754), an inhibitor of GABA-T was injected into rats (750 mg/kg) and synaptosomes prepared the potassium-evoked release of GABA was increased 3-fold compared to controls. Chromatographic separations and measurement of release of endogenous and radiolabeled GABA allowed the real specific activity of released GABA to be calculated. Only when 500 microM amino-oxyacetic acid was added during isolation of synaptosomes was the specific activity of released GABA the same as the initial specific activity

  19. Gene Expression in Accumbens GABA Neurons from Inbred Rats with Different Drug-Taking Behavior

    Science.gov (United States)

    Sharp, B.M.; Chen, H.; Gong, S.; Wu, X.; Liu, Z.; Hiler, K.; Taylor, W.L.; Matta, S.G.

    2011-01-01

    Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. Based on their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug taking behavior. The transcriptomes of NAcc shell-VP GABAergic neurons from these two strains were analyzed in adolescents, using a multidisciplinary approach that combined stereotaxic ionotophoretic brain microinjections, laser-capture microdissection (LCM) and microarray measurement of transcripts. LCM enriched the gene transcripts detected in GABA neurons compared to the residual NAcc tissue: a ratio of neuron/residual > 1 and false discovery rate (FDR) 3 yielded 3,514. Strain-dependent differences in gene expression within GABA neurons were identified; 322 vs. 60 transcripts showed 1.5-fold vs. 2-fold differences in expression (FDR<5%). Classification by gene ontology showed these 322 transcripts were widely distributed, without categorical enrichment. This is most consistent with a global change in GABA neuron function. Literature-mining by Chilibot found 38 genes related to synaptic plasticity, signaling and gene transcription, all of which determine drug-abuse; 33 genes have no known association with addiction or nicotine. In Lewis rats, upregulation of Mint-1, Cask, CamkIIδ, Ncam1, Vsnl1, Hpcal1 and Car8 indicates these transcripts likely contribute to altered signaling and synaptic function in NAcc GABA projection neurons to VP. PMID:21745336

  20. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  1. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    Science.gov (United States)

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  2. Long-term variation in above and belowground plant inputs alters soil organic matter biogeochemistry at the molecular-level

    Science.gov (United States)

    Simpson, M. J.; Pisani, O.; Lin, L.; Lun, O.; Simpson, A.; Lajtha, K.; Nadelhoffer, K. J.

    2015-12-01

    The long-term fate of soil carbon reserves with global environmental change remains uncertain. Shifts in moisture, altered nutrient cycles, species composition, or rising temperatures may alter the proportions of above and belowground biomass entering soil. However, it is unclear how long-term changes in plant inputs may alter the composition of soil organic matter (SOM) and soil carbon storage. Advanced molecular techniques were used to assess SOM composition in mineral soil horizons (0-10 cm) after 20 years of Detrital Input and Removal Treatment (DIRT) at the Harvard Forest. SOM biomarkers (solvent extraction, base hydrolysis and cupric (II) oxide oxidation) and both solid-state and solution-state nuclear magnetic resonance (NMR) spectroscopy were used to identify changes in SOM composition and stage of degradation. Microbial activity and community composition were assessed using phospholipid fatty acid (PLFA) analysis. Doubling aboveground litter inputs decreased soil carbon content, increased the degradation of labile SOM and enhanced the sequestration of aliphatic compounds in soil. The exclusion of belowground inputs (No roots and No inputs) resulted in a decrease in root-derived components and enhanced the degradation of leaf-derived aliphatic structures (cutin). Cutin-derived SOM has been hypothesized to be recalcitrant but our results show that even this complex biopolymer is susceptible to degradation when inputs entering soil are altered. The PLFA data indicate that changes in soil microbial community structure favored the accelerated processing of specific SOM components with littler manipulation. These results collectively reveal that the quantity and quality of plant litter inputs alters the molecular-level composition of SOM and in some cases, enhances the degradation of recalcitrant SOM. Our study also suggests that increased litterfall is unlikely to enhance soil carbon storage over the long-term in temperate forests.

  3. Alteration of putative amino acid levels and morphological findings in neural tissues of methylmercury-intoxicated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, K.; Inouye, M.; Fujisaki, T.

    1985-04-01

    Methylmercury chloride was administered PO to male Kud:ddY mice at a dose of 5 mg/kg/day for 20 days. The contents of taurine, aspartate, glutamate, glycine, and ..gamma..-aminobutyric acid were determined in tissue and crude synaptosomal (P/sub 2/) fraction of cerebellum, cerebral cortex, and spinal cord of methylmercury-treated mice with or without ataxia. In the cerebellum of ataxic mice, increased levels of taurine and glycine were found in the tissue and P/sub 2/ fraction, and increased levels of glutamate were found in the P/sub 2/ fraction. In the cerebral cortex, the levels of ..gamma..-aminobutylic acid decreased in the tissue and in the P/sub 2/ fraction of ataxic mice, but increased levels were found in the tissue of non-ataxic mice. A decreased asparate level in the cerebral cortex of ataxic mice and an increased taurine level in the cerebral cortex of non-ataxic mice were also found. In the spinal cord of ataxic mice, taurine increased in the tissue and in the P/sub 2/ fraction. Glutamate level decreased in the spinal cord of ataxic mice, but increased in the P/sub 2/ fraction of non-ataxic mice. Increased glycine levels in the P/sub 2/ fraction of the spinal cord were also found in non-axtaxic mice. Histologically, some degenerative changes were demonstrated in the cerebral and cerebellar cortices of ataxic mice. Such changes were also present to a mild degree in non-ataxic mice. In conclusion, methylmercury treatment altered the levels of putative neurotransmitter amino acids in neutral tissue of mice. These alterations might be caused by specific neural cell dysfunction and could be related to the appearance of ataxia.

  4. A therapeutic dose of zolpidem reduces thalamic GABA in healthy volunteers: a proton MRS study at 4 T.

    Science.gov (United States)

    Licata, Stephanie C; Jensen, J Eric; Penetar, David M; Prescot, Andrew P; Lukas, Scott E; Renshaw, Perry F

    2009-05-01

    Zolpidem is a nonbenzodiazepine sedative/hypnotic that acts at GABA(A) receptors to influence inhibitory neurotransmission throughout the central nervous system. A great deal is known about the behavioral effects of this drug in humans and laboratory animals, but little is known about zolpidem's specific effects on neurochemistry in vivo. We evaluated how acute administration of zolpidem affected levels of GABA, glutamate, glutamine, and other brain metabolites. Proton magnetic resonance spectroscopy ((1)H MRS) at 4 T was employed to measure the effects of zolpidem on brain chemistry in 19 healthy volunteers. Participants underwent scanning following acute oral administration of a therapeutic dose of zolpidem (10 mg) in a within-subject, single-blind, placebo-controlled, single-visit study. In addition to neurochemical measurements from single voxels within the anterior cingulate (ACC) and thalamus, a series of questionnaires were administered periodically throughout the experimental session to assess subjective mood states. Zolpidem reduced GABA levels in the thalamus, but not the ACC. There were no treatment effects with respect to other metabolite levels. Self-reported ratings of "dizzy," "nauseous," "confused," and "bad effects" were increased relative to placebo, as were ratings on the sedation/intoxication (PCAG) and psychotomimetic/dysphoria (LSD) scales of the Addiction Research Center Inventory. Moreover, there was a significant correlation between the decrease in GABA and "dizzy." Zolpidem engendered primarily dysphoric-like effects and the correlation between reduced thalamic GABA and "dizzy" may be a function of zolpidem's interaction with alpha1GABA(A) receptors in the cerebellum, projecting through the vestibular system to the thalamus.

  5. Isoguvacine binding, uptake, and release: relation to the GABA system

    Energy Technology Data Exchange (ETDEWEB)

    White, W F; Snodgrass, S R

    1983-06-01

    Isoguvacine (1,2,3,6-tetrahydropyridine-4-carboxylic acid) is a GABA (gamma-aminobutyric acid) agonist with limited conformational flexibility. In these studies we investigated the binding, uptake, and release of (3H) isoguvacine by use of tissue preparations of rat CNS, comparing the results with similar studies of (3H)GABA. The results from these investigations indicate that isoguvacine binds to membrane preparations of rat forebrain with pharmacological characteristics similar to the post-synaptic GABA recognition site; that it is transported into synaptosomal preparations by an uptake system similar to the high-affinity GABA uptake system; and that recently accumulated isoguvacine is released in a Ca2+-dependent manner and by heteroexchange with external GABA. The ability of isoguvacine and gamma-hydroxybutyric acid to decrease the K+-stimulated Ca2+-dependent release process was also investigated. The results indicate that isoguvacine interactions have many of the biochemical features of GABA synaptic function, isoguvacine being, however, less potent than GABA.

  6. GABA(B), not GABA(A) receptors play a role in cortical postictal refractoriness

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Kubová, Hana

    2015-01-01

    Roč. 88, Jan 2015 (2015), s. 99-102 ISSN 0028-3908 R&D Projects: GA MŠk(CZ) LH11015; GA ČR(CZ) GAP302/10/0971; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : cortical seizures * postictal refractoriness * GABA receptors * pharmacology Subject RIV: FH - Neurology Impact factor: 4.936, year: 2015

  7. Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus.

    Science.gov (United States)

    Todd, Brigitte J; Schwarz, Jaclyn M; Mong, Jessica A; McCarthy, Margaret M

    2007-02-15

    Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males. (c) 2007 Wiley Periodicals, Inc.

  8. Alterations of serum levels of BDNF-related miRNAs in patients with depression.

    Directory of Open Access Journals (Sweden)

    You-Jie Li

    Full Text Available Depression is a serious and potentially life-threatening mental disorder with unknown etiology. Emerging evidence shows that brain-derived neurotrophic factor (BDNF and microRNAs (miRNAs play critical roles in the etiology of depression. Here this study was aimed to identify and characterize the roles of BDNF and its putative regulatory miRNAs in depression. First, we identified that miR-182 may be a putative miRNA that regulates BDNF levels by bioinformatic studies, and characterized the effects of miR-182 on the BDNF levels using cell-based studies, side by side with miR-132 (a known miRNA that regulates BDNF expression. We showed that treatment of miR-132 and miR-182 respectively decreased the BDNF protein levels in a human neuronal cell model, supporting the regulatory roles of miR-132 and miR-182 on the BDNF expression. Furthermore, we explored the roles of miR-132 and miR-182 on the BDNF levels in depression using human subjects by assessing their serum levels. Compared with the healthy controls, patients with depression showed lower serum BDNF levels (via the enzyme-linked immunosorbent assays and higher serum miR-132 and miR-182 levels (via the real-time PCR. Finally, the Pearson's (or Spearman's correlation coefficient was calculated to study whether there was a relationship among the Self-Rating Depression Scale score, the serum BDNF levels, and serum BDNF-related miRNA levels. Our results revealed that there was a significant negative correlation between the SDS scores and the serum BDNF levels, and a positive correlation between the SDS scores and miR-132 levels. In addition, we found a reverse relationship between the serum BDNF levels and the miR-132/miR-182 levels in depression. Collectively, we provided evidence supporting that miR-182 is a putative BDNF-regulatory miRNA, and suggested that the serum BDNF and its related miRNAs may be utilized as important biomarkers in the diagnosis or as therapeutic targets of depression.

  9. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina

    NARCIS (Netherlands)

    Kamermans, M.; Werblin, F.

    1992-01-01

    Horizontal cells (HCs) appear to release, and also to be sensitive to, GABA. The external GABA concentration is increased with depolarization of the HC membrane via an electrogenic GABA transporter. This extracellular GABA opens a GABAA-gated Cl- channel in the HC membrane. Since the equilibrium

  10. Altered serotonin, dopamine and norepinepherine levels in 15q duplication and Angelman syndrome mouse models.

    Directory of Open Access Journals (Sweden)

    M Febin Farook

    Full Text Available Childhood neurodevelopmental disorders like Angelman syndrome and autism may be the result of underlying defects in neuronal plasticity and ongoing problems with synaptic signaling. Some of these defects may be due to abnormal monoamine levels in different regions of the brain. Ube3a, a gene that causes Angelman syndrome (AS when maternally deleted and is associated with autism when maternally duplicated has recently been shown to regulate monoamine synthesis in the Drosophila brain. Therefore, we examined monoamine levels in striatum, ventral midbrain, frontal cerebral cortex, cerebellar cortex and hippocampus in Ube3a deficient and Ube3a duplication animals. We found that serotonin (5HT, a monoamine affected in autism, was elevated in the striatum and cortex of AS mice. Dopamine levels were almost uniformly elevated compared to control littermates in the striatum, midbrain and frontal cortex regardless of genotype in Ube3a deficient and Ube3a duplication animals. In the duplication 15q autism mouse model, paternal but not maternal duplication animals showed a decrease in 5HT levels when compared to their wild type littermates, in accordance with previously published data. However, maternal duplication animals show no significant changes in 5HT levels throughout the brain. These abnormal monoamine levels could be responsible for many of the behavioral abnormalities observed in both AS and autism, but further investigation is required to determine if any of these changes are purely dependent on Ube3a levels in the brain.

  11. Outcomes of patients with altered level of consciousness and abnormal electroencephalogram: A retrospective cohort study.

