WorldWideScience

Sample records for altered cerebral blood

  1. Altered Cerebral Blood Flow Covariance Network in Schizophrenia.

    Science.gov (United States)

    Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui

    2016-01-01

    Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.

  2. Sex-dependent alterations in resting-state cerebral blood flow, amplitude of low-frequency fluctuations and their coupling relationship in schizophrenia.

    Science.gov (United States)

    Ma, Xiaomei; Wang, Di; Zhou, Yujing; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Yu, Chunshui

    2016-04-01

    We aimed to investigate sex-dependent alterations in resting-state relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling in patients with schizophrenia. Resting-state functional magnetic resonance imaging and three-dimensional pseudo-continuous arterial spin labeling imaging were performed to obtain resting-state amplitude of low-frequency fluctuations and relative cerebral blood flow in 95 schizophrenia patients and 99 healthy controls. Sex differences in relative cerebral blood flow and amplitude of low-frequency fluctuations were compared in both groups. Diagnostic group differences in relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling were compared in male and female subjects, respectively. In both healthy controls and schizophrenia patients, the males had higher relative cerebral blood flow in anterior brain regions and lower relative cerebral blood flow in posterior brain regions than did the females. Compared with multiple regions exhibiting sex differences in relative cerebral blood flow, only the left middle frontal gyrus had a significant sex difference in amplitude of low-frequency fluctuations. In the females, schizophrenia patients exhibited increased relative cerebral blood flow and amplitude of low-frequency fluctuations in the basal ganglia, thalamus and hippocampus and reduced relative cerebral blood flow and amplitude of low-frequency fluctuations in the frontal, parietal and occipital regions compared with those of healthy controls. However, there were fewer brain regions with diagnostic group differences in the males than in the females. Brain regions with diagnostic group differences in relative cerebral blood flow and amplitude of low-frequency fluctuations only partially overlapped. Only the female patients exhibited increased relative cerebral

  3. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation

    Science.gov (United States)

    Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera

    2008-04-01

    Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.

  4. Cerebral blood volume alterations during fractional pneumoencephalography

    International Nuclear Information System (INIS)

    Voigt, K.; Greitz, T.

    1976-01-01

    Simultaneous and continuous measurements of the cerebral blood volume (CBV), cerebrospinal fluid (CSF) and blood pressure were carried out in six patients during fractional pneumoencephalography in order to examine intracranial volumetric interactions. Three patients (Group A) showed normal encephalographic findings, and in three patients (Group B) communicating hydrocephalus with convexity block was found encephalographically. In all patients the injection of air was followed by an immediate increase of CSF pressure and blood pressure and a concomitant decrease of CBV. The initial CSF pressure was invariably re-established within 3 to 3.5 min. During this time interval the CBV of the patients of Group B decreased significantly and 30 percent more than that of Group A. Furthermore, after restoration of the original CSF pressure, CBV returned to its initial level in all patients of Group A, whereas it remained unchanged or showed a further decrease in the patients of Group B. Removal of an amount of CSF corresponding to half of the amount of injected air was followed by a significant reactive hyperemic response in two normal patients. The intracranial volumetric alterations during fractional pneumoencephalography are discussed in detail with respect to the underlying physiologic mechanisms and are suggested as a model for acute and low pressure hydrocephalus

  5. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders.

    Science.gov (United States)

    Vállez García, David; Doorduin, Janine; Willemsen, Antoon T M; Dierckx, Rudi A J O; Otte, Andreas

    2016-08-01

    There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H2(15)O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders

    Directory of Open Access Journals (Sweden)

    David Vállez García

    2016-08-01

    Full Text Available There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD. However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1 to validate previous results showing alterations of regional cerebral blood flow (rCBF in cWAD, (2 to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3 to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.

  7. Sequential assessment of regional cerebral blood flow, regional cerebral blood volume, and blood-brain barrier in focal cerebral ischemia: a case report

    International Nuclear Information System (INIS)

    Di Piero, V.; Perani, D.; Savi, A.; Gerundini, P.; Lenzi, G.L.; Fazio, F.

    1986-01-01

    Regional CBF (rCBF) and regional cerebral blood volume (rCBV) were evaluated by N,N,N'-trimethyl-N'-(2)-hydroxy-3-methyl-5-[123I]iodobenzyl-1, 3-propanediamine-2 HCl- and /sup 99m/TC-labeled red blood cells, respectively, and single-photon emission computerized tomography (SPECT) in a patient with focal cerebral ischemia. Sequential transmission computerized tomography (TCT) and SPECT functional data were compared with clinical findings to monitor the pathophysiological events occurring in stroke. A lack of correlation between rCBF-rCBV distributions and blood-brain barrier (BBB) breakdown was found in the acute phase. In the face of more prolonged alteration of BBB, as seen by TCT enhancement, a rapid evolution of transient phenomena such as luxury perfusion was shown by SPECT studies. Follow-up of the patient demonstrated a correlation between the neurological recovery and a parallel relative improvement of the cerebral perfusion

  8. Cerebral blood flow response to hypoglycemia is altered in patients with type 1 diabetes and impaired awareness of hypoglycemia.

    Science.gov (United States)

    Wiegers, Evita C; Becker, Kirsten M; Rooijackers, Hanne M; von Samson-Himmelstjerna, Federico C; Tack, Cees J; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette

    2017-06-01

    It is unclear whether cerebral blood flow responses to hypoglycemia are altered in people with type 1 diabetes and impaired awareness of hypoglycemia. The aim of this study was to investigate the effect of hypoglycemia on both global and regional cerebral blood flow in type 1 diabetes patients with impaired awareness of hypoglycemia, type 1 diabetes patients with normal awareness of hypoglycemia and healthy controls ( n = 7 per group). The subjects underwent a hyperinsulinemic euglycemic-hypoglycemic glucose clamp in a 3 T MR system. Global and regional changes in cerebral blood flow were determined by arterial spin labeling magnetic resonance imaging, at the end of both glycemic phases. Hypoglycemia generated typical symptoms in patients with type 1 diabetes and normal awareness of hypoglycemia and healthy controls, but not in patients with impaired awareness of hypoglycemia. Conversely, hypoglycemia increased global cerebral blood flow in patients with impaired awareness of hypoglycemia, which was not observed in the other two groups. Regionally, hypoglycemia caused a redistribution of cerebral blood flow towards the thalamus of both patients with normal awareness of hypoglycemia and healthy controls, consistent with activation of brain regions associated with the autonomic response to hypoglycemia. No such redistribution was found in the patients with impaired awareness of hypoglycemia. An increase in global cerebral blood flow may enhance nutrient supply to the brain, hence suppressing symptomatic awareness of hypoglycemia. Altogether these results suggest that changes in cerebral blood flow during hypoglycemia contribute to impaired awareness of hypoglycemia.

  9. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, M

    1987-06-18

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO/sub 2/), oxygen extraction (EO/sub 2/) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO/sub 2/ and often a decrease in CMRO/sub 2/, whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO/sub 2/, EO/sub 2/ and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis.

  10. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    International Nuclear Information System (INIS)

    Clanet, M.

    1987-01-01

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO 2 ), oxygen extraction (EO 2 ) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO 2 and often a decrease in CMRO 2 , whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO 2 , EO 2 and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis [fr

  11. Subcortical aphasia and cerebral blood flow using SPECT

    International Nuclear Information System (INIS)

    Celsis, P.; Puel, M.; Demonet, J.P.; Bonafe, A.; Cardebat, D.; Viallard, G.; Pujol, T.; Marc-Vergnes, J.P.; Rascol, A.

    1985-01-01

    Possible cerebral blood flow (CBF) alteration in subcortical aphasia was investigated by single-photon emission tomography (SPECT). The results confirm the capsulo-striatal lesions and also point to the high rate of ipsilateral thalamic and cortical dysfunction. (author). 8 refs.; 1 fig.; 1 tab

  12. Effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Brusino, F.G.; Reves, J.G.; Smith, L.R.; Prough, D.S.; Stump, D.A.; McIntyre, R.W.

    1989-01-01

    Cerebral blood flow was measured in 20 patients by xenon 133 clearance methodology during nonpulsatile hypothermic cardiopulmonary bypass to determine the effect of age on regional cerebral blood flow during these conditions. Measurements of cerebral blood flow at varying perfusion pressures were made in patients arbitrarily divided into two age groups at nearly identical nasopharyngeal temperature, hematocrit value, and carbon dioxide tension and with equal cardiopulmonary bypass flows of 1.6 L/min/m2. The range of mean arterial pressure was 30 to 110 mm Hg for group I (less than or equal to 50 years of age) and 20 to 90 mm Hg for group II (greater than or equal to 65 years of age). There was no significant difference (p = 0.32) between the mean arterial pressure in group I (54 +/- 28 mm Hg) and that in group II (43 +/- 21 mm Hg). The range of cerebral blood flow was 14.8 to 29.2 ml/100 gm/min for group I and 13.8 to 37.5 ml/100 gm/min for group II. There was no significant difference (p = 0.37) between the mean cerebral blood flow in group I (21.5 +/- 4.6 ml/100 gm/min) and group II (24.3 +/- 8.1 ml/100 gm/min). There was a poor correlation between mean arterial pressure and cerebral blood flow in both groups: group I, r = 0.16 (p = 0.67); group II, r = 0.5 (p = 0.12). In 12 patients, a second cerebral blood flow measurements was taken to determine the effect of mean arterial pressure on cerebral blood flow in the individual patient. Changes in mean arterial pressure did not correlate with changes in cerebral blood flow (p less than 0.90). We conclude that age does not alter cerebral blood flow and that cerebral blood flow autoregulation is preserved in elderly patients during nonpulsatile hypothermic cardiopulmonary bypass

  13. Dynamic alteration of regional cerebral blood flow during carotid compression and proof of reversibility

    International Nuclear Information System (INIS)

    Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S

    2012-01-01

    It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression

  14. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min

  15. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O...... developed clinical AMS (AMS+) and were more hypoxaemic relative to subjects without AMS (AMS-). A more marked increase in the venous concentration of the ascorbate radical (A(*-)), lipid hydroperoxides (LOOH) and increased susceptibility of low-density lipoprotein (LDL) to oxidation was observed during...

  16. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    International Nuclear Information System (INIS)

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-01-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine

  17. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Schizophrenia.

    Science.gov (United States)

    Zhu, Jiajia; Zhuo, Chuanjun; Xu, Lixue; Liu, Feng; Qin, Wen; Yu, Chunshui

    2017-10-21

    Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com

  18. pCO2 And pH regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    SeongHun eYoon

    2012-09-01

    Full Text Available CO2 Serves as one of the fundamental regulators of cerebral blood flow. It is widely considered that this regulation occurs through pCO2-driven changes in pH of the cerebral spinal fluid, with elevated and lowered pH causing direct relaxation and contraction of the smooth muscle, respectively. However, some findings also suggest that pCO2 acts independently of and/or in conjunction with altered pH. This action may be due to a direct effect of cerebral spinal fluid pCO2 on the smooth muscle as well as on the endothelium, nerves, and astrocytes. Findings may also point to an action of arterial pCO2 on the endothelium to regulate smooth muscle contractility. Thus, the effects of pH and pCO2 may be influenced by the absence/presence of different cell types in the various experimental preparations. Results may also be influenced by experimental parameters including myogenic tone as well as solutions containing significantly altered HCO3- concentrations, i.e., solutions routinely employed to differentiate the effects of pH from pCO2. In sum, it appears that pCO2, independently and in conjunction with pH, may regulate cerebral blood flow.

  19. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat

    DEFF Research Database (Denmark)

    Linde, Rasmus; Hasselbalch, Steen G.; Topp, Simon

    2006-01-01

    and cerebral metabolism could not be explained by alterations in blood pH or arterial CO2 tension. By measuring cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy, it could further be concluded that the brain pH was unchanged during acute hyperketonemia. These observations indicate......In the human setting, it has been shown that acute increase in the concentration of ketone bodies by infusion of beta-hydroxybutyrate increased the cerebral blood flow (CBF) without affecting the overall cerebral metabolic activity. The mechanism by which this effect of ketone bodies was mediated...... that the mechanism responsible for the increase in CBF is rather a direct effect on the cerebral endothelium than via some metabolic interactions...

  20. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-04-15

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19approx52 years, average age: 29.3+-9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19approx53 years, average age: 31.4+-9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  1. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    International Nuclear Information System (INIS)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun

    2009-01-01

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19∼52 years, average age: 29.3±9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19∼53 years, average age: 31.4±9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  2. Effect of Body Temperature on the Radionuclide Evaluation of Cerebral Blood Flow

    International Nuclear Information System (INIS)

    Mustafa, S. . E- mail: seham@hsc.edu.kw; Elgazzar, A.H.; Gopinath, S.; Mathew, M.; Khalil, M.

    2006-01-01

    alter regional cerebral blood flow and hence the final results of a radionuclide cerebral blood flow study. Therefore it is recommended that body temperature should be considered as one of the factors while interpreting a cerebral blood flow study, and as far as possible such studies should be conducted on patients in normothermic conditions to avoid misleading results. It is hoped that the results of our study would encourage researchers to carry out further studies on humans. (author)

  3. Cerebral blood flow measurement techniques in infants and children

    International Nuclear Information System (INIS)

    Kirsch, J.R.; Traystman, R.J.; Rogers, M.C.

    1985-01-01

    The tremendous growth of interest in neurologic intensive care and in the pathophysiology of the cerebral circulation in the past few years has resulted in increasing numbers of studies that document alterations in cerebral flow during the course of various diseases or as a response to treatment of them. Before pediatricians come to conclusions based on these studies, it is important to have an understanding of the techniques involved. The techniques are complex and difficult but are based on understandable principles. They also have limitations and are subject to misinterpretations. Pediatricians should become knowledgeable about some of these techniques and their limitations because it is likely that they will be applied with increasing frequency in the next several years. We are on the threshold of exciting discoveries in abnormalities of cerebral blood flow and cerebral metabolism not only in critically ill children but also in children with congenital and learning disorders

  4. Cerebral blood flow mapping in children with sickle cell disease

    International Nuclear Information System (INIS)

    Numaguchi, Y.; Humbert, J.R.; Robinson, A.E.; Lindstrom, W.W.; Gruenauer, L.M.

    1988-01-01

    A cerebral blood flow mapping system was applied to the evaluation of cerebral blood flow (CBF) in 21 patients with sickle cell cerebrovascular disease, by means of a Picker xenon computed tomographic (CT) scanner. Results indicate that (1) xenon CT is a safe and reliable procedure in children with cerebrovascular diseases; (2) CBF in the gray matter of children seems to be higher than in previously reported data obtained with use of isotopes; and (3) regional CBF can be altered significantly by changing the size of the region of interest (ROI). The term regional CBF probably has to be carefully defined in xenon CT flow mapping. Correlation with anatomy by means of CT or magnetic resonance imaging and comparison with the ROI of the contralateral side and/or adjacent sections is important

  5. Relationship between blood uric and acute cerebral infarction

    International Nuclear Information System (INIS)

    Yin Zhanxia; Zhao Danyang

    2011-01-01

    Objective: To study the relationship between blood uric acid and acute cerebral infarction. Methods: The level of blood uric acid and prevalence of hyperuricemia (HUA) were compared in 360 patients with acute cerebral infarction and 300 patients without it. According to the level of blood uric acid, 360 acute cerebral infarction patients were divided into HUA and normouricemia (NUA) groups. Age, sex, body mass index (BMI), blood glucose and total cholesterol were compared between the HUA and NUA group. The degree of neurological functional defection was compared between the two groups when patients were attacked by acute cerebral infarction. After a recovery treatment, the neurological functional defection of the two groups was compared a second time. Results: (1)The average blood uric acid level and prevalence of HUA were higher in patients with acute cerebral infarction. (2) The BMI, blood glucose and total cholesterol were higher in HUA group than in NUA group. (3) The neurological functional defection was more serious in HUA group when patients were attacked by acute cerebral infarction and after a recovery treatment. Conclusion: Hyperuricemia is related to acute cerebral infarction. (authors)

  6. Patient state index and cerebral blood flow changes during shoulder arthroscopy in beach chair position.

    Science.gov (United States)

    Buget, Mehmet Ilke; Atalar, Ata Can; Edipoglu, Ipek Saadet; Sungur, Zerrin; Sivrikoz, Nukhet; Karadeniz, Meltem; Saka, Esra; Kucukay, Suleyman; Senturk, Mert N

    2016-01-01

    The aim of the study were to demonstrate the possible hemodynamic changes and cerebral blood flow alterations in patients who were positioned from supine to beach chair position; and to detect if the position change causes any cortical activity alteration as measured by the 4-channeled electroencephalography monitor. 35 patients were included. Before the induction, mean arterial pressure and patient state index values were recorded (T0). After the intubation, doppler-ultrasonography of the patients' internal carotid and vertebral arteries were evaluated to acquire cerebral blood flow values from the formula. In supine position, mean arterial pressure, patient state index and cerebral blood flow values were recorded (T1) and the patient was positioned to beach chair position. After 5min all measurements were repeated (T2). Measurements of patient state index and mean arterial pressure were repeated after 20 (T3), and 40 (T4)min. There was a significant decrease between T0 and T1 in heart rate (80.5±11.6 vs. 75.9±14.4beats/min), MAP (105.8±21.9 vs. 78.9±18.4mmHg) and PSI (88.5±8.3 vs. 30.3±9.7) (all pstate index values (T1-T4) showed no significant change; however, comparing only T1 and T2 resulted in a statically significant decrease in patient state index. There was a significant decrease in cerebral blood flow after beach chair position. Beach chair position was associated with a decrease in cerebral blood flow and patient state index values. Patient state index was affected by the gravitational change of the cerebral blood flow; however, both factors were not directly correlated to each other. Moreover, the decrease in patient state index value was transient and returned to normal values within 20min. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. [Patient state index and cerebral blood flow changes during shoulder arthroscopy in beach chair position].

    Science.gov (United States)

    Buget, Mehmet Ilke; Atalar, Ata Can; Edipoglu, Ipek Saadet; Sungur, Zerrin; Sivrikoz, Nukhet; Karadeniz, Meltem; Saka, Esra; Kucukay, Suleyman; Senturk, Mert N

    2016-01-01

    The aim of the study were to demonstrate the possible hemodynamic changes and cerebral blood flow alterations in patients who were positioned from supine to beach chair position; and to detect if the position change causes any cortical activity alteration as measured by the 4-channeled electroencephalography monitor. 35 patients were included. Before the induction, mean arterial pressure and patient state index values were recorded (T0). After the intubation, doppler-ultrasonography of the patients' internal carotid and vertebral arteries were evaluated to acquire cerebral blood flow values from the formula. In supine position, mean arterial pressure, patient state index and cerebral blood flow values were recorded (T1) and the patient was positioned to beach chair position. After 5min all measurements were repeated (T2). Measurements of patient state index and mean arterial pressure were repeated after 20 (T3), and 40 (T4)min. There was a significant decrease between T0 and T1 in heart rate (80.5±11.6 vs. 75.9±14.4beats/min), MAP (105.8±21.9 vs. 78.9±18.4mmHg) and PSI (88.5±8.3 vs. 30.3±9.7) (all pstate index values (T1-T4) showed no significant change; however, comparing only T1 and T2 resulted in a statically significant decrease in patient state index. There was a significant decrease in cerebral blood flow after beach chair position. Beach chair position was associated with a decrease in cerebral blood flow and patient state index values. Patient state index was affected by the gravitational change of the cerebral blood flow; however, both factors were not directly correlated to each other. Moreover, the decrease in patient state index value was transient and returned to normal values within 20min. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  8. Low cerebral blood flow in hypotensive perinatal distress

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1977-01-01

    was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays...... a crucial role in the development of perinatal hypoxic brain injury....

  9. Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism.

    Science.gov (United States)

    Xu, Feng; Liu, Peiying; Pascual, Juan M; Xiao, Guanghua; Huang, Hao; Lu, Hanzhang

    2015-02-01

    While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. © 2014 Wiley Periodicals, Inc.

  10. Middle cerebral artery blood velocity during running

    NARCIS (Netherlands)

    Lyngeraa, T. S.; Pedersen, L. M.; Mantoni, T.; Belhage, B.; Rasmussen, L. S.; van Lieshout, J. J.; Pott, F. C.

    2013-01-01

    Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA)

  11. Low cerebral blood flow in hypotensive perinatal distress

    International Nuclear Information System (INIS)

    Lou, H.C.; Lassen, N.A.; Friis-Hansen, B.

    1977-01-01

    Hypoxic brain injury is the most important neurological problem in the neonatal period and accounts for more neurological deficits in children than any other lesion. The neurological deficits are notably mental retardation, epilepsy and cerebral palsy. The pathogenesis has hitherto been poorly understood. Arterial hypoxia has been taken as the obvious mechanism but this does not fully explain the patho-anatomical findings. In the present investigation we have examined the arterial blood pressure and the cerebral blood flow in eight infants a few hours after birth. The 133Xe clearance technique was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays a crucial role in the development of perinatal hypoxic brain injury. (author)

  12. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Means for the Scintigraphic Imaging of Regional Brain Dynamics. Regional Cerebral Blood Flow and Regional Cerebral Blood Volume

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E. J.; Bentley, R.; Gerth, W.; Hill, R. L.; Davis, D. O. [Washington University School Of Medicine, St. Louis, MO (United States)

    1969-05-15

    The use of freely diffusable inert radioactive gas as a washout indicator to measure regional cerebral blood flow has become a standardized kinetic procedure in many laboratories. Recent investigations with this technique have led us to conclude that we can reliably distinguish regional flow with perfusion against regional flow without perfusion from the early portion of the curve. Based on a detailed study of the early curve kinetics in patients with and without cerebral vascular disease we have defined the sampling duration necessary for application of the Anger gamma camera imaging process to regional changes in cerebral radioactivity. Using a standard camera and a small computer, a procedure has been developed and based upon entire field to determine the time of maximum height followed by analysis of the data in a matrix. This will permit a contour plot presentation of calculated regional cerebral blood flow in millilitres per 100 grams perfused brain per minute. In addition, we propose to augment this data by the display of regional non-perfusion blood flow versus regional cerebral flow with perfusion. Preliminary investigation on sampling duration, and Compton scattering were prerequisite to clinical scintigraphy of regional cerebral blood flow. In addition, the method of interface for the conventional Anger gamma camera to digital computers used in this procedure are discussed. Applications to further assess regional cerebral dynamics by scintigraphy are presented. (author)

  14. The effect of ventricular assist devices on cerebral blood flow and blood pressure fractality

    International Nuclear Information System (INIS)

    Bellapart, Judith; Fraser, John F; Chan, Gregory S H; Tzeng, Yu-Chieh; Ainslie, Philip N; Dunster, Kimble R; Barnett, Adrian G; Boots, Rob

    2011-01-01

    Biological signals often exhibit self-similar or fractal scaling characteristics which may reflect intrinsic adaptability to their underlying physiological system. This study analysed fractal dynamics of cerebral blood flow in patients supported with ventricular assist devices (VAD) to ascertain if sustained modifications of blood pressure waveform affect cerebral blood flow fractality. Simultaneous recordings of arterial blood pressure and cerebral blood flow velocity using transcranial Doppler were obtained from five cardiogenic shock patients supported by VAD, five matched control patients and five healthy subjects. Computation of a fractal scaling exponent (α) at the low-frequency time scale by detrended fluctuation analysis showed that cerebral blood flow velocity exhibited 1/f fractal scaling in both patient groups (α = 0.95 ± 0.09 and 0.97 ± 0.12, respectively) as well as in the healthy subjects (α = 0.86 ± 0.07). In contrast, fluctuation in blood pressure was similar to non-fractal white noise in both patient groups (α = 0.53 ± 0.11 and 0.52 ± 0.09, respectively) but exhibited 1/f scaling in the healthy subjects (α = 0.87 ± 0.04, P < 0.05 compared with the patient groups). The preservation of fractality in cerebral blood flow of VAD patients suggests that normal cardiac pulsation and central perfusion pressure changes are not the integral sources of cerebral blood flow fractality and that intrinsic vascular properties such as cerebral autoregulation may be involved. However, there is a clear difference in the fractal scaling properties of arterial blood pressure between the cardiogenic shock patients and the healthy subjects

  15. Intraventricular hemorrhage in the preterm neonate: timing and cerebral blood flow changes

    International Nuclear Information System (INIS)

    Ment, L.R.; Duncan, C.C.; Ehrenkranz, R.A.; Lange, R.C.; Taylor, K.J.; Kleinman, C.S.; Scott, D.T.; Sivo, J.; Gettner, P.

    1984-01-01

    Serial cranial ultrasound studies, 133xenon inhalation cerebral blood flow determinations, and risk factor analyses were performed in 31 preterm neonates. Contrast echocardiographic studies were additionally performed in 16 of these 31 infants. Sixty-one percent were found to have germinal matrix or intraventricular hemorrhage. Seventy-four percent of all hemorrhages were detected by the thirtieth postnatal hour. The patients were divided into three groups: early GMH/IVH by the sixth postnatal hour (eight infants) interval GMH/IVH from 6 hours through 5 days (10), and no GMH/IVH (12). Cerebral blood flow values at 6 postnatal hours were significantly lower for the early GMH/IVH group than for the no GMH/IVH group (P less than 0.01). Progression of GMH/IVH was observed only in those infants with early hemorrhage, and these infants had a significantly higher incidence of neonatal mortality. Ventriculomegaly as determined by ultrasound studies was noted equally in infants with and without GMH/IVH (50%) and was not found to correlate with low cerebral blood flow. The patients with early hemorrhage were distinguishable by their need for more vigorous resuscitation at the time of birth and significantly higher ventilator settings during the first 36 postnatal hours, during which time they also had higher values of PCO2. An equal incidence of patent ductus arteriosus was found across all of the groups. We propose that early GMH/IVH may be related to perinatal events and that the significant decrease in cerebral blood flow found in infants with early GMH/IVH is secondary to the presence of the hemorrhage itself. Progression of early GMH/IVH and new interval GMH/IVH may be related to later neonatal events known to alter cerebral blood flow

  16. Regional cerebral blood flow measurement using a scintillation camera

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1979-01-01

    A scintillation camera connected to auxillary equipment with off-line data processing or connected to an on-line dedicated computer system permits measurement of hemispheric and regional cerebral blood flow. Reliable flow values are obtained from regions limited in size by spatial resolution and the count rates achieved. Flow measurements obtained with the camera are able to resolve inhomogeneities of cerebral circulation in normal subjects. In a variety of clinical conditions, the localization, severity and extent of flow alterations are shown. Results of flow measurements in individual cases elucidate the pathogenesis of neurologic deficits, quantify the damage to the brain, indicate therapeutic measures of potential value and permit an estimation of the further clinical course. With restricted spatial resolution, flow measurements after intravenous 133 Xe injection are also feasible

  17. Postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine

  18. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.

    Science.gov (United States)

    Smirl, J D; Tzeng, Y C; Monteleone, B J; Ainslie, P N

    2014-06-15

    We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics. Copyright © 2014 the American Physiological Society.

  19. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    Li Yuge; Gao Qinyi; Wang Shuang; Zhao Yong

    2008-01-01

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99 Tc m -ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99 Tc m -ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  20. Influence of hemodialysis on the mean blood flow velocity in the middle cerebral artery.

    Science.gov (United States)

    Stefanidis, I; Bach, R; Mertens, P R; Liakopoulos, V; Liapi, G; Mann, H; Heintz, B

    2005-08-01

    Several effects of hemodialysis, including hemoconcentration, alterations of hemostasis or hemorheology and endothelial activation, could potentially interfere with cerebral blood flow (CBF) regulation. These treatment-specific changes may also be crucial for the enhanced incidence of stroke in uremic patients. Nevertheless, the influence of hemodialysis on CBF has not been yet adequately studied. We registered mean blood flow velocity (MFV) in the middle cerebral artery (MCA) during hemodialysis treatment in order to evaluate its contribution on CBF changes. Transcranial Doppler ultrasonography (TCD) of the MCA was performed continuously during hemodialysis treatment in 18 stable patients (10 males and 8 females, mean age 62 +/- 11 years) with end-stage renal disease of various origin. Blood pressure (mmHg), heart rate (/min), ultrafiltration volume (ml), BV changes (deltaBV by hemoglobinometry, %), arterial blood gases (pO2, blood oxygen content, pCO2), hemostasis activation (thrombin-antithrombin III complex, ELISA) and fibrinogen (Clauss) were measured simultaneously at the beginning of treatment and every hour thereafter. Before the hemodialysis session the MFV in the MCA was within normal range (57.5 +/- 13.0 cm/s, ref. 60 +/- 12) and was mainly dependent on the patients' age (r = -0.697, p delta%MFV) were interrelated to the ultrafiltration volume (r = -0.486, p delta%acO2, r = -0.420, p delta%fibrinogen, r = 0.244, p < 0.05). A significant continuous decrease of the MFV in the MCA was observed during hemodialysis treatment, which inversely correlated both with ultrafiltration volume, BV changes and changes of plasma fibrinogen. The ultrafiltration-induced hemoconcentration with concomitant rise of hematocrit and oxygen transport capacity, may partly explain the alterations in the cerebral MFV observed during hemodialysis.

  1. Effect of hematocrit and systolic blood pressure on cerebral blood flow in newborn infants

    International Nuclear Information System (INIS)

    Younkin, D.P.; Reivich, M.; Jaggi, J.L.; Obrist, W.D.; Delivoria-Papadopoulos, M.

    1987-01-01

    The effects of hematocrit and systolic blood pressure on cerebral blood flow were measured in 15 stable, low birth weight babies. CBF was measured with a modification of the xenon-133 ( 133 Xe) clearance technique, which uses an intravenous bolus of 133 Xe, an external chest detector to estimate arterial 133 Xe concentration, eight external cranial detectors to measure cephalic 133 Xe clearance curves, and a two-compartmental analysis of the cephalic 133 Xe clearance curves to estimate CBF. There was a significant inverse correlation between hematocrit and CBF, presumably due to alterations in arterial oxygen content and blood viscosity. Newborn CBF varied independently of systolic blood pressure between 60 and 84 mm Hg, suggesting an intact cerebrovascular autoregulatory mechanism. These results indicate that at least two of the factors that affect newborn animal CBF are operational in human newborns and may have important clinical implications

  2. Cerebral blood flow autoregulation is impaired in schizophrenia: A pilot study.

    Science.gov (United States)

    Ku, Hsiao-Lun; Wang, Jiunn-Kae; Lee, Hsin-Chien; Lane, Timothy Joseph; Liu, I-Chao; Chen, Yung-Chan; Lee, Yao-Tung; Lin, I-Cheng; Lin, Chia-Pei; Hu, Chaur-Jong; Chi, Nai-Fang

    2017-10-01

    Patients with schizophrenia have a higher risk of cardiovascular diseases and higher mortality from them than does the general population; however, the underlying mechanism remains unclear. Impaired cerebral autoregulation is associated with cerebrovascular diseases and their mortality. Increased or decreased cerebral blood flow in different brain regions has been reported in patients with schizophrenia, which implies impaired cerebral autoregulation. This study investigated the cerebral autoregulation in 21 patients with schizophrenia and 23 age- and sex-matched healthy controls. None of the participants had a history of cardiovascular diseases, hypertension, or diabetes. All participants underwent 10-min blood pressure and cerebral blood flow recording through finger plethysmography and Doppler ultrasonography, respectively. Cerebral autoregulation was assessed by analyzing two autoregulation indices: the mean blood pressure and cerebral blood flow correlation coefficient (Mx), and the phase shift between the waveforms of blood pressure and cerebral blood flow determined using transfer function analysis. Compared with the controls, the patients had a significantly higher Mx (0.257 vs. 0.399, p=0.036) and lower phase shift (44.3° vs. 38.7° in the 0.07-0.20Hz frequency band, p=0.019), which indicated impaired maintenance of constant cerebral blood flow and a delayed cerebrovascular autoregulatory response. Impaired cerebral autoregulation may be caused by schizophrenia and may not be an artifact of coexisting medical conditions. The mechanism underlying impaired cerebral autoregulation in schizophrenia and its probable role in the development of cerebrovascular diseases require further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Correlation between indices of 24-h monitoring of blood pressure and disturbed venous cerebral outflow in hypertensive patients].

