WorldWideScience

Sample records for altered collagen structure

  1. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...

  2. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype--an X-ray diffraction study.

    Science.gov (United States)

    Boote, Craig; Hayes, Sally; Jones, Simon; Quantock, Andrew J; Hocking, Paul M; Inglehearn, Chris F; Ali, Manir; Meek, Keith M

    2008-01-01

    An investigation into the collagenous structure of the mature avian cornea is presented. Wide-angle X-ray diffraction is employed to assess collagen organization in 9-month-old chicken corneas. The central 2-4mm corneal region features a preponderance of fibrils directed along the superior-inferior and nasal-temporal orthogonal meridians. More peripherally the orientation of fibrils alters in favor of a predominantly tangential arrangement. The chicken cornea appears to be circumscribed by an annulus of fibrils that extends into the limbus. The natural arrangement of collagen in the chicken cornea is discussed in relation to corneal shape and the mechanical requirements of avian corneal accommodation. Equivalent data are also presented from age-matched blind chickens affected with the retinopathy, globe enlarged (rge) mutation, characterized by an abnormally thick and flat cornea. The data indicate considerable realignment and redistribution of collagen lamellae in the peripheral rge cornea. In contrast to normal chickens, no obvious tangential collagen alignment was evident in the periphery of rge corneas. In mammals, the presence of a limbal fibril annulus is believed to be important in corneal shape preservation. We postulate that corneal flattening in rge chickens may be related to biomechanical changes brought about by an alteration in collagen arrangement at the corneal periphery.

  3. Collagens - structure, function and biosynthesis.

    OpenAIRE

    Gelse, K; Poschl, E; Aigner, T

    2003-01-01

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the dis...

  4. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  5. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Science.gov (United States)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  6. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  7. Type V Collagen is Persistently Altered after Inguinal Hernia Repair

    DEFF Research Database (Denmark)

    Lorentzen, L; Henriksen, N A; Juhl, P

    2018-01-01

    BACKGROUND AND AIMS: Hernia formation is associated with alterations of collagen metabolism. Collagen synthesis and degradation cause a systemic release of products, which are measurable in serum. Recently, we reported changes in type V and IV collagen metabolisms in patients with inguinal...... elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive...... assay. RESULTS: The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared...

  8. Thrombolytic therapy of acute myocardial infarction alters collagen metabolism

    DEFF Research Database (Denmark)

    Høst, N B; Hansen, S S; Jensen, L T

    1994-01-01

    The objective of the study was to monitor collagen metabolism after thrombolytic therapy. Sequential measurements of serum aminoterminal type-III procollagen propeptide (S-PIIINP) and carboxyterminal type-I procollagen propeptide (S-PICP) were made in 62 patients suspected of acute myocardial.......05). A less pronounced S-PIIINP increase was noted with tissue-plasminogen activator than with streptokinase. Thrombolytic therapy induces collagen breakdown regardless of whether acute myocardial infarction is confirmed or not. With confirmed acute myocardial infarction collagen metabolism is altered...... for at least 6 months. Furthermore, fibrin-specific and nonspecific thrombolytic agents appear to affect collagen metabolism differently....

  9. Alterations in collagen structure in hypermobility and Ehlers-Danlos syndromes detected by Raman spectroscopy in vivo

    Science.gov (United States)

    Johansson, Carina K.; Gniadecka, Monika; Ullman, Susanne; Halberg, Poul; Kobayasi, Takasi; Wulf, Hans Christian

    2000-11-01

    Patients with hypermobility syndrome (HS) and Ehlers-Danlos syndrome (EDS) were investigated by means of in vivo near- infrared Fourier-transform Raman spectroscopy. HS is a benign and common condition (up to 5 percent of the population of the Western World). EDS is a rare, inherited connective tissue disease characterized by joint hypermobility, skin hyperextensibility, and other, occasionally serious, organ changes. EDS and HS may be related disorders. We investigated 13 patients with HS, 8 patients with EDS, and 24 healthy volunteers by means of in vivo Raman spectroscopy. The patients were classified according to Beighton and Holzberg et al. No difference in age between the three groups was found (HS 41 (33-49), EDS 36 (25-47), controls 37 (31-42); mean, 95% confidence intervals, respectively). Spectral differences were found in the intensity of the amide-III bands around 1245 and 1270 cm-1 in HS and EDS compared with healthy skin (Kruskal-Wallis, p equals 0,02 for intensity ratios (I1245/I1270) between the investigated groups). To elucidate the character of the alterations in the amide-III bands a curve fitting procedure was applied. In conclusion, Raman spectroscopy may aid in the diagnosis of HS and EDS. Moreover the technique may be useful for analyzing the molecular changes occurring in these syndromes.

  10. Collagens--structure, function, and biosynthesis.

    Science.gov (United States)

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  11. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    International Nuclear Information System (INIS)

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-01-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress

  12. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    KAUST Repository

    Blackburn, Patrick R.; Xu, Zhi; Tumelty, Kathleen E.; Zhao, Rose W.; Monis, William J.; Harris, Kimberly G.; Gass, Jennifer M.; Cousin, Margot A.; Boczek, Nicole J.; Mitkov, Mario V.; Cappel, Mark A.; Francomano, Clair A.; Parisi, Joseph E.; Klee, Eric W.; Faqeih, Eissa; Alkuraya, Fowzan S.; Layne, Matthew D.; McDonnell, Nazli B.; Atwal, Paldeep S.

    2018-01-01

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  13. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    KAUST Repository

    Blackburn, Patrick R.

    2018-03-29

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  14. Association of altered collagen content and lysyl oxidase expression in degenerative mitral valve disease.

    Science.gov (United States)

    Purushothaman, K-Raman; Purushothaman, Meerarani; Turnbull, Irene C; Adams, David H; Anyanwu, Anelechi; Krishnan, Prakash; Kini, Annapoorna; Sharma, Samin K; O'Connor, William N; Moreno, Pedro R

    Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity. Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen Types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFβ1 were quantified by immunofluorescence and gene expression by PCR. VIC density was increased, structural Type I collagen density was reduced, while reparative Type III collagen and proteoglycan densities were increased (PDegenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome.

    Science.gov (United States)

    Blackburn, Patrick R; Xu, Zhi; Tumelty, Kathleen E; Zhao, Rose W; Monis, William J; Harris, Kimberly G; Gass, Jennifer M; Cousin, Margot A; Boczek, Nicole J; Mitkov, Mario V; Cappel, Mark A; Francomano, Clair A; Parisi, Joseph E; Klee, Eric W; Faqeih, Eissa; Alkuraya, Fowzan S; Layne, Matthew D; McDonnell, Nazli B; Atwal, Paldeep S

    2018-04-05

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 -/- mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581 ∗ ]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs ∗ 3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that bi-allelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats

    Science.gov (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  17. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Science.gov (United States)

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  18. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    Science.gov (United States)

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  19. Observations on morphologic changes in the aging and degenerating human disc: Secondary collagen alterations

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2002-03-01

    Full Text Available Abstract Background In the annulus, collagen fibers that make up the lamellae have a wavy, planar crimped pattern. This crimping plays a role in disc biomechanical function by allowing collagen fibers to stretch during compression. The relationship between morphologic changes in the aging/degenerating disc and collagen crimping have not been explored. Methods Ultrastructural studies were performed on annulus tissue from 29 control (normal donors (aged newborn to 79 years and surgical specimens from 49 patients (aged 16 to 77 years. Light microscopy and specialized image analysis to visualize crimping was performed on additional control and surgical specimens. Human intervertebral disc tissue from the annulus was obtained in a prospective morphologic study of the annulus. Studies were approved by the authors' Human Subjects Institutional Review Board. Results Three types of morphologic changes were found to alter the crimping morphology of collagen: 1 encircling layers of unusual matrix disrupted the lamellar collagen architecture; 2 collagen fibers were reduced in amount, and 3 collagen was absent in regions with focal matrix loss. Conclusions Although proteoglycan loss is well recognized as playing a role in the decreased shock absorber function of the aging/degenerating disc, collagen changes have received little attention. This study suggests that important stretch responses of collagen made possible by collagen crimping may be markedly altered by morphologic changes during aging/degeneration and may contribute to the early tissue changes involved in annular tears.

  20. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  1. Variation in the Helical Structure of Native Collagen

    Science.gov (United States)

    2014-02-24

    notochord were obtained in previous studies [4,10,20–22]. The scaled amplitudes of the central, meridional section of each data set were used to...including helical, structure) from rat tail tendon (collagen type I) and lamprey notochord (collagen type II) show several common features (Figure 5). Of...also a possible consequence of the type II collagen notochord samples being stretched, perhaps to a greater extant then the type I tendon samples to aid

  2. Postnatal development of collagen structure in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-06-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the

  3. Postnatal development of collagen structure in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  4. Postnatal development of collagen structure in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    BACKGROUND:Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  5. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  6. Enalapril alters the formation of the collagen matrix in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Alfredo de Souza Bomfim

    2003-07-01

    Full Text Available OBJECTIVE: To assess the effect of the inhibition of the angiotensin-converting enzyme on the collagen matrix (CM of the heart of newborn spontaneously hypertensive rats (SHR during embryonic development. METHODS: The study comprised the 2 following groups of SHR (n=5 each: treated group - rats conceived from SHR females treated with enalapril maleate (15 mg. kg-1.day-1 during gestation; and nontreated group - offspring of nontreated females. The newborns were euthanized within the first 24 hours after birth and their hearts were removed and processed for histological study. Three fields per animal were considered for computer-assisted digital analysis and determination of the volume densities (Vv of the nuclei and CM. The images were segmented with the aid of Image Pro Plus® 4.5.029 software (Media Cybernetics. RESULTS: No difference was observed between the treated and nontreated groups in regard to body mass, cardiac mass, and the relation between cardiac and body mass. A significant reduction in the Vv[matrix] and a concomitant increase in the Vv[nuclei] were observed in the treated group as compared with those in the nontreated group. CONCLUSION: The treatment with enalapril of hypertensive rats during pregnancy alters the collagen content and structure of the myocardium of newborns.

  7. Multiscale structure and mechanics of collagen

    NARCIS (Netherlands)

    Amuasi, H.E.

    2012-01-01

    While we are 70% water, in a very real sense collagen is the stuff we are made of. It is the most abundant protein in multicellular organisms, such as ourselves, making up roughly 25% of our total protein content. If you have ever wondered how the human body holds together all its different parts in

  8. Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome.

    Science.gov (United States)

    Brachvogel, Bent; Zaucke, Frank; Dave, Keyur; Norris, Emma L; Stermann, Jacek; Dayakli, Münire; Koch, Manuel; Gorman, Jeffrey J; Bateman, John F; Wilson, Richard

    2013-05-10

    Collagen IX is an integral cartilage extracellular matrix component important in skeletal development and joint function. Proteomic analysis and validation studies revealed novel alterations in collagen IX null cartilage. Matrilin-4, collagen XII, thrombospondin-4, fibronectin, βig-h3, and epiphycan are components of the in vivo collagen IX interactome. We applied a proteomics approach to advance our understanding of collagen IX ablation in cartilage. The cartilage extracellular matrix is essential for endochondral bone development and joint function. In addition to the major aggrecan/collagen II framework, the interacting complex of collagen IX, matrilin-3, and cartilage oligomeric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9a2, Col9a3, Comp, and Matn3 genes cause multiple epiphyseal dysplasia, in which patients develop early onset osteoarthritis. In mice, collagen IX ablation results in severely disturbed growth plate organization, hypocellular regions, and abnormal chondrocyte shape. This abnormal differentiation is likely to involve altered cell-matrix interactions but the mechanism is not known. To investigate the molecular basis of the collagen IX null phenotype we analyzed global differences in protein abundance between wild-type and knock-out femoral head cartilage by capillary HPLC tandem mass spectrometry. We identified 297 proteins in 3-day cartilage and 397 proteins in 21-day cartilage. Components that were differentially abundant between wild-type and collagen IX-deficient cartilage included 15 extracellular matrix proteins. Collagen IX ablation was associated with dramatically reduced COMP and matrilin-3, consistent with known interactions. Matrilin-1, matrilin-4, epiphycan, and thrombospondin-4 levels were reduced in collagen IX null cartilage, providing the first in vivo evidence for these proteins belonging to the collagen IX interactome. Thrombospondin-4 expression was reduced at the mRNA level

  9. Variation in the helical structure of native collagen.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  10. An evaluation of meniscal collagenous structure using optical projection tomography

    International Nuclear Information System (INIS)

    Andrews, Stephen HJ; Ronsky, Janet L; Rattner, Jerome B; Shrive, Nigel G; Jamniczky, Heather A

    2013-01-01

    The collagenous structure of menisci is a complex network of circumferentially oriented fascicles and interwoven radially oriented tie-fibres. To date, examination of this micro- architecture has been limited to two-dimensional imaging techniques. The purpose of this study was to evaluate the ability of the three-dimensional imaging technique; optical projection tomography (OPT), to visualize the collagenous structure of the meniscus. If successful, this technique would be the first to visualize the macroscopic orientation of collagen fascicles in 3-D in the meniscus and could further refine load bearing mechanisms in the tissue. OPT is an imaging technique capable of imaging samples on the meso-scale (1-10 mm) at a micro-scale resolution. The technique, similar to computed tomography, takes two-dimensional images of objects from incremental angles around the object and reconstructs them using a back projection algorithm to determine three-dimensional structure. Bovine meniscal samples were imaged from four locations (outer main body, femoral surface, tibial surface and inner main body) to determine the variation in collagen orientation throughout the tissue. Bovine stifles (n = 2) were obtained from a local abattoir and the menisci carefully dissected. Menisci were fixed in methanol and subsequently cut using a custom cutting jig (n = 4 samples per meniscus). Samples were then mounted in agarose, dehydrated in methanol and subsequently cleared using benzyl alcohol benzyl benzoate (BABB) and imaged using OPT. Results indicate circumferential, radial and oblique collagenous orientations at the contact surfaces and in the inner third of the main body of the meniscus. Imaging identified fascicles ranging from 80-420 μm in diameter. Transition zones where fascicles were found to have a woven or braided appearance were also identified. The outer-third of the main body was composed of fascicles oriented predominantly in the circumferential direction. Blood vessels were

  11. New Altered Non-Fibrillar Collagens in Human Dilated Cardiomyopathy: Role in the Remodeling Process.

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Cayuela

    Full Text Available In dilated cardiomyopathy (DCM, cardiac failure is accompanied by profound alterations of extracellular matrix associated with the progression of cardiac dilation and left ventricular (LV dysfunction. Recently, we reported alterations of non-fibrillar collagen expression in ischemic cardiomyopathy linked to fibrosis and cardiac remodeling. We suspect that expression changes in genes coding for non-fibrillar collagens may have a potential role in DCM development.This study sought to analyze changes in the expression profile of non-fibrillar collagen genes in patients with DCM and to examine relationships between cardiac remodeling parameters and the expression levels of these genes.Twenty-three human left ventricle tissue samples were obtained from DCM patients (n = 13 undergoing heart transplantation and control donors (n = 10 for RNA sequencing analysis. We found increased mRNA levels of six non-fibrillar collagen genes, such as COL4A5, COL9A1, COL21A1, and COL23A1 (P < 0.05 for all, not previously described in DCM. Protein levels of COL8A1 and COL16A1 (P < 0.05 for both, were correspondingly increased. We also identified TGF-β1 significantly upregulated and related to both COL8A1 and COL16A1. Interestingly, we found a significant relationship between LV mass index and the gene expression level of COL8A1 (r = 0.653, P < 0.05.In our research, we identified new non-fibrillar collagens with altered expression in DCM, being COL8A1 overexpression directly related to LV mass index, suggesting that they may be involved in the progression of cardiac dilation and remodeling.

  12. Structure to function: Spider silk and human collagen

    Science.gov (United States)

    Rabotyagova, Olena S.

    Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure

  13. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    International Nuclear Information System (INIS)

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-01-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm −1 for acylated collagen disappeared at higher temperature

  14. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction

    Directory of Open Access Journals (Sweden)

    NM Coelho

    2010-06-01

    Full Text Available Considering the structural role of type IV collagen (Col IV in the assembly of the basement membrane (BM and the perspective of mimicking its organization for vascular tissue engineering purposes, we studied the adsorption pattern of this protein on model hydrophilic (clean glass and hydrophobic trichloro(octadecylsilane (ODS surfaces known to strongly affect the behavior of other matrix proteins. The amount of fluorescently labeled Col IV was quantified showing saturation of the surface for concentration of the adsorbing solution of about 50μg/ml, but with approximately twice more adsorbed protein on ODS. AFM studies revealed a fine – nearly single molecular size – network arrangement of Col IV on hydrophilic glass, which turns into a prominent and growing polygonal network consisting of molecular aggregates on hydrophobic ODS. The protein layer forms within minutes in a concentration-dependent manner. We further found that human umbilical vein endothelial cells (HUVEC attach less efficiently to the aggregated Col IV (on ODS, as judged by the significantly altered cell spreading, focal adhesions formation and the development of actin cytoskeleton. Conversely, the immunofluorescence studies for integrins revealed that the fine Col IV network formed on hydrophilic substrata is better recognized by the cells via both α1 and α2 heterodimers which support cellular interaction, apart from these on hydrophobic ODS where almost no clustering of integrins was observed.

  15. Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices.

    Science.gov (United States)

    Abbey, Colette A; Bayless, Kayla J

    2014-09-01

    This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs

  16. Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales

    Science.gov (United States)

    Walters, Brandan D.; Stegemann, Jan P.

    2013-01-01

    Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608

  17. Structural alterations in heart valves during left ventricular pressure overload in the rat

    NARCIS (Netherlands)

    Willems, I. E.; Havenith, M. G.; Smits, J. F.; Daemen, M. J.

    1994-01-01

    Heart valves are an important denominator of the function of the heart but detailed studies of structural alterations of heart valves after hemodynamic changes are lacking. Structural alterations of heart valves, including DNA synthesis, collagen mRNA, and protein concentration were measured in

  18. Increased cartilage type II collagen degradation in patients with osteogenesis imperfecta used as a human model of bone type I collagen alterations.

    Science.gov (United States)

    Rousseau, Jean-Charles; Chevrel, Guillaume; Schott, Anne-Marie; Garnero, Patrick

    2010-04-01

    We investigated whether cartilage degradation is altered in adult patients with mild osteogenesis imperfecta (OI) used as a human model of bone type I collagen-related osteoarthritis (OA). Sixty-four adult patients with OI (39% women, mean age+/-SD: 37+/-12 years) and 64 healthy age-matched controls (54% women, 39+/-7 years) were included. We also compared data in 87 patients with knee OA (73% women, 63+/-8 years, mean disease duration: 6 years) and 291 age-matched controls (80% women, 62+/-10 years). Urinary C-terminal cross-linked telopeptide of type II collagen (CTX-II), a marker of cartilage degradation, urinary helical peptide of type I collagen (Helix-I), a marker of bone resorption, and the urinary ratio between non-isomerised/isomerised (alpha/beta CTX-I) type I collagen C-telopeptide, a marker of type I collagen maturation, were measured. Patients with OI had CTX-II levels similar to those of subjects with knee OA (p=0.89; mean+/-SEM; 460+/-57 ng/mmol Cr for OI group and 547+/-32 ng/mmol Cr for OA group) and significantly higher than both young (144+/-7.8 ng/mmol Cr, p<0.0001) and old controls (247+/-7 ng/mmol Cr, p<0.0001). In patients with OI, increased Helix-I (p<0.0001) and alpha/beta CTX-I (p=0.0067) were independently associated with increased CTX-II and together explained 26% of its variance (p< 0.0001). In patients with knee OA, increased levels of alpha/beta CTX-I ratio were also associated with higher CTX-II levels. Adult patients with OI or knee OA are characterized by increased cartilage type II collagen degradation, which is associated with increased type I collagen degradation for OI and lower type I collagen maturation for both OI and OA. These data suggest that both quantitative and qualitative alterations of bone type I collagen metabolism are involved in increased cartilage degradation in patients with OI or knee OA. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    Science.gov (United States)

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals

  20. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure

    DEFF Research Database (Denmark)

    Maccarana, Marco; Svensson, René B; Knutsson, Anki

    2017-01-01

    SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry......) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered......The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs' effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated...

  1. Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen.

    Science.gov (United States)

    Babaei, Behzad; Davarian, Ali; Lee, Sheng-Lin; Pryse, Kenneth M; McConnaughey, William B; Elson, Elliot L; Genin, Guy M

    2016-06-01

    fibroblasts within a three-dimensional culture environment. Results are of particular interest because of the ways that fibroblasts alter the mechanical response of collagen at loading frequencies associated with cardiac contraction in humans. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells.

    Science.gov (United States)

    Koohestani, Faezeh; Braundmeier, Andrea G; Mahdian, Arash; Seo, Jane; Bi, JiaJia; Nowak, Romana A

    2013-01-01

    Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric) and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches for ULs that target ECM proteins and their signaling pathways in ULs.

  3. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  4. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  5. Preparation and structure characterization of soluble bone collagen ...

    African Journals Online (AJOL)

    In this study, G-25 gel chromatography, X-diffraction, scanning electron microscopy (SEM), UV and Fourier transform infrared spectroscopy (FTIR) were used to analyze soluble collagen peptides chelating calcium. Collagen peptide hydrolysis can be divided into four components using G-25 gel chromatography.

  6. Action of trypsin on structural changes of collagen fibres from sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Zi-Qiang; Tuo, Feng-Yan; Song, Liang; Liu, Yu-Xin; Dong, Xiu-Ping; Li, Dong-Mei; Zhou, Da-Yong; Shahidi, Fereidoon

    2018-08-01

    Trypsin, a representative serine proteinase, was used to hydrolyse the collagen fibres from sea cucumber (Stichopus japonicus) to highlight the role of serine proteinase in the autolysis of sea cucumber. Partial disaggregation of collagen fibres into collagen fibrils upon trypsin treatment occurred. The trypsin treatment also caused a time-dependent release of water-soluble glycosaminoglycans and proteins. Therefore, the degradation of the proteoglycan bridges between collagen fibrils might account for the disaggregation of collagen fibrils. For trypsin-treated collagen fibres (72 h), the collagen fibrils still kept their structural integrity and showed characteristic D-banding pattern, and the dissolution rate of hydroxyproline was just 0.21%. Meanwhile, Fourier transform infrared analysis showed the collagen within trypsin-treated collagen fibres (72 h) still retaining their triple-helical conformation. These results suggested that serine proteinase participated in the autolysis of S. japonicus body wall by damaging the proteoglycan bridges between collagen fibrils and disintegrating the latter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis

    DEFF Research Database (Denmark)

    Veidal, Sanne S.; Karsdal, Morten A.; Nawrocki, Arkadiusz

    2011-01-01

    Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens...

  8. Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology.

    Directory of Open Access Journals (Sweden)

    David M Maahs

    2010-09-01

    Full Text Available The pathogenesis of diabetes mellitus (DM is variable, comprising different inflammatory and immune responses. Proteome analysis holds the promise of delivering insight into the pathophysiological changes associated with diabetes. Recently, we identified and validated urinary proteomics biomarkers for diabetes. Based on these initial findings, we aimed to further validate urinary proteomics biomarkers specific for diabetes in general, and particularity associated with either type 1 (T1D or type 2 diabetes (T2D.Therefore, the low-molecular-weight urinary proteome of 902 subjects from 10 different centers, 315 controls and 587 patients with T1D (n = 299 or T2D (n = 288, was analyzed using capillary-electrophoresis mass-spectrometry. The 261 urinary biomarkers (100 were sequenced previously discovered in 205 subjects were validated in an additional 697 subjects to distinguish DM subjects (n = 382 from control subjects (n = 315 with 94% (95% CI: 92-95 accuracy in this study. To identify biomarkers that differentiate T1D from T2D, a subset of normoalbuminuric patients with T1D (n = 68 and T2D (n = 42 was employed, enabling identification of 131 biomarker candidates (40 were sequenced differentially regulated between T1D and T2D. These biomarkers distinguished T1D from T2D in an independent validation set of normoalbuminuric patients (n = 108 with 88% (95% CI: 81-94% accuracy, and in patients with impaired renal function (n = 369 with 85% (95% CI: 81-88% accuracy. Specific collagen fragments were associated with diabetes and type of diabetes indicating changes in collagen turnover and extracellular matrix as one hallmark of the molecular pathophysiology of diabetes. Additional biomarkers including inflammatory processes and pro-thrombotic alterations were observed.These findings, based on the largest proteomic study performed to date on subjects with DM, validate the previously described biomarkers for DM, and pinpoint differences in the urinary

  9. The Use of Polymerized Genipin for the Stabilization of the Collagen Structure of Animal Hides

    Science.gov (United States)

    Animal hides are the major byproduct of meat industry and the collagen fibers is the main constituent. Crosslinkers play a key role in stabilizing the collagen structure for useful applications. Genipin is widely used as an ideal biological protein crosslinking agent due to its low toxicity compare...

  10. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding.

    Science.gov (United States)

    Orgel, Joseph P R O; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E

    2009-09-15

    Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e(1) bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1) bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  12. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    2009-09-01

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  13. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential.

    Science.gov (United States)

    Dozza, B; Lesci, I G; Duchi, S; Della Bella, E; Martini, L; Salamanna, F; Falconi, M; Cinotti, S; Fini, M; Lucarelli, E; Donati, D

    2017-04-01

    Demineralized bone matrix (DBM) is a natural, collagen-based, osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM cytocompatibility and osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1-2 mm), medium (M, 0.5-1 mm), and small (S, structure, with DBM-M being altered but not as much as DBM-S. DBM-M displayed a preferable trend in almost all biological characteristics tested, although all DBM particles revealed an optimal cytocompatibility. Subcutaneous implantation of DBM particles into immunocompromised mice resulted in bone induction only for DBM-M. When sheep MSC were seeded onto particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. In conclusion, the collagen alteration in DBM-M is likely the best condition to promote bone induction in vivo. Furthermore, the choice of 0.5-1 mm particles may enable to obtain more efficient and consistent results among different research groups in bone tissue-engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1019-1033, 2017. © 2017 Wiley Periodicals, Inc.

  14. Denaturation of collagen structures and their transformation under the physical and chemical effects

    Science.gov (United States)

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  15. Collagen crosslinks in chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  16. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    Science.gov (United States)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  17. Assembly of Collagen Matrices as a Phase Transition Revealed by Structural and Rheologic Studies

    OpenAIRE

    Forgacs, Gabor; Newman, Stuart A.; Hinner, Bernhard; Maier, Christian W.; Sackmann, Erich

    2003-01-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition...

  18. Calcific Aortic Valve Disease Is Associated with Layer-Specific Alterations in Collagen Architecture.

    Directory of Open Access Journals (Sweden)

    Heather N Hutson

    Full Text Available Disorganization of the valve extracellular matrix (ECM is a hallmark of calcific aortic valve disease (CAVD. However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD. Human aortic valves were obtained from individuals between 50 and 75 years old with no evidence of valvular disease (healthy and individuals who underwent valve replacement surgery due to severe stenosis (diseased. Second Harmonic Generation microscopy and subsequent image quantification revealed layer-specific changes in fiber characteristics in healthy and diseased valves. Specifically, the majority of collagen fiber changes in CAVD were found to occur in the spongiosa, where collagen fiber number increased by over 2-fold, and fiber width and density also significantly increased. Relatively few fibrillar changes occurred in the fibrosa in CAVD, where fibers became significantly shorter, but did not otherwise change in terms of number, width, density, or alignment. Immunohistochemical staining for lysyl oxidase showed localized increased expression in the diseased fibrosa. These findings reveal a more complex picture of valvular collagen enrichment and arrangement in CAVD than has previously been described using traditional analysis methods. Changes in fiber architecture may play a role in regulating the pathobiological events and mechanical properties of valves during CAVD. Additionally, characterization of the ECM microarchitecture can inform the design of fibrous scaffolds for heart valve tissue engineering.

  19. Structure and component alteration of rabbit Achilles tendon in tissue culture.

    Science.gov (United States)

    Hosaka, Yoshinao; Ueda, Hiromi; Yamasaki, Tadatsugu; Suzuki, Daisuke; Matsuda, Naoya; Takehana, Kazushige

    2005-12-01

    The aim of this study was to investigate alterations of cultured tendon tissues to determine whether tissue culture is a useful method for biological analyses of the tendon. Tendon tissues for tissue culture were isolated from Achilles tendons of rabbits. The tendon segments were placed one segment per well and incubated in growth medium consisting of Dullbecco's modified Eagle's medium supplemented with 5% fetal bovine serum at 37 degrees C in a humidified atmosphere with 5% CO(2) for various periods. The alignment of collagen fibrils was preserved for 48 h, but tendon structure has disintegrated at 96 h. Alcian blue staining and gelatine zymography revealed that proteoglycan markedly diminished and that matrix metalloproteinase (MMPs) activity was upregulated sharply at 72 and 96 h. The ratio of collagen fibrils with large diameter had increased and the mean diameter and mass average diameter value had reached maximum at 48 h. The values then decreased and mean diameters at 72 and 96 h were significantly different from that at 48 h. At 96 h, the ratio of collagen fibrils with small diameters had increased and collagen fibrils with large diameters had disappeared. These findings indicate that structural alteration is possible to be induced by disintegration of collagen fibrils and disappearance of glycosaminoglycans from extracellular matrix (ECM), subsequent of upregulation of MMPs activity. Although the study period is limited, the tissue culture method is available for investigating cell-ECM interaction in tendons.

  20. Does ECT alter brain structure?

    Science.gov (United States)

    Devanand, D P; Dwork, A J; Hutchinson, E R; Bolwig, T G; Sackeim, H A

    1994-07-01

    The purpose of this study was to evaluate whether ECT causes structural brain damage. The literature review covered the following areas: cognitive side effects, structural brain imaging, autopsies of patients who had received ECT, post-mortem studies of epileptic subjects, animal studies of electroconvulsive shock (ECS) and epilepsy, and the neuropathological effects of the passage of electricity, heat generation, and blood-brain barrier disruption. ECT-induced cognitive deficits are transient, although spotty memory loss may persist for events immediately surrounding the ECT course. Prospective computerized tomography and magnetic resonance imaging studies show no evidence of ECT-induced structural changes. Some early human autopsy case reports from the unmodified ECT era reported cerebrovascular lesions that were due to agonal changes or undiagnosed disease. In animal ECS studies that used a stimulus intensity and frequency comparable to human ECT, no neuronal loss was seen when appropriate control animals, blind ratings, and perfusion fixation techniques were employed. Controlled studies using quantitative cell counts have failed to show neuronal loss even after prolonged courses of ECS. Several well-controlled studies have demonstrated that neuronal loss occurs only after 1.5 to 2 hours of continuous seizure activity in primates, and adequate muscle paralysis and oxygenation further delay these changes. These conditions are not approached during ECT. Other findings indicate that the passage of electricity, thermal effects, and the transient disruption of the blood-brain barrier during ECS do not result in structural brain damage. There is no credible evidence that ECT causes structural brain damage.

  1. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Directory of Open Access Journals (Sweden)

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  2. Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix are Dramatically Altered Throughout Pregnancy.

    Science.gov (United States)

    Barnum, Carrie E; Fey, Jennifer L; Weiss, Stephanie N; Barila, Guillermo; Brown, Amy G; Connizzo, Brianne K; Shetye, Snehal S; Elovitz, Michal A; Soslowsky, Louis J

    2017-06-01

    The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel "early" in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.

  3. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hee [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Warrington, Junie P.; Sonntag, William E. [Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Lee, Yong Woo, E-mail: ywlee@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States)

    2012-04-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  4. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    International Nuclear Information System (INIS)

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.; Lee, Yong Woo

    2012-01-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy γ-rays or a fractionated dose of 40 Gy γ-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  5. Altering the swelling pressures within in vitro engineered cartilage is predicted to modulate the configuration of the collagen network and hence improve tissue mechanical properties.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-06-01

    Prestress in the collagen network has a significant impact on the material properties of cartilaginous tissues. It is closely related to the recruitment configuration of the collagen network which defines the transition from lax collagen fibres to uncrimped, load-bearing collagen fibres. This recruitment configuration can change in response to alterations in the external environmental conditions. In this study, the influence of changes in external salt concentration or sequential proteoglycan digestion on the configuration of the collagen network of tissue engineered cartilage is investigated using a previously developed computational model. Collagen synthesis and network assembly are assumed to occur in the tissue configuration present during in vitro culture. The model assumes that if this configuration is more compact due to changes in tissue swelling, the collagen network will adapt by lowering its recruitment stretch. When returned to normal physiological conditions, these tissues will then have a higher prestress in the collagen network. Based on these assumptions, the model demonstrates that proteoglycan digestion at discrete time points during culture as well as culture in a hypertonic medium can improve the functionality of tissue engineered cartilage, while culture in hypotonic solution is detrimental to the apparent mechanical properties of the graft. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The close-packed triple helix as a possible new structural motif for collagen

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2010-01-01

    that close packing form the underlying principle behind the structure of collagen, and the implications of this suggestion are considered. Further, it is shown that the unique zero-twist structure with no strain-twist coupling is practically identical to the close-packed triple helix. Some...