    Science.gov (United States)

    Sanches, Paula Rodrigues; Corrêa, Thiago Domingos; Ferrari-Marinho, Taissa; Naves, Pedro Vicente Ferreira; Ladeia-Frota, Carol; Caboclo, Luís Otávio

    2017-01-01

    Nonconvulsive seizures (NCS) are frequent in hospitalized patients and may further aggravate injury in the already damaged brain, potentially worsening outcomes in encephalopathic patients. Therefore, both early seizure recognition and treatment have been advocated to prevent further neurological damage. Evaluate the main EEG patterns seen in patients with impaired consciousness and address the effect of treatment with antiepileptic drugs (AEDs), continuous intravenous anesthetic drugs (IVADs), or the combination of both, on outcomes. This was a single center retrospective cohort study conducted in a private, tertiary care hospital. Consecutive adult patients with altered consciousness submitted to a routine EEG between January 2008 and February 2011 were included in this study. Based on EEG pattern, patients were assigned to one of three groups: Group Interictal Patterns (IP; EEG showing only interictal epileptiform discharges or triphasic waves), Group Rhythmic and Periodic Patterns (RPP; at least one EEG with rhythmic or periodic patterns), and Group Ictal (Ictal; at least one EEG showing ictal pattern). Groups were compared in terms of administered antiepileptic treatment and frequency of unfavorable outcomes (modified Rankin scale ≥3 and in-hospital mortality). Two hundred and six patients (475 EEGs) were included in this analysis. Interictal pattern was observed in 35.4% (73/206) of patients, RPP in 53.4% (110/206) and ictal in 11.2% (23/206) of patients. Treatment with AEDs, IVADs or a combination of both was administered in half of the patients. While all Ictal group patients received treatment (AEDs or IVADs), only 24/73 (32.9%) IP group patients and 55/108 (50.9%) RPP group patients were treated (p<0.001). Hospital length of stay (LOS) and frequency of unfavorable outcomes did not differ among the groups. In-hospital mortality was higher in IVADs treated RPP patients compared to AEDs treated RPP patients [11/19 (57.9%) vs. 11/36 (30.6%) patients

  12. An Electrostatic Funnel in the GABA-Binding Pathway.

    Directory of Open Access Journals (Sweden)

    Timothy S Carpenter

    2016-04-01

    Full Text Available The γ-aminobutyric acid type A receptor (GABAA-R is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.

  13. Marginal bone-level alterations of loaded zirconia and titanium dental implants: an experimental study in the dog mandible.

    Science.gov (United States)

    Thoma, Daniel S; Benic, Goran I; Muñoz, Fernando; Kohal, Ralf; Sanz Martin, Ignacio; Cantalapiedra, Antonio G; Hämmerle, Christoph H F; Jung, Ronald E

    2016-04-01

    The aim was to test whether or not the marginal bone-level alterations of loaded zirconia implants are similar to the bone-level alterations of a grade 4 titanium one-piece dental implant. In six dogs, all premolars and the first molars were extracted in the mandible. Four months later, three zirconia implants (BPI, VC, ZD) and a control titanium one-piece (STM) implant were randomly placed in each hemimandible and left for transmucosal healing (baseline). Six months later, CAD/CAM crowns were cemented. Sacrifice was scheduled at 6-month postloading. Digital X-rays were taken at implant placement, crowns insertion, and sacrifice. Marginal bone-level alterations were calculated, and intra- and intergroup comparisons performed adjusted by confounding factors. Implants were successfully placed. Until crown insertion, two implants were fractured (one VC, one ZD). At sacrifice, 5 more implants were (partly) fractured (one BPI, four ZD), and one lost osseointegration (VC). No decementation of crowns occurred. All implant systems demonstrated a statistically significant (except VC) loss of marginal bone between baseline and crown insertion ranging from 0.29 mm (VC; P = 0.116) to 0.80 mm (ZD; P = 0.013). The estimated marginal bone loss between baseline and 6 months of loading ranged between 0.19 mm (BPI) and 1.11 mm (VC), being statistically significant for STM and VC only (P implants and control implants (STM vs. BPI P = 0.007; vs. VC P = 0.001; vs. ZD P = 0.011). Zirconia implants were more prone to fracture prior to and after loading with implant-supported crowns compared to titanium implants. Individual differences and variability in the extent of the bone-level changes during the 12-month study period were found between the different implant types and materials. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. GABA, not glycine, mediates inhibition of latent respiratory motor pathways after spinal cord injury

    OpenAIRE

    Zimmer, M. Beth; Goshgarian, Harry G.

    2006-01-01

    Previous work has shown that latent respiratory motor pathways known as crossed phrenic pathways are inhibited via a spinal inhibitory process; however, the underlying mechanisms remain unknown. The present study investigated whether spinal GABA-A and/or glycine receptors are involved in the inhibition of the crossed phrenic pathways after a C2 spinal cord hemisection injury. Under ketamine/xylazine anesthesia, adult, female, Sprague Dawley rats were hemisected at the C2 spinal cord level. Fo...

  15. The GABAA receptor α and β subunits but not the density of muscimol binding sites are altered in the auditory-linguistic association cortex of subjects with schizophrenia

    International Nuclear Information System (INIS)

    Farnbach-Pralong, D.; Bradbury, R.; Tomaskovic, E.; Copolov, D.; Dean, B.

    1998-01-01

    Full text: An increase in the density of postsynaptic GABA A receptors has recently been reported in the prefrontal cortex of subjects with schizophrenia. This increase has been hypothesised to represent an up-regulation in response a decrease in the density of GABAergic interneurons. In order to determine whether the GABA A receptor is also altered in the auditory-linguistic association cortex of the schizophrenic brain, we used quantitative autoradiography to measure the density of that receptor in tissue obtained at autopsy from 20 control subjects and 20 subjects with schizophrenia matched for sex and age. The density of GABA A receptors was measured as the difference in the binding of the specific ligand [ 3 H]muscimol (100 nM) in the presence or in the absence of 10 5 M SR95531. There was no significant difference in the density of [ 3 H]muscimol binding between tissue from schizophrenic (554.9±20,5 fmol/mg TE) and non-schizophrenic (580.1±26.2 fmol/mg TE) subjects. The abundance of the α and β subunits of the GABA A receptor was also measured in particulate membranes prepared from tissue from 6 control and 6 schizophrenic subjects using Western blots. Detection with monoclonal antibodies and chemiluminescence showed that in tissue from control subjects, there was a significant correlation between the levels of α and β subunits (r=0.817, p=0.047). However, there was no such correlation in tissue from schizophrenic subjects (r=0.265, p=0.61), where in 2 subjects large levels of β-subunit were not matched by similar levels of α subunit. These preliminary results suggest mat there may be a failure for up-regulated GABA A receptor subunits to assemble into functional receptors in this brain region for some subjects with schizophrenia. Copyright (1998) Australian Neuroscience Society

  16. Association of a Human FABP1 Gene Promoter Region Polymorphism with Altered Serum Triglyceride Levels.

    Directory of Open Access Journals (Sweden)

    Xian-E Peng

    Full Text Available Liver fatty acid-binding protein (L-FABP, also known as fatty acid-binding protein 1 (FABP1, is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182 from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032.Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05. The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01. In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = -0.320, P = 0.003, while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014. Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans.

  17. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    Science.gov (United States)

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  18. The Effects of Altered Membrane Cholesterol Levels on Sodium Pump Activity in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Suparna Roy

    2017-02-01

    Full Text Available BackgroundMetabolic dysfunctions characteristic of overt hypothyroidism (OH start at the early stage of subclinical hypothyroidism (SCH. Na+/K+-ATPase (the sodium pump is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients.MethodsIn 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T4 and thyroid stimulating hormone (TSH levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis.ResultsSodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T4 levels. No dependence on serum cholesterol was observed in either case.ConclusionDespite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations.

  19. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells

    International Nuclear Information System (INIS)

    Canuto, K.S.; Guimaraes, O.R.; Geller, M.; Sergio, L.P.S.; Paoli, F.; Fonseca, A.S.

    2015-01-01

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia coli cells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficient E. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out. (author)

  20. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Canuto, K.S.; Guimaraes, O.R.; Geller, M. [Centro Universitario Serra dos Orgaos, Teresopolis, RJ (Brazil). Centro de Ciencias da Saude; Sergio, L.P.S. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia coli cells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficient E. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out. (author)

  1. Altered dopamine levels induced by the parasite Profilicollis antarcticus on its intermediate host, the crab Hemigrapsus crenulatus

    Directory of Open Access Journals (Sweden)

    JOSÉ MIGUEL ROJAS

    2005-01-01

    Full Text Available A serotonergic pathway is apparently involved in parasite-host interactions. Previous studies conducted in our laboratory showed increased rates in oxygen consumption and alterations in body posture in the crab Hemigrapsus crenulatus parasitized by the acanthocephalan, Profilicollis antarcticus. Such changes may be related to the functions described for biogenic amines in crustaceans. During the infective stage the acanthocephalans live freely in the hemocelomic cavity, suggesting that the possible alteration induced by biogenic amines may be related to their neurohormonal function in crustaceans. To test whether the presence of P. antarcticus produced neurohormonal changes in its intermediate host, H. crenulatus, we analyzed serotonin and dopamine levels in the host using HPLC with electrochemical detection. Two groups of 11 female crabs were studied; one group was artificially inoculated with two cystacanths while the other was used as the control. Our results show a dramatic increase in hemolymph dopamine, but not serotonin in H. crenulatus parasitized by the acanthocephalan P. antarcticus. Our results, along with those reported by Maynard (1996, suggest a parasite-specific strategy involved in the behavior alteration caused by the acanthocephalans on their intermediate host. The use of a biogenic amine as a mechanism of interaction by the parasites gives them an endless number of alternative potential actions on their intermediate hosts

  2. Altered dopamine levels induced by the parasite Profilicollis antarcticus on its intermediate host, the crab Hemigrapsus crenulatus.

    Science.gov (United States)

    Rojas, José Miguel; Ojeda, F Patricio

    2005-01-01

    A serotonergic pathway is apparently involved in parasite-host interactions. Previous studies conducted in our laboratory showed increased rates in oxygen consumption and alterations in body posture in the crab Hemigrapsus crenulatus parasitized by the acanthocephalan, Profilicollis antarcticus. Such changes may be related to the functions described for biogenic amines in crustaceans. During the infective stage the acanthocephalans live freely in the hemocelomic cavity, suggesting that the possible alteration induced by biogenic amines may be related to their neurohormonal function in crustaceans. To test whether the presence of P. antarcticus produced neurohormonal changes in its intermediate host, H. crenulatus, we analyzed serotonin and dopamine levels in the host using HPLC with electrochemical detection. Two groups of 11 female crabs were studied; one group was artificially inoculated with two cystacanths while the other was used as the control. Our results show a dramatic increase in hemolymph dopamine, but not serotonin in H. crenulatus parasitized by the acanthocephalan P. antarcticus. Our results, along with those reported by Maynard (1996), suggest a parasite-specific strategy involved in the behavior alteration caused by the acanthocephalans on their intermediate host. The use of a biogenic amine as a mechanism of interaction by the parasites gives them an endless number of alternative potential actions on their intermediate hosts.

  3. Reduced parahippocampal and lateral temporal GABA{sub A}-[{sup 11}C]flumazenil binding in major depression: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Klumpers, Ursula M.H. [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); GGZ inGeest, partner of VUmc, Department of Psychiatry, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Veltman, Dick J. [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Drent, Madeleine L. [VU University Medical Center, Department of Endocrinology, Amsterdam (Netherlands); Boellaard, Ronald; Lammertsma, Adriaan A. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Comans, Emile F.I. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Meynen, Gerben [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); Hoogendijk, Witte J.G. [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); VU University Medical Center, Center for Neurogenomics and Cognitive Research, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands)

    2010-03-15

    Major depressive disorder (MDD) has been related to both a dysfunctional {gamma}-amino butyric acid (GABA) system and to hyperactivity of the hypothalamic-pituitary-adrenal axis (HPA). Although GABA has been suggested to inhibit HPA axis activity, their relationship has never been studied at the level of the central GABA{sub A}-benzodiazepine receptor in depressed patients or in relation to antidepressant treatment. Eleven depressed outpatients were compared, before and after treatment with citalopram, with nine age-matched healthy controls. The subjects were scanned using the positron emission tomography (PET) tracer [{sup 11}C]flumazenil ([{sup 11}C]FMZ). Parametric voxel-by-voxel Logan plots were compared with methods based on regions of interest (ROI), to provide volume of distribution (V{sub T}) and binding potential (BP{sub ND}) values. Plasma GABA levels were determined and a dexamethasone-corticotropin releasing hormone (DEX-CRH) test was performed. In MDD, parametric voxel-by-voxel Logan plots showed bilateral reduced [{sup 11}C]FMZ binding in the parahippocampal gyrus and right lateral superior temporal gyrus (p uncorrected {<=}0.001). In the temporal area, [{sup 11}C]FMZ binding showed a strong inverse correlation with HPA axis activity. Plasma GABA did not discriminate MDD from controls, but correlated inversely with [{sup 11}C]FMZ binding in the right insula. Following treatment with citalopram, voxel-based analysis revealed reduced binding in the right lateral temporal gyrus and dorsolateral prefrontal cortex. The bilateral reduction in limbic parahippocampal and right temporal [{sup 11}C]FMZ binding found in MDD indicates decreased GABA{sub A}-benzodiazepine receptor complex affinity and/or number. The inverse relationship between GABA{sub A} binding in the temporal lobe and HPA axis activity, suggests that HPA axis hyperactivity is partly due to reduced GABA-ergic inhibition. (orig.)

  4. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  5. Genetic KCa3.1-deficiency produces locomotor hyperactivity and alterations in cerebral monoamine levels

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Gramsbergen, Jan Bert; Sivasaravanaparan, Mithula

    2012-01-01

    The calmodulin/calcium-activated K(+) channel KCa3.1 is expressed in red and white blood cells, epithelia and endothelia, and possibly central and peripheral neurons. However, our knowledge about its contribution to neurological functions and behavior is incomplete. Here, we investigated whether...... genetic deficiency or pharmacological activation of KCa3.1 change behavior and cerebral monoamine levels in mice....

  6. Eradication of Helicobacter pylori infection favourably affects altered gastric mucosal MMP-9 levels

    NARCIS (Netherlands)

    Kubben, F.J.G.M.; Sier, C.F.M.; Schram, M.; Witte, T.A.M.C.; Veenendaal, R.A.; Duijn, W. van; Verheijen, J.H.; Hanemaaijer, R.; Lamers, C.B.H.W.; Verspaget, H.W.

    2007-01-01

    Background: Helicobacter pylori gastritis is recognized as an important pathogenetic factor in peptic ulcer disease and gastric carcinogenesis, and is accompanied by strongly enhanced gastric mucosal matrix metalloproteinase-9 (MMP-9) levels. Aim: This study was performed to investigate whether H.