    Science.gov (United States)

    Afanas'eva, N L; Mordovin, V F; Semke, G V; Luk'ianenok, P I

    2008-01-01

    To study relations between disturbances of cerebral venous circulation and parameters of 24-h blood pressure monitoring in hypertensive patients. A total of 72 patients aged 28 to 60 years with essential hypertension of stage II have undergone 24-h blood pressure monitoring and MR-venography of the brachiocephalic veins on a low-field MR-tomograph using 2D TOF angiography. Symptoms of disturbed cerebral venous circulation were found in 60% patients. Major venous collectors were asymmetric in 79.2% patients, 40.3% had marked asymmetry, 14% had severe asymmetry. Disturbances of venous outflow significantly more frequently occurred in non-dippers and night-peakers as well as in high variability of blood pressure. Patients with marked asymmetry of venous collectors had elevated nocturnal systolic and diastolic blood pressure, high load indices of nocturnal systolic and diastolic pressure, a low degree of nocturnal fall of blood pressure. Disturbance of venous cerebral outflow in hypertensive patients is closely related with alterations of a circadian profile of blood pressure: circadian index of blood pressure, variability of blood pressure.

  4. Recovery of cerebral blood flow in unilateral chronic subdural hematoma. The correlation with cerebral re-expansion in elders

    International Nuclear Information System (INIS)

    Nemoto, Akio

    2003-01-01

    CT and SPECT were used to investigate the relationship between cerebral re-expansion and changes in cerebral blood flow underneath hematoma in elderly patients after surgery for chronic unilateral subdural hematoma. I studied 22 patients with mild hematoma, aged 43 to 82 years (mean 67 years). The patients were placed in either Group A (under 70 years) or Group B (70 years or over) to observe postoperative changes. CT and SPECT examinations were conducted before surgery and 1, 7 and 30 days after surgery, 4 times in total. Cerebral re-expansion was represented by the re-expansion rate (PER) comparing the pre- and postoperative thickness of the maximal hematoma in CT images. The rate of cerebral re-expansion was slowed in Group B (p<0.01). Cerebral re-expansion was characterized by biphasic, rapid or gradual re-expansion on postoperative day 1 with a significant difference between groups (p<0.01). Before surgery, cerebral blood flow on the affected side correlated with age (p<0.01), thougn blood flow was diminished in both groups. After surgery, cerebral blood flow on the affected side exceeded that on the unaffected side in Group A and transiently increased on postoperative day 1. Cerebral blood flow improved after surgery in both groups, with a significant difference in those changes over time (p<0.01). In both groups, cerebral re-expansion on postoperative days 7 and 30 correlated with cerebral blood flow on the affected side (p<0.05). The present results suggest that improvement in cerebral blood flow on the affected side is delayed in elderly patients, due to slower postoperative cerebral re-expansion. (author)

  5. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  6. Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia--an ultrasound and MRI study

    NARCIS (Netherlands)

    Wilson, Mark H.; Edsell, Mark E. G.; Davagnanam, Indran; Hirani, Shashivadan P.; Martin, Dan S.; Levett, Denny Z. H.; Thornton, John S.; Golay, Xavier; Strycharczuk, Lisa; Newman, Stanton P.; Montgomery, Hugh E.; Grocott, Mike P. W.; Imray, Christopher H. E.; Ahuja, V.; Aref-Adib, G.; Burnham, R.; Chisholm, A.; Clarke, K.; Coates, D.; Coates, M.; Cook, D.; Cox, M.; Dhillon, S.; Dougall, C.; Doyle, P.; Duncan, P.; Edsell, M.; Edwards, L.; Evans, L.; Gardiner, P.; Grocott, M.; Gunning, P.; Hart, N.; Harrington, J.; Harvey, J.; Holloway, C.; Howard, D.; Hurlbut, D.; Imray, C.; Ince, C.; Jonas, M.; van der Kaaij, J.; Khosravi, M.; Kolfschoten, N.; Levett, D.; Luery, H.; Luks, A.; Martin, D.; McMorrow, R.; Meale, P.

    2011-01-01

    Transcranial Doppler is a widely used noninvasive technique for assessing cerebral artery blood flow. All previous high altitude studies assessing cerebral blood flow (CBF) in the field that have used Doppler to measure arterial blood velocity have assumed vessel diameter to not alter. Here, we

  7. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs

    International Nuclear Information System (INIS)

    Busija, D.W.; Leffler, C.W.

    1987-01-01

    The authors examined effects of hypothermia on cerebral metabolic rate and cerebral blood flow in anesthetized, newborn pigs (1-4 days old). Cerebral blood flow (CBF) was determined with 15-μm radioactive microspheres. Regional CBF ranged from 44 to 66 ml·min -1 ·100 g -1 , and cerebral metabolic rate was 1.94 ± 0.23 ml O 2 ·100 g -1 ·min -1 during normothermia (39 degree C). Reduction of rectal temperature to 34-35 degree C decreased CBF and cerebral metabolic rate 40-50%. In another group of piglets, they examined responsiveness of the cerebral circulation to arterial hypercapnia during hypothermia. Although absolute values for normocapnic and hypercapnic CBF were reduced by hypothermia and absolute values for normocapnic and hypercapnic cerebrovascular resistance were increased, the percentage changes from control in these variables during hypercapnia were similar during normothermia and hypothermia. In another group of animals that were maintained normothermic and exposed to two episodes of hypercapnia, there was no attenuation of cerebrovascular dilation during the second episode. They conclude that hypothermia reduces CBF secondarily to a decrease in cerebral metabolic rate and that percent dilator responsiveness to arterial hypercapnia is unaltered when body temperature is reduced

  8. Modeling cerebral blood flow during posture change from sitting to standing

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, M.; Tran, H.T.

    2004-01-01

    extremities, the brain, and the heart. We use physiologically based control mechanisms to describe the regulation of cerebral blood flow velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. To justify the fidelity of our mathematical model and control......Abstract Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow velocity regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture...

  9. Cerebral blood flow and oxygen metabolism after subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Ito, Hidemichi; Sakurai, Takashi; Hayashi, Tatsuo; Hashimoto, Takuo

    2004-01-01

    The mechanism of reduction of cerebral circulation in the early phase of aneurysmal subarachnoid hemorrhage (SAH) has not yet been clarified. Previous studies have variously indicated that cerebral blood flow (CBF) reduction may be due to cerebral vasospasm, an elevation in intracranial pressure (ICP), constriction of intraparenchymal arterioles, or metabolic reduction. The aim of this study is to investigate the relationship between cerebral circulation and oxygen metabolism. In 36 patients with aneurysmal SAH, the values of mean cerebral blood flow (mCBF), cerebral metabolic rate of oxygen (GMRO 2 ) and oxygen extraction fraction (OEF) were measured by using single photon emission computed tomography (SPECT) with arterial blood drawing and oxygen saturation of internal jugular bulb blood (SjO 2 ) in the acute stage (1-3 days after onset) and the spasm stage (7-10 days after onset). The patients in our study were selected by using the following criteria: no history of cerebrovascular or cardiopulmonary diseases; under the age of 70; the ruptured aneurysm was treated by clipping or coil embolization within 72 hours after onset; no symptoms of cerebral vasospasm; no signs of cerebral ischemic change on CT scans. These patients were divided into 2 groups according to the World Federation of Neurological Surgeons (WFNS) grading classification; the mild group (Grades I and II) consisted of 27 cases and the severe group (Grade IV) consisted of 9 cases. We studied differences in mCBF CMRO 2 , and OEF between the mild group and severe group. In the mild group, mCBF, CMRO 2 , and OEF were significantly higher than in the severe group during both the acute and the spasm stage. Also mCBF showed a direct correlation with CMRO 2 . All the patients were kept under the following conditions: the bed was positioned so that the upper body was raised at an angle at 30 deg; blood pressure was maintained at 130-150 mmHg and PaCO 2 of arterial blood was maintained at 35-40 mmHg; ICP

  10. Changes in Cerebral Blood Flow during an Alteration in Glycemic State in a Large Non-human Primate (Papio hamadryas sp.).

    Science.gov (United States)

    Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S

    2017-01-01

    Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.

  11. Cerebral blood flow and cerebral oxygen metabolism in thalamic hemorrhage

    International Nuclear Information System (INIS)

    Yasui, Nobuyuki; Asakura, Ken

    1987-01-01

    Cerebral blood flow (CBF), cerebral oxygen consumption (CMRO 2 ), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were studied in 20 cases of thalamic hemorrhage using positron CT and 15 O labeled gas steady-state inhalation method. CBF reduction was limited around the thalamus in the small sized hematoma. CBF were significantly diminished in the mean cortical, parietal, temporal, basal ganglia and thalamic area ipsilateral and cerebellar cortex contralateral to the medium sized hematoma. There was bilateral and diffuse CBF reduction in the large sized hematoma which was caused by increased intracranial pressure. CMRO 2 value were similary changed as CBF. OEF change showed within normal limit. Diffuse CBV reduction was observed in the large sized hematoma. This reduction was the result of decreased vascular bed caused by mass effect of the hematoma and hydrocephalus. Effect of surgical treatment such as ventricular drainage and hematoma evacuation were also discussed in correlation to CBF in some case using positron and single photon ECT. (author)

  12. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    Science.gov (United States)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  13. Cerebral blood measurements in cerebral vascular disease: methodological and clinical aspects

    International Nuclear Information System (INIS)

    Fieschi, C.; Lenzi, G.L.

    1982-01-01

    This paper is devoted mainly to studies performed on acute cerebral vascular disease with the invasive techniques for the measurement of regional cerebral blood flow (rCBF). The principles of the rCBF method are outlined and the following techniques are described in detail: xenon-133 inhalation method, xenon-133 intravenous method and emission tomography methods. (C.F.)

  14. Altered cerebral blood flow velocity features in fibromyalgia patients in resting-state conditions.

    Science.gov (United States)

    Rodríguez, Alejandro; Tembl, José; Mesa-Gresa, Patricia; Muñoz, Miguel Ángel; Montoya, Pedro; Rey, Beatriz

    2017-01-01

    The aim of this study is to characterize in resting-state conditions the cerebral blood flow velocity (CBFV) signals of fibromyalgia patients. The anterior and middle cerebral arteries of both hemispheres from 15 women with fibromyalgia and 15 healthy women were monitored using Transcranial Doppler (TCD) during a 5-minute eyes-closed resting period. Several signal processing methods based on time, information theory, frequency and time-frequency analyses were used in order to extract different features to characterize the CBFV signals in the different vessels. Main results indicated that, in comparison with control subjects, fibromyalgia patients showed a higher complexity of the envelope CBFV and a different distribution of the power spectral density. In addition, it has been observed that complexity and spectral features show correlations with clinical pain parameters and emotional factors. The characterization features were used in a lineal model to discriminate between fibromyalgia patients and healthy controls, providing a high accuracy. These findings indicate that CBFV signals, specifically their complexity and spectral characteristics, contain information that may be relevant for the assessment of fibromyalgia patients in resting-state conditions.

  15. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only inc...... the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation....

  16. Symptom correlates of cerebral blood flow following acute concussion

    Directory of Open Access Journals (Sweden)

    Nathan W. Churchill

    Full Text Available Concussion is associated with significant symptoms within hours to days post-injury, including disturbances in physical function, cognition, sleep and emotion. However, little is known about how subjective impairments correlate with objective measures of cerebrovascular function following brain injury. This study examined the relationship between symptoms and cerebral blood flow (CBF in individuals following sport-related concussion. Seventy university level athletes had CBF measured using Arterial Spin Labelling (ASL, including 35 with acute concussion and 35 matched controls and their symptoms were assessed using the Sport Concussion Assessment Tool 3 (SCAT3. For concussed athletes, greater total symptom severity was associated with elevated posterior cortical CBF, although mean CBF was not significantly different from matched controls (p=0.46. Examining symptom clusters, athletes reporting greater cognitive symptoms also had lower frontal and subcortical CBF, relative to athletes with greater somatic symptoms. The “cognitive” and “somatic” subgroups also exhibited significant differences in CBF relative to controls (p≤0.026. This study demonstrates objective CBF correlates of symptoms in recently concussed athletes and shows that specific symptom clusters may have distinct patterns of altered CBF, significantly extending our understanding of the neurobiology of concussion and traumatic brain injury. Keywords: Sport concussion, Cerebral blood flow, ASL, Symptoms

  17. Regional cerebral blood flow in childhood headache

    International Nuclear Information System (INIS)

    Roach, E.S.; Stump, D.A.

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical

  18. Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Xiao

    2017-01-01

    Full Text Available During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.

  19. Effects of captopril on cerebral blood flow in normotensive and hypertensive rats

    International Nuclear Information System (INIS)

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.; Juhler, M.; Graham, D.I.; Strandgaard, S.

    1984-01-01

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid 133 xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and lowering blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain

  20. Alteration of blood-brain barrier integrity by retroviral infection.

    Directory of Open Access Journals (Sweden)

    Philippe V Afonso

    2008-11-01

    Full Text Available The blood-brain barrier (BBB, which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans, both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies.

  1. Emesis, radiation exposure, and local cerebral blood flow in the ferret

    International Nuclear Information System (INIS)

    Tuor, U.I.; Kondysar, M.H.; Harding, R.K.

    1988-01-01

    We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferret was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of 137 Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system

  2. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T

    2013-01-01

    for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  3. Delayed astrocytic contact with cerebral blood vessels in FGF-2 deficient mice does not compromise permeability properties at the developing blood-brain barrier.

    Science.gov (United States)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Unsicker, Klaus; Ek, C Joakim

    2016-11-01

    The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood-brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor-2 (FGF-2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF-2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild-type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight-junction proteins and we observed no difference in the ultrastructure of the tight-junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight-junctions or for basic permeability properties and function of the blood-brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201-1212, 2016. © 2016 Wiley Periodicals, Inc.

  4. Regional cerebral blood flow in schizophrenics

    International Nuclear Information System (INIS)

    Uchino, Jun; Ohta, Yasuyuki; Nakane, Yoshibumi; Mori, Hiroyuki; Hirota, Noriyoshi; Yonekura, Masahiro.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of X-133 in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., ''hypofrontality''); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms. (Namekawa, K.)

  5. Regional cerebral blood flow in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, J.; Ohta, Y.; Nakane, Y.; Mori, H.; Hirota, N.; Yonekura, M.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of /sup 133/X in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., hypofrontality); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms.

  6. Regional cerebral blood flow in schizophrenic patients

    International Nuclear Information System (INIS)

    Sagawa, Katsuo; Sibuya, Isoo; Oiji, Arata; Kawakatsu, Sinobu; Morinobu, Shigeru; Totsuka, Shiro; Kinoshita, Osami; Yazaki, Mitsuyasu.

    1990-01-01

    Seventy-six schizophrenic patients were examined by a Xe-133 inhalation method to determine regional cerebral blood flow. A decreased blood flow was observed in the frontal lobe, especially in the right inferior part. In a study on the relationship between disease subtypes and regional cerebral blood flow, negative symptoms were found more predominantly associated with dissolution type than delusion type. In the group of dissolution type, a decreased blood flow was observed in both the right inferior frontal lobe and the right upper hemisphere, in comparison to the group of delution type. Patients presenting with auditory hallucination had a significantly higher incidence of both negative and positive symptoms, as compared with those not presenting with it. In such patients, a significantly decreased blood flow was also seen in the left upper frontal lobe and the bilateral parietal lobe. Xe-133 inhalation method should assist in evaluating brain function in schizophrenic patients, thus leading to the likelihood of developing a new treatment modality. (N.K.)

  7. Effect of head rotation on cerebral blood velocity in the prone position

    DEFF Research Database (Denmark)

    Højlund, Jakob; Sandmand, Marie; Sonne, Morten

    2012-01-01

    for cerebral blood flow. We tested in healthy subjects the hypothesis that rotating the head in the prone position reduces cerebral blood flow. Methods. Mean arterial blood pressure (MAP), stroke volume (SV), and CO were determined, together with the middle cerebral artery mean blood velocity (MCA V...... V(mean) ~10% in spite of an elevated MAP. Prone positioning with rotated head affects both CBF and cerebrovenous drainage indicating that optimal brain perfusion requires head centering....

  8. Cerebral blood flow changes in cluster headache

    International Nuclear Information System (INIS)

    Norris, J.W.; Hachinski, V.C.; Cooper, P.W.

    1976-01-01

    Serial cerebral blood flod studies performed by the intra-carotid 133 Xenon method were fortuitously determined during the course of a cluster headache in a 32 year old man. The initial study was performed about 10 min after the headache began and showed values at the upper limit of normal. Twenty min after the headache started a second procedure showed that the autoregulatory response on hyperventilation was normal. Ergotamine tartrate was given intra-muscularly 23 min after the headache began and there was partial relief. A third cerebral blood flow estimation showed abnormally high values. The probable reasons for this are discussed. (author)

  9. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions

  10. Regional cerebral blood flow in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  11. SPECT measurements of cerebral blood volume before and after acetazolamide in occlusive cerebrovascular diseases

    International Nuclear Information System (INIS)

    Inoue, Yusuke; Momose, Toshimitsu; Machida, Kikuo; Honda, Norinari; Nishikawa, Junichi; Sasaki, Yasuhito.

    1994-01-01

    Cerebral blood volume before and after acetazolamide was measured by SPECT to evaluate cerebral vasodilatory capacity in eight patients with cerebrovascular disease and five control subjects. Two SPECT measurements were performed serially, and acetazolamide was administered between them. The ratio of increase in hemispheric blood volume was calculated, and it was compared with the results of cerebral blood flow and cerebral blood volume measurements. A cerebral vasodilatory capacity map, the image after acetazolamide minus the baseline image, was also produced. Acetazolamide increased hemispheric blood volume in all subjects. The ratio of increase was lower in the involved hemispheres of the patients with unilateral carotid disease than in the uninvolved hemispheres of the patients and control subjects. The ratio of concordance with blood flow and blood volume measurements was approximated at 80%. Cerebral vasodilatory capacity mapping revealed three defects compatible with the clinical data. SPECT measurements of cerebral blood volume after acetazolamide can be performed following baseline SPECT with no additional radiotracer, and may be helpful to assess hemodynamic status. (author)

  12. The effect of combined treatment with transcranial direct current stimulation on cerebral blood flow in patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    K. V. Yatsenko

    2017-02-01

    Full Text Available There is a close link between the activity of the brain and cerebral blood supply. Transcranial direct current stimulation (tDCS modulates the activity of the cerebral cortex and thus affects the cerebral blood flow. The aim of the study was to investigate the effect of combined treatment with tDCS on cerebral blood flow in patients with cerebral palsy (CP. Materials and Methods. 60 patients with various forms of cerebral palsy were examined and received the course of treatment. The comparison group was formed from 30 children who received the course of basic medical and rehabilitation procedures. The main group included 30 children who, in addition to the same therapy, received a course of tDCS. A transcranial Doppler ultrasound examination of head blood vessels was used for the study of cerebral hemodynamics in children with cerebral palsy before and after combined treatment with tDCS. Results. tDCS reduced asymmetry coefficient of blood flow velocity in the middle cerebral arteries (MCA by 12.3 %, whereas in the comparison group only by 2.5 %; in the anterior cerebral artery (ACA – 9.5 %, while in the comparison group – 0.8 %. tDCS significantly reduced the high mean blood flow velocity per cycle (MFV in the basilar artery (BA, MCA and ACA (21.7 %, 18.3 % and 7.8 %, respectively; in the comparison group no statistically significant positive dynamics was observed. tDCS significantly increased the low MVF in the BA, MCA and ACA (29.7 %, 21.2 % and 9.7 % respectively; a statistically significant increase of MVF by 9.9 % was only in the CMA in the comparison group of patients. Conclusions. Our data indicate that the use of tDCS in the combined treatment of CP patients improves cerebral hemodynamics in 87 % of patients, in contrast to 52 % in the comparison group. The addition of transcranial direct current stimulation method to the complex treatment of patients with cerebral palsy improves the effectiveness of treatment and may also

  13. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM......-) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM- and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [P

  14. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Energy Technology Data Exchange (ETDEWEB)

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  15. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  16. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  17. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon

    DEFF Research Database (Denmark)

    Strandgaard, S; Jones, J V; MacKenzie, E T

    1975-01-01

    The effect of arterial hypertension on cerebral blood flow was studied by the intracarotid 133Xe clearance method in baboons. The arterial blood pressure was raised in gradual steps with angiotensin. Baboons with renal hypertension of 8-12 weeks duration were studied along with normotensive baboons....... In initially normotensive baboons, cerebral blood flow remained constant until the mean arterial blood pressure had risen to the range of 140 to 154 mm Hg; thereafter cerebral blood flow increased with each rise in mean arterial blood pressure. In the chronically hypertensive baboons, cerebral blood flow...... remained constant until the mean arterial blood pressure had been elevated to the range of 155 to 169 mm Hg. Thus, in chronic hypertension it appears that there are adaptive changes in the cerebral circulation which may help to protect the brain from further increases in arterial blood pressure....

  18. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...

  19. Cerebral blood flow and metabolism during isoflurane-induced hypotension in patients subjected to surgery for cerebral aneurysms

    DEFF Research Database (Denmark)

    Madsen, J B; Cold, G E; Hansen, E S

    1987-01-01

    Cerebral blood flow and cerebral metabolic rate for oxygen were measured during isoflurane-induced hypotension in 10 patients subjected to craniotomy for clipping of a cerebral aneurysm. Flow and metabolism were measured 5-13 days after the subarachnoid haemorrhage by a modification of the classi......Cerebral blood flow and cerebral metabolic rate for oxygen were measured during isoflurane-induced hypotension in 10 patients subjected to craniotomy for clipping of a cerebral aneurysm. Flow and metabolism were measured 5-13 days after the subarachnoid haemorrhage by a modification......). Controlled hypotension to an average MAP of 50-55 mm Hg was induced by increasing the dose of isoflurane, and maintained at an inspired concentration of 2.2 +/- 0.2%. This resulted in a significant decrease in CMRO2 (to 1.73 +/- 0.16 ml/100 g min-1), while CBF was unchanged. After the clipping...

  20. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien; Ottesen, Johnny T.

    2004-01-01

    , the heart, and venous valves. We use physiologically based control mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. Beyond active control mechanisms we also have to include certain passive non......Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture change from sitting......-linearities in some of the compliance-pressure and resistance-pressure relationships. Futhermore, an acurate and physiologically based submodel, describing the dynamics of how gravity effects the blood distribution during suspine changes, is included. To justify the fidelity of our mathematical model and control...

  1. The clinical study of cerebral blood flow imaging in patients with early syphilis

    International Nuclear Information System (INIS)

    Liu Zengli; Shi Xin; Wu Jinchang; Tang Jun; Zhong Jijun

    2003-01-01

    Objective: To study the clinical value of cerebral blood flow imaging for evaluation of patients with early syphilis. Methods: Fifty-three patients with early syphilis underwent cerebral blood flow imaging using 99 Tc m -ethylenecysteinate dimer(ECD). Regional cerebral blood flow (rCBF) changes were analyzed. Results: The acquired images of 53 patients were graded as 5 types. The rCBF was significantly depressed in 48 of 53 patients mainly in the areas dominated by anterior cerebral artery and middle cerebral artery. Conclusion: Treponema pallidum (TP) could start invading central nervous system at the early stage of infection

  2. Cerebral oxygenation in the beach chair position for shoulder surgery in regional anesthesia: impact on cerebral blood flow and neurobehavioral outcome.

    Science.gov (United States)

    Aguirre, José A; Märzendorfer, Olivia; Brada, Muriel; Saporito, Andrea; Borgeat, Alain; Bühler, Philipp

    2016-12-01

    Beach chair position is considered a potential risk factor for central neurological events particularly if combined with low blood pressure. The aim of this study was to assess the impact of regional anesthesia on cerebral blood flow and neurobehavioral outcome. This is a prospective, assessor-blinded observational study evaluating patients in the beach chair position undergoing shoulder surgery under regional anesthesia. University hospital operating room. Forty patients with American Society of Anesthesiologists classes I-II physical status scheduled for elective shoulder surgery. Cerebral saturation and blood flow of the middle cerebral artery were measured prior to anesthesia and continued after beach chair positioning until discharge to the postanesthesia care unit. The anesthesiologist was blinded for these values. Controlled hypotension with systolic blood pressure≤100mm Hg was maintained during surgery. Neurobehavioral tests and values of regional cerebral saturation, bispectral index, the mean maximal blood flow of the middle cerebral artery, and invasive blood pressure were measured prior to regional anesthesia, and measurements were repeated after placement of the patient on the beach chair position and every 20 minutes thereafter until discharge to postanesthesia care unit. The neurobehavioral tests were repeated the day after surgery. The incidence of cerebral desaturation events was 5%. All patients had a significant blood pressure drop 5 minutes after beach chair positioning, measured at the heart as well as the acoustic meatus levels, when compared with baseline values (Psurgery (Pshoulder surgery had no major impact on cerebral blood flow and cerebral oxygenation. However, some impact on neurobehavioral outcome 24 hours after surgery was observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [Assessment of maternal cerebral blood flow in patients with preeclampsia].

    Science.gov (United States)

    Mandić, Vesna; Miković, Zeljko; Dukić, Milan; Vasiljević, Mladenko; Filimonović, Dejan; Bogavac, Mirjana

    2005-01-01

    Systemic vasoconstriction in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA) in severe preeclampsia due to: 1) severity of clinical symptoms, 2) the begining of eclamptic attack and 3) the application of anticonvulsive therapy. A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30), mild preeclampsia (n=33), and severe preeclampsia (n=29). We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi), resistance index (Ri), systolic/diastolic ratio (S/D), and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups. subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%); while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%). All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4), and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if ppreclampsia we found increased velocity values, Pi and Ri, especially in patients with signs of threatened eclampsia, suggesting that blood vessels changes are most prominent in severe preeclampsia. Cerebral blood flow meassurements can be used as a clinical test for the prediction of eclampsia. Magnesium-sulfate (MgSO4) has a signifficant role in prophylaxis and treatment of eclampsia, and, therefore, positive influence on reduction of cerebral ishemic lesions can be expected. We can conclude that changes of the cerebral blood flow can be evaluated by evaluating blood flow velocities in the medial cerebral artery. Velocities tend

  4. Cerebral blood flow and cerebrovascular response to acetazolamide in patients with chronic alcoholism

    OpenAIRE

    Oishi, M; Mochizuki, Y; Takasu, T

    1997-01-01

    Cerebral blood flow and cerebrovascular response to acetazolamide were studied in 12 patients with chronic alcoholism and 12 age matched healthy controls. Blood flows in the cerebral cortex, thalamus, and putamen were significantly lower in the chronic alcoholic group than in the healthy control group. The increase in blood flow caused by acetazolamide did not show any significant difference between the two groups. These findings suggest that the decreased cerebral blood flow i...

  5. Effects of bee venom acupuncture on heart rate variability, pulse wave, and cerebral blood flow for types of Sasang Constitution

    Directory of Open Access Journals (Sweden)

    Lee Sang-min

    2009-03-01

    Full Text Available 1. Objectives: To evaluate effects of bee venom acupuncture on cardiovascular system and differences according to each constitution. 2. Methods: Heart rate variability, pulse wave and the velocity of cerebral blood flow were measured before bee venom acupuncture(BVA, right after and after 30 minuets, had been applied to 20 subjects. 3. Results: 1. BVA did not have effects on measurement variables of heart rate variability. 2. BVA had effects on pulse wave, showing total time, radial augmentation index up and height of percussion wave, time to percussion wave, sum of pulse pressure down. 3. BVA did not have effects on the cerebral blood flow velocity when considering not Sasang Constitution 4. Considering Sasang Constitution, BVA demonstrates different responses in time to preincisura wave, mean blood flow velocity, peak systolic velocity and end diastolic velocity. 4.Conclusion: From those results, the following conclusions are obtained. Cause BVA alters pulse wave and makes differences in the cerebral blood flow velocity according to Sasang Constitution. Various methods of BVA treatment are needed considering Sasang Constitution.

  6. Intensive Blood Pressure Control Affects Cerebral Blood Flow in Type 2 Diabetes Mellitus Patients

    NARCIS (Netherlands)

    Kim, Yu-Sok; Davis, Shyrin C. A. T.; Truijen, Jasper; Stok, Wim J.; Secher, Niels H.; van Lieshout, Johannes J.

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic

  7. Chronicity and a low anteroposterior gradient of cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Mathew, R.J.; Wilson, W.H.

    1990-01-01

    Regional cerebral blood flow (CBF) was measured with the 133xenon inhalation technique in 27 patients with schizophrenia of less than 5 years' duration and in 27 patients with schizophrenia of more than 12 years' duration, under resting conditions. Similar measurements were also performed in 54 normal control subjects matched for age and sex. Patients with schizophrenia of long duration had lower anteroposterior gradients of CBF than patients with schizophrenia of short duration and matched control subjects. Covarying out age and end-tidal levels of CO2 did not alter the results

  8. Role of hypotension in decreasing cerebral blood flow in porcine endotoxemia

    International Nuclear Information System (INIS)

    Miller, C.F.; Breslow, M.J.; Shapiro, R.M.; Traystman, R.J.

    1987-01-01

    The role of reduced arterial blood pressure (MAP) in decreasing cerebral blood flow (CBF) during endotoxemia was studied in pentobarbital-anesthetized pigs. Microspheres were used to measure regional CBF changes during MAP manipulations in animals with and without endotoxin. Endotoxin decreased MAP to 50 mmHg and decreased blood flow to the cortex and cerebellum without affecting cerebral cortical oxygen consumption (CMRo 2 ). Elevating MAP from 50 to 70 mmHg during endotoxemia with norepinephrine did not change cortical blood flow or CMRo 2 but increased cerebellar blood flow. Brain stem blood flow was not affected by endotoxin or norepinephrine. When MAP was decreased to 50 mmHg by hemorrhage without endotoxin, no change in blood flow to cortex, cerebellum, or brain stem was observed from base-line levels. These results suggest that decreased MAP below a lower limit for cerebral autoregulation does not account for the decreased CBF observed after endotoxin

  9. Decreased cerebral blood flow after administration of sodium bicarbonate in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Fris-Hansen, B

    1978-01-01

    In the course of our studies on cerebral blood flow in newborn infants, we have observed a striking depressing effect of sodium bicarbonate infusion on cerebral blood flow which in some cases may severely aggravate cerebral ischemia. We measured cerebral blood flow before and after the treatment...... with 1 to 8 meqs of sodium bicarbonate in seven distressed newborn infants. The 133 Xe clearance technique was used. The results showed in six of the seven cases a decrease in cerebral blood flow, which in most cases was reduced to 14 to 22 ml/100 g/min, which is about half the value prior...... to the bicarbonate infusion. In one case an extreme reduction occurred: cerebral blood flow was reduced to 3 ml/100 g/min, well below the level compatible with tissue survival. The results are discussed with regard to the optimal treatment of the acidotic newborn....

  10. Quantification of cerebral blood flow via Duplex sonography

    International Nuclear Information System (INIS)

    Vogl, G.; Pohl, P.; Willeit, J.; Aichner, F.