  7. Evidence of structurally continuous collagen fibrils in tendon

    DEFF Research Database (Denmark)

    Svensson, Rene B; Herchenhan, Andreas; Starborg, Tobias

    2017-01-01

    favor continuity. This study initially set out to trace the full length of individual fibrils in adult human tendons, using serial block face-scanning electron microscopy. But even with this advanced technique the required length could not be covered. Instead a statistical approach was used on a large...... volume of fibrils in shorter image stacks. Only a single end was observed after tracking 67.5 mm of combined fibril lengths, in support of fibril continuity. To shed more light on this observation, the full length of a short tendon (mouse stapedius, 125 μm) was investigated and continuity of individual...... fibrils was confirmed. In light of these results, possible mechanisms that could reconcile the opposing findings on fibril continuity are discussed. STATEMENT OF SIGNIFICANCE: Connective tissues hold all parts of the body together and are mostly constructed from thin threads of the protein collagen...

  8. Estrogen depletion and drug treatment alter the microstructure of type I collagen in bone

    Directory of Open Access Journals (Sweden)

    Meagan A. Cauble

    2016-12-01

    Full Text Available The impact of estrogen depletion and drug treatment on type I collagen fibril nanomorphology and collagen fibril packing (microstructure was evaluated by atomic force microscopy (AFM using an ovariectomized (OVX rabbit model of estrogen deficiency induced bone loss. Nine month-old New Zealand white female rabbits were treated as follows: sham-operated (Sham; n = 11, OVX + vehicle (OVX + Veh; n = 12, OVX + alendronate (ALN, 600 μg/kg/wk., s.c.; n = 12, and OVX + cathepsin-K inhibitor L-235 (CatKI, 10 mg/kg, daily, p.o.; n = 13 in prevention mode for 27 weeks. Samples from the cortical femur and trabecular lumbar vertebrae were polished, demineralized, and imaged using AFM. Auto-correlation of image patches was used to generate a vector field for each image that mathematically approximated the collagen fibril alignment. This vector field was used to compute an information-theoretic entropy that was employed as a quantitative fibril alignment parameter (FAP to allow image-to-image and sample-to-sample comparison. For all samples, no change was observed in the average FAP values; however significant differences in the distribution of FAP values were observed. In particular, OVX + Veh lumbar vertebrae samples contained a tail of lower FAP values representing regions of greater fibril alignment. OVX + ALN treatment resulted in a FAP distribution with a tail indicating greater alignment for cortical femur and less alignment for trabecular lumbar vertebrae. OVX + CatKI treatment gave a distribution of FAP values with a tail indicating less alignment for cortical femur and no change for trabecular lumbar vertebrae. Fibril alignment was also evaluated by considering when a fibril was part of discrete bundles or sheets (classified as parallel or not (classified as oblique. For this analysis, the percentage of parallel fibrils in cortical femur for the OVX group was 17% lower than the Sham group. OVX + ALN treatment partially

  9. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    Science.gov (United States)

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Barbaglio, Alice; Tricarico, Serena; Ribeiro, Ana R; Di Benedetto, Cristiano; Barbato, Marta; Dessì, Desirèe; Fugnanesi, Valeria; Magni, Stefano; Mosca, Fabio; Sugni, Michela; Bonasoro, Francesco; Barbosa, Mario A; Wilkie, Iain C; Candia Carnevali, M Daniela

    2015-06-01

    The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin

  11. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  12. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    Science.gov (United States)

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  13. Determination of collagen fibril structure and orientation in connective tissues by X-ray diffraction

    Science.gov (United States)

    Wilkinson, S. J.; Hukins, D. W. L.

    1999-08-01

    Elastic scattering of X-rays can provide the following information on the fibrous protein collagen: its molecular structure, the axial arrangement of rod-like collagen molecules in a fibril, the lateral arrangement of molecules within a fibril, and the orientation of fibrils within a biological tissue. The first part of the paper reviews the principles involved in deducing this information. The second part describes a new computer program for measuring the equatorial intensity distribution, that provides information on the lateral arrangement of molecules within a fibril, and the angular distribution of the equatorial peaks that provides information on the orientation of fibrils. Orientation of fibrils within a tissue is quantified by the orientation distribution function, g( φ), which represents the probability of finding a fibril oriented between φ and φ+ δφ. The application of the program is illustrated by measurement of g( φ) for the collagen fibrils in demineralised cortical bone from cow tibia.

  14. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution.

    Science.gov (United States)

    Fidler, Aaron L; Boudko, Sergei P; Rokas, Antonis; Hudson, Billy G

    2018-04-09

    The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution. © 2018. Published by The Company of Biologists Ltd.

  15. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, M.S.; Kamitov, E.E. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Zubavichus, Ya. V.; Peters, G.S. [National Research center «Kurchatov Institute», Moscow, 123182 Russian Federation (Russian Federation); Naumkin, A.V. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Suzer, S. [Department of Chemistry, Bilkent University, Ankara, 06800 Turkey (Turkey); Vasil’kov, A.Yu., E-mail: alexandervasilkov@yandex.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation)

    2016-03-15

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  16. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    International Nuclear Information System (INIS)

    Rubina, M.S.; Kamitov, E.E.; Zubavichus, Ya. V.; Peters, G.S.; Naumkin, A.V.; Suzer, S.; Vasil’kov, A.Yu.

    2016-01-01

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  17. Afforestation alters community structure of soil fungi.

    Science.gov (United States)

    Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V

    2010-07-01

    Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  19. Alterations of type IV collagen alpha chains in patients with chronic acquired glomerulopathies: mRNA levels, protein expression and urinary loss.

    Science.gov (United States)

    Sanna-Cherchi, Simone; Carnevali, Maria Luisa; Martorana, Davide; Cravedi, Paolo; Maggiore, Umberto; Alinovi, Rossella; Bovino, Achiropita; Mattei, Silvia; Orlandini, Guido; Gatti, Rita; Savi, Mario; Sado, Yoshikazu; Neri, Tauro M; Allegri, Landino

    2007-01-01

    Type IV collagen is a major structural component of the normal kidney glomerulus. However, its role in chronic acquired glomerulopathies has been only partially elucidated. Urinary levels of col(IV)alpha1, col(IV)alpha3 and col(IV)alpha5 collagen chains were analyzed in 107 patients with chronic acquired glomerulopathies. In a subgroup of 33 patients, tissue mRNA levels, protein expression and urinary excretion were evaluated for all col(IV)alpha chains, from col(IV)alpha1 to col(IV)alpha5. The renal specimens were examined to get a semiquantitative score of the acute and chronic activity of the histological lesions. Urines obtained from 13 healthy subjects and 10 normal renal tissue samples were used as controls. Urinary levels of col(IV)alpha1, col(IV)alpha3, col(IV)alpha5 chains were significantly higher in patients than in controls [p < 0.01 for all], while only col(IV)alpha1 and col(IV)alpha3 urinary excretion correlated with the degree of chronic histological damage [col(IV)alpha1 R = 0.44, p < 0.001; col(IV)alpha3: R = 0.47, p < 0.001]. Compared with controls, patients showed a renal expression of mRNA for col(IV)alpha5 chain significantly higher [p = 0.001], while having a significantly lower protein expression of col(IV)alpha3, col(IV)alpha4 and col(IV)alpha5 chains [p < 0.01 for all]. Patients with chronic acquired glomerulopathies show important alterations in the col(IV)alpha chain network mimicking some molecular features of the X-linked Alport's syndrome. Further studies are needed to show whether urinary levels of the col(IV)alpha chains may be used as markers for monitoring renal injury. Copyright 2007 S. Karger AG, Basel.

  20. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    Science.gov (United States)

    2013-01-01

    Original Articles Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane Teja Guda, PhD,1,2 John...Joint Surg Br 90-B, 1617, 2008. 6. Carlo Reis, E.C., Borges AaPB, Araujo, M.V.F., Mendes, V.C., Guan, L., and Davies, J.E. Periodontal regeneration...Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a

  1. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    International Nuclear Information System (INIS)

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-01-01

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  2. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, D. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Valli, M.; Viglio, S. [Department of Biochemistry, University of Pavia (Italy); Ferrari, N. [Istituto Nazionale per la ricerca sul Cancro, Genova (Italy); Ledda, B.; Volta, C. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Manduca, P., E-mail: man-via@unige.it [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy)

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  3. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    International Nuclear Information System (INIS)

    Ennaas, Nadia; Hammami, Riadh; Gomaa, Ahmed; Bédard, François; Biron, Éric; Subirade, Muriel; Beaulieu, Lucie; Fliss, Ismail

    2016-01-01

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  4. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ennaas, Nadia [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Hammami, Riadh, E-mail: riadh.hammami@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Gomaa, Ahmed [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Bédard, François; Biron, Éric [Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1V 4G2 Québec, QC (Canada); Subirade, Muriel [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Beaulieu, Lucie, E-mail: lucie.beaulieu@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Department of Biology, Chemistry and Geography, Université du Québec à Rimouski (UQAR), 300 Allée des Ursulines, Rimouski, QC G5L 3A1 (Canada); Fliss, Ismail, E-mail: ismail.fliss@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada)

    2016-04-29

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  5. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    International Nuclear Information System (INIS)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G.

    2012-01-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: ► All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. ► Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. ► Lys and Arg mutations most dramatically destabilize collagen fibril properties. ► Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  6. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G., E-mail: yara_yingling@ncsu.edu

    2012-12-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: Black-Right-Pointing-Pointer All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. Black-Right-Pointing-Pointer Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. Black-Right-Pointing-Pointer Lys and Arg mutations most dramatically destabilize collagen fibril properties. Black-Right-Pointing-Pointer Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  7. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    Science.gov (United States)

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  8. Biomimetic soluble collagen purified from bones.

    Science.gov (United States)

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure.

    Science.gov (United States)

    Matsugaki, Aira; Aramoto, Gento; Ninomiya, Takafumi; Sawada, Hiroshi; Hata, Satoshi; Nakano, Takayoshi

    2015-01-01

    Morphological and directional alteration of cells is essential for structurally appropriate construction of tissues and organs. In particular, osteoblast alignment is crucial for the realization of anisotropic bone tissue microstructure. In this article, the orientation of a collagen/apatite extracellular matrix (ECM) was established by controlling osteoblast alignment using a surface geometry with nanometer-sized periodicity induced by laser ablation. Laser irradiation induced self-organized periodic structures (laser-induced periodic surface structures; LIPSS) with a spatial period equal to the wavelength of the incident laser on the surface of biomedical alloys of Ti-6Al-4V and Co-Cr-Mo. Osteoblast orientation was successfully induced parallel to the grating structure. Notably, both the fibrous orientation of the secreted collagen matrix and the c-axis of the produced apatite crystals were orientated orthogonal to the cell direction. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy is controllable, including the characteristic organization of a collagen/apatite composite orthogonal to the osteoblast orientation, by controlling the cell alignment using periodic surface geometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.

    Science.gov (United States)

    Forgacs, Gabor; Newman, Stuart A; Hinner, Bernhard; Maier, Christian W; Sackmann, Erich

    2003-02-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.

  11. Do neural tube defects lead to structural alterations in the human bladder?

    Science.gov (United States)

    Pazos, Helena M F; Lobo, Márcio Luiz de P; Costa, Waldemar S; Sampaio, Francisco J B; Cardoso, Luis Eduardo M; Favorito, Luciano Alves

    2011-05-01

    Anencephaly is the most severe neural tube defect in human fetuses. The objective of this paper is to analyze the structure of the bladder in anencephalic human fetuses. We studied 40 bladders of normal human fetuses (20 male and 20 female, aged 14 to 23 WPC) and 12 bladders of anencephalic fetuses (5 male and 7 female, aged 18 to 22 WPC). The bladders were removed and processed by routine histological techniques. Stereological analysis of collagen, elastic system fibers and smooth muscle was performed in sections. Data were expressed as volumetric density (Vv-%). The images were captured with Olympus BX51 microscopy and Olympus DP70 camera. The stereological analysis was done using the software Image Pro and Image J. For biochemical analysis, samples were fixed in acetone, and collagen concentrations were expressed as micrograms of hydroxyproline per mg of dry tissue. Means were statistically compared using the unpaired t-test (p<0.05). We observed a significant increase (p<0.0001) in the Vv of collagen in the bladders of anencephalic fetuses (69.71%) when compared to normal fetuses (52.74%), and a significant decrease (p<0.0001) in the Vv of smooth muscle cells in the bladders of anencephalic fetuses (23.96%) when compared to normal fetuses (38.35%). The biochemical analyses showed a higher concentration of total collagen in the bladders of anencephalic fetuses (37354 µg/mg) when compared to normal fetuses (48117 µg/mg, p<0.02). The structural alterations of the bladder found in this study may suggest the existence of functional alterations in the bladder of anencephalic human fetuses.

  12. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    Science.gov (United States)

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  13. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.

    Science.gov (United States)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2009-07-28

    Understanding piezoelectricity, the linear electromechanical transduction, in bone and tendon and its potential role in mechanoelectric transduction leading to their growth and remodeling remains a challenging subject. With high-resolution piezoresponse force microscopy, we probed piezoelectric behavior in relevant biological samples at different scale levels: from the subfibrillar structures of single isolated collagen fibrils to bone. We revealed that, beyond the general understanding of collagen fibril being a piezoelectric material, there existed an intrinsic piezoelectric heterogeneity within a collagen fibril coinciding with the periodic variation of its gap and overlap regions. This piezoelectric heterogeneity persisted even for the collagen fibrils embedded in bone, bringing about new implications for its possible roles in structural formation and remodeling of bone.

  14. Chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines formed by cross-link of bone and synovium collagen.

    Science.gov (United States)

    Anastasia, Luigi; Rota, Paola; Anastasia, Mario; Allevi, Pietro

    2013-09-21

    This review focuses on the chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines (Pyds), fluorescent collagen cross-links, with a pyridinium salt structure. Pyds derive from the degradation of bone collagen and have attracted attention for their use as biochemical markers of bone resorption and to assess fracture risk prediction in persons suffering from osteoporosis, bone cancer and other bone or collagen diseases. We consider and critically discuss all reported syntheses of free and glycosylated Pyds evidencing an unrevised chemistry, original and of general utility, analysis of which allows us to also support a previously suggested non-enzymatic formation of Pyds in collagen better rationalizing and justifying the chemical events.

  15. Effect of internal structure of collagen/hydroxyapatite scaffold on the osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang; Dong, Chanjuan; Yang, Li

    2015-01-01

    Consisting of seed cells and scaffold, regenerative medicine provides a new way for the repair and regeneration of tissue and organ. Collagen/hydroxyapatite (HA) biocomposite scaffold is highlighted due to its advantageous features of two major components of bone matrix: collagen and HA. The aim of this study is to investigate the effect of internal structure of collagen/HA scaffold on the fate of rat mesenchymal stem cells (MSCs). The internal structure of collagen/HA scaffold was characterized by micro-CT. It is found that the porosity decreased while average compressive modulus increased with the increase of collagen proportion. Within the collagen proportion of 0.35%, 0.5% and 0.7%, the porosities were 89.08%, 78.37% and 75.36%, the pore sizes were 140.6±75.5 μm, 133.9±48.4 μm and 160.7±119.6 μm, and the average compressive moduli were 6.74±1.16 kPa, 8.82±2.12 kPa and 23.61±8.06 kPa, respectively. Among these three kinds of scaffolds, MSCs on the Col 0.35/HA 22 scaffold have the highest viability and the best cell proliferation. On the contrary, the Col 0.7/HA 22 scaffold has the best ability to stimulate MSCs to differentiate into osteoblasts in a relatively short period of time. In vivo research also demonstrated that the internal structure of collagen/HA scaffold has significant effect on the cell infiltration. Therefore, precise control of the internal structure of collagen/HA scaffold can provide a more efficient carrier to the repair of bone defects.

  16. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    Science.gov (United States)

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  17. First-principles structures for the close-packed and the 7/2 motif of collagen

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Olsen, Kasper; Knapp-Mohammady, Michaela

    2012-01-01

    The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures. The stru......The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures...

  18. Hyriopsis cumingii Hic52-A novel nacreous layer matrix protein with a collagen-like structure.

    Science.gov (United States)

    Liu, Xiaojun; Pu, Jingwen; Zeng, Shimei; Jin, Can; Dong, Shaojian; Li, Jiale

    2017-09-01

    Nacre is a product of a precisely regulated biomineralization process and a major contributor to the luster of pearls. Nacre is composed of calcium carbonate and an organic matrix of proteins that is secreted from mollusc mantle tissue and is exclusively associated with shell formation. In this study, hic52, a novel matrix protein gene from mantle of Hyriopsis cumingii, was cloned and functionally analyzed. The full-length cDNA of hic52 encoded 542 amino acids and contained a signal peptide of 18 amino acids. Excluding the signal peptide, the theoretical molecular mass of the polypeptide was 52.2kDa. The predicted isoelectric point was 10.37, indicating a basic shell protein. The amino acid sequence of hic52 featured high proportion of Gly (28.8%) and Gln (12.4%) residues. The predicted tertiary structure was characterized as having similarities to collagen I, alpha 1 and alpha 2 in the structure. The polypeptide sequence shared no homology with collagen. The hic52 expression pattern by quantitative real-time PCR and in situ hybridization exhibits at the dorsal epithelial cells of the mantle. Expression increased during the stages of pearl sac development. The data showed that hic52 is probably a framework shell protein that mediates and controls the nacreous biomineralization process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    Science.gov (United States)

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds.

    Science.gov (United States)

    Offeddu, G S; Ashworth, J C; Cameron, R E; Oyen, M L

    2016-09-01

    Freeze-dried scaffolds provide regeneration templates for a wide range of tissues, due to their flexibility in physical and biological properties. Control of structure is crucial for tuning such properties, and therefore scaffold functionality. However, the common approach of modeling these scaffolds as open-cell foams does not fully account for their structural complexity. Here, the validity of the open-cell model is examined across a range of physical characteristics, rigorously linking morphology to hydration and mechanical properties. Collagen scaffolds with systematic changes in relative density were characterized using Scanning Electron Microscopy, X-ray Micro-Computed Tomography and spherical indentation analyzed in a time-dependent poroelastic framework. Morphologically, all scaffolds were mid-way between the open- and closed-cell models, approaching the closed-cell model as relative density increased. Although pore size remained constant, transport pathway diameter decreased. Larger collagen fractions also produced greater volume swelling on hydration, although the change in pore diameter was constant, and relatively small at ∼6%. Mechanically, the dry and hydrated scaffold moduli varied quadratically with relative density, as expected of open-cell materials. However, the increasing pore wall closure was found to determine the time-dependent nature of the hydrated scaffold response, with a decrease in permeability producing increasingly elastic rather than viscoelastic behavior. These results demonstrate that characterizing the deviation from the open-cell model is vital to gain a full understanding of scaffold biophysical properties, and provide a template for structural studies of other freeze-dried biomaterials. Freeze-dried collagen sponges are three-dimensional microporous scaffolds that have been used for a number of exploratory tissue engineering applications. The characterization of the structure-properties relationships of these scaffolds is

  1. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    Science.gov (United States)

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  2. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure

    DEFF Research Database (Denmark)

    Nielsen, R H; Clausen, N M; Schjerling, P

    2014-01-01

    transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and m......The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant......-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon...

  3. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V [Present address: JSC ' Saratovneftegeophysics' , Saratov (Russian Federation)

    2004-04-07

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence {delta}n is (6.0 {+-} 0.2) x 10{sup -3} at a wavelength of 1.3 {mu}m. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, {delta}n = (6.0 {+-} 0.6) x 10{sup -3} at 1.3 {mu}m. The nucleus pulposus does not display birefringence, the measured apparent value of {delta}n = (0.39 {+-} 0.01) x 10{sup -3} being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease.

  4. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V

    2004-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence Δn is (6.0 ± 0.2) x 10 -3 at a wavelength of 1.3 μm. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, Δn = (6.0 ± 0.6) x 10 -3 at 1.3 μm. The nucleus pulposus does not display birefringence, the measured apparent value of Δn = (0.39 ± 0.01) x 10 -3 being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease

  5. Quantitative proteomics reveals altered expression of extracellular matrix related proteins of human primary dermal fibroblasts in response to sulfated hyaluronan and collagen applied as artificial extracellular matrix.

    Science.gov (United States)

    Müller, Stephan A; van der Smissen, Anja; von Feilitzsch, Margarete; Anderegg, Ulf; Kalkhof, Stefan; von Bergen, Martin

    2012-12-01

    Fibroblasts are the main matrix producing cells of the dermis and are also strongly regulated by their matrix environment which can be used to improve and guide skin wound healing processes. Here, we systematically investigated the molecular effects on primary dermal fibroblasts in response to high-sulfated hyaluronan [HA] (hsHA) by quantitative proteomics. The comparison of non- and high-sulfated HA revealed regulation of 84 of more than 1,200 quantified proteins. Based on gene enrichment we found that sulfation of HA alters extracellular matrix remodeling. The collagen degrading enzymes cathepsin K, matrix metalloproteinases-2 and -14 were found to be down-regulated on hsHA. Additionally protein expression of thrombospondin-1, decorin, collagen types I and XII were reduced, whereas the expression of trophoblast glycoprotein and collagen type VI were slightly increased. This study demonstrates that global proteomics provides a valuable tool for revealing proteins involved in molecular effects of growth substrates for further material optimization.

  6. Collagen V haploinsufficiency in a murine model of classic Ehlers-Danlos syndrome is associated with deficient structural and mechanical healing in tendons.

    Science.gov (United States)

    Johnston, Jessica M; Connizzo, Brianne K; Shetye, Snehal S; Robinson, Kelsey A; Huegel, Julianne; Rodriguez, Ashley B; Sun, Mei; Adams, Sheila M; Birk, David E; Soslowsky, Louis J

    2017-12-01

    Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1 +/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1 +/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1 +/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1 +/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Altering the concentration of silica tunes the functional properties of collagen-silica composite scaffolds to suit various clinical requirements.

    Science.gov (United States)

    Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran

    2015-12-01

    The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. In vivo Quantification of the Structural Changes of Collagens in a Melanoma Microenvironment with Second and Third Harmonic Generation Microscopy

    Science.gov (United States)

    Wu, Pei-Chun; Hsieh, Tsung-Yuan; Tsai, Zen-Uong; Liu, Tzu-Ming

    2015-03-01

    Using in vivo second harmonic generation (SHG) and third harmonic generation (THG) microscopies, we tracked the course of collagen remodeling over time in the same melanoma microenvironment within an individual mouse. The corresponding structural and morphological changes were quantitatively analyzed without labeling using an orientation index (OI), the gray level co-occurrence matrix (GLCM) method, and the intensity ratio of THG to SHG (RTHG/SHG). In the early stage of melanoma development, we found that collagen fibers adjacent to a melanoma have increased OI values and SHG intensities. In the late stages, these collagen networks have more directionality and less homogeneity. The corresponding GLCM traces showed oscillation features and the sum of squared fluctuation VarGLCM increased with the tumor sizes. In addition, the THG intensities of the extracellular matrices increased, indicating an enhanced optical inhomogeneity. Multiplying OI, VarGLCM, and RTHG/SHG together, the combinational collagen remodeling (CR) index at 4 weeks post melanoma implantation showed a 400-times higher value than normal ones. These results validate that our quantitative indices of SHG and THG microscopies are sensitive enough to diagnose the collagen remodeling in vivo. We believe these indices have the potential to help the diagnosis of skin cancers in clinical practice.

  9. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    Science.gov (United States)

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  10. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    International Nuclear Information System (INIS)

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  11. From mechanical loading to collagen synthesis, structural changes and function in human tendon

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, H; Heinemeier, K

    2009-01-01

    The adaptive response of connective tissue to loading requires increased synthesis and turnover of matrix proteins, with special emphasis on collagen. Collagen formation and degradation in the tendon increases with both acute and chronic loading, and data suggest that a gender difference exists...

  12. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states.

    Science.gov (United States)

    Giraud-Guille, M M; Besseau, L; Chopin, C; Durand, P; Herbage, D

    2000-05-01

    The ability of acid-soluble type I collagen extracts from Soleidae flat fish to form ordered arrays in condensed phases has been compared with data for calf skin collagen. Liquid crystalline assemblies in vitro are optimized by preliminary treatment of the molecular population with ultrasounds. This treatment requires the stability of the fish collagen triple helicity to be controlled by X-ray diffraction and differential scanning calorimetry and the effect of sonication to be evaluated by viscosity measurements and gel electrophoresis. The collagen solution in concentrations of at least 40 mg ml(-1) showed in polarized light microscopy birefringent patterns typical of precholesteric phases indicating long-range order within the fluid collagen phase. Ultrastructural data, obtained after stabilization of the liquid crystalline collagen into a gelated matrix, showed that neutralized acid-soluble fish collagen forms cross-striated fibrils, typical of type I collagen, following sine wave-like undulations in precholesteric domains. These ordered geometries, approximating in vivo situations, give interesting mechanical properties to the material.

  13. A Structural Finite Element Model for Lamellar Unit of Aortic Media Indicates Heterogeneous Stress Field After Collagen Recruitment

    Science.gov (United States)

    Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan

    2016-01-01

    Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538

  14. Structural alterations of the mucosa stroma in the Barrett's esophagus metaplasia-dysplasia-adenocarcinoma sequence.

    Science.gov (United States)

    Bobryshev, Yuri V; Killingsworth, Murray C; Lord, Reginald V N

    2012-09-01

    Accumulating evidence suggests that the extracellular matrix play important roles in intercellular communications and contribute to the development of a number of diseases, including diseases of the gastrointestinal tract. The present study examined the structural characteristics and alterations of the extracellular matrix of the mucosa stroma in the Barrett's esophagus metaplasia-dysplasia-adenocarcinoma sequence. A total of 41 esophageal tissue specimens (15 esophageal adenocarcinoma, 10 Barrett's esophagus intestinal metaplasia, seven dysplasia and nine normal esophagus) were studied. The present study used transmission electron microscopy and computerized quantitative electron-microscopic analysis in order to investigate the characteristics of the extracellular matrix of the mucosa. The study revealed that marked structural alterations of the mucosa stroma, relating to changes in the distribution and appearance of collagen fibers as well as to changes in numbers of matrix microvesicles, occur in Barrett's esophagus and esophageal adenocarcinoma. It was found that there were 3.1 times more microvesicles in the stroma in Barrett's esophagus than in the stroma of the normal esophagus (P<0.0001) and that there were 5.8 times more microvesicles in esophageal adenocarcinoma than in the normal esophagus (P<0.0001). There were 1.9 times more microvesicles in esophageal adenocarcinoma than in Barrett's esophagus (P=0.0043). The study demonstrates distinctive alterations of the mucosa stroma extracellular matrix in the metaplasia-dysplasia-adenocarcinoma sequence. The findings suggest that the redistribution of collagen fibers and increases in numbers of matrix microvesicles may play roles in the formation of specialized intestinal metaplasia and the development of adenocarcinoma. © 2012 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  15. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels.

    Directory of Open Access Journals (Sweden)

    Brian Fallica

    Full Text Available Most investigations into cancer cell drug response are performed with cells cultured on flat (2D tissue culture plastic. Emerging research has shown that the presence of a three-dimensional (3D extracellular matrix (ECM is critical for normal cell behavior including migration, adhesion, signaling, proliferation and apoptosis. In this study we investigate differences between cancer cell signaling in 2D culture and a 3D ECM, employing real-time, live cell tracking to directly observe U2OS human osteosarcoma and MCF7 human breast cancer cells embedded in type 1 collagen gels. The activation of the important PI3K signaling pathway under these different growth conditions is studied, and the response to inhibition of both PI3K and mTOR with PI103 investigated. Cells grown in 3D gels show reduced proliferation and migration as well as reduced PI3K pathway activation when compared to cells grown in 2D. Our results quantitatively demonstrate that a collagen ECM can protect U2OS cells from PI103. Overall, our data suggests that 3D gels may provide a better medium for investigation of anti-cancer drugs than 2D monolayers, therefore allowing better understanding of cellular response and behavior in native like environments.

  16. Triclosan alterations of estuarine phytoplankton community structure.

    Science.gov (United States)

    Pinckney, James L; Thompson, Laura; Hylton, Sarah

    2017-06-15

    Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl -1 . The EC 50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l -1 . Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l -1 . This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    Science.gov (United States)

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  18. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser

    Science.gov (United States)

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.

  19. Rare earth impact on glass structure and alteration kinetics

    International Nuclear Information System (INIS)

    Molieres, E.

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glasses in order to limit synergetic effects between rare earths and other elements. Various complementary techniques were used to characterize pristine and altered glasses (solid-high resolution NMR, Raman spectroscopy, fluorescence, SIMS, SAXS). Firstly, the structural role of a rare earth is discussed and is compared to a calcium cation. The local environment of rare earths is also probed. Secondly, rare earth (nature and concentration) impact on several alteration regimes was studied (initial rate, rate drop). Then, after alteration, rare earth elements being retained within the altered layer, the structural impact of rare earth elements (and their local environment) in this alteration layer was also investigated. (author) [fr

  20. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  1. The chemical reactivity and structure of collagen studied by neutron diffraction

    International Nuclear Information System (INIS)

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  2. Fibrillar structure and elasticity of hydrating collagen: a quantitative multiscale approach.

    Science.gov (United States)

    Morin, Claire; Hellmich, Christian; Henits, Peter

    2013-01-21

    It is well known that hydration of collagenous tissues leads to their swelling, as well as to softening of their elastic behavior. However, it is much less clear which microstructural and micromechanical "rules" are involved in this process. Here, we develop a theoretical approach cast in analytical mathematical formulations, which is experimentally validated by a wealth of independent tests on collagenous tissues, such as X-ray diffraction, vacuum drying, mass measurements, and Brillouin light scattering. The overall emerging picture is the following: air-drying leaves water only in the gap zones between the triple-helical collagen molecules; upon re-hydration, the extrafibrillar space is established at volumes directly proportional to the hydration-induced swelling of the (micro) fibrils, until the maximum equatorial distance between the long collagen molecules is reached. Thereafter, the volume of the fibrils stays constant, and only the extrafibrillar volume continues to grow. At all these hydration stages, the elastic behavior is governed by the same, hydration-invariant mechanical interaction pattern of only two, interpenetrating mechanical phases: transversely isotropic molecular collagen and isotropic water (or empty pores in the vacuum-dried case). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Epidermal growth factor receptor structural alterations in gastric cancer

    International Nuclear Information System (INIS)

    Moutinho, Cátia; Mateus, Ana R; Milanezi, Fernanda; Carneiro, Fátima; Seruca, Raquel; Suriano, Gianpaolo

    2008-01-01

    EGFR overexpression has been described in many human tumours including gastric cancer. In NSCLC patients somatic EGFR mutations, within the kinase domain of the protein, as well as gene amplification were associated with a good clinical response to EGFR inhibitors. In gastric tumours data concerning structural alterations of EGFR remains controversial. Given its possible therapeutic relevance, we aimed to determine the frequency and type of structural alterations of the EGFR gene in a series of primary gastric carcinomas. Direct sequencing of the kinase domain of the EGFR gene was performed in a series of 77 primary gastric carcinomas. FISH analysis was performed in 30 cases. Association studies between EGFR alterations and the clinical pathological features of the tumours were performed. Within the 77 primary gastric carcinomas we found two EGFR somatic mutations and several EGFR polymorphisms in exon 20. Six different intronic sequence variants of EGFR were also found. Four gastric carcinomas showed balanced polysomy or EGFR gene amplification. We verified that gastric carcinoma with alterations of EGFR (somatic mutations or copy number variation) showed a significant increase of tumour size (p = 0.0094) in comparison to wild-type EGFR carcinomas. We demonstrate that EGFR structural alterations are rare in gastric carcinoma, but whenever present, it leads to tumour growth. We considered that searching for EGFR alterations in gastric cancer is likely to be clinically important in order to identify patients susceptible to respond to tyrosine kinase inhibitors

  4. Non-Fourier thermal transport induced structural hierarchy and damage to collagen ultrastructure subjected to laser irradiation.

    Science.gov (United States)

    Sahoo, Nilamani; Narasimhan, Arunn; Dhar, Purbarun; Das, Sarit K

    2018-05-01

    Comprehending the mechanism of thermal transport through biological tissues is an important factor for optimal ablation of cancerous tissues and minimising collateral tissue damage. The present study reports detailed mapping of the rise in internal temperature within the tissue mimics due to NIR (1064 nm) laser irradiation, both for bare mimics and with gold nanostructures infused. Gold nanostructures such as mesoflowers and nanospheres have been synthesised and used as photothermal converters to enhance the temperature rise, resulting in achieving the desired degradation of malignant tissue in targeted region. Thermal history was observed experimentally and simulated considering non-Fourier dual phase lag (DPL) model incorporated Pennes bio-heat transfer equation using COMSOL Multiphysics software. The gross deviation in temperature i.e. rise from the classical Fourier model for bio-heat conduction suggests additional effects of temperature rise on the secondary structures and morphological and physico-chemical changes to the collagen ultrastructures building the tissue mass. The observed thermal denaturation in the collagen fibril morphologies have been explained based on the physico-chemical structure of collagen and its response to thermal radiation. The large shift in frequency of amides A and B is pronounced at a depth of maximum temperature rise compared with other positions in tissue phantom. Observations for change in band of amide I, amide II, and amide III are found to be responsible for damage to collagen ultra-structure. Variation in the concentration of gold nanostructures shows the potentiality of localised hyperthermia treatment subjected to NIR radiation through a proposed free radical mechanism.