  7. Altered protein and iron levels of patients with active tuberculosis in ...

    African Journals Online (AJOL)

    Backgound: Tuberculosis as a state of chronic inflammation impacts on haematologic functions of the body. Objectives: This study aimed at assessing iron parameters and serum protein levels of ninety tuberculosis patients aged fifteen to sixty years, enrolled from Dr Lawrence Henshaw Memorial Hospital, Calabar, Nigeria.

  8. Altered levels of soluble CD18 may associate immune mechanisms with outcome in sepsis

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Juul-Madsen, Kristian; Hill Christiansen, Stig

    2017-01-01

    and phagocytosis through complement opsonisation, both processes relevant to the immune response during sepsis. Here, we investigate the role of soluble (s)CD18 in sepsis with emphasis on sCD18 as a mechanistic biomarker of immune reactions and outcome of sepsis. sCD18 levels were measured in fifteen septic....../CD18, also known as Mac-1 or complement receptor 3. Serum sCD18 levels in sepsis non-survivors displayed two distinct peaks permitting a partitioning into two groups, namely sCD18 “high” and sCD18 “low” with median levels of sCD18 at 2158 mU/ml (IQR 2093-2811 mU/ml) and 488 mU/ml (IQR 360-617 m......U/ml), respectively, at the day of ICU admission. Serum sCD18 levels partitioned sepsis non-survivors into one group of “high” sCD18 and low CRP and another group with “low” sCD18 and high CRP. Together with the mechanistic data generated in vitro, we suggest the partitioning in sCD18 to reflect a compensatory anti...

  9. Alteration of Hormonal Levels in a Rootless Epiphytic Bromeliad in Different Phenological Phases.

    Science.gov (United States)

    Mercier; Endres

    1999-11-01

    Major changes in indole-3-acetic acid (IAA) and cytokinin (CK) levels occur at different phenological phases of Tillandsia recurvata shoots. This epiphytic rootless bromeliad was chosen as suitable material for hormonal analysis because CK synthesis is restricted to the shoots, thus avoiding problems in the interpretation of results caused by translocation and interconversion of CK forms between roots and leaves encountered in plants with both organs. Young plants of T. recurvata have weak apical dominance because side shoots appeared early in development, and branch growth was correlated with a strong increase in the level of zeatin. The flowering phase was characterized by a significant increase in free base CKs, zeatin, and isopentenyladenine compared with the levels found in adult vegetative shoots. In contrast, both free-base CKs declined in the fruiting phenological phase, and the IAA level increased dramatically. It was concluded that in phases characterized by intense organ formation, such as in the juvenile and flowering stages, there was an enhancement of CK content, mainly caused by zeatin, leading to a lower IAA/CK ratio. Higher ratios were correlated with phases that showed no organogenesis, such as adult and fruiting phenologies.

  10. Different Intensities of Treadmill Running Exercise do Not Alter Melatonin Levels in Rats

    Directory of Open Access Journals (Sweden)

    Ionara Rodrigues Siqueira

    2011-04-01

    Full Text Available Background: Regular and moderate exercise has been considered an interesting neuroprotective strategy. Our research group demonstrated that a protocol of moderate exercise on a treadmill reduced, while a protocol of high-intensity exercise increased in vitro ischemic cell damage in Wistar rats. The molecular mechanisms by which physical exercise exerts neuroprotective effects remain unclear. Accumulating evidence suggests that exercise may have short- and long-term effects on melatonin secretion in humans. Melatonin, the main product of the pineal gland, has been shown to have neuroprotective effects in models of brain and spinal cord injury and cerebral ischemia. A dual modulation of melatonin secretion by physical activity has also been demonstrated. This study aimed to investigate the effect of different exercise intensities, moderate- and high-intensity exercise, on serum melatonin levels in rats. Methods: Thirty-five adult male Wistar rats were divided into non-exercised (sedentary and exercised (20- or 60-min sessions groups. The exercise protocols consisted of two weeks of daily treadmill training. Blood samples were collected approximately 16 hours after the last training session (8:00-10:00 and melatonin levels were assayed by ELISA. Results: The exercise protocols, two weeks of 20 min/day or 60 min/day of treadmill running, did not affect serum melatonin levels. Conclusion: Our data demonstrated that melatonin levels may not be directly involved in the exercise-induced, intensity-dependent dual effect on in vitro ischemia.

  11. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    OpenAIRE

    Valli, I; Stone, J; Mechelli, A; Bhattacharyya, S; Raffin, M; Allen, P; Fusar-Poli, P; Lythgoe, D; O'Gorman, R; Seal, M; McGuire, P

    2011-01-01

    In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis.

  12. A maximal incremental effort alters tear osmolarity depending on the fitness level in military helicopter pilots.

    Science.gov (United States)

    Vera, Jesús; Jiménez, Raimundo; Madinabeitia, Iker; Masiulis, Nerijus; Cárdenas, David

    2017-10-01

    Fitness level modulates the physiological responses to exercise for a variety of indices. While intense bouts of exercise have been demonstrated to increase tear osmolarity (Tosm), it is not known if fitness level can affect the Tosm response to acute exercise. This study aims to compare the effect of a maximal incremental test on Tosm between trained and untrained military helicopter pilots. Nineteen military helicopter pilots (ten trained and nine untrained) performed a maximal incremental test on a treadmill. A tear sample was collected before and after physical effort to determine the exercise-induced changes on Tosm. The Bayesian statistical analysis demonstrated that Tosm significantly increased from 303.72 ± 6.76 to 310.56 ± 8.80 mmol/L after performance of a maximal incremental test. However, while the untrained group showed an acute Tosm rise (12.33 mmol/L of increment), the trained group experienced a stable Tosm physical effort (1.45 mmol/L). There was a significant positive linear association between fat indices and Tosm changes (correlation coefficients [r] range: 0.77-0.89), whereas the Tosm changes displayed a negative relationship with the cardiorespiratory capacity (VO2 max; r = -0.75) and performance parameters (r = -0.75 for velocity, and r = -0.67 for time to exhaustion). The findings from this study provide evidence that fitness level is a major determinant of Tosm response to maximal incremental physical effort, showing a fairly linear association with several indices related to fitness level. High fitness level seems to be beneficial to avoid Tosm changes as consequence of intense exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Biochar amendment changes jasmonic acid levels in two rice varieties and alters their resistance to herbivory.

    Science.gov (United States)

    Waqas, Muhammad; Shahzad, Raheem; Hamayun, Muhammad; Asaf, Sajjad; Khan, Abdul Latif; Kang, Sang-Mo; Yun, Sopheap; Kim, Kyung-Min; Lee, In-Jung

    2018-01-01

    Biochar addition to soil not only sequesters carbon for the long-term but enhances agricultural productivity. Several well-known benefits arise from biochar amendment, including constant provision of nutrients, increased soil moisture retention, decreased soil bulk density, and sometimes the induction of systemic resistance against foliar and soil borne plant pathogens. However, no research has investigated the potential of biochar to increase resistance against herbivory. The white-backed plant hopper (WBPH) (Sogatella furcifera Horváth) is a serious agricultural pest that targets rice (Oryza sativa L.), a staple crop that feeds half of the world's human population. Therefore, we investigated the (1) optimization of biochar amendment levels for two rice varieties ('Cheongcheong' and 'Nagdong') and (2) subsequent effects of different biochar amendments on resistance and susceptibility of these two varieties to WBPH infestation. Initial screening results for the optimization level revealed that the application of biochar 10% (w/w) to the rooting media significantly improved plant physiological characteristics of both rice varieties. However, levels of biochar amendment, mainly 1, 2, 3, and 20%, resulted in negative effects on plant growth characteristics. Cheongcheong and Nagdong rice plants grown with the optimum biochar level showed contrasting reactions to WBPH infestation. Specifically, biochar application significantly increased plant growth characteristics of Nagdong when exposed to WBPH infestation and significantly decreased these characteristics in Cheongcheong. The amount of WBPH-induced damage to plants was significantly lower and higher in Nagdong and Cheongcheong, respectively, compared to that in the controls. Higher levels of jasmonic acid caused by the biochar priming effect could have accumulated in response to WBPH infestation, resulting in a maladaptive response to stress, negatively affecting growth and resistance to WBPH in Cheongcheong. This

  14. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  15. Altered levels of acylcarnitines, phosphatidylcholines, and sphingomyelins in peritoneal fluid from ovarian endometriosis patients.

    Science.gov (United States)

    Vouk, Katja; Ribič-Pucelj, Martina; Adamski, Jerzy; Rižner, Tea Lanišnik

    2016-05-01

    Endometriosis is a complex, polygenic, and estrogen-dependent disease that affects 6% to 10% of women of reproductive age, and 30% to 50% of women with infertility and/or pelvic pain. Surgical diagnosis of endometriosis is still the gold standard, as there are currently no diagnostic biomarkers available. Due to the invasive diagnostics, it can take up to 11 years before affected women are diagnosed and receive the appropriate treatment. We performed a targeted metabolomics study to search for potential semi-invasive biomarkers in peritoneal fluid from endometriosis patients. Our case-control study comprised 29 ovarian endometriosis patients and 36 healthy control women. The 148 metabolites included acylcarnitines, glycerophospholipids, and sphingolipids, which were quantified by electrospray ionization tandem mass spectrometry. The strength of association between the metabolites and the metabolite ratios and disease was assessed using crude and adjusted odds ratios. The best combination of biomarkers was then selected by performing step-wise logistic regression. Our analysis reveals significantly decreased concentrations of 10 metabolites, of carnitine and acylcarnitines (C0, C8:1, C6C4:1 DC, C10:1), phosphatidylcholines (PC aa C38:3, PC aa C38:4, PC aa C40:4, PC aa C40:5), and sphingomyelins (SM C16:1, SM C18:1), and 125 significantly altered metabolite ratios in patients versus control women. The best model includes two ratios: a carnitine to a phosphatidylcholine (C0/PC ae C36:0); and between two phosphatidylcholines (PC aa C30:0/PC ae C32:2). When adjusted for age, this provides sensitivity of 82.8% and specificity of 94.4%, with AUC of 0.944. Our study supports the importance of carnitine, phosphatidylcholine, and sphingomyelin metabolites in the pathophysiology of endometriosis, and confirms the potential for the combination of individual metabolite ratios to provide biomarkers for semi-invasive diagnostics. Copyright © 2016 Elsevier Ltd. All rights

  16. Repeated Exposure to Neurotoxic Levels of Chlorpyriphos Alters Hippocampal Expression of Neurotrophins and Neuropeptides

    Science.gov (United States)

    2016-01-13

    hormone bindi Bdnf BDNF Brain-derived neurotrophic factor Mdk MDK Midkine (neurite growth -promoting fa Rbp4 RBP4 Retinol binding protein 4, plasma...cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits ), but the biological mechanism(s...neurobehavioral deficits following subchronic exposure to CPF at a level that inhibits hippocampal cholinesterase to less than 20% of control. An equally

  17. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level.

    Science.gov (United States)

    Liu, Liming; Li, Yin; Zhu, Yang; Du, Guocheng; Chen, Jian

    2007-01-01

    Manipulation of cofactor (thiamine, biotin and Ca(2+)) levels as a potential tool to redistribute carbon flux was studied in Torulopsis glabrata. With sub-optimization of vitamin in fermentation medium, the carbon flux was blocked at the key node of pyruvate, and 69 g/L pyruvate was accumulated. Increasing the concentrations of thiamine and biotin could selectively open the valve of carbon flux from pyruvate to pyruvate dehydrogenase complex, the pyruvate carboxylase (PC) pathway and the channel into the TCA cycle, leading to the over-production of alpha-ketoglutarate. In addition, the activity of PC was enhanced with Ca(2+) present in fermentation medium. By combining high concentration's vitamins and CaCO(3) as the pH buffer, a batch culture was conducted in a 7-L fermentor, with the pyruvate concentration decreased to 21.8 g/L while alpha-ketoglutarate concentration increased to 43.7 g/L. Our study indicated that the metabolic flux could be redistributed to overproduce desired metabolites with manipulating the cofactor levels. Furthermore, the manipulation of vitamin level provided an alternative tool to realize metabolic engineering goals.

  18. Inadequate Dietary Phosphorus Levels Cause Skeletal Anomalies and Alter Osteocalcin Gene Expression in Zebrafish

    Directory of Open Access Journals (Sweden)

    Juliana M. Costa

    2018-01-01

    Full Text Available Phosphorus (P is an essential mineral for the development and maintenance of the vertebrate skeletal system. Modulation of P levels is believed to influence metabolism and the physiological responses of gene expression. In this study, we investigated the influence of dietary P on skeletal deformities and osteocalcin gene expression in zebrafish (Danio rerio, and sought to determine appropriate levels in a diet. We analyzed a total of 450 zebrafish within 31 days of hatching. Animals were distributed in a completely randomized experimental design that consisted of five replications. After an eight-week experiment, fish were diaphanized to evaluate cranial and spinal bone deformities. Increases in dietary phosphorus were inversely proportional to the occurrence of partial spine fusions, the absence of spine fusions, absence of parallelism between spines, intervertebral spacing, vertebral compression, scoliosis, lordosis, ankylosis, fin caudal insertion, and craniofacial deformities. Additionally, osteocalcin expression was inversely correlated to P levels, suggesting a physiological recovery response for bone mineralization deficiency. Our data showed that dietary P concentration was a critical factor in the occurrence of zebrafish skeletal abnormalities. We concluded that 1.55% P in the diet significantly reduces the appearance of skeletal deformities and favors adequate bone mineralization through the adjustment of osteocalcin expression.

  19. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    Science.gov (United States)

    Valli, Isabel; Stone, James; Mechelli, Andrea; Bhattacharyya, Sagnik; Raffin, Marie; Allen, Paul; Fusar-Poli, Paolo; Lythgoe, David; O'Gorman, Ruth; Seal, Marc; McGuire, Philip

    2011-01-01

    Both medial temporal cortical dysfunction and perturbed glutamatergic neurotransmission are regarded as fundamental pathophysiological features of psychosis. However, although animal models of psychosis suggest that these two abnormalities are interrelated, their relationship in humans has yet to be investigated. We used a combination of functional magnetic resonance imaging and magnetic resonance spectroscopy to investigate the relationship between medial temporal activation during an episodic memory task and local glutamate levels in 22 individuals with an at-risk mental state for psychosis and 14 healthy volunteers. We observed a significant between-group difference in the coupling of medial temporal activation with local glutamate levels. In control subjects, medial temporal activation during episodic encoding was positively associated with medial temporal glutamate. However, in the clinical population, medial temporal activation was reduced, and the relationship with glutamate was absent. In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Endogenous synthesis of taurine and GABA in rat ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    Heinaemaeki, A.A.