    1987-01-01

    An attempt was made to measure quantitatively the total cerebral blood flow by means of Duplex sonography. In a group of healthy young subjects a median value for total cerebral blood flow was obtained amounting to 469 ml/min ± 30%, repeat measurements yielded a maximum deviation of ± 11%. In three patients the values obtained after severe apoplectic insult due to occlusion of the internal carotid artery were definitely below the value of the group of healthy subjects, whereas the value for the total blood flow was in the upper range of normal values in a patient with occlusion of the a. cerebri media. Comparative measurements of the regional cerebral blood flow with xenon 13 yielded in those patients with occlusion of the internal carotid artery a markedly reduced mean flow and in the patient with occlusion of the a. cerebri media a less markedly reduced mean flow. Regionally reduced perfusion was seen in all the four patients in the range of the clinically and computer tomographically well-known ischaemia zone. Thanks to the simplicity of this sonographic examination method it could be a useful decision parameter in determining the indication for a reconstruction of the carotid artery, especially in asymptotic patients. (orig.) [de

  11. Cerebral blood flow and oximetry response to blood transfusion in relation to chronological age in preterm infants.

    Science.gov (United States)

    Banerjee, J; Leung, T S; Aladangady, N

    2016-06-01

    Preterm infants frequently receive blood transfusion (BT) and the aim of this study was to measure the effect of BT on cerebral blood flow and oxygenation in preterm infants in relation to chronological age. Preterm infants undergoing intensive care recruited to three chronological age groups: 1 to 7 (Group 1; n=20), 8 to 28 (Group 2; n=21) & ≥29days of life (Group 3; n=18). Pre and post-BT anterior cerebral artery (ACA) time averaged mean velocity (TAMV) and superior vena cava (SVC) flow were measured. Cerebral Tissue Haemoglobin Index (cTHI) and Oxygenation Index (cTOI) were measured from 15-20min before to 15-20min post-BT using NIRS. Vital parameters and blood pressure were measured continuously. Mean BP increased significantly, and there was no significant change in vital parameters following BT. Pre-BT ACA TAMV was higher in Group 2 and 3 compared to Group 1 (pBlood transfusion increased cTOI and cTHI and decreased ACA TAMV in all groups. PDA had no impact on the baseline cerebral oximetry and blood flow as well as changes following blood transfusion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Single-photon emission tomography and cerebral blood flow

    International Nuclear Information System (INIS)

    Celsis, P.; Chan, M.; Marc-Vergnes, J.P.; Sveinsdottir, E.; Goldman, T.G.; Henriksen, L.; Paulson, O.B.; Stokely, E.M.; Lassen, N.A.

    1982-01-01

    This paper illustrates the capabilities of single-photon emission tomography in imaging local cerebral blood flows in man. The results purport the conclusion that a fairly good improvement has been achieved when compared to stationary detectors and that single-photon emission tomography is a well-suited tool for studying cerebral hemodynamics, especially within the framework of clinical studies [fr

  13. Mechanisms of recovery from aphasia: evidence from serial xenon 133 cerebral blood flow studies

    International Nuclear Information System (INIS)

    Knopman, D.S.; Rubens, A.B.; Selnes, O.A.; Klassen, A.C.; Meyer, M.W.

    1984-01-01

    In 21 patients who suffered aphasia resulting from left hemisphere ischemic infarction, the xenon 133 inhalation cerebral blood flow technique was used to measure cerebral blood flow within 3 months and 5 to 12 months after stroke. In addition to baseline measurements, cerebral blood flow measurements were also carried out while the patients were performing purposeful listening. In patients with incomplete recovery of comprehension and left posterior temporal-inferior parietal lesions, greater cerebral blood flow occurred with listening in the right inferior frontal region in the late studies than in the early studies. In patients with nearly complete recovery of comprehension and without left posterior temporal-inferior parietal lesions, early listening studies showed diffuse right hemisphere increases in cerebral blood flow. Later listening studies in this latter patient group showed greater cerebral blood flow in the left posterior temporal-inferior parietal region. The study provides evidence for participation of the right hemisphere in language comprehension in recovering aphasics, and for later return of function in left hemisphere regions that may have been functionally impaired early during recovery

  14. Relationship between relative cerebral blood flow, relative cerebral blood volume, and relative cerebral metabolic rate of oxygen in the preterm neonatal brain.

    Science.gov (United States)

    Nourhashemi, Mina; Kongolo, Guy; Mahmoudzadeh, Mahdi; Goudjil, Sabrina; Wallois, Fabrice

    2017-04-01

    The mechanisms responsible for coupling between relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative cerebral metabolic rate of oxygen ([Formula: see text]), an important function of the microcirculation in preterm infants, remain unclear. Identification of a causal relationship between rCBF-rCBV and [Formula: see text] in preterms may, therefore, help to elucidate the principles of cortical hemodynamics during development. We simultaneously recorded rCBF and rCBV and estimated [Formula: see text] by two independent acquisition systems: diffuse correlation spectroscopy and near-infrared spectroscopy, respectively, in 10 preterms aged between 28 and 35 weeks of gestational age. Transfer entropy was calculated in order to determine the directionality between rCBF-rCBV and [Formula: see text]. The surrogate method was applied to determine statistical significance. The results show that rCBV and [Formula: see text] have a predominant driving influence on rCBF at the resting state in the preterm neonatal brain. Statistical analysis robustly detected the correct directionality of rCBV on rCBF and [Formula: see text] on rCBF. This study helps to clarify the early organization of the rCBV-rCBF and [Formula: see text] inter-relationship in the immature cortex.

  15. Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis

    International Nuclear Information System (INIS)

    Schroeck, H.K.; Kuschinsky, W.

    1989-01-01

    Chronic metabolic alkalosis was induced in rats by combining a low K+ diet with a 0.2 M NaHCO3 solution as drinking fluid for either 15 or 27 days. Local cerebral blood flow and local cerebral glucose utilization were measured in 31 different structures of the brain in conscious animals by means of the iodo-[14C]antipyrine and 2-[14C]deoxy-D-glucose method. The treatment induced moderate [15 days, base excess (BE) 16 mM] to severe (27 days, BE 25 mM) hypochloremic metabolic alkalosis and K+ depletion. During moderate metabolic alkalosis no change in cerebral glucose utilization and blood flow was detectable in most brain structures when compared with controls. Cerebrospinal fluid (CSF) K+ and H+ concentrations were significantly decreased. During severe hypochloremic alkalosis, cerebral blood flow was decreased by 19% and cerebral glucose utilization by 24% when compared with the control values. The decrease in cerebral blood flow during severe metabolic alkalosis is attributed mainly to the decreased cerebral metabolism and to a lesser extent to a further decrease of the CSF H+ concentration. CSF K+ concentration was not further decreased. The results show an unaltered cerebral blood flow and glucose utilization together with a decrease in CSF H+ and K+ concentrations at moderate metabolic alkalosis and a decrease in cerebral blood flow and glucose utilization together with a further decreased CSF H+ concentration at severe metabolic alkalosis

  16. Clinical research on quantitative imaging of cerebral blood flow using 123I-IMP

    International Nuclear Information System (INIS)

    Kinoshita, Hirofumi

    1987-01-01

    Cerebral blood flow measurement was performed using N-Isopropyl-p-( 123 I)-Iodoam-phetamine (IMP) and rotating gammacamera emission computed tomography (ECT), and a new quantitative profile curve was designed. There was a good correlation between the cerebral blood flow measured by intravenous Xe-133 method and that measured by IMP method in ten normal volunteers. IMP-ECT was performed in 40 patients with various cerebral diseases. The following results were obtained: 1. Minimum recognizable cerebral blood flow difference was 5 ml/100 g/min. 2. Quantitative redistribution was observed in approximately half of the cases which showed qualitative redistribution. 3. The incidence of crossed cerebellar diaschiasis was high among patients with significant cerebral disease (8 cases/10 cases). (author)

  17. Cerebral blood flow variations in CNS lupus

    International Nuclear Information System (INIS)

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery

  18. Imaging of Neuronal Activity in Awake Mice by Measurements of Flavoprotein Autofluorescence Corrected for Cerebral Blood Flow.

    Science.gov (United States)

    Takahashi, Manami; Urushihata, Takuya; Takuwa, Hiroyuki; Sakata, Kazumi; Takado, Yuhei; Shimizu, Eiji; Suhara, Tetsuya; Higuchi, Makoto; Ito, Hiroshi

    2017-01-01

    Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI) can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF) alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO 2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.

  19. Effects of midazolam on cerebral blood flow in human volunteers

    International Nuclear Information System (INIS)

    Forster, A.; Juge, O.; Morel, D.

    1982-01-01

    The effects of intravenously administered midazolam on cerebral blood flow were evaluated in eight healthy volunteers using the 133 Xe inhalation technique. Six minutes after an intravenous dose of 0.15 mg/kg midazolam, the cerebral blood flow decreased significantly (P less than 0.001) from a value of 40.6 +/- 3.3 to a value of 27.0 +/- 5.0 ml . 100 g-1 . min-1. Cerebrovascular resistance (CVR) increased from 2.8 +/- 0.2 to 3.9 to 0.6 mmHg/(ml . 100 g-1 . min-1)(P less than 0.001). Mean arterial blood pressure decreased significantly (P less than 0.05) from 117 +/- 8 to 109 +/- 9 mmHg and arterial carbon dioxide tension increased from 33.9 +/- 2.3 to 38.6 +/- 3.2 mmHg (P less than 0.05). Arterial oxygen tension remained stable throughout the study, 484 +/- 95 mmHg before the administration of midazolam and 453 +/- 76 mmHg after. All the subjects slept after the injection of the drug and had anterograde amnesia of 24.5 +/- 5 min. The decrease in mean arterial blood pressure was probably not important since it remained in the physiologic range for cerebral blood flow autoregulation. The increase in arterial carbon dioxide tension observed after the midazolam injection may have partially counteracted the effect of this new benzodiazepine on cerebral blood flow. Our data suggest that midazolam might be a safe agent to use for the induction of anethesia in neurosurgical patients with intracranial hypertension

  20. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

    DEFF Research Database (Denmark)

    Madsen, P L; Sperling, B K; Warming, T

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions....... To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity...... in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P

  1. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo.

    Science.gov (United States)

    Yaseen, Mohammad A; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Uhlirova, Hana; Devor, Anna; Boas, David A; Sakadžić, Sava

    2017-05-01

    Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.

  2. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    Science.gov (United States)

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  3. Regional cerebral blood flow characteristics of the Sturge-Weber syndrome

    International Nuclear Information System (INIS)

    Riela, A.R.; Stump, D.A.; Roach, E.S.; McLean, W.T. Jr.; Garcia, J.C.

    1985-01-01

    Four patients with the Sturge-Weber syndrome were studied using the non-invasive Xenon-133 inhalation technique. All four patients had decreased regional cerebral blood flow in the area of their lesion, and in two patients who were subsequently tested with 5% carbon dioxide inhalation, impaired vasomotor reactivity was documented. Diminished regional cerebral blood flow is consistent with previously described nuclide flow studies which demonstrated a delay in the initial perfusion blush in the region of the abnormal vasculature. The focal decrease in blood flow was greatest in the most severely affected patient, but was also prominent in the two younger patients, both of whom have excellent neurologic function. These studies suggest that localized decrease in blood flow and vasomotor dysfunction in Sturge-Weber syndrome can precede the occurrence of severe neurologic impairment and extensive cerebral atrophy and possibly be a major contributing factor in progressive dysfunction. A secondary observation was that the blood flow in the unaffected hemisphere was significantly greater in two children compared to the two adults and was similar to the age-related differences reported for normal children and adults

  4. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo

    1989-01-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  5. Sympathetic regulation of cerebral blood flow in humans : a review

    NARCIS (Netherlands)

    ter Laan, M.; van Dijk, J. M. C.; Elting, J. W. J.; Staal, M. J.; Absalom, A. R.

    Cerebral blood flow (CBF) is regulated by vasomotor, chemical, metabolic, and neurogenic mechanisms. Even though the innervation of cerebral arteries is quite extensively described and reviewed in the literature, its role in regulation of CBF in humans remains controversial. We believe that

  6. Regional cerebral blood flow measurement with intravenous [15O]water bolus and [18F]fluoromethane inhalation

    International Nuclear Information System (INIS)

    Herholz, K.; Pietrzyk, U.; Wienhard, K.; Hebold, I.; Pawlik, G.; Wagner, R.; Holthoff, V.; Klinkhammer, P.; Heiss, W.D.

    1989-01-01

    In 20 patients with ischemic cerebrovascular disease, classic migraine, or angiomas, we compared paired dynamic positron emission tomographic measurements of regional cerebral blood flow using both [ 15 O]water and [ 18 F]fluoromethane as tracers. Cerebral blood flow was also determined according to the autoradiographic technique with a bolus injection of [ 15 O]water. There were reasonable overall correlations between dynamic [ 15 O]water and [ 18 F]fluoromethane values for cerebral blood flow (r = 0.82) and between dynamic and autoradiographic [ 15 O]water values for cerebral blood flow (r = 0.83). We found a close correspondence between abnormal pathologic findings and visually evaluated cerebral blood flow tomograms obtained with the two tracers. On average, dynamic [ 15 O]water cerebral blood flow was 6% lower than that measured with [ 18 F]fluoromethane. There also was a general trend toward a greater underestimation with [ 15 O]water in high-flow areas, particularly in hyperemic areas, probably due to incomplete first-pass extraction of [ 15 O]water. Underestimation was not detected in low-flow areas or in the cerebellum. Absolute cerebral blood flow values were less closely correlated between tracers and techniques than cerebral blood flow patterns. The variability of the relation between absolute flow values was probably caused by confounding effects of the variation in the circulatory delay time. The autoradiographic technique was most sensitive to this type error

  7. Aberrant Cerebral Blood Flow in Response to Hunger and Satiety in Women Remitted from Anorexia Nervosa

    OpenAIRE

    Christina E. Wierenga; Amanda Bischoff-Grethe; Grace Rasmusson; Ursula F. Bailer; Ursula F. Bailer; Laura A. Berner; Thomas T. Liu; Walter H. Kaye

    2017-01-01

    The etiology of pathological eating in anorexia nervosa (AN) remains poorly understood. Cerebral blood flow (CBF) is an indirect marker of neuronal function. In healthy adults, fasting increases CBF, reflecting increased delivery of oxygen and glucose to support brain metabolism. This study investigated whether women remitted from restricting-type AN (RAN) have altered CBF in response to hunger that may indicate homeostatic dysregulation contributing to their ability to restrict food. We comp...

  8. Hydrostatic determinants of cerebral perfusion

    International Nuclear Information System (INIS)

    Wagner, E.M.; Traystman, R.J.

    1986-01-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure

  9. Preliminary studies of regional cerebral blood flow changes in patients with leukoaraiosis

    International Nuclear Information System (INIS)

    Li Yaming; Ren Yan; He Qiu

    1997-01-01

    PURPOSE: To investigate changes of regional cerebral blood flow (rCBF) in leukoaraiosis (LA) lesion and cortical regions and analyse the relation between rCBF changes and dementia. METHODS: Regional cerebral blood flow perfusion imaging with SPECT was performed in 49 patients with subcortical multiple cerebral infarction, including 24 cases company LA [LA(+)], 25 cases not company LA[LA(-)] and 10 normal subjects. The relative analysis was made between rCBF changes and cognitive scores. RESULTS: Compared the LA(+) with control, the rCBFs in frontal, parietal, temporal cortexes and LA lesion significantly decreased (P<0.05). The rCBF of frontal, parietal cortexes and LA lesions was also significantly decreased (P<0.05) compared with LA(-) groups. The cognitive scores were significantly related with rCBF changes in frontal cortex and LA lesion (r = 0.765, P<0.01 and r = 0.439, P<0.05). CONCLUSION: In patients with subcortical multiple cerebral infarction company LA lesion, there were extensive ischemic hypoperfusion changes in the cortical regions and LA lesion, which may response to decreased cerebral function and had certain relationship with dementia. The examination with SPECT cerebral blood flow perfusion imaging had unique advantage and value

  10. Cerebral oxygen metabolism and cerebral blood flow in man during light sleep (stage 2)

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Holm, S

    1991-01-01

    We measured cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during light sleep (stage 2) in 8 young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness and light sleep as verified by standard...... polysomnography. Unlike our previous study in man showing a highly significant 25% decrease in CMRO2 during deep sleep (stage 3-4) we found a modest but statistically significant decrease of 5% in CMRO2 during stage 2 sleep. Deep and light sleep are both characterized by an almost complete lack of mental activity....... They differ in respect of arousal threshold as a stronger stimulus is required to awaken a subject from deep sleep as compared to light sleep. Our results suggest that during non-rapid eye movement sleep cerebral metabolism and thereby cerebral synaptic activity is correlated to cerebral readiness rather than...

  11. Smartphone-based assessment of blood alteration severity

    Science.gov (United States)

    Li, Xianglin; Xue, Jiaxin; Li, Wei; Li, Ting

    2018-02-01

    Blood quality and safety management is a critical issue for cold chain transportation of blood or blood-based biological reagent. The conventional methods of blood alteration severity assessment mainly rely on kit test or blood-gas analysis required opening the blood package to get samples, which cause possible blood pollution and are complicate, timeconsuming, and expensive. Here we proposed to develop a portable, real-time, safety, easy-operated and low cost method aimed at assessing blood alteration severity. Color images of the blood in transparent blood bags were collected with a smartphone and the alteration severity of the blood was assessed by the smartphone app offered analysis of RGB color values of the blood. The algorithm is based on a large number sample of RGB values of blood at different alteration degree. The blood quality results evaluated by the smartphone are in accordance with the actual data. This study indicates the potential of smart phone in real time, convenient, and reliable blood quality assessment.

  12. Potentials of positron emission tomography for regional cerebral blood flow evaluation

    International Nuclear Information System (INIS)

    Depresseux, J.C.

    1982-01-01

    A general overview of the potentials of positron emission tomography and of positron-emitting radiopharmaceuticals for the evaluation of regional cerebral blood flow is proposed and discussed. Specific characteristics of this technique are described, with special stress on conceptual and methodological implications. Four different approaches to the problem of the determination of cerebral blood flow are distinguished: trapping equilibrium methods, steady state equilibrium methods, clearance methods and convoluted kinetic methods [fr

  13. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders

    NARCIS (Netherlands)

    Vállez García, David; Doorduin, Janine; Willemsen, Antoon T.M.; Dierckx, Rudi A.j.o.; Otte, Andreas

    There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing

  14. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  15. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice

    Science.gov (United States)

    Sofronova, Svetlana I.; Tarasova, Olga S.; Gaynullina, Dina; Borzykh, Anna A.; Behnke, Bradley J.; Stabley, John N.; McCullough, Danielle J.; Maraj, Joshua J.; Hanna, Mina; Muller-Delp, Judy M.; Vinogradova, Olga L.

    2015-01-01

    Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca2+ mechanism (30–80 mM KCl) and thromboxane A2 receptors (10−8 − 3 × 10−5 M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress. PMID:25593287

  16. Imaging of Neuronal Activity in Awake Mice by Measurements of Flavoprotein Autofluorescence Corrected for Cerebral Blood Flow

    Directory of Open Access Journals (Sweden)

    Manami Takahashi

    2018-01-01

    Full Text Available Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.

  17. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J.M.C.; Stewart, Roy; Staal, Michiel J; Elting, Jan-Willem J.

    ObjectivesTranscutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of

  18. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Laan, M. ter; Dijk, J.M. van; Stewart, R.; Staal, M.J.; Elting, J.W.

    2014-01-01

    OBJECTIVES: Transcutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of

  19. Cerebral vasoreactivity in response to a head-of-bed position change is altered in patients with moderate and severe obstructive sleep apnea.

    Science.gov (United States)

    Gregori-Pla, Clara; Cotta, Gianluca; Blanco, Igor; Zirak, Peyman; Giovannella, Martina; Mola, Anna; Fortuna, Ana; Durduran, Turgut; Mayos, Mercedes

    2018-01-01

    Obstructive sleep apnea (OSA) can impair cerebral vasoreactivity and is associated with an increased risk of cerebrovascular disease. Unfortunately, an easy-to-use, non-invasive, portable monitor of cerebral vasoreactivity does not exist. Therefore, we have evaluated the use of near-infrared diffuse correlation spectroscopy to measure the microvascular cerebral blood flow (CBF) response to a mild head-of-bed position change as a biomarker for the evaluation of cerebral vasoreactivity alteration due to chronic OSA. Furthermore, we have monitored the effect of two years of continuous positive airway pressure (CPAP) treatment on the cerebral vasoreactivity. CBF was measured at different head-of-bed position changes (supine to 30° to supine) in sixty-eight patients with OSA grouped according to severity (forty moderate to severe, twenty-eight mild) and in fourteen control subjects without OSA. A subgroup (n = 13) with severe OSA was measured again after two years of CPAP treatment. All patients and controls showed a similar CBF response after changing position from supine to 30° (p = 0.819), with a median (confidence interval) change of -17.5 (-10.3, -22.9)%. However, when being tilted back to the supine position, while the control group (p = 0.091) and the mild patients with OSA (p = 0.227) recovered to the initial baseline, patients with moderate and severe OSA did not recover to the baseline (9.8 (0.8, 12.9)%, p < 0.001) suggesting altered cerebral vasoreactivity. This alteration was correlated with OSA severity defined by the apnea-hypopnea index, and with mean nocturnal arterial oxygen saturation. The CBF response was normalized after two years of CPAP treatment upon follow-up measurements. In conclusion, microvascular CBF response to a head-of-bed challenge measured by diffuse correlation spectroscopy suggests that moderate and severe patients with OSA have altered cerebral vasoreactivity related to OSA severity. This may normalize after two years of CPAP

  20. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    Science.gov (United States)

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  1. Disparity in regional cerebral blood flow during electrically induced seizure

    DEFF Research Database (Denmark)

    Sestoft, D; Meden, P; Hemmingsen, R

    1993-01-01

    This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized on electroencepha......This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized...... electroencephalography-verified generalized seizures....

  2. Dynamic emission tomography of regional cerebral blood flow

    International Nuclear Information System (INIS)

    Lassen, N.A.

    1984-01-01

    The author reviews three tomographic methods for measuring the regional cerebral blood flow: single photon transmission tomography; dual photon emission tomography; and single photon emission tomography. The latter technique is discussed in detail. (Auth.)

  3. Role of cerebral blood flow in extreme breath holding.

    Science.gov (United States)

    Bain, Anthony R; Ainslie, Philip N; Hoiland, Ryan L; Willie, Chris K; MacLeod, David B; Madden, Dennis; Maslov, Petra Zubin; Drviš, Ivan; Dujić, Željko

    2016-01-01

    The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO 2 ) by about 26% (p tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H + washout, and therefore central chemoreceptive drive to breathe, rather than to CDO 2 .

  4. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    International Nuclear Information System (INIS)

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.; Baldwin, B.; White, W.D.; Reves, J.G.; Greeley, W.J.

    1991-01-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbon dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow

  5. Quantitative cerebral blood flow patterns with the short lived isotope 195m Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurements using intravenously injected nondiffusible radiotracers has been applied on patients after stroke and on volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns (in ml/min/100g) not only in p.a. but also in lateral views of the brain are possible by using of the short-lived (30 sec) isotope Au 195m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at 68 keV and a second at 262 keV. The 68 keV peak is suitable for perfusion studies in lateral views of the hemispheres, no 'look through' effect is seen. The 262 keV peak is good for studies in p.a. positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be made visible. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. After optical stimulation a clear increase of blood flow was seen in the visual cortex. The results prove that not only with freely diffusible (like Xenon) but also with nondiffusible indicators like 195m Au it is possible to measure quantitatively cerebral blood flow patterns. Au 195m is very advantageous for quantitative clinical investigations of cerebrovascular disease. (Author)

  6. Cerebral blood flow and metabolism during exercise: implications for fatigue

    DEFF Research Database (Denmark)

    Seifert, T.; Lieshout, J.J. van; Secher, Niels

    2008-01-01

    During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries......, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal...... whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work...

  7. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow...... not used for aerobic metabolism. Although some of the excess glucose uptake can be explained by lactate production, this phenomenon can still not account for the excess glucose uptake. Thus, more complex metabolic patterns in the brain might be reflected in the excess glucose uptake during activation......, and especially temporal relationships must be taken into account. What triggers the flow increase during functional brain activation is not entirely elucidated. The demand for excess glucose uptake may be important and a possible oxygen deficit in tissue distant from the capillaries is probably of minor...

  8. Assessing regional cerebral blood flow in depression using 320-slice computed tomography.

    Directory of Open Access Journals (Sweden)

    Yiming Wang

    Full Text Available While there is evidence that the development and course of major depressive disorder (MDD symptomatology is associated with vascular disease, and that there are changes in energy utilization in the disorder, the extent to which cerebral blood flow is changed in this condition is not clear. This study utilized a novel imaging technique previously used in coronary and stroke patients, 320-slice Computed-Tomography (CT, to assess regional cerebral blood flow (rCBF in those with MDD and examine the pattern of regional cerebral perfusion. Thirty nine participants with depressive symptoms (Hamilton Depression Rating Scale 24 (HAMD24 score > 20, and Self-Rating Depression Scale (SDS score > 53 and 41 healthy volunteers were studied. For all subjects, 3 ml of venous blood was collected to assess hematological parameters. Transcranial Doppler (TCD ultrasound was utilized to measure parameters of cerebral artery rCBFV and analyse the Pulsatility Index (PI. 16 subjects (8 =  MDD; 8 =  healthy also had rCBF measured in different cerebral artery regions using 320-slice CT. Differences among groups were analyzed using ANOVA and Pearson's tests were employed in our statistical analyses. Compared with the control group, whole blood viscosity (including high\\middle\\low shear rateand hematocrit (HCT were significantly increased in the MDD group. PI values in different cerebral artery regions and parameters of rCBFV in the cerebral arteries were decreased in depressive participants, and there was a positive relationship between rCBFV and the corresponding vascular rCBF in both gray and white matter. rCBF of the left gray matter was lower than that of the right in MDD. Major depression is characterized by a wide range of CBF impairments and prominent changes in gray matter blood flow. 320-slice CT appears to be a valid and promising tool for measuring rCBF, and could thus be employed in psychiatric settings for biomarker and treatment response purposes.

  9. Measurement of regional cerebral blood flow by xenon-enhanced computed tomography

    International Nuclear Information System (INIS)

    Nakagomi, Tadayoshi; Yoshimasu, Norio; Kim, Shi-in; Takano, Koichi; Segawa, Hiromu.

    1982-01-01

    Serial CT scanning was carried out during and after inhalation of 50% non-radioactive xenon in humans. Our results of this research was as follows; 1) In normal subjects, blood flow in gray matter was 82 +- 11 and that in white matter 24 +- 5 ml/100 gm/min. 2) The blood flow of the brain tumors was close to that of gray matter, whereas blood flow of edematous white matter surrounding the tumor was decreased. 3) The blood flow in cerebral infarctions was always decreased. Effect of STA-MCA bypass was also evaluated. 4) In cerebral arterio-venous malformations, the blood flow in the white matter surrounding nidus was not decreased. This method appeared to have several advantages over conventional isotope method and to provide useful clinical and research informations. (author)

  10. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude

    Science.gov (United States)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-08-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (-17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  11. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.

    Science.gov (United States)

    Tazraei, Pedram; Riasi, Alireza; Takabi, Behrouz

    2015-06-01

    This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton-Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    Herscovitch, P.; Powers, W.J.

    1987-01-01

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  13. A simple technique to measure regional cerebral blood flow during intravascular ballon clamping

    International Nuclear Information System (INIS)

    Furuhata, Shigeru; Kubo, Atsushi; Kawase, Takeshi; Ibata, Yukio; Toya, Shigeo

    1988-01-01

    A case of giant internal carotid ophthalmic aneurysm was presented. In order to clarify whether the patient could tolerate carotid occlusion, a ballon clamping test was performed before surgery. The cerebral blood flow was measured using early imaging by single photon emission computed tomography (SPECT) with N-isopropyl-(iodine-123)-p-iodoamphetamine ( 123 I-IMP). When the ballon clamping test was performed the tracer was injected, and scanning was performed 35 minutes after removing the catheter. This tracer enabled a 'memory of blood flow' during temporary ischemia to determine the character of quick diffusion and slow wash out, that could not be performed by other methods of cerebral blood flow measurement. SPECT with 123 I-IMP can simplify the measurement of cerebral blood flow during the balloon clamping test. (author)

  14. Cerebral blood flow and metabolism during sleep

    DEFF Research Database (Denmark)

    Madsen, Peter Lund; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness......, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different...... current state identify the physiological processes involved in sleep or the physiological role of sleep....

  15. Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.

    Science.gov (United States)

    Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y

    2001-11-01

    Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.

  16. The effect of the benzodiazepine antagonist flumazenil on regional cerebral blood flow in human volunteers

    DEFF Research Database (Denmark)

    Wolf, J; Friberg, L; Jensen, J

    1990-01-01

    computerized tomography, SPECT, immediately before, and 5 and 35 min after intravenous injection of flumazenil 1.0 mg or placebo. In addition, mean arterial blood pressures or PaCO2, rCBF were analysed for changes in various regions of interest (RoI). No alterations were found either in the global CBF or in r......CBF in RoI after flumazenil injection. The results showed that a clinically active dose of flumazenil did not directly affect the cerebral circulation in the normal brain and indicated absence of significant intrinsic activity of the drug....

  17. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children

    Directory of Open Access Journals (Sweden)

    Laura Chaddock-Heyman

    2016-08-01

    Full Text Available The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development.

  18. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    Science.gov (United States)

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (ppills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Cerebral blood volume changes in cats with acute increased intracranial pressure

    International Nuclear Information System (INIS)

    Kondo, Takashi; Kano, Mitsumasa; Ikeda, Takuya.

    1984-01-01

    We measured the changes in cerebral blood volume in cats with increased intracranial pressure with a high-speed CT scanner, employing contrast effects by the iodine agent. In acute increased intracranial pressure caused by raising the extradural pressure by 20 mmHg, cerebral blood volume showed a significant decrease by 32% in comparison with that at normal intracranial pressure. There was also a tendency that a decline of iodine was delayed with time at increased intracranial pressure than that at normal pressure. This was supposed to be a delay of cerebral circulation due to venous congestion. This experimental model and measuring method provide the changes in CBV in the same individual without any tedious procedure, and therefore this is a reliable method with respect to precision. (author)

  20. Positron emission tomography in cerebrovascular disease: The relationship between regional cerebral blood flow, blood volume and oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Herold, S.

    1985-03-01

    Positron emission tomography in cerebrovascular disease has demonstrated the importance of the relationship between regional cerebral blood flow and the cerebral metabolic activity. In acute stroke it has been found that within the first hours after the onset of symptoms cerebral blood flow in the affected area is more depressed than cerebral oxygen utilisation. This relative preservation of oxygen utilisation results from an increase in the oxygen extraction ratio far above its normal value. However, the oxygen extraction fraction subsequently falls in the following days indicating the transition from a situation of possibly reversible ischaemia to irreversible infarction. In patients with carotid occlusive disease an increase in the oxygen extraction ratio has been observed only in very few cases. It has been shown, however, that at an earlier stage the relationship between CBF and CBV (as CBF/CBV-ratio) provides a sensitive measure of diminished perfusion pressure which could be helpful for the selection of patients for EC-IC bypass surgery. In patients with sickle cell anaemia it has been found that oxygen delivery to the brain is maintained by an increase in cerebral blood flow, whereas the oxygen extraction ratio is not increased despite the presence of a low oxygen affinity haemoglobin. Preliminary observations in classical migraine suggest an ischaemic situation during the attack.

  1. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Noboru Toda

    2016-08-01

    Full Text Available Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic nerves and nitric oxide (NO liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS/neuronal NOS (nNOS inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD. Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD.

  2. New possibilities for quantitative measurements of regional cerebral blood flow with Au-195 m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied on patients after stroke and an volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns not only in p-a. but also in lateral views of the brain are possible by the use of the recently developed generator for the short lived (30 sec) isotope Au-195 m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at an energy-level of 262 KeV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres, no ''look through'' effect is seen. The high energy level is good for studies in p-a-positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that not only with freely diffusible indicators like Xenon but also with nondiffusible indicators it is possible to measure quantitatively cerebral blood flow patterns. (orig.)

  3. Neurophysiological Basis of Cerebral Blood Flow Control: An ...

    African Journals Online (AJOL)

    The book describes the current understanding of cerebral blood flow ... metaoolism of the central nervous system. The brain ... in stroke it is a deficiency of the book that the clinical correlates are .... Review of Nutrition and Dietetics. Edited by ...

  4. Altered sense of agency in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Christensen, Mark S; Kliim-Due, Mette

    2011-01-01

    ABSTRACT: Background Children diagnosed with spastic Cerebral Palsy (CP) often show perceptual and cognitive problems, which may contribute to their functional deficit. Here we investigated if altered ability to determine whether an observed movement is performed by themselves (sense of agency...