  5. Rheology of Heterotypic Collagen Networks

    NARCIS (Netherlands)

    Piechocka, I.K.; van Oosten, A.S.G.; Breuls, R.G.M.; Koenderink, G.H.

    2011-01-01

    Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on

  6. Bioinspired coupled helical coils for soft tissue engineering of tubular structures - Improved mechanical behavior of tubular collagen type I templates.

    Science.gov (United States)

    Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E

    2017-09-01

    The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to

  7. Nano-structural analysis of fish collagen extracts for new process ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... linked rods observed in SBA denote adequate removal of non-collagen content of the fish skin and increased its surface area. SBA is suggested as the best pretreatment for perch fish gelatin. The result of viscosity was also highest for sample SBA (0.0245 ± 0.0001 pas), while viscosity for others are 0.0155.

  8. Force Spectroscopy of Collagen Fibers to Investigate Their Mechanical Properties and Structural Organization

    OpenAIRE

    Gutsmann, Thomas; Fantner, Georg E.; Kindt, Johannes H.; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K.

    2004-01-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length

  9. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Science.gov (United States)

    Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  10. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    Full Text Available In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%. Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  11. Structural Alterations of the Glomerular Wall And Vessels in Early ...

    African Journals Online (AJOL)

    Structural Alterations of the Glomerular Wall And Vessels in Early Stages of Diabetes Mellitus: Light and Transmission Electron Microscopic Study. ... The second group of 20 (the experimental group) was injected intraperitoneally by a single dose of streptozotocin to induce hyperglycemia. Rats were sacrificed after ten days, ...

  12. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  13. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved...... by this intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  14. Mutation in cyclophilin B that causes hyperelastosis cutis in American Quarter Horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin B-protein interactions and affects collagen folding.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A; Boudko, Sergei P; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R; Rashmir-Raven, Ann M; Nagata, Kazuhiro; Winand, Nena J; Bächinger, Hans Peter

    2012-06-22

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum.

  15. Mutation in Cyclophilin B That Causes Hyperelastosis Cutis in American Quarter Horse Does Not Affect Peptidylprolyl cis-trans Isomerase Activity but Shows Altered Cyclophilin B-Protein Interactions and Affects Collagen Folding*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A.; Boudko, Sergei P.; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R.; Rashmir-Raven, Ann M.; Nagata, Kazuhiro; Winand, Nena J.; Bächinger, Hans Peter

    2012-01-01

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum. PMID:22556420

  16. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization.

    Science.gov (United States)

    Gutsmann, Thomas; Fantner, Georg E; Kindt, Johannes H; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K

    2004-05-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length exponential increase in force and two different periodic rupture events, one with strong bonds (jumps in force of several hundred pN) with a periodicity of 78 nm and one with weak bonds (jumps in force of <7 pN) with a periodicity of 22 nm. We demonstrate a good correlation between the measured mechanical behavior of collagen fibers and their appearance in the micrographs taken with the atomic force microscope.

  17. Biological alterations resulting from chronic lung irradiation. III. Effect of partial 60Co thoracic irradiation upon pulmonary collagen metabolism and fractionation in syrian hamsters

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Harris, D.V.; Hahn, F.F.; Belasich, J.J.; Jones, R.K.

    1975-01-01

    Radiation-induced changes in pulmonary collagen metabolism were studied in Syrian hamsters given multiple thoracic doses of 60 Co radiation to achieve cumulative exposures of 6000, 4000, and 2000 R. At 13 to 14 wk after initial exposure, 6000- and 4000-R exposures had increased incorporation of injected [ 14 C]proline into pulmonary collagenous protein which suggested an increased collagen synthesis. By 21 to 22 wk after exposure, increased pulmonary soluble collagen was noted. Increased pulmonary scarring was indicated by a variable increase in native collagen at 13 to 36 wk. A collection of alveolar macrophages at 7 to 8 wk followed by inflammation at 13 to 14 wk and a beginning of pulmonary fibrosis at 13 to 19 wk were noted. At 21 to 22 wk after exposure a somewhat more marked pulmonary fibrosis and some epithelialization were observed. Hemosiderin deposits were also observed at 35 to 36 wk after exposure, but pathologic processes were lessened by this time. The early activation of collagen synthesis presumably caused the radiation-induced fibrosis. Later, when collagen tended to accumulate, the synthetic rate was normal. The activation of collagen synthesis caused by external thoracic irradiation resembles that caused by thoracic irradiation from the internal emitter, 144 Ce. Moreover, it demonstrates the usefulness of monitoring collagen biosynthesis by [ 14 C]proline incorporation into the lung. (U.S.)

  18. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  19. Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition

    International Nuclear Information System (INIS)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping; Wang Bo; Deng Xuliang

    2010-01-01

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  20. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    Science.gov (United States)

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  1. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism

    Science.gov (United States)

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the

  2. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J

    2005-01-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components

  3. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2005-08-07

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  4. Local Reasoning about Programs that Alter Data Structures

    DEFF Research Database (Denmark)

    O'Hearn, Peter W.; Reynolds, John Clifton; Yang, Hongseok

    2001-01-01

    We describe an extension of Hoare's logic for reasoning about programs that alter data structures. We consider a low-level storage model based on a heap with associated lookup, update, allocation and deallocation operations, and unrestricted address arithmetic. The assertion language is based....... Through these and a number of examples we show that the formalism supports local reasoning: A speci-cation and proof can concentrate on only those cells in memory that a program accesses. This paper builds on earlier work by Burstall, Reynolds, Ishtiaq and O'Hearn on reasoning about data structures....

  5. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  6. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  7. Structural alterations in rat myocardium induced by chronic l-arginine and l-NAME supplementation

    Directory of Open Access Journals (Sweden)

    Amal Abdussalam Ali A. Hmaid

    2018-03-01

    Full Text Available Structural changes affecting cardiomyocyte function may contribute to the pathophysiological remodeling underlying cardiac function impairment. Recent reports have shown that endogenous nitric oxide (NO plays an important role in this process. In order to examine the role of NO in cardiomyocyte remodeling, male rats were acclimated to room temperature (22 ± 1 °C or cold (4 ± 1 °C and treated with 2.25% l-arginine·HCl or 0.01% l-NAME (Nω-nitro-l-arginine methyl ester·HCl for 45 days. Untreated groups served as controls. Right heart ventricles were routinely prepared for light microscopic examination. Stereological estimations of volume densities of cardiomyocytes, surrounding blood vessels and connective tissue, as well as the morphometric measurements of cardiomyocyte diameters were performed. Tissue sections were also analyzed for structural alterations. We observed that both l-arginine and l-NAME supplementation induced cardiomyocyte hypertrophy, regardless of ambient temperature. However, cardiomyocyte hypertrophy was associated with fibrosis and extra collagen deposition only in the l-NAME treated group. Taken together, our results suggest that NO has a modulatory role in right heart ventricle remodeling by coordinating hypertrophy of cardiomyocytes and fibrous tissue preventing cardiac fibrosis. Keywords: Cardiomyocyte, Cardiac hypertrophy, l-Arginine, l-NAME, Myocardium

  8. Structural alterations in rat myocardium induced by chronic l-arginine and l-NAME supplementation.

    Science.gov (United States)

    Hmaid, Amal Abdussalam Ali A; Markelic, Milica; Otasevic, Vesna; Masovic, Sava; Jankovic, Aleksandra; Korac, Bato; Korac, Aleksandra

    2018-03-01

    Structural changes affecting cardiomyocyte function may contribute to the pathophysiological remodeling underlying cardiac function impairment. Recent reports have shown that endogenous nitric oxide (NO) plays an important role in this process. In order to examine the role of NO in cardiomyocyte remodeling, male rats were acclimated to room temperature (22 ± 1 °C) or cold (4 ± 1 °C) and treated with 2.25% l-arginine·HCl or 0.01% l-NAME (N ω -nitro-l-arginine methyl ester)·HCl for 45 days. Untreated groups served as controls. Right heart ventricles were routinely prepared for light microscopic examination. Stereological estimations of volume densities of cardiomyocytes, surrounding blood vessels and connective tissue, as well as the morphometric measurements of cardiomyocyte diameters were performed. Tissue sections were also analyzed for structural alterations. We observed that both l-arginine and l-NAME supplementation induced cardiomyocyte hypertrophy, regardless of ambient temperature. However, cardiomyocyte hypertrophy was associated with fibrosis and extra collagen deposition only in the l-NAME treated group. Taken together, our results suggest that NO has a modulatory role in right heart ventricle remodeling by coordinating hypertrophy of cardiomyocytes and fibrous tissue preventing cardiac fibrosis.

  9. Preterm birth and structural brain alterations in early adulthood

    Directory of Open Access Journals (Sweden)

    Chiara Nosarti

    2014-01-01

    Full Text Available Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM and white matter (WM maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001. WM volume in posterior corpus

  10. [Collagen nephritis].

    Science.gov (United States)

    Lago, N R; Bulos, M J; Monserrat, A J

    1997-01-01

    Fibrillar collagen in the glomeruli is considered specific of the nail-patella syndrome. A new nephropathy with diffuse intraglomerular deposition of type III collagen without nail and skeletal abnormalities has been described. We report the case of a 26-year-old woman who presented persistent proteinuria, hematuria, deafness without nail and skeletal abnormalities. The renal biopsy showed focal and segmental glomerulosclerosis by light microscopy. The electron microscopy revealed the presence of massive fibrillar collagen within the mesangial matriz and the basement membrane. This is the first patient reported in our country. We emphasize the usefulness of electron microscopy in the study of glomerular diseases.

  11. Brain structural alterations associated with young women with subthreshold depression.

    Science.gov (United States)

    Li, Haijiang; Wei, Dongtao; Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Qiu, Jiang

    2015-05-18

    Neuroanatomical abnormalities in patients with major depression disorder (MDD) have been attracted great research attention. However, the structural alterations associated with subthreshold depression (StD) remain unclear and, therefore, require further investigation. In this study, 42 young women with StD, and 30 matched non-depressed controls (NCs) were identified based on two-time Beck Depression Inventory scores. Whole-brain voxel-based morphometry (VBM) and region of interest method were used to investigate altered gray matter volume (GMV) and white matter volume (WMV) among a non-clinical sample of young women with StD. VBM results indicated that young women with StD showed significantly decreased GMV in the right inferior parietal lobule than NCs; increased GMV in the amygdala, posterior cingulate cortex, and precuneus; and increased WMV in the posterior cingulate cortex and precuneus. Together, structural alterations in specific brain regions, which are known to be involved in the fronto-limbic circuits implicated in depression may precede the occurrence of depressive episodes and influence the development of MDD.

  12. Altered structural brain changes and neurocognitive performance in pediatric HIV

    Directory of Open Access Journals (Sweden)

    Santosh K. Yadav

    2017-01-01

    Full Text Available Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  13. Effects of isopropanol on collagen fibrils in new parchment

    Directory of Open Access Journals (Sweden)

    Gonzalez Lee G

    2012-03-01

    Full Text Available Abstract Background Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts.

  14. Disease-associated mutations that alter the RNA structural ensemble.

    Directory of Open Access Journals (Sweden)

    Matthew Halvorsen

    2010-08-01

    Full Text Available Genome-wide association studies (GWAS often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs from the Human Gene Mutation Database (HGMD that map to the untranslated regions (UTRs of a gene. Rather than using minimum free energy approaches (e.g. mFold, we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, beta-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD, and Hypertension, we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5' UTRs of FTL and RB1 SNP-induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a "RiboSNitch," that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.

  15. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.

    Science.gov (United States)

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina

    2017-04-01

    Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  16. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Science.gov (United States)

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  17. Enhanced stabilization of collagen by furfural.

    Science.gov (United States)

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (pFurfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Chirality and helicity of poly-benzyl-L-glutamate in liquid crystals and a wave structure that mimics collagen helicity in crimp

    Directory of Open Access Journals (Sweden)

    Vidal Benedicto de Campos

    2001-01-01

    Full Text Available Ideal biocompatible polymers must show a mimetic superstructure with biological supra-organization. Collagen-rich structures like tendons and ligaments are materials with various levels of order, from molecules to bundles of fibers, which affect their biomechanical properties and cellular interactions. Poly-benzyl-L-glutamate (PBLG displaying helicity was used here to test the development of wave-like structures as those occurring in collagen fibers. Birefringence of PBLG under various crystallization conditions was studied with a lambda/4 compensator according to Sénarmont. Qualitative observations were plainly sufficient to conclude that the PBLG fibrils were supra-organized helically as a chiral object. During crystallization stretched PBLG formed a helical superstructure with characteristic striation resembling waves (crimp. Supported by optical anisotropy findings, a twisted grain boundary liquid crystal type is proposed as a transition phase in the formation of the PBLG chiral object. A similarity with the wavy organization (crimp of collagen bundles is proposed.

  19. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects

    International Nuclear Information System (INIS)

    Ueno, Masaki; Uchida, Kentaro; Saito, Wataru; Inoue, Gen; Takahira, Naonobu; Takaso, Masashi; Matsushita, Osamu; Yogoro, Mizuki; Nishi, Nozomu; Ogura, Takayuki; Hattori, Shunji; Tanaka, Keisuke

    2014-01-01

    Bone allografts are commonly used for the repair of critical-size bone defects. However, the loss of cellular activity in processed grafts markedly reduces their healing potential compared with autografts. To overcome this obstacle, we developed a healing system for critical-size bone defects that consists of overlaying an implanted bone graft with a collagen sheet (CS) loaded with basic fibroblast growth factor (bFGF) fused to the collagen-binding domain derived from a Clostridium histolyticum collagenase (CB-bFGF). In a murine femoral defect model, defect sites treated with CS/CB-bFGF had a significantly larger callus volume than those treated with CS/native bFGF. In addition, treatment with CS/CB-bFGF resulted in the rapid formation of a hard callus bridge and a larger total callus volume at the host–graft junction than treatment with CS/bFGF. Our results suggest that the combined use of CS and CB-bFGF helps accelerate the union of allogenic bone grafts. (paper)

  20. A pilot study for distinguishing chromophobe renal cell carcinoma and oncocytoma using second harmonic generation imaging and convolutional neural network analysis of collagen fibrillar structure

    Science.gov (United States)

    Judd, Nicolas; Smith, Jason; Jain, Manu; Mukherjee, Sushmita; Icaza, Michael; Gallagher, Ryan; Szeligowski, Richard; Wu, Binlin

    2018-02-01

    A clear distinction between oncocytoma and chromophobe renal cell carcinoma (chRCC) is critically important for clinical management of patients. But it may often be difficult to distinguish the two entities based on hematoxylin and eosin (H and E) stained sections alone. In this study, second harmonic generation (SHG) signals which are very specific to collagen were used to image collagen fibril structure. We conduct a pilot study to develop a new diagnostic method based on the analysis of collagen associated with kidney tumors using convolutional neural networks (CNNs). CNNs comprise a type of machine learning process well-suited for drawing information out of images. This study examines a CNN model's ability to differentiate between oncocytoma (benign), and chRCC (malignant) kidney tumor images acquired with second harmonic generation (SHG), which is very specific for collagen matrix. To the best of our knowledge, this is the first study that attempts to distinguish the two entities based on their collagen structure. The model developed from this study demonstrated an overall classification accuracy of 68.7% with a specificity of 66.3% and sensitivity of 74.6%. While these results reflect an ability to classify the kidney tumors better than chance, further studies will be carried out to (a) better realize the tumor classification potential of this method with a larger sample size and (b) combining SHG with two-photon excited intrinsic fluorescence signal to achieve better classification.

  1. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    Science.gov (United States)

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  2. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta.

    Science.gov (United States)

    Gutiérrez-Arzapalo, Perla Y; Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; López de Pablo, Ángel L; López-Giménez, María Rosario; Condezo-Hoyos, Luis; Greenwald, Stephen E; González, Maria Del Carmen; Arribas, Silvia M

    2017-12-26

    Intrauterine growth restriction (IUGR), induced by maternal undernutrition, leads to impaired aortic development. This is followed by hypertrophic remodelling associated with accelerated growth during lactation. Fetal nutrient restriction is associated with increased aortic compliance at birth and at weaning, but not in adult animals. This mechanical alteration may be related to a decreased perinatal collagen deposition. Aortic elastin scaffolds purified from young male and female IUGR animals also exhibit increased compliance, only maintained in adult IUGR females. These mechanical alterations may be related to differences in elastin deposition and remodelling. Fetal undernutrition induces similar aortic structural and mechanical alterations in young male and female rats. Our data argue against an early mechanical cause for the sex differences in hypertension development induced by maternal undernutrition. However, the larger compliance of elastin in adult IUGR females may contribute to the maintenance of a normal blood pressure level. Fetal undernutrition programmes hypertension development, males being more susceptible. Deficient fetal elastogenesis and vascular growth is a possible mechanism. We investigated the role of aortic mechanical alterations in a rat model of hypertension programming, evaluating changes at birth, weaning and adulthood. Dams were fed ad libitum (Control) or 50% of control intake during the second half of gestation (maternal undernutrition, MUN). Offspring aged 3 days, 21 days and 6 months were studied. Blood pressure was evaluated in vivo. In the thoracic aorta we assessed gross structure, mechanical properties (intact and purified elastin), collagen and elastin content and internal elastic lamina (IEL) organization. Only adult MUN males developed hypertension (systolic blood pressure: MUN males  = 176.6 ± 5.6 mmHg; Control males  = 136.1 ± 4.9 mmHg). At birth MUN rats were lighter, with smaller aortic cross-sectional area

  3. Altered structural covariance of the striatum in functional dyspepsia patients.

    Science.gov (United States)

    Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F

    2014-08-01

    Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.

  4. Influence of oxazolidines and zirconium oxalate crosslinkers on the hydrothermal, enzymatic, and thermo mechanical stability of type 1 collagen fiber

    International Nuclear Information System (INIS)

    Haroun, Mahdi A.; Khirstova, Palmina K.; Gasmelseed, Gurashi A.; Covington, Antony D.

    2009-01-01

    Stabilization of type I rat tail tendon (RTT) collagen by crosslink agent oxazolidine and zirconium oxalate was studied to understand the effect on the thermal, enzymatic and mechanical stability of collagen. The results show that both oxazolidine and zirconium oxalate imparts thermal stability to collagen, and oxazolidine exhibits a marked increase in the peak temperature and enthalpy changes when compared to both native and zirconium oxalate tanned RTT. There is a decrease in the peak temperature and the enthalpy changes of oxazolidine tanned RTT fibers after treatment with urea, suggesting the possibility of alterations in the secondary structure of collagen after tanning. Oxazolidine, which forms carbocationic intermediates species in solution, have better crosslinking with collagen as seen from viscometry studies and hence provides better enzymatic stability to collagen than zirconium, which largely forms monomeric species in solution. Zirconium does not seem to change the tensile strength of RTT fibers significantly in wet condition as well as oxazolidine

  5. Influence of oxazolidines and zirconium oxalate crosslinkers on the hydrothermal, enzymatic, and thermo mechanical stability of type 1 collagen fiber

    Energy Technology Data Exchange (ETDEWEB)

    Haroun, Mahdi A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang (Malaysia)], E-mail: Mahdiupm@hotmail.com; Khirstova, Palmina K. [People' s Hall 11113, P.O. Box 6272, Khartoum (Sudan); Gasmelseed, Gurashi A. [Juba University, Leather Dept. P.O. Box 12327 Khartoum (Sudan); Covington, Antony D. [Leather Centre, University College Northampton, Northampton (United Kingdom)

    2009-02-20

    Stabilization of type I rat tail tendon (RTT) collagen by crosslink agent oxazolidine and zirconium oxalate was studied to understand the effect on the thermal, enzymatic and mechanical stability of collagen. The results show that both oxazolidine and zirconium oxalate imparts thermal stability to collagen, and oxazolidine exhibits a marked increase in the peak temperature and enthalpy changes when compared to both native and zirconium oxalate tanned RTT. There is a decrease in the peak temperature and the enthalpy changes of oxazolidine tanned RTT fibers after treatment with urea, suggesting the possibility of alterations in the secondary structure of collagen after tanning. Oxazolidine, which forms carbocationic intermediates species in solution, have better crosslinking with collagen as seen from viscometry studies and hence provides better enzymatic stability to collagen than zirconium, which largely forms monomeric species in solution. Zirconium does not seem to change the tensile strength of RTT fibers significantly in wet condition as well as oxazolidine.

  6. Collagen organization regulates stretch-initiated pain-related neuronal signals in vitro: Implications for structure-function relationships in innervated ligaments.

    Science.gov (United States)

    Zhang, Sijia; Singh, Sagar; Winkelstein, Beth A

    2018-02-01

    Injury to the spinal facet capsule, an innervated ligament with heterogeneous collagen organization, produces pain. Although mechanical facet joint trauma activates embedded afferents, it is unclear if, and how, the varied extracellular microstructure of its ligament affects sensory transduction for pain from mechanical inputs. To investigate the effects of macroscopic deformations on afferents in collagen matrices with different organizations, an in vitro neuron-collagen construct (NCC) model was used. NCCs with either randomly organized or parallel aligned collagen fibers were used to mimic the varied microstructure in the facet capsular ligament. Embryonic rat dorsal root ganglia (DRG) were encapsulated in the NCCs; axonal outgrowth was uniform and in all directions in random NCCs, but parallel in aligned NCCs. NCCs underwent uniaxial stretch (0.25 ± 0.06 strain) corresponding to sub-failure facet capsule strains that induce pain. Macroscopic NCC mechanics were measured and axonal expression of phosphorylated extracellular signal-regulated kinase (pERK) and the neurotransmitter substance P (SP) was assayed at 1 day to assess neuronal activation and nociception. Stretch significantly upregulated pERK expression in both random and aligned gels (p organization. These findings suggest that collagen organization differentially modulates pain-related neuronal signaling and support structural heterogeneity of ligament tissue as mediating sensory function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:770-777, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Collagen V expression is crucial in regional development of the supraspinatus tendon.

    Science.gov (United States)

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Birk, David E; Soslowsky, Louis J

    2016-12-01

    Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Consequential secondary structure alterations and aggregation during prolonged casein glycation.

    Science.gov (United States)

    Jindal, Supriya; Naeem, Aabgeena

    2013-05-01

    Non-enzymatic glycosylation (glycation) of casein is a process used not just to ameliorate the quality of dairy products but also to increase the shelf life of canned foods, including baby milk supplements. Incubation of κ-casein with reducing sugars for 15 days at physiological temperature showed the formation of a molten globule state at day 9 and 12 during fructation and glucation respectively. This state exhibits substantial secondary structure and maximum ANS binding. Later on, glycation resulted in the formation of aggregates at day 12 in presence of fructose and day 15 in presence of glucose. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and FTIR. These aggregates showed altered tryptophan environment, decrease ANS binding relative to molten globule state and increase in Thioflavin T fluorescence. Aggregates were also accompanied by the accumulation of AGEs, indicative of structural damage to the protein and formation of potentially harmful species at the physiological level. Fructose was more reactive than glucose and thus caused early and significant changes in the protein. From our studies, we conclude that controlling the extent of the Maillard reaction in the food industry is essential to counter its negative effects and expand its safety spectrum.

  9. Basal lamina structural alterations in human asymmetric aneurismatic aorta

    Directory of Open Access Journals (Sweden)

    M Cotrufo

    2009-06-01

    Full Text Available Basal lamina (BL is a crucial mechanical and functional component of blood vessels, constituting a sensor of extracellular microenvironment for endothelial cells and pericytes. Recently, an abnormality in the process of matrix microfibrillar component remodeling has been advocated as a mechanism involved in the development of aortic dilation.We focused our attention on BL composition and organization and studied some of the main components of the Extracellular Matrix such as Tenascin, Laminins, Fibronectin, type I, III and IV Collagens.We used surgical fragments from 27 patients, submitted to operation because of aortic root aneurysm and 5 normal aortic wall specimens from heart donors without any evidence for aneurysmal or atherosclerotic diseases of the aorta. Two samples of aortic wall were harvested from each patient, proximal to the sinotubular junction at the aortic convexity and concavity. Each specimen was processed both for immunohistochemical examination and molecular biology study.We compared the convexity of each aortic sample with the concavity of the same vessel, and both of them with the control samples. The synthesis of mRNA and the levels of each protein were assessed, respectively, by RTPCR and Western Blot analysis. Immunohistochemistry elucidated the organization of BL, whose composition was revealed by molecular biology. All pathological samples showed a wall thinner than normal ones. Basal lamina of the aortic wall evidentiated important changes in the tridimensional arrangement of its major components which lost their regular arrangement in pathological specimens. Collagen I, Laminin a2 chain and Fibronectin amounts decreased in pathological samples, while type IV Collagen and Tenascin synthesis increased. Consistently with the common macroscopic observation that ascending aorta dilations tend to expand asymmetrically, with prevalent involvement of the vessel convexity and relative sparing of the concavity, Collagen type

  10. Collagen Homeostasis and Metabolism

    DEFF Research Database (Denmark)

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  11. Collagen crosslink location: a molecular marker for fibrosis in lungs of rats with experimental silicosis

    International Nuclear Information System (INIS)

    Gerriets, J.E.; Reiser, K.M.; Last, J.A.

    1986-01-01

    Collagen content is increased in lungs of animals with experimental silicosis. They hypothesize that the collagen deposited in such fibrotic lungs differs structurally from normal lung collagen. Silicotic lung collagen shows an increase in lysine hydroxylation. In addition, the ratio of the difunctional crosslinks DHLNL (dihydroxylysinonorleucine) to HLNL (hydroxylysinonorleucine) is sharply elevated compared to that in control lungs. The peptide α1(I)CB7 x α2(I)CB1 crosslinked by HLNL was demonstrated in NaB 3 H 4 -reduced, CNBr-digested collagen from rat tail tendon by peptide purification, followed by periodate oxidation and amino acid analysis. Further structural analysis of this peptide was obtained by digestion of the crosslinked peptide with trypsin and purification of the tryptic peptide containing this crosslink followed by amino acid analysis. They then examined the analogous collagenous peptide in normal and silicotic lungs and analyzed the crosslink it contained. They observed that DHLNL was present at specific sites previously containing HLNL; that is, the collagen in fibrotic lungs is altered at specific sites by post-translational modification of a lysine residue by hydroxylation in a predictable way. They conclude that such unusual hydroxylation of a specific lysine residue in the α2 chain provides a molecular marker for fibrotic lung collagen

  12. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Science.gov (United States)

    Akilbekova, Dana; Bratlie, Kaitlin M

    2015-01-01

    The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  13. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Directory of Open Access Journals (Sweden)

    Dana Akilbekova

    Full Text Available The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  14. Structural and biochemical alterations of human diabetic dermis studied by 3H-lysine incorporation and microscopy

    International Nuclear Information System (INIS)

    Moczar, M.; Allard, R.; Ouzilou, J.; Robert, L.; Pieraggi, M.-T.; Bouissou, H.; Julian, M.

    1976-01-01

    The alteration of the structural organization of dermal connective tissue was studied by light and electron microscopy and by biochemical techniques in normal human and in diabetic patients using skin biopsies. Part of the tissue was used for light and electron microscopy, the rest was incubated in the presence of 3 H-lysine for four hours. The 3 H-lysine labelled biopsies were submitted to a sequential extraction procedure in order to obtain representative macromolecular fractions containing the matrix macromolecules. The extracts were analyzed for their chemical composition and radioactivity. Electron microscopy revealed microstructural modifications of the fibroblasts, of the collagen and elastic fibers in the diabetic dermis. The incorporation pattern of 3 H-lysine into the macromolecular fractions was different in the normal and diabetic skin biopsies. The percentage of total radioactivity incorporated increased significantly in the 1M CaCl 2 extractable fraction and in the 6M urea extractable fraction and decreased significantly in the collagenase and elastase extracts in diabetic skin biopsy. These results demonstrate the existence of morphological and biochemical alterations in diabetic connective tissue (dermis) reflecting alterations in the relative rates of synthesis and/or degradation of the intercellular matrix macromolecules as well as of their microarchitectural arrangement

  15. Addition of electrophilic lipids to actin alters filament structure

    International Nuclear Information System (INIS)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores

    2006-01-01

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Δ 12,14 -PGJ 2 (15d-PGJ 2 ) and PGA 1 in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA 1 and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ 2 or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ 2 at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles

  16. Collagen Peptides from Crucian Skin Improve Calcium Bioavailability and Structural Characterization by HPLC-ESI-MS/MS.

    Science.gov (United States)

    Hou, Tao; Liu, Yanshuang; Guo, Danjun; Li, Bo; He, Hui

    2017-10-11

    The effects of collagen peptides (CPs), which are derived from crucian skin, were investigated in a retinoic acid-induced bone loss model. The level of serum bone alkaline phosphatase (BALP) in the model group (117.65 ± 4.66 units/L) was significantly higher than those of the other three groups (P group. In addition, the bone mineral density in the 600 mg of CPs/kg group was significantly higher (femur, 0.37 ± 0.02 g/cm 2 ; tibia, 0.33 ± 0.02 g/cm 2 ) than in the model group (femur, 0.26 ± 0.01 g/cm 2 ; tibia, 0.23 ± 0.02 g/cm 2 ). The morphology results indicated bone structure improved after the treatment with CPs. Structural characterization demonstrated that Glu, Lys, and Arg play important roles in binding calcium and promoting calcium uptake. Our results indicated that CPs could promote calcium uptake and regulate bone formation.

  17. Collagen tissue treated with chitosan solution in H2O/CO2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties.

    Science.gov (United States)

    Chaschin, Ivan S; Bakuleva, Natalia P; Grigoriev, Timofei E; Krasheninnikov, Sergey V; Nikitin, Lev N

    2017-03-01

    A mixture of water/carbon dioxide is a "green" perspective solvent from the viewpoint of biomedical applications. Clathrate hydrates are formed this solvent under certain conditions and a very interesting question is the impact of clathrates hydrates on the structure and properties of bovine pericardium, which is used in biomedicine, in particular as a main part of biological heart valve prostheses. The aim of the present work is to investigate the influence of clathrates on the structure and mechanical properties of the collagen tissue treated with chitosan in H 2 O/CO 2 mixtures under pressure 3.0-3.5MPa and temperatures 2-4°C. It was first found that the clathrate hydrates in this media due to the strong fluctuations "bomb" collagen tissue of bovine pericardium, which is manifested in the appearance of numerous small gaps (pores) with mean size of 225±25nm and large pores with size of 1-3μ on the surface and within collagen matrices. High porosity leads to averaging characteristics of the organization structure in tissues with different orientation of the collagen fibers. As a result, the mechanical properties of the collagen tissue with a different orientation of the collagen fibrils become similar, which is quite different from their original properties. The structural changes caused by the influence of the environment clathrate hydrates led to a significant decrease of the tensile strength (30-47% in total, p<0.05) and initial elastic moduli (74-83%, p<0.05). However, the final elastic moduli and the maximum tensile virtually unchanged compared to the control. Nevertheless, it was found that the direct deposition of chitosan from the H 2 O/CO 2 mixtures with clathrate improve the mechanical-strength properties of the porous matrices. We believe that these improved mechanical properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurized solutions in H 2 O/CO 2 mixtures. Copyright © 2016

  18. Fragmentation alters stream fish community structure in dendritic ecological networks.

    Science.gov (United States)

    Perkin, Joshuah S; Gido, Keith B

    2012-12-01

    Effects of fragmentation on the ecology of organisms occupying dendritic ecological networks (DENs) have recently been described through both conceptual and mathematical models, but few hypotheses have been tested in complex, real-world ecosystems. Stream fishes provide a model system for assessing effects of fragmentation on the structure of communities occurring within DENs, including how fragmentation alters metacommunity dynamics and biodiversity. A recently developed habitat-availability measure, the "dendritic connectivity index" (DCI), allows for assigning quantitative measures of connectivity in DENs regardless of network extent or complexity, and might be used to predict fish community response to fragmentation. We characterized stream fish community structure in 12 DENs in the Great Plains, USA, during periods of dynamic (summer) and muted (fall) discharge regimes to test the DCI as a predictive model of fish community response to fragmentation imposed by road crossings. Results indicated that fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) relative to communities that maintained connectivity with the surrounding DEN during summer and fall. Furthermore, isolated communities had greater dissimilarity (beta diversity) to downstream sites notisolated by road crossings during summer and fall. Finally, dissimilarity among communities within DENs decreased as a function of increased habitat connectivity (measured using the DCI) for summer and fall, suggesting that communities within highly connected DENs tend to be more homogeneous. Our results indicate that the DCI is sensitive to community effects of fragmentation in riverscapes and might be used by managers to predict ecological responses to changes in habitat connectivity. Moreover, our findings illustrate that relating structural connectivity of riverscapes to functional connectivity among communities might aid in maintaining metacommunity

  19. Structural alterations of foreskin caused by chronic smoking may explain high levels of urethral reconstruction failure using foreskin flaps

    Directory of Open Access Journals (Sweden)

    João P. Rosado

    2012-08-01

    Full Text Available OBJECTIVES: The aim of the present study was to perform a stereological and biochemical analysis of the foreskin of smoker subjects. MATERIALS AND METHODS: Foreskin samples were obtained from 20 young adults (mean = 27.2 years old submitted to circumcision. Of the patients analyzed, one group (n = 10 had previous history of chronic smoking (a half pack to 3 packs per day for 3 to 13 years (mean = 5.8 ± 3.2. The control group included 10 nonsmoking patients. Masson's trichrome stain was used to quantify the foreskin vascular density. Weigert’s resorcin-fucsin stain was used to assess the elastic system fibers and Picrosirius red stain was applied to study the collagen. Stereological analysis was performed using the Image J software to determine the volumetric densities. For biochemical analysis, the total collagen was determined as µg of hydroxyproline per mg of dry tissue. Means were compared using the unpaired t-test (p < 0.05. RESULTS: Elastic system fibers of smokers was 42.5% higher than in the control group (p = 0.002. In contrast, smooth muscle fibers (p = 0.42 and vascular density (p = 0.16 did not show any significant variation. Qualitative analysis using Picrosirius red stain with polarized light evidenced the presence of type I and III collagen in the foreskin tissue, without significant difference between the groups. Total collagen concentration also did not differ significantly between smokers and non-smokers (73.1µg/mg ± 8.0 vs. 69.2µg/mg ± 5.9, respectively, p = 0.23. CONCLUSIONS: The foreskin tissue of smoking patients had a significant increase of elastic system fibers. Elastic fibers play an important role in this tissue’s turnover and this high concentration in smokers possibly causes high extensibility of the foreskin. The structural alterations in smokers’ foreskins could possibly explain the poor results in smoking patients submitted to foreskin fasciocutaneous flaps in urethral reconstruction surgery.