    1988-01-01

    The endogenous production of taurine and ..gamma..-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye.

  1. Endogenous synthesis of taurine and GABA in rat ocular tissues

    International Nuclear Information System (INIS)

    Heinaemaeki, A.A.

    1988-01-01

    The endogenous production of taurine and γ-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye. (author)

  2. Alteration in plasma corticosterone levels following long term oral administration of lead produces depression like symptoms in rats.

    Science.gov (United States)

    Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J

    2013-03-01

    Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.

  3. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.

    2007-01-01

    AIM: To investigate the role of cytochrome P450 (CYP) in the carcinogenesis of squamous-cell carcinoma (SCC) in human esophagus by determining expression patterns and protein levels of representative CYPs in esophageal tissue of patients with SCC and controls. METHODS: mRNA expression of CYP2E1...... tissue (e.g. CYP2C8, CYP3A4, CYP3A5, and CYP2E1) between SCC patients and healthy subjects and may contribute to the development of SCC in the esophagus....

  4. Gamma-aminobutyric acid (GABA)-B receptor 1 in cerebellar cortex of essential tremor.

    Science.gov (United States)

    Luo, C; Rajput, A H; Robinson, C A; Rajput, A

    2012-06-01

    Some reports suggest cerebellar dysfunction as the basis of essential tremor (ET). Several drugs with the action of gamma-aminobutyric acid (GABA) are known to improve ET. Autopsy studies were performed on brains from nine former patients followed at the Movement Disorders Clinic Saskatchewan, Canada, and compared with five normal control brains. We aimed to measure the concentration of GABA B receptor 1 (GBR1) in the brains of patients who had had ET and to compare them to the GABA concentration in brains of controls. Western blot was used to determine the expression of GBR1 in cerebellar cortex tissue. We found that compared to the controls, the ET brains had three different patterns of GBR1 protein concentration--two with high, four comparable, and three with marginally low levels. There was no association between the age of onset, severity or duration of tremor, the response to alcohol or other drugs and GBR1 level. Thus, we conclude that our study does not support that GBR1 is involved in ET. Further studies are needed to verify these results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. UBC-Nepal expedition: The use of oral antioxidants does not alter cerebrovascular function at sea level or high altitude.

    Science.gov (United States)

    Hansen, Alexander B; Hoiland, Ryan L; Lewis, Nia C S; Tymko, Michael M; Tremblay, Joshua C; Stembridge, Michael; Nowak-Flück, Daniela; Carter, Howard H; Bailey, Damian M; Ainslie, Philip N

    2018-04-01

    What is the central question of the study? Does the use of antioxidants alter cerebrovascular function and blood flow at sea level (344 m) and/or high altitude (5050 m)? What is the main finding and its importance? This is the first study to investigate whether antioxidant administration alters cerebrovascular regulation and blood flow in response to hypercapnia, acute hypoxia and chronic hypoxia in healthy humans. We demonstrate that an acute dose of antioxidants does not alter cerebrovascular function and blood flow at sea level (344 m) or after 12 days at high altitude (5050 m). Hypoxia is associated with an increase in systemic and cerebral formation of free radicals and associated reactants that may be linked to impaired cerebral vascular function and neurological sequelae. To what extent oral antioxidant prophylaxis impacts cerebrovascular function in humans throughout the course of acclimatization to the hypoxia of terrestrial high altitude has not been examined. Thus, the purpose of the present study was to examine the influence of orally ingested antioxidants at clinically relevant doses (vitamins C and E and α-lipoic acid) on cerebrovascular regulation at sea level (344 m; n = 12; female n = 2 participants) and at high altitude (5050 m; n = 9; female n = 2) in a randomized, placebo-controlled and double-blinded crossover design. Hypercapnic and hypoxic cerebrovascular reactivity tests of the internal carotid artery (ICA) were conducted at sea level, and global and regional cerebral blood flow (CBF; i.e. ICA and vertebral artery) were assessed 10-12 days after arrival at 5050 m. At sea level, acute administration of antioxidants did not alter cerebral hypoxic cerebrovascular reactivity (pre versus post: 1.5 ± 0.7 versus 1.2 ± 0.8%∆CBF/-%∆SpO2; P = 0.96) or cerebral hypercapnic cerebrovascular reactivity (pre versus post: 5.7 ± 2.0 versus 5.8 ± 1.9%∆CBF/∆mmHg; P = 0.33). Furthermore, global CBF (P = 0.43) and

  6. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    OpenAIRE

    Auger, Meagan L.; Floresco, Stan B.

    2014-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates ...

  7. GABA and glycine as neurotransmitters: a brief history.

    Science.gov (United States)

    Bowery, N G; Smart, T G

    2006-01-01

    gamma-Aminobutyric acid (GABA) emerged as a potentially important brain chemical just over 50 years ago, but its significance as a neurotransmitter was not fully realized until over 16 years later. We now know that at least 40% of inhibitory synaptic processing in the mammalian brain uses GABA. Establishing its role as a transmitter was a lengthy process and it seems hard to believe with our current knowledge that there was ever any dispute about its role in the mammalian brain. The detailed information that we now have about the receptors for GABA together with the wealth of agents which facilitate or reduce GABA receptor mechanisms make the prospects for further research very exciting. The emergence of glycine as a transmitter seems relatively painless by comparison to GABA. Perhaps this is appropriate for the simplest of transmitter structures! Its discovery within the spinal cord and brainstem approximately 40 years ago was followed only 2 years later by the proposal that it be conferred with 'neurotransmitter' status. It was another 16 years before the receptor was biochemically isolated. Now it is readily accepted as a vital spinal and supraspinal inhibitory transmitter and we know many details regarding its molecular structure and trafficking around neurones. The pharmacology of these receptors has lagged behind that of GABA. There is not the rich variety of allosteric modulators that we have come to readily associate with GABA receptors and which has provided us with a virtual treasure trove of important drugs used in anxiety, insomnia, epilepsy, anaesthesia, and spasticity, all stemming from the actions of the simple neutral amino acid GABA. Nevertheless, the realization that glycine receptors are involved in motor reflexes and nociceptive pathways together with the more recent advent of drugs that exhibit some subtype selectivity make the goal of designing selective therapeutic ligands for the glycine receptor that much closer.

  8. Data on environmentally relevant level of aflatoxin B1-induced human dendritic cells' functional alteration

    Directory of Open Access Journals (Sweden)

    Jalil Mehrzad

    2018-06-01

    Full Text Available We assessed the effects of naturally occurring levels of AFB1 on the expression of key immune molecules and function of human monocyte-derived dendritic cells (MDDCs by cell culture, RT-qPCR, and flow cytometry. Data here revealed that an environmentally relevant level of AFB1 led to remarkably weakened key functional capacity of DCs, up-regulation of key transcripts and DCs apoptosis, down-regulation of key phagocytic element, CD64, and creation of pseudolicensing direction of DCs. Flow cytometry data confirmed a damage towards DCs, i.e., increased apoptosis. The detailed data and their mechanistic effects and the outcome are available in this research article (Mehrzad et al., 2018 [1]. The impaired phagocytosis capacity with triggered pseudolicensing direction of MDDCs caused by AFB1 and dysregulation of the key functional genes could provide a mechanistic explanation for the observed in vivo immunotoxicity associated with this mycotoxin. Keywords: AFB1, Apoptosis, AFB1-detoxifying genes, Dendritic cells, Flow cytometry, Functional genes, Immunnoderegulation, Phagocytosis, RT-qPCR

  9. Chemoreception of hunger levels alters the following behaviour of a freshwater snail.

    Science.gov (United States)

    Larcher, Marie; Crane, Adam L

    2015-12-01

    Chemically-mediated orientation is essential for many animals that must locate sites containing resources such as mates or food. One way to find these areas is by using publically-available information from other individuals. We tested a freshwater snail, Physa gyrina, for chemoreception of conspecific cues and predicted they could discriminate between cues based on information regarding hunger levels. We placed 'tracker' snails into a 2-arm arena where they could either follow or avoid an area previously used by a 'marker' snail. The hunger levels of both trackers and markers was manipulated, being either starved or fed. Starved and fed trackers did not differ in their following response when markers were hungry, but starved trackers were significantly more likely to follow fed markers, compared to fed trackers that tended to avoid areas used by fed markers. This outcome suggests that P. gyrina uses conspecific chemical cues to find food and potentially in some situations to avoid intra-specific food competition. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Neuropsychiatric Phenotypes Produced by GABA Reduction in Mouse Cortex and Hippocampus.

    Science.gov (United States)

    Kolata, Stefan M; Nakao, Kazuhito; Jeevakumar, Vivek; Farmer-Alroth, Emily L; Fujita, Yuko; Bartley, Aundrea F; Jiang, Sunny Zhihong; Rompala, Gregory R; Sorge, Robert E; Jimenez, Dennisse V; Martinowich, Keri; Mateo, Yolanda; Hashimoto, Kenji; Dobrunz, Lynn E; Nakazawa, Kazu

    2018-05-01

    Whereas cortical GAD67 reduction and subsequent GABA level decrease are consistently observed in schizophrenia and depression, it remains unclear how these GABAergic abnormalities contribute to specific symptoms. We modeled cortical GAD67 reduction in mice, in which the Gad1 gene is genetically ablated from ~50% of cortical and hippocampal interneurons. Mutant mice showed a reduction of tissue GABA in the hippocampus and cortex including mPFC, and exhibited a cluster of effort-based behavior deficits including decreased home-cage wheel running and increased immobility in both tail suspension and forced swim tests. Since saccharine preference, progressive ratio responding to food, and learned helplessness task were normal, such avolition-like behavior could not be explained by anhedonia or behavioral despair. In line with the prevailing view that dopamine in anterior cingulate cortex (ACC) plays a role in evaluating effort cost for engaging in actions, we found that tail-suspension triggered dopamine release in ACC of controls, which was severely attenuated in the mutant mice. Conversely, ACC dopamine release by progressive ratio responding to reward, during which animals were allowed to effortlessly perform the nose-poking, was not affected in mutants. These results suggest that cortical GABA reduction preferentially impairs the effort-based behavior which requires much effort with little benefit, through a deficit of ACC dopamine release triggered by high-effort cost behavior, but not by reward-seeking behavior. Collectively, a subset of negative symptoms with a reduced willingness to expend costly effort, often observed in patients with schizophrenia and depression, may be attributed to cortical GABA level reduction.

  11. Advanced age, altered level of consciousness and a new diagnosis of diabetes are independently associated with hypernatreamia in hyperglycaemic crisis

    Directory of Open Access Journals (Sweden)

    Ogbera Anthonia O

    2011-04-01

    Full Text Available Abstract Background There is limited literature on hypernatreamia in the setting of hyperglycaemic crisis. This is despite the fact that the presence of hypernatreamia may impact on the classification of hyperglycaemic crisis and its management particularly with regards to the nature of fluid therapy. We determined the prevalence of hypernatreamia and its associated factors at presentation for hyperglycaemic crisis. Methods This was a retrospective review of data for hyperglycaemic crisis admissions in Nelson Mandela Academic Hospital, Mthatha, South Africa. The prevalence of hypernatreamia (uncorrected Serum Sodium at presentation >145 mmol/L was determined. Hyperosmolality was defined by calculated effective osmolality >320 mosmols/Kg. Multivariate logistic regression was undertaken using variables that were statistically significant in univariate analysis to ascertain those that were independently associated (Odds Ratio (OR with 95% Confidence Interval (CI with hypernatreamia. Results The prevalence of hypernatreamia in our admissions for hyperglycaemic crisis was 11.7% (n = 32/273 including 171 females and 102 males. All admissions with hypernatreamia met the criteria for hyperosmolality. Age ≥ 60 years (OR = 3.9 95% CI 1.3-12.3; P = 0.018, Altered level of consciousness (OR = 8.8 95% CI 2.3-32.8; P Conclusion The prevalence rate of hypernatreamia in hyperglycaemic admissions was high with all hypernatreamic admissions meeting the criteria for hyperosmolality. Advanced age, altered conscious level and a new diagnosis of diabetes were independently associated with hypernatreamia.

  12. Mechanical alterations during interval-training treadmill runs in high-level male team-sport players.

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P

    2017-01-01

    To examine mechanical alterations during interval-training treadmill runs in high-level team-sport players. Within-participants repeated measures. Twenty high-level male field-hockey players performed six 30-s runs at 5.53±0.19ms -1 corresponding to 115% of their velocity associated with maximal oxygen uptake (vVO 2max ) with 30-s passive recovery on an instrumented treadmill. Continuous measurement of running kinetics/kinematics and spring-mass characteristics were performed and values were subsequently averaged over 20s (8th-28ths) for comparison. Contact time (+1.1±4.3%; p=0.044), aerial time (+4.1±5.3%; p=0.001), step length (+2.4±2.2%; pteam-sport players modified their mechanical behaviour towards lower vertical stiffness while preserving a constant leg stiffness. Maintenance of running velocity induced longer step lengths and decreased step frequencies that were also accompanied by increased impact loading rates. These mechanical alterations occurred early during the set. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    Science.gov (United States)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  14. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    Science.gov (United States)

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  15. The glutamate-glutamine(GABA cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2013-05-01

    Full Text Available The gold standard for studies of glutamate-glutamine(GABA cycling and its connections to brain biosynthesis from glucose of glutamate and GABA and their subsequent metabolism are the elegant in vivo studies by 13C magnetic resonance spectroscopy (NMR, showing the large fluxes in the cycle. However, simpler experiments in intact brain tissue (e.g. immunohistochemistry, brain slices, cultured brain cells and mitochondria have also made important contributions to the understanding of details, mechanisms and functional consequences of glutamate/GABA biosynthesis and degradation. The purpose of this review is to attempt to integrate evidence from different sources regarding i the enzyme(s responsible for the initial conversion of -ketoglutarate to glutamate; ii the possibility that especially glutamate oxidation is essentially confined to astrocytes; and iii the ontogenetically very late onset and maturation of glutamine-glutamate(GABA cycle function. Pathway models based on the functional importance of aspartate for glutamate synthesis suggest the possibility of interacting pathways for biosynthesis and degradation of glutamate and GABA and the use of transamination as the default mechanism for initiation of glutamate oxidation. The late development and maturation are related to the late cortical gliogenesis and convert brain cortical function from being purely neuronal to becoming neuronal-astrocytic. This conversion is associated with huge increases in energy demand and production, and the character of potentially incurred gains of function are discussed. These may include alterations in learning mechanisms, in mice indicated by lack of pairing of odor learning with aversive stimuli in newborn animals but the development of such an association 10-12 days later. The possibility is suggested that analogous maturational changes may contribute to differences in the way learning is accomplished in the newborn human brain and during later development.