  5. New possibilities for quantitative measurements of regional cerebral blood flow with gold-195m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. The energy spectrum of gold-195m shows two strong photon peaks, one at an energy level of 68 keV and a second at an energy-level of 262 keV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres; no look-through effect is seen. The high energy level is good for studies in posterior-anterior positions. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that, not only with freely diffusible indicators like xenon but also with nondiffusible indicators, it is possible to measure quantitatively cerebral blood flow patterns

  6. Noninvasive MRI measurement of the absolute cerebral blood volume-cerebral blood flow relationship during visual stimulation in healthy humans.

    Science.gov (United States)

    Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd

    2014-09-01

    The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.

  7. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  8. Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral malaria from uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Tangpukdee Noppadon

    2009-12-01

    Full Text Available Abstract Background Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1 and angiopoietin-2 (ANG-2 are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG levels as biomarkers of disease severity in Plasmodium falciparum malaria. Methods The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87 and severe (non-cerebral malaria (SM; n = 36 from uncomplicated malaria (UM; n = 70. Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate. Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM, adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma. Results ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p Conclusions These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.

  9. The phosphodiesterase 3 inhibitor cilostazol dilates large cerebral arteries in humans without affecting regional cerebral blood flow

    DEFF Research Database (Denmark)

    Birk, Steffen; Kruuse, Christina Rostrup; Petersen, Kenneth A

    2004-01-01

    in the middle cerebral arteries (VMCA) was measured with transcranial Doppler, and the superficial temporal and radial arteries diameters were measured with ultrasonography. During the 4-hour observation period, there was no effect on systolic blood pressure (P = 0.28), but diastolic blood pressure decreased...

  10. Cerebral responses to exercise and the influence of heat stress in human fatigue.

    Science.gov (United States)

    Robertson, Caroline V; Marino, Frank E

    2017-01-01

    There are a number of mechanisms thought to be responsible for the onset of fatigue during exercise-induced hyperthermia. A greater understanding of the way in which fatigue develops during exercise could be gleaned from the studies which have examined the maintenance of cerebral blood flow through the process of cerebral autoregulation. Given that cerebral blood flow is a measure of the cerebral haemodynamics, and might reflect a level of brain activation, it is useful to understand the implications of this response during exercise and in the development of fatigue. It is known that cerebral blood flow is significantly altered under certain conditions such as altitude and exacerbated during exercise induced - hyperthermia. In this brief review we consider the processes of cerebral autoregulation predominantly through the measurement of cerebral blood flow and contrast these responses between exercise undertaken in normothermic versus heat stress conditions in order to draw some conclusions about the role cerebral blood flow might play in determining fatigue. Copyright © 2016. Published by Elsevier Ltd.

  11. Cluster headache: transcranial Doppler ultrasound and regional cerebral blood flow studies

    International Nuclear Information System (INIS)

    Dahl, A.; Russell, D.; Nyberg-Hansen, R.; Rootwelt, K.

    1990-01-01

    Transcranial Doppler and rCBF examinations were carried out in 25 cluster headache patients. Spontaneous glyceryl trinitrate (nitroglycerin) provoked attacks were accompanied by a bilateral decrease in middle cerebral artery blood flow velocities. This decrease was more pronounced on the symptomatic side, but the difference did not reach statistical significance. Mean hemispheric blood flow and rCBF were within normal limits during provoked attacks and similar to those found when patients were attack-free. During cluster periods middle cerebral artery velocities were significantly higher on the symptomatic side. Glyceryl trinitrate caused a bilateral middle cerebral artery velocity decrease which was significantly greater on the symptomatic side. Attacks provoked by glyceryl trinitrate appeared to begin when the vasodilatory effect of this substance was received. 17 refs., 2 figs., 5 tabs

  12. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans

    Directory of Open Access Journals (Sweden)

    Farzaneh A Sorond

    2008-04-01

    Full Text Available Farzaneh A Sorond1,2, Lewis A Lipsitz2,4, Norman K Hollenberg3,5, Naomi DL Fisher31Department of Neurology, Stroke Division; 2Institute for Aging Research, Hebrew SeniorLife, Boston, MA; 3Department of Medicine, Endocrine-Hypertension Division; 4Department of Medicine, Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA; 5Department of Radiology, Brigham and Women’s Hospital, Boston, MABackground and Purpose: Cerebral ischemia is a common, morbid condition accompanied by cognitive decline. Recent reports on the vascular health benefits of flavanol-containing foods signify a promising approach to the treatment of cerebral ischemia. Our study was designed to investigate the effects of flavanol-rich cocoa (FRC consumption on cerebral blood flow in older healthy volunteers.Methods: We used transcranial Doppler (TCD ultrasound to measure mean blood flow velocity (MFV in the middle cerebral artery (MCA in thirty-four healthy elderly volunteers (72 ± 6 years in response to the regular intake of FRC or flavanol-poor cocoa (FPC.Results: In response to two weeks of FRC intake, MFV increased by 8% ± 4% at one week (p = 0.01 and 10% ± 4% (p = 0.04 at two weeks. In response to one week of cocoa, significantly more subjects in the FRC as compared with the FPC group had an increase in their MFV (p < 0.05.Conclusions: In summary, we show that dietary intake of FRC is associated with a significant increase in cerebral blood flow velocity in the MCA as measured by TCD. Our data suggest a promising role for regular cocoa flavanol’s consumption in the treatment of cerebrovascular ischemic syndromes, including dementias and stroke.Keywords: cerebral blood flow, flavanol, cocoa, transcranial Doppler ultrasound

  13. Evaluation of cerebral blood flow, cerebral metabolism and cerebral function by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro; Naruse, Shoji; Horikawa, Yoshiharu; Ueda, Satoshi; Furuya, Seiichi.

    1995-01-01

    The magnetic resonance (MR) method has the unique potentiality of detecting cerebral metabolites, cerebral blood flow and brain functions in a noninvasive fashion. We have developed several MR techniques to detect these cerebral parameters with the use of clinical MRI scanners. By modifying the MR spectroscopy (MRS) technique, both 31 P- and 1 H-MRS data can be obtained from multiple, localized regions (multi-voxel method) of the brain, and the distribution of each metabolite in the brain can be readily visualized by metabolite mapping. The use of diffusion weighted images (DWI) permits visualization of the anisotropy of water diffusion in white matter, and based on the difference of diffusion coefficiency, the differential diagnosis between epidermoid tumor and arachnoid cyst can be made. By employing dynamic-MRI (Dyn-MRI) with Gd-DTPA administration, it is possible to examine the difference in blood circulation between brain tumor tissue and normal tissue, as well as among different types of brain tumors. By using magnetization transfer contrast (MTC) imaging, it has become possible to detect brain tumors, and with a small dose of Gd-DTPA, to visualize the vascular system. Functional MRI (fMRI) visualizes the activated brain by using conventional gradient echo technique on conventional MRI scanners. This method has the unique characteristic of detecting a brain function with high spatial and temporal resolution by using the intrinsic substance. Moreover, the localization of motor and sensory areas was detected by noninvasive means within few minutes. The fMRI procedure will be used in the future to analyze the higher and complex brain functions. In conclusion, multi-modality MR is a powerful technique that is useful for investigating the pathogenesis of many diseases, and provides a noninvasive analytic modality for studying brain function. (author)

  14. A New Technology for Detecting Cerebral Blood Flow

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Guo, Song; Jensen, Lars T

    2012-01-01

    There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate...

  15. Relationship between cerebral blood flow and later cognitive decline in hypertensive patients with cerebral small vessel disease

    International Nuclear Information System (INIS)

    Kitagawa, Kazuo; Oku, Naohiko; Yagita, Yoshiki; Sakaguchi, Manabu; Sakoda, Saburo; Kimura, Yasuyuku; Hatazawa, Jun

    2009-01-01

    Vascular risk factors are thought to be important for dementia. However, there is little evidence for a prospective association between cerebral blood flow and the risk of cognitive decline. Twenty-seven cognitively intact hypertensive patients aged 55 years and older with lacunar infarction or white matter lesions in magnetic resonance imaging (MRI) underwent positron emission tomography (PET) to measure cerebral blood flow (CBF) and cerebral vascular reactivity (CVR). Cognitive function was assessed at baseline and 3 years later with the mini-mental state examination (MMSE). Patients whose MMSE score fell by more than three points were classified as having cognitive decline. Six patients showed cognitive decline. Baseline CBF in these patients was significantly lower than that of the 21 patients without cognitive decline (31.2±2.4 vs. 42.6±5.9 ml per 100 gmin -1 , respectively; P<0.001). A moderate linear association was found between CBF and change in MMSE score over a 3-year period (r=0.59, P=0.001), not between CBF and baseline MMSE score. In contrast, no association between CVR and later cognitive decline was found. This study suggests that cerebral hypoperfusion is associated with later cognitive decline. (author)

  16. Cerebral blood flow changes in response to elevated intracranial pressure in rabbits and bluefish: a comparative study.

    Science.gov (United States)

    Beiner, J M; Olgivy, C S; DuBois, A B

    1997-03-01

    In mammals, the cerebrovascular response to increases in intracranial pressure may take the form of the Cushing response, which includes increased mean systemic arterial pressure, bradycardia and diminished respirations. The mechanism, effect and value of these responses are debated. Using laser-Doppler flowmetry to measure cerebral blood flow, we analyzed the cardiovascular responses to intracranial pressure raised by epidural infusion of mock cerebrospinal fluid in the bluefish and in the rabbit, and compare the results. A decline in cerebral blood flow preceding a rise in mean systemic arterial pressure was observed in both species. Unlike bluefish, rabbits exhibit a threshold of intracranial pressure below which cerebral blood flow was maintained and no cardiovascular changes were observed. The difference in response between the two species was due to the presence of an active autoregulatory system in the cerebral tissue of rabbits and its absence in bluefish. For both species studied, the stimulus for the Cushing response seems to be a decrement in cerebral blood flow. The resulting increase in the mean systemic arterial pressure restores cerebral blood flow to levels approaching controls.

  17. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  18. In vivo analysis of physiological 3D blood flow of cerebral veins

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  19. Effect of pregnancy on regional cerebral blood flow

    International Nuclear Information System (INIS)

    Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Ohnishi, Takashi; Futami, Shigemi; Watanabe, Katsushi; Ikeda, Tomoaki; Mori, Norimasa

    1993-01-01

    Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by 133 Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. P co2 concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author)

  20. A Nonlinear Dynamic Approach Reveals a Long-Term Stroke Effect on Cerebral Blood Flow Regulation at Multiple Time Scales

    Science.gov (United States)

    Hu, Kun; Lo, Men-Tzung; Peng, Chung-Kang; Liu, Yanhui; Novak, Vera

    2012-01-01

    Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies >∼0.1 Hz. Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals. In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at frequencies from ∼0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at > = 6 months after stroke, and the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the assessment of the coupling of nonstationary

  1. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip...

  2. Change of blood glucose level and its possible mechanism in patients with cerebral stroke

    International Nuclear Information System (INIS)

    Chen Weizhen; Zhang Yong; Zhang Zikang; Mo Congjian

    2003-01-01

    To study the mechanism of the change of blood glucose levels in patients with cerebral stroke, the levels of blood glucose, cortisol, glucogen, insulin, growth hormone, triiodothyronine (T 3 ), thyroxine (T 4 ) and adrenocorticotropic hormone (ACTH) were dynamically measured in 90 patients with cerebral stroke. The circumstances of brain middle line movement, lateral ventricle oppression and entrance brain ventricle of burst hematoma of the patients were examines by CT scan. The total incidence of hyperglycemia in the patients was 42.22%. The blood glucose level was positively related to the cortisol and glucogen levels, and negatively related to the T 3 level. The changed level of blood glucose and its related hormones both returned to normal range in 10 days. Both the ACTH level and the rate of cerebral pathological change in hyperglycemia group were significantly higher than that in normoglycemia and control groups. The rate of cerebral pathological change in elevated ACTH level group was higher than that in normal ACTH level group. The mechanism of hyperglycemia in the patients with cerebral stroke might be related to the stimulation of the hypothalamus, which may induce the discharge of ACTH and glucagon releasing factor, and to that the level of cortisol and glucagon increased, the level of T 3 decreased

  3. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume

    NARCIS (Netherlands)

    Heijtel, D. F. R.; Petersen, E. T.; Mutsaerts, H. J. M. M.; Bakker, E.; Schober, P.; Stevens, M. F.; van Berckel, B. N. M.; Majoie, C. B. L. M.; Booij, J.; van Osch, M. J. P.; van Bavel, E. T.; Boellaard, R.; Lammertsma, A. A.; Nederveen, A. J.

    2016-01-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week

  4. The contribution of astrocytes to the regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    Clare eHowarth

    2014-05-01

    Full Text Available In order to maintain normal brain function, it is critical that cerebral blood flow (CBF is matched to neuronal metabolic needs. Accordingly, blood flow is increased to areas where neurons are more active (a response termed functional hyperemia. The tight relationships between neuronal activation, glial cell activity, cerebral energy metabolism and the cerebral vasculature, known as neurometabolic and neurovascular coupling, underpin functional MRI (fMRI signals but are incompletely understood. As functional imaging techniques, particularly BOLD fMRI, become more widely used, their utility hinges on our ability to accurately and reliably interpret the findings. A growing body of data demonstrates that astrocytes can serve as a ‘bridge’, relaying information on the level of neural activity to blood vessels in order to coordinate oxygen and glucose delivery with the energy demands of the tissue. It is widely assumed that calcium-dependent release of vasoactive substances by astrocytes results in arteriole dilation and the increased blood flow which accompanies neuronal activity. However, the signaling molecules responsible for this communication between astrocytes and blood vessels are yet to be definitively confirmed. Indeed, there is controversy over whether activity-induced changes in astrocyte calcium are widespread and fast enough to elicit such functional hyperemia responses. In this review, I will summarise the evidence which has convincingly demonstrated that astrocytes are able to modify the diameter of cerebral arterioles. I will discuss the prevalence, presence and timing of stimulus-induced astrocyte calcium transients and describe the evidence for and against the role of calcium-dependent formation and release of vasoactive substances by astrocytes. I will also review alternative mechanisms of astrocyte-evoked changes in arteriole diameter and consider the questions which remain to be answered in this exciting area of research.

  5. Role of cerebral blood flow in extreme breath holding

    Directory of Open Access Journals (Sweden)

    Bain Anthony R.

    2016-01-01

    Full Text Available The role of cerebral blood flow (CBF on a maximal breath-hold (BH in ultra-elite divers was examined. Divers (n = 7 performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg. Arterial blood gases and CBF were measured prior to (baseline, and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2 by about 26% (p < 0.01. Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04. In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa. The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01. These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2.

  6. A study of the cerebral blood flow pattern and cognitive deficit in Parkinson's disease

    International Nuclear Information System (INIS)

    Tamaru, Fuyuhiko

    1997-01-01

    Cerebral blood flow pattern in Parkinson's disease was examined by 123 I-IMP SPECT to determine whether the deficit in cognitive function is reflected in it. The patient group with Parkinson's disease showed deterioration in intelligence (Minimental state examination, Raven's Colored Progressive Matrices) and frontal lobe test (the Wisconsin Card Sorting Test). Though the uptake ratio of prefrontal area/occipital area in 123 I-IMP SPECT study varied widely in the Parkinson's disease group compared to the normal control group, there was no significant difference in the mean. Selective depletion of frontal lobe blood flow was not confirmed in this study. There was no correlation between cerebral blood flow pattern and cognitive functions including frontal lobe function and intelligence. We concluded that the deficit in cognitive function was not reflected in the cerebral blood flow pattern in Parkinson's disease. (author)

  7. Vertigo-related cerebral blood flow changes on magnetic resonance imaging.

    Science.gov (United States)

    Chang, Feiyan; Li, Zhongshi; Xie, Sheng; Liu, Hui; Wang, Wu

    2014-11-01

    A prospective study using magnetic resonance imaging on a consecutive cohort of patients with cervical vertigo. To quantitatively investigate the cerebral blood flow (CBF) changes associated with cervical vertigo by using 3-dimensional pseudocontinuous arterial spin labeling. Previous studies reported blood flow velocity reduction in posterior circulation during vertigo. However, the detailed information of CBF related to cervical vertigo has not been provided. A total of 33 patients with cervical vertigo and 14 healthy volunteers were recruited in this study. Three-dimensional pseudocontinuous arterial spin labeling was performed on each subject to evaluate the CBF before and after the cervical hyperextension-hyperflexion movement tests, which was used to induce cervical vertigo. Repeated-measures analysis of variance was conducted to assess the effect of subjects and tests. There were time effects of CBF in the territory of bilateral superior cerebellar artery, bilateral posterior cerebral artery, bilateral middle cerebral artery, and right anterior cerebral artery, but no group effect was observed. The analysis of CBF revealed a significant main effect of tests (P=0.024) and participants (P=0.038) in the dorsal pons. Cervical vertigo onset may be related to CBF reduction in the dorsal pons, which sequentially evokes the vestibular nuclei. 2.

  8. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    International Nuclear Information System (INIS)

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-01-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO 2 did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow

  9. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy

    International Nuclear Information System (INIS)

    Lockwood, A.H.; Yap, E.W.; Rhoades, H.M.; Wong, W.H.

    1991-01-01

    We measured CBF and the CMRglc in normal controls and in patients with severe liver disease and evidence for minimal hepatic encephalopathy using positron emission tomography. Regions were defined in frontal, temporal, parietal, and visual cortex; the thalamus; the caudate; the cerebellum; and the white matter along with a whole-slice value obtained at the level of the thalamus. There was no difference in whole-slice CBF and CMRglc values. Individual regional values were normalized to the whole-slice value and subjected to a two-way repeated measures analysis of variance. When normalized CBF and CMRglc values for regions were compared between groups, significant differences were demonstrated (F = 5.650, p = 0.00014 and F = 4.58, p = 0.0073, respectively). These pattern differences were due to higher CBF and CMRglc in the cerebellum, thalamus, and caudate in patients and lower values in the cortex. Standardized coefficients extracted from a discriminant function analysis permitted correct group assignment for 95.5% of the CBF studies and for 92.9% of the CMRglc studies. The similarity of the altered pattern of cerebral metabolism and flow in our patients to that seen in rats subjected to portacaval shunts or ammonia infusions suggests that this toxin may alter flow and metabolism and that this, in turn, causes the clinical expression of encephalopathy

  10. Chronically impaired autoregulation of cerebral blood flow in long-term diabetics

    DEFF Research Database (Denmark)

    Bentsen, N; Larsen, B; Lassen, N A

    1975-01-01

    Using the arteriovenous oxygen difference method autoregulation of cerebral blood flow (CBF) was tested in 16 long-term diabetics and eight control patients. Blood pressure was raised by angiotensin infusion and lowered by trimethaphan camsylate infusion, in some cases combined with head-up tilting...... of the patient. Regression analysis was carried out on the results in order to quantify autoregulatory capacity. In the control patients CBF did not vary with moderate blood pressure variations, indicating normal autoregulation. In four of the 16 diabetic patients CBF showed significant pressure dependency......, indicating impaired autoregulation. The cause of impaired autoregulation in some long-term diabetics is believed to be diffuse or multifocal dysfunction of cerebral arterioles due to diabetic vascular disease. Other conditions with impaired autoregulation are discussed and compared with that seen in long...

  11. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  12. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass

    NARCIS (Netherlands)

    Ide, K.; Pott, F.; van Lieshout, J. J.; Secher, N. H.

    1998-01-01

    We tested the hypothesis that pharmacological reduction of the increase in cardiac output during dynamic exercise with a large muscle mass would influence the cerebral blood velocity/perfusion. We studied the relationship between changes in cerebral blood velocity (transcranial Doppler), rectus

  13. Very Low Cerebral Blood Volume Predicts Parenchymal Hematoma in Acute Ischemic Stroke

    DEFF Research Database (Denmark)

    Hermitte, Laure; Cho, Tae-Hee; Ozenne, Brice

    2013-01-01

    BACKGROUND AND PURPOSE: Parenchymal hematoma (PH) may worsen the outcome of patients with stroke. The aim of our study was to confirm the relationship between the volume of very low cerebral blood volume (CBV) and PH using a European multicenter database (I-KNOW). A secondary objective was to exp......BACKGROUND AND PURPOSE: Parenchymal hematoma (PH) may worsen the outcome of patients with stroke. The aim of our study was to confirm the relationship between the volume of very low cerebral blood volume (CBV) and PH using a European multicenter database (I-KNOW). A secondary objective...

  14. Cerebral blood flow in normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    Mamo, H.L.; Meric, P.C.; Ponsin, J.C.; Rey, A.C.; Luft, A.G.; Seylaz, J.A.

    1987-01-01

    A xenon-133 method was used to measure cerebral blood flow (CBF) before and after cerebrospinal fluid (CSF) removal in patients with normal pressure hydrocephalus (NPH). Preliminary results suggested that shunting should be performed on patients whose CBF increased after CSF removal. There was a significant increase in CBF in patients with NPH, which was confirmed by the favorable outcome of 88% of patients shunted. The majority of patients with senile and presenile dementia showed a decrease or no change in CBF after CSF removal. It is suggested that although changes in CBF and clinical symptoms of NPH may have the same cause, i.e., changes in the cerebral intraparenchymal pressure, there is no simple direct relation between these two events. The mechanism underlying the loss of autoregulation observed in NPH is also discussed

  15. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin

    1983-01-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways. (J.P.N.)

  16. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin [Nippon Medical School, Tokyo

    1983-04-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways.

  17. Cerebral blood flow is reduced in patients with sepsis syndrome

    International Nuclear Information System (INIS)

    Bowton, D.L.; Bertels, N.H.; Prough, D.S.; Stump, D.A.

    1989-01-01

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO 2 in nine patients with sepsis syndrome using the 133 Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, the specific reactivity of the cerebral vasculature to changes in CO 2 was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study

  18. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats

    International Nuclear Information System (INIS)

    Nehlig, A.; Pereira de Vasconcelos, A.; Boyet, S.

    1989-01-01

    The postnatal changes in local cerebral blood flow in freely moving rats were measured by means of the quantitative autoradiographic [ 14 C]iodoantipyrine method. The animals were studied at 10, 14, 17, 21 and 35 days and at the adult stage. At 10 days after birth, rates of blood flow were very low and quite homogeneous in most cerebral structures except in a few posterior areas. From these relatively uniform levels, values of local cerebral blood flow rose notably to reach a peak at 17 days in all brain regions studied. Rates of blood flow decreased between 17 and 21 days after birth and then increased from weaning time to reach the known characteristic distribution of the adult rat. The postnatal evolution of local cerebral blood in the rat is in good agreement with previous studies in other species such as dog and humans that also show higher rates of cerebral blood flow and glucose utilization at immature stages. However, in the rat, local cerebral blood flow and local cerebral glucose utilization are not coupled over the whole postnatal period studied, since blood flow rates reach peak values at 17 days whereas glucose utilization remains still quite low at that stage. The high rate of cerebral blood flow in the 17-day-old rat may reflect the energetic and biosynthetic needs of the actively developing brain that are completed by the summation of glucose and ketone body utilization

  19. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip......-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade...

  20. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  1. Kinetics of 137cesium in cerebral structures and blood

    International Nuclear Information System (INIS)

    Ribas, B.; Gonzalez, M.D.; Rio, J. del; Reus, M.I.S.; Gonzalez-Baron, M.

    1987-01-01

    The old clinical use of cesium in epilepsy expresses a relation of this metal with the central nervous system. Two groups of male Wistar rats of 200 g were administered single doses of 50μCi intravenously for blood kinetics and 2μCi 137 CsCl in each lateral ventricle of the brain for the kinetics in the cerebral structures, respectively. In both cases under ether anesthesia. Blood samples of IV gouts were weighed, and cerebral structure hypothalamus, hypocampus, striatum, cortex, cerebellum, mesencephalon and medulla oblongata dissected, cleaned, washed, dried, weighed, and in both cases cpm of the samples evaluated submitting it to the gamma radiations detector. In both experimental values of the 137 CsCl kinetics are expressed and applying the retroprojection method; parameters and constants are obtained. tsub(1/2) alpha = 0.0358 h and tsub(1/2) beta = 6.7159 h. In tables the equations of the alpha and beta phases are expressed. In blood after the rapid diminution of the radioactivity in the first 5 min the equilibrium phase is reached in 30 min afterwards, and the values remain almost the same 4 h after the injection and cesium is slowly eliminated by the rat. Cerebral structures after its intracerebroventricular application show that cesium has a great uptake velocity, it is rapidly incorporated by hypothalamus and after by cortex, hypocampus, striatum, mesencephalon and medulla oblongata, the two last showing the slower incorporation. After 24 h the cesium radioactivity declines slowly and progressively. (author)

  2. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs

    International Nuclear Information System (INIS)

    Borel, C.O.; Backofen, J.E.; Koehler, R.C.; Jones, M.D. Jr.; Traystman, R.J.

    1987-01-01

    The authors tested the hypothesis that hypoxic hypoxia interferes with cerebral blood flow (CBF) autoregulation when intracranial pressure (ICP) is elevated in pentobarbital-anesthetized lambs (3 to 9 days old). Cerebral perfusion pressure (CPP) was lowered stepwise from 73 to 23 mmHg in eight normoxic lambs and from 65 to 31 mmHg in eight other hypoxic lambs by ventricular infusion of artificial cerebrospinal fluid. In normoxic lambs, CBF measured by microspheres labeled with six different radioisotopes was not significantly changed over this range of CPP. In animals made hypoxic, base-line CBF was twice that of normoxic lambs. CBF was unchanged as CPP was reduced to 31 mmHg. Lower levels of CPP were not attained because a pressor response occurred with further elevations of ICP. No regional decrements in blood flow to cortical arterial watershed areas or to more caudal regions, such as cerebellum, brain stem, or thalamus, were detected with elevated ICP. Cerebral O 2 uptake was similar in both groups and did not decrease when CPP was reduced. These results demonstrate that normoxic lambs have a considerable capacity for effective autoregulation of CBF when ICP is elevated. Moreover, cerebral vasodilation in response to a level of hypoxia approximating that normally seen prenatally does not abolish CBF autoregulation when ICP is elevated during the first postnatal week

  3. Regional cerebral blood flow in SPECT pattern in Parkinson's disease

    International Nuclear Information System (INIS)

    Lenart-Jankowska, D.; Junik, R.; Sowinski, J.; Gembicki, M.; Wender, M.

    1997-01-01

    The purpose of our work was to compare the regional cerebral blood flow (rCBF) in SPECT examination in Parkinson's disease with (17 cases) and without (7 cases) dementia and in various clinical stages of the disease. The patients underwent SPECT examination 5-40 min after intravenous application of HMPAO (Ceretec, Amersham) with 740 Mbq (20 mCi) pertechnate 99m Tc. SPECT was performed with a Siemens Diacam single-head rotating gamma camera coupled to a high resolution collimator and Icon computer system provided by the manufacturer. The results were defined in relative values of ROI in relation to cerebellum. Patients with Parkinson's disease showed hypoperfusion in cerebral lobes and in deep cerebral structures including the basal ganglia. Regional perfusion deficit in SPECT was seen with and without associated dementia and already in early stage of the disease. Parkinson's disease is provoked by the lesions of dopaminergic neurons of the central nervous system leading to domination of extrapyramidal symptoms. There are many indications that also the neurotransmitters associated with cognitive functions as acetylcholine demonstrate some abnormalities. However, only in some cases of Parkinson's disease dementia is the dominating symptom. Our results of regional cerebral blood flow testify that in Parkinson's disease the dysfunction of the central nervous system is more diffuse than has previously been suggested. (author)

  4. Impaired autoregulation of cerebral blood flow in long-term type I (insulin-dependent) diabetic patients with nephropathy and retinopathy

    DEFF Research Database (Denmark)

    Kastrup, J; Rørsgaard, S; Parving, H H

    1986-01-01

    Autoregulation of cerebral blood flow, i.e., the maintenance of cerebral blood flow within narrow limits during changes in arterial perfusion pressure, was studied in nine healthy control subjects and in 12 long-term Type I (insulin-dependent) diabetic patients with clinical microangiopathy...... the previous findings suggesting that autoregulation of cerebral blood flow is impaired in some long-term Type I diabetic patients with clinical microangiopathy (arteriolar hyalinosis)........ Cerebral blood flow was measured by the intravenous 133Xenon method. Mean arterial blood pressure was elevated approximately 30 mmHg by intravenous infusion of angiotensin amide II and lowered about 10 mmHg by intravenous infusion of trimethaphan camsylate. In the control subjects the flow/pressure curve...

  5. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki.

    1988-01-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO 2 in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.)

  6. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki

    1988-10-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO/sub 2/) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO/sub 2/ in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.).

  7. [Conjunct changes in the resistance and engorgement of the cerebral vessels in shifts in the blood gas composition].

    Science.gov (United States)

    Krasil'nikov, V G; Artem'eva, A I

    1982-08-01

    In anesthetized cats, under perfusion and with constant volume of the hemodynamically isolated brain, hypercapnia and hypoxia led to a decrease of cerebral vessels resistance and to a reduction of the brain blood flow, whereas a decrease in the PCO2 and an increase in the PO2 in the blood exerted on opposite effect. The different responses of the vessels had some similar features in respect to threshold changes of the PCO2 and PO2, to potentiation of effects of both parts of the brain vascular system on increased shifts of the blood gas tension, to greater sensitivity of both parts to PCO2 changes, to effect of the blood gas tension on reactivity of both parts to noradrenaline. The authors suggest a possibility of alterations of the filter-absorption interrelationships in the brain due to different responses of arterial and venous vessels to changes of the blood gas tension.

  8. Cerebral blood flow imaging with thallium-201 diethyldithiocarbamate SPECT

    NARCIS (Netherlands)

    van Royen, E. A.; de Bruïne, J. F.; Hill, T. C.; Vyth, A.; Limburg, M.; Byse, B. L.; O'Leary, D. H.; de Jong, J. M.; Hijdra, A.; van der Schoot, J. B.

    1987-01-01

    Thallium-201 diethyldithiocarbamate ([201TI]DDC) was studied in humans as an agent for cerebral blood flow imaging. Brain uptake proved to be complete 90 sec after injection with no appreciable washout or redistribution for hours. Intracarotid injection suggested an almost 100% extraction during the

  9. No relationship between cerebral blood flow velocity and cerebrovascular reserve capacity and contemporaneously measured glucose and insulin concentrations in diabetes mellitus

    NARCIS (Netherlands)

    Fülesdi, B.; Limburg, M.; Bereczki, D.; Molnár, C.; Michels, R. P.; Leányvári, Z.; Csiba, L.

    1999-01-01

    Blood glucose and insulin concentrations have been reported to influence cerebral hemodynamics. We studied the relationship between actual blood glucose and insulin concentrations and resting cerebral blood flow velocity in the middle cerebral artery and cerebrovascular reserve capacity after

  10. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral cir...

  11. Quantitative activation patterns of cerebral blood flow during mental stimulation after intravenous injection of sup(195m)Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1983-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow pattern in p-a and lateral projections of the brain are obtained using the short lived (30s) isotope sup(195m)Au from the recently developed generator. The energy spectrum of the eluate from the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at 262 KeV. The low-energy peak is suitable for perfusion studies of the cerebral hemispheres in lateral projection, being without ''look through'' effect. The high-energy level is good for studies in p-a-projection. Studies last less than 1 min and can be repeated after 3 min. Parametric images for quantitative regional cerebral blood flow can be generated, in which the avascular region following stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results show that it is possible to measure cerebral blood-flow patterns not only with freely diffusible indicators like Xenon but also with nondiffusible indicators. (orig.)