  20. Complete primary structure of rainbow trout type I collagen consisting of alpha1(I)alpha2(I)alpha3(I) heterotrimers.

    Science.gov (United States)

    Saito, M; Takenouchi, Y; Kunisaki, N; Kimura, S

    2001-05-01

    The subunit compositions of skin and muscle type I collagens from rainbow trout were found to be alpha1(I)alpha2(I)alpha3(I) and [alpha1(I)](2)alpha2(I), respectively. The occurrence of alpha3(I) has been observed only for bonyfish. The skin collagen exhibited more susceptibility to both heat denaturation and MMP-13 digestion than the muscle counterpart; the former had a lower denaturation temperature by about 0.5 degrees C than the latter. The lower stability of skin collagen, however, is not due to the low levels of imino acids because the contents of Pro and Hyp were almost constant in both collagens. On the other hand, some cDNAs coding for the N-terminal and/or a part of triple-helical domains of proalpha(I) chains were cloned from the cDNA library of rainbow trout fibroblasts. These cDNAs together with the previously cloned collagen cDNAs gave information about the complete primary structure of type I procollagen. The main triple-helical domain of each proalpha(I) chain had 338 uninterrupted Gly-X-Y triplets consisting of 1014 amino acids and was unique in its high content of Gly-Gly doublets. In particular, the bonyfish-specific alpha(I) chain, proalpha3(I) was characterized by the small number of Gly-Pro-Pro triplets, 19, and the large number of Gly-Gly doublets, 38, in the triple-helical domain, compared to 23 and 22, respectively, for proalpha1(I). The small number of Gly-Pro-Pro and the large number of Gly-Gly in proalpha3(I) was assumed to partially loosen the triple-helical structure of skin collagen, leading to the lower stability of skin collagen mentioned above. Finally, phylogenetic analyses revealed that proalpha3(I) had diverged from proalpha1(I). This study is the first report of the complete primary structure of fish type I procollagen.

  1. Changes in anterior ocular structures and macula following deep sclerectomy with collagen implant.

    Science.gov (United States)

    Suominen, Sakari M A; Harju, Mika P; Hautamäki, Asta M E; Vesti, Eija T

    2018-01-01

    To determine the effect of intraocular pressure (IOP) lowering with deep sclerectomy (DS) on visual acuity, macular structures, and anterior ocular dimensions during the early postoperative period. We prospectively analyzed 35 eyes of 35 patients scheduled for DS. Our focus with the measurements was on early postoperative changes in anterior ocular and macular structures related to IOP lowering during the first month after DS. In addition to a clinical ophthalmologic examination, our measurements included corneal topography, measurement of ocular dimensions with optical biometry, and examination of macular structure with optical coherence tomography. These measurements were repeated 1, 2, and 4 weeks postoperatively. Best-corrected visual acuity (BCVA) decreased 1 week postoperatively to 0.22 (0.20) LogMAR (p = 0.006). The BCVA then increased to its preoperative level, 0.17 (0.18) (p = 0.28), after 4 weeks. Axial length decreased from 24.12 (1.81) mm to 24.04 (1.81) (p<0.001) 4 weeks postoperatively. The steeper meridian of corneal curvature and average corneal power increased postoperatively; central corneal thickness was decreased. No significant change appeared in other measurements. We found changes in corneal curvature and ocular dimensions after DS. These changes were relatively small and do not completely explain the decrease in visual acuity postoperatively. Macular structures showed no changes.

  2. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen

    International Nuclear Information System (INIS)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2013-01-01

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m 2 g −1 . The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ∼ 53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time. - Graphical abstract: A spherical calcium phosphate-collagen with flower-like blossoms consisting of nanorod building blocks (SFCaPCol) particles was achieved by a combination of sonication and freeze-drying. In vitro drug release profile and the biocompatibility of the VCM-loaded SFCaPCol composite cell adhesion and proliferation in rat osteoblast-like UMR-106 cells were determined for biomaterial applications. Highlights: ► SFCaPCol and VCM-loaded SFCaPCol composite were synthesized by a combination of ultra sonication and freeze-drying. ► VCM drug-loaded SFCaPCol composite was used as substrate for the growth of rat osteoblast-like UMR-106 cells. ► Controlled release of VCM from the composite is critically medium dependent. ► The VCM-loaded SFCaPCol composite is also bioactive by in

  3. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Directory of Open Access Journals (Sweden)

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  4. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Science.gov (United States)

    Senni, Karim; Gueniche, Farida; Changotade, Sylvie; Septier, Dominique; Sinquin, Corinne; Ratiskol, Jacqueline; Lutomski, Didier; Godeau, Gaston; Guezennec, Jean; Colliec-Jouault, Sylvia

    2013-01-01

    Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair. PMID:23612369

  5. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    Science.gov (United States)

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.

  6. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    Science.gov (United States)

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.

  7. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond.

    Science.gov (United States)

    Lamandé, Shireen R; Bateman, John F

    2017-12-22

    Mutations in the three canonical collagen VI genes, COL6A1, COL6A2 and COL6A3, cause a spectrum of muscle disease from Bethlem myopathy at the mild end to the severe Ullrich congenital muscular dystrophy. Mutations can be either dominant or recessive and the resulting clinical severity is influenced by the way mutations impact the complex collagen VI assembly process. Most mutations are found towards the N-terminus of the triple helical collagenous domain and compromise extracellular microfibril assembly. Outside the triple helix collagen VI is highly polymorphic and discriminating mutations from rare benign changes remains a major diagnostic challenge. Collagen VI deficiency alters extracellular matrix structure and biomechanical properties and leads to increased apoptosis and oxidative stress, decreased autophagy, and impaired muscle regeneration. Therapies that target these downstream consequences have been tested in a collagen VI null mouse and also in small human trials where they show modest clinical efficacy. An important role for collagen VI in obesity, cancer and diabetes is emerging. A major barrier to developing effective therapies is the paucity of information about how collagen VI deficiency in the extracellular matrix signals the final downstream consequences - the receptors involved and the intracellular messengers await further characterization. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  8. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    DEFF Research Database (Denmark)

    Uysal, Hüseyin; Bockermann, Robert; Nandakumar, Kutty S

    2009-01-01

    Antibodies to citrulline-modified proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical...... is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta-turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose...

  9. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-03-14

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  10. Ayahuasca Alters Structural Parameters of the Rat Aorta.

    Science.gov (United States)

    Pitol, Dimitrius L; Siéssere, Selma; Dos Santos, Rafael G; Rosa, Maria L N M; Hallak, Jaime E C; Scalize, Priscilla H; Pereira, Bruno F; Iyomasa, Melina M; Semprini, Marisa; Riba, Jordi; Regalo, Simone C H

    2015-07-01

    Ayahuasca is a hallucinogenic brew traditionally used by Northwestern Amazonian indigenous groups for therapeutic purposes. It is prepared by the decoction of Banisteriopsis caapi with the leaves of Psychotria viridis. Banisteriopsis caapi contains β-carbolines that are inhibitors of monoamine oxidase and P. viris is rich in dimethyltryptamine, a 5-HT(1A/2A/2C) agonist. Acute ayahuasca administration produces moderate cardiovascular effects in healthy volunteers, but information regarding long-term use is lacking. This study investigated the effects of ayahuasca (2-4 mL/kg) in the rat aorta after acute and chronic (14 days) administration. Ayahuasca caused flattening and stretching of vascular smooth muscle cells and changes in the arrangement and distribution of collagen and elastic fibers. Chronic treatment with the higher dose significantly increased media thickness and the ratio of media thickness to lumen diameter. More research is needed on the cardiovascular function of long-term ayahuasca consumers.

  11. Altered Pituitary Gland Structure and Function in Posttraumatic Stress Disorder.

    Science.gov (United States)

    Cooper, Odelia; Bonert, Vivien; Moser, Franklin; Mirocha, James; Melmed, Shlomo

    2017-06-01

    Posttraumatic stress disorder (PTSD) is associated with hypothalamus-pituitary-adrenal (HPA) axis response to stressors, but links to neurophysiological and neuroanatomical changes are unclear. The purpose of this study was to determine whether stress-induced cortisol alters negative feedback on pituitary corticotroph function and pituitary volume. Prospective controlled study in an outpatient clinic. Subjects with PTSD and matched control subjects underwent pituitary volume measurement on magnetic resonance imaging, with pituitary function assessed by 24-hour urine free cortisol (UFC), 8:00 am cortisol, and adrenocorticotropic hormone (ACTH) levels, and ACTH levels after 2-day dexamethasone/corticotropin-releasing hormone test. Primary outcome was pituitary volume; secondary outcomes were ACTH area under the curve (AUC) and 24-hour UFC. Thirty-nine subjects were screened and 10 subjects with PTSD were matched with 10 healthy control subjects by sex and age. Mean pituitary volume was 729.7 mm 3 [standard deviation (SD), 227.3 mm 3 ] in PTSD subjects vs 835.2 mm 3 (SD, 302.8 mm 3 ) in control subjects. ACTH AUC was 262.5 pg/mL (SD, 133.3 pg/mL) L in PTSD vs 244.0 pg/mL (SD, 158.3 pg/mL) in control subjects ( P = 0.80). In PTSD subjects, UFC levels and pituitary volume inversely correlated with PTSD duration; pituitary volume correlated with ACTH AUC in control subjects (Pearson correlation coefficient, 0.88, P = 0.0009) but not in PTSD subjects. The HPA axis may be downregulated and dysregulated in people with PTSD, as demonstrated by discordant pituitary corticotroph function and pituitary volume vs intact HPA feedback and correlation of pituitary volume with ACTH levels in healthy control subjects. The results suggest a link between pituitary structure and function in PTSD, which may point to endocrine targeted therapeutic approaches.

  12. Altered Pituitary Gland Structure and Function in Posttraumatic Stress Disorder

    Science.gov (United States)

    Bonert, Vivien; Moser, Franklin; Mirocha, James; Melmed, Shlomo

    2017-01-01

    Objectives: Posttraumatic stress disorder (PTSD) is associated with hypothalamus-pituitary-adrenal (HPA) axis response to stressors, but links to neurophysiological and neuroanatomical changes are unclear. The purpose of this study was to determine whether stress-induced cortisol alters negative feedback on pituitary corticotroph function and pituitary volume. Design: Prospective controlled study in an outpatient clinic. Methods: Subjects with PTSD and matched control subjects underwent pituitary volume measurement on magnetic resonance imaging, with pituitary function assessed by 24-hour urine free cortisol (UFC), 8:00 am cortisol, and adrenocorticotropic hormone (ACTH) levels, and ACTH levels after 2-day dexamethasone/corticotropin-releasing hormone test. Primary outcome was pituitary volume; secondary outcomes were ACTH area under the curve (AUC) and 24-hour UFC. Results: Thirty-nine subjects were screened and 10 subjects with PTSD were matched with 10 healthy control subjects by sex and age. Mean pituitary volume was 729.7 mm3 [standard deviation (SD), 227.3 mm3] in PTSD subjects vs 835.2 mm3 (SD, 302.8 mm3) in control subjects. ACTH AUC was 262.5 pg/mL (SD, 133.3 pg/mL) L in PTSD vs 244.0 pg/mL (SD, 158.3 pg/mL) in control subjects (P = 0.80). In PTSD subjects, UFC levels and pituitary volume inversely correlated with PTSD duration; pituitary volume correlated with ACTH AUC in control subjects (Pearson correlation coefficient, 0.88, P = 0.0009) but not in PTSD subjects. Conclusions: The HPA axis may be downregulated and dysregulated in people with PTSD, as demonstrated by discordant pituitary corticotroph function and pituitary volume vs intact HPA feedback and correlation of pituitary volume with ACTH levels in healthy control subjects. The results suggest a link between pituitary structure and function in PTSD, which may point to endocrine targeted therapeutic approaches. PMID:29264511

  13. Changes in histoanatomical distribution of types I, III and V collagen promote adaptative remodeling in posterior tibial tendon rupture

    Directory of Open Access Journals (Sweden)

    Érika Satomi

    2008-01-01

    Full Text Available INTRODUCTION: Posterior tibial tendon dysfunction is a common cause of adult flat foot deformity, and its etiology is unknown. PURPOSE: In this study, we characterized the morphologic pattern and distribution of types I, III and V collagen in posterior tibial tendon dysfunction. METHOD: Tendon samples from patients with and without posterior tibial tendon dysfunction were stained by immunofluorescence using antibodies against types I, III and V collagen. RESULTS: Control samples showed that type V deposited near the vessels only, while surgically obtained specimens displayed type V collagen surrounding other types of collagen fibers in thicker adventitial layers. Type III collagen levels were also increased in pathological specimens. On the other hand, amounts of collagen type I, which represents 95% of the total collagen amount in normal tendon, were decreased in pathological specimens. CONCLUSION: Fibrillogenesis in posterior tibial tendon dysfunction is altered due to higher expression of types III and V collagen and a decreased amount of collagen type I, which renders the originating fibrils structurally less resistant to mechanical forces.

  14. An alter-centric perspective on employee innovation: The importance of alters' creative self-efficacy and network structure.

    Science.gov (United States)

    Grosser, Travis J; Venkataramani, Vijaya; Labianca, Giuseppe Joe

    2017-09-01

    While most social network studies of employee innovation behavior examine the focal employees' ("egos'") network structure, we employ an alter-centric perspective to study the personal characteristics of employees' network contacts-their "alters"-to better understand employee innovation. Specifically, we examine how the creative self-efficacy (CSE) and innovation behavior of employees' social network contacts affects their ability to generate and implement novel ideas. Hypotheses were tested using a sample of 144 employees in a U.S.-based product development organization. We find that the average CSE of alters in an employee's problem solving network is positively related to that employee's innovation behavior, with this relationship being mediated by these alters' average innovation behavior. The relationship between the alters' average innovation behavior and the employee's own innovation behavior is strengthened when these alters have less dense social networks. Post hoc results suggest that having network contacts with high levels of CSE also leads to an increase in ego's personal CSE 1 year later in cases where the employee's initial level of CSE was relatively low. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe

    NARCIS (Netherlands)

    Boerboom, R.A.; Krahn - Nash, K.; Megens, R.T.A.; Zandvoort, van M.; Merkx, M.; Bouten, C.V.C.

    2007-01-01

    Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our

  16. Framework of collagen type I - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated

  17. In vitro characterization of a novel tissue engineered based hybridized nano and micro structured collagen implant and its in vivo role on tenoinduction, tenoconduction, tenogenesis and tenointegration.

    Science.gov (United States)

    Oryan, Ahmad; Moshiri, Ali; Meimandi-Parizi, Abdolhamid

    2014-03-01

    Surgical reconstruction of large tendon defects is technically demanding. Tissue engineering is a new option. We produced a novel tissue engineered, collagen based, bioimplant and in vitro characterizations of the implant were investigated. In addition, we investigated role of the collagen implant on the healing of a large tendon defect model in rabbits. A two cm length of the left rabbit's Achilles tendon was transected and discarded. The injured tendons of all the rabbits were repaired by Kessler pattern to create and maintain a 2 cm tendon gap. The collagen implant was inserted in the tendon defect of the treatment group (n = 30). The defect area was left intact in the control group (n = 30). The animals were euthanized at 60 days post injury (DPI) and the macro- micro- and nano- morphologies and the biomechanical characteristics of the tendon samples were studied. Differences of P implant properly incorporated with the healing tissue and was replaced by the new tendinous structure which was superior both ultra-structurally and physically than the loose areolar connective tissue regenerated in the control lesions. The results of this study may be valuable in the clinical practice.

  18. The content and ratio of type I and III collagen in skin differ with age ...

    African Journals Online (AJOL)

    III ratio and changes in skin tension, elasticity, and healing. Also, the content of type I, III collagen and type I/III ratio are significantly altered in hypertrophic scar tissue compared to uninjured age-matched controls, resulting in a different structural ...

  19. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.

    Science.gov (United States)

    Dong, Shoubin; Huang, Zetao; Tang, Liqun; Zhang, Xiaoyang; Zhang, Yongrou; Jiang, Yi

    2017-07-01

    The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-dimensional (3D) collagen-fiber network model to simulate the micro structure and mechanical behaviors of the ECM and studied the stress-strain relationship as well as the deformation of the ECM under tension. In the model, the collagen-fiber network consists of abundant random distributed collagen fibers and some crosslinks, in which each fiber is modeled as an elastic beam and a crosslink is modeled as a linear spring with tensile limit, it means crosslinks will fail while the tensile forces exceed the limit of spring. With the given parameters of the beam and the spring, the simulated tensile stress-strain relation of the ECM highly matches the experimental results including damaged and failed behaviors. Moreover, by applying the maximal inscribed sphere method, we measured the size distribution of pores in the fiber network and learned the variation of the distribution with deformation. We also defined the alignment of the collagen-fibers to depict the orientation of fibers in the ECM quantitatively. By the study of changes of the alignment and the damaged crosslinks against the tensile strain, this paper reveals the comprehensive mechanisms of four stages of 'toe', 'linear', 'damage' and 'failure' in the tensile stress-strain relation of the ECM which can provide further insight in the study of cell-ECM interaction.

  20. Collagen type XI alpha1 may be involved in the structural plasticity of the vertebral column in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Wargelius, A; Fjelldal, P G; Nordgarden, U; Grini, A; Krossøy, C; Grotmol, S; Totland, G K; Hansen, T

    2010-04-01

    Atlantic salmon (Salmo salar L.) vertebral bone displays plasticity in structure, osteoid secretion and mineralization in response to photoperiod. Other properties of the vertebral bone, such as mineral content and mechanical strength, are also associated with common malformations in farmed Atlantic salmon. The biological mechanisms that underlie these changes in bone physiology are unknown, and in order to elucidate which factors might be involved in this process, microarray assays were performed on vertebral bone of Atlantic salmon reared under natural or continuous light. Eight genes were upregulated in response to continuous light treatment, whereas only one of them was upregulated in a duplicate experiment. The transcriptionally regulated gene was predicted to code for collagen type XI alpha1, a protein known to be involved in controlling the diameter of fibrillar collagens in mammals. Furthermore, the gene was highly expressed in the vertebrae, where spatial expression was found in trabecular and compact bone osteoblasts and in the chordoblasts of the notochordal sheath. When we measured the expression level of the gene in the tissue compartments of the vertebrae, the collagen turned out to be 150 and 25 times more highly expressed in the notochord and compact bone respectively, relative to the expression in the trabecular bone. Gene expression was induced in response to continuous light, and reduced in compressed vertebrae. The downregulation in compressed vertebrae was due to reduced expression in the compact bone, while expression in the trabecular bone and the notochord was unaffected. These data support the hypothesis that this gene codes for a presumptive collagen type XI alpha1, which may be involved in the regulatory pathway leading to structural adaptation of the vertebral architecture.

  1. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    International Nuclear Information System (INIS)

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  2. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  3. Structure and characteristics of acid and pepsin-solubilized collagens from the skin of cobia (Rachycentron canadum).

    Science.gov (United States)

    Zeng, Shaokui; Yin, Juanjuan; Yang, Shuqi; Zhang, Chaohua; Yang, Ping; Wu, Wenlong

    2012-12-01

    Acid-solubilized collagen (ASC) and pepsin-solubilized collagen (PSC) were extracted from the skin of cobia (Rachycentron canadum). The yields of ASC and PSC were 35.5% and 12.3%, respectively. Based on the protein patterns and carboxymethyl-cellulose chromatography, ASC and PSC were composed of α1α2α3 heterotrimers and were characterised as type I collagen with no disulfide bond. Their amounts of imino acids were 203 and 191 residues per 1000 residues, respectively. LC-MS/MS analysis demonstrated the high sequences similarities of ASC and PSC. Fourier transform infrared spectroscopy spectra showed that the amide I, II and III peaks of PSC were obtained at a lower wave number compared with ASC. The thermal denaturation temperatures of ASC and PSC, as measured by viscometry, were 34.62 and 33.97°C, respectively. The transition temperatures (T(max)) were 38.17 and 36.03°C, respectively, as determined by differential scanning calorimetry (DSC). Both collagens were soluble at acidic pH and below 2% (w/v) NaCl concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Initiating fibro-proliferation through interfacial interactions of myoglobin colloids with collagen in solution.

    Science.gov (United States)

    Dhanasekaran, Madhumitha; Dhathathreyan, Aruna

    2017-08-01

    This work examines fibro-proliferation through interaction of myoglobin (Mb), a globular protein with collagen, an extracellular matrix fibrous protein. Designed colloids of Mb at pH 4.5 and 7.5 have been mixed with collagen solution at pH 7.5 and 4.5 in different concentrations altering their surface charges. For the Mb colloids, 100-200nm sizes have been measured from Transmission electron micrographs and zeta sizer. CD spectra shows a shift to beta sheet like structure for the protein in the colloids. Interaction at Mb/Collagen interface studied using Dilational rheology, Quartz crystal microbalance with dissipation and Differential Scanning calorimetry show that the perturbation is not only by the charge compensation arising from the difference in pH of the colloids and collagen, but also by the organized assembly of collagen at that particular pH. Results demonstrate that positive Mb colloids at pH 4.5, having more% of entrained water stabilize the collagen fibrils (pH 7.5) around them. Ensuing dehydration leads to effective cross-linking and inherently anisotropic growth of fibrils/fibres of collagen. In the case of Mb colloids at pH 7.5, the fibril formation seems to supersede the clustering of Mb suggesting that the fibro-proliferation is both pH and hydrophilic-hydrophobic balance dependent at the interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    Science.gov (United States)

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  6. Preterm birth and structural brain alterations in early adulthood

    OpenAIRE

    Nosarti, Chiara; Nam, Kie Woo; Walshe, Muriel; Murray, Robin M.; Cuddy, Marion; Rifkin, Larry; Allin, Matthew P.G.

    2014-01-01

    Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT) birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM) and white matter (WM) maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM) we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks) and 43 term-born controls aged 19–20 years, and their association w...

  7. Research on structure-alteration zone related to uranium mineralization and its exploration significance

    International Nuclear Information System (INIS)

    Huang Xianfang; Liu Dechang; Ye Fawang; Dong Xiuzhen; Yang Xu Zhang Hongguang

    2008-01-01

    The paper is focused on recommending geological characteristics of structure-alteration zone which is found from image interpretation in Bashibulake District, north of Tarim Basin, expounding remote sensing information enhancement and extraction technique, analyzing image feature, genetic mechanism and discussing the relationship between uranium mineralization and structure-alteration zone. A new discovery is raised through applying remote sensing information analysis and geologic analysis, that is, the uranium deposits in Bashibulake District are controlled by structure-alteration zone. The new understanding provides a new view point for reconsidering main controlling factors and uranium mineralization distribution in the area. It is helpful for further reconnaissance and exploration in the area. (authors)

  8. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine

    DEFF Research Database (Denmark)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this pr......Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose...... of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally...... concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical...

  9. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Cortizo

    2016-01-01

    Full Text Available Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation. In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering.

  10. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Bastian Cheng

    2014-01-01

    Full Text Available Gilles de la Tourette syndrome (GTS is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS. GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA with basal ganglia (pre-SMA–putamen, SMA–putamen and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity.

  11. Cold-induced alteration in the global structure of the male sex ...

    Indian Academy of Sciences (India)

    Cold-induced alteration in the global structure of the male sex ... dar et al. 1978). Chromosome preparated from a single pair of salivary glands show extremely puffy and diffuse ..... Akhtar A. 2003 Dosage compensation: an intertwined world of.

  12. Alterations in archaeological bones thermally treated: structure and morphology

    International Nuclear Information System (INIS)

    Pijoan, C.M.; Mansilla, J.; Leboreiro, I.; Lara, V.H.; Bosch, P.

    2004-01-01

    Archaeological bones found close to Mexico city (Tlatelcomila) have been characterized by X-ray Diffraction, Small Angle X-ray Spectroscopy and Scanning Electron Microscopy. These techniques, which are not conventionally used in archaeological research, provided useful information. The boiled bones were clearly distinguished from grilled bones. The degree of deterioration of the bone structure was quantified through parameters such as gyration radius or fractal dimension. The morphology followed the structural modifications and changes resulting from thermic exposure. (Author) 23 refs., 1 tab., 2 figs

  13. Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.

    Science.gov (United States)

    Lund, A W; Stegemann, J P; Plopper, G E

    2009-01-01

    The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.

  14. Collagen reorganization at the tumor-stromal interface facilitates local invasion

    Directory of Open Access Journals (Sweden)

    Inman David R

    2006-12-01

    Full Text Available Abstract Background Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Methods Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM to generate multiphoton excitation (MPE of endogenous fluorophores and second harmonic generation (SHG to image stromal collagen. Results We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent

  15. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.

    Science.gov (United States)

    Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W

    2015-12-04

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

  16. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    Science.gov (United States)

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  17. Do edaphic aspects alter vegetation structures in the Brazilian restinga?

    Directory of Open Access Journals (Sweden)

    Francisco Soares Santos-Filho

    2013-09-01

    Full Text Available The vegetation of the Brazilian restinga (coastal woodland presents a variety of species and different characteristics, encompassing fields, fruit groves and forests on quartzarenic neosols. We hypothesised that the structure of the restinga landscape along the coast of the state of Piauí is influenced by edaphic factors and presents a pattern similar to that of other northeastern restingas. We evaluated three restingas in Piauí, using the quarter method to determine their structure. Composite soil samples were collected to determine their chemical and physical properties. Edaphic variables were correlated with plant species by canonical correspondence analysis (CCA. Phytosociological data for all three areas indicated regenerating vegetation comprising several small individuals, 82.5% of which showed a diameter at ground level < 13 cm. We also observed considerable tillering. In two of the areas, there was a predominance of Fabaceae species, such as Caesalpinia pyramidalis and Copaifera martii. Although the structural characteristics of the restingas studied were similar to those of other northeastern restingas, the former showed lower Shannon diversity indices (2.18-2.44. The CCA indicated that species distribution was influenced by edaphic factors such as pH, aluminium content and amount of organic matter. The restingas studied were similar to others along the Brazilian coast.

  18. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    Science.gov (United States)

    Hubbard, Catherine S; Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  19. Abdominal Pain, the Adolescent and Altered Brain Structure and Function

    Science.gov (United States)

    Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L.; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  20. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    Directory of Open Access Journals (Sweden)

    Catherine S Hubbard

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL. Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC, whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC. In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI, whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease

  1. Subclinical depressive symptoms during late midlife and structural brain alterations

    DEFF Research Database (Denmark)

    Osler, Merete; Sørensen, Lauge; Rozing, Maarten

    2018-01-01

    and brain structure outcomes were tested using Pearson's correlation, t test, and linear regression. Depressive symptoms at age 51 showed clear inverse correlations with total gray matter, pallidum, and hippocampal volume with the strongest estimate for hippocampal volume (r = -.22, p ... exclusion of men (n = 3) with scores in the range of clinical depression the inverse correlation between depressive symptoms and hippocampal volume became insignificant (r = -13, p = .08). Depressive symptoms at age 59 correlated positively with hippocampal and amygdala texture-potential early markers...

  2. Recombinant gelatin and collagen from methylotrophic yeasts

    NARCIS (Netherlands)

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is,

  3. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  4. X-linked Alport syndrome associated with a synonymous p.Gly292Gly mutation alters the splicing donor site of the type IV collagen alpha chain 5 gene.

    Science.gov (United States)

    Fu, Xue Jun; Nozu, Kandai; Eguchi, Aya; Nozu, Yoshimi; Morisada, Naoya; Shono, Akemi; Taniguchi-Ikeda, Mariko; Shima, Yuko; Nakanishi, Koichi; Vorechovsky, Igor; Iijima, Kazumoto

    2016-10-01

    X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the type IV collagen alpha chain 5 gene (COL4A5). Although many COL4A5 mutations have previously been identified, pathogenic synonymous mutations have not yet been described. A family with XLAS underwent mutational analyses of COL4A5 by PCR and direct sequencing, as well as transcript analysis of potential splice site mutations. In silico analysis was also conducted to predict the disruption of splicing factor binding sites. Immunohistochemistry (IHC) of kidney biopsies was used to detect α2 and α5 chain expression. We identified a hemizygous point mutation, c.876A>T, in exon 15 of COL4A5 in the proband and his brother, which is predicted to result in a synonymous amino acid change, p.(Gly292Gly). Transcript analysis showed that this mutation potentially altered splicing because it disrupted the splicing factor binding site. The kidney biopsy of the proband showed lamellation of the glomerular basement membrane (GBM), while IHC revealed negative α5(IV) staining in the GBM and Bowman's capsule, which is typical of XLAS. This is the first report of a synonymous COL4A5 substitution being responsible for XLAS. Our findings suggest that transcript analysis should be conducted for the future correct assessment of silent mutations.

  5. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  6. Bedfordshire County Structure Plan. Proposed alterations -Public participation statement. Policy 97: Nuclear waste

    International Nuclear Information System (INIS)

    1984-01-01

    The document describes steps taken, in accord with the Town and Country Planning Act 1971, by Bedfordshire County Council, submitting proposed Alterations to the County Structure Plan to the Secretary of State for the Environment. When approving the submission the Council decided to add an additional Alteration dealing with nuclear waste: as this had not been the subject of public consultation the Council decided to seek the public's views on the proposal before submitting the Alteration. The arrangements for consultation and a list of persons and organizations consulted are given, together with the arrangements for considering comments. (U.K.)

  7. Bedfordshire County Structure Plan. Proposed alterations. Results of public consultation. Policy 97: Nuclear waste

    International Nuclear Information System (INIS)

    1984-01-01

    The document refers to Alterations to the County Structure Plan, proposed by Bedfordshire County Council and submitted to the Secretary of State for the Environment. An additional Alteration initiated at the County Council's meeting, dealing with nuclear waste, had not been the subject of prior public consultation. Consultation had since been arranged, and the present document summarises the responses that have been received, and describes the next action to be taken. (U.K.)

  8. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  9. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  10. Modern collagen wound dressings: function and purpose.

    Science.gov (United States)

    Fleck, Cynthia Ann; Simman, Richard

    2010-09-01

    Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.

  11. Metal stabilization of collagen and de novo designed mimetic peptides

    OpenAIRE

    Parmar, Avanish S.; Xu, Fei; Pike, Douglas H.; Belure, Sandeep V.; Hasan, Nida F.; Drzewiecki, Kathryn E.; Shreiber, David I.; Nanda, Vikas

    2015-01-01

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacen...

  12. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    Science.gov (United States)

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  13. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  14. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties. PMID:24968150

  15. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2014-06-01

    crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.

  16. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.

  17. Orchestration of Structural, Stereoelectronic, and Hydrogen-Bonding Effects in Stabilizing Triplexes from Engineered Chimeric Collagen Peptides (Pro(X)-Pro(Y)-Gly)6 Incorporating 4(R/S)-Aminoproline.

    Science.gov (United States)

    Umashankara, Muddegowda; Sonar, Mahesh V; Bansode, Nitin D; Ganesh, Krishna N

    2015-09-04

    Collagens are an important family of structural proteins found in the extracellular matrix with triple helix as the characteristic structural motif. The collagen triplex is made of three left-handed polyproline II (PPII) helices with each PPII strand consisting of repetitive units of the tripeptide motif X-Y-Gly, where the amino acids X and Y are most commonly proline (Pro) and 4R-hydroxyproline (Hyp), respectively. A C4-endo pucker at X-site and C4-exo pucker at Y-site have been proposed to be the key for formation of triplex, and the nature of pucker is dependent on both the electronegativity and stereochemistry of the substituent. The present manuscript describes a new class of collagen analogues-chimeric cationic collagens-wherein both X- and Y-sites in collagen triad are simultaneously substituted by a combination of 4(R/S)-(OH/NH2/NH3(+)/NHCHO)-prolyl units and triplex stabilities measured at different pHs and in EG:H2O. Based on the results a model has been proposed with the premise that any factors which specifically favor the ring puckers of C4-endo at X-site and C4-exo at Y-site stabilize the PPII conformation and hence the derived triplexes. The pH-dependent triplex stability uniquely observed with ionizable 4-amino substituent on proline enables one to define the critical combination of factors C4-(exo/endo), intraresidue H-bonding, stereoelectronic (R/S) and n → π* interactions in dictating the triplex strength. The ionizable NH2 substituent at C4 in R/S configuration is thus a versatile probe for delineating the triplex stabilizing factors and the results have potential for designing of collagen analogues with customized properties for material and biological applications.