  16. Unexpected rates of chromosomal instabilities and alterations of hormone levels in Namibian uranium miners

    International Nuclear Information System (INIS)

    Zaire, R.; Notter, M.; Thiel, E.

    1997-01-01

    A common problem in determining the health consequences of radiation exposure is factoring out other carcinogenic influences. The conditions in Namibia provide a test case for distinguishing the effects of long-term low-dose exposure to uranium from the other environmental factors because of good air quality and the lack of other industries with negative health effects. Present records indicate a much higher prevalence of cancer among male workers in the open-pit uranium mine in Namibia compared with the general population. The objective of the present study was to determine whether long-term exposure to low doses of uranium increases the risk of a biological radiation damage which would lead to malignant diseases and to derive a dose-response model for these miners. To investigate this risk, we measured uranium excretion in urine, neutrophil counts and the serum level of FSH, LH and testosterone and analyzed chromosome aberrations in whole blood cells using fluorescence in situ hybridization. A representative cohort of 75 non-smoking, HIV-negative miners was compared to a control group of 31 individuals with no occupational history in mining. A sixfold increase in uranium excretion among the miners compared to the controls was recorded (P < 0.001). Furthermore, we determined a significant reduction in testosterone levels (P < 0.008) and neutrophil count (P < 0.0001). Most remarkably, cells with multiple aberrations such as open-quotes rogueclose quotes cells were observed for the first time in miners; these cells had previously been found only after short-term high-dose radiation exposure, e.g. from the Hiroshima atomic bomb or the Chernobyl accident. 19 refs., 1 fig., 3 tabs

  17. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations.

    Science.gov (United States)

    Demertzi, Athena; Gómez, Francisco; Crone, Julia Sophia; Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Noirhomme, Quentin; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven; Soddu, Andrea

    2014-03-01

    In healthy conditions, group-level fMRI resting state analyses identify ten resting state networks (RSNs) of cognitive relevance. Here, we aim to assess the ten-network model in severely brain-injured patients suffering from disorders of consciousness and to identify those networks which will be most relevant to discriminate between patients and healthy subjects. 300 fMRI volumes were obtained in 27 healthy controls and 53 patients in minimally conscious state (MCS), vegetative state/unresponsive wakefulness syndrome (VS/UWS) and coma. Independent component analysis (ICA) reduced data dimensionality. The ten networks were identified by means of a multiple template-matching procedure and were tested on neuronality properties (neuronal vs non-neuronal) in a data-driven way. Univariate analyses detected between-group differences in networks' neuronal properties and estimated voxel-wise functional connectivity in the networks, which were significantly less identifiable in patients. A nearest-neighbor "clinical" classifier was used to determine the networks with high between-group discriminative accuracy. Healthy controls were characterized by more neuronal components compared to patients in VS/UWS and in coma. Compared to healthy controls, fewer patients in MCS and VS/UWS showed components of neuronal origin for the left executive control network, default mode network (DMN), auditory, and right executive control network. The "clinical" classifier indicated the DMN and auditory network with the highest accuracy (85.3%) in discriminating patients from healthy subjects. FMRI multiple-network resting state connectivity is disrupted in severely brain-injured patients suffering from disorders of consciousness. When performing ICA, multiple-network testing and control for neuronal properties of the identified RSNs can advance fMRI system-level characterization. Automatic data-driven patient classification is the first step towards future single-subject objective diagnostics

  18. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  19. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria.

    Science.gov (United States)

    Wang, Tianying; Kumada, Tatsuro; Morishima, Toshitaka; Iwata, Satomi; Kaneko, Takeshi; Yanagawa, Yuchio; Yoshida, Sachiko; Fukuda, Atsuo

    2014-04-01

    Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.

  20. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

    Science.gov (United States)

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B

    2015-08-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of

  1. Hemorheological alterations in adults with prediabetes identified by hemoglobin A1c levels.

    Science.gov (United States)

    Marini, M A; Fiorentino, T V; Andreozzi, F; Mannino, G C; Succurro, E; Sciacqua, A; Perticone, F; Sesti, G

    2017-07-01

    A link between increased blood viscosity and type 2 diabetes has been previously reported. Herein, we investigated the association of blood viscosity with prediabetes, identified by glycated hemoglobin A1c (HbA1c) according to the new American Diabetes Association criteria, and subclinical atherosclerosis. The study cohort includes 1136 non-diabetic adults submitted to anthropometrical evaluation, an oral glucose tolerance test and ultrasound measurement of carotid intima-media thickness (IMT). Whole blood viscosity was estimated using a validated formula based on hematocrit and total plasma proteins. After adjusting for age, and gender, individuals with HbA1c-defined prediabetes (HbA1c 5.7-6.4% [39-47 mmol/mol]) exhibited significantly higher values of hematocrit, and predicted blood viscosity as compared with controls. Increased levels of IMT were observed in subjects with HbA1c-defined prediabetes in comparison to controls. Predicted blood viscosity was positively correlated with age, waist circumference, blood pressure, cholesterol, triglycerides, fibrinogen, white blood cell, HbA1c, fasting and 2-h post-load glucose levels, fasting insulin, IMT and inversely correlated with HDL and Matsuda index of insulin sensitivity. Of the three glycemic parameters, i.e. HbA1c, fasting and 2-h post-load glucose, only HbA1c showed a significant correlation with predicted blood viscosity (β = 0.054, P = 0.04) in a multivariate regression analysis model including multiple atherosclerosis risk factors. The study shows that individuals with HbA1c-defined prediabetes have increased predicted blood viscosity and IMT. The HbA1c criterion may be helpful to capture individuals with an increased risk of diabetes and cardiovascular disease who may benefit from an intensive lifestyle intervention. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical

  2. Serotonin markers show altered transcription levels in an experimental pig model of mitral regurgitation

    DEFF Research Database (Denmark)

    Cremer, Signe Emilie; Zois, Nora Elisabeth; Moesgaard, S. G.

    2015-01-01

    surgically induced MR or sham-operation, resulting in three MR groups: control (CON, n = 12), mild MR (mMR, n = 10) and severe MR (sMR, n = 6). The gene expression levels of 5-HT1BR, 5-HT2AR, 5-HT2BR, SERT and TPH-1 were analysed using quantitative PCR (qPCR) in the mitral valve (MV), anterior papillary......-uptake transporter (SERT) in MMVD-affected valves, increased valvular 5-HT synthesis and decreased clearance have been suggested. It remains unknown how haemodynamic changes associated with mitral regurgitation (MR) affect 5-HT markers in the mitral valve, myocardium and circulation. Twenty-eight pigs underwent...... muscle (AP) and left ventricle (LV). MV 5-HT2BR was also analysed with immunohistochemistry (IHC) in relation to histological lesions and valvular myofibroblasts. All 5-HTR mRNAs were up-regulated in MV compared to AP and LV (P SERT and TPH-1 were up-regulated in AP and LV compared...

  3. Level of energy restriction alters body condition score and morphometric profile in obese Shetland ponies.

    Science.gov (United States)

    Bruynsteen, L; Moons, C P H; Janssens, G P J; Harris, P A; Vandevelde, K; Lefère, L; Duchateau, L; Hesta, M

    2015-10-01

    Due to the high prevalence of obesity in some horses and ponies (especially in the leisure horse sector), effective and safe weight loss strategies are required. The present study evaluated the effect of two different energy restriction rates on physical, morphometric and welfare parameters in 18 obese (body condition score [BCS] 7-9/9) Shetland geldings. The trial was divided into three periods: (1) a 4 week adaptation period, during which the maintenance energy intakes to maintain a stable obese bodyweight were determined (100% MERob); (2) a 16.5-week weight loss period during which the ponies were randomly divided into three groups (n = 6/group) comprising a control group (CONTROL), moderate energy restricted (MOD), and severe energy restricted (SEV) groups that were respectively fed at 100%, 80% and 60% of their individual MERob; and (3) a 3 week follow up period in which the ponies were again fed at their outset individual 100% MERob. Between the start and end of the weight loss period, significant pairwise differences between the three treatment groups were seen for bodyweight, BCS, heart girth, belly girth, and relative ultrasound fat depth at the level of loin and ribs at several time points (P < 0.05). The higher energy restriction was associated with a faster decrease in BCS, tail head, and heart plus belly girth, but no gastric ulcers or stereotypic behaviours were seen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Alteration in plasma free amino acid levels and its association with gout.

    Science.gov (United States)

    Mahbub, M H; Yamaguchi, Natsu; Takahashi, Hidekazu; Hase, Ryosuke; Amano, Hiroki; Kobayashi-Miura, Mikiko; Kanda, Hideyuki; Fujita, Yasuyuki; Yamamoto, Hiroshi; Yamamoto, Mai; Kikuchi, Shinya; Ikeda, Atsuko; Kageyama, Naoko; Nakamura, Mina; Ishimaru, Yasutaka; Sunagawa, Hiroshi; Tanabe, Tsuyoshi

    2017-03-16

    Studies on the association of plasma-free amino acids with gout are very limited and produced conflicting results. Therefore, we sought to explore and characterize the plasma-free amino acid (PFAA) profile in patients with gout and evaluate its association with the latter. Data from a total of 819 subjects (including 34 patients with gout) undergoing an annual health examination program in Shimane, Japan were considered for this study. Venous blood samples were collected from the subjects and concentrations of 19 plasma amino acids were determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry. Student's t-test was applied for comparison of variables between patient and control groups. The relationships between the presence or absence of gout and individual amino acids were investigated by logistic regression analysis controlling for the effects of potential demographic confounders. Among 19 amino acids, the levels of 10 amino acids (alanine, glycine, isoleucine, leucine, methionine, phenylalanine, proline, serine, tryptophan, valine) differed significantly (P gout. The observed significant changes in PFAA profiles may have important implications for improving our understanding of pathophysiology, diagnosis and prevention of gout. The findings of this study need further confirmation in future large-scale studies involving a larger number of patients with gout.

  5. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Rasmussen, Nadja Bredo

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease-specific transcript......Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease......-specific transcription patterns in frontal cortex in PD, dementia with Lewy bodies, and MSA, and thus may mediate the development of α-synucleinopathies. In this study, the differential expression of α-synuclein isoforms on transcriptional and translational levels was ascertained in MSA patients in comparison with PD......-synuclein in the brain. We report differential expression of α-synuclein, parkin, and synphilin-1 isoforms in multiple system atrophy (MSA) versus Parkinson's disease and normal control brains. We have focused on brain regions that are severely affected by α-synuclein pathology and neurodegeneration in MSA. The reported...

  6. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels.

    Science.gov (United States)

    Horton, J D; Cuthbert, J A; Spady, D K

    1993-01-01

    The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814

  7. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Kumar, Vinod; Sane, Vidhu A

    2017-10-01

    Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Putrescine catabolism via DAO contributes to proline and GABA accumulation in roots of lupine seedlings growing under salt stress

    Directory of Open Access Journals (Sweden)

    Jolanta Legocka

    2017-09-01

    Full Text Available The levels of polyamines (PAs, proline (Pro, and γ-aminobutyric acid (GABA as well as the activity of diamine oxidase (DAO; EC 1.4.3.6 were studied in the roots of 2-day-old lupine (Lupinus luteus L. ‘Juno’ seedlings treated with 200 mM NaCl for 24 h. The effect of adding 1 mM aminoguanidine (AG, an inhibitor of DAO activity, was also analyzed. It was found that in roots of lupine seedlings growing under salt stress, a negative correlation between Pro accumulation and putrescine (Put content takes place. Pro level increased in roots by about 160% and, at the same time, Put content decreased by about 60%, as a result of ca. twofold increase of DAO activity. The AG added to the seedlings almost totally inhibited the activity of DAO, increased Put accumulation to control level, decreased Pro content by about 25%, and reduced GABA level by about 22%. Addition of 50 mM GABA to the lupine seedlings growing in the presence of AG and NaCl restored Pro content in roots to its level in NaCl-treated plants. In this research, the clear correlation between Put degradation and GABA and Pro accumulation was shown for the first time in the roots of seedlings growing under salt stress. This could be considered as a short-term response of a plant to high salt concentration. Our findings indicate that during intensive Pro accumulation in roots induced by salt stress, the pool of this amino acid is indirectly supported by GABA production as a result of Put degradation.

  9. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking.

    Science.gov (United States)

    Mills, Kathryn; Hunt, Michael A; Leigh, Ryan; Ferber, Reed

    2013-08-01

    Neuromuscular alterations are increasingly reported in individuals with knee osteoarthritis (KOA) during level walking. We aimed to determine which neuromuscular alterations are consistent in KOA individuals and how these may be influenced by osteoarthritis severity, varus alignment and/or joint laxity. Electronic databases were searched up to July 2012. Cross-sectional observational studies comparing lower-limb neuromuscular activity in individuals with KOA, healthy controls or with different KOA cohorts were included. Two reviewers assessed methodological quality. Effect sizes were used to quantify the magnitude of observed differences. Where studies were homogenous, effect sizes were pooled using a fixed-effects model. Fourteen studies examining neuromuscular alterations in indices of co-contraction, muscle amplitude and muscle activity duration were included. Data pooling revealed that moderate KOA individuals exhibit increased co-contraction of lateral knee muscles (ES 0.64 [0.3 to 0.97]) and moderately increased rectus femoris (ES 0.73 [0.23 to 1.22]), vastus lateralis (ES 0.77 [0.27 to 1.27]) and biceps femoris (ES 1.18 [0.67 to 1.7]) mean amplitude. Non-pooled data indicated prolonged activity of these muscles. Increased medial knee neuromuscular activity was prevalent for those exhibiting varus alignment and medial knee joint laxity. Interpretation Individuals with KOA exhibited increased co-contraction, amplitude and duration of lateral knee muscles regardless of disease severity, limb alignment or medial joint laxity. Individuals with severe disease, varus alignment and medial joint laxity demonstrate up-regulation of medial knee muscles. Future research investigating the efficacy of neuromuscular rehabilitation programs should consider the effect of simultaneous up-regulation of medial and lateral knee muscles on disease progression. © 2013.