  12. Diagnosis of hemodynamic compromise in patients with chronic cerebral ischemia; Measurement of cerebral blood volume (CBV) with sup 99m Tc-RBC SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Satoshi; Sakuragi, Mitsugi; Motomiya, Mineo; Nakagawa, Tango; Mitsumori, Kenji; Tsuru, Mitsuo (Hokkaido Neurosurgical Memorial Hospital (Japan)); Takigawa, Shugo; Kamiyama, Hiroyasu; Abe, Hiroshi

    1990-03-01

    To evaluate the efficacy of tests for selecting patients with hemodynamic compromise, measurement of cerebral blood volume (CBV) with {sup 99m}Tc-RBC single photon emission computed tomography (SPECT) was performed in thirteen patients with occlusive cerebrovascular disease, and was compared with results obtained by {sup 133}Xe SPECT and acetazolamide (Diamox) test. All patients in our study suffered TIA, RIND, or minor completed stroke. Cerebral angiography demonstrated severe stenosis or occlusion in the ipsilateral internal carotid artery or middle cerebral artery, although plain CT scan or MRI revealed no or, if any, only localized infarcted lesions. Regional cerebral blood volume (rCBV) was measured with {sup 99m}Tc-RBC SPECT and regional cerebral blood flow (rCBF) was measured with {sup 133}Xe SPECT before and after intravenous injection of 10 - 12 mg/kg acetazolamide (Diamox). Our results suggest that the ipsilateral rCBV/rCBF (mean transit time) is a more sensitive index of the cerebral perfusion reserve than the use of only rCBV or rCBF of the ipsilateral hemisphere. Also, the ipsilateral rCBV/rCBF is significantly correlated (r= -0.72) with the Diamox reactivity of rCBF, which is considered to represent the cerebral vasodilatory capacity in patients with chronic cerebral ischemia. Postoperative SPECT study revealed remarkable improvement of ipsilateral rCBV/rCBF and Diamox reactivity in four patients who underwent EC/IC bypass surgery to improve the hemodynamic compromise. In conclusion, our results suggest that the measurement of rCBV/rCBF with {sup 133}Xe SPECT and {sup 99m}Tc-RBC SPECT is useful for detecting the hemodynamic compromise in patients with occlusive cerebrovascular disease. (author).

  13. Quantitative measurement of total cerebral blood flow using 2D phase-contrast MRI and doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Keum Soo; Choi, Sun Seob; Lee, Young Il [Dong-A Univ., College of Medicine, Busan (Korea, Republic of)

    2001-12-01

    To compare of quantitative measurement of the total cerebral blood flow using two-dimensional phase-contrast MR imaging and Doppler ultrasound. In 16 volunteers (mean age, 26 years; mean body weight, 66 kg) without abnormal medical histories, two-dimensional phase-contrast MR imaging was performed at the level of the C2-3 inter vertebral disc for flow measurement of the internal carotid arteries and the vertebral arteries. Volume flow measurements using Doppler ultrasound were also performed at the internal carotid arteries 2cm above the carotid bifurcation, and at the vertebral arteries at the level of the upper pole of the thyroid gland. Flows in the four vessels measured by the two methods were compared using Wilcoxon's correlation analysis and the median score. Total cerebral blood flows were calculated by summing these four vessel flows, and mean values for the 16 volunteers were calculated. Cerebral blood flows measured by 2-D phase-contrast MR imaging and Doppler ultrasounds were 233 and 239 ml/min in the right internal carotid artery, 250 and 248 ml/min in the left internal carotid artery, 62 and 56 ml/min in the right vertebral artery, and 83 and 68 ml/min in the left vertebral artery. Correlation coefficients of the blood flows determined by the two methods were 0.48, 0.54, 0.49, and 0.62 in each vessel, while total cerebral blood flows were 628{+-}68 (range, 517 to 779) ml/min and 612{+-}79 (range, 482 to 804)ml/min, respectively. Total cerebral blood flow was easily measured using 2-D phase-contrast MR imaging and Doppler ultrasound, and the two noninvasive methods can therefore be used clinically for the measurement of total cerebral blood flow.

  14. The effect of glycerol on regional cerebral blood flow, blood volume and oxygen metabolism

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Kobayashi, Akira; Yonekura, Yoshiharu; Nishizawa, Sadahiko.

    1989-01-01

    Using positron emission tomography with 15 O-labelled CO 2 , O 2 and CO gases, the effects of glycerol on regional cerebral blood flow (CBF), blood volume (CBV) and oxygen metabolism (CMRO 2 ) were investigated in 6 patients with meningioma accompanying peritumoral brain edema. The same study was done in 5 normal volunteers. The changes of blood gases, hematocrit and hemoglobin were also examined. After a drip infusion of glycerol, the regional CBF increased not only in the peritumoral cortex and white matter but also in the intact cortex and white matter on the contralateral side. The increase of CBF was extensive and substantially there were no regional differences. In contrast, the changes of CMRO 2 were not significant. This was derived from the increase in oxygen extraction fraction throughout extensive areas including the peritumoral area. There were no changes in CBV. Hematocrit and hemoglobin decreased to a small degree. In the normal volunteers, the same findings were noted. Thus, glycerol increases the functional reserve for cerebral oxygen metabolism, not only in the peritumoral regions but also in the intact regions. The effects of glycerol on hemodynamics and metabolism were discussed with reference to some differences from mannitol. (author)

  15. Tomographic images of cerebral blood flow using a slant hole collimator

    International Nuclear Information System (INIS)

    Wraight, E.P.; Barber, R.W.; Crossland, P.; Maltby, P.

    1983-01-01

    The feasibility of using a rotating slant hole (RSH) collimator on simple tomographic equipment such as a standard gamma camera interfaced to a general purpose Nuclear Medicine computer is reported for producing images of cerebral blood flow following the administration of 123 I-iodoamphetamine to patients. Initial studies produced satisfactory images, thus opening the possibility of tomographic cerebral blood flow imaging to centres not possessing sophisticated tomographic equipment. Planar resolution is superior to that reported for a 25 0 RSH collimator. Axial resolution is not as good at small source distances but is comparable at distances beyond 10 cm. Sensitivity is comparable to other RSH collimators and is similar to Technicare's parallel hole general all purpose collimator. (UK)

  16. A study of the acute effect of smoking on cerebral blood flow using 99mTc-ECD SPET

    International Nuclear Information System (INIS)

    Yamamoto, Yuka; Nishiyama, Yoshihiro; Monden, Toshihide; Satoh, Katashi; Ohkawa, Motoomi

    2003-01-01

    Cigarette smoking is known to be associated with atherosclerosis, is an important risk factor for stroke and has other serious effects. The aim of this study was to evaluate the acute effect of cigarette smoking on cerebral blood flow using statistical parametric mapping (SPM). Ten healthy volunteers with a smoking habit were studied using technetium-99m-labelled ethylcysteinate dimer single-photon emission tomography (SPET). We evaluated the regional cerebral blood flow under the smoking and resting states. The regional cerebral blood flow on smoking-activated SPET was significantly decreased in the whole brain as compared with that on resting SPET. Our findings therefore suggest that one of the acute effects of cigarette smoking is to induce a diffuse decrease in cerebral blood flow. (orig.)

  17. Positron emission tomography in the newborn: extensive impairment of regional cerebral blood flow with intraventricular hemorrhage and hemorrhagic intracerebral involvement

    International Nuclear Information System (INIS)

    Volpe, J.J.; Herscovitch, P.; Perlman, J.M.; Raichle, M.E.

    1983-01-01

    Positron emission tomography (PET) now provides the capability of measuring regional cerebral blood flow with high resolution and little risk. In this study, we utilized PET in six premature infants (920 to 1,200 g) with major intraventricular hemorrhage and hemorrhagic intracerebral involvement to measure regional cerebral blood flow during the acute period (5 to 17 days of age). Cerebral blood flow was determined after intravenous injection of H 2 O, labeled with the positron-emitting isotope, 15 O. Findings were similar and dramatic in all six infants. In the area of hemorrhagic intracerebral involvement, little or no cerebral blood flow was detected. However, in addition, surprisingly, a marked two- to fourfold reduction in cerebral blood flow was observed throughout the affected hemisphere, well posterior and lateral to the intracerebral hematoma, including cerebral white matter and, to a lesser extent, frontal, temporal, and parietal cortex. In the one infant studied a second time, ie, at 3 months of age, the extent and severity of the decreased cerebral blood flows in the affected hemisphere were similar to those observed on the study during the neonatal period. At the three autopsies, the affected left hemisphere showed extensive infarction, corroborating the PET scans. These observations, the first demonstration of the use of PET in the determination of regional cerebral blood flow in the newborn, show marked impairments in regional cerebral blood flow in the hemisphere containing an apparently restricted intracerebral hematoma, indicating that the hemorrhagic intracerebral involvement is only a component of a much larger lesion, ischemic in basic nature, ie, an infarction. This large ischemic lesion explains the poor neurologic outcome in infants with intraventricular hemorrhage and hemorrhagic intracerebral involvement

  18. Quantitative Analysis of Regional Cerebral Blood Flow using 99mTc-HMPAO SPECT in Parkinson's Disease

    International Nuclear Information System (INIS)

    Lee, Myung Chul; Bae, Sang Kyun; Chung, June Key; Koh, Chang Soon; Roh, Jae Kyu; Myung, Ho Jin; Lee, Myung Hae

    1992-01-01

    Regional cerebral blood flow were measured in 10 patients with Parkinson's disease and 12 normal persons using 99m Tc-HMPAO SPECT. Reconstructed images were interpreted qualitatively and were compared with those findings of CT. For the quantitative analysis, six pairs of region of interest matched with the perfusion territories of large cerebral arteries and cerebellar hemisphere were determined. From the count values, indices showing the degree of asymmetry between right and left cerebral or cerebellar hemisphere, cerebral asymmetry index (ASI) and percent index of cerebellar asymmetry (PIA), and an index showing change of each region, region to cerebellum ratio (RCR) were obtained. ASI of normal persons and patients were 0.082 ± 0.033 and 0.108 ± 0.062, respectively and PIA were -0.4 ± 0.7% and -0.7 ± 1.0%, respectively, which showed no statistically significant difference between normal persons and patients. Among 10 RCR's, those of both regions of basal ganglia and both regions of anterior cerebral artery were significantly reduced. We concluded that the most significant reduction of regional cerebral blood flow in patients with Parkinson's disease was observed in the regions of basal ganglia and in the regions of anterior cerebral artery, and the degree of change in hemispheric blood flow was similar in both hemisphere.

  19. Regional cerebral blood flow during comprehension and speech (in cerebrally healthy subjects)

    International Nuclear Information System (INIS)

    Lechevalier, B.; Petit, M.C.; Eustache, F.; Lambert, J.; Chapon, F.; Viader, F.

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured by the xenon-133 inhalation method in 10 cerebrally healthy subjects at rest and during linguistic activation tests. These consisted of a comprehension test (binaural listening to a narrative text) and a speech test (making sentences from a list of words presented orally at 30-s intervals). The comprehension task induced a moderate increase in the mean right CBF and in both inferior parietal areas, whereas the speech test resulted in a diffuse increase in the mean CBF of both hemispheres, predominating regionally in both inferior parietal, left operculary, and right upper motor and premotor areas. It is proposed that the activation pattern induced by linguistic stimulation depends on not only specific factors, such as syntactic and semantic aspects of language, but also the contents of the material proposed and the attention required by the test situation

  20. Corticotropin-releasing factor: effect on cerebral blood flow in physiologic and ischaemic conditions.

    Science.gov (United States)

    De Michele, Manuela; Touzani, Omar; Foster, Alan C; Fieschi, Cesare; Sette, Giuliano; McCulloch, James

    2005-09-01

    The expression of corticotrophin-releasing factor (CRF) receptors in cerebral arteries and arterioles suggests that CRF may modulate cerebral blood flow (CBF). In the present study, the effects of CRF, CRF-like peptides and the CRF broad spectrum antagonist DPhe-CRF on CBF have been investigated under normal physiologic conditions and in the margins of focal ischaemic insult. The experiments were carried out in anaesthetised and ventilated rats. Changes in CBF after subarachnoid microapplication of CRF and related peptides were assessed with a laser-Doppler flowmetry (LDF) probe. In the ischaemic animals, agents were injected approximately 60 minutes after permanent middle cerebral artery occlusion (MCAo). Microapplication of CRF and related peptides in normal rats into the subarachnoid space produced sustained concentration-dependent increases in CBF. This effect was attenuated by co-application with DPhe-CRF, which did not alter CBF itself. A second microapplication of CRF 30 min after the first failed to produce increases in CBF in normal animals. Microapplication of CRF in the subarachnoid space overlying the ischaemic cortex effected minor increases in CBF whereas D-Phe-CRF had no significant effect on CBF. Activation of the CRF peptidergic system increases CBF in the rat. Repeated activation of CRF receptors results in tachyphylaxis of the vasodilator response. CRF vasodilator response is still present after MCAo in the ischaemic penumbra, suggesting that the CRF peptidergic system may modulate CBF in ischaemic stroke.

  1. Quantitative determination of the regional cerebral blood flow with 133Xe

    International Nuclear Information System (INIS)

    Otto, H.J.; Abraham, K.; Freitag, J.; Koch, R.D.; Freitag, G.; Hoefs, R.

    1982-01-01

    After injection of 133 Xe into the A. carotis interna, the regional blood flow in the brain was determined with a 10-channel measuring unit. From the first clinical evaluation of the findings in 35 patients, the following conclusions can be drawn: 1. In epileptics, a localized hyperemia indicates very probably a latent increased convulsive activity. 2. The measurement of the cerebral blood flow does not yield a contribution to the diagnosis of the type of cerebral tumors. 3. As consequence of mass shifting of space occupying processes particularly endangered brain sections, also remote from the focus proper, show a localized pathological hyeperemia (morbid 'luxus perfusion'). 4. Of greatest importance is the method with regard to the elucidation of pathophysiological relations, as well as of questions in connection with the blood/brain barrier function, and concerning the indication for and the estimation of the results of vascular interventions. (author)

  2. Patterns of regional cerebral blood flow in acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Skriver, E B

    1981-01-01

    In a consecutive group of 56 stroke patients the regional cerebral blood flow was measured within 84 hours after stroke. A 254 multidetector scintillation camera and the intracarotid Xenon-133 injection method was used to study rCBF. Typical rCBF-patterns are described and compared to the findings...

  3. Regional cerebral blood flow in primary degenerative dementia

    International Nuclear Information System (INIS)

    Kawakatsu, Shinobu; Totsuka, Shiro; Shinohara, Masao; Koyama, Hideki; Sagawa, Katsuo; Morinobu, Shigeru; Oiji, Arata; Komatani, Akio

    1991-01-01

    Regional cerebral blood flow (rCBF) was examined, using SPECT by Xe-133 inhalation, in patients with primary degenerative dementia who were subgrouped according to predominant symptoms with respect to amnesia, apraxia, agnosia, aphasia, and personality changes. Also the effect of sex and age at dementia onset on the rCBF patterns was assessed. (author). 26 refs.; 1 fig.; 7 tabs

  4. Aging, regional cerebral blood flow, and neuropsychological functioning

    International Nuclear Information System (INIS)

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-01-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the 133 xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning

  5. Trigeminal cardiac reflex and cerebral blood flow regulation

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    2016-10-01

    Full Text Available The stimulation of some facial regions is known to trigger the trigemino-cardiac reflex: the main stimulus is represented by the contact of the face with water. This phenomenon called diving reflex induces a set of reactions in the cardiovascular and respiratory systems occurring in all mammals, especially marine (whales, seals. During the immersion of the face in the water, the main responses are aimed at reducing the oxygen consumption of the organism. Accordingly reduction in heart rate, peripheral vasoconstriction, blood pooling in certain organs, especially the heart and brain, and an increase in blood pressure have been reported. Moreover, the speed and intensity of the reflex is inversely proportional to the temperature of the water: more cold the water, more reactions as described are strong. In the case of deep diving an additional effect, such as blood deviation, has been reported: the blood is requested within the lungs, to compensate for the increase in the external pressure, preventing them from collapsing.The trigeminal-cardiac reflex is not just confined to the diving reflex; recently it has been shown that a brief proprioceptive stimulation (10 min by jaw extension in rats produces interesting effects both at systemic and cerebral level, reducing the arterial blood pressure and vasodilating the pial arterioles. The arteriolar dilation is associated with rhythmic diameter changes characterized by an increase in the endothelial activity. Fascinating the stimulation of trigeminal nerve is able to activated the nitric oxide release by vascular endothelial. Therefore the aim of this review was to highlight the effects due to trigeminal cardiac reflex induced by a simple mandibular extension, because produced opposite effects compared to those elicited by the diving reflex as it induces hypotension and modulation of cerebral arteriolar tone.

  6. Influence of upper body position on middle cerebral artery blood velocity during continuous positive airway pressure breathing

    DEFF Research Database (Denmark)

    Højlund Rasmussen, J; Mantoni, T; Belhage, B

    2007-01-01

    Continuous positive airway pressure (CPAP) is a treatment modality for pulmonary oxygenation difficulties. CPAP impairs venous return to the heart and, in turn, affects cerebral blood flow (CBF) and augments cerebral blood volume (CBV). We considered that during CPAP, elevation of the upper body ...

  7. Neurological Injury and Cerebral Blood Flow in Single Ventricles Throughout Staged Surgical Reconstruction.

    Science.gov (United States)

    Fogel, Mark A; Li, Christine; Elci, Okan U; Pawlowski, Tom; Schwab, Peter J; Wilson, Felice; Nicolson, Susan C; Montenegro, Lisa M; Diaz, Laura; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Mascio, Christopher; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2017-02-14

    Patients with a single ventricle experience a high rate of brain injury and adverse neurodevelopmental outcome; however, the incidence of brain abnormalities throughout surgical reconstruction and their relationship with cerebral blood flow, oxygen delivery, and carbon dioxide reactivity remain unknown. Patients with a single ventricle were studied with magnetic resonance imaging scans immediately prior to bidirectional Glenn (pre-BDG), before Fontan (BDG), and then 3 to 9 months after Fontan reconstruction. One hundred sixty-eight consecutive subjects recruited into the project underwent 235 scans: 63 pre-BDG (mean age, 4.8±1.7 months), 118 BDG (2.9±1.4 years), and 54 after Fontan (2.4±1.0 years). Nonacute ischemic white matter changes on T2-weighted imaging, focal tissue loss, and ventriculomegaly were all more commonly detected in BDG and Fontan compared with pre-BDG patients ( P <0.05). BDG patients had significantly higher cerebral blood flow than did Fontan patients. The odds of discovering brain injury with adjustment for surgical stage as well as ≥2 coexisting lesions within a patient decreased (63%-75% and 44%, respectively) with increasing amount of cerebral blood flow ( P <0.05). In general, there was no association of oxygen delivery (except for ventriculomegaly in the BDG group) or carbon dioxide reactivity with neurological injury. Significant brain abnormalities are commonly present in patients with a single ventricle, and detection of these lesions increases as children progress through staged surgical reconstruction, with multiple coexisting lesions more common earlier than later. In addition, this study demonstrated that BDG patients had greater cerebral blood flow than did Fontan patients and that an inverse association exists of various indexes of cerebral blood flow with these brain lesions. However, CO 2 reactivity and oxygen delivery (with 1 exception) were not associated with brain lesion development. URL: http

  8. Impact of Cardiac Contractility during Cerebral Blood Flow in Ischemia

    Directory of Open Access Journals (Sweden)

    Silver, Brian

    2011-05-01

    Full Text Available Objective: In cerebral regions affected by ischemia, intrinsic vascular autoregulation is often lost. Blood flow delivery depends upon cardiac function and may be influenced by neuro-endocrine mediated myocardial suppression. Our objective is to evaluate the relation between ejection fraction (EF and transcranial doppler (TCD peak systolic velocities (PSV in patients with cerebral ischemic events.Methods: We conducted a retrospective cohort study from an existing TCD registry. We evaluated patients admitted within 24 hours of onset of a focal neurological deficit who had an echocardiogram and TCD performed within 72 hours of admission.Results: We identified 58 patients from March to October 2003. Eighty-one percent (n=47 had a hospital discharge diagnosis of ischemic stroke and 18.9% (n=11 had a diagnosis of transient ischemic attack. Fourteen patients had systolic dysfunction (EF50% compared to those with systolic dysfunction (EF<50% was as follows: middle cerebral artery 62.0 + 28.6 cm/s vs. 51.0 + 23.3 cm/s, p=0.11; anterior cerebral artery 52.1 + 21.6 cm/s vs. 45.9 + 22.7 cm/s, p=0.28; internal carotid artery 56.5 + 20.1 cm/s vs. 46.4 + 18.4 cm/s, p=0.04; ophthalmic artery 18.6 + 7.2 cm/s vs. 15.3 + 5.2 cm/s, p=0.11; vertebral artery 34.0 + 13.9 cm/s vs. 31.6 + 15.0 cm/s, p=0.44.Conclusion: Cerebral blood flow in the internal carotid artery territory appears to be higher in cerebral ischemia patients with preserved left ventricular contractility. Our study was unable to differentiate pre-existing cardiac dysfunction from neuro-endocrine mediated myocardial stunning. Future research is necessary to better understand heart-brain interactions in this setting and to further explore the underlying mechanisms and consequences of neuro-endocrine mediated cardiac dysfunction. [West J Emerg Med. 2011;12(2:227-232.

  9. Scintigraphy of cerebral blood flow with N-isopropyl-p-[123I]-iodoamphetamine in cerebrovascular accident

    International Nuclear Information System (INIS)

    Sone, Teruki; Fukunaga, Masao; Otsuka, Nobuaki

    1985-01-01

    In 20 patients with cerebrovascular accident, cerebral blood flow was estimated with N-isopropyl-p-[ 123 I]-iodoamphetamine ( 123 I-IMP) using a rotating gamma camera, and the findings were compared with those of X-CT or angiography. 123 I-IMP study demonstrated the areas of diminished cerebral blood flow in 14 cases. X-CT also demonstrated lesions in 14 cases, however, 123 I-IMP study delineated the lesions more precisely corresponding to the neurological findings. In cases with cerebellar hemorrhage or reversible ischemic neurological deficit (RIND), the lesion could be established only by 123 I-IMP study. It was demonstrated by 123 I-IMP study that vascular stenosis or abnormal vessels seen on angiography in patients with vertebro-basilar insufficiency or venous angioma was not necessarily accompanied by diminished blood flow. It was shown that scintigraphy with 123 I-IMP was a non-invasive, safe and extremely useful method to estimate the regional cerebral blood flow. (author)

  10. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.

    2008-01-01

    Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...

  12. A study of the acute effect of smoking on cerebral blood flow using {sup 99m}Tc-ECD SPET

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yuka; Nishiyama, Yoshihiro; Monden, Toshihide; Satoh, Katashi; Ohkawa, Motoomi [Department of Radiology, Faculty of Medicine, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 (Japan)

    2003-04-01

    Cigarette smoking is known to be associated with atherosclerosis, is an important risk factor for stroke and has other serious effects. The aim of this study was to evaluate the acute effect of cigarette smoking on cerebral blood flow using statistical parametric mapping (SPM). Ten healthy volunteers with a smoking habit were studied using technetium-99m-labelled ethylcysteinate dimer single-photon emission tomography (SPET). We evaluated the regional cerebral blood flow under the smoking and resting states. The regional cerebral blood flow on smoking-activated SPET was significantly decreased in the whole brain as compared with that on resting SPET. Our findings therefore suggest that one of the acute effects of cigarette smoking is to induce a diffuse decrease in cerebral blood flow. (orig.)

  13. Cerebral blood flow study with 3D-SSP and neuropsychological evaluation by mini-mental state examination (MMSE) before and after clipping of unruptured cerebral aneurysm

    International Nuclear Information System (INIS)

    Takada, Hidekazu; Sasaki, Takehiko; Osato, Toshiaki

    2006-01-01

    We evaluate the influence of surgery for unruptured aneurysms on cerebral blood flow and neuropsychological estimate. We evaluated the cases of 28 consecutive patients with unruptured cerebral aneurysm treated with direct surgery accompanied by craniotomy. Before and after surgery, MRI, 123 I-IMP-SPECT with 3D-SSP analysis and MMSE were performed. There was not a significant decrease in MMSE. In 123 I-IMP-SPECT, it was recognized that the cerebral blood flow was decreased at the frontal operculum of operative site. These results indicate that careful neuropsychological evaluation is essential to make a favorable treatment plan for unruptured aneulysms. (author)

  14. Distinct pattern of cerebral blood flow alterations specific to schizophrenics experiencing auditory verbal hallucinations with and without insight: a pilot study.

    Science.gov (United States)

    Jing, Rixing; Huang, Jiangjie; Jiang, Deguo; Lin, Xiaodong; Ma, Xiaolei; Tian, Hongjun; Li, Jie; Zhuo, Chuanjun

    2018-01-23

    Schizophrenia is associated with widespread and complex cerebral blood flow (CBF) disturbance. Auditory verbal hallucinations (AVH) and insight are the core symptoms of schizophrenia. However, to the best of our knowledge, very few studies have assessed the CBF characteristics of the AVH suffered by schizophrenic patients with and without insight. Based on our previous findings, Using a 3D pseudo-continuous ASL (pcASL) technique, we investigated the differences in AVH-related CBF alterations in schizophrenia patients with and without insight. We used statistical parametric mapping (SPM8) and statistical non-parametric mapping (SnPM13) to perform the fMRI analysis. We found that AVH-schizophrenia patients without insight showed an increased CBF in the left temporal pole and a decreased CBF in the right middle frontal gyrus when compared to AVH-schizophrenia patients with insight. Our novel findings suggest that AVH-schizophrenia patients without insight possess a more complex CBF disturbance. Simultaneously, our findings also incline to support the idea that the CBF aberrant in some specific brain regions may be the common neural basis of insight and AVH. Our findings support the mostly current hypotheses regarding AVH to some extent. Although our findings come from a small sample, it provide the evidence that indicate us to conduct a larger study to thoroughly explore the mechanisms of schizophrenia, especially the core symptoms of AVHs and insight.

  15. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Sakai, F.; Hata, T.; Oravez, W.T.; Timpe, G.M.; Deville, T.; Solomon, E.

    1988-08-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Llambda) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Llambda values to be normal, introducing the risk of systematic errors, because Llambda values differ throughout normal brain and may be altered by disease. Color-coded maps of Llambda and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 +- 7.7, for subcortical gray matter it was 50.3 +- 13.2 and for white matter it was 18.8 +- 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Llambda and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner.

  16. Effect of hypoxia on cerebral blood flow regulation during rest and exercise : role of cerebral oxygen delivery on performance

    OpenAIRE

    Fan, J.-L.

    2014-01-01

    Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduce...

  17. Cerebral blood oxygenation measurements in neonates with optoacoustic technique

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Richardson, C. Joan; Fonseca, Rafael A.; Prough, Donald S.; Esenaliev, Rinat O.

    2017-03-01

    Cerebral hypoxia is a major contributor to neonatal/infant mortality and morbidity including severe neurological complications such as mental retardation, cerebral palsy, motor impairment, and epilepsy. Currently, no technology is capable of accurate monitoring of neonatal cerebral oxygenation. We proposed to use optoacoustics for this application by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, optical parametric oscillator (OPO) and laser diode optoacoustic systems for measurement of SSS blood oxygenation in the reflection mode through open anterior or posterior fontanelles and in the transmission mode through the skull in the occipital area. In this paper we present results of initial tests of the laser diode system for neonatal cerebral oxygenation measurements. First, the system was tested in phantoms simulating neonatal SSS. Then, using the data obtained in the phantoms, we optimized the system's hardware and software and tested it in neonates admitted in the Neonatal Intensive Care Unit. The laser diode system was capable of detecting SSS signals in the reflection mode through the open anterior and posterior fontanelles as well as in the transmission mode through the skull with high signal-to-noise ratio. Using the signals measured at different wavelengths and algorithms developed for oxygenation measurements, the laser diode system provided real-time, continuous oxygenation monitoring with high precision at all these locations.

  18. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled...... to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples...... were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined...

  19. Multimodal quantitation of the effects of endovascular therapy for vasospasm on cerebral blood flow, transcranial doppler ultrasonographic velocities, and cerebral artery diameters.

    Science.gov (United States)

    Oskouian, Rod J; Martin, Neil A; Lee, Jae Hong; Glenn, Thomas C; Guthrie, Donald; Gonzalez, Nestor R; Afari, Arash; Viñuela, Fernando

    2002-07-01

    The goal of this study was to quantify the effects of endovascular therapy on vasospastic cerebral vessels. We reviewed the medical records for 387 patients with ruptured intracranial aneurysms who were treated at a single institution (University of California, Los Angeles) between May 1, 1993, and March 31, 2001. Patients who developed cerebral vasospasm and underwent cerebral arteriographic, transcranial Doppler ultrasonographic, and cerebral blood flow (CBF) studies before and after endovascular therapy for cerebral arterial spasm (vasospasm) were included in this study. Forty-five patients fulfilled the aforementioned criteria and were treated with either papaverine infusion, papaverine infusion with angioplasty, or angioplasty alone. After balloon angioplasty (12 patients), CBF increased from 27.8 +/- 2.8 ml/100 g/min to 28.4 +/- 3.0 ml/100 g/min (P = 0.87); the middle cerebral artery blood flow velocity was 1 57.6 +/- 9.4 cm/s and decreased to 76.3 +/- 9.3 cm/s (P < 0.05), with a mean increase in cerebral artery diameters of 24.4%. Papaverine infusion (20 patients) transiently increased the CBF from 27.5 +/- 2.1 ml/100 g/min to 38.7 +/- 2.8 ml/100 g/min (P < 0.05) and decreased the middle cerebral artery blood flow velocity from 109.9 +/- 9.1 cm/s to 82.8 +/- 8.6 cm/s (P < 0.05). There was a mean increase in vessel diameters of 30.1% after papaverine infusion. Combined treatment (13 patients) significantly increased the CBF from 33.3 +/- 3.2 ml/100 g/min to 41.7 +/- 2.8 ml/100 g/min (P< 0.05) and decreased the transcranial Doppler velocities from 148.9 +/- 12.7 cm/s to 111.4 +/- 10.6 cm/s (P < 0.05), with a mean increase in vessel diameters of 42.2%. Balloon angioplasty increased proximal vessel diameters, whereas papaverine treatment effectively dilated distal cerebral vessels. In our small series, we observed no correlation between early clinical improvement or clinical outcomes and any of our quantitative or physiological data (CBF, transcranial Doppler

  20. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Wildschiødtz, Gordon

    1991-01-01

    on examination of this question. We have now measured CBF and CMRO2 in young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness, deep sleep (stage 3/4), and rapid-eye-movement (REM) sleep as verified by standard polysomnography...... associated with light anesthesia. During REM sleep (dream sleep) CMRO2 was practically the same as in the awake state. Changes in CBF paralleled changes in CMRO2 during both deep and REM sleep.......It could be expected that the various stages of sleep were reflected in variation of the overall level of cerebral activity and thereby in the magnitude of cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). The elusive nature of sleep imposes major methodological restrictions...

  1. Quantitation of cerebral blood flow using HMPAO tomography

    International Nuclear Information System (INIS)

    Bruyant, P.; Mallet, J.J.; Sau, J.; Teyssier, R.; Bonmartin, A.

    1997-01-01

    A method has been developed to quantitate regional cerebral blood flow (rCBF) using 99m Tc-HMPAO. It relies on the application of the bolus distribution principle. The rCBF is determined using compartmental analysis, by measuring the amount of tracer retained in the parenchyma and the input function. The values for blood: brain partition coefficient and for the conversion rate from the lipophilic to the hydrophilic form of the tracer are taken from the literature. Mean values for rCBF in eight patients are 41.1 ± 6.4 et 25.6 ± 5.8 mL.min -1 for the grey matter and for the white matter respectively (mean±standard deviation). This method allows to quantitate rCBF with one SPET scan and one venous blood sample. (authors)

  2. Regional cerebral blood flow and oxygen metabolism in normal pressure hydrocephalus after subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Taki, Waro; Kobayashi, Akira; Nishizawa, Sadahiko; Yonekura, Yoshiharu; Konishi, Junji [Kyoto Univ. (Japan). Faculty of Medicine

    1989-05-01

    To clarify the pathophysiology of normal pressure hydrocephalus (NPH) after subarachnoid hemorrhage, the authors measured cerebral blood flow (CBF), cerebral oxygen metabolic rates (CMRO{sub 2}), the cerebral oxygen extraction fraction (OEF), and cerebral blood volume (CBV) in eight normal volunteers, six SAH patients with NPH, and seven patients without NPH by {sup 15}O-labeled gas and positron emission tomography (PET). In the NPH group, PET revealed a decrease in CBF in the lower regions of the cerebral cortex and a diffuse decrease in CMRO{sub 2}. The decrease in CBF in the lower frontal, temporal, and occipital cortices was significantly greater in the NPH than in the non-NPH group. Reduction of CMRO{sub 2} was also more extensive in the NPH group, and both CBF and CMRO{sub 2} were more markedly decreased in the lower frontal region. OEF was increased in all areas in both of the patient groups, but the increase was not significant in most areas. CBF, CMRO{sub 2} and OEF did not significantly differ between the non-NPH group and the normal volunteers. There was no significant difference in CBV among the three groups. These results indicate that NPH involves impairment of cerebral oxygen metabolism in the lower regions of the cerebral cortex, particularly in the lower frontal region. (author).