  18. Influence of the freezing process on the pore structure of freeze-dried collagen sponges; Einfluss des Einfriervorganges auf die Porenstruktur gefriergetrockneter Kollagenschwaemme

    Energy Technology Data Exchange (ETDEWEB)

    Schoof, H.; Bruns, L.; Apel, J.; Heschel, I.; Rau, G. [Helmholz-Inst. fuer Biomedizinische Technik, Aachen (Germany)

    1997-12-31

    Freeze-dried sponges are used as colonisable tissue implants. As their porous structure is important for rapid colonisation it was found desirable to be able to produce homogeneous pore structures to specification. The structure of freeze-dried sponges is largely the same as the ice crystal morphology of frozen samples. In industrial manufacture suspensions are solidified in a cold bath. Freezing conditions are not stationary in this process, rendering ice crystal morphology inhomogeneous. However, studies on directed solidification as it is used in the Bridgman or the power-down method have shown that certain freezing conditions permit the production of collagen sponges of homogenous predefined pore size. [Deutsch] Gefriergetrocknete Kollagenschwaemme werden als besiedelbare Gewebeimplantate eingesetzt. Da die poroese Struktur fuer eine zuegige Besiedelung von grosser Bedeutung ist, sollen Kollagenschwaemme mit einer einstellbaren und homogenen Porenstruktur hergestellt werden. Die Struktur der gefriergetrockneten Schwaemme entspricht weitestgehend der Eiskristallmorphologie der gefrorenen Probe. Bei der industriellen Herstellung werden Suspensionen in einem Kaeltebad erstarrt. Die Einfrierbedingungen sind dabei nicht stationaer, was zu einer inhomogenen Eiskristallmorphologie fuehrt. Untersuchungen zur gerichteten Erstarrung nach dem Bridgman- und dem Power-Down-Verfahren ergaben jedoch, dass unter bestimmten Einfrierbedingungen Kollagenschwaemme mit homogener und definierbarer Porengroesse hergestellt werden koennen. (orig.)

  19. Collagen gene interactions and endurance running performance

    African Journals Online (AJOL)

    to complete any of the individual components (3.8 km swim, 180 km bike or 42.2 km run) of the 226 km event. The major ... may affect normal collagen fibrillogenesis and alter the mechanical properties of ... using a XP Thermal Cycler (Block model XP-G, BIOER Technology Co.,. Japan). ..... New insights into the function of.

  20. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Seishiro, E-mail: seishiro@nies.go.jp [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Fujitani, Yuji; Furuyama, Akiko [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Kanno, Sanae [Department of Legal Medicine, St. Marianna School of Medicine (Japan)

    2012-02-15

    The toxicity of carbon nanotubes (CNTs), a highly promising nanomaterial, is similar to that of asbestos because both types of particles have a fibrous shape and are biopersistent. Here, we investigated the characteristics of macrophage receptor with collagenous structure (MARCO), a membrane receptor expressed on macrophages that recognizes environmental or unopsonized particles, and we assessed whether and how MARCO was involved in cellular uptake of multi-walled CNTs (MWCNTs). MARCO-transfected Chinese hamster ovary (CHO-K1) cells took up polystyrene beads irrespective of the particle size (20 nm–1 μm). In the culture of MARCO-transfected CHO-K1 cells dendritic structures were observed on the bottom of culture dishes, and the edges of these dendritic structures were continually renewed as the cell body migrated along the dendritic structures. MWCNTs were first tethered to the dendritic structures and then taken up by the cell body. MWCNTs appeared to be taken up via membrane ruffling like macropinocytosis, rather than phagocytosis. The cytotoxic EC{sub 50} value of MWCNTs in MARCO-transfected CHO-K1 cells was calculated to be 6.1 μg/mL and transmission electron microscopic observation indicated that the toxicity of MWCNTs may be due to the incomplete inclusion of MWCNTs by the membrane structure. -- Highlights: ►Carbon nanotubes (CNTs) were tethered to MARCO in vitro. ►CNTs were taken up rapidly into the cell body via MARCO by membrane ruffling. ►The incomplete inclusion of CNTs by membranes caused cytotoxicity.

  1. Probing the 3-D Structure, Dynamics, and Stability of Bacterial Collagenase Collagen Binding Domain (apo- versus holo-) by Limited Proteolysis MALDI-TOF MS

    Science.gov (United States)

    Sides, Cynthia R.; Liyanage, Rohana; Lay, Jackson O.; Philominathan, Sagaya Theresa Leena; Matsushita, Osamu; Sakon, Joshua

    2012-03-01

    Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.

  2. Fibrous mini-collagens in hydra nematocysts.

    Science.gov (United States)

    Holstein, T W; Benoit, M; Herder, G V; David, C N; Wanner, G; Gaub, H E

    1994-07-15

    Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic force microscopy and field emission scanning electron microscopy reveal the structure of the nematocyst capsule wall. The outer wall consists of globular proteins of unknown function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50 to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

  3. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.

    Science.gov (United States)

    Andriotis, Orestis G; Desissaire, Sylvia; Thurner, Philipp J

    2018-03-21

    Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.

  4. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  5. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  6. Connective matrix organization in human pulmonary fibrosis. Collagen polymorphism analysis in fibrotic deposits by immunohistological methods.

    Science.gov (United States)

    Takiya, C; Peyrol, S; Cordier, J F; Grimaud, J A

    1983-01-01

    In the interstitium of the alveolar septa in the peripheral parts of the lung, four molecular types of collagen (I, III, IV and V) each with different morphological appearances, can be identified. The structural integrity of collagens accounts for the physiological efficiency of the lung. Fibrous thickening of alveolar septa is an invariable result of various diseases affecting the interstitium of the lung. The light and electron microscopic findings, and the immunological typing of collagens in six cases of fibrotic alveolar disease, are described. In the alveolar septa, two different compartments (the alveolo-capillary junction and the supportive axis) were affected by fibrosis: the alveolo-capillary junction was widened by the addition of interstitial collagens to basement membranes. In the axis, the increase of interstitial (types I and III) collagen gave rise to different patterns of connective matrix organization, graded as Loose or Dense depending on quantitative alterations of the type I/III ratio. The mode of organization of the fibrotic lung connective matrix, which depends on the quality of deposits in the matrix, may be correlated with the evolution of interstitial pulmonary fibrosis, in terms of its stability, remodelling ability and reversibility.

  7. Biomarkers of the extracellular matrix and of collagen fragments.

    Science.gov (United States)

    Chalikias, Georgios K; Tziakas, Dimitrios N

    2015-03-30

    A great body of evidence has shown that extracellular matrix (ECM) alterations are present in the major types of cardiac diseases: ischemic heart disease, heart disease associated with pressure overload, heart disease associated with volume overload, and intrinsic myocardial disease or cardiomyopathy. Collagen, type I and III, is the principal structural protein found in the myocardium and its pro- or telopeptides are released into the circulation during the course of cardiovascular diseases. Therefore, these peptides may reflect collagen synthesis and break-down and also represent a much more useful tool to address ECM changes from a distance. Clinical trials have been performed during recent years to examine the usage of these peptides as diagnostic or prognostic biomarkers in heart failure (HF) patients. This review aims to summarize published data concerning cardiac ECM and its circulating biomarkers. Studies that focused on collagen metabolism related biomarkers in patients with HF are analyzed. Finally, limitations associated with the clinical use of the aforementioned biomarkers are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel Hargbøl; Jürgensen, Henrik Jessen; Siersbæk, Majken Storm

    2017-01-01

    -associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage......-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation. Madsen et...

  9. Structural hippocampal network alterations during healthy aging: A multi-modal MRI study

    Directory of Open Access Journals (Sweden)

    Amandine ePelletier

    2013-12-01

    Full Text Available While hippocampal atrophy has been described during healthy aging, few studies have examined its relationship with the integrity of White Matter (WM connecting tracts of the limbic system. This investigation examined WM structural damage specifically related to hippocampal atrophy in healthy aging subjects (n=129, using morphological MRI to assess hippocampal volume and Diffusion Tensor Imaging (DTI to assess WM integrity. Subjects with Mild Cognitive Impairment (MCI or dementia were excluded from the analysis. In our sample, increasing age was significantly associated with reduced hippocampal volume and reduced Fractional Anisotropy (FA at the level of the fornix and the cingulum bundle. The findings also demonstrate that hippocampal atrophy was specifically associated with reduced FA of the fornix bundle, but it was not related to alteration of the cingulum bundle. Our results indicate that the relationship between hippocampal atrophy and fornix FA values is not due to an independent effect of age on both structures. A recursive regression procedure was applied to evaluate sequential relationships between the alterations of these two brain structures. When both hippocampal atrophy and fornix FA values were included in the same model to predict age, fornix FA values remained significant whereas hippocampal atrophy was no longer significantly associated with age. According to this latter finding, hippocampal atrophy in healthy aging could be mediated by a loss of fornix connections. Structural alterations of this part of the limbic system, which have been associated with neurodegeneration in Alzheimer’s disease, result at least in part from the aging process.

  10. Cosmetic Potential of Marine Fish Skin Collagen

    Directory of Open Access Journals (Sweden)

    Ana L. Alves

    2017-10-01

    Full Text Available Many cosmetic formulations have collagen as a major component because of its significant benefits as a natural humectant and moisturizer. This industry is constantly looking for innovative, sustainable, and truly efficacious products, so marine collagen based formulations are arising as promising alternatives. A solid description and characterization of this protein is fundamental to guarantee the highest quality of each batch. In the present study, we present an extensive characterization of marine-derived collagen extracted from salmon and codfish skins, targeting its inclusion as component in cosmetic formulations. Chemical and physical characterizations were performed using several techniques such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE, Fourier Transformation Infrared (FTIR spectroscopy rheology, circular dichroism, X-ray diffraction, humidity uptake, and a biological assessment of the extracts regarding their irritant potential. The results showed an isolation of type I collagen with high purity but with some structural and chemical differences between sources. Collagen demonstrated a good capacity to retain water, thus being suitable for dermal applications as a moisturizer. A topical exposure of collagen in a human reconstructed dermis, as well as the analysis of molecular markers for irritation and inflammation, exhibited no irritant potential. Thus, the isolation of collagen from fish skins for inclusion in dermocosmetic applications may constitute a sustainable and low-cost platform for the biotechnological valorization of fish by-products.

  11. Epidemiological analysis of structural alterations of the nasal cavity associated with obstructive sleep apnea syndrome (OSA).

    Science.gov (United States)

    Mekhitarian Neto, Levon; Fava, Antonio Sérgio; Lopes, Hugo Canhete; Stamm, Aldo

    2005-01-01

    The objective of this paper is to demonstrate that structural alterations of the nasal cavity, e.g. septal deviation and conchal hypertrophy have high incidence in patients with sleep apnea and hypopnea syndrome and must be addressed with associated specific procedures of the syndrome. Clinical retrospective. A retrospective study of 200 patients was performed, with 196 male and 4 female, attended at the otorhinolaryngology ambulatory of Hospital Prof. Edmundo Vasconcelos and Unidade Paulista de Otorrinolaringologia, all of them subjected to polysomnography, otorhinolaryngological physical exam, endoscopy exam, and surgical treatment with nasal and pharyngeal procedures. All of them were subjected to pharyngeal procedure: uvulopalatopharyngoplasty or uvulopalatoplasty and nose procedure: 176 septoplasty with partial turbinectomy (88%) and 24 isolated turbinectomy, with satisfactory results. We can see that structural alterations of the nasal cavity have high incidence in patients with OSA.

  12. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure

    International Nuclear Information System (INIS)

    Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan; Rao, A.L.N.

    2011-01-01

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids 28 QPVIV 32 , highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a β-hexamer structure. In this study we report that alteration of the β-hexamer structure by mutating 28 QPVIV 32 to 28 AAAAA 32 had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having β-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  13. In Situ Polymorphic Alteration of Filler Structures for Biomimetic Mechanically Adaptive Elastomer Nanocomposites.

    Science.gov (United States)

    Natarajan, Tamil Selvan; Okamoto, Shigeru; Stöckelhuber, Klaus Werner; Wießner, Sven; Reuter, Uta; Fischer, Dieter; Ghosh, Anik Kumar; Heinrich, Gert; Das, Amit

    2018-04-30

    A mechanically adaptable elastomer composite is prepared with reversible soft-stiff properties that can be easily controlled. By the exploitation of different morphological structures of calcium sulfate, which acts as the active filler in a soft elastomer matrix, the magnitude of filler reinforcement can be reversibly altered, which will be reflected in changes of the final stiffness of the material. The higher stiffness, in other words, the higher modulus of the composites, is realized by the in situ development of fine nanostructured calcium sulfate dihydrate crystals, which are formed during exposure to water and, further, these highly reinforcing crystals can be transformed to a nonreinforcing hemihydrate mesocrystalline structure by simply heating the system in a controlled way. The Young's modulus of the developed material can be reversibly altered from ∼6 to ∼17 MPa, and the dynamic stiffness (storage modulus at room temperature and 10 Hz frequency) alters its value in the order of 1000%. As the transformation is related to the presence of water molecules in the crystallites, a hydrophilic elastomer matrix was selected, which is a blend of two hydrophilic polymers, namely, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer and a terpolymer of ethylene oxide-propylene oxide-allyl glycidyl ether. For the first time, this method also provides a route to regulate the morphology and structure of calcium sulfate nanocrystals in a confined ambient of cross-linked polymer chains.

  14. Do structural changes (eg, collagen/matrix) explain the response to therapeutic exercises in tendinopathy: a systematic review.

    Science.gov (United States)

    Drew, Benjamin T; Smith, Toby O; Littlewood, Chris; Sturrock, Ben

    2014-06-01

    Previous reviews have highlighted the benefit of loaded therapeutic exercise in the treatment of tendinopathy. Changes in observable structural outcomes have been suggested as a possible explanation for this response to therapeutic exercise. However, the mechanism for the efficacy of therapeutic exercise remains unclear. To systematically review the relationship between the observable structural change and clinical outcomes following therapeutic exercise. An electronic search of AMED, CiNAHL, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PEDro and SPORTDiscus was undertaken from their inception to June 2012. Any study design that incorporated observable structural outcomes and clinical outcomes when assessing the effect of therapeutic exercise on participants with tendinopathy. Included studies were appraised for risk of bias using the tool developed by the Cochrane Back Review Group. Due to heterogeneity of studies, a qualitative synthesis was undertaken. Twenty articles describing 625 patients were included. Overall, there is a strong evidence to refute any observable structural change as an explanation for the response to therapeutic exercise when treated by eccentric exercise training. Moderate evidence does exist to support the response of heavy-slow resistance training (HSR). The available literature does not support observable structural change as an explanation for the response of therapeutic exercise except for some support from HSR. Future research should focus on indentifying other explanations including neural, biochemical and myogenic changes. Registered with PROSPERO, registration number CRD42011001638. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Chronic ethanol intake leads to structural and molecular alterations in the rat endometrium.

    Science.gov (United States)

    Martinez, Marcelo; Milton, Flora A; Pinheiro, Patricia Fernanda F; Almeida-Francia, Camila C D; Cagnon-Quitete, Valeria H A; Tirapelli, Luiz F; Padovani, Carlos Roberto; Chuffa, Luiz Gustavo A; Martinez, Francisco Eduardo

    2016-05-01

    We described the effects of low- and high-dose ethanol intake on the structure and apoptosis signaling of the uterine endometrium of UChA and UChB rats (animals with voluntary ethanol consumption). Thirty adult female rats, 90 days old, were divided into three groups (n = 10/group): UChA rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking Chronic ethanol intake leads to structural and molecular alterations in the uterine endometrium of UCh rats, regardless of low- or high-dose consumption, promoting reproductive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    Science.gov (United States)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-03-11

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.

  17. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  18. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  19. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  20. Structural and Functional Alterations in Neocortical Circuits after Mild Traumatic Brain Injury

    Science.gov (United States)

    Vascak, Michal

    National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structuralfunctional alterations of excitatory and

  1. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.

    Science.gov (United States)

    Hirano, Seiichi; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-03-17

    The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets bearing a PAM (protospacer adjacent motif) and complementarity to the guide RNA. A recent study showed that, whereas wild-type Streptococcus pyogenes Cas9 (SpCas9) recognizes the 5'-NGG-3' PAM, the engineered VQR, EQR, and VRER SpCas9 variants recognize the 5'-NGA-3', 5'-NGAG-3', and 5'-NGCG-3' PAMs, respectively, thus expanding the targetable sequences in Cas9-mediated genome editing applications. Here, we present the high-resolution crystal structures of the three SpCas9 variants in complexes with a single-guide RNA and its altered PAM-containing, partially double-stranded DNA targets. A structural comparison of the three SpCas9 variants with wild-type SpCas9 revealed that the multiple mutations synergistically induce an unexpected displacement in the phosphodiester backbone of the PAM duplex, thereby allowing the SpCas9 variants to directly recognize the altered PAM nucleotides. Our findings explain the altered PAM specificities of the SpCas9 variants and establish a framework for further rational engineering of CRISPR-Cas9. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The collagen microfibril model, a tool for biomaterials scientists

    Science.gov (United States)

    Animal hides, a major byproduct of the meat industry, are a rich source of collagen, a structural protein of the extracellular matrix that gives strength and form to the skin, tendons and bones of mammals. The structure of fibrous collagen, a long triple helix that self-associates in a staggered arr...

  3. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2017-01-01

    Full Text Available Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI. The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11 and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11 were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1 and left primary motor cortex (BA4, and left BA1 and left somatosensory association cortex (BA5 was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI

  4. Collagen Quantification in Tissue Specimens.

    Science.gov (United States)

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  5. Kinetics of radiation-induced structural alterations in electron-irradiated polymer-based composites

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Potanin, A.S.; Koztaeva, U.P.

    2002-01-01

    Complete text of publication follows. In our previous studies measurements of internal friction temperature dependence were used for characterization of thermally activated and radiation-induced structural evolution in different types of polymer-based composites. This paper supplements these measurements with kinetic studies of internal friction (IF) parameters and EPR signals in a glass-cloth epoxy-filled laminate ST-ETF after electron irradiation up to doses of 1-10 MGy. Experiment have shown that the lifetime of free radicals in this composite considerably exceeds the characteristic time of molecular structural rearrangement due to scission and cross-linking after irradiation, as determined from IF measurements. This result is explained by slow proceeding of sterically hindered disproportionation reactions that stabilize the end groups of the macro-chain disrupt during irradiation and finally fix the act of scission. A mathematical model is formulated for description of structural evolution and alterations of IF parameters in polymer-based composites during and after electron irradiation. The description is based on the track model of radiation damage in polymers and phenomenological theory of radiation-induced structural transformations. General description does not give details of radiation-chemical conversion in different structural components of composites but indicates the direction of their structural evolution. In the model considered a composite material was divided into three parts (binder, filler, and a boundary layer). It was supposed that after primary distribution of radiation energy radiation-chemical conversion proceeds independently in each of these regions. It was also suggested that all the radical reactions were of the second order. On the example of glass-cloth laminate ST-ETF it is shown that this model allows to describe alterations in composite structural characteristics during irradiation and in the course of their self-organization after

  6. The decorin sequence SYIRIADTNIT binds collagen type I

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Oldberg, Ake

    2007-01-01

    Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site......-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine-rich repeat 6 as crucial for the binding to collagen. The synthetic peptide SYIRIADTNIT, which includes Arg-207 and Asp-210, inhibits the binding of full-length recombinant decorin to collagen in vitro....... These collagen-binding amino acids are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat. This resembles the location of interacting residues in other leucine-rich repeat proteins....

  7. Co-ordinate induction of collagen type I and biglycan expression in keloids.

    Science.gov (United States)

    Hunzelmann, N; Anders, S; Sollberg, S; Schönherr, E; Krieg, T

    1996-09-01

    Proteoglycans are macromolecules displaying structural roles as well as regulatory functions in the maintenance of the extracellular matrix. Biglycan/PG-I and decorin/PG-II are two small proteoglycans that are structurally related but differ considerably in their localization in vivo and behaviour in vitro. Decorin and, to a minor extent, biglycan, can be located at the surface of type I collagen fibrils and have been shown to influence collagen fibrillogenesis. However, the physiological role of biglycan in the dermis is not known. Biopsies obtained from keloids were bisected and processed for total RNA extraction and immunohistochemistry. Northern blot analysis of total RNA obtained from keloids with high growth tendency in vivo showed a marked induction of biglycan and collagen alpha 1(I)mRNA expression in comparison with total RNA obtained from normal skin or keloids with little growth tendency. In contrast, decorin mRNA expression remained largely unaltered. Studying these biopsies by immunohistochemistry, decorin expression in the dermis was unaltered comparing normal and keloid tissue, whereas a markedly increased staining for biglycan was observed in the keloid tissue, which was most pronounced in the nodular formations, and was a characteristic feature of keloids. The altered expression of biglycan in keloid tissue might be involved in the abnormal regulation of extracellular matrix deposition either through the binding of growth factors or by influencing the three-dimensional organization of collagen fibres or associated molecules.

  8. Quantitative evaluation of redox ratio and collagen characteristics during breast cancer chemotherapy using two-photon intrinsic imaging.

    Science.gov (United States)

    Wu, Shulian; Huang, Yudian; Tang, Qinggong; Li, Zhifang; Horng, Hannah; Li, Jiatian; Wu, Zaihua; Chen, Yu; Li, Hui

    2018-03-01

    Preoperative neoadjuvant treatment in locally advanced breast cancer is recognized as an effective adjuvant therapy, as it improves treatment outcomes. However, the potential complications remain a threat, so there is an urgent clinical need to assess both the tumor response and changes in its microenvironment using non-invasive and precise identification techniques. Here, two-photon microscopy was employed to detect morphological alterations in breast cancer progression and recession throughout chemotherapy. The changes in structure were analyzed based on the autofluorescence and collagen of differing statuses. Parameters, including optical redox ratio, the ratio of second harmonic generation and auto-fluorescence signal, collagen density, and collagen shape orientation, were studied. Results indicate that these parameters are potential indicators for evaluating breast tumors and their microenvironment changes during progression and chemotherapy. Combined analyses of these parameters could provide a quantitative, novel method for monitoring tumor therapy.

  9. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  10. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs

    KAUST Repository

    Cerezo, Maria Isabel

    2015-11-01

    One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers\\' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure.

  11. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs

    KAUST Repository

    Cerezo, Maria Isabel; Agusti, Susana

    2015-01-01

    One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure.

  12. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    Science.gov (United States)

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  13. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.

    Science.gov (United States)

    Nishimasu, Hiroshi; Yamano, Takashi; Gao, Linyi; Zhang, Feng; Ishitani, Ryuichiro; Nureki, Osamu

    2017-07-06

    The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.

    Science.gov (United States)

    Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L

    2016-11-01

    Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Swimming exercise reverses aging-related contractile abnormalities of female heart by improving structural alterations.

    Science.gov (United States)

    Ozturk, Nihal; Olgar, Yusuf; Er, Hakan; Kucuk, Murathan; Ozdemir, Semir

    2017-01-01

    The objective of this study was to examine the effect of swimming exercise on aging-related Ca2+ handling alterations and structural abnormalities of female rat heart. For this purpose, 4-month and 24-month old female rats were used and divided into three following groups: sedentary young (SY), sedentary old (SO), and exercised old (Ex-O). Swimming exercise was performed for 8 weeks (60 min/day, 5 days/week). Myocyte shortening, L-type Ca2+ currents and associated Ca2+ transients were measured from ventricular myocytes at 36 ± 1°C. NOX-4 levels, aconitase activity, glutathione measurements and ultrastructural examination by electron microscopy were conducted in heart tissue. Swimming exercise reversed the reduced shortening and slowed kinetics of aged cardiomyocytes. Although the current density was similar for all groups, Ca2+ transients were higher in SO and Ex-O myocytes with respect to the SY group. Caffeine-induced Ca2+ transients and the integrated NCX current were lower in cardiomyocytes of SY rats compared with other groups, suggesting an increased sarcoplasmic reticulum Ca2+ content in an aged heart. Aging led to upregulated cardiac NOX-4 along with declined aconitase activity. Although it did not reverse these oxidative parameters, swimming exercise achieved a significant increase in glutathione levels and improved structural alterations of old rats' hearts. We conclude that swimming exercise upregulates antioxidant defense capacity and improves structural abnormalities of senescent female rat heart, although it does not change Ca2+ handling alterations further. Thereby, it improves contractile function of aged myocardium by mitigating detrimental effects of oxidative stress.

  16. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  17. Collagen synthesis in CBA mouse heart after total thoracic irradiation

    International Nuclear Information System (INIS)

    Murray, J.C.; Parkins, C.S.; Institute of Cancer Research, Sutton

    1988-01-01

    CBA mice were irradiated to the whole thorax with single doses of 240 kVp X-rays in the dose range 8-16 Gy. Collagen and total protein synthesis rates in the heart were measured at 2-monthly intervals using a radio-isotope incorporation techniques. Doses of 10 Gy or greater caused a slight increase in collagen synthesis, followed by significantly reduced collagen synthesis by 16 weeks or longer after treatment. The depression in synthesis appeared correspondingly earlier with increasing dose. Total protein synthesis in heart followed similar patterns although changes were not statistically significant, indicating that the changes reflected alterations to collagen synthesis specifally, and not protein synthesis in geneal. Total hydroxyproline measurements showed no significant changes in heart collagen at any time as a result of X-irradiation. 18 refs.; 7 figs

  18. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Ana Ortega

    Full Text Available BACKGROUND: The endoplasmic reticulum (ER is a multifunctional organelle responsible for the synthesis and folding of proteins as well as for signalling and calcium storage, that has been linked to the contraction-relaxation process. Perturbations of its homeostasis activate a stress response in diseases such as heart failure (HF. To elucidate the alterations in ER molecular components, we analyze the levels of ER stress and structure proteins in human dilated (DCM and ischemic (ICM cardiomyopathies, and its relationship with patient's functional status. METHODS AND RESULTS: We examined 52 explanted human hearts from DCM (n = 21 and ICM (n = 21 subjects and 10 non-failing hearts as controls. Our results showed specific changes in stress (IRE1, p<0.05; p-IRE1, p<0.05 and structural (Reticulon 1, p<0.01 protein levels. The stress proteins GRP78, XBP1 and ATF6 as well as the structural proteins RRBP1, kinectin, and Nogo A and B, were upregulated in both DCM and ICM patients. Immunofluorescence results were concordant with quantified Western blot levels. Moreover, we show a novel relationship between stress and structural proteins. RRBP1, involved in procollagen synthesis and remodeling, was related with left ventricular function. CONCLUSIONS: In the present study, we report the existence of alterations in ER stress response and shaping proteins. We show a plausible effect of the ER stress on ER structure in a suitable sample of DCM and ICM subjects. Patients with higher values of RRBP1 had worse left ventricular function.

  19. Structural brain alterations in patients with lumbar disc herniation: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Michael Luchtmann

    Full Text Available Chronic pain is one of the most common health complaints in industrial nations. For example, chronic low back pain (cLBP disables millions of people across the world and generates a tremendous economic burden. While previous studies provided evidence of widespread functional as well as structural brain alterations in chronic pain, little is known about cortical changes in patients suffering from lumbar disc herniation. We investigated morphometric alterations of the gray and white matter of the brain in patients suffering from LDH. The volumes of the gray and white matter of 12 LDH patients were determined in a prospective study and compared to the volumes of healthy controls to distinguish local differences. High-resolution MRI brain images of all participants were performed using a 3 Tesla MRI scanner. Voxel-based morphometry was used to investigate local differences in gray and white matter volume between patients suffering from LDH and healthy controls. LDH patients showed significantly reduced gray matter volume in the right anterolateral prefrontal cortex, the right temporal lobe, the left premotor cortex, the right caudate nucleus, and the right cerebellum as compared to healthy controls. Increased gray matter volume, however, was found in the right dorsal anterior cingulate cortex, the left precuneal cortex, the left fusiform gyrus, and the right brainstem. Additionally, small subcortical decreases of the white matter were found adjacent to the left prefrontal cortex, the right premotor cortex and in the anterior limb of the left internal capsule. We conclude that the lumbar disk herniation can lead to specific local alterations of the gray and white matter in the human brain. The investigation of LDH-induced brain alterations could provide further insight into the underlying nature of the chronification processes and could possibly identify prognostic factors that may improve the conservative as well as the operative treatment of the

  20. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin

    DEFF Research Database (Denmark)

    Sasaki, T; Brakebusch, C; Engel, J

    1998-01-01

    Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resis...... in the extracellular matrix of several mouse tissues....... in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1...

  1. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    International Nuclear Information System (INIS)

    Stylianou, Andreas; Yova, Dido; Alexandratou, Eleni

    2014-01-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films

  2. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stylianou, Andreas, E-mail: styliand@mail.ntua.gr; Yova, Dido; Alexandratou, Eleni

    2014-12-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films.

  3. Systemic and local collagen turnover in hernia patients

    DEFF Research Database (Denmark)

    Henriksen, Nadia A

    2016-01-01

    composition appears altered in fascial tissue but also in skin biopsies, suggesting that the collagen alterations are systemic. More pronounced collagen alterations are found in patients with hernia recurrences. Hypothetically, primary inguinal hernias are formed due to a systemic predisposition to altered...... connective tissue, whereas impaired healing influences on the development of incisional hernias and hernia recurrences. The overall objective of this thesis was to investigate the collagen turnover systemically and locally in patients with primary inguinal hernia, multiple hernias and incisional hernia...... repair after adjustment for gender, age and surgical approach. In a multivariable subgroup analysis, direct and recurrent inguinal hernia repair were associated with primary ventral hernia surgery, whereas only recurrent inguinal hernia repair was associated with secondary ventral hernia surgery...

  4. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks.

    Science.gov (United States)

    Labus, Jennifer S; Dinov, Ivo D; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A; Joshi, Shantanu; Thompson, Paul M; Toga, Arthur W; Mayer, Emeran A

    2014-01-01

    Alterations in gray matter (GM) density/volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with differing chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at University of California, Los Angeles, Los Angeles, CA, USA, between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32±10 SD, 119 healthy controls [HCs], 30±10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between the group with IBS and the HC group. Relative to HCs, the IBS group had lower volumes in the bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found in the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for the Early Trauma Inventory global score, with the exception of the right amygdala and the left postcentral gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, in patients with IBS, the right cingulate gyrus and right thalamus were identified as being significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in patients with IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    International Nuclear Information System (INIS)

    Visai, L.; Speziale, P.; Bozzini, S.

    1990-01-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides [alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4] were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure

  6. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  7. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  8. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  9. Canopy structural alterations to nitrogen functions of the soil microbial community in a Quercus virginiana forest

    Science.gov (United States)

    Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.

    2014-12-01

    Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.

  10. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    Science.gov (United States)

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  11. Collagen metabolism in obesity

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... (r = 0.37; P = 0.004), height (r = 0.27; P = 0.04), waist circumference (r = 0.35; P = 0.007), as well as with WHR (r = 0.33; P = 0.01) and was inversely correlated to age (r = -0.40; P = 0.002). Compared with randomly selected controls from a large pool of healthy volunteers, the obese patients had...... restriction (P obesity and associated with body fat distribution, suggesting...

  12. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia; Leggio, Livio; Leone, Roberta; Di Benedetto, Cristiano; Guidetti, Luca; Coccè , Valentina; Ascagni, Miriam; Bonasoro, Francesco; La Porta, Caterina A.M.; Candia Carnevali, M. Daniela; Sugni, Michela

    2016-01-01

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  13. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  14. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging.

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K; Ghimire, Hemendra M; Almabadi, Huda M; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-03-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  15. Peripheral hepatic arterial embolization with cross-linked collagen fibers

    International Nuclear Information System (INIS)

    Daniels, J.R.; Kerlan, R.K. Jr.; Dodds, L.; McLaughlin, P.; La Berge, J.M.; Harrington, D.; Daniels, A.M.; Ring, E.J.

    1986-01-01

    Hepatic artery embolization with a nonimmunogenic, cross-linked collagen preparation (Angiostat, collagen for embolization, Target Therapeutics) was studied in mongrel dogs. Flow-directed technique was used to achieve complete distal arterial occlusion. Serial liver function evaluation demonstrated marked alterations at 48 to 72 hours, partial correction at 1 week, and resolution of abnormalities by 1 month. Restoration of large-vessel blood flow was angiographically demonstrable at 1 week. Recanalization, achieved by migration of endothelial cells around the collagen, resulted in complete restoration of normal hepatic vascular and tissue anatomy at 1 month. Repeated embolization at biweekly intervals was well tolerated

  16. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    International Nuclear Information System (INIS)

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-01-01

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, [ 35 S]-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall

  17. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mou, Younss; Lacampagne, Alain; Irving, Thomas; Scheuermann, Valérie; Blot, Stéphane; Ghaleh, Bijan; de Tombe, Pieter P.; Cazorla, Olivier

    2018-01-01

    Aim Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. Objective The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. Methods and results We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9 μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. Conclusions We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.