  10. Altered Brain Network in Amyotrophic Lateral Sclerosis: A Resting Graph Theory-Based Network Study at Voxel-Wise Level.

    Science.gov (United States)

    Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  11. Altered brain network in Amyotrophic Lateral Sclerosis: a resting graph theory-based network study at voxel-wise level

    Directory of Open Access Journals (Sweden)

    Chaoyang eZhou

    2016-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex- matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC, a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC’s z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  12. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  13. Acute radiation reactions in oral and pharyngeal mucosa: tolerable levels in altered fractionation schedules

    International Nuclear Information System (INIS)

    Fowler, Jack F.; Harari, Paul M.; Leborgne, Felix; Leborgne, Jose H.

    2003-01-01

    Purpose:To investigate whether a predictive estimate can be obtained for a 'tolerance level' of acute oral and pharyngeal mucosal reactions in patients receiving head and neck radiotherapy, using an objective set of dose and time data. Materials and methods:Several dozen radiotherapy schedules for treating head and neck cancer have been reviewed, together with published estimates of whether they were tolerated or (in a number of schedules) not. Those closest to the borderline were given detailed analysis. Total doses and biologically effective doses (BED or ERD) were calculated for a range of starting times of cellular repopulation and rates of daily proliferation. Starting times of proliferation from 5 to 10 days and daily cellular doubling rates of 1-3 days were considered. The standard published form of BED with its linear overall time factor was used: BED=nd1+((d)/(α/β))-((Ln2T-T k )/(αT p )) (see text for parameters). Results: A clear progression from acceptable to intolerable mucosal reactions was found, which correlated with total biologically effective dose (BED in our published modeling), for all the head and neck cancer radiotherapy schedules available for study, when ranked into categories of 'intolerable' or 'tolerable'. A review of published mechanisms for mucosal reactions suggested that practical schedules used for treatment caused stimulated compensatory proliferation to start at about 7 days. The starting time of compensatory proliferation had little predictive value in our listing, so we chose the starting time of 7 days. Very short and very long daily doubling rates also had little reliability, so we suggest choosing a doubling time of 2.5 days as a datum. With these parameters a 'tolerance zone of uncertainty' could be identified which predicted acute-reaction acceptability or not of a schedule within a range of about 2-10 Gy in total BED. If concurrent chemoradiotherapy is used, our provisional suggestion is that this zone should be reduced

  14. CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles

    Directory of Open Access Journals (Sweden)

    Guyon eAlice

    2014-04-01

    Full Text Available Since CXCL12 and its receptors, CXCR4 and CXCR7, have been found in the brain, the role of this chemokine has been expanded from chemoattractant in the immune system to neuromodulatory in the brain. Several pieces of evidence suggest that this chemokine system could crosstalk with the GABAergic system, known to be the main inhibitory neurotransmitter system in the brain. Indeed, GABA and CXCL12 as well as their receptors are colocalized in many cell types including neurons and there are several examples in which these two systems interact. Several mechanisms can be proposed to explain how these systems interact, including receptor-receptor interactions, crosstalk at the level of second messenger cascades, or direct pharmacological interactions, as GABA and GABAB receptor agonists/antagonists have been shown to be allosteric modulators of CXCR4.The interplay between CXCL12/CXCR4-CXCR7 and GABA/GABAA-GABAB receptors systems could have many physiological implications in neurotransmission, cancer and inflammation. In addition, the GABAB agonist baclofen is currently used in medicine to treat spasticity in patients with spinal cord injury, cerebral palsy, traumatic brain injury, multiple sclerosis and other disorders. More recently it has also been used in the treatment of alcohol dependence and withdrawal. The allosteric effects of this agent on CXCR4 could contribute to these beneficial effects or at the opposite, to its side effects.

  15. Evidence of a role for GABA in benzodiazepine effects on food preference in rats.

    Science.gov (United States)

    Hodges, H M; Green, S E

    1981-01-01

    It has previously been shown that chronic treatment with the GABA-transaminase inhibitor ethanolamine-O-sulphate (EOS), which elevates brain GABA levels by around 200%, selectivity enhances novel food consumption in rats treated with chlordiazepoxide (CDP) and given a food preference test. To replicate and extend these findings, the effects of two doses of CDP with and without EOS pretreatment were compared with those of EOS or saline alone. EOS alone had no significant effects except to decrease eating rate but, in combination with 2.5 mg/kg CDP, it antagonised the increase in weight of familiar food eaten found with CDP alone and marginally increased weight eaten and duration of novel foot eating episodes. EOS magnified the effects of 5.0 mg/kg CDP to increase markedly the weight eaten and duration of episodes for novel chocolate drops. As no additive effects of EOS and CDP on rate of eating were found, the results are consistent with a facilitation of novel food consumption by an anxiolytic action of the two drugs, rather than by a rate-retarding action which might bias animals toward novel food. Finally, that EOS alone did not mimic the effects of CDP suggests that the role of GABA in the anxiolytic action of CDP may be indirect.

  16. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    Science.gov (United States)

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  17. (Alpha, gamma) irradiation effect on the alteration of high-level radioactive wastes matrices (UO2, hollandite, glass SON68)

    International Nuclear Information System (INIS)

    Suzuki, T.

    2007-06-01

    The aim of this work is to determine the effect of irradiation on the alteration of high level nuclear waste forms matrices. The matrices investigated are UO 2 to simulate the spent fuel, the hollandite for the specific conditioning of Cs, and the inactive glass SON68 representing the nuclear glass R7T7) The alpha irradiation experiments on UO 2 colloids in aqueous carbonate media have enabled to distinguish between the oxidation of UO 2 matrix as initial and dissolution as subsequent step. The simultaneous presence of carbonate and H 2 O 2 (product resulting from water radiolysis) increased the dissolution rate of UO 2 to its maximum value governed by the oxidation rate. ii) The study of hollandite alteration under gamma irradiation confirmed the good retention capacity for Cs and Ba. Gamma irradiation had brought only a little influence on releasing of Cs and Ba in solution. Electronic irradiation had conducted to the amorphization of the hollandite only for a dose 1000 times higher than the auto-induced dose of Ba over millions of years. iii) The experiences of glass irradiation under alpha beam and of helium implantation in the glass SON68 were analyzed by positon annihilation spectroscopy. No effect has been observed on the solid surface for an irradiation dose equal to 1000 years of storage. (author)

  18. Serum hepcidin levels, iron status, and HFE gene alterations during the first year of life in healthy Spanish infants.

    Science.gov (United States)

    Aranda, Nuria; Bedmar, Cristina; Arija, Victoria; Jardí, Cristina; Jimenez-Feijoo, Rosa; Ferré, Natalia; Tous, Monica

    2018-06-01

    The aims of this study were to describe hepcidin levels and to assess their associations with iron status and the main variants in the HFE gene in healthy and full-term newborns during the first year of life, as a longitudinal study conducted on 140 infants. Anthropometric and biochemical parameters, hepcidin, hemoglobin (Hb), serum ferritin (SF), transferrin saturation (TS), mean corpuscular volume (MCV), and C-reactive protein (CRP), were assessed in 6- and 12-month-olds. Infants were genotyped for the three main HFE variants: C282Y, H63D, and S65C. Hepcidin levels increased from 6 to 12 months of age (43.7 ± 1.5 to 52.0 ± 1.5 ng/mL; p HFE gene (p = 0.046 and p = 0.048 in 6- and 12-month-olds, respectively). However, this association was not found in HFE-alteration-carrying infants. Hepcidin levels increased in healthy infants during the first year of life and were positively associated with iron levels only in infants with wild-type HFE gene, a situation that requires further investigation.

  19. Time dependent effects of haloperidol on glutamine and GABA homeostasis and astrocyte activity in the rat brain

    Science.gov (United States)

    Konopaske, Glenn T.; Bolo, Nicolas R.; Basu, Alo C.; Renshaw, Perry F.; Coyle, Joseph T.

    2013-01-01

    Rationale Schizophrenia is a severe, persistent, and fairly common mental illness. Haloperidol is widely used and is effective against the symptoms of psychosis seen in schizophrenia. Chronic oral haloperidol administration decreased the number of astrocytes in the parietal cortex of macaque monkeys (Konopaske et al. Biol Psych, 2008). Since astrocytes play a key role in glutamate metabolism, chronic haloperidol administration was hypothesized to modulate astrocyte metabolic function and glutamate homeostasis. Objectives This study investigated the effects of chronic haloperidol administration on astrocyte metabolic activity and glutamate, glutamine, and GABA homeostasis. Methods We used ex vivo 13C magnetic resonance spectroscopy along with high performance liquid chromatography after [1-13C]glucose and [1,2-13C]acetate administration to analyze forebrain tissue from rats administered oral haloperidol for 1 or 6 months. Results Administration of haloperidol for 1 month produced no changes in 13C labeling of glutamate, glutamine, or GABA, or in their total levels. However, a 6 month haloperidol administration increased 13C labeling of glutamine by [1,2-13C]acetate. Moreover, total GABA levels were also increased. Haloperidol administration also increased the acetate/glucose utilization ratio for glutamine in the 6 month cohort. Conclusions Chronic haloperidol administration in rats appears to increase forebrain GABA production along with astrocyte metabolic activity. Studies exploring these processes in subjects with schizophrenia should take into account the potential confounding effects of antipsychotic medication treatment. PMID:23660600

  20. In vitro GABA transport in the neurohypophysis from rats with hereditary diabetes insipidus and after osmotic stimulation

    International Nuclear Information System (INIS)

    Hamberger, A.; Norstroem, A.; Sandberg, M.; Svanberg, U.

    1979-01-01

    The present study reports on a series of experiments in which the osmotic state of the animal correlates with the concentration of GABA in the pituitary as well as with uptake and release of exogenous GABA. Male rats (200-250 g) of the Sprague-Dawley strain and Brattleboro rats with hereditary hypothalamic diabetes insipidus (D.I.) were used and the uptake of [ 3 H]GABA into the posterior pituitary, studied. Radioactivity was determined by liquid scintillation spectrometry. The radioactivity expressed as cpm/mg protein did not differ proportionally from that expressed as cpm/mg wet weight among control and experimental rats. For radiolabelling of neurophysin in vivo, L-[ 35 S]cystein-hydrochloride was injected into the supraoptic nucleus. The total release of [ 35 S] was proportional to the release of labelled neurophysin. The endogenous levels of most amino acids in the neurohypophysis did not differ appreciably from those of whole brain. The GABA level in the D.I. glands was close to the detection limit of the method and was reduced compared to control glands. Otherwise, no marked difference appeared between control and D.I. glands. (Auth.)

  1. Localisation of 3H-GABA in the rat olfactory bulb: An in vivo and in vitro autoradiographic study

    International Nuclear Information System (INIS)

    Jaffe, E.H.; Cuello, A.C.; Priestley, J.V.

    1983-01-01

    In an attempt to further clarify the localisation of GABAergic elements in the olfactory bulb we have performed, in vivo and in vitro, autoradiographic studies with 3 H-GABA (#betta#-amino butyric acid) and 3 H-DABA (L-2,4 diamino butyric acid). The results have shown a strong labelling with 3 H-GABA of the glial cells in all the layers of the olfactory bulb. A high concentration of grains was observed in the periglomerular region. The labelling in the external plexiform layer was uniformly distributed in the neuropile with the strongest activity at the level of the dendritic processes of the granule cells, leaving the mitral cell dendrites and cell bodies almost free of grains. 3 H-DABA showed a very similar pattern to 3 H-GABA. When olfactory bulb slices were preincubated with #betta#-alanine the labelling of the glial elements almost disappeared especially at the level of the olfactory nerve layer. The labelling pattern of the other layers of the bulb remained mostly unchanged. This supports the view that a population of periglomerular and granule cells are GABAergic and that #betta#-alanine competes with GABA uptake sites only in glial cells. (orig.)

  2. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    DEFF Research Database (Denmark)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P

    2017-01-01

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate...... concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus...... glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. METHODS: Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia...

  3. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  4. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats.

    Directory of Open Access Journals (Sweden)

    Mônica G Corrêa

    Full Text Available This study investigated some immunological features by experimental periodontitis (EP and rheumatoid arthritis (RA disease interact in destructive processes in arthritic rats. Rats were assigned to the following groups: EP +RA; RA; EP; and Negative Control. RA was induced by immunizations with type-II collagen and a local immunization with Complete Freund's adjuvant in the paw. Periodontitis was induced by ligating the right first molars. The serum level of rheumatoid factor (RF and anti-citrullinated protein antibody (ACCPA were measured before the induction of EP (T1 and at 28 days after (T2 by ELISA assay. ACCPA levels were also measured in the gingival tissue at T2. The specimens were processed for morphometric analysis of bone loss, and the gingival tissue surrounding the first molar was collected for the quantification of interleukin IL-1β, IL-4, IL-6, IL-17 and TNF-α using a Luminex/MAGpix assay. Paw edema was analyzed using a plethysmometer. Periodontitis increased the RF and ACCPA levels in the serum and in the gingival tissue, respectively. Besides, the level of paw swelling was increased by EP and remained in progress until the end of the experiment, when EP was associated with RA. Greater values of IL-17 were observed only when RA was present, in spite of PE. It can be concluded that periodontitis increases rheumatic factor serum levels and citrullinated proteins level in gingival tissues and alter cytokine balance in arthritic rats; at the same time, arthritis increases periodontal destruction, confirming the bidirectional interaction between diseases.