  3. Quantitative Analysis of Regional Cerebral Blood Flow using {sup 99m}Tc-HMPAO SPECT in Parkinson's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Chul; Bae, Sang Kyun; Chung, June Key; Koh, Chang Soon; Roh, Jae Kyu; Myung, Ho Jin [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Myung Hae [Asan Medical Center, Seoul (Korea, Republic of)

    1992-07-15

    Regional cerebral blood flow were measured in 10 patients with Parkinson's disease and 12 normal persons using {sup 99m}Tc-HMPAO SPECT. Reconstructed images were interpreted qualitatively and were compared with those findings of CT. For the quantitative analysis, six pairs of region of interest matched with the perfusion territories of large cerebral arteries and cerebellar hemisphere were determined. From the count values, indices showing the degree of asymmetry between right and left cerebral or cerebellar hemisphere, cerebral asymmetry index (ASI) and percent index of cerebellar asymmetry (PIA), and an index showing change of each region, region to cerebellum ratio (RCR) were obtained. ASI of normal persons and patients were 0.082 +- 0.033 and 0.108 +- 0.062, respectively and PIA were -0.4 +- 0.7% and -0.7 +- 1.0%, respectively, which showed no statistically significant difference between normal persons and patients. Among 10 RCR's, those of both regions of basal ganglia and both regions of anterior cerebral artery were significantly reduced. We concluded that the most significant reduction of regional cerebral blood flow in patients with Parkinson's disease was observed in the regions of basal ganglia and in the regions of anterior cerebral artery, and the degree of change in hemispheric blood flow was similar in both hemisphere.

  4. Cerebral blood flow in patients with dementia of Alzheimer's type

    DEFF Research Database (Denmark)

    Postiglione, A; Lassen, N A; Holman, B L

    1993-01-01

    In the normal brain as well as in Alzheimer's disease (AD), regional cerebral blood flow (CBF) is coupled to metabolic demand and, therefore, changes in CBF reflect variations in neuronal metabolism. The use of radionuclide techniques, such as positron emission tomography (PET) and single photon...

  5. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with {sup 15}O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, 980-8575, Aoba-Ku, Sendai (Japan); Kanno, Iwao [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Kato, Chietsugu [Department of Nuclear Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Sasaki, Toshiaki [Cyclotoron Research Center, Iwate Medical University, Morioka (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo (Japan); Ouchi, Yasuomi [Positron Medical Center, Hamamatsu Medical Center, Hamakita (Japan); Iida, Akihiko [Nagoya City Rehabilitation Center, Nagoya (Japan); Okazawa, Hidehiko [PET Unit, Research Institute, Shiga Medical Center, Moriyama (Japan); Hayashida, Kohei [Department of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Tsuyuguchi, Naohiro [Department of Neurosurgery, Osaka City University Medical School, Osaka (Japan); Ishii, Kazunari [Division of Imaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Kuwabara, Yasuo [Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka (Japan); Senda, Michio [Department of Image-based Medicine, Institute of Biomedical Research and Innovation, Kobe (Japan)

    2004-05-01

    Measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET) with oxygen-15 labelled carbon dioxide (C{sup 15}O{sub 2}) or {sup 15}O-labelled water (H{sub 2}{sup 15}O), {sup 15}O-labelled carbon monoxide (C{sup 15}O) and {sup 15}O-labelled oxygen ({sup 15}O{sub 2}) is useful for diagnosis and treatment planning in cases of cerebrovascular disease. The measured values theoretically depend on various factors, which may differ between PET centres. This study explored the applicability of a database of {sup 15}O-PET by examining between-centre and within-centre variation in values. Eleven PET centres participated in this multicentre study; seven used the steady-state inhalation method, one used build-up inhalation and three used bolus administration of C{sup 15}O{sub 2} (or H{sub 2}{sup 15}O) and {sup 15}O{sub 2}. All used C{sup 15}O for measurement of CBV. Subjects comprised 70 healthy volunteers (43 men and 27 women; mean age 51.8{+-}15.1 years). Overall mean{+-}SD values for cerebral cortical regions were: CBF=44.4{+-}6.5 ml 100 ml{sup -1} min{sup -1}; CBV=3.8{+-}0.7 ml 100 ml{sup -1}; OEF=0.44{+-}0.06; CMRO{sub 2}=3.3{+-}0.5 ml 100 ml{sup -1} min{sup -1}. Significant between-centre variation was observed in CBV, OEF and CMRO{sub 2} by one-way analysis of variance. However, the overall inter-individual variation in CBF, CBV, OEF and CMRO{sub 2} was acceptably small. Building a database of normal cerebral haemodynamics obtained by the{sup 15}O-PET methods may be practicable. (orig.)

  6. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  7. Low regional cerebral blood flow in burning mouth syndrome patients with depression.

    Science.gov (United States)

    Liu, B-L; Yao, H; Zheng, X-J; Du, G-H; Shen, X-M; Zhou, Y-M; Tang, G-Y

    2015-07-01

    The main aims of this study were to (i) investigate the emotional disorder status of patients with burning mouth syndrome (BMS) and (ii) detect regional cerebral blood flow in BMS patients with the application of combined single-photon emission computed tomography and computed tomography (SPECT/CT). The degree of pain was measured using the visual analysis scale, and emotional disorder with the self-rating anxiety scale, self-rating depression scale, and Hamilton depression rating scale in 29 patients with BMS and 10 healthy controls. SPECT/CT was performed in 29 patients with BMS and 10 healthy controls, and statistical parametric mapping method was used for between-group analyses. The incidence rate of depression in patients with BMS was 31.0%. Compared to the control group, patients with BMS displayed significantly different depression and anxiety scales (P < 0.05). Significantly lower regional cerebral blood flow in the left parietal and left temporal lobes was recorded for BMS patients with depression (P < 0.05). Patients with BMS experience more depression and anxious emotion. Moreover, depression in patients with BMS may be associated with lower regional cerebral blood flow in the left temporal and left parietal lobes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The influence of tobacco smoking on the relationship between pressure and flow in the middle cerebral artery in humans.

    Science.gov (United States)

    Peebles, Karen C; Horsman, Helen; Tzeng, Yu-Chieh

    2013-01-01

    Cigarette smoking is associated with an increased risk of stroke but the mechanism is unclear. The study examined whether acute and chronic cigarette smoking alters the dynamic relationship between blood pressure and cerebral blood flow. We hypothesised that acute and chronic smoking would result in a cerebral circulation that was less capable of buffering against dynamic fluctuations in blood pressure. Further, these changes would be accompanied by a reduction in baroreflex sensitivity, which is reduced after smoking (acute smoking). We recruited 17 non-smokers and 15 habitual smokers (13 ± 5 pack years). Continuous measurements of mean cerebral blood flow velocity (transcranial Doppler ultrasound), blood pressure (finger photoplethysmography) and heart rate enabled transfer function analysis of the dynamic relationship between pressure and flow (gain, normalised gain, phase and coherence) and baroreflex sensitivity during supine rest before and after smoking a single cigarette (acute smoking). There were no between-group differences in gain, phase or coherence before acute smoking. However, both groups showed a reduction in gain and coherence, associated with a reduction in baroreflex sensitivity, and increase in phase after acute smoking. Contrary to our hypothesis, these findings suggest that in the face of a reduction in baroreflex sensitivity acute smoking may potentially improve the ability of the cerebral circulation to buffer against changes in blood pressure. However, chronic smoking did not alter the dynamic relationship between blood pressure and cerebral blood flow velocity. These results have implications on understanding mechanisms for attenuating stroke risk.

  9. Comparative studies of D2 receptors and cerebral blood flow in hemi-Parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    Objective: To study the relationship between dopamine D 2 receptors and cerebral blood flow in hemi-Parkinsonism rats. Methods: Hemi-Parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat to rotate toward the intact side was used to select the rat models, 125 I-IBZM in vivo autoradiography and 99 Tc m -HMPAO regional cerebral biodistribution analysis were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD was used to measure striatum DA and its metabolite content . Results: the lesioned side striatum DA and its metabolites homovanillic acid (HVA) 3,4-dihyroxy-phenylacetic acid (DOPAC) reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-Parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (P 0.05). Conclusions: the 6-OH-DA lesioned side DA content decreased significantly and thus induced a compensative up-regulation of striatum D 2 receptor binding sites in hemi-Parkinsonism rats, which show good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-Parkinsonism

  10. Assessment of resting-state blood flow through anterior cerebral arteries using trans-cranial doppler recordings.

    Science.gov (United States)

    Huang, Hanrui; Sejdić, Ervin

    2013-12-01

    Trans-cranial Doppler (TCD) recordings are used to monitor cerebral blood flow in the main cerebral arteries. The resting state is usually characterized by the mean velocity or the maximum Doppler shift frequency (an envelope signal) by insonating the middle cerebral arteries. In this study, we characterized cerebral blood flow in the anterior cerebral arteries. We analyzed both envelope signals and raw signals obtained from bilateral insonation. We recruited 20 healthy patients and conducted the data acquisition for 15 min. Features were extracted from the time domain, the frequency domain and the time-frequency domain. The results indicate that a gender-based statistical difference exists in the frequency and time-frequency domains. However, no handedness effect was found. In the time domain, information-theoretic features indicated that mutual dependence is higher in raw signals than in envelope signals. Finally, we concluded that insonation of the anterior cerebral arteries serves as a complement to middle cerebral artery studies. Additionally, investigation of the raw signals provided us with additional information that is not otherwise available from envelope signals. Use of direct trans-cranial Doppler raw data is therefore validated as a valuable method for characterizing the resting state. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Determinants of resting cerebral blood flow in sickle cell disease

    NARCIS (Netherlands)

    Bush, Adam M.; Borzage, Matthew T.; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J.; Coates, Thomas D.; Wood, John C.

    2016-01-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated.

  12. Decreased cerebral blood flow in renal transplant recipients

    International Nuclear Information System (INIS)

    Kamano, Chisako; Komaba, Yuichi; Sakayori, Osamu; Iino, Yasuhiko; Katayama, Yasuo

    2002-01-01

    We performed single-photon emission computed tomography (SPECT) to investigate the influence of renal transplantation on cerebral blood flow (CBF). Fifteen renal transplant recipients and twelve normal subjects underwent cerebral SPECT with N-isopropyl-p-[ 123 I] iodoamphetamine ( 123 I-IMP). All transplant recipients received prednisolone and cyclosporine (CyA). Regional CBF (rCBF) was measured by defining regions of interest in the cerebral cortex, deep white matter, striatum, thalamus, and cerebellum. In transplant recipients, correlations to the mean overall cortical CBF were assessed using the interval from transplantation to measurement of SPECT, as well as the serum creatinine concentration. Moreover, to investigate the influence of CyA on CBF, the correlation between mean overall cortical CBF and CyA trough concentrations was assessed. In all regions, CBF in renal transplant recipients was significantly lower than in normal subjects. No significant correlation was seen between serum creatinine, interval from transplantation, or CyA trough concentrations and mean overall cortical CBF. Renal transplant recipients demonstrated a decrease in CBF, that can have an associated secondary pathology. Therefore, renal transplant recipients may benefit from post-operative MRI or CT. (author)

  13. Magnetic resonance imaging as a diagnostic method for assessing function. New procedures for the non-invasive quantification of cerebral blood volume and blood flow

    International Nuclear Information System (INIS)

    Gueckel, F.; Rempp, K.; Becker, G.; Koepke, J.; Loose, R.; Brix, G.

    1994-01-01

    This paper presents a brief introduction to the current status of cerebral blood volume and blood flow imaging with magnetic resonance imaging (MRI) techniques. A new method for the quantitative assessment of regional cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF) on the basis of the indicator dilution theory is described and preliminary quantitative results from healthy volunteers are presented. The mean values for the rCBV are 8,27±1,85 ml/100 g for grey matter and 3,78±1,34 ml/100 g for white matter. The mean values for the rCBF are 44,8±11,29 ml/min/100 g for the grey matter and 20,88±8,42 ml/min/100 g for the white matter. These results are in good agreement with PET results from the literature. (orig.) [de

  14. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest

    Science.gov (United States)

    Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.

    1996-01-01

    Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.

  15. Cerebral blood flow measurement in cerebrovascular occlusive diseases

    International Nuclear Information System (INIS)

    Yanagihara, T.; Wahner, H.W.

    1984-01-01

    In order to evaluate cerebral blood flow (CBF) patterns among individual patients with increased statistical confidence, CBF measurements were carried out using the 133Xe-inhalation method and external head detectors. F1 values representing gray matter flow from 3 to 6 head detectors were averaged to form 16 different regions for each cerebral hemisphere. Normative values were obtained from 46 healthy volunteers, and data from individual regions were analyzed for absolute blood flow rates (ml/100g/min), for concordance between right and left hemispheres and as percent of mean hemispheric flow. CBF measurements were then carried out among 37 patients with cerebrovascular occlusive diseases, and results were compared with normative values. A high incidence of abnormal flows were detected among symptomatic patients with intracranial arterial stenosis or occlusion and those with extracranial internal carotid artery occlusion. By using the above method for data analysis, it was possible to delineate hypoperfused areas among these patients. Even though the 133Xe-inhalation method has inherent limitations, this is a practical and safe method for measurement of CBF which can provide reliable information useful for management of patients with cerebrovascular occlusive diseases, particularly when the results are presented with statistical confidence

  16. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Croughwell, N.; Lyth, M.; Quill, T.J.; Newman, M.; Greeley, W.J.; Smith, L.R.; Reves, J.G.

    1990-01-01

    We tested the hypothesis that insulin-dependent diabetic patients with coronary artery bypass graft surgery experience altered coupling of cerebral blood flow and oxygen consumption. In a study of 23 patients (11 diabetics and 12 age-matched controls), cerebral blood flow was measured using 133Xe clearance during nonpulsatile, alpha-stat blood gas managed cardiopulmonary bypass at the conditions of hypothermia and normothermia. In diabetic patients, the cerebral blood flow at 26.6 +/- 2.42 degrees C was 25.3 +/- 14.34 ml/100 g/min and at 36.9 +/- 0.58 degrees C it was 27.3 +/- 7.40 ml/100 g/min (p = NS). The control patients increased cerebral blood flow from 20.7 +/- 6.78 ml/100 g/min at 28.4 +/- 2.81 degrees C to 37.6 +/- 8.81 ml/100 g/min at 36.5 +/- 0.45 degrees C (p less than or equal to 0.005). The oxygen consumption was calculated from jugular bulb effluent and increased from hypothermic values of 0.52 +/- 0.20 ml/100 g/min in diabetics to 1.26 +/- 0.28 ml/100 g/min (p = 0.001) at normothermia and rose from 0.60 +/- 0.27 to 1.49 +/- 0.35 ml/100 g/min (p = 0.0005) in the controls. Thus, despite temperature-mediated changes in oxygen consumption, diabetic patients did not increase cerebral blood flow as metabolism increased. Arteriovenous oxygen saturation gradients and oxygen extraction across the brain were calculated from arterial and jugular bulb blood samples. The increase in arteriovenous oxygen difference between temperature conditions in diabetic patients and controls was significantly different (p = 0.01). These data reveal that diabetic patients lose cerebral autoregulation during cardiopulmonary bypass and compensate for an imbalance in adequate oxygen delivery by increasing oxygen extraction

  17. Feasibility of arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke

    International Nuclear Information System (INIS)

    Wang Wei; Li Cheng; Liu Zhensheng; Zhang Xinjiang; Zhou Longjiang; Yin Haiyan

    2010-01-01

    Objective: To assess the feasibility of arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke. Methods: Six patients with acute cerebral infarction within 6 hours underwent intraarterial thrombolysis, in which arterial blood bypass was used. A 2.3 F microcatheter was advanced through the clot and two milliliters of contrast was injected beyond the clot that remained stagnant in the major branches. At this point, 20 ml of oxygenated blood from femoral artery was injected for 2 minutes through the microcatheter past the occluding clot. Then, conventional intraarterial thrombolysis, including fibrinolytic agents infusion and mechanical disruption, was performed. Intraarterial thrombolysis and oxygenated blood infusion alternated every 30 minutes. Results: Every patient received arterial blood bypass with average three times (from 1 to 5 times) in the process of the intraarterial thrombolysis, which cost (8.0 ± 3.2) min. Recanalization was achieved in all 6 patients, but minor subarachnoid hemorrhage developed in one patient. All the patients got favorable clinical outcome. The life conditions is excellent in 4 cases and good in 2 cases. Conclusions: Arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke might be feasible, which did not interfere with conventional intraarterial thrombolysis and prolong the operation time significantly but could protect ischemic penumbra. (authors)

  18. The effect of blood transfusion on cerebral hemodynamics in preterm infants.

    Science.gov (United States)

    Koyano, Kosuke; Kusaka, Takashi; Nakamura, Shinji; Nakamura, Makoto; Konishi, Yukihiko; Miki, Takanori; Ueno, Masaki; Yasuda, Saneyuki; Okada, Hitoshi; Nishida, Tomoko; Isobe, Kenichi; Itoh, Susumu

    2013-07-01

    Anemia of prematurity commonly occurs in infants with very low birth weight; blood transfusion is an important treatment. However, there is no clear evidence to support the criteria currently widely used, based on blood hemoglobin (bHb) and hematocrit indices. Previous studies showed that overtransfusion or a low threshold for transfusion could induce complications or neurologic sequelae, respectively. We hypothesized that a cerebral hemodynamic index may provide an appropriate criterion for determining the need for transfusion in anemic preterm infants. We used near-infrared time-resolved spectroscopy to measure cerebral hemoglobin oxygen saturation (ScO2 ) and cerebral blood volume (CBV) before and after transfusion in 19 infants (24 measurements) with anemia of prematurity. The median gestational age was 27 weeks 0 days, median birth weight was 751 g, and median postconceptual age at transfusion was 30 weeks 4 days. bHb levels before and after transfusion (mean ± SD) were 9.3 ± 1.4 and 13.7 ± 1.3 g/dL, respectively. After transfusion, CBV significantly decreased from 2.63 ± 0.60 to 2.13 ± 0.26 mL/100 g of brain, and ScO2 significantly increased from 72.8 ± 4.3% to 74.7 ± 4.2%. After transfusion, CBV changes were significantly greater with low compared to high pretransfusion Hb levels. This reflected the physiologic response to severe anemia in premature infants, which is to increase CBV and decrease ScO2 . Therefore, CBV and ScO2 may be useful markers for determining the need for transfusion in very-low-birth-weight infants. © 2012 American Association of Blood Banks.

  19. Cerebral blood flow single-photon emission tomography with 123I-IMP in vascular dementia

    International Nuclear Information System (INIS)

    Kawahata, Nobuya; Gotoh, Chiharu; Yokoyama, Sakura; Daitoh, Nobuyuki

    2001-01-01

    Cerebral blood flow differences between patients with vascular dementia, patients with multiple lacunar infarction without cognitive dysfunction, and age-matched controls were examined. Thirty four patients with vascular dementia (VD) were selected from consecutive referrals to the Memory Clinic at Narita Memorial Hospital. All the patients had routine assessment including history, physical and neurological examinations, neuropsychological assessment, blood tests, EEG, head MRI, and single photon emission computed tomography (SPECT). All of them fulfilled the NINDS-AIREN diagnostic criteria for vascular dementia. Thirty nine patients with multiple lacunar infarction without cognitive dysfunction and 110 age-matched controls were included in this study. Mean cerebral blood flow (mCBF) and regional cerebral blood flow (rCBF) were measured using N-isopropyl-P- 123 I-iodoamphetamine ( 123 I-IMP) and SPECT imager. The mCBF in VD was 27.6±5.3 ml/100 g/min, while those in the control group and multiple lacunar infarction without cognitive dysfunction were 36.6±6.1 ml/100 g/min and 32.5±5.5 ml/100 g/min, respectively. The patients with VD demonstrated significantly reduced mCBF and rCBF in twenty regions including both cerebellar hemispheres as compared with those of the control group. Although there was no significant rCBF differences in bilateral inferior occipital regions and the right cerebellar hemisphere between patients with VD and multiple lacunar infarction without cognitive dysfunction, we could find significant lower rCBF in the remaining brain areas. In spite of the severity of VD, the diffuse decrease of cerebral blood flow was recognized in all patients with VD. (author)

  20. Cerebral blood flow, glucose use, and CSF ionic regulation in potassium-depleted rats

    International Nuclear Information System (INIS)

    Schroek, H.; Kuschinsky, W.

    1988-01-01

    Rats were kept on a low-K + diet for 25 or 70 days. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 31 different structures of the brain by means of the [ 14 C]iodoantipyrine and [ 14 C]2-deoxy-D-glucose method. After 25 and 70 days of K + depletion LCBF was decreased significantly in 27 and 30 structures, respectively, the average decrease being 19 and 25%. In contrast, average LCGU was not changed. Cisternal cerebrospinal fluid (CSF) K + concentration decreased significantly from 2.65 ± 0.02 mM in controls to 2.55 ± 0.02 mM and 2.47 ± 0.02 mM in the two treated groups. CSF [HCO 3 - ], pH, and Pco 2 were increased in K + -depleted animals. These data show that K + depletion induces an increase in CSF pH and a decrease in CSF K + concentration, both of which cause a reduction in cerebral blood flow. The increased CSF Pco 2 is secondary to the reduction of blood flow, since brain metabolism and arterial Pco 2 remained constant

  1. Comparative studies of D2 receptors and cerebral blood flow in hemi-parkinsonism rats

    International Nuclear Information System (INIS)

    Lin, Y.; Lin, X.

    2000-01-01

    To study the relationship between dopamine (DA) D 2 receptors and cerebral blood flow in hemiparkinsonism rats. Hemi-parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat rotates toward the intact side was used to screen that rats, 125 I-IBZM in vivo autoradiography and 99m Tc-HM-PAO regional brain biodistribution were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD were used to measure the concentration of DA and it metabolites homovanillic acid (HVA), 3,4-dehydroxyphenyl acetic acid (DOPAC) in bilateral striatum (ST). The lesioned side ST DA and its metabolites HVA DOPAC reduced significantly than that of the intact side and pseudo-operated control group, ST/cerebellum (CB) 125 I-IBZM uptake ratio was 8.04 ±0.71 in lesioned side of hemi-parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (p 99m Tc 30.1±4.53% enhancement as compared to the intact side, and also show good correlation with 30 min Apo induced rotation numbers (r=0.98), the regional cerebral blood flow study didn't show significant difference between bilateral brain cortex area (p>0.05). The DA content decreased significantly and induced an up-regulation of ST D 2 receptor binding sites in 6-OH-DA lesioned side in hemi-parkinsonism rats, the increased percentage of lesioned-intact side ST/CB 125 I-IBZM uptake ratio showed good correlation with rotation behavior induced by Apo. Compare with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-parkinsonism

  2. Sources of variability of resting cerebral blood flow in healthy subjects

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Kruuse, Christina Rostrup; Olesen, Jes

    2013-01-01

    Measurements of cerebral blood flow (CBF) show large variability among healthy subjects. The aim of the present study was to investigate the relative effect of established factors influencing CBF on the variability of resting CBF. We retrospectively analyzed spontaneous variability in 430 CBF...... measurements acquired in 152 healthy, young subjects using (133)Xe single-photon emission computed tomography. Cerebral blood flow was correlated positively with both end-tidal expiratory PCO2 (PETCO2) and female gender and inversely with hematocrit (Hct). Between- and within-subject CO2 reactivity...... when Hct was also accounted for. The present study confirms large between-subject variability in CBF measurements and that gender, Hct, and PETCO2 explain only a small part of this variability. This implies that a large fraction of CBF variability may be due to unknown factors such as differences...

  3. Association of Automatically Quantified Total Blood Volume after Aneurysmal Subarachnoid Hemorrhage with Delayed Cerebral Ischemia

    NARCIS (Netherlands)

    Zijlstra, I. A.; Gathier, C. S.; Boers, A. M.; Marquering, H. A.; Slooter, A. J.; Velthuis, B. K.; Coert, B. A.; Verbaan, D.; van den Berg, R.; Rinkel, G. J.; Majoie, C. B.

    2016-01-01

    The total amount of extravasated blood after aneurysmal subarachnoid hemorrhage, assessed with semiquantitative methods such as the modified Fisher and Hijdra scales, is known to be a predictor of delayed cerebral ischemia. However, prediction rates of delayed cerebral ischemia are moderate, which

  4. Quantification of modulated blood oxygenation levels in single cerebral veins by investigating their MR signal decay

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan [St. Jude Children' s Research Hospital, Memphis, TN (United States). Div. of Translational Imaging Research; University Clinics Jena (Germany). Medical Physics Group; Rauscher, Alexander [University Clinics Jena (Germany). Medical Physics Group; British Columbia Univ., Vancouver (Canada). MRI Research Centre; Reichenbach, Juergen R. [University Clinics Jena (Germany). Medical Physics Group

    2009-07-01

    The transverse magnetization of a single vein and its surrounding tissue is subject to spin dephasing caused by the local magnetic field inhomogeneity which is induced by the very same vessel. This phenomenon can be approximated and simulated by applying the model of an infinitely long and homogeneously magnetized cylinder embedded in a homogeneous tissue background. It is then possible to estimate the oxygenation level of the venous blood by fitting the simulated magnetization-time-course to the measured signal decay. In this work we demonstrate the ability of this approach to quantify the blood oxygenation level (Y) of small cerebral veins in vivo, not only under normal physiologic conditions (Y{sub native}=0.5-0.55) but also during induced changes of physiologic conditions which affect the cerebral venous blood oxygenation level. Changes of blood's oxygenation level induced by carbogen (5% CO{sub 2}, 95% O{sub 2}) and caffeine were observed and quantified, resulting in values of Y{sub carbogen}=0.7 and Y{sub caffeine}=0.42, respectively. The proposed technique may ultimately help to better understand local changes in cerebral physiology during neuronal activation by quantifying blood oxygenation in veins draining active brain areas. It may also be beneficial in clinical applications where it may improve diagnosis of cerebral pathologies as well as monitoring of responses to therapy. (orig.)

  5. Long-term follow-up of cerebral blood flow in patients with ruptured cerebral aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Iwao; Tanno, Hirokazu; Isobe, Katsumi [Kimitsu Central Hospital, Kisarazu, Chiba (Japan); Yamaura, Akira

    1992-03-01

    The xenon-133 inhalation technique was used to make three measurements of regional cerebral blood flow (CBF) in 34 patients with ruptured cerebral aneurysm: in the acute period (<14 days) after subarachnoid hemorrhage, in the subacute period (15-30 days), and in the chronic period (12-24 months). The hemispheric mean value of initial slope index was used as the mean CBF. The clinical outcomes were classified into good recovery (GR)(24 cases), moderate disability (MD)(5), and severe disability (SD)(5) on the Glasgow Outcome Scale. In all periods, the mean CBF significantly correlated with the outcome. GR patients had the highest mean CBF, MD patients the intermediate mean CBF, and SD patients the lower mean CBF. GR patients had a near-normal mean CBF by the chronic period, while SD patients showed no significant CBF recovery throughout the course. (author).

  6. The study of 1H-MRS on monkey of resuscitation after cerebral selection ultra-profound hypothermic blood flow occlusion

    International Nuclear Information System (INIS)

    Pu Jun; Xu Wei; Fang Shaolong; Zhao Xinxiang; Feng Zhongtang; Jiang Jiyao

    2005-01-01

    Objective: To investigate the appearance and feature of 1 H/protion magnetic resonance spectroscopy ( 1 H-MRS) on resuscitation after cerebral selective ultra-profound hypothermic and blood flow occlusion. To study effects of cerebral biochemical metabolism after cerebral selective ultra-profound hypothermia and blood flow occlusion and to explore the validity and feasibility of it. Methods: Bilateral carotid arteries and jugular veins were clipped about 10 minutes before perfusion. Then selective cerebral circulation was established by perfusion of cooling lingers liquid through right internal carotid artery and flow out of left jugular vein with clip of other carotid arteries and jugular veins. Brain temperature reached (15.1 ± 0.9) degree C, while the body temperature maintained (32.50 ± 0.58) degree C. Cerebral blood recovered after 60 minutes of cerebral ischemia and monkey came back. The cerebral MAI and DWI as well as 1 H-MRS were examined 4, 24, 72 h, 21 days before and after cerebral selective ultro-profound hypothermia and blood flow occlusion. The peak of N-acetyl-aspartate (NAA), Choline (Cho), creatine and phosphocreatine (Cr, PCr) of VOL were compare with those of control group in different time. Results: MRI T 1 WI, MRI T 2 WI and DWI is normal in different time in different region; there was not a significant difference in the ratio of NAA/(Cr+PCr), Cho/(Cr+PCr) in ROI in different time in the different region in the light of statistical analysis (P>0.05). Conclusion: The light of cerebral biochemical metabolism, selective ultra-profound hypothermia is safety and may provide effective protective effects and safety during cerebral ischemia. (authors)

  7. Cerebral blood flow during delirium tremens and related clinical states studied with xenon-133 inhalation tomography

    International Nuclear Information System (INIS)

    Hemmingsen, R.; Vorstrup, S.; Clemmesen, L.; Holm, S.; Tfelt-Hansen, P.; Sorensen, A.S.; Hansen, C.; Sommer, W.; Bolwig, T.G.

    1988-01-01

    The regional cerebral blood flow of 12 patients with severe alcohol withdrawal reactions (delirium tremens or impending delirium tremens) was measured during the acute state before treatment and after recovery. Greater cerebral blood flow was significantly correlated with visual hallucinations and agitation during the acute withdrawal reaction. The results suggest that delirium tremens and related clinical states represent a type of acute brain syndrome mainly characterized by CNS hyperexcitability

  8. Altered cerebral blood flow in chronic neck pain patients but not in whiplash patients: a 99mTc-HMPAO rCBF study

    OpenAIRE

    Sundström, Torbjörn; Guez, Michel; Hildingsson, Christer; Toolanen, Göran; Nyberg, Lars; Riklund, Katrine

    2006-01-01

    A cross-sectional study to investigate regional cerebral blood flow (rCBF) in patients with chronic whiplash syndrome and chronic neck pain patients without previous history of trauma along with a healthy control group. Chronic neck pain is a common disorder and a history of cervical spine injury including whiplash trauma constitute a risk factor for persistent neck pain. The aetiology of the late whiplash syndrome is unknown with no specific diagnostic criteria based on imaging, physiologica...

  9. Effects of Changes in Arterial Carbon Dioxide and Oxygen Partial Pressures on Cerebral Oximeter Performance.

    Science.gov (United States)

    Schober, Andrew; Feiner, John R; Bickler, Philip E; Rollins, Mark D

    2018-01-01

    Cerebral oximetry (cerebral oxygen saturation; ScO2) is used to noninvasively monitor cerebral oxygenation. ScO2 readings are based on the fraction of reduced and oxidized hemoglobin as an indirect estimate of brain tissue oxygenation and assume a static ratio of arterial to venous intracranial blood. Conditions that alter cerebral blood flow, such as acute changes in PaCO2, may decrease accuracy. We assessed the performance of two commercial cerebral oximeters across a range of oxygen concentrations during normocapnia and hypocapnia. Casmed FORE-SIGHT Elite (CAS Medical Systems, Inc., USA) and Covidien INVOS 5100C (Covidien, USA) oximeter sensors were placed on 12 healthy volunteers. The fractional inspired oxygen tension was varied to achieve seven steady-state levels including hypoxic and hyperoxic PaO2 values. ScO2 and simultaneous arterial and jugular venous blood gas measurements were obtained with both normocapnia and hypocapnia. Oximeter bias was calculated as the difference between the ScO2 and reference saturation using manufacturer-specified weighting ratios from the arterial and venous samples. FORE-SIGHT Elite bias was greater during hypocapnia as compared with normocapnia (4 ± 9% vs. 0 ± 6%; P oxygen saturation and mixed venous oxygen tension, as well as increased oxygen extraction across fractional inspired oxygen tension levels (P oxygen extraction (P < 0.0001). Changes in PaCO2 affect cerebral oximeter accuracy, and increased bias occurs with hypocapnia. Decreased accuracy may represent an incorrect assumption of a static arterial-venous blood fraction. Understanding cerebral oximetry limitations is especially important in patients at risk for hypoxia-induced brain injury, where PaCO2 may be purposefully altered.