  18. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation

    Science.gov (United States)

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun

    2018-01-01

    Abstract Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice (Oryza rufipogon) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars (O. sativa), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression. PMID:29308123

  19. Structural alterations of the superior temporal gyrus in schizophrenia: Detailed subregional differences.

    Science.gov (United States)

    Ohi, K; Matsuda, Y; Shimada, T; Yasuyama, T; Oshima, K; Sawai, K; Kihara, H; Nitta, Y; Okubo, H; Uehara, T; Kawasaki, Y

    2016-05-01

    Reduced gray matter volumes in the superior temporal gyrus (STG) have been reported in patients with schizophrenia. Such volumetric abnormalities might denote alterations in cortical thickness, surface area, local gyrification or all of these factors. The STG can be anatomically divided into five subregions using automatic parcellation in FreeSurfer: lateral aspect of the STG, anterior transverse temporal gyrus of Heschl gyrus (HG), planum polare (PP) of the STG, planum temporale (PT) of the STG and transverse temporal sulcus. We acquired magnetic resonance imaging (MRI) 3T scans from 40 age- and sex-matched patients with schizophrenia and 40 healthy subjects, and the scans were automatically processed using FreeSurfer. General linear models were used to assess group differences in regional volumes and detailed thickness, surface area and local gyrification. As expected, patients with schizophrenia had significantly smaller bilateral STG volumes than healthy subjects. Of the five subregions in the STG, patients with schizophrenia showed significantly and marginally reduced volumes in the lateral aspect of the STG and PT of the STG bilaterally compared with healthy subjects. The volumetric alteration in bilateral lateral STG was derived from both the cortical thickness and surface area but not local gyrification. There was no significant laterality of the alteration in the lateral STG between patients and controls and no correlation among the structures and clinical characteristics. These findings suggest that of five anatomical subregions in the STG, the lateral STG is one of the most meaningful regions for brain pathophysiology in schizophrenia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy.

    Science.gov (United States)

    Hovhannisyan, V; Guo, H W; Hovhannisyan, A; Ghukasyan, V; Buryakina, T; Chen, Y F; Dong, C Y

    2014-05-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin-mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.

  1. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    DEFF Research Database (Denmark)

    Carlsen Melander, Eva Maria; Jürgensen, Henrik J; Madsen, Daniel H

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen...... as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important...

  2. alpha-Globin genes: thalassemic and structural alterations in a Brazilian population

    Directory of Open Access Journals (Sweden)

    M.R.S.C. Wenning

    2000-09-01

    Full Text Available Seven unrelated patients with hemoglobin (Hb H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aaT]. Among the 27 patients with structural alterations, 15 (of Italian descent had Hb Hasharon (alpha47Asp->His associated with the -alpha3.7 deletion, 4 (of Italian descent were heterozygous for Hb J-Rovigo (alpha53Ala->Asp, 4 (3 Blacks and 1 Caucasian were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys associated with the alpha+-thalassemia, 1 (Black was heterozygous for Hb G-Pest (alpha74Asp->Asn, 1 (Caucasian was heterozygous for Hb Kurosaki (alpha7Lys->Glu, 1 (Caucasian was heterozygous for Hb Westmead (alpha122His->Gln, and 1 (Caucasian was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val. Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.

  3. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  4. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    Science.gov (United States)

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  5. Alzheimer's-associated Aβ oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal

    International Nuclear Information System (INIS)

    Pitt, Jason; Roth, William; Lacor, Pascale; Smith, Amos B.; Blankenship, Matthew; Velasco, Pauline; De Felice, Fernanda; Breslin, Paul; Klein, William L.

    2009-01-01

    It now appears likely that soluble oligomers of amyloid-β 1-42 peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer's disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt Aβ oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble Aβ species, when assayed with both sequence- and conformation-specific Aβ antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (Aβ-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics.

  6. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    Directory of Open Access Journals (Sweden)

    Allyson P Mackey

    2012-08-01

    Full Text Available Diffusion tensor imaging (DTI techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA, have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23 who were enrolled in a course to prepare for the Law School Admission Test (LSAT, a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n=22. DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD in white matter connecting frontal cortices, and in mean diffusivity (MD within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  7. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH

    Directory of Open Access Journals (Sweden)

    Yuting Zhang

    2017-07-01

    Full Text Available Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007–2014 of applying chemical nitrogen, phosphorus and potassium (NPK fertilizers, composted manure or their combination to acidic (pH 5.8, near-neutral (pH 6.8 or alkaline (pH 8.4 Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (% of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%, Actinobacteria (19.7%, Chloroflexi (15.3% and Acidobacteria (12.6%; the medium dominant phyla were Bacterioidetes (5.3%, Planctomycetes (4.8%, Gemmatimonadetes (4.5%, Firmicutes (3.4%, Cyanobacteria (2.1%, Nitrospirae (1.8%, and candidate division TM7 (1

  8. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    Science.gov (United States)

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  9. Structural and functional alterations in Malpighian tubules as biomarkers of environmental pollution: synopsis and prospective.

    Science.gov (United States)

    Giglio, Anita; Brandmayr, Pietro

    2017-08-01

    Although a number of biomarkers of pollutant exposure have been identified in invertebrate species, little is known about the effect on Malpighian tubules playing an essential role in excretion and osmoregulation. Analyses of structural and functional alterations on this organ can be useful to predict the effects at the organism and population level in monitoring studies of environmental pollution. The aim of the present review is to provide a synthesis of existing knowledge on cellular damages induced by xenobiotics in Malpighian tubules both under laboratory and field conditions. We compared studies of exposure to pesticides and heavy metals as mainly environmental contaminants from anthropogenic activities. This report provided evidence that the exposure to xenobiotics has an effect on this organ and reinforces the need for further research integrating molecular biomarkers with analysis on Malpighian tubules. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations.

    Science.gov (United States)

    Sharma, Shashi; Saxena, Sandeep; Srivastav, Khushboo; Shukla, Rajendra K; Mishra, Nibha; Meyer, Carsten H; Kruzliak, Peter; Khanna, Vinay K

    2015-07-01

    The aim of the study was to determine plasma nitric oxide (NO) and lipid peroxide (LPO) levels in diabetic retinopathy and its association with severity of disease. Prospective observational study. A total of 60 consecutive cases and 20 healthy controls were included. Severity of retinopathy was graded according to early treatment diabetic retinopathy study (ETDRS) classification. Photoreceptor inner segment ellipsoid band (ISel) disruption and retinal pigment epithelium (RPE) alteration were graded using spectral domain optical coherence tomography. Data were statistically analyzed. Plasma thiobarbituric acid reactive substances, NO assay and reduced glutathione (GSH) were measured using standard protocol. Increased severity of diabetic retinopathy was significantly associated with increase in plasma levels of LPO (P diabetic retinopathy. For the first time, it has been demonstrated that increased plasma LPO, NO and decreased GSH levels are associated with in vivo structural changes in inner segment ellipsoid and RPE. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  11. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  12. Altered structural and functional thalamocortical networks in secondarily generalized extratemporal lobe seizures

    Directory of Open Access Journals (Sweden)

    Syu-Jyun Peng

    2017-01-01

    Full Text Available Structural and functional abnormalities in the thalamocortical network in primary generalized epilepsies or mesial temporal lobe epilepsy have recently been identified by voxel-wise analyses of neuroimaging. However, evidence is needed regarding the profiles of the thalamocortical network in patients with secondarily generalized seizures from focal neocortical sources. We used high-resolution T1-weighted, diffusion-tensor and resting-state functional MR imaging (rs-fMRI to examine 16 patients with secondarily generalized extratemporal lobe seizures and 16 healthy controls. All the patients were medically effective and MRI-negative. Using whole brain voxel-based morphometry (VBM to compare the patients with the normal controls, we observed significantly decreased gray matter (GM density in the thalamus and 3 frontal gyri and significantly reduced white matter (WM fractional anisotropy (FA in the bilateral anterior corona radiata of the patients. Alterations in the thalamocortical functional connectivity with different cortices were identified by the rs-fMRI analysis seeding of the whole thalamus. The prefrontal gyri with the greatest functional connectivity were also traced by seeding a sub-thalamic region that is demarcated in an atlas, in which the thalamic parcellation is based on the WM connectivity to the cortices. This sub-thalamic region anatomically contains the mediodorsal thalamic nucleus where, concordantly, there was a significant decrease in thalamic GM density in the VBM study. In contrast to the negative correlation between the disease duration and reduced thalamic densities and subcortical FA values, the strength of the functional thalamocortical connectivity had a paradoxical correlation. Our results conclusively indicate that generalized seizures with a focal cortical source are associated with structural and functional alterations in the thalamocortical network.

  13. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity.

    Science.gov (United States)

    Wang, Junkai; Fan, Yunli; Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity.

  14. Altered topological organization of white matter structural networks in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    Full Text Available OBJECTIVE: To investigate the topological alterations of the whole-brain white-matter (WM structural networks in patients with neuromyelitis optica (NMO. METHODS: The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups. RESULTS: The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri. CONCLUSION: Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.

  15. Brain structural alterations in obsessive-compulsive disorder patients with autogenous and reactive obsessions.

    Directory of Open Access Journals (Sweden)

    Marta Subirà

    Full Text Available Obsessive-compulsive disorder (OCD is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30 and reactive (n = 65 sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally, while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD.

  16. 6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation.

    Science.gov (United States)

    Marathias, V M; Sawicki, M J; Bolton, P H

    1999-07-15

    The ability to chemically synthesize biomolecules has opened up the opportunity to observe changes in structure and activity that occur upon single atom substitution. In favorable cases this can provide information about the roles of individual atoms. The substitution of 6-thioguanine (6SG) for guanine is a potentially very useful single atom substitution as 6SG has optical, photocrosslinking, metal ion binding and other properties of potential utility. In addition, 6-mercaptopurine is a clinically important pro-drug that is activated by conversion into 6SG by cells. The results presented here indicate that the presence of 6SG blocks the formation of quadruplex DNA. The presence of 6SG alters the structure and lowers the thermal stability of duplex DNA, but duplex DNA can be formed in the presence of 6SG. These results indicate that some of the cytotoxic activity of 6SG may be due to disruption of the quadruplex structures formed by telomere and other DNAs. This additional mode of action is consistent with the delayed onset of cytotoxicity.

  17. Altered brain structural connectivity in post-traumatic stress disorder: a diffusion tensor imaging tractography study.

    Science.gov (United States)

    Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu

    2013-09-25

    Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.

  18. Mechanisms of lamellar collagen formation in connective tissues.

    Science.gov (United States)

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of silver nanoparticles and hydroxyproline, administered in ovo, on the development of blood vessels and cartilage collagen structure in chicken embryos

    DEFF Research Database (Denmark)

    Beck, Iwona; Hotowy, Anna; Sawosz, Ewa

    2015-01-01

    . An assessment of the mass of embryo and selected organs was carried out followed by measurements of the expression of the key signalling factors' fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF-A). Finally, an evaluation of collagen microstructure using scanning electron...... microscopy was performed. Our results clearly indicate that Hyp, Ag and AgHyp administered in ovo to chicken embryos did not harm embryos. Comparing to the control group, Hyp, Ag and the AgHyp complex significantly upregulated expression of the FGF-2 at the mRNA and protein levels. Moreover, Hyp, Ag and......It has been considered that concentrations of certain amino acids in the egg are not sufficient to fully support embryonic development of modern broilers. In this study we evaluated embryo growth and development with particular emphasis on one of the major components of connective tissue, collagen...

  20. The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma.

    Directory of Open Access Journals (Sweden)

    Sally Hayes

    Full Text Available To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour.One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits were untreated; Group 2 (24 pig were exposed to UVA light (3.04 mW/cm(2 for 30 minutes and Group 3 (29 pig and Group 4 (31 pig, 3 sheep and 3 rabbits had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm(2. X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques.Corneal thickness decreased significantly following riboflavin application (p<0.01 and also to a lesser extent after UVA exposure (p<0.05. With the exception of the spatial order factor, which was higher in Group 4 than Group 1 (p<0.01, all other measured collagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant increase in its resistance to enzymatic digestion.It seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen.

  1. Stability and cellular responses to fluorapatite-collagen composites.

    Science.gov (United States)

    Yoon, Byung-Ho; Kim, Hae-Won; Lee, Su-Hee; Bae, Chang-Jun; Koh, Young-Hag; Kong, Young-Min; Kim, Hyoun-Ee

    2005-06-01

    Fluorapatite (FA)-collagen composites were synthesized via a biomimetic coprecipitation method in order to improve the structural stability and cellular responses. Different amounts of ammonium fluoride (NH4F), acting as a fluorine source for FA, were added to the precipitation of the composites. The precipitated composites were freeze-dried and isostatically pressed in a dense body. The added fluorine was incorporated nearly fully into the apatite structure (fluoridation), and a near stoichiometric FA-collagen composite was obtained with complete fluoridation. The freeze-dried composites had a typical biomimetic network, consisting of collagen fibers and precipitates of nano-sized apatite crystals. The human osteoblast-like cells on the FA-collagen composites exhibited significantly higher proliferation and differentiation (according to alkaline phosphatase activity) than those on the hydroxyapatite-collagen composite. These enhanced osteoblastic cell responses were attributed to the fluorine release and the reduced dissolution rate.

  2. Different methods to alter surface morphology of high aspect ratio structures

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M., E-mail: moritz.leber@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Shandhi, M.M.H. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Hogan, A. [Blackrock Microsystems, Salt Lake City, UT (United States); Solzbacher, F. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Bhandari, R.; Negi, S. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Blackrock Microsystems, Salt Lake City, UT (United States)

    2016-03-01

    Graphical abstract: Surface engineering of high aspect ratio silicon structures. - Highlights: • Multiple roughening techniques for high aspect ratio devices were investigated. • Modification of surface morphology of high aspect ratio silicon devices (1:15). • Decrease of 76% in impedance proves significant increase in surface area. - Abstract: In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several

  3. The Effect of Riboflavin/UVA Collagen Cross-linking Therapy on the Structure and Hydrodynamic Behaviour of the Ungulate and Rabbit Corneal Stroma

    Science.gov (United States)

    Hayes, Sally; Kamma-Lorger, Christina S.; Boote, Craig; Young, Robert D.; Quantock, Andrew J.; Rost, Anika; Khatib, Yasmeen; Harris, Jonathan; Yagi, Naoto; Terrill, Nicholas; Meek, Keith M.

    2013-01-01

    Purpose To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour. Methods One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep) and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits) were untreated; Group 2 (24 pig) were exposed to UVA light (3.04 mW/cm2) for 30 minutes and Group 3 (29 pig) and Group 4 (31 pig, 3 sheep and 3 rabbits) had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm2). X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution) and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques. Results Corneal thickness decreased significantly following riboflavin application (priboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen. PMID:23349690

  4. [The value of double contrast arthrotomography combined with cinematography in the diagnosis of functional and structural TMJ alterations].

    Science.gov (United States)

    Engelke, W; Grossniklaus, B; Sailer, H F

    1991-01-01

    Double contrast arthrotomography combined with cinematography as a diagnostic instrument establishing functional and structural TMJ alterations is evaluated for its diagnostic value and reliability within the chain of diagnostic measures applied. In 131 patients double-contrast arthrotomography was followed by a comprehensive history of joint problems, and verification of the clinical findings as well as the arthrographic diagnosis and the post-arthrographic TMJ alterations. Our interest was focussed, among others, on the question whether arthrography alone would have any therapeutic effect or produce an alteration in TMJ function.

  5. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  6. Faunal Drivers of Soil Flux Dynamics via Alterations in Crack Structure

    Science.gov (United States)

    DeCarlo, Keita; Caylor, Kelly

    2016-04-01

    Organismal activity, in addition to its role in ecological feedbacks, has the potential to serve as instigators or enhancers of atmospheric and hydrologic processes via alterations in soil structural regimes. We investigated the biomechanical effect of faunal activity on soil carbon dynamics via changes in soil crack structure, focusing on three dryland soil systems: bioturbated, biocompacted and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Results show that faunal influences play a divergent biomechanics role in bulk soil cracking: bioturbation induced by belowground fauna creates "surficial" (shallow, large, well-connected) networks relative to the "systematic" (deep, moderate, poorly connected) networks created by aboveground fauna. The latter also shows a "memory" of past wetting/drying events in the consolidated soil through a crack layering effect. These morphologies further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively, while biocompacted soils show a large diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that the increased surface area in the bioturbated soils create enhanced but constant diffusive processes, whereas the increased thermal gradient in the biocompacted soils create novel convective processes that create high fluxes that are diurnal in nature.

  7. Longitudinal Structural and Functional Brain Network Alterations in a Mouse Model of Neuropathic Pain.

    Science.gov (United States)

    Bilbao, Ainhoa; Falfán-Melgoza, Claudia; Leixner, Sarah; Becker, Robert; Singaravelu, Sathish Kumar; Sack, Markus; Sartorius, Alexander; Spanagel, Rainer; Weber-Fahr, Wolfgang

    2018-04-22

    Neuropathic pain affects multiple brain functions, including motivational processing. However, little is known about the structural and functional brain changes involved in the transition from an acute to a chronic pain state. Here we combined behavioral phenotyping of pain thresholds with multimodal neuroimaging to longitudinally monitor changes in brain metabolism, structure and connectivity using the spared nerve injury (SNI) mouse model of chronic neuropathic pain. We investigated stimulus-evoked pain responses prior to SNI surgery, and one and twelve weeks following surgery. A progressive development and potentiation of stimulus-evoked pain responses (cold and mechanical allodynia) were detected during the course of pain chronification. Voxel-based morphometry demonstrated striking decreases in volume following pain induction in all brain sites assessed - an effect that reversed over time. Similarly, all global and local network changes that occurred following pain induction disappeared over time, with two notable exceptions: the nucleus accumbens, which played a more dominant role in the global network in a chronic pain state and the prefrontal cortex and hippocampus, which showed lower connectivity. These changes in connectivity were accompanied by enhanced glutamate levels in the hippocampus, but not in the prefrontal cortex. We suggest that hippocampal hyperexcitability may contribute to alterations in synaptic plasticity within the nucleus accumbens, and to pain chronification. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22

    Directory of Open Access Journals (Sweden)

    Masaki Kobayashi

    2017-03-01

    Full Text Available Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN. Cajal bodies (CBs, unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN proteins was reduced – a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs, also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG, and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy.

  9. Warming alters energetic structure and function but not resilience of soil food webs

    Science.gov (United States)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  10. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  11. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  12. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces.

    Science.gov (United States)

    Tyan, Yu-Chang; Liao, Jiunn-Der; Klauser, Ruth; Wu, Ie-Der; Weng, Chih-Chiang

    2002-01-01

    Exposure to ultra-violet (UV)-C radiation is a frequently used method to prevent bacteria from invasion of blood-contact biomedical products. Potential damage induced by UV radiation to collagen is of concern due to the decay of bioactivity, considerably correlated with structural alterations. Our current investigation studies the collagen-bonded non-woven polypropylene (PP) fabric surface. In this experiment, antenna-coupling microwave plasma is utilized to activate PP fabric and then the sample is grafted with acrylic acid (AAc). Type III collagen is immobilized by using water soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as coupling agent. The collagen-bonded samples with sample temperature ca. 4 degrees C are then exposed to UV-254nm radiation for different time intervals. By using fourier-transformed infrared with attenuated total reflection (FTIR-ATR) and XPS (X-ray photoelectron spectroscopy), we examine the chemical structures of samples with different treatments. Coomassie brilliant blue G250 method is utilized to quantify the immobilized collagen on the PP fabric surfaces. Blood-clotting effects are evaluated by activated partial thromboplastin time, thrombin time, and fibrinogen concentration tests. By means of cell counter and scanning electron microscopy we count red blood cells and platelets adhesion in the modified porous matrix. Our experimental results have demonstrated that with pAAc-grafting of ca. 173 microg cm(-2) and immobilized collagen of 80.5+/-4.7 microg cm(-2), for human plasma incubated samples of various intervals of UV-254 nm radiation, fibrinogen concentration decreases in human plasma, while platelets and red blood cells adhesions increase before UV radiation. However, the required time for thrombination shows significant change for UV radiation exposure of less than 20 h (alpha = 0.05). The decay of bioactivity for the UV-irradiated, collagen-bonded surfaces is thus evaluated. Surface analyses indicate that the decrease of

  13. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.

    Directory of Open Access Journals (Sweden)

    Virginia L Harvey

    Full Text Available Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N and ratio of carbon to nitrogen (C:N. Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands, chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae, recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP. All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4C analysis.

  14. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.

    Science.gov (United States)

    Harvey, Virginia L; Egerton, Victoria M; Chamberlain, Andrew T; Manning, Phillip L; Buckley, Michael

    2016-01-01

    Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis.

  15. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Hansen, Ole Møller; Kristiansen, Asger Albæk; Le, Dang Quang Svend; Nielsen, Agnete Desirée; Nygaard, Jens Vinge; Bünger, Cody Erik; Lind, Martin

    2012-06-01

    To develop a nano-structured porous polycaprolactone (NSP-PCL) scaffold and compare the articular cartilage repair potential with that of a commercially available collagen type I/III (Chondro-Gide) scaffold. By combining rapid prototyping and thermally induced phase separation, the NSP-PCL scaffold was produced for matrix-assisted autologous chondrocyte implantation. Lyophilizing a water-dioxane-PCL solution created micro and nano-pores. In vitro: The scaffolds were seeded with rabbit chondrocytes and cultured in hypoxia for 6 days. qRT-PCR was performed using primers for sox9, aggrecan, collagen type 1 and 2. In vivo: 15 New Zealand White Rabbits received bilateral osteochondral defects in the femoral intercondylar grooves. Autologous chondrocytes were harvested 4 weeks prior to surgery. There were 3 treatment groups: (1) NSP-PCL scaffold without cells. (2) The Chondro-Gide scaffold with autologous chondrocytes and (3) NSP-PCL scaffold with autologous chondrocytes. Observation period was 13 weeks. Histological evaluation was made using the O'Driscoll score. In vitro: The expressions of sox9 and aggrecan were higher in the NSP-PCL scaffold, while expression of collagen 1 was lower compared to the Chondro-Gide scaffold. In vivo: Both NSP-PCL scaffolds with and without cells scored significantly higher than the Chondro-Gide scaffold when looking at the structural integrity and the surface regularity of the repair tissue. No differences were found between the NSP-PCL scaffold with and without cells. The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide scaffold with cells.

  16. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  17. Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities.

    Science.gov (United States)

    Mumford, Adam C; Akob, Denise M; Klinges, J Grace; Cozzarelli, Isabelle M

    2018-04-15

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C 3 H 6 BrNO 4 ). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills. IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of

  18. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  19. Helicase-like transcription factor (Hltf regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    Directory of Open Access Journals (Sweden)

    Rebecca A Helmer

    fragmented. Thus, silencing Hltf during heart organogenesis compromised DNA double-strand break repair, and caused aberrant collagen biogenesis altering the structural network that transmits cardiomyocyte force into muscle contraction.

  20. The collagenic architecture of human dura mater.

    Science.gov (United States)

    Protasoni, Marina; Sangiorgi, Simone; Cividini, Andrea; Culuvaris, Gloria Tiffany; Tomei, Giustino; Dell'Orbo, Carlo; Raspanti, Mario; Balbi, Sergio; Reguzzoni, Marcella

    2011-06-01

    Human dura mater is the most external meningeal sheet surrounding the CNS. It provides an efficient protection to intracranial structures and represents the most important site for CSF turnover. Its intrinsic architecture is made up of fibrous tissue including collagenic and elastic fibers that guarantee the maintenance of its biophysical features. The recent technical advances in the repair of dural defects have allowed for the creation of many synthetic and biological grafts. However, no detailed studies on the 3D microscopic disposition of collagenic fibers in dura mater are available. The authors report on the collagenic 3D architecture of normal dura mater highlighting the orientation, disposition in 3 dimensions, and shape of the collagen fibers with respect to the observed layer. Thirty-two dura mater specimens were collected during cranial decompressive surgical procedures, fixed in 2.5% Karnovsky solution, and digested in 1 N NaOH solution. After a routine procedure, the specimens were observed using a scanning electron microscope. The authors distinguished the following 5 layers in the fibrous dura mater of varying thicknesses, orientation, and structures: bone surface, external median, vascular, internal median, and arachnoid layers. The description of the ultrastructural 3D organization of the different layers of dura mater will give us more information for the creation of synthetic grafts that are as similar as possible to normal dura mater. This description will be also related to the study of the neoplastic invasion.

  1. Electrophoretic mobility patterns of collagen following laser welding

    Science.gov (United States)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  2. Structural Alterations in the Corpus Callosum Are Associated with Suicidal Behavior in Women with Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lischke

    2017-04-01

    Full Text Available Structural alterations in the corpus callosum (CC, the major white matter tract connecting functionally related brain regions in the two hemispheres, have been shown to be associated with emotional instability, impulsivity and suicidality in various mental disorders. To explore whether structural alterations of the CC would be similarly associated with emotional instability, impulsivity and suicidality in borderline personality disorder (BPD, we used diffusion tensor imaging (DTI to assess the structural integrity of the CC in 21 BPD and 20 healthy control (HC participants. Our hypothesis-driven analyses revealed a positive correlation between BPD participants’ suicidal behavior and fractional anisotropy (FA in the splenium and genu of the CC and a negative correlation between BPD participants’ suicidal behavior and mean diffusivity (MD in the splenium of CC. Our exploratory analyses suggested that suicidal BPD participants showed less FA and more MD in these regions than HC participants but that non-suicidal BPD participants showed similar FA and MD in these regions as HC participants. Taken together, our findings suggest an association between BPD participants’ suicidal behavior and structural alterations in regions of the CC that are connected with brain regions implicated in emotion regulation and impulse control. Structural alterations of the CC may, thus, account for deficits in emotion regulation and impulse control that lead to suicidal behavior in BPD. However, these findings should be considered as preliminary until replicated and extended in future studies that comprise larger samples of suicidal and non-suicidal BPD participants.

  3. Structural Chromosomal Alterations Induced by Dietary Bioflavonoids in Fanconi Anemia Lymphocytes

    Directory of Open Access Journals (Sweden)

    Gonzalo Guevara

    2007-06-01

    Full Text Available IntroductionFanconi anemia is an autosomal recessive diseasecharacterized by a variety of congenital abnormalities,progressive bone marrow failure,increased chromosomal instability and higherrisk to acute myeloid leukemia, solid tumors. Thisentity can be considered an appropriate biologicalmodel to analyze natural substances with possiblegenotoxic effect. The aims of this study wereto describe and quantify structural chromosomalaberrations induced by 5 flavones, 2 isoflavonesand a topoisomerase II chemotherapeutic inhibitorin Fanconi anemia lymphocytes in order todetermine chromosomal numbers changes and/or type of chromosomal damage.Materials and methodsChromosomes stimulated by phytohaemagglutininM, from Fanconi anemia lymphocytes,were analysed by conventional cytogenetic culture.For each chemical substance and controls,one hundred metaphases were evaluated. Chromosomalalterations were documented by photographyand imaging analyzer. To statisticalanalysis was used chi square test to identify significantdifferences between frequencies of chromosomaldamage of basal and exposed cellcultured a P value less than 0.05.ResultsThere were 431 chromosomal alterations in1000 metaphases analysed; genistein was themore genotoxic bioflavonoid, followed in descendentorder by genistin, fisetin, kaempferol,quercetin, baicalein and miricetin. Chromosomalaberrations observed were: chromatidbreaks, chromosomal breaks, cromatid andchromosomal gaps, quadriratials exchanges,dicentrics chromosome and complex rearrangements.ConclusionBioflavonoids as genistein, genistin and fisetin,which are commonly present in the human diet,showed statistical significance in the number ofchromosomal aberrations in Fanconi anemialymphocytes, regarding the basal damage.

  4. Structural alterations in tumor-draining lymph nodes before papillary thyroid carcinoma metastasis.

    Science.gov (United States)

    Hinson, Andrew M; Massoll, Nicole A; Jolly, Lee Ann; Stack, Brendan C; Bodenner, Donald L; Franco, Aime T

    2017-08-01

    The purpose of this study was to define and characterize the thyroid tumor-draining lymph nodes in genetically engineered mice harboring thyroid-specific expression of oncogenic Braf V600E with and without Pten insufficiency. After intratumoral injection of methylene blue, the lymphatic drainage of the thyroid gland was visualized in real time. The thyroid gland/tumor was resected en bloc with the respiratory system for histological analysis. Although mice harboring Braf V600E mutations were smaller in body size compared with their wild-type (WT) littermates, the size of their thyroid glands and deep cervical lymph nodes were significantly larger. Additionally, the tumor-draining lymph nodes showed increased and enlarged lymphatic sinuses that were distributed throughout the cortex and medulla. Tumor-reactive lymphadenopathy and histiocytosis, but no frank metastases, were observed in all mice harboring Braf V600E mutations. The tumor-draining lymph nodes undergo significant structural alterations in immunocompetent mice, and this may represent a primer for papillary thyroid carcinoma (PTC) metastasis. © 2017 Wiley Periodicals, Inc.

  5. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction.

    Science.gov (United States)

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V; Will, Nathan E; Irmady, Krithi; Lee, Francis S; Hempstead, Barbara L; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.

  6. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression.

    Science.gov (United States)

    Macaulay, Timothy R; Siamwala, Jamila H; Hargens, Alan R; Macias, Brandon R

    2017-12-01

    Previously our laboratory documented increases in calvaria bone volume and thickness in mice exposed to 15 days of spaceflight aboard the NASA Shuttle mission STS-131. However, the tissues were not processed for gene expression studies to determine what bone formation pathways might contribute to these structural adaptations. Therefore, this study was designed to investigate both the structural and molecular changes in mice calvariae after a longer duration of spaceflight. The primary purpose was to determine the calvaria bone volume and thickness of mice exposed to 30 days of spaceflight using micro-computed tomography for comparison with our previous findings. Because sclerostin, the secreted glycoprotein of the Sost gene, is a potent inhibitor of bone formation, our second aim was to quantify Sost mRNA expression using quantitative PCR. Calvariae were obtained from six mice aboard the Russian 30-day Bion-M1 biosatellite and seven ground controls. In mice exposed to 30 days of spaceflight, calvaria bone structure was not significantly different from that of their controls (bone volume was about 5% lower in spaceflight mice, p = 0.534). However, Sost mRNA expression was 16-fold (16.4 ± 0.4, p < 0.001) greater in the spaceflight group than that in the ground control group. Therefore, bone formation may have been suppressed in mice exposed to 30 days of spaceflight. Genetic responsiveness (e.g. sex or strain of animals) or in-flight environmental conditions other than microgravity (e.g. pCO 2 levels) may have elicited different bone adaptations in STS-131 and Bion-M1 mice. Although structural results were not significant, this study provides biochemical evidence that calvaria mechanotransduction pathways may be altered during spaceflight, which could reflect vascular and interstitial fluid adaptations in non-weight bearing bones. Future studies are warranted to elucidate the processes that mediate these effects and the factors responsible for discordant

  7. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression

    Directory of Open Access Journals (Sweden)

    Timothy R. Macaulay

    2017-12-01

    Full Text Available Previously our laboratory documented increases in calvaria bone volume and thickness in mice exposed to 15 days of spaceflight aboard the NASA Shuttle mission STS-131. However, the tissues were not processed for gene expression studies to determine what bone formation pathways might contribute to these structural adaptations. Therefore, this study was designed to investigate both the structural and molecular changes in mice calvariae after a longer duration of spaceflight. The primary purpose was to determine the calvaria bone volume and thickness of mice exposed to 30 days of spaceflight using micro-computed tomography for comparison with our previous findings. Because sclerostin, the secreted glycoprotein of the Sost gene, is a potent inhibitor of bone formation, our second aim was to quantify Sost mRNA expression using quantitative PCR. Calvariae were obtained from six mice aboard the Russian 30-day Bion-M1 biosatellite and seven ground controls. In mice exposed to 30 days of spaceflight, calvaria bone structure was not significantly different from that of their controls (bone volume was about 5% lower in spaceflight mice, p = 0.534. However, Sost mRNA expression was 16-fold (16.4 ± 0.4, p < 0.001 greater in the spaceflight group than that in the ground control group. Therefore, bone formation may have been suppressed in mice exposed to 30 days of spaceflight. Genetic responsiveness (e.g. sex or strain of animals or in-flight environmental conditions other than microgravity (e.g. pCO2 levels may have elicited different bone adaptations in STS-131 and Bion-M1 mice. Although structural results were not significant, this study provides biochemical evidence that calvaria mechanotransduction pathways may be altered during spaceflight, which could reflect vascular and interstitial fluid adaptations in non-weight bearing bones. Future studies are warranted to elucidate the processes that mediate these effects and the factors responsible

  8. Very preterm adolescents show gender-dependent alteration of the structural brain correlates of spelling abilities.

    Science.gov (United States)

    Scott, Fiona E; Mechelli, Andrea; Allin, Matthew P; Walshe, Muriel; Rifkin, Larry; Murray, Robin M; Nosarti, Chiara

    2011-07-01

    Individuals born very preterm (VPT) are at risk of neurodevelopmental damage and of adverse educational outcomes in childhood and adolescence. The present study used voxel-based morphometry to investigate the association between grey matter and white matter volume and measures of language and executive functioning in VPT born adolescents and term-born controls by gender. VPT individuals (N=218) and controls (N=127) underwent neuropsychological assessment and MRI at age 14-15 as part of a longitudinal study. Differential associations were found between spelling scores and frontal regional grey matter volume when group (VPT and control) and gender (males and females) were investigated. A main effect of group demonstrated a weaker association in VPT adolescents relative to controls between grey matter volume in the left medial and right superior frontal gyri and spelling scores. A main effect of gender revealed spelling scores to be correlated with grey matter volume in the right superior frontal gyrus in females to a greater extent than in males. Furthermore, a significant interaction between group and gender was detected in two regions. Spelling scores showed a stronger association with grey matter volume in a cluster with local maxima in the left medial frontal cortex extending to the caudate nucleus in VPT females than in control females and a weaker association in VPT males compared to control males. In addition, spelling scores showed a stronger association with grey matter volume in left middle frontal gyrus in VPT males compared to control males and a weaker association in VPT females than in control females. When group and gender were investigated, there were no statistically different correlations between structural brain volumes and performance on reading and executive function tests. These data demonstrate that the typical structure-function relationship in respect to spelling abilities appears to be altered in individuals born preterm and the processes

  9. The rat intervertebral disk degeneration pain model: relationships between biological and structural alterations and pain.