  5. Advanced age, altered level of consciousness and a new diagnosis of diabetes are independently associated with hypernatreamia in hyperglycaemic crisis.

    Science.gov (United States)

    Ekpebegh, Chukwuma O; Longo-Mbenza, Benjamin; Nge-Okwe, Augustin; Ogbera, Anthonia O; Tonjeni, Nomawethu T

    2011-04-18

    There is limited literature on hypernatreamia in the setting of hyperglycaemic crisis. This is despite the fact that the presence of hypernatreamia may impact on the classification of hyperglycaemic crisis and its management particularly with regards to the nature of fluid therapy. We determined the prevalence of hypernatreamia and its associated factors at presentation for hyperglycaemic crisis. This was a retrospective review of data for hyperglycaemic crisis admissions in Nelson Mandela Academic Hospital, Mthatha, South Africa. The prevalence of hypernatreamia (uncorrected Serum Sodium at presentation >145 mmol/L) was determined. Hyperosmolality was defined by calculated effective osmolality >320 mosmols/Kg. Multivariate logistic regression was undertaken using variables that were statistically significant in univariate analysis to ascertain those that were independently associated (Odds Ratio (OR) with 95% Confidence Interval (CI)) with hypernatreamia. The prevalence of hypernatreamia in our admissions for hyperglycaemic crisis was 11.7% (n = 32/273 including 171 females and 102 males). All admissions with hypernatreamia met the criteria for hyperosmolality. Age ≥ 60 years (OR = 3.9 95% CI 1.3-12.3; P = 0.018), Altered level of consciousness (OR = 8.8 95% CI 2.3-32.8; P < 0.001) and a new diagnosis of diabetes (OR = 3.7 95%CI 1.2-11.5; P = 0.025) were independently associated with hypernatreamia. The prevalence rate of hypernatreamia in hyperglycaemic admissions was high with all hypernatreamic admissions meeting the criteria for hyperosmolality. Advanced age, altered conscious level and a new diagnosis of diabetes were independently associated with hypernatreamia.

  6. Alterations of energy metabolism and glutathione levels of HL-60 cells induced by methacrylates present in composite resins.

    Science.gov (United States)

    Nocca, G; De Palma, F; Minucci, A; De Sole, P; Martorana, G E; Callà, C; Morlacchi, C; Gozzo, M L; Gambarini, G; Chimenti, C; Giardina, B; Lupi, A

    2007-03-01

    Methacrylic compounds such as 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and bisphenol A glycerolate (1 glycerol/phenol) dimethacrylate (Bis-GMA) are largely present in auto- or photopolymerizable composite resins. Since the polymerization reaction is never complete, these molecules are released into the oral cavity tissues and biological fluids where they could cause local adverse effects. The aim of this work was to verify the hypothesis that the biological effects of HEMA, TEGDMA and Bis-GMA - at a non-cytotoxic concentration - depend on the interaction with mitochondria and exert consequent alterations of energy metabolism, GSH levels and the related pathways in human promyelocytic cell line (HL-60). The biological effects of methacrylic monomers were determined by analyzing the following parameters: GSH concentration, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) activity, oxygen and glucose consumption and lactate production along with cell differentiation and proliferation. All monomers induced both cellular differentiation and decrease in oxygen consumption. Cells treated with TEGDMA and Bis-GMA showed a significant enhancement of glucose consumption and lactate production. TEGDMA and HEMA induced GSH depletion stimulating G6PDH and GR activity. All the monomers under study affect the metabolism of HL-60 cells and show differentiating activity. Since alterations in cellular metabolism occurred at compound concentrations well below cytotoxic levels, the changes in energy metabolism and glutathione redox balance could be considered as potential mechanisms for inducing clinical and sub-clinical adverse effects and thus providing useful parameters when testing biocompatibility of dental materials.

  7. Affective alterations in patients with Cushing's syndrome in remission are associated with decreased BDNF and cortisone levels.

    Science.gov (United States)

    Valassi, E; Crespo, I; Keevil, B G; Aulinas, A; Urgell, E; Santos, A; Trainer, P J; Webb, S M

    2017-02-01

    Affective alterations and poorer quality of life often persist in patients with Cushing's syndrome (CS) in remission. Brain-derived neurotrophic factor (BDNF) regulates the hypothalamic-pituitary-adrenal axis (HPA) and is highly expressed in brain areas controlling mood and response to stress. Our aims were to assess affective alterations after long-term remission of CS and evaluate whether they are associated with serum BDNF, salivary cortisol (SalF) and/or cortisone (SalE) concentrations. Thirty-six CS patients in remission (32 females/4 males; mean age (±s.d.), 48.8 ± 11.8 years; median duration of remission, 72 months) and 36 gender-, age- and BMI-matched controls were included. Beck Depression Inventory-II (BDI-II), Center for Epidemiological Studies Depression Scale (CES-D), Positive Affect Negative Affect Scale (PANAS), State-Trait Anxiety Inventory (STAI), Perceived Stress Scale (PSS) and EuroQoL and CushingQoL questionnaires were completed and measured to evaluate anxiety, depression, stress perception and quality of life (QoL) respectively. Salivary cortisol was measured using liquid chromatography/tandem mass spectrometry (LC/TMS). BDNF was measured in serum using an ELISA. Remitted CS patients showed worse scores in all questionnaires than controls: STAI (P BDNF was observed in CS vs controls (P = 0.038), and low BDNF was associated with more anxiety (r = -0.247, P = 0.037), depression (r = -0.249, P = 0.035), stress (r = -0.277, P = 0.019) and affective balance (r = 0.243, P = 0.04). Morning salivary cortisone was inversely associated with trait anxiety (r = -0.377, P = 0.040) and depressed affect (r = -0.392, P = 0.032) in CS patients. Delay to diagnosis was associated with depressive symptoms (BDI-II: r = 0.398, P = 0.036 and CES-D: r = 0.449, P = 0.017) and CushingQoL scoring (r = -0.460, P BDNF levels are associated with affective alterations in 'cured' CS patients, including depression, anxiety and impaired stress perception. Elevated levels of

  8. Hereditary and acquired abnormalities in erythrocyte phosphofructokinase activity: the close association with altered 2,3-diphosphoglycerate levels.

    Science.gov (United States)

    Tarui, S; Kono, N; Kuwajima, M; Kitani, T

    1980-01-01

    Specific deficiency of erythrocyte phosphofructokinase (PFK) activity in Type VII glycogenosis presents a good model for the analysis of the relationship between 2,3 diphosphoglycerate (2,3 DPG) level and glycolysis in erythrocytes since glycolytic flow is partially blocked at the regulatory step. Enzymatic analyses of glycolytic intermediates of erythrocytes from a patient with Type VII glycogenosis demonstrated that 2,3 DPG is markedly decreased in parallel with fructose-1,6-phosphate (FDP). In acidosis including diabetic ketoacidosis and uremic acidosis a fall in 2,3 DPG is also associated with a marked reduction in FDP. On the other hand, in respiratory alkalosis glycolytic intermediates shift to the opposite direction and forward crossover at PFK step appears, being associated with an elevation of 2,3 DPG. These data indicate a close relationship between 2,3 DPG level and PFK activity in erythrocytes. At least in acidosis and alkalosis the alteration in 2,3 DPG level may well be explained by changes in PFK activity caused mainly through allosteric mechanism. In addition, twelve cases with hereditary PFK deficiency in muscle and erythrocytes reported in the world are reviewed and discussed briefly.

  9. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  10. Actions of insecticides on the insect GABA receptor complex

    International Nuclear Information System (INIS)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding and voltage-clamp techniques. Specific binding of [35S]TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 ± 2.9 nM and a Bmax value of 1770 ± 40 fmol/mg protein. [35S]TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of [35S]TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on [35S]TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current

  11. The role of GABA in NMDA-dependent long term depression (LTD) of rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Della Torre, G; Capocchi, G; Zampolini, M; Pettorossi, V E

    1995-11-20

    The role of GABA in NMDA-dependent long term depression (LTD) in the medial vestibular nuclei (MVN) was studied on rat brainstem slices. High frequency stimulation (HFS) of the primary vestibular afferents induces a long lasting reduction of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the MVN. The induction but not the maintenance of this depression was abolished by AP5, a specific blocking agent for glutamate NMDA receptors. The involvement of GABA in mediating the depression was checked by applying the GABAA and GABAB receptor antagonists, bicuculline and saclofen, before and after HFS. Under bicuculline and saclofen perfusion, HFS provoked a slight potentiation of the N2 wave, while the N2 depression clearly emerged after drug wash-out. This indicates that GABA is not involved in inducing the long term effect, but it is necessary for its expression. Similarly, the LTD reversed and a slight potentiation appeared when both drugs were administered after its induction. Most of these effects were due to the bicuculline, suggesting that GABAA receptors contribute to LTD more than GABAB do. According to our results, it is unlikely that the long lasting vestibular depression is the result of a homosynaptic LTD. On the contrary, our findings suggest that the depression is due to an enhancement of the GABA inhibitory effect, caused by an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  12. Effect of deltamethrin on transmission of gamma aminobutyric acid (GABA) and thyroid hormones in adult male albino rats

    International Nuclear Information System (INIS)

    Abdel-kader, S.M.; Abdel-Rahman, M.

    2005-01-01

    The oral administration of 1/5 LD 5 0 of deltamethrin for 15 days produced an increase in GABA content and a decrease in Cl - ions concentration in all tested brain areas (cerebellum, pons + medulla oblongata, striatum, cerebral cortex, hypothalamus, midbrain and hippocampus) of adult male albino rats, almost at most time intervals. Deltamethrin also resulted in a significant decrease in serum TSH and increase in T 3 and T 4 levels in the treated rats. From the present results, it was found that deltamethrin decreased the passage of Cl - ions in the cells which might be, in part, due to a decrease of the transmission of GABA and an increase of the circulating thyroid hormones (triiodothyronine and thyroxine). Accordingly, deltamethrin may act as GABA antagonist and may act on the hypothalamus pituitary thyroid axis. In conclusion the elevation of thyroid hormones as well as the decrease in both CL - ions and GABA transmission which could be all together responsible for the impairment of motor activity, hyper excitability and seizure that occurred in rats treated with the pyrethroid insecticide deltamethrin

  13. Presynaptic nicotinic α7 and non-α7 receptors stimulate endogenous GABA release from rat hippocampal synaptosomes through two mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Stefania Zappettini

    Full Text Available BACKGROUND: Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release. METHODOLOGY/FINDINGS: All agonists elicited GABA overflow. Choline (Ch-evoked GABA overflow was dependent to external Ca(2+, but unaltered in the presence of Cd(2+, tetrodotoxin (TTX, dihydro-β-erythroidine (DHβE and 1-(4,4-Diphenyl-3-butenyl-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA, α-bungarotoxin (α-BTX, dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca(2+ entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380 elicited GABA overflow, which was Ca(2+ dependent, blocked by Cd(2+, and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels. CONCLUSIONS/SIGNIFICANCE: Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that

  14. Brain GABA Detection in vivo with the J-editing 1H MRS Technique: A Comprehensive Methodological Evaluation of Sensitivity Enhancement, Macromolecule Contamination and Test-Retest Reliability

    Science.gov (United States)

    Shungu, Dikoma C.; Mao, Xiangling; Gonzales, Robyn; Soones, Tacara N.; Dyke, Jonathan P.; van der Veen, Jan Willem; Kegeles, Lawrence S.

    2016-01-01

    Abnormalities in brain γ-aminobutyric acid (GABA) have been implicated in various neuropsychiatric and neurological disorders. However, in vivo GABA detection by proton magnetic resonance spectroscopy (1H MRS) presents significant challenges arising from low brain concentration, overlap by much stronger resonances, and contamination by mobile macromolecule (MM) signals. This study addresses these impediments to reliable brain GABA detection with the J-editing difference technique on a 3T MR system in healthy human subjects by (a) assessing the sensitivity gains attainable with an 8-channel phased-array head coil, (b) determining the magnitude and anatomic variation of the contamination of GABA by MM, and (c) estimating the test-retest reliability of measuring GABA with this method. Sensitivity gains and test-retest reliability were examined in the dorsolateral prefrontal cortex (DLPFC), while MM levels were compared across three cortical regions: the DLPFC, the medial prefrontal cortex (MPFC) and the occipital cortex (OCC). A 3-fold higher GABA detection sensitivity was attained with the 8-channel head coil compared to the standard single-channel head coil in DLPFC. Despite significant anatomic variation in GABA+MM and MM across the three brain regions (p GABA+MM was relatively stable across the three voxels, ranging from 41% to 49%, a non-significant regional variation (p = 0.58). The test-retest reliability of GABA measurement, expressed either as ratios to voxel tissue water (W) or total creatine, was found to be very high for both the single-channel coil and the 8-channel phased-array coil. For the 8-channel coil, for example, Pearson’s correlation coefficient of test vs. retest for GABA/W was 0.98 (R2 = 0.96, p = 0.0007), the percent coefficient of variation (CV) was 1.25%, and the intraclass correlation coefficient (ICC) was 0.98. Similar reliability was also found for the co-edited resonance of combined glutamate and glutamine (Glx) for both coils. PMID

  15. Reduced binding potential of GABA-A/benzodiazepine receptors in individuals at ultra-high risk for psychosis: an [18F]-fluoroflumazenil positron emission tomography study.

    Science.gov (United States)

    Kang, Jee In; Park, Hae-Jeong; Kim, Se Joo; Kim, Kyung Ran; Lee, Su Young; Lee, Eun; An, Suk Kyoon; Kwon, Jun Soo; Lee, Jong Doo

    2014-05-01

    Altered transmission of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, may contribute to the development of schizophrenia. The purpose of the present study was to investigate the presence of GABA-A/benzodiazepine (BZ) receptor binding abnormalities in individuals at ultra-high risk (UHR) for psychosis in comparison with normal controls using [(18)F]-fluoroflumazenil (FFMZ) positron emission tomography (PET). In particular, we set regions of interest in the striatum (caudate, putamen, and nucleus accumbens) and medial temporal area (hippocampus and parahippocampal gyrus). Eleven BZ-naive people at UHR and 15 normal controls underwent PET scanning using [(18)F]-FFMZ to measure GABA-A/BZ receptor binding potential. The regional group differences between UHR individuals and normal controls were analyzed using Statistical Parametric Mapping 8 software. Participants were evaluated using the structured interview for prodromal syndromes and neurocognitive function tasks. People at UHR demonstrated significantly reduced binding potential of GABA-A/BZ receptors in the right caudate. Altered GABAergic transmission and/or the imbalance of inhibitory and excitatory systems in the striatum may be present at the putative prodromal stage and play a pivotal role in the pathophysiology of psychosis.