  10. Is there any influence of breastfeeding on the cerebral blood flow? A review of 256 healthy newborns

    Directory of Open Access Journals (Sweden)

    Alexandra Maria Vieira Monteiro

    2012-10-01

    Full Text Available OBJECTIVE: To investigate whether breastfeeding influence the cerebral blood-flow velocity. MATERIALS AND METHODS: The present study included 256 healthy term neonates, all of them with appropriate weight for gestational age, 50.8% being female. Pulsatility index, resistance index and mean velocity were measured during breastfeeding or resting in the anterior cerebral artery, in the left middle cerebral artery, and in the right middle cerebral artery of the neonates between their first 10 and 48 hours of life. The data were analyzed by means of a paired t-test, Brieger's f-test for analysis of variance and linear regression, with p < 0.01 being accepted as statistically significant. RESULTS: Mean resistance index decreased as the mean velocity increased significantly during breastfeeding. Pulsatility index values decreased as much as the resistance index, but in the right middle cerebral artery it was not statistically significant. CONCLUSION: Breastfeeding influences the cerebral blood flow velocities.

  11. Local cerebral blood flow and glucose metabolism during seizure in spontaneously epileptic El mice

    International Nuclear Information System (INIS)

    Hosokawa, Chisa; Ochi, Hironobu; Yamagami, Sakae; Kawabe, Joji; Kobashi, Toshiko; Okamura, Terue; Yamada, Ryusaku

    1995-01-01

    Local cerebral blood flow and glucose metabolism were examined in spontaneously epileptic El mice using autoradiography with 125 I-IMP and 14 C-DG in the interictal phase and during seizure. El (+) mice that developed generalized tonic-clonic convulsions and El (-) mice that received no stimulation and had no history of epileptic seizures were examined. The seizure non-susceptible, maternal strain ddY mice were used as control. Uptake ratios for IMP and DG in mouse brain were calculated using the autoradiographic density. In the interictal phase, the pattern of local cerebral blood flow of El (+) mice was similar to that of ddY and El (-) mice, and glucose metabolism in the hippocampus was higher in El (+) mice than in El (-) and ddY mice, but flow and metabolism were nearly matched. During seizure, no significant changed blood flow and increased glucose metabolism in the hippocampus, the epileptic focus, and no markedly changed blood flow and depressed glucose metabolism in other brain regions were observed and considered to be flow-metabolism uncoupling. These observations have never been reported in clinical or experimental studies of epilepsy. Seizures did not cause large regional differences in cerebral blood flow. Therefore, only glucose metabolism is useful for detection of the focus of secondary generalized seizures in El mice, and appeared possibly to be related to the pathophysiology of secondary generalized epilepsy in El mice. (author)

  12. Acquisition and Processing of Cerebral Blood Flow Data with a M ...

    African Journals Online (AJOL)

    1974-12-07

    Dec 7, 1974 ... anaesthetic agent is described, as well as the use of a ... anaesthetic agents cerebral blood flow has therefore to .... AlO = area under clearance curve after 10 min. .... weighted flow was 0,54, and the percentage standard.

  13. Beagle puppy model of intraventricular hemorrhage: effect of indomethacin on cerebral blood flow

    International Nuclear Information System (INIS)

    Ment, L.R.; Stewart, W.B.; Duncan, C.C.; Scott, D.T.; Lambrecht, R.

    1983-01-01

    The newborn beagle puppy has been demonstrated to provide a good model for neonatal intraventricular hemorrhage (IVH). A study was designed to determine if indomethacin can prevent IVH and if indomethacin would produce changes in cerebral blood flow (CBF). Newborn beagle puppies were randomized by computer into two groups: one was pretreated with indomethacin, a known inhibitor of prostaglandin synthetase, and the other was saline. The dogs in both groups were then assigned either to undergo hemorrhagic hypotension/volume reexpansion insult or to receive no insult. Twenty percent of all pups receiving indomethacin and undergoing the insult experienced IVH, compared to 71% of the pups undergoing insult that had been pretreated with saline. Significant alterations in the blood pressure responses to the hemorrhagic hypotension/volume reexpansion insult were noted in the former group compared to the saline-pretreated pups subjected to insult. Finally, employing carbon-14 autoradiography for the determination of CBF, it was demonstrated that indomethacin decreases resting CBF of the newborn beagle pups and, in indomethacin-pretreated animals subjected to insult, prevents the increases in CBF seen in the saline-pretreated traumatized pups. 62 references, 1 figure, 3 tables

  14. Regional cerebral blood flow in diabetic patients

    International Nuclear Information System (INIS)

    Nagamachi, Shigeki; Ono, Shinnichi; Nishikawa, Takushi

    1993-01-01

    N-isopropyl-p- 123 I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies. A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA 1c levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author)

  15. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    International Nuclear Information System (INIS)

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Solomon, E.

    1988-01-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Lλ) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Lλ values to be normal, introducing the risk of systematic errors, because Lλ values differ throughout normal brain and may be altered by disease. Color-coded maps of Lλ and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 ± 7.7, for subcortical gray matter it was 50.3 ± 13.2 and for white matter it was 18.8 ± 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Lλ and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner. (orig.)

  16. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Science.gov (United States)

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  17. Psychiatric and subjective symptoms and cerebral blood flow in patients with chronic cerebral infarction after treatment with Ca antagonist (nilvadipine). Quantitative measurement of cerebral blood flow by the 123IMP-SPECT ARG method

    International Nuclear Information System (INIS)

    Sakayori, Osamu; Kitamura, Shin; Mishina, Masahiro; Yamazaki, Mineo; Terashi, Akirou

    1997-01-01

    Psychiatric and subjective symptoms such as headache, dizziness, lack of spontaneity, anxiety, and a depressive state are often found in patients with chronic cerebral infarction. Some Ca antagonists are reported to relieve such symptoms. The purpose of the present study was to investigate the relationship between psychiatric and subjective symptoms and cerebral blood flow (CBF) in cerebral infarction and to evaluate the clinical effects of Ca antagonists from the standpoint of the cerebral circulation. Nilvadipine was administered to is patients with chronic cerebral infarction and their CBF was measured by the 123 IMP-SPECT ARG method before and at 8 weeks after the nilvadipine treatment. The CBF in patients with hypertension was increased by 11% after giving nilvadipine. Patients without hypertension showed no tendency for elevation of their CBF. Patients who were relieved from some psychiatric symptoms revealed a 14% increase of CBF in all cortical regions, and a significant increase was noted in the frontal and temporal regions. In other patients without changes in psychiatric symptoms, the CBF did not increase in any of the cortical regions. No relationship between symptoms and CBF was observed in any of the patients with subjective symptoms. Our study demonstrated a close correlation between psychiatric symptoms and CBF. We speculate that psychiatric symptoms in chronic cerebral infarction may reflect diffuse brain dysfunctions. We also conclude that nilvadipine is more effective in relieving psychiatric symptoms in patients with hypertensive cerebral infarction. It is inferred that nilvadipine may be more effective in relieving psychiatric symptoms in patients with hypertension. (author)

  18. The effects of healthy aging on cerebral hemodynamic responses to posture change

    International Nuclear Information System (INIS)

    Edlow, Brian L; Greenberg, Joel H; Detre, John A; Kim, Meeri N; Durduran, Turgut; Zhou, Chao; Yodh, Arjun G; Putt, Mary E

    2010-01-01

    Aging is associated with an increased incidence of orthostatic hypotension, impairment of the baroreceptor reflex and lower baseline cerebral blood flow. The effect of aging on cerebrovascular autoregulation, however, remains to be fully elucidated. We used a novel optical instrument to assess microvascular cerebral hemodynamics in the frontal lobe cortex of 60 healthy subjects ranging from ages 20–78. Diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) were used to measure relative cerebral blood flow (rCBF), total hemoglobin concentration (THC), oxyhemoglobin concentration (HbO 2 ) and deoxyhemoglobin concentration (Hb). Cerebral hemodynamics were monitored for 5 min at each of the following postures: head-of-bed 30°, supine, standing and supine. Supine-to-standing posture change caused significant declines in rCBF, THC and HbO 2 , and an increase in Hb, across the age continuum (p < 0.01). Healthy aging did not alter postural changes in frontal cortical rCBF (p = 0.23) and was associated with a smaller magnitude of decline in HbO 2 (p < 0.05) during supine-to-standing posture change. We conclude that healthy aging does not alter postural changes in frontal cortical perfusion

  19. Regional cerebral blood flow and periventricular hyperintensity in silent cerebral infarction. Comparison with multi-infarct dementia

    International Nuclear Information System (INIS)

    Koshi, Yasuhiko; Kitamura, Shin; Nagazumi, Atushi; Tsuganesawa, Toshikazu; Terashi, Akiro

    1996-01-01

    In order to investigate relationship between regional cerebral blood flow (rCBF) and the white matter lesions on MRI in silent cerebral infarction, we quantitatively measured rCBF by 123 I-IMP autoradiography method (IMP ARG method) and single photon emission tomography (SPECT) in 36 patients with silent cerebral infarction (SCI group), 22 patients with multi-infarct dementia (MID group), and 16 control subjects without periventricular hyperintensity (PVH) and lacunar infarction on MRI (CL group). Regions of interest (ROIs) on rCBF images were set in the frontal (F), temporal (T), parietal (P), occipital (O) cortex, and the cerebral white matter (W). The severity of PVH on MRI T 2 -weighted image was divided into four grades (grade 0-3). Though the frequency of hypertension was significantly higher in SCI group and MID group compared with CL group, no significant difference was seen in the mean age among these three groups. rCBF in the white matter and cerebral cortices except the occipital cortex in SCI group was significantly low compared with CL group (rCBF SCI /rCBF CL : W 0.87, F 0.87, T 0.87, P 0.88, O 0.92). rCBF in the white matter and cerebral cortices, especially in the white matter and frontal cortex, in MID group was significantly low compared with SCI group (rCBF MID /rCBF CL : W 0.69, F 0.71, T 0.74, P 0.75, O 0.81). The mean grade of PVH in MID group was significantly higher than that in SCI group (SCI 1.1 vs MID 2.5). The severity of PVH was significantly correlated with each rCBF in the white matter and cerebral cortices, especially in the white matter and frontal cortex. Our findings suggest that the quantitative measurement of rCBF by IMP ARG method is useful for the follow-up study in the patients with silent cerebral infarction as well as the evaluation of the severity of PVH on MRI. (author)

  20. Cerebellar malformations alter regional cerebral development.

    Science.gov (United States)

    Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2011-12-01

    The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  1. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc-HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, R. H.; Suh, T. S.; Chung, Y. A.

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  2. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc- HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9 9m Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99m Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  3. Characterisation of cerebral blood flow via determining the vascular mean transit time

    International Nuclear Information System (INIS)

    Lindner, P.; Thelen, M.

    1987-01-01

    By using a recently developed algorithm it is possible to quantify the dynamic information of a DSA sequence of the brain. The theory of algorithm allows to calculate vascular mean transit from time density curves. The algorithm minimizes the problems of densitometry with regard to 'quantitative DSA'. There is a strong correlation between vascular mean transit times and cerebral blood flow values, and therefore the results for mean transit times also correspond to the results obtained for cerebral blood flow. By computerized postprocessing of DSA-images it is possible to generate functional images of the brain with a spatial resolution that had not been attainable so far. The images represent the distribution pattern of reverse vascular mean transit times. The results from 36 patients with proven stenoses of the cervical vessels are reported. (orig.) [de

  4. Radiotracer transit measurements as an index of regional cerebral blood flow. Pt. 1. Methodological and clinical results in chronic alcoholics cortical blood flow

    International Nuclear Information System (INIS)

    Dobrzanski, T.

    1975-01-01

    The numerical mean values of the cerebral radiorheographic index in healthy control subjects and in patients with cerebrovascular disease were not significantly different from the values of regional cerebral blood flow reported, respectively, by other authors using a modification of the Xe-133 method. In the group of chronic alcoholics there was a significant correlation between the duration of alcoholism and certain numerical values of the cerebral radiorheographic index. (author)

  5. Cerebral blood volume measurement using radioactive carboxyhemoglobin and positron emission tomography. Chapter 26

    International Nuclear Information System (INIS)

    Kanno, Iwao; Murakami, Matsutaro; Miura, Shuichi; Iida, Hidehiro; Takahashi, Kazuhiro; Sasaki, Hiroshi; Uemura, Kazuo

    1988-01-01

    This paper aims to describe the technical basis for this simplest cerebral blood volume (CBV) measurement using CO-labelled red blood cells and PET and to clarify the error sources in the technique which will become critical when we perform studies on physiological activation of CBV. 17 refs.; 6 figs.; 2 tabs

  6. Effects of ethamsylate on cerebral blood flow velocity in premature babies.

    OpenAIRE

    Rennie, J M; Lam, P K

    1989-01-01

    Cerebral blood flow velocity and cardiac output were measured with ultrasound before and 30 minutes after the administration of ethamsylate in a double blind placebo controlled study of 19 very low birthweight infants. No differences were found before or after treatment in either group.

  7. A study on measurement of the regional cerebral blood flow using autoradiographic method in moyamoya disease

    International Nuclear Information System (INIS)

    Sasaki, Tomohiro; Kiya, Katsuzo; Yuki, Kiyoshi; Kawamoto, Hitoshi; Mizoue, Tatsuya; Kiura, Yoshihiro; Uozumi, Tohru; Ikawa, Fusao

    1997-01-01

    Development of Autoradiographic method (ARG) has provided measurement of cerebral blood flow in moyamoya disease. We evaluate a cerebral vasodilatory capacity (CVC) for moyamoya disease using ARG method. We used 5 patients with moyamoya disease as a candidate for measurement of the cerebral blood flow (CBF) who admitted to Hiroshima Prefectural Hospital during the past one year. There were 3 patients in an adult age and 2 patients in a young age. We tried to measure the regional CBF (rCBF) using ARG method which was a easy way to estimate the rCBF on SPECT. The CVC was calculated from the difference of the rCBF between resting SPECT and Diamox-loading SPECT. Results were as follows; Reactivity of cerebral vessels to CO 2 loading and CVC weakened in moyamoya disease. The rCBF and CVC in the territories of anterior and middle cerebral arteries reduced in comparison with those in the area supplied by the posterior cerebral artery. The CVC at the treated side with surgical reconstruction recovered somewhat in an adult type. From these results, measurement of CBF using ARG method seems to be useful for evaluation of the CVC in moyamoya disease. (author)

  8. Cerebral Pathophysiology in Extracorporeal Membrane Oxygenation: Pitfalls in Daily Clinical Management

    Directory of Open Access Journals (Sweden)

    Syed Omar Kazmi

    2018-01-01

    Full Text Available Extracorporeal membrane oxygenation (ECMO is a life-saving technique that is widely being used in centers throughout the world. However, there is a paucity of literature surrounding the mechanisms affecting cerebral physiology while on ECMO. Studies have shown alterations in cerebral blood flow characteristics and subsequently autoregulation. Furthermore, the mechanical aspects of the ECMO circuit itself may affect cerebral circulation. The nature of these physiological/pathophysiological changes can lead to profound neurological complications. This review aims at describing the changes to normal cerebral autoregulation during ECMO, illustrating the various neuromonitoring tools available to assess markers of cerebral autoregulation, and finally discussing potential neurological complications that are associated with ECMO.

  9. Regional cerebral blood flow (rCBF) in psychiatry: Methodological issues

    International Nuclear Information System (INIS)

    Prohovnik, I.

    1984-01-01

    Traditionally, measurements of regional cerebral blood flow (rCBF) have been confined to neurology and nuclear medicine. Only one laboratory had concentrated on using this technique in psychiatric studies. Recently, however, rCBF has been increasingly used in psychiatry, and it seems appropriate at this time to examine the value and limitations of this method. The present article reviews selected methodological issues that may complicate the performance and interpretation of rCBF studies, with the aim of providing some means to evaluate published work and to plan further psychiatric research. In this paper, the term rCBF refers only to the two-dimensional, noninvasive methods that rely on inhalation or intravenous injection of xenon-133. The growing interest of rCBF to psychiatry stems mostly from the fact that this technique can indirectly map cerebral metabolism and, by interface, neural activity or information processing. Regional metabolism and blood flow are closely coupled to the human brain in the absence of gross pathology, and since psychiatric patients rarely present acute neurological abnormalities that might disrupt this coupling, one may infer regional metabolism from flow

  10. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Law, Ian; Wiltschiøtz, Gordon

    2002-01-01

    to other forms of altered awareness, for example, relaxation meditation than to deeper sleep stages. We are of the opinion that stage-1 sleep represents the dreaming state of wakefulness, while rapid eye movement (REM) sleep reflects the dreaming state of the unaware, sleeping brain.......This is the first report on the distribution of regional cerebral blood flow (rCBF) changes during stage-1 sleep or somnolence. Two hypotheses were tested: (A) that rCBF differed between the awake relaxed state and stage-1 sleep, (B) that hypnagogic hallucinations frequently experienced at sleep...... onset would be accompanied by measurable changes in rCBF using positron emission tomography (PET). Eight subjects were PET-scanned with (15)O-labeled water injection in three conditions: awake, stage-1 sleep with reportable experiences and stage-1 sleep without reportable experiences...

  11. Cerebral blood flow and metabolism during exercise: implications for fatigue.

    Science.gov (United States)

    Secher, Neils H; Seifert, Thomas; Van Lieshout, Johannes J

    2008-01-01

    During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.

  12. Symptomatic Cerebral Vasospasm and Delayed Cerebral Ischemia Following Transsphenoidal Resection of a Craniopharyngioma.

    Science.gov (United States)

    Ricarte, Irapuá Ferreira; Funchal, Bruno F; Miranda Alves, Maramélia A; Gomes, Daniela L; Valiente, Raul A; Carvalho, Flávio A; Silva, Gisele S

    2015-09-01

    Vasospasm has been rarely described as a complication associated with craniopharyngioma surgery. Herein we describe a patient who developed symptomatic vasospasm and delayed cerebral ischemia after transsphenoidal surgery for a craniopharyngioma. A 67-year-old woman became drowsy 2 weeks after a transsphenoidal resection of a craniopharyngioma. A head computed tomography (CT) was unremarkable except for postoperative findings. Electroencephalogram and laboratory studies were within the normal limits. A repeated CT scan 48 hours after the initial symptoms showed bilateral infarcts in the territory of the anterior cerebral arteries (ACA). Transcranial Doppler (TCD) showed increased blood flow velocities in both anterior cerebral arteries (169 cm/second in the left ACA and 145 cm/second in the right ACA) and right middle cerebral artery (164 cm/second) compatible with vasospasm. A CT angiography confirmed the findings. She was treated with induced hypertension and her level of consciousness improved. TCD velocities normalized after 2 weeks. Cerebral vasospasm should be considered in the differential diagnosis of patients with altered neurologic status in the postoperative period following a craniopharyngioma resection. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion.

    Science.gov (United States)

    Onaolapo, Adejoke Y; Onaolapo, Olakunle J; Nwoha, Polycarp U

    2016-12-01

    The study evaluated changes in open field behaviours, cerebral cortical histomorphology and biochemical markers of oxidative stress following repeated administration of aspartame in mice. Adult mice were assigned into five groups of twelve each. Vehicle (distilled water), or aspartame (20, 40, 80 and 160mg/kg body weight) were administered orally for 28days. Horizontal locomotion, rearing and grooming were assessed after the first and last dose of aspartame. Sections of the cerebral cortex were processed and stained for general histology, and also examined for neuritic plaques using the Bielschwosky's protocol. Glial fibrillary acidic protein (GFAP) and neuron specific enolase (NSE) immunoreactivity were assessed using appropriate antibodies. Aspartate and antioxidant levels were also assayed from cerebral cortex homogenates. Data obtained were analysed using descriptive and inferential statistics. Body weight and food consumption decreased significantly with aspartame consumption. Locomotion, rearing and grooming increased significantly after first dose, and with repeated administration of aspartame. Histological changes consistent with neuronal damage were seen at 40, 80 and 160mg/kg. Neuritic plaque formation was not evident; while GFAP-reactive astrocytes and NSE-reactive neurons increased at 40 and 80mg/kg but decreased at 160mg/kg. Superoxide dismutase and nitric oxide increased with increasing doses of aspartame, while aspartate levels showed no significant difference. The study showed morphological alterations consistent with neuronal injury and biochemical changes of oxidative stress. These data therefore supports the need for caution in the indiscriminate use of aspartame as a non-nutritive sweetener. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Regulation of cerebral blood flow in patients with autonomic dysfunction and severe postural hypotension

    DEFF Research Database (Denmark)

    Hesse, Birger; Mehlsen, Jesper; Boesen, Finn

    2002-01-01

    Whether cerebral blood flow (CBF) autoregulation is maintained in autonomic dysfunction has been debated for a long time, and the rather sparse data available are equivocal. The relationship between CBF and mean arterial blood pressure (MABP) was therefore tested in eight patients with symptoms...

  15. Cerebral blood flow single-photon emission tomography with {sup 123}I-IMP in vascular dementia

    Energy Technology Data Exchange (ETDEWEB)

    Kawahata, Nobuya; Gotoh, Chiharu; Yokoyama, Sakura; Daitoh, Nobuyuki [Narita Memorial Hospital, Toyohashi, Aichi (Japan)

    2001-06-01

    Cerebral blood flow differences between patients with vascular dementia, patients with multiple lacunar infarction without cognitive dysfunction, and age-matched controls were examined. Thirty four patients with vascular dementia (VD) were selected from consecutive referrals to the Memory Clinic at Narita Memorial Hospital. All the patients had routine assessment including history, physical and neurological examinations, neuropsychological assessment, blood tests, EEG, head MRI, and single photon emission computed tomography (SPECT). All of them fulfilled the NINDS-AIREN diagnostic criteria for vascular dementia. Thirty nine patients with multiple lacunar infarction without cognitive dysfunction and 110 age-matched controls were included in this study. Mean cerebral blood flow (mCBF) and regional cerebral blood flow (rCBF) were measured using N-isopropyl-P-{sup 123}I-iodoamphetamine ({sup 123}I-IMP) and SPECT imager. The mCBF in VD was 27.6{+-}5.3 ml/100 g/min, while those in the control group and multiple lacunar infarction without cognitive dysfunction were 36.6{+-}6.1 ml/100 g/min and 32.5{+-}5.5 ml/100 g/min, respectively. The patients with VD demonstrated significantly reduced mCBF and rCBF in twenty regions including both cerebellar hemispheres as compared with those of the control group. Although there was no significant rCBF differences in bilateral inferior occipital regions and the right cerebellar hemisphere between patients with VD and multiple lacunar infarction without cognitive dysfunction, we could find significant lower rCBF in the remaining brain areas. In spite of the severity of VD, the diffuse decrease of cerebral blood flow was recognized in all patients with VD. (author)

  16. Impaired autoregulation of cerebral blood flow in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1979-01-01

    Cerebral blood flow was measured, using the 133Xe clearance technique, a few hours after birth in 19 infants with varying degrees of respiratory distress syndrome. Ten of these infants had had asphyxia at birth. The least affected infants with normotension (systolic blood pressure 60 to 65 mm Hg......) had CBF values of about 40 ml/100 gm/minute. Hypotensive infants with asphyxia at birth or RDS or both had values for CBF of about 20 ml/100 gm/minute, or less. CBF was strongly correlated with the arterial blood pressure, showing a linear relationship that was identical in infants with asphyxia...

  17. Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin

    International Nuclear Information System (INIS)

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Kuhl, D.E.

    1979-01-01

    Red blood cells, tagged with C-11 administration of 11 CO gas, have been used to portray the distribution of blood in the brain. To date, however, the accuracy of this approach has not been validated. We have performed in vitro measurements of regional cerebral blood volume (CBV) with red blood cells labeled with C-11 and Cr-51 in four dogs and two rhesus monkeys. These studies yielded a ratio of CBV/sub C-1/ to CBV/sub Cr-11/ of 1.02 +- 0.03 (s.d.) from 92 samples. A least-squares fit to these data showed CBV/sub C-11/ = 1.01 CBV/sub Cr-51/ + 0.037; P much 11 CO-RBC gave coefficients of variation of +- 2.8% and +- 4.8% for cross-sectional CBV and regional (approx.4 cm 2 ) CBV over an 80-min period. The average human CBV was found to be 4.2 +- 0.4 cc blood per 100 g tissue. Clear tomographic delineation of the distribution of CBV in human subjects is achieved with ECT, which provides a ''live'' measurement of this parameter of cerebral hemodynamics. These data demonstrate that 11 CO administered by single-breath inhalation is a reliable and accurate blood tracer for measurement of CBV with ECT

  18. Utility of Brain SPECT 99mTc-HMPAO scintigraphy for the evaluation of regional cerebral blood flow changes in patients suffering from dissociative amnesia DA and dissociative motor disorders DMD (previously termed as hysteria)

    International Nuclear Information System (INIS)

    Ali, F.

    2007-01-01

    Full text: The aim of the study was to assess the utility of Brain SPECT 99 mTc-HMPAO scintigraphy for the evaluation of regional cerebral blood flow changes in patients suffering from dissociative amnesia (DA) and dissociative motor disorders (DMD) (previously termed as Hysteria). Materials and Methods: 20 patients were included in the study with a mean age of 26 years, 08 of them suffering from DA and 12 from DMDs. A consultant psychiatrist on the basis of ICD-10 criteria made the diagnosis. Patients were divided into two categories according to the duration of their illness. Category A; included 10 patients having less than six months duration of illness. Category B; included 10 patients having duration of illness more than six months. Ten normal controls having no signs and symptoms of any psychiatric disorder were also included in the study. Brain SPECT study was carried out using 99 mTc-HMPAO. Semiquantitative analysis was done by calculating cortical and cerebellar ratios in normals and comparing the same in the patients. Results: By comparing regional cerebral blood flow ratios of both the categories with normal group, patients suffering from DA showed hypoperfusion in bilateral temporal lobes, in both frontal association areas and both orbito frontal regions and patients suffering for more than 06 months showed a slightly more exaggerated pattern of hypoperfusion in the same cortical areas. On the other hand in DMD only the patients suffering for more than 06 months showed altered cerebral blood perfusion like hypoperfusion in both of the frontal motor areas, hypoperfusion in both temporal lobes and marked hyperperfusion in both orbito frontal areas. Conclusion: Patients of DA show abnormal cerebral perfusion pattern whether in acute or chronic stage while only chronic DMD states precipitate altered cerebral perfusion patterns and these can be visualized on a Brain SPECT study. (author)

  19. Assessment of cerebral blood flow following administration of surfactant in premature newborns

    International Nuclear Information System (INIS)

    Calvo, M.J.; Matias, M.; Serrano, I.; Lubian, S.; Vallejos, E.; Canovas, S.

    1998-01-01

    To assess, by Doppler ultrasound, the possible changes in the patterns of cerebral blood flow after administration of a surfactant. Fifteen newborns with a period of gestation of less than 30 weeks received low-dose surfactant, as prophylaxis in six cases and as treatment in nine, administered slowly via endo tracheal tube with indwelling catheter. The Doppler recordings in anterior cerebral artery (ACA) and descending aorta (DAo) were assessed prior to administration of the surfactant, immediately afterwards and 15 minutes, 30 minutes, one hour and 24 hours later. The findings were correlated with simultaneous oxygen saturation and arterial blood pressure readings. There was little change in the systolic and diastolic velocities, although both tended to rise progressively throughout the 24 hours of the study period. The mean initial resistance index (R I) in ACA was elevated (0.84±0.11), tending in every case to diminish by 24 hours post administration (0.78±0.11) to levels that are considered normal in the newborn. Lower velocities (p<0.001 and higher RI(p<0.001) were recorded when reversed diastolic velocity was observed in the DAo in relation to patent ducts arteriosus. There were no significant changes in the oxygen saturation or mean arterial pressure. One infant presented a grade I germinal matrix hemorrhage. The findings suggest that this treatment does not produce significant changes in the cerebral blood flow under the circumstances described here. (Author) 40 refs

  20. Cerebral blood flow velocity changes during upright positioning in bed after acute stroke : An observational study

    NARCIS (Netherlands)

    Aries, Marcel J; Elting, Jan Willem; Stewart, Roy; De Keyser, Jacques; Kremer, Berry; Vroomen, Patrick

    2013-01-01

    Objectives: National guidelines recommend mobilisation in bed as early as possible after acute stroke. Little is known about the influence of upright positioning on real-time cerebral flow variables in patients with stroke. We aimed to assess whether cerebral blood flow velocity (CBFV) changes

  1. Ten-minute umbilical cord occlusion markedly reduces cerebral blood flow and heat production in fetal sheep.

    NARCIS (Netherlands)

    Lotgering, F.K.; Bishai, J.M.; Struijk, P.C.; Blood, A.B.; Hunter, C.J.; Power, G.G.; Longo, L.D.

    2003-01-01

    OBJECTIVE: The study was undertaken to determine to what extent a 10-minute total umbilical cord occlusion affects autoregulation of cerebral blood flow and cerebral heat production in the fetus. STUDY DESIGN: In seven chronically catheterized late-gestation fetal sheep (127-131 days' gestation), we

  2. The evaluation of cerebral hemodynamics in patients with intracranial tumors by stable xenon CT; The effect of glycerol administration on regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, Masami; Kawamata, Fumio; Yamamoto, Masahiro; Ohsuga, Hitoshi; Hidaka, Mitsuru; Oda, Shinri; Shibuya, Naoki; Yamamoto, Isao; Sato, Osamu (Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine)

    1989-04-01

    In evaluating cerebral regional blood flow (rCBF), stable xenon-enhanced tomography (XeCT) study associated with simultaneous blood sampling was applied in 15 cases of intracranial neoplasms. The effect of intravenous glycerol infusion on rCBF was also investigated. The results indicated that intratumoral rCBF values were not only variable and unrelated to their histological types and grades, but also were not correlated with the vascularity of the lesion as demonstrated by angiography. When a tumor mass was enhanced after the injection of iodinated contrast media, it proved to be useful in distinguishing tumor mass and its associated edema that the rCBF of the peritumoral edematous region was predominantly low (10{plus minus}5 ml/100 g/min). The regional cerebral blood flow in remote areas, both ipsilateral and contralateral to the lesion, was low in value, and there was no statistical significance between affected and sound sides. Following glycerol administration, rCBF was increased in the whole intracranial region, but not inside of the neoplasm, particularly when the intracranial pressure (ICP) was increased. It was assumed that the elevated rCBF after glycerol administration was due to the increase in the cerebral perfusion pressure resulting from the ICP reduction, the hemodilution effect, cerebral vessel dilatation after metabolic acidosis, and/or mechanically rectified microcirculation after edema reduction. (author).

  3. Significance of preoperative cerebral blood flow measurements in endovascular occlusion of the internal carotid and middle cerebral arteries

    International Nuclear Information System (INIS)

    Laurent, A.; Weitzner, I.; Luft, A.; Merland, J.J.

    1988-01-01

    Cerebral blood flow (CBF) measurements during 12 endovascular balloon occlusions (ten internal carotid and two middle cerebral arteries) with good clinical and angiographic tolerance were done with repeated boluses of Xe-133 injected directly into the ipsi- and contralateral carotid systems, during the occlusion and repeated measurements with detectors on both sides (before occlusion and 5-30 minutes after occlusion). In two cases of unchanged and four of increased CBF, one reversible deficit was probably due to an embolus. In six cases of decreased CBF, two deficits occurred, characterized by a greater than 25% decrease. It seems to represent a good predictive value for intolerance to occlusion

  4. Cerebral blood flow autoregulation in hypertension and effects of antihypertensive drugs

    DEFF Research Database (Denmark)

    Barry, David; Lassen, N A

    1984-01-01

    If antihypertensive treatment, especially emergency blood pressure lowering, is always to be safe, more thought should be given to autoregulation of cerebral blood in the hypertensive patient. This topic is reviewed in the present article, in the hypertensive patient. This topic is reviewed...... in the present article, particular emphasis being placed on the resetting of the lower limit of autoregulation to higher pressure in hypertension and the effects of acute administration of anti-hypertensive drugs on CBF and CBF-autoregulation....