    Science.gov (United States)

    Kim, Jae-Sung; Kroin, Jeffrey S; Li, Xin; An, Howard S; Buvanendran, Asokumar; Yan, Dongyao; Tuman, Kenneth J; van Wijnen, Andre J; Chen, Di; Im, Hee-Jeong

    2011-01-01

    Degeneration of the interverterbral disk is as a cause of low-back pain is increasing. To gain insight into relationships between biological processes, structural alterations and behavioral pain, we created an animal model in rats. Disk degeneration was induced by removal of the nucleus pulposus (NP) from the lumbar disks (L4/L5 and L5/L6) of Sprague Dawley rats using a 0.5-mm-diameter microsurgical drill. The degree of primary hyperalgesia was assessed by using an algometer to measure pain upon external pressure on injured lumbar disks. Biochemical and histological assessments and radiographs of injured disks were used for evaluation. We investigated therapeutic modulation of chronic pain by administering pharmaceutical drugs in this animal model. After removal of the NP, pressure hyperalgesia developed over the lower back. Nine weeks after surgery we observed damaged or degenerated disks with proteoglycan loss and narrowing of disk height. These biological and structural changes in disks were closely related to the sustained pain hyperalgesia. A high dose of morphine (6.7 mg/kg) resulted in effective pain relief. However, high doses of pregabalin (20 mg/kg), a drug that has been used for treatment of chronic neuropathic pain, as well as the anti-inflammatory drugs celecoxib (50 mg/kg; a selective inhibitor of cyclooxygenase 2 (COX-2)) and ketorolac (20 mg/kg; an inhibitor of COX-1 and COX-2), did not have significant antihyperalgesic effects in our disk injury animal model. Although similarities in gene expression profiles suggest potential overlap in chronic pain pathways linked to disk injury or neuropathy, drug-testing results suggest that pain pathways linked to these two chronic pain conditions are mechanistically distinct. Our findings provide a foundation for future research on new therapeutic interventions that can lead to improvements in the treatment of patients with back pain due to disk degeneration.

  10. The anabolic effects of insulin on type II collagen synthesis of Swarm rat chondrosarcoma chondrocytes

    International Nuclear Information System (INIS)

    Bembenek, M.E.; Liberti, J.P.

    1984-01-01

    The anabolic effects of insulin on collagen production of freshly isolated Swarm rat chondrosarcoma chondrocytes were investigated. The specific radioactivity of newly synthesized collagen was not increased by insulin, indicating that the hormone has no effect on the specific radioactivity of the aminoacyl tRNA pool. Results of further studies obtained from collagen degradation experiments demonstrated that insulin did not alter the rate of [3H]collagen degradation. Together, these results clearly indicate that insulin stimulates collagen biosynthesis. Polyacrylamide gel analysis of the newly synthesized collagen of both control and insulin-stimulated cells revealed a large-molecular-weight component which migrated with authentic alpha 1(II) collagen and was collagenase-sensitive. Additional studies showed that, although insulin increased the processing and secretion of collagen, the hormone did not cause a shift in the distribution of the extracellular and intracellular collagen pools. Finally, results of studies conducted with the transcriptional inhibitor, actinomycin D, indicated that the anabolic effects of insulin on collagen and non-collagen proteins were mediated at a post-transcriptional site

  11. A microscopic evaluation of collagen-bilirubin interactions: in vitro surface phenomenon.

    Science.gov (United States)

    Usharani, N; Jayakumar, G C; Rao, J R; Chandrasekaran, B; Nair, B U

    2014-02-01

    This study is carried out to understand the morphology variations of collagen I matrices influenced by bilirubin. The characteristics of bilirubin interaction with collagen ascertained using various techniques like XRD, CLSM, fluorescence, SEM and AFM. These techniques are used to understand the distribution, expression and colocalization patterns of collagen-bilirubin complexes. The present investigation mimic the in vivo mechanisms created during the disorder condition like jaundice. Fluorescence technique elucidates the crucial role played by bilirubin deposition and interaction during collagen organization. Influence of bilirubin during collagen fibrillogenesis and banding patterns are clearly visualize using SEM. As a result, collagen-bilirubin complex provides different reconstructed patterns because of the influence of bilirubin concentration. Selectivity, specificity and spatial organization of collagen-bilirubin are determined through AFM imaging. Consequently, it is observed that the morphology and quantity of the bilirubin binding to collagen varied by the concentrations and the adsorption rate in protein solutions. Microscopic studies of collagen-bilirubin interaction confirms that bilirubin influence the fibrillogenesis and alter the rate of collagen organization depending on the bilirubin concentration. This knowledge helps to develop a novel drug to inhibit the interface point of interaction between collagen and bilirubin. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  12. Diffusion and Binding of Laponite Clay Nanoparticles into Collagen Fibers for the Formation of Leather Matrix.

    Science.gov (United States)

    Shi, Jiabo; Wang, Chunhua; Ngai, To; Lin, Wei

    2018-06-13

    Understanding accessibility and interactions of clay nanoparticles with collagen fibers is an important fundamental issue for the conversion of collagen to leather matrix. In this study, we have investigated the diffusion and binding of Laponite into the collagen fiber network. Our results indicate that the diffusion behaviors of Laponite into the collagen exhibit the Langmuir adsorption, verifying its affinity for collagen. The introduction of Laponite leads to a shift in the isoelectric point of collagen from ∼6.8 to ∼4.5, indicating the ionic bonding between the positively charged amino groups of the collagen and negatively charged Laponite under the tanning conditions. Fluorescence microscopy, atomic force microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and wide-angle X-ray diffraction analyses reveal that Laponite nanoparticles can penetrate into collagen microstructure and evenly distributed onto collagen fibrils, not altering native D-periodic banding patterns of collagen fibrils. Attenuated total reflectance-Fourier transform infrared and Raman spectroscopy detections further demonstrate the presence of noncovalent interactions, namely, ionic and hydrogen bonding, between Laponite and collagen. These findings provide a theoretical basis for the use of Laponite as an emerging tanning agent in leather manufacture.

  13. Disintegration of collagen fibrils by Glucono-δ-lactone: An implied lead for disintegration of fibrosis.

    Science.gov (United States)

    Jayamani, Jayaraman; Ravikanth Reddy, R; Madhan, Balaraman; Shanmugam, Ganesh

    2018-02-01

    Excess accumulation of collagen (fibrosis) undergoes self-aggregation, which leads to fibrillar collagen, on the extracellular matrix is the hallmark of a number of diseases such as keloids, hypertrophic scars, and systemic scleroderma. Direct inhibition or disintegration of collagen fibrils by small molecules offer a therapeutic approach to prevent or treat the diseases related to fibrosis. Herein, the anti-fibrotic property of Glucono-δ-lactone (GdL), known as acidifier, on the fibrillation and its disintegration of collagen was investigated. As collagen fibrillation is pH dependent, the pH modulation property of GdL is attractive to inhibit self-association of collagen. Optical density and microscopic data indicate that GdL elicits concentration-dependent fibril inhibition and also disintegrates pre-formed collagen fibrils. The simultaneous pH analysis showed that the modulation(lowering) of pH by GdL is the primary cause for its anti-fibrotic activity. The intact triple helical structure of collagen upon treatment of GdL suggests that collagen fibril disintegration can be achieved without affecting the native structure of collagen which is essential for any anti-fibrotic agents. Saturation transfer difference (STD) NMR result reveals that GdL is in proximity to collagen. The present results thus suggest that GdL provides a lead to design novel anti-fibrotic agents for the pathologies related to collagen deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cysteamine depletes prolactin (PRL) but does not alter the structure of PRL-containing granules in the anterior pituitary

    International Nuclear Information System (INIS)

    Weinstein, L.A.; Landis, D.M.; Sagar, S.M.; Millard, W.J.; Martin, J.B.

    1984-01-01

    Cysteamine causes a profound depletion of PRL in the anterior pituitary and in the systemic circulation, as measured by RIA and bioassay. However, electron microscopic study of PRL-containing cells in rat anterior pituitary does not reveal changes in secretory granule or cytoplasmic structure during the interval of depressed PRL content and of subsequent recovery to normal levels. In contrast to the results obtained by RIA, PRL-like immunoreactivity as detected by immunocyto-chemistry is present and similar to that of control preparations after cysteamine administration. We suggest that cysteamine alters PRL structure in secretory granules, probably by interacting with the disulfide bonds of PRL, thereby altering bioactivity and immunoreactivity. The presence of cysteamine-altered PRL in secretory granules does not seem to trigger degradation of granules by the lysosomal system

  15. Altered brain network integrity after childhood maltreatment: A structural connectomic DTI-study

    NARCIS (Netherlands)

    Puetz, V.B.; Parker, D.; Kohn, N.; Dahmen, B.; Verma, R.; Konrad, K.

    2017-01-01

    Childhood maltreatment is associated with alterations in neural architecture that potentially put these children at increased risk for psychopathology. Alterations in white matter (WM) tracts have been reported, however no study to date has investigated WM connectivity in brain networks in

  16. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen.

    Science.gov (United States)

    Chow, Ming-Jay; Turcotte, Raphaël; Lin, Charles P; Zhang, Yanhang

    2014-06-17

    The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces

  17. Impact of soda-lime borosilicate glass composition on water penetration and water structure at the first time of alteration

    International Nuclear Information System (INIS)

    Rebiscoul, D.; Bruguier, F.; Gin, S.; Magnin, V.

    2012-01-01

    In this study, the impact of soda-lime borosilicate glass composition and particularly the effect of charge compensators such Ca and Na and, of network formers such Si and Zr, on water penetration and water structure at the first time of alteration were investigated. Two non-destructive techniques were combined: the Fourier transform infrared spectroscopy in attenuated total reflection geometry to precise the predominant alteration mechanisms and assess the water structure in altered zone and the grazing incidence X-ray reflectometry to determine the thickness of the altered glass zone allowing to calculate the water diffusion coefficients through the glasses. The results of glass alteration at pH = 3 and 30 degrees C have shown that hydrolysis was the predominant mechanism after few seconds for glass having a high amount of non-binding oxygen. For the other glasses, which for the diffusion was the limiting reaction, the calculated water diffusion coefficients were comprised between 10 -21 and 10 -19 m 2 .s -1 and vary as a function of glass composition. An activation energy of 76.9 kJ.mol -1 was calculated and appears to be higher than inert gas diffusion through the glass highlighting that water molecules strongly interact with the glass matrix. (authors)

  18. Compared study of the local structure of alteration products of SON 68 glass and natural gels; Etude comparee de la structure locale des produits d'alteration du verre SON 68 et de gels naturels

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrin, E

    2000-07-01

    This study is a contribution in the understanding of the long time behavior of alteration products of the glass SON 68, used to simulate the nuclear glass R7T7. The local structure around Zirconium and iron has been probed using X-ray absorption spectroscopy in altered surface layer of glass SON 68. Alteration products of this glass have been prepared for short (3 hours to 7 days) and long (17 months) time, using various indexes of saturation for the leaching solution with respect to the Si content of the glass (from 0 to 90 %). The evolution of the local structure around Fe has also been studied in recent and old natural ferric gels. Zr, Fe- L{sub 2,3} XANES and Zr, Fe-K EXAFS spectroscopies have shown that, in the pristine glass, these elements are connected to the polymeric network. Zr is found in an environment close to that of a zircon-silicate containing Na and Ca. Trivalent Fe is a network former. The leached layer of glass SON 68 is constituted of poorly ordered Zr-and Fe-(oxi-hydr)oxides that may have been formed by a mechanism of dissolution/precipitation; a relict phase with the same Zr local structure as that observed in the pristine glass, probably obtained thanks to in-situ solid condensation. The structural characteristics of the leached layer are observed from the first steps of alteration for Zr and Fe. Conversely to Fe, the structural status of Zr depends on the leaching kinetic as well as the contents of Ca and Si in the solid. Fe-K EXAFS results in recent natural ferri-hydrides present a clear structural similarity with that determined in glass SON 68 leached products. The study of old paleosols (between 1,800 and 200,000 years) has demonstrated the long time stability of ferric gels, although an increase of medium range order around Fe is seen. (author)

  19. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  20. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, M.B.; Lokanathan, Y. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Aminuddin, B.S. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor (Malaysia); Ruszymah, B.H.I. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Department of Physiology, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Chowdhury, S.R., E-mail: shiplu@ppukm.ukm.edu.my [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia)

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35 M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. - Highlights: • Isolated collagen from ovine tendon was characterized as collagen type I. • Collagen film was fabricated via air drying of ovine tendon collagen. • Collagen fibril alignment was realized via unidirectional platform rocker. • Orientation of cells was attained depending on collagen fibril direction in the film. • Collagen films

  1. Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm

    NARCIS (Netherlands)

    Wilson, W.; Driessen, N.J.B.; Donkelaar, van C.C.; Ito, K.

    2006-01-01

    Tissue engineering is a promising method to treat damaged cartilage. So far it has not been possible to create tissue-engineered cartilage with an appropriate structural organization. It is envisaged that cartilage tissue engineering will significantly benefit from knowledge of how the collagen

  2. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    Directory of Open Access Journals (Sweden)

    Kerstin Pannek

    2014-01-01

    Conclusion: This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention.

  3. 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.

    Science.gov (United States)

    Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz

    2016-08-01

    3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    Science.gov (United States)

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  5. Exploring patterns of alteration in Alzheimer’s disease brain networks: a combined structural and functional connectomics analysis

    Directory of Open Access Journals (Sweden)

    Fulvia Palesi

    2016-09-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the disconnection syndrome hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks in patients affected by AD and mild cognitive impairment (MCI. However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC. In the default mode network (DMN, that was the most affected, axonal loss and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN, disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN, neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI but also with subcortical alterations (revealed by diffusion MRI that extend beyond the areas primarily damaged by neurodegeneration, towards the support of an emerging concept of AD as a

  6. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Directory of Open Access Journals (Sweden)

    José B Gama

    2014-08-01

    Full Text Available Buruli ulcer (BU is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1 and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1. In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  7. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Science.gov (United States)

    Gama, José B; Ohlmeier, Steffen; Martins, Teresa G; Fraga, Alexandra G; Sampaio-Marques, Belém; Carvalho, Maria A; Proença, Fernanda; Silva, Manuel T; Pedrosa, Jorge; Ludovico, Paula

    2014-08-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  8. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice

    DEFF Research Database (Denmark)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua

    2016-01-01

    , intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent...... within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180....... Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP...

  9. Binding of von Willebrand factor to collagen type III: role of specific amino acids in the collagen binding domain of vWF and effects of neighboring domains

    NARCIS (Netherlands)

    van der Plas, R. M.; Gomes, L.; Marquart, J. A.; Vink, T.; Meijers, J. C.; de Groot, P. G.; Sixma, J. J.; Huizinga, E. G.

    2000-01-01

    Binding of von Willebrand Factor (vWF) to sites of vascular injury is the first step of hemostasis. Collagen types I and III are important binding sites for vWF. We have previously determined the three-dimensional structure of the collagen binding A3 domain of vWF (Huizinga et al., Structure 1997;

  10. Collagen Conduit Versus Microsurgical Neurorrhaphy

    DEFF Research Database (Denmark)

    Boeckstyns, Michel; Sørensen, Allan Ibsen; Viñeta, Joaquin Fores

    2013-01-01

    To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair.......To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair....

  11. Double thermal transitions of type I collagen in acidic solution.

    Science.gov (United States)

    Liu, Yan; Liu, Lingrong; Chen, Mingmao; Zhang, Qiqing

    2013-01-01

    Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31-37 °C (minor thermal transition, T(s) ∼ 33 °C) and 37-55 °C (major thermal transition, T(m) ∼ 40 °C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T(p2) = 40 °C) had better heat resistance than the smaller one (T(p1) = 33 °C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.

  12. Collagenous and other organizations in mature annelid cuticle and epidermis.

    Science.gov (United States)

    Humphreys, S; Porter, K R

    1976-05-01

    The mature annelid cuticle contains orthogonally oriented collagen in a matrix capped superficially by a dense epicuticle with external corpuscles. The underlying epidermis is a simple columnar epithelium with two major cell types, mucous-secreting cells which secrete through channels in the cuticle to the exterior of the worm, and "supportive" cells which presumably produce and increase the cuticle by secreting into it. The structures of supportive cells, previously interpreted as specialized for establishing interfibrillar collagen order, are revealed by glutaraldehyde fixation as common cellular components without the qualities deemed useful to align collagen. Cell processes which penetrate and sometimes pass completely through the cuticle are not stable, not in geometric order, and lack cilia-like structure. Cilia, unlike the ubiquitous cellular processes, are highly restricted to regions of the epidermis with specialized functions. Cellular control, or other control, of collagen fibrillogenesis remains unestablished.

  13. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  14. Flood-Induced Surface Blooms Alter Deep Chlorophyll Maxima Community Structure in Lake Michigan.

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.; Seline, L.

    2008-12-01

    Watershed-wide floods can bring increased nutrients and phytoplankton to receiving waters. This input can alter physical, chemical and phytoplankton community structure in a major way. Phytoplankton species composition and size distribution are key factors in their use as ecological indicators. Since 2003, phytoplankton communities in Lake Michigan have shifted from diatom and big cell (>10μm)- dominated to small cell picocyanobacteria-dominated phytoplankton (Quagga Mussels, dampened seasonal cycling of silicate indicated a basin-wide reduction of diatom production, and unicellular Cyanobacteria became dominant in deep chlorophyll maximum (DCM) zones. In the DCM, Synechococcus-like cells reached populations of at least 210,000 cells/ml. DCM chlorophyll (chl) remained similar (3-4μg/l) but late summer species composition changed dramatically to mostly 10μm fraction increased from previous years, and over 75% of the particulate Si was also in this size fraction. Because of the rapid sinking of diatoms during calm weather of late June-early July of 2008, particulate Si did not reach high values in surfaces waters (ca. 1.5μM) but remained at a consistently higher level than in 2007. Sinking of diatoms from the surface depleted chl in a progression from inshore to offshore during July 2008. In July surface chl was higher 40-70 km offshore than in the coastal zone. Surface phytoplankton waxed and waned in population density as if a wave or lens moved continuously further offshore, with sinking cells depleting the surface algae following behind the crest. In the wake, strong DCM populations with higher chl and particulate Si accumulated in the 30-45m zone at the bottom of the thermocline. However, in 2008 DCM zones, picocyanobacteria attained only 70,000 cells/mL, one-third of the same dates in 2007. The ratio of chlorophyll per Synechococcus cell in 2008 was about 5-fold higher than in 2007, corroborating microscopic observations of lowered picoplanktonic abundance

  15. Dynamic interplay between the collagen scaffold and tumor evolution

    DEFF Research Database (Denmark)

    Egeblad, Mikala; Rasch, Morten G; Weaver, Valerie M

    2010-01-01

    and remodeling of the ECM network regulate tissue tension, generate pathways for migration, and release ECM protein fragments to direct normal developmental processes such as branching morphogenesis. Collagens are major components of the ECM of which basement membrane type IV and interstitial matrix type I...... are the most prevalent. Here we discuss how abnormal expression, proteolysis and structure of these collagens influence cellular functions to elicit multiple effects on tumors, including proliferation, initiation, invasion, metastasis, and therapy response....

  16. Extraction and Characterization of Collagen from Sea Cucumber Flesh

    Directory of Open Access Journals (Sweden)

    Alhana

    2015-11-01

    Full Text Available Sea cucumber (Stichopus variegatus is one of the Echinodermata phylum that grows along Indonesian coastal. Sea cucumber is potential source of collagen. The purposes of this research were to determine the optimal concentration of NaOH and CH3COOH solution in collagen production and analyze the physicochemical characteristics of collagen from S. variegatus. Yield of the collagen was 1.5% (based on wet weight basis, produced by pretreatment with NaOH 0,30%, hydrolysis with CH3COOH 0.10% and extracted using distilled water. Protein, moisture, and ash content of the collagen was 67.68%, 13.64%, and 4.15%, respectively. Collagen was extracted using distilled water at 45°C during 2h and still had triple helix structure ; pH 7.37 ; melting temperature 163.67°C and whiteness 69.25%. The major amino acid content of collagen were glycine, alanine, proline and glutamic acid.

  17. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    Directory of Open Access Journals (Sweden)

    Sarah Unser

    2017-02-01

    Full Text Available Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range.

  18. Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells.

    Science.gov (United States)

    Zheng, Wanglong; Wang, Bingjie; Si, Mengxue; Zou, Hui; Song, Ruilong; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Zhu, Guoqiang; Bai, Jianfa; Bian, Jianchun; Liu, ZongPing

    2018-02-20

    The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.

  19. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.

    Science.gov (United States)

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2018-02-15

    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.

  20. Changes in type I collagen following laser welding.

    Science.gov (United States)

    Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R

    1992-01-01

    Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.

  1. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer...... invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members u......PARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements...

  2. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    Science.gov (United States)

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  3. Collagen-like proteins in pathogenic E. coli strains.

    Directory of Open Access Journals (Sweden)

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  4. Collagen: A review on its sources and potential cosmetic applications.

    Science.gov (United States)

    Avila Rodríguez, María Isabela; Rodríguez Barroso, Laura G; Sánchez, Mirna Lorena

    2018-02-01

    Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten

  5. Time-Dependent Structural Alteration of Rituximab Analyzed by LC/TOF-MS after a Systemic Administration to Rats.

    Directory of Open Access Journals (Sweden)

    Yuki Otani

    Full Text Available Therapeutic monoclonal antibodies (mAbs have heterogeneities in their structures. Multiple studies have reported that the variety of post-translational modifications could affect the pharmacokinetic profiles or pharmacological potencies of therapeutic mAbs. Taking into the account that the structural modification of mAbs would affect the efficacy, it is worth investigating the structural alteration of therapeutic mAbs in the blood and the relationship between their structures and pharmacological effects. Herein, we have developed the method to isolate rituximab from plasma in which endogenous IgGs interfere the detection of rituximab, and successfully developed the analytical method with a liquid chromatograph time-of-flight mass spectrometer to detect the structure of rituximab in plasma with errors less than 30 parts per millions. Eight types of carbohydrate chains in rituximab were detected by this method. Interestingly, time-dependent changes in carbohydrate chains such as AAF (G2F and GnGn (G0 were observed in rats, although the amino acids were stable. Additionally, these structural changes were observed via incubation in plasma as in the rat experiment, suggesting that a certain type of enzyme in plasma caused the alterations of the carbohydrate chains. The present analytical methods could clarify the actual pharmacokinetics of therapeutic mAbs, and help to evaluate the interindividual variations in pharmacokinetics and efficacy.

  6. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    Science.gov (United States)

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  7. Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides.

    Directory of Open Access Journals (Sweden)

    Rebecca Vega Thurber

    Full Text Available With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1 increases or 2 decreases in microbial taxa already present in corals, 3 establishment of new taxa to the coral microbiome, and 4 vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.

  8. Pathological and Pathophysiological Alterations in Temporal Lobe Structures After Mild Traumatic Brain Injury

    Science.gov (United States)

    2014-01-31

    Acetylcholinesterase inhibition in the basolateral amygdala plays a key role in the induction of status epilepticus after soman exposure...alterations in the rat basolateral amygdala after soman-induced status epilepticus : Relation to anxiety-like behavior...INHIBITION IN THE BASOLA TERAL AMYGDALA PLAYS A KEY ROLE IN THE INDUCTION OF STATUS EPILEPTICUS AFTER SOMAN EXPOSURE. Prager EM, Aroniadou

  9. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines

    International Nuclear Information System (INIS)

    Pina-Guzman, B.; Solis-Heredia, M.J.; Quintanilla-Vega, B.

    2005-01-01

    Organophosphorus (OP) pesticides, widely used in agriculture and pest control, are associated with male reproductive effects, including sperm chromatin alterations, but the mechanisms underlying these effects are unknown. The main toxic action of OP is related to phosphorylation of proteins. Chemical alterations in sperm nuclear proteins (protamines), which pack DNA during the last steps of spermatogenesis, contribute to male reproductive toxicity. Therefore, in the present study, we tested the ability of diazinon (DZN), an OP compound, to alter sperm chromatin by phosphorylating nuclear protamines. Mice were injected with a single dose of DZN (8.12 mg/kg, i.p.), and killed 8 and 15 days after treatment. Quality of sperm from epididymis and vas deferens was evaluated through standard methods and chromatin condensation by flow cytometry (DNA Fragmented Index parameters: DFI and DFI%) and fluorescence microscopy using chromomycin-A 3 (CMA 3 ). Increases in DFI (15%), DFI% (4.5-fold), and CMA 3 (2-fold) were observed only at 8 days post-treatment, indicating an alteration in sperm chromatin condensation and DNA damage during late spermatid differentiation. In addition, an increase of phosphorous content (approximately 50%) in protamines, especially in the phosphoserine content (approximately 73%), was found at 8 days post-treatment. Sperm viability, motility, and morphology showed significant alterations at this time. These data strongly suggest that spermatozoa exposed during the late steps of maturation were the targets of DZN exposure. The correlation observed between the phosphorous content in nuclear protamines with DFI%, DFI, and CMA 3 provides evidence that phosphorylation of nuclear protamines is involved in the OP effects on sperm chromatin

  10. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Chang, Wei-Ju; O'Connell, Neil E; Beckenkamp, Paula R; Alhassani, Ghufran; Liston, Matthew B; Schabrun, Siobhan M

    2018-04-01

    Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Meta-analyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  12. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI.

    Science.gov (United States)

    Alroy, J; Haskins, M; Birk, D E

    1999-05-01

    The presence of cloudy corneas is a prominent feature of mucopolysaccharidosis (MPS) types I and VI, but not MPS IIIA or IIIB. The cause of corneal cloudiness in MPS I and VI is speculative. Transparency of the cornea is dependent on the uniform diameter and the regular spacing and arrangement of the collagen fibrils within the stroma. Alterations in the spacing of collagen fibrils in a variety of conditions including corneal edema, scars, and macular corneal dystrophy is clinically manifested as corneal opacity. The purpose of this study was to compare the structural organization of the stromal extracellular matrix of normal corneas with that of MPS corneas. The size and arrangement of collagen fibrils in cloudy corneas from patients with MPS I were examined. The alterations observed were an increased mean fibril diameter with a broader distribution in the MPS corneas. The MPS I corneas also had altered fibril spacing and more irregular packing compared with normal control corneas. The clear corneas of patients with MPS IIIA and IIIB also showed increases in mean fibril diameter and fibril spacing. However, there was less variation indicating more regularity than seen in MPS I. In addition, corneas from cat models of certain MPS were compared to the human corneas. Cats with MPS I and VI, as well as normal control cats, were examined. Structural alterations comparable to those seen in human MPS corneas were seen in MPS I and VI cats relative to normal clear corneas. The findings suggest that cloudy corneas in MPS I and VI are in part a consequence of structural alterations in the corneal stroma, including abnormal spacing, size, and arrangement of collagen fibrils. Copyright 1999 Academic Press.

  13. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  14. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  15. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    Science.gov (United States)

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures. Published by Elsevier Inc.

  16. A three-dimensional computational model of collagen network mechanics.

    Directory of Open Access Journals (Sweden)

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  17. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  18. Alterations in upper limb muscle synergy structure in chronic stroke survivors

    Science.gov (United States)

    Rymer, William Z.; Perreault, Eric J.; Yoo, Seng Bum; Beer, Randall F.

    2013-01-01

    Previous studies in neurologically intact subjects have shown that motor coordination can be described by task-dependent combinations of a few muscle synergies, defined here as a fixed pattern of activation across a set of muscles. Arm function in severely impaired stroke survivors is characterized by stereotypical postural and movement patterns involving the shoulder and elbow. Accordingly, we hypothesized that muscle synergy composition is altered in severely impaired stroke survivors. Using an isometric force matching protocol, we examined the spatial activation patterns of elbow and shoulder muscles in the affected arm of 10 stroke survivors (Fugl-Meyer synergies were identified using non-negative matrix factorization. In both groups, muscle activation patterns could be reconstructed by combinations of a few muscle synergies (typically 4). We did not find abnormal coupling of shoulder and elbow muscles within individual muscle synergies. In stroke survivors, as in controls, two of the synergies were comprised of isolated activation of the elbow flexors and extensors. However, muscle synergies involving proximal muscles exhibited consistent alterations following stroke. Unlike controls, the anterior deltoid was coactivated with medial and posterior deltoids within the shoulder abductor/extensor synergy and the shoulder adductor/flexor synergy in stroke was dominated by activation of pectoralis major, with limited anterior deltoid activation. Recruitment of the altered shoulder muscle synergies was strongly associated with abnormal task performance. Overall, our results suggest that an impaired control of the individual deltoid heads may contribute to poststroke deficits in arm function. PMID:23155178

  19. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    International Nuclear Information System (INIS)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E.

    1987-01-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of [ 3 H]serotonin, or alter the dose-responsive binding of 125 I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF

  20. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  1. Effect of collagen type IV, MMPs and TIMPs on remodeling of radiation pulmonary injury

    International Nuclear Information System (INIS)

    Diao Ruiying; Song Liangwen; Wang Shaoxia; Yin Jiye

    2007-01-01

    Objective: To explore the effect of collagen type IV, matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs(TIMPs) on early remodeling after radiation pulmonary injury. Methods: Right lungs of rats were irradiated by 60 Co γ-rays at a dose of 20 Gy to induce radiation pulmonary injury, and the lung specimens were taken at weeks 1, 2, 4 after irradiation. Quantitative analysis was performed on pulmonary collagen type IV, MMP-2, MMP-9, TIMP-2, TIMP-1 at the level of gene expression and protein synthesis using real-time PCR or immunohistochemistry. Results: Gene detection using real-time PCR: gene expression of collagen type IV increased at week 1 and decreased at week 2 after irradiation; MMP-2 reached peak at week 2 in which an opposed alteration trend was displayed; MMP-9 appeared a significant trend of elevation, then decrease and elevation again which was similar to those of collagen type IV; expression of TIMP-1 was lower, and there was no marked difference among all time points; TIMP-2 displayed a trend of slight elevation, then decrease and elevation again, which was opposed to MMP-2. Immunohistochemistry-image analysis: Pulmonary collagen type IV obviously increased at week 1, and began to decrease at week 2; MMP-2 decreased at week 2 and then increased; an opposed alteration trend to that of collagen type IV was displayed; alteration trend of MMP-9 was similar to that of collagen type IV but the extent was higher; gene expression of TIMP-1 slightly increased at 2 week and an opposed trend to of MMP-9 was displayed. Conclusions: Collagen type IV, MMP-2, MMP-9 and their tissue inhibitors were involved in ineffective remodeling in the early radiation pulmonary injury; MMP-2 and MMP-9 play an important role in degradation of collagen type IV; Disturbance of collagen type IV degradation might have relationship with the initiation of pulmonary fibrosis. (authors)

  2. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism

    Directory of Open Access Journals (Sweden)

    Chomiak Taylor

    2010-08-01

    Full Text Available Abstract Background Autism is a behaviourally defined neurodevelopmental disorder with unknown etiology. Recent studies in autistic children consistently point to neuropathological and functional abnormalities in the temporal association cortex (TeA and its associated structures. It has been proposed that the trajectory of postnatal development in these regions may undergo accelerated maturational alterations that predominantly affect sensory recognition and social interaction. Indeed, the temporal association regions that are important for sensory recognition and social interaction are one of the last regions to mature suggesting a potential vulnerability to early maturation. However, direct evaluation of the emerging hypothesis that an altered time course of early postnatal development can lead to an ASD phenotype remains lacking. Results We used electrophysiological, histological, and behavioural techniques to investigate if the known neuronal maturational promoter valproate, similar to that in culture systems, can influence the normal developmental trajectory of TeA in vivo. Brain sections obtained from postnatal rat pups treated with VPA in vivo revealed that almost 40% of cortical cells in TeA prematurely exhibited adult-like intrinsic electrophysiological properties and that this was often associated with gross cortical hypertrophy and a reduced predisposition for social play behaviour. Conclusions The co-manifestation of these functional, structural and behavioural features suggests that alteration of the developmental time course in certain high-order cortical networks may play an important role in the neurophysiological basis of autism.

  3. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder.