  16. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    Energy Technology Data Exchange (ETDEWEB)

    Voras, Zachary E.; Wiggins, Marcie B.; Beebe, Thomas P. [University of Delaware, Department of Chemistry and Biochemistry, Newark, DE (United States); University of Delaware, UD Surface Analysis Facility, Newark, DE (United States); DeGhetaldi, Kristin [University of Delaware, Department of Art Conservation, Newark, DE (United States); Winterthur-University of Delaware Program in Art Conservation, Winterthur, DE (United States); Buckley, Barbara [The Barnes Foundation, Department of Conservation, Philadelphia, PA (United States); Baade, Brian [University of Delaware, Department of Art Conservation, Newark, DE (United States); Mass, Jennifer L. [Winterthur Museum, Scientific Research and Analysis Laboratory, Conservation Department, Winterthur, DE (United States)

    2015-11-15

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as

  17. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse.

    Science.gov (United States)

    Voras, Zachary E; deGhetaldi, Kristin; Wiggins, Marcie B; Buckley, Barbara; Baade, Brian; Mass, Jennifer L; Beebe, Thomas P

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as

  18. Increased GABA(A receptor ε-subunit expression on ventral respiratory column neurons protects breathing during pregnancy.

    Directory of Open Access Journals (Sweden)

    Keith B Hengen

    Full Text Available GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABA(ARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABA(AR expression on brainstem neurons of the ventral respiratory column (VRC. In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABA(AR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABA(AR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABA(AR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life despite increased neurosteroid levels during pregnancy.

  19. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinich; Nomura, Michikazu; Hirase, Kangetsu

    2013-04-01

    The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spinal Cord Stimulation Alters Protein Levels in the Cerebrospinal Fluid of Neuropathic Pain Patients: A Proteomic Mass Spectrometric Analysis.

    Science.gov (United States)

    Lind, Anne-Li; Emami Khoonsari, Payam; Sjödin, Marcus; Katila, Lenka; Wetterhall, Magnus; Gordh, Torsten; Kultima, Kim

    2016-08-01

    Electrical neuromodulation by spinal cord stimulation (SCS) is a well-established method for treatment of neuropathic pain. However, the mechanism behind the pain relieving effect in patients remains largely unknown. In this study, we target the human cerebrospinal fluid (CSF) proteome, a little investigated aspect of SCS mechanism of action. Two different proteomic mass spectrometry protocols were used to analyze the CSF of 14 SCS responsive neuropathic pain patients. Each patient acted as his or her own control and protein content was compared when the stimulator was turned off for 48 hours, and after the stimulator had been used as normal for three weeks. Eighty-six proteins were statistically significantly altered in the CSF of neuropathic pain patients using SCS, when comparing the stimulator off condition to the stimulator on condition. The top 12 of the altered proteins are involved in neuroprotection (clusterin, gelsolin, mimecan, angiotensinogen, secretogranin-1, amyloid beta A4 protein), synaptic plasticity/learning/memory (gelsolin, apolipoprotein C1, apolipoprotein E, contactin-1, neural cell adhesion molecule L1-like protein), nociceptive signaling (neurosecretory protein VGF), and immune regulation (dickkopf-related protein 3). Previously unknown effects of SCS on levels of proteins involved in neuroprotection, nociceptive signaling, immune regulation, and synaptic plasticity are demonstrated. These findings, in the CSF of neuropathic pain patients, expand the picture of SCS effects on the neurochemical environment of the human spinal cord. An improved understanding of SCS mechanism may lead to new tracks of investigation and improved treatment strategies for neuropathic pain. © 2016 International Neuromodulation Society.

  1. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation

    Science.gov (United States)

    D’Avanzo, Carla; Sliwinski, Christopher; Wagner, Steven L.; Tanzi, Rudolph E.; Kim, Doo Yeon; Kovacs, Dora M.

    2015-01-01

    Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.—D’Avanzo, C., Sliwinski, C., Wagner, S. L., Tanzi, R. E., Kim, D. Y., Kovacs, D. M. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. PMID:25903103

  2. Alteration of Hemostatic Parameters in Patients with Different Levels of Subclinical Hypothyroidism and the Effect of L-thyroxine Treatment.

    Science.gov (United States)

    Gao, Fang; Wang, Guangya; Xu, Jinxiu

    2017-01-01

    Subclinical hypothyroidism (SH) is associated with hypercoagulability and hypofibrinolysis. The objective of this study was to assess the effect of L-thyroxine (L-T4) treatment and to evaluate changes in the hemostatic abnormalities of patients with varying severities of SH. We measured tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1), D-dimer (DDI), fibrinogen (FIB), platelet counts (PLT), mean platelet volume (MPV), platelet distribution width (PDW), activated partial thromboplastin time (APTT), and prothrombin time (PT) in 149 female subjects. The prospective study included 54 patients in the control group, 53 patients with 4.2 μIU/mLtreatment, a significant decrease in FIB, PAI-1 and t-PA levels and an increase in APTT and DDI were observed in the severe SH group. In conclusion, SH patients displayed a distinct pattern of alteration of hemostatic parameters that was dependent on the severity of the disease. Patients with TSH levels ≥10 μIU/mL displayed hypercoagulability, which was reversed by 6 months of L-T4 treatment. © 2017 by the Association of Clinical Scientists, Inc.

  3. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus

    Directory of Open Access Journals (Sweden)

    Blake L. Spady

    2014-10-01

    Full Text Available Carbon dioxide (CO2 levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19–25% and increased movement (number of line-crosses by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.

  4. Epigenetic regulation of dorsal raphe GABA(B1a) associated with isolation-induced abnormal responses to social stimulation in mice.

    Science.gov (United States)

    Araki, Ryota; Hiraki, Yosuke; Nishida, Shoji; Kuramoto, Nobuyuki; Matsumoto, Kinzo; Yabe, Takeshi

    2016-02-01

    In isolation-reared mice, social encounter stimulation induces locomotor hyperactivity and activation of the dorsal raphe nucleus (DRN), suggesting that dysregulation of dorsal raphe function may be involved in abnormal behaviors. In this study, we examined the involvement of dorsal raphe GABAergic dysregulation in the abnormal behaviors of isolation-reared mice. We also studied an epigenetic mechanism underlying abnormalities of the dorsal raphe GABAergic system. Both mRNA and protein levels of GABA(B1a), a GABA(B) receptor subunit, were increased in the DRN of isolation-reared mice, compared with these levels in group-reared mice. In contrast, mRNA levels for other GABAergic system-related genes (GABA(A) receptor α1, β2 and γ2 subunits, GABA(B) receptor 1b and 2 subunits, and glutamate decarboxylase 67 and 65) were unchanged. Intra-DRN microinjection of 0.06 nmol baclofen (a GABA(B) receptor agonist) exacerbated encounter-induced hyperactivity and aggressive behavior, while microinjection of 0.3 nmol phaclofen (a GABA(B) receptor antagonist) attenuated encounter-induced hyperactivity and aggressive behavior in isolation-reared mice. Furthermore, microinjection of 0.06 nmol baclofen elicited encounter-induced hyperactivity in group-reared mice. Neither baclofen nor phaclofen affected immobility time in the forced swim test and hyperactivity in a novel environment of isolation reared mice. Bisulfite sequence analyses revealed that the DNA methylation level of the CpG island around the transcription start site (TSS) of GABA(B1a) was decreased in the DRN of isolation-reared mice. Chromatin immunoprecipitation analysis showed that histone H3 was hyperacetylated around the TSS of GABA(B1a) in the DRN of isolation-reared mice. These findings indicate that an increase in dorsal raphe GABA(B1a) expression via epigenetic regulation is associated with abnormal responses to social stimulation such as encounter-induced hyperactivity and aggressive behavior in isolation

  5. GABA-B receptor activation and conflict behavior

    International Nuclear Information System (INIS)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.; Bruinvels, J.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on [ 3 H]-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables

  6. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?

    Science.gov (United States)

    McKee, Karen L; Vervaeke, William C

    2018-03-01

    , subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea-level rise. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Will fluctuations in salt marsh–mangrove dominance alter vulnerability of a subtropical wetland to sea‐level rise?

    Science.gov (United States)

    Mckee, Karen L.; Vervaeke, William

    2018-01-01

    accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea-level rise.

  8. Role of GABA-active neurosteroids in the efficacy of metyrapone against cocaine addiction.

    Science.gov (United States)

    Schmoutz, Christopher D; Guerin, Glenn F; Goeders, Nicholas E

    2014-09-01

    Previous research has demonstrated a complicated role for stress and HPA axis activation in potentiating various cocaine-related behaviors in preclinical models of drug dependence. However, the investigation of several antiglucocorticoid therapies has yielded equivocal results in reducing cocaine-related behaviors, possibly because of varying mechanisms of actions. Specifically, research suggests that metyrapone (a corticosterone synthesis inhibitor) may reduce cocaine self-administration in rats via a nongenomic, extra-adrenal mechanism without altering plasma corticosterone. In the current experiments, male rats were trained to self-administer cocaine infusions and food pellets in a multiple, alternating schedule of reinforcement. Metyrapone pretreatment dose-dependently decreased cocaine self-administration as demonstrated previously. Pharmacological inhibition of neurosteroid production by finasteride had significant effects on cocaine self-administration, regardless of metyrapone pretreatment. However, metyrapone's effects on cocaine self-administration were significantly attenuated with bicuculline pretreatment, suggesting a role for GABA-active neurosteroids in cocaine-reinforced behaviors. In vitro binding data also confirmed that metyrapone does not selectively bind to GABA-related proteins. The results of these experiments support the hypothesis that metyrapone may increase neurosteroidogenesis to produce effects on cocaine-related behaviors. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABA(A) receptors in cortical pyramidal cells.

    Science.gov (United States)

    Sumegi, Mate; Fukazawa, Yugo; Matsui, Ko; Lorincz, Andrea; Eyre, Mark D; Nusser, Zoltan; Shigemoto, Ryuichi

    2012-04-01

    Recently developed pharmacogenetic and optogenetic approaches, with their own advantages and disadvantages, have become indispensable tools in modern neuroscience. Here, we employed a previously described knock-in mouse line (GABA(A)Rγ2(77I)lox) in which the γ2 subunit of the GABA(A) receptor (GABA(A)R) was mutated to become zolpidem insensitive (γ2(77I)) and used viral vectors to swap γ2(77I) with wild-type, zolpidem-sensitive γ2 subunits (γ2(77F)). The verification of unaltered density and subcellular distribution of the virally introduced γ2 subunits requires their selective labelling. For this we generated six N- and six C-terminal-tagged γ2 subunits, with which cortical cultures of GABA(A)Rγ2(−/−) mice were transduced using lentiviruses. We found that the N-terminal AU1 tag resulted in excellent immunodetection and unimpaired synaptic localization. Unaltered kinetic properties of the AU1-tagged γ2 ((AU1)γ2(77F)) channels were demonstrated with whole-cell patch-clamp recordings of spontaneous IPSCs from cultured cells. Next, we carried out stereotaxic injections of lenti- and adeno-associated viruses containing Cre-recombinase and the (AU1)γ2(77F) subunit (Cre-2A-(AU1)γ2(77F)) into the neocortex of GABA(A)Rγ2(77I)lox mice. Light microscopic immunofluorescence and electron microscopic freeze-fracture replica immunogold labelling demonstrated the efficient immunodetection of the AU1 tag and the normal enrichment of the (AU1)γ2(77F) subunits in perisomatic GABAergic synapses. In line with this,miniature and action potential-evoked IPSCs whole-cell recorded from transduced cells had unaltered amplitudes, kinetics and restored zolpidem sensitivity. Our results obtained with a wide range of structural and functional verification methods reveal unaltered subcellular distributions and functional properties of γ2(77I) and (AU1)γ2(77F) GABA(A)Rs in cortical pyramidal cells. This transgenic–viral pharmacogenetic approach has the advantage that it

  10. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover.

    Science.gov (United States)

    Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan

    2017-01-01

    In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ 1 -pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.

  11. Selective mGAT2 (BGT-1) GABA Uptake Inhibitor

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Jørgensen, Lars; Madsen, Karsten Kirkegaard

    2013-01-01

    β-Amino acids sharing a lipophilic diaromatic side chain were synthesized and characterized pharmacologically on mouse GABA transporter subtypes mGAT1−4. The parent amino acids were also characterized. Compounds 13a, 13b, and 17b displayed more than 6-fold selectivity for mGAT2 over mGAT1. Compou...... 17b displayed anticonvulsive properties inferring a role of mGAT2 in epileptic disorders. These results provide new neuropharmacological tools and a strategy for designing subtype selective GABA transport inhibitors....

  12. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Qinhu Wang

    2018-04-01

    Full Text Available Trichothecene mycotoxins, such as deoxynivalenol (DON produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA, a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2 is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum.

  13. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine.

    Science.gov (United States)

    Yao, Lihang; Ramirez, Andres D; Roecker, Anthony J; Fox, Steven V; Uslaner, Jason M; Smith, Sean M; Hodgson, Robert; Coleman, Paul J; Renger, John J; Winrow, Christopher J; Gotter, Anthony L

    2017-07-01

    Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA) A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABA A receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABA A modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABA A modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep. © 2017 International Society for Neurochemistry.

  14. Omega-3 Fatty Acid Enriched Chevon (Goat Meat Lowers Plasma Cholesterol Levels and Alters Gene Expressions in Rats

    Directory of Open Access Journals (Sweden)

    Mahdi Ebrahimi

    2014-01-01

    Full Text Available In this study, control chevon (goat meat and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n=10 in each group for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significa