  5. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Kanoh, Masayuki

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured at rest using the 133 Xe inhalation technique in 40 DSM-III-diagnosed schizophrenics (22 males, 18 females: mean age 35.0 years, range 20-49 years) and 31 age-and sex-matched normal controls (16 males, 15 females: mean age 34.3 years, range 21-49 years). The absolute value (AV) and the percent value (PV) of the rCBF in schizophrenics were compared with those in controls. Correlations between rCBF and the Brief Psychiatric Rating Scale (BPRS) scores or the performance of Wisconsin Card Sorting Test (WCST) were examined in schizophrenics. Schizophrenics showed significantly lower AVs in all brain regions examined and a significantly lower PV in the left superior frontal region than controls. The hyperfrontal rCBF distribution which was found in both hemispheres in controls, was absent in the left hemisphere in schizophrenics. In schizophrenics, superior frontal blood flows were significantly negatively correlated with the negative symptom scores of the BPRS but not with the total scores and the positive symptom scores of the BPRS. In schizophrenics, inferior frontal blood flows were significantly correlated with the number of sorting categories achieved. These results indicate that rCBF in schizophrenia is reduced in the whole brain and especially in the left superior frontal region. These findings suggest a frontal lobe dysfunction in schizophrenia. (author)

  6. Cerebral small-resistance artery structure and cerebral blood flow in normotensive subjects and hypertensive patients

    Energy Technology Data Exchange (ETDEWEB)

    De Ciuceis, Carolina; Porteri, Enzo; Rizzoni, Damiano; Boari, Gianluca E.M.; Rosei, Enrico Agabiti [University of Brescia, Clinica Medica, Department of Clinical and Experimental Sciences, Brescia (Italy); Cornali, Claudio; Mardighian, Dikran; Fontanella, Marco M. [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Pinardi, Chiara [Spedali Civili, Medical Physics Unit, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Rodella, Luigi F.; Rezzani, Rita [University of Brescia, Section of Anatomy, Department of Clinical and Experimental Sciences, Brescia (Italy); Gasparotti, Roberto [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy)

    2014-12-15

    The aim of this study was to prospectively investigate whether the structure of cerebral small-resistance arteries is related to cerebral perfusion parameters as measured with dynamic susceptibility-weighted contrast magnetic resonance imaging (DSC-MRI) in a selected cohort of hypertensive and normotensive patients. Ten hypertensive and 10 normotensive patients were included in the study. All patients underwent neurosurgical intervention for an intracranial tumor and were investigated with DSC-MRI at 1.5 T. Cerebral small-resistance arteries were dissected from a small portion of morphologically normal cerebral tissue and mounted on an isometric myograph for the measurement of the media-to-lumen (M/L) ratio. A quantitative assessment of cerebral blood flow (CBF) and volume (CBV) was performed with a region-of-interest approach. Correlation coefficients were calculated for normally distributed variables. The institutional review board approved the study, and informed consent was obtained from all patients. Compared with normotensive subjects, hypertensive patients had significantly lower regional CBF (mL/100 g/min) in the cortical grey matter (55.63 ± 1.90 vs 58.37 ± 2.19, p < 0.05), basal ganglia (53.34 ± 4.39 vs 58.22. ± 4.33, p < 0.05), thalami (50.65 ± 3.23 vs 57.56 ± 4.45, p < 0.01), subcortical white matter (19.32 ± 2.54 vs 22.24 ± 1.9, p < 0.05), greater M/L ratio (0.099 ± 0.013 vs 0.085 ± 0.012, p < 0.05), and lower microvessel density (1.66 ± 0.67 vs 2.52 ± 1.28, p < 0.05). A statistically significant negative correlation was observed between M/L ratio of cerebral arteries and CBF in the cortical grey matter (r = -0.516, p < 0.05), basal ganglia (r = -0.521, p < 0.05), thalami (r = -0.527 p < 0.05), and subcortical white matter (r = -0.612, p < 0.01). Our results indicate that microvascular structure might play a role in controlling CBF, with possible clinical consequences. (orig.)

  7. Effect of graded hyperventilation on cerebral metabolism in a cisterna magna blood injection model of subarachnoid hemorrhage in rats

    DEFF Research Database (Denmark)

    Ma, Xiaodong; Bay-Hansen, Rikke; Hauerberg, John

    2006-01-01

    In subarachnoid hemorrhage (SAH) with cerebrovascular instability, hyperventilation may induce a risk of inducing or aggravating cerebral ischemia. We measured cerebral blood flow (CBF) and cerebral metabolic rates of oxygen (CMRO2), glucose (CMRglc), and lactate (CMRlac) at different PaCO2 level...

  8. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1986-01-01

    Coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) was studied using multiple sequential administrations of 15 O-labeled radiotracers and positron emission tomography. In the resting state an excellent correlation between CBF and CMRO 2 was found when paired measurements of CBF and CMRO 2 from multiple (30-48) brain regions were tested in each of 33 normal subjects. Regional uncoupling of CBF and CMRO 2 was found, however, during neuronal activation induced by somatosensory stimulation. Stimulus-induced focal augmentation of cerebral blood flow (29% mean) far exceeded the concomitant local increase in tissue metabolic rate (mean, 5%), when resting-state and stimulated-state measurements were obtained in each of 9 subjects. Stimulus duration had no significant effect on response magnitude or on the degree of CBF-CMRO 2 uncoupling observed. Dynamic, physiological regulation of CBF by a mechanism (neuronal or biochemical) dependent on neuronal firing per se, but independent of the cerebral metabolic rate of oxygen, is hypothesized

  9. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc- HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo [College of Medicine, The Catholic Univ. of Seoul, Seoul (Korea, Republic of)

    2002-06-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9{sup 9m}Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and {sup 99m}Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  10. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc-HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic Univ., of Korea, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  11. Focal increase of cerebral blood flow during stereognostic testing in man

    DEFF Research Database (Denmark)

    Roland, E; Larsen, B

    1976-01-01

    An attempt was made to study the regional cerebral blood flow (rCBF) pattern during stereognostic discrimination in man. The rCBF was measured in 18 subjects who had no major neurological defects. The clearance from the hemisphere of xenon 133 injected (133Xe) into the carotid artery was measured...

  12. Heterogeneity of cerebral blood flow: a fractal approach

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Hartikainen, P.

    2000-01-01

    Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and single-photon emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (=coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17±0.05 (mean±SD) for the left hemisphere and 1.15±0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04±0.03 than in healthy controls. (orig.) [de

  13. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Møller, Kirsten; Volianitis, Stefanos

    2002-01-01

    The development of hyperthermia during prolonged exercise in humans is associated with various changes in the brain, but it is not known whether the cerebral metabolism or the global cerebral blood flow (gCBF) is affected. Eight endurance-trained subjects completed two exercise bouts on a cycle...... ergometer. The gCBF and cerebral metabolic rates of oxygen, glucose, and lactate were determined with the Kety-Schmidt technique after 15 min of exercise when core temperature was similar across trials, and at the end of exercise, either when subjects remained normothermic (core temperature = 37.9 degrees C...... with control at the end of exercise (43 +/- 4 vs. 51 +/- 4 ml. 100 g(-1). min(-1); P glucose, and the cerebral metabolic rate was therefore higher at the end...

  14. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    Science.gov (United States)

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . Copyright © 2015 the American Physiological Society.

  15. Caffeine and human cerebral blood flow: A positron emission tomography study

    International Nuclear Information System (INIS)

    Cameron, O.G.; Modell, J.G.; Hariharan, M.

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p a CO 2 and increased systolic blood pressure significantly; the change in p a CO 2 did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed

  16. Caffeine and human cerebral blood flow: A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, O.G.; Modell, J.G.; Hariharan, M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  17. Energetic Interrelationship between Spontaneous Low-Frequency Fluctuations in Regional Cerebral Blood Volume, Arterial Blood Pressure, Heart Rate, and Respiratory Rhythm

    Science.gov (United States)

    Katura, Takusige; Yagyu, Akihiko; Obata, Akiko; Yamazaki, Kyoko; Maki, Atsushi; Abe, Masanori; Tanaka, Naoki

    2007-07-01

    Strong spontaneous fluctuations around 0.1 and 0.3 Hz have been observed in blood-related brain-function measurements such as functional magnetic resonance imaging and optical topography (or functional near-infrared spectroscopy). These fluctuations seem to reflect the interaction between the cerebral circulation system and the systemic circulation system. We took an energetic viewpoint in our analysis of the interrelationships between fluctuations in cerebral blood volume (CBV), mean arterial blood pressure (MAP), heart rate (HR), and respiratory rhythm based on multivariate autoregressive modeling. This approach involves evaluating the contribution of each fluctuation or rhythm to specific ones by performing multivariate spectral analysis. The results we obtained show MAP and HR can account slightly for the fluctuation around 0.1 Hz in CBV, while the fluctuation around 0.3 Hz is derived mainly from the respiratory rhythm. During our presentation, we will report on the effects of posture on the interrelationship between the fluctuations and the respiratory rhythm.

  18. Regional cerebral blood flow during mechanical hyperventilation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Høgh, Peter; Larsen, Fin Stolze

    2000-01-01

    Mechanical hyperventilation is often instituted in patients with acute bacterial meningitis when increased intracranial pressure is suspected. However, the effect on regional cerebral blood flow (CBF) is unknown. In this study, we measured regional CBF (rCBF) in patients with acute bacterial...... meningitis before and during short-term hyperventilation. In 17 patients with acute bacterial meningitis, absolute rCBF (in ml/100 g min-1) was measured during baseline ventilation and hyperventilation by single-photon emission computed tomography (SPECT) using intravenous 133Xe bolus injection. Intravenous...... in the frontal and parietal cortex as well as in the basal ganglia. Focal perfusion abnormalities were present in 10 of 12 patients. Regional cerebral blood flow abnormalities are frequent in patients with acute bacterial meningitis. Short-term hyperventilation does not enhance these abnormalities....

  19. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    Science.gov (United States)

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral...... group. CBF was measured by the intracarotid 133xenon injection method and BP was raised by noradrenaline infusion and lowered by controlled haemorrhage in separate groups of rats. The limits of autoregulation were determined by computed least-sum-of-squares analysis. PD 123319 did not influence baseline...

  1. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    Energy Technology Data Exchange (ETDEWEB)

    Bisdas, Sotirios [JWG University Hospital, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank [Hannover Medical School, Department of Neuroradiology, Hannover (Germany); Berding, Georg [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Weissenborn, Karin; Ahl, Bjoern [Hannover Medical School, Department of Neurology, Hannover (Germany)

    2006-10-15

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [{sup 15}O]H{sub 2}O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  2. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    International Nuclear Information System (INIS)

    Bisdas, Sotirios; Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank; Berding, Georg; Weissenborn, Karin; Ahl, Bjoern

    2006-01-01

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [ 15 O]H 2 O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  3. Physiological activation of the human cerebral cortex during auditory perception and speech revealed by regional increases in cerebral blood flow

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L

    1988-01-01

    by measuring regional cerebral blood flow CBF after intracarotid Xenon-133 injection are reviewed with emphasis on tests involving auditory perception and speech, and approach allowing to visualize Wernicke and Broca's areas and their contralateral homologues in vivo. The completely atraumatic tomographic CBF...

  4. Egas Moniz: 90 Years (1927-2017) from Cerebral Angiography.

    Science.gov (United States)

    Artico, Marco; Spoletini, Marialuisa; Fumagalli, Lorenzo; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco; Salvati, Maurizio; Frati, Alessandro; Pastore, Francesco Saverio; Taurone, Samanta

    2017-01-01

    In June 2017 we celebrate the 90th anniversary of the pioneer discovery of cerebral angiography, the seminal imaging technique used for visualizing cerebral blood vessels and vascular alterations as well as other intracranial disorders. Egas Moniz (1874-1955) was the first to describe the use of this revolutionary technique which, until 1975 (when computed tomography, CT, scan was introduced in the clinical practice), was the sole diagnostic tool to provide an imaging of cerebral vessels and therefore alterations due to intracranial pathology. Moniz introduced in the clinical practice this fundamental and important diagnostic tool. The present contribution wishes to pay a tribute to the Portuguese neurosurgeon, who was also a distinguished neurologist and statesman. Despite his tremendous contribution in modern brain imaging, Egas Moniz was awarded the Nobel Prize in Physiology or Medicine in 1949 for prefrontal leucotomy, the neurosurgical intervention nowadays unacceptable, but should rather be remembered for his key contribution to modern brain imaging.

  5. Cerebral ischemia produced by four-vessel occlusion in the rat: a quantitative evaluation of cerebral blood flow

    International Nuclear Information System (INIS)

    Furlow, T.W. Jr.

    1982-01-01

    Cerebral ischemia was produced in the rat by simultaneous occlusion of the vertebral and carotid arteries according to the method of Pulsinelli and Brierley (Stroke 10: 267, 1979). Local cerebral blood flow (CBF) was determined by polarographic and autoradiographic techniques. Hydrogen-clearance measurements showed that mean CBF fell in four monitored regions of the hemispheres to between 0.11 and 0.18 ml/g/min, being least in deep rostal gray, intermediate in superficial gray, and greatest in deep caudal gray. However, individual animals had local CBF in excess of 0.20 and even 0.30 ml/g/min, and no animal showed zero CBF. When animals were rendered hypotensive (MABP of 50 Torr) during vascular occlusion, mean CBF ranged between 0.03 and 0.10 ml/g/min in the same regional order. With hypotension, total arrest of flow occurred. Autoradiographic data confirmed the above findings and indicated adequate CBF to the lower brainstem. During vascular occlusion, sufficient CBF may be present ot sustain cerebral tissue as in animals with a well developed spinal circulation or an inadvertently patent vertebral artery

  6. Regional cerebral blood flow in pure dysarthria. A 3D-SSP study

    International Nuclear Information System (INIS)

    Okamoto, Kensho; Kamogawa, Kenji; Okuda, Bungo; Kawabata, Keita; Tachibana, Hisao

    2007-01-01

    Pure dysarthria from brain infarction is a rare condition, and its pathophysiology remains unclear. To clarify the underlying mechanism of pure dysarthria, we investigated the lesion sites and regional cerebral blood flow in patients with pure dysarthria. We examined 18 consecutive patients with pure dysarthria (9 men and 9 women; mean age, 71 years) who underwent MRI and cerebral blood flow studies. To visualize the regional cerebral blood flow, we generated Z score images using the three-dimensional stereotactic surface projection (3D-SSP) method with single-photon emission computed tomography (SPECT) and N-isopropyl-p [ 123 I]iodoamphetamine. Data on the brain surface perfusion extracted by the 3D-SSP analysis were compared between the pure dysarthria (PD) patients and 9 control subjects. MRI revealed multiple lacunar infarctions involving the internal capsule and/or corona radiata in 11 patients, left internal capsule-corona radiata infarction in 4 patients, and pontine infarction in 3 patients. SPECT with 3D-SSP demonstrated bilateral frontal cortical hypoperfusion in all patients, particularly in the anterior opercular region. Based on intergroup comparisons, the PD group exhibited pronounced cortical hypoperfusion in the opercular and medial frontal regions, left more than right. In conclusion, pure dysarthria is considered to originate from frontal cortical hypoperfusion, mainly in the anterior opercular and medial frontal regions, which is probably due to interruption of the corticosubcortical neural networks relevant to speech expression and articulation. In addition, it is suggested that left hemispheric lesions may make a greater contribution to the development of pure dysarthria than do right ones. (author)

  7. Clinical observations on the effect of carotid artery occlusion on cerebral blood flow mapped by xenon computed tomography and its correlation with carotid artery back pressure

    International Nuclear Information System (INIS)

    Steed, D.L.; Webster, M.W.; DeVries, E.J.; Jungreis, C.A.; Horton, J.A.; Sehkar, L.; Yonas, H.

    1990-01-01

    Xenon computed tomographic cerebral blood flow mapping was correlated with internal carotid artery stump pressures and clinical neurologic assessment during temporary internal carotid artery occlusion. One hundred fourteen patients with skull base tumors or intracranial aneurysms potentially requiring carotid resection or ligation underwent angiography, xenon CT cerebral blood flow mapping, and internal carotid artery blood pressure monitoring. The internal carotid artery was then temporarily occluded with a balloon catheter, stump pressure was measured through the catheter, and the xenon CT cerebral blood flow mapping was repeated. Adequate xenon CT cerebral blood flow was defined as greater than 30 cc/100 gm/min. All patients had normal xenon CT cerebral blood flow before internal carotid artery occlusion. During internal carotid artery occlusion, xenon CT cerebral blood flow was found to be normal (group I, 40 patients), globally reduced but still within the normal range (group II, 50 patients), or low in the distribution of the ipsilateral middle cerebral artery (group III, 13 patients). With balloon occlusion, an immediate neurologic deficit developed in 11 patients (9%) requiring deflation of the balloon preceding xenon CT cerebral blood flow measurement (group IV). In group I internal carotid artery blood pressure was 128 mm Hg. (range 85 to 171 mm Hg) with stump pressure 86 mm Hg (range 46 to 125 mm Hg). In group II internal carotid artery blood pressure was 130 mm Hg. (range 78 to 199 mm Hg), with stump pressure 86 mm Hg (range 31 to 150 mm Hg)

  8. Differences in lateral hemispheric asymmetries of cerebral blood flow measured by SPECT in dementia of Alzheimer type

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Nahoko [Niigata Univ. (Japan). School of Medicine

    1993-12-01

    We studied 21 right-handed patients clinically diagnosed as dementia of Alzheimer type (8 men, 13 women; aged 53-85, mean 71.1 years). The average duration of symptoms was 2.7 years. Dementia ranged from mild to moderately severe. None had clinical or laboratory evidence of cerebro-vascular disease (Hachinski ischemic scores for all patients were 4 or below). All received the Wechsler Adult Intelligence Scale (WAIS), Mini-mental State Test (MMS) and Western Aphasia Battery (WAB, First Japanese edition, 1986). Regional cerebral blood flow was evaluated by single photon emission CT (SPECT) with [sup 123]I-N-isopropyl-p-iodoamphetamine ([sup 123]I-IMP), using the Matsuda's quantitative method. The subjects were divided into three groups on the basis of right-left hemispheric asymmetry of cerebral blood flow (leftcerebral blood flow. Verbal IQ in patients with predominant hypoperfusion of left temporal and parietal lobe were significantly lower than in other groups, while performance IQ and WAB constructive scores were lower in those with right hemispheric hypoperfusion (p<0.05). We concluded that cerebral blood flow asymmetry detected by SPECT was related significantly to the deficit of language and constructive function in patients with dementia of Alzheimer type. (author).

  9. Differences in lateral hemispheric asymmetries of cerebral blood flow measured by SPECT in dementia of Alzheimer type

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Nahoko (Niigata Univ. (Japan). School of Medicine)

    1993-12-01

    We studied 21 right-handed patients clinically diagnosed as dementia of Alzheimer type (8 men, 13 women; aged 53-85, mean 71.1 years). The average duration of symptoms was 2.7 years. Dementia ranged from mild to moderately severe. None had clinical or laboratory evidence of cerebro-vascular disease (Hachinski ischemic scores for all patients were 4 or below). All received the Wechsler Adult Intelligence Scale (WAIS), Mini-mental State Test (MMS) and Western Aphasia Battery (WAB, First Japanese edition, 1986). Regional cerebral blood flow was evaluated by single photon emission CT (SPECT) with [sup 123]I-N-isopropyl-p-iodoamphetamine ([sup 123]I-IMP), using the Matsuda's quantitative method. The subjects were divided into three groups on the basis of right-left hemispheric asymmetry of cerebral blood flow (leftcerebral blood flow. Verbal IQ in patients with predominant hypoperfusion of left temporal and parietal lobe were significantly lower than in other groups, while performance IQ and WAB constructive scores were lower in those with right hemispheric hypoperfusion (p<0.05). We concluded that cerebral blood flow asymmetry detected by SPECT was related significantly to the deficit of language and constructive function in patients with dementia of Alzheimer type. (author).

  10. Differences in lateral hemispheric asymmetries of cerebral blood flow measured by SPECT in dementia of Alzheimer type

    International Nuclear Information System (INIS)

    Yoshimura, Nahoko

    1993-01-01

    We studied 21 right-handed patients clinically diagnosed as dementia of Alzheimer type (8 men, 13 women; aged 53-85, mean 71.1 years). The average duration of symptoms was 2.7 years. Dementia ranged from mild to moderately severe. None had clinical or laboratory evidence of cerebro-vascular disease (Hachinski ischemic scores for all patients were 4 or below). All received the Wechsler Adult Intelligence Scale (WAIS), Mini-mental State Test (MMS) and Western Aphasia Battery (WAB, First Japanese edition, 1986). Regional cerebral blood flow was evaluated by single photon emission CT (SPECT) with 123 I-N-isopropyl-p-iodoamphetamine ( 123 I-IMP), using the Matsuda's quantitative method. The subjects were divided into three groups on the basis of right-left hemispheric asymmetry of cerebral blood flow (left< right, n=6; right< left, n=3; left=right, n=12). General scores (MMS, T-IQ) were not correlated with asymmetry of cerebral blood flow. Verbal IQ in patients with predominant hypoperfusion of left temporal and parietal lobe were significantly lower than in other groups, while performance IQ and WAB constructive scores were lower in those with right hemispheric hypoperfusion (p<0.05). We concluded that cerebral blood flow asymmetry detected by SPECT was related significantly to the deficit of language and constructive function in patients with dementia of Alzheimer type. (author)

  11. Cerebral blood flow and metabolism during cardiopulmonary bypass with special reference to effects of hypotension induced by prostacyclin

    International Nuclear Information System (INIS)

    Feddersen, K.; Aren, C.; Nilsson, N.J.; Radegran, K.

    1986-01-01

    Cerebral blood flow and metabolism of oxygen, glucose, and lactate were studied in 43 patients undergoing aortocoronary bypass. Twenty-five patients received prostacyclin infusion, 50 ng per kilogram of body weight per minute, during cardiopulmonary bypass (CPB), and 18 patients served as a control group. Regional cerebral blood flow (CBF) was studied by intraarterially injected xenon 133 and a single scintillation detector. Oxygen tension, carbon dioxide tension, oxygen saturation, glucose, and lactate were measured in arterial and cerebral venous blood. Mean arterial blood pressure decreased during hypothermia and prostacyclin infusion to less than 30 mm Hg. The regional CBF was, on average, 22 (standard deviation [SD] 4) ml/100 gm/min before CPB. It increased in the control group during hypothermia to 34 (SD 12) ml/100 gm/min, but decreased in the prostacyclin group to 15 (SD 5) ml/100 gm/min. It increased during rewarming in the prostacyclin group. After CPB, regional CBF was about 40 ml/100 gm/min in both groups. The cerebral arteriovenous oxygen pressure difference decreased more in the control group than in the prostacyclin group during hypothermia. The cerebral metabolic rate of oxygen decreased in both groups from approximately 2 ml/100 gm/min to about 1 ml/100 gm/min during hypothermia, increased again during rewarming, and after CPB was at the levels measured before bypass in both groups. There was no difference between the groups in regard to glucose and lactate metabolism

  12. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    Science.gov (United States)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  13. Studies on so-called redistribution phenomenon of cerebral blood flow imaging

    International Nuclear Information System (INIS)

    Oba, Hiroshi

    1989-01-01

    To elucidate the relationship between so-called redistribution phenomenon and metabolism or viability of the brain tissue, a new quantitative triple-radionuclide autoradiography was developed, whereby making it possible to compare both late images and reditribution of IMP with cerebral metabolism in experimentally induced unilateral ischemic brain tissue of rats. Iodine-123 IMP and I-125 IMP were used as tracers for early and late imaging, and H-3 amino acid mixture or H-3 H-2 deoxyglucose as a tracer for protein synthesis or glucose metabolism imaging. There was no significant relationship between redistribution index and protein synthesis or glucose metabolism. Protein synthesis was remarkably decreased in the affected hemisphere regardless of redistribution index values. Although the redistribution indices showed a gentle peak at approximately 34 μ mol/100 g/ min of glucose metabolism, there was no obvious relationship between either late images or redistribution index images and glucose metabolism images. Redistribution indices showed a maximum value at approximately 40 to 50 ml/100 g/min of cerebral blood flow. Reverse redistribution was observed with 160 ml/100 g/min or more of flow. Thin layer chromatographic findings were similar in the affected and non-affected resions, suggesting redistribution of a lipophilic IMP metabolite of p-iodoamphetamine in the affected region. In vitro autoradiography revealed no significant reduction in binding ability of IMP to the affected ischemic cortex. In a computer simulation study for brain activity curve, brain activity at 150 min was found to be almost constant at more than 25 ml/100 g/min of flow. IMP redistribution was unlikely to reflect directly either brain metabolism or function, and both blood flow partition coefficient and blood flow values were independently responsible for cerebral kinetics of IMP. (N.K.)

  14. Clinical implication and prognosis of normal baseline cerebral blood flow with impaired vascular reserve in patients with major cerebral artery occlusive disease

    International Nuclear Information System (INIS)

    Isozaki, Makoto; Arai, Yoshikazu; Kubota, Toshihiko; Kikuta, Ken-ichiro; Kudo, Takashi; Kiyono, Yasushi; Kobayashi, Masato; Okazawa, Hidehiko

    2010-01-01

    To investigate the prognosis of patients with cerebrovascular steno-occlusive disease who have preserved baseline cerebral blood flow (CBF) and reduced cerebral vasoreactivity (CVR), they were followed up after scans of positron emission tomography (PET). Fifty-seven patients with symptomatic unilateral major cerebral arterial occlusion or severe stenosis underwent O-15 gas and water PET scans to measure cerebral blood volume, metabolic rate of oxygen, oxygen extraction fraction (OEF), and CBF at the baseline and after acetazolamide administration. Thirty of them (mean age 60±10 years) had normal ipsilateral CBF, and were followed prospectively at least 30 months from the last ischemic event. They were medically treated for cerebral circulation and underlying diseases during follow-up periods. The primary endpoint was determined as stroke recurrence during the follow-up. Thirty patients were divided into two groups of reduced CVR (N=16, 63±8 years) and normal CVR (N=14, 56±10 years) on the basis of CVR values from healthy volunteers. None of them showed significant laterality in baseline CBF and OEF between the hemispheres although patients with reduced CVR showed a tendency of ipsilateral increases in OEF and CBV. Patients were followed up for 50.5±19.0 and 48.1±12.4 months in the reduced and normal CVR groups, respectively. Although one patient with reduced CVR died of heart disease, there was no incidence of ischemic events during follow-up periods for either group. In the present prospective study, patients with sufficient baseline CBF showed good prognosis and no difference in recurrent stroke risks even though they had poor CVR in the affected hemisphere, indicating that these patients can be treated by medication for cerebral circulation and baseline diseases if they have high risk factors for neurosurgical treatment. (author)

  15. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    Science.gov (United States)

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  16. Interactive handling of regional cerebral blood flow data using a macrolanguage

    International Nuclear Information System (INIS)

    Sveinsdottir, E.; Schomacker, T.; Lassen, N.A.

    1976-01-01

    A general image handling software system has been developed for on-line collection, processing and display of gamma camera images (IMAGE system). The most distinguishable feature of the system is the ability for the user to interactively specify sequences, called macros, of basic functions to be performed. Information about a specified sequence is retained in the system, thus enabling new sequences or macros to be defined using already specified sequences. Facilities for parameter setting and parameter transfer between functions, as well as facilities for repetition of a function, are included. Finally, functions, be it basic or macro, can be specified to be iteratively activated using a physiological trigger signal as f.ex. the ECG. In addition, a special program system was developed for handling the dynamic data, from Xenon-133 studies of regional cerebral blood flow (CBF system). Parametric or functional images derived from the CBF system and depicting estimates of regional cerebral blood flow, relative weights of grey matter or other parameters can after computation be handled in the IMAGE system

  17. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.

    OpenAIRE

    Kempley, S T; Gamsu, H R

    1993-01-01

    Doppler ultrasound was used to measure blood flow velocity in the anterior cerebral artery of six premature infants with posthaemorrhagic hydrocephalus, before and after intermittent cerebrospinal fluid (CSF) drainage, on 23 occasions. There was a significant increase in mean blood flow velocity after the drainage procedures (+5.6 cm/s, 95% confidence interval +2.9 to +8.3 cm/s), which was accompanied by a decrease in velocity waveform pulsatility. CSF pressure also fell significantly. In pat...

  18. Cerebral blood flow and metabolism in multi-infarct dementia

    International Nuclear Information System (INIS)

    Ujike, Takashi; Terashi, Akiro; Soeda, Toshiyuki; Kitamura, Shin; Kato, Toshiaki; Iio, Masaaki.

    1985-01-01

    Cerebral blood flow and oxygen metabolism were studied in three aged normal volunteers and 10 patients with multi-infarct dementia (MID) by Positron Emission Tomography using O-15. The diagnosis of MID was done according to the Loeb's modified ischemic score and X-ray CT findings. The MID patients, whose X-ray CT showed localized low density areas in the subcortical white matter and basal ganglia and thalamus, were studied. No occulusion was observed at anterior cerebral artery and/or middle cerebral artery on cerebral angiography. All cases of MID were mild dementias. Regional CBF, rOEF and rCMRO 2 were measured by the steady state technique described by Terry Jones et al. The values of rCBF in MID patients were significantly low compared with those of aged normal subjects in frontal, temporal, occipital, parietal cortices and thalamus. The values of CMRO 2 in MID were significantly low in frontal, temporal, occipital cortices and thalamus compared with normal subjects'. The OEF was 0.46 in aged normal subjects, and 0.52 in MID patients. The MID patients in the early stage of dementia showed the increased oxygen extraction fraction, and this fact suggests that ischemia is a significant pathogenic mechanism in the production and progression of multi-infarct dementia. The decrease of CBF and CMRO 2 in MID compared from normal subjects' were most remarkable in frontal cortex. The impairment of mental functions in MID should be caused by the decreased neuronal activities in frontal association cortex. (author)

  19. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  20. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  1. Gender differences in regional cerebral blood flow

    International Nuclear Information System (INIS)

    Gur, R.E.; Gur, R.C.

    1990-01-01

    Gender differences have been noted in neurobehavioral studies. The 133xenon inhalation method for measuring regional cerebral blood flow (rCBF) can contribute to the understanding of the neural basis of gender differences in brain function. Few studies have examined gender differences in rCBF. In studies of normal subjects, women have higher rates of CBF than men, and this is related to age. Usually by the sixth decade men and women have similar flow rates. Fewer studies on rCBF in schizophrenia have examined sex differences. The pattern of higher flows for females maintains, but its correlates with gender differences in clinical as well as other parameters of brain function remain to be examined

  2. Quantitative measurement of the cerebral blood flow

    International Nuclear Information System (INIS)

    Houdart, R.; Mamo, H.; Meric, P.; Seylaz, J.

    1976-01-01

    The value of the cerebral blood flow measurement (CBF) is outlined, its limits are defined and some future prospects discussed. The xenon 133 brain clearance study is at present the most accurate quantitative method to evaluate the CBF in different regions of the brain simultaneously. The method and the progress it has led to in the physiological, physiopathological and therapeutic fields are described. The major disadvantage of the method is shown to be the need to puncture the internal carotid for each measurement. Prospects are discussed concerning methods derived from the same general principle but using a simpler, non-traumatic way to introduce the radio-tracer, either by breathing into the lungs or intraveinously [fr

  3. Pressure passive cerebral blood flow and breakdown of the blood-brain barrier in experimental fetal asphyxia

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Tweed, W A

    1979-01-01

    reaching CBF values up to 6 times normal at normal MABP of about 60 to 70 mmHg, and severe ischemia reaching CBF values