    Science.gov (United States)

    Kim, Yong-Ku; Won, Eunsoo

    2017-06-30

    Major depressive disorder (MDD) is a condition which has often been associated with chronic stress. The sympathetic nervous system is continuously activated without the normal counteraction of the parasympathetic nervous system under the influence of chronic stress. As a result, epinephrine and norepinephrine levels are increased, and acetylcholine levels are decreased, which in turn can increase the levels of pro-inflammatory cytokines. Peripheral inflammatory responses can access the brain, with neuroinflammation contributing to the increase in neurotoxic kynurenine pathway metabolites such as 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid, and decrease in neuroprotective metabolites such as kynurenic acid. Pro-inflammatory cytokines can also exert direct neurotoxic effects on specific brain regions. Previous imaging studies have reported associations between pro-inflammatory states and alterations in brain regions involved in emotional regulation, including the hippocampus, amygdala and anterior cingulate cortex. Alterations in structure and function of such brain areas due to the neurotoxic effects of increased inflammation may be associated with the pathophysiology of depression. This review focuses the influence of stress on neuroinflammation which may cause alterations in brain structure and function in MDD. Copyright © 2017. Published by Elsevier B.V.

  4. Collagenous sprue: a clinicopathologic study of 12 cases.

    LENUS (Irish Health Repository)

    Maguire, Aoife A

    2012-02-01

    Collagenous sprue is a rare form of small bowel enteropathy characterized by chronic diarrhea and progressive malabsorption with little data available on its natural history. The pathologic lesion consists of subepithelial collagen deposition associated with variable alterations in villous architecture. The small bowel biopsies of 12 cases were reviewed. Clinical details, celiac serology, and T-cell receptor gene rearrangement study results, when available, were collated. There were 8 females and 4 males (age ranged from 41 to 84 y) who presented with chronic diarrhea and weight loss. Small intestinal biopsies showed subepithelial collagen deposition with varying degrees of villous atrophy and varying numbers of intraepithelial lymphocytes. Four patients had previous biopsies showing enteropathic changes without collagen deposition. Seven cases were associated with collagenous colitis and 1 also had features of lymphocytic colitis. Three patients also had collagen deposition in gastric biopsies. One case was associated with lymphocytic gastritis. Celiac disease (CD, gluten-sensitive enteropathy) was documented in 4 patients. Five patients made a clinical improvement with combinations of a gluten-free diet and immunosuppressive therapy. Two patients died of complications of malnutrition and 1 of another illness. Clonal T-cell populations were identified in 5 of 6 cases tested. Four of these patients improved clinically after treatment but 1 has died. Collagenous sprue evolved on a background of CD in 4 cases. There was no history of CD in others and these cases may be the result of a biologic insult other than gluten sensitivity. None has developed clinical evidence of lymphoma to date.

  5. Combined MSC and GLP-1 Therapy Modulates Collagen Remodeling and Apoptosis following Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Wright

    2016-01-01

    Full Text Available Background. Mesenchymal stem cells (MSCs and glucagon-like peptide-1 (GLP-1 are being tested as treatment strategies for myocardial infarction (MI; however, their mechanisms in the heart are not fully understood. Methods. We examined the effects of MSCs, either native, or engineered to secrete a GLP-1 fusion protein (MSCs ± GLP-1, on human cardiomyocyte apoptosis in vitro. The effect on cardiac remodeling when encapsulated in alginate beads (CellBeads-MSC and CellBeads-MSC + GLP-1 was also evaluated in a pig MI model, whereby pigs were treated with Empty Beads, CellBeads-MSC, or CellBeads-MSC + GLP-1 and sacrificed at one or four weeks following MI. Results. MSC + GLP-1 conditioned media demonstrated antiapoptotic effects on ischaemic human cardiomyocytes in vitro. In vivo, qRT-PCR revealed large changes in the expression of several genes involved in extracellular matrix remodeling, which were altered following MSC ± GLP treatment. After four weeks, infarcted areas were imaged using atomic force microscopy, demonstrating significant alterations between groups in the structure of collagen fibrils and resulting scar. Conclusions. These data demonstrate that MSCs ± GLP-1 exhibit modulatory effects on healing post-MI, affecting both apoptosis and collagen scar formation. These data support the premise that both MSCs and GLP-1 could be beneficial in MI treatment.

  6. Pulmonary collagen metabolism in irradiated hamsters and those treated with corticosteroids

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Straus, F.C.; Halliwell, W.H.; Jones, R.K.

    1976-01-01

    Syrian hamsters were exposed to 90 Y in fused aluminosilicate particles to produce pulmonary fibrosis. Irradiated hamsters and contols were treated with Depomedrol, arresting the developing fibrosis. All hamsters receiving steroid showed a reduced incorporation of 14 C-proline into noncollagen protein during the 3-19 wk period after exposure. Collagen synthesis relative to noncollagen protein synthesis was decreased five-fold in these animals at early times after exposure and during high steroid dosage, but had returned to control levels after considerable time at lower steroid dosage. Collagen synthesis in irradiated animals not receiving steroids was elevated during the same time period and collagen synthesis in irradiated hamsters treated with steroid was intermediate between that in radiation animals and in control or steroid animals. Collagen breakdown was elevated to the same level as in irradiated animals, and collagen content was normal and well below that of irradiated animals. These and previous data indicate that steroid treatment delays development of pulmonary fibrosis in animals irradiated with fibrogenic doses of 90 Y in fused aluminosilicate particles. Experiments incubating BAPN or Depomedrol with L-929 or WI-38 fibroblasts in vitro were performed to note any effect of these agents upon fibroblast proliferation, cellular collagen processing or collagen synthesis. Steroids frequently reduced fibroblast proliferation and altered cellular collagen processings to reflect an increased proportion of collagen breakdown products. These changes reflect the importance of fibroblast proliferation in developing pulmonary fibrosis

  7. Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis.

    Science.gov (United States)

    Hamano, Yuki; Okude, Takashi; Shirai, Ryota; Sato, Ikumi; Kimura, Ryota; Ogawa, Makoto; Ueda, Yoshihiko; Yokosuka, Osamu; Kalluri, Raghu; Ueda, Shiro

    2010-09-01

    Collagen XVIII is a component of the highly specialized extracellular matrix associated with basement membranes of epithelia and endothelia. In the normal kidney, collagen XVIII is distributed throughout glomerular and tubular basement membranes, mesangial matrix, and Bowman's capsule. Proteolytic cleavage within its C-terminal domain releases the fragment endostatin, which has antiangiogenic properties. Because damage to the glomerular basement membrane (GBM) accompanies immune-mediated renal injury, we investigated the role of collagen XVIII/endostatin in this disorder. We induced anti-GBM glomerulonephritis in collagen XVIII alpha1-null and wild-type mice and compared the resulting matrix accumulation, inflammation, and capillary rarefaction. Anti-GBM disease upregulated collagen XVIII/endostatin expression within the GBM and Bowman's capsule of wild-type mice. Collagen XVIII/endostatin-deficient mice developed more severe glomerular and tubulointerstitial injury than wild-type mice. Collagen XVIII/endostatin deficiency altered matrix remodeling, enhanced the inflammatory response, and promoted capillary rarefaction and vascular endothelial cell damage, but did not affect endothelial proliferation. Supplementing collagen XVIII-deficient mice with exogenous endostatin did not affect the progression of anti-GBM disease. Taken together, these results suggest that collagen XVIII/endostatin preserves the integrity of the extracellular matrix and capillaries in the kidney, protecting against progressive glomerulonephritis.

  8. Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa.

    Science.gov (United States)

    Frank, Guido K; Shott, Megan E; Hagman, Jennifer O; Mittal, Vijay A

    2013-10-01

    The pathophysiology of anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. The authors assessed taste pleasantness and reward sensitivity in relation to brain structure, which may be related to food avoidance commonly seen in eating disorders. The authors used structural MR imaging to study gray and white matter volumes in women with current restricting-type anorexia nervosa (N=19), women recovered from restricting-type anorexia nervosa (N=24), women with bulimia nervosa (N=19), and healthy comparison women (N=24). All eating disorder groups exhibited increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manual tracing confirmed larger gyrus rectus volume, and volume predicted taste pleasantness ratings across all groups. Analyses also indicated other morphological differences between diagnostic categories. Antero-ventral insula gray matter volumes were increased on the right side in the anorexia nervosa and recovered anorexia nervosa groups and on the left side in the bulimia nervosa group relative to the healthy comparison group. Dorsal striatum volumes were reduced in the recovered anorexia nervosa and bulimia nervosa groups and predicted sensitivity to reward in all three eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas relative to the healthy comparison group. The results held when a range of covariates, such as age, depression, anxiety, and medications, were controlled for. Brain structure in the medial orbitofrontal cortex, insula, and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value.

  9. Alterations of bone skeleton structure in connection with strontium-90 incorporation

    International Nuclear Information System (INIS)

    Rodionova, N.V.; Mazhuga, P.M.; Domashevskaya, E.I.; Gorskij, B.A.; Nakorenok, G.B.

    1994-01-01

    By using the methods of histology, electron microscopy and radiochemistry studied the bone skeleton state of animals (mouse like rodents and minks) which live in the 30 km zone of the ChNPP.It was defined contents of 90 Sr, 137 Cs, 134 Cs in the bones during 1989-1993 years. There were described changes in histostructure of the periost endost and bone compact of the tubular bones and also in metaepiphyzal growth plate. The mechanisms of the revealed alterations are discussed

  10. Mineralogical and structural transformations related to alterations in hydrothermal and climatological conditions of basic vulcanic rocks from northern Parana (Ribeirao Preto region, SP, Brazil)

    International Nuclear Information System (INIS)

    Goncalves, N.M.M.

    1987-01-01

    Detailed studies of the basic vulcanic rocks of northern Parana basin (Region of Ribeirao Preto, SP) reveled that these rocks were affected by pre-meteoric activity (hydrothermal alteration) before being exposed to the supergene system of alteration linked to the lithosphere/atmosphere interface. Mineralogical and structural transformation are studied. The appearance of sequential crystalline-chemical paragenesis in zones suggest that the hydrothermal activity occurred during two successives processes of alteration: the expulsion of the water from the rock during the later stages of magma cooling and the continous process of dissolution of the rock wall and the ionic diffusion involving the rock sistem of structural voids. The hydro-thermal action was followed by weathering action developing a thin 'front' of superficial alteration. This alteration system, can lead to the formation of three major levels of alteration horizons and superficial accumulations: alterites, glebular and suil surface materials. (C.D.G.) [pt

  11. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy

    OpenAIRE

    Hovhannisyan, V.; Guo, H. W.; Hovhannisyan, A.; Ghukasyan, V.; Buryakina, T.; Chen, Y. F.; Dong, C. Y.

    2014-01-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the ...

  12. A Simple and Efficient Method to Improve Mechanical Properties of Collagen Scaffolds by UV Irradiation

    Directory of Open Access Journals (Sweden)

    F. Khayyatan

    2010-12-01

    Full Text Available Collagen is the major protein component of cartilage, bone, skin and connective tissue and constitutes the major part of the extracellular matrix. Collagen type I has complex structural hierarchy, which consists of treepolypeptide α-chains wound together in a rod-like helical structure. Collagen is an important biomaterial, finding many applications in the field of tissue engineering. It has been processed into various shapes, such as, gel, film, sponge and fiber. It is commonly used as the scaffolding material for tissue engineering due to its many superior properties including low antigenicity and high growth promotion. Unfortunately, poor mechanical properties and rapid degradation rates of collagen scaffolds can cause instability and difficulty in handling. By crosslinking, the structural stability of the collagen and its rate of resorption can be adapted with respect to its demanding requirements. The strength, resorption rate, and biocompatibility of collagenous biomaterials are profoundly influenced by the method and extent of crosslinking. In thisstudy, the effect of UV irradiation on collagen scaffolds has been carried out.Collagen scaffolds were fabricated using freeze drying method with freezing temperature of -80oC, then exposed to UV irradiation. Mean pore size of the scaffolds was obtained as 98.52±14.51 μm using scanning electron microscopy. Collagen scaffolds exposed to UV Irradiation (254 nm for 15 min showed the highest tensile strain (17.37±0.98 %, modulus (1.67±0.15 MPa and maximum load (24.47±2.38 cN values. As partial loss of the native collagen structure may influence attachment, migration, and proliferation of cells on collagen scaffolds, we detected no intact α-chains after SDS-Page chromatography. We demonstrate that UV irradiation is a rapid and easily controlled means of increasing the mechanical strength of collagen scaffolds without any molecular fracture.

  13. Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity.

    Science.gov (United States)

    Hirata, Harumitsu; Mizerska, Kamila; Marfurt, Carl F; Rosenblatt, Mark I

    2015-12-01

    In an effort to elucidate possible neural mechanisms underlying diminished tearing in dry eye disease, this study sought to determine if hyperosmolar tears, a ubiquitous sign of dry eye disease, produce functional changes in corneal nerve responses to drying of the cornea and if these changes correlate with alterations in corneal nerve morphology. In vivo extracellular electrophysiological recordings were performed in rat trigeminal ganglion neurons that innervated the cornea before, and up to 3 hours after, the ocular application of continuous hyperosmolar tears or artificial tears. In corollary experiments, immunohistochemical staining was performed to compare corneal nerve morphology in control and in eyes treated with hyperosmolar solutions. Our previous studies identified a population of corneal afferents, dry-sensitive neurons that are strongly excited by corneal dessication ("dry response"), a response thought to trigger the lacrimation reflex. In the present study, we found that the dry responses of corneal dry-sensitive neurons were depressed or even completely abolished by hyperosmolar tears in a time- (30 minutes to 3 hours) and dose (450- to 1000-mOsm solutions)-dependent manner. Furthermore, eyes treated with hyperosmolar tears for 3 hours contained large numbers of morphologically abnormal (granular, fragmented, or prominently beaded) subbasal nerves that appeared to be undergoing degeneration. These results demonstrate that tear hyperosmolarity, considered to be a "core" mechanism of dry eye disease, significantly decreases physiological sensitivity and morphologic integrity of the corneal nerves important in tear production. These alterations might contribute to the diminished tearing seen clinically in dry eye patients.

  14. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    Science.gov (United States)

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Effects of tissue fixation and dehydration on tendon collagen nanostructure.

    Science.gov (United States)

    Turunen, Mikael J; Khayyeri, Hanifeh; Guizar-Sicairos, Manuel; Isaksson, Hanna

    2017-09-01

    Collagen is the most prominent protein in biological tissues. Tissue fixation is often required for preservation or sectioning of the tissue. This may affect collagen nanostructure and potentially provide incorrect information when analyzed after fixation. We aimed to unravel the effect of 1) ethanol and formalin fixation and 2) 24h air-dehydration on the organization and structure of collagen fibers at the nano-scale using small and wide angle X-ray scattering. Samples were divided into 4 groups: ethanol fixed, formalin fixed, and two untreated sample groups. Samples were allowed to air-dehydrate in handmade Kapton pockets during the measurements (24h) except for one untreated group. Ethanol fixation affected the collagen organization and nanostructure substantially and during 24h of dehydration dramatic changes were evident. Formalin fixation had minor effects on the collagen organization but after 12h of air-dehydration the spatial variation increased substantially, not evident in the untreated samples. Generally, collagen shrinkage and loss of alignment was evident in all samples during 24h of dehydration but the changes were subtle in all groups except the ethanol fixed samples. This study shows that tissue fixation needs to be chosen carefully in order to preserve the features of interest in the tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Stiparin: a glycoprotein from sea cucumber dermis that aggregates collagen fibrils.

    Science.gov (United States)

    Trotter, J A; Lyons-Levy, G; Luna, D; Koob, T J; Keene, D R; Atkinson, M A

    1996-07-01

    The interactions between collagen fibrils in many echinoderm connective tissues are rapidly altered by the secretions of resident neurosecretory cells. Recent evidence has suggested that a secreted protein is responsible for the interactions that lead to an increase in tissue stiffness (Trotter and Koob, 1995). Structurally intact collagen fibrils have been isolated from such a connective tissue- the dermis of the sea cucumber Cucumaria frondosa- and used in an assay in vitro to identify a protein that binds to them and causes them to aggregate. This protein has been purified by anion-exchange and molecular sieve chromatography. It is eluted from a MonoQ column at approximately 0.55 M NaCl. Its isoelectric point is 5.2. It elutes from a Superose-6 column in a position corresponding to a molecule with a Stokes radius of 11.5 nm. Its native molecular weight estimated from sedimentation equilibrium analysis under non-denaturing conditions is 375,000, and its monomer molecular weight, estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, is approximately 350,000. Sedimentation velocity measurements indicated for the native molecule a sedimentation coefficient of 11 x 10(-13)s, a diffusion coefficient of 3.274 x 10(-7) cm2s-1, and a frictional ratio of 1.95, which corresponds to a prolate ellipsoid of revolution with an axial ratio of 19. The highly asymmetric structure suggested by the above correlated well with the images obtained by transmission electron microscopy following rotary shadowing, which revealed a flexible structure approximately 125 nm long. Based on its ability to aggregate collagen fibrils, this protein has been named "stiparin," from the Latin stipare, "to pack together."

  17. Dependence of credit spread and macro-conditions based on an alterable structure model

    Science.gov (United States)

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds. PMID:29723295

  18. Dependence of credit spread and macro-conditions based on an alterable structure model.

    Science.gov (United States)

    Xie, Yun; Tian, Yixiang; Xiao, Zhuang; Zhou, Xiangyun

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds.

  19. Structures of Rotavirus Reassortants Demonstrate Correlation of Altered Conformation of the VP4 Spike and Expression of Unexpected VP4-Associated Phenotypes

    Science.gov (United States)

    Pesavento, Joseph B.; Billingsley, Angela M.; Roberts, Ed J.; Ramig, Robert F.; Prasad, B. V. Venkataram

    2003-01-01

    Numerous prior studies have indicated that viable rotavirus reassortants containing structural proteins of heterologous parental origin may express unexpected phenotypes, such as changes in infectivity and immunogenicity. To provide a structural basis for alterations in phenotypic expression, a three-dimensional structural analysis of these reassortants was conducted. The structures of the reassortants show that while VP4 generally maintains the parental structure when moved to a heterologous protein background, in certain reassortants, there are subtle alterations in the conformation of VP4. The alterations in VP4 conformation correlated with expression of unexpected VP4-associated phenotypes. Interactions between heterologous VP4 and VP7 in reassortants expressing unexpected phenotypes appeared to induce the conformational alterations seen in VP4. PMID:12584352

  20. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    Science.gov (United States)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  1. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Science.gov (United States)

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  2. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    Science.gov (United States)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  3. Pine Plantations and Invasion Alter Fuel Structure and Potential Fire Behavior in a Patagonian Forest-Steppe Ecotone

    Directory of Open Access Journals (Sweden)

    Juan Paritsis

    2018-03-01

    Full Text Available Planted and invading non-native plant species can alter fire regimes through changes in fuel loads and in the structure and continuity of fuels, potentially modifying the flammability of native plant communities. Such changes are not easily predicted and deserve system-specific studies. In several regions of the southern hemisphere, exotic pines have been extensively planted in native treeless areas for forestry purposes and have subsequently invaded the native environments. However, studies evaluating alterations in flammability caused by pines in Patagonia are scarce. In the forest-steppe ecotone of northwestern Patagonia, we evaluated fine fuels structure and simulated fire behavior in the native shrubby steppe, pine plantations, pine invasions, and mechanically removed invasions to establish the relative ecological vulnerability of these forestry and invasion scenarios to fire. We found that pine plantations and their subsequent invasion in the Patagonian shrubby steppe produced sharp changes in fine fuel amount and its vertical and horizontal continuity. These changes in fuel properties have the potential to affect fire behavior, increasing fire intensity by almost 30 times. Pruning of basal branches in plantations may substantially reduce fire hazard by lowering the probability of fire crowning, and mechanical removal of invasion seems effective in restoring original fuel structure in the native community. The current expansion of pine plantations and subsequent invasions acting synergistically with climate warming and increased human ignitions warrant a highly vulnerable landscape in the near future for northwestern Patagonia if no management actions are undertaken.

  4. Glaucoma-related Changes in the Mechanical Properties and Collagen Micro-architecture of the Human Sclera

    Science.gov (United States)

    Coudrillier, Baptiste; Pijanka, Jacek K.; Jefferys, Joan L.; Goel, Adhiraj; Quigley, Harry A.; Boote, Craig; Nguyen, Thao D.

    2015-01-01

    Objective The biomechanical behavior of the sclera determines the level of mechanical insult from intraocular pressure to the axons and tissues of the optic nerve head, as is of interest in glaucoma. In this study, we measure the collagen fiber structure and the strain response, and estimate the material properties of glaucomatous and normal human donor scleras. Methods Twenty-two posterior scleras from normal and diagnosed glaucoma donors were obtained from an eyebank. Optic nerve cross-sections were graded to determine the presence of axon loss. The specimens were subjected to pressure-controlled inflation testing. Full-field displacement maps were measured by digital image correlation (DIC) and spatially differentiated to compute surface strains. Maps of the collagen fiber structure across the posterior sclera of each inflated specimen were obtained using synchrotron wide-angle X-ray scattering (WAXS). Finite element (FE) models of the posterior scleras, incorporating a specimen-specific representation of the collagen structure, were constructed from the DIC-measured geometry. An inverse finite element analysis was developed to estimate the stiffness of the collagen fiber and inter-fiber matrix. Results The differences between glaucoma and non-glaucoma eyes were small in magnitude. Sectorial variations of degree of fiber alignment and peripapillary scleral strain significantly differed between normal and diagnosed glaucoma specimens. Meridional strains were on average larger in diagnosed glaucoma eyes compared with normal specimens. Non-glaucoma specimens had on average the lowest matrix and fiber stiffness, followed by undamaged glaucoma eyes, and damaged glaucoma eyes but the differences in stiffness were not significant. Conclusion The observed biomechanical and microstructural changes could be the result of tissue remodeling occuring in glaucoma and are likely to alter the mechanical environment of the optic nerve head and contribute to axonal damage. PMID

  5. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  6. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    Science.gov (United States)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  7. Papain-induced changes in rabbit cartilage; alterations in the chemical structure of the cartilage matrix.

    Science.gov (United States)

    TSALTAS, T T

    1958-10-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S(35) content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S(35) in the serum and an increase of S(35) and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery.

  8. Influence of functionalized nanoparticles on conformational stability of type I collagen for possible biomedical applications.

    Science.gov (United States)

    Kandamchira, Aswathy; Selvam, Sangeetha; Marimuthu, Nidhin; Janardhanan, Sreeram Kalarical; Fathima, Nishter Nishad

    2013-12-01

    Collagen-nanoparticle interactions are vital for many biomedical applications including drug delivery and tissue engineering applications. Iron oxide nanoparticles synthesized using starch template according to our earlier reported procedures were functionalized by treating them with Gum Arabic (GA), a biocompatible polysaccharide, so as to enhance the interaction between nanoparticle surfaces and collagen. Viscosity, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) techniques have been used to study the collagen-nanoparticle interactions. The relative viscosity for collagen-nanoparticle conjugate was found to increase with increase in concentration of the nanoparticle within the concentration range investigated, which is due to the aggregation of protein onto the surface of nanoparticle. The CD spectra for the collagen-nanoparticle at different concentration ratios do not have much variation in the Rpn values (ratio of positive peak intensity over negative peak intensity) after functionalization with GA. The variation of molar ellipticity values for collagen-nanoparticle is due to the glycoprotein present in GA. The collagen triple helical structure is maintained after interaction with nanoparticles. The FTIR spectra of native collagen, Coll-Fs (nanoparticle without functionalization) and Coll-FsG (nanoparticle functionalized with GA) show clearly the amide I, II, III bands, with respect to collagen. The ability of polysaccharide stabilized/functionalized nanoparticles to maintain the collagen properties would help in its biomedical applications. © 2013.

  9. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  10. A comparative study of the properties and self-aggregation behavior of collagens from the scales and skin of grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Liu, Yaowen; Ma, Donghui; Wang, Yihao; Qin, Wen

    2018-01-01

    Collagens were extracted from the scales and skin of Ctenopharyngodon idella (C. idella) as raw materials using an acid-enzyme hybrid method. The structural properties of the extracted collagens were compared using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and differential scanning calorimetry. Additionally, the in vitro self-aggregation behaviors of the two types of collagens (fish skin- and scale-derived collagens) were compared using turbidimetric assays, aggregation assays, and scanning electron microscopy (SEM). The results showed that both types of extracted collagen were typical type I collagen with two α chains and intact triple-helical structures. The denaturation temperatures of the collagens from fish scales and skin were 34.99°C and 39.75°C, respectively. Both types of collagens were capable of self-aggregation in neutral salt solution at 30°C, with aggregation degrees of 28% and 27.33% for the scale and skin collagens, respectively. SEM analysis revealed that both types of collagens could self-aggregate into interwoven fibers, and the fish scale-derived collagen had a more pronounced reticular fiber structure with a striped periodic D-band pattern of collagen fibrils, whereas the collagen fibers from the self-aggregation of fish skin-derived collagen had a certain degree of disruption without any D-band pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Maria C. Padula

    2017-01-01

    Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies.

  12. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures

    DEFF Research Database (Denmark)

    Skinner, P J; Koshy, B T; Cummings, C J

    1997-01-01

    a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic...... the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures approximately 0.......5 microm across, whereas the expanded ataxin-1 localizes to a single approximately 2-microm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show...

  13. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    Science.gov (United States)

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Collagen expression in fibroblasts with a novel LMNA mutation

    International Nuclear Information System (INIS)

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy

  15. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Carughi Stefano

    2010-06-01

    TcS1 was decreased in cancer patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. Conclusion The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system

  16. Alterations of white matter structural networks in patients with non-neuropsychiatric systemic lupus erythematosus identified by probabilistic tractography and connectivity-based analyses

    Directory of Open Access Journals (Sweden)

    Man Xu

    2017-01-01

    Conclusion: This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.

  17. Molecular structures and metabolic characteristics of protein in brown and yellow flaxseed with altered nutrient traits.

    Science.gov (United States)

    Khan, Nazir Ahmad; Booker, Helen; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to investigate the chemical profiles; crude protein (CP) subfractions; ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP); and protein molecular structures using molecular spectroscopy of newly developed yellow-seeded flax (Linum usitatissimum L.). Seeds from two yellow flaxseed breeding lines and two brown flaxseed varieties were evaluated. The yellow-seeded lines had higher (P RUP (29.2 vs 35.1% CP) than that in the brown-seeded varieties. However, the total supply of digestible RUP was not significantly different between the two seed types. Regression equations based on protein molecular structural features gave relatively good estimation for the contents of CP (R(2) = 0.87), soluble CP (R(2) = 0.92), RUP (R(2) = 0.97), and intestinal digestibility of RUP (R(2) = 0.71). In conclusion, molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their nutritive value.

  18. Assembly of collagen into microribbons: effects of pH and electrolytes.

    Science.gov (United States)

    Jiang, Fengzhi; Hörber, Heinrich; Howard, Jonathon; Müller, Daniel J

    2004-12-01

    Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.

  19. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Science.gov (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    alteration in eigenvector centrality, clustering coefficient (inter-regional) and participation co-efficient (inter-modular) alterations of frontal-striatal and fronto-limbic nodes suggesting re-organization of these pathways. Both along tract and structural topology network measurements correlated strongly with motor and visual clinical outcome scores. This study shows the value of combining along-tract analysis and structural network topology in depicting not only selective parietal occipital regional vulnerability but also reorganization of frontal-striatal and frontal-limbic pathways in preterm children with cerebral palsy. These finding also support the concept that widespread, but selective posterior-anterior neural network connectivity alterations in preterm children with cerebral palsy likely contribute to the pathogenesis of neurosensory and cognitive impairment in this group.

  20. Intracranial structural alteration predicts treatment outcome in patients with spontaneous intracranial hypotension.

    Science.gov (United States)

    Choi, Hanna; Lee, Mi Ji; Choi, Hyun Ah; Cha, Jihoon; Chung, Chin-Sang

    2018-02-01

    Background Intracranial structural dislocation in spontaneous intracranial hypotension (SIH) can be measured by various intracranial angles and distances. We aimed to identify the clinical significance of structural dislocation in relation to treatment outcome in patients with SIH. Methods In this retrospective analysis, we identified patients with SIH who received an epidural blood patch (EBP) at Samsung Medical Center from January 2005 to March 2015. Structural dislocation in pretreatment MRIs of SIH patients was assessed by measuring tonsillar herniation, mamillopontine distance, the angle between the vein of Galen and straight sinus (vG/SS angle), the pontomesencephalic angle, and the lateral ventricular angle. After the first EBP, poor response was defined as the persistence of symptoms that prompted a repeat EBP. Results Out of the 95 patients included, 31 (32.6%) showed poor response. Among the radiological markers of structural dislocation, the vG/SS angle was associated with poor response (49.82 ± 16.40° vs 66.58 ± 26.08°, p = 0.002). Among clinical variables, premorbid migraine ( p = 0.036) was related to poor response. In multivariate analysis, reduced vG/SS angle was independently associated with poor response (OR 1.04 [95% CI 1.01 - 1.07] per 1° decrease, p = 0.006). In 23 patients who underwent MRI after successful treatment, the vG/SS angle significantly increased after the EBP ( p < 0.001, by paired t-test), while two patients with aggravation or recurrence showed a further reduction of their vG/SS angles. Conclusions Intracranial structural dislocation, measured by the vG/SS angle, is associated with poor response to the first EBP in patients with SIH. Successful treatment can reverse the structural dislocation.

  1. Structural and ecophysiological alterations of the water hyacinth [Eichhornia crassipes (Mart. Solms] due to anthropogenic stress in Brazilian rivers

    Directory of Open Access Journals (Sweden)

    Angela Pierre Vitória

    2011-10-01

    Full Text Available In this work, the structural and ecophysiological alterations (chlorophyll a fluorescence and photosynthetic pigments, and quantification of Cr, Pb and Zn in the leaf limb, petiole and younger and older roots of water hyacinth from the lower, medium and upper Paraíba do Sul river (PSR and Imbé river were evaluated. The plants from the medium and upper PSR (more industrialized and populated regions exhibited lower turgid cell in the root cortex, less root hairs and leaf epidermis, chloroplasts with plastoglobules and increased stroma volume. Higher concentrations of metals were observed in the younger and older roots from the medium PSR plants. The results suggested that the plants from more anthropized regions were able to maintain the maximum quantum yield (Fv/Fm which was a result from the metabolic fitting, increasing the non-photochemical quenching, reducing total chlorophyll/carotenoids and leading to the structural modifications.

  2. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    OpenAIRE

    Jieqiong Wang; Ting Li; Bernhard A. Sabel; Zhiqiang Chen; Hongwei Wen; Jianhong Li; Xiaobin Xie; Diya Yang; Weiwei Chen; Ningli Wang; Junfang Xian; Huiguang He

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/...

  3. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome.

    Science.gov (United States)

    Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril

    2015-02-01

    Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito

  4. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination.

    Science.gov (United States)

    Kobayashi, Maki; Aida, Masatoshi; Nagaoka, Hitoshi; Begum, Nasim A; Kitawaki, Yoko; Nakata, Mikiyo; Stanlie, Andre; Doi, Tomomitsu; Kato, Lucia; Okazaki, Il-mi; Shinkura, Reiko; Muramatsu, Masamichi; Kinoshita, Kazuo; Honjo, Tasuku

    2009-12-29

    To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.

  5. Co-altered functional networks and brain structure in unmedicated patients with bipolar and major depressive disorders.

    Science.gov (United States)

    He, Hao; Sui, Jing; Du, Yuhui; Yu, Qingbao; Lin, Dongdong; Drevets, Wayne C; Savitz, Jonathan B; Yang, Jian; Victor, Teresa A; Calhoun, Vince D

    2017-12-01

    Bipolar disorder (BD) and major depressive disorder (MDD) share similar clinical characteristics that often obscure the diagnostic distinctions between their depressive conditions. Both functional and structural brain abnormalities have been reported in these two disorders. However, the direct link between altered functioning and structure in these two diseases is unknown. To elucidate this relationship, we conducted a multimodal fusion analysis on the functional network connectivity (FNC) and gray matter density from MRI data from 13 BD, 40 MDD, and 33 matched healthy controls (HC). A data-driven fusion method called mCCA+jICA was used to identify the co-altered FNC and gray matter components. Comparing to HC, BD exhibited reduced gray matter density in the parietal and occipital cortices, which correlated with attenuated functional connectivity within sensory and motor networks, as well as hyper-connectivity in regions that are putatively engaged in cognitive control. In addition, lower gray matter density was found in MDD in the amygdala and cerebellum. High accuracy in discriminating across groups was also achieved by trained classification models, implying that features extracted from the fusion analysis hold the potential to ultimately serve as diagnostic biomarkers for mood disorders.

  6. Assessing the marks of change: how psychotherapy alters the brain structure in women with borderline personality disorder

    Science.gov (United States)

    Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C.; Schmahl, Christian

    2018-01-01

    Background There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. Methods We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. Results We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Limitations Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. Conclusion We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions. PMID:29688873

  7. Assessing the marks of change: how psychotherapy alters the brain structure in women with borderline personality disorder.

    Science.gov (United States)

    Mancke, Falk; Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C; Schmahl, Christian

    2017-12-13

    There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions.

  8. Non-dipper treated hypertensive patients do not have increased cardiac structural alterations

    Directory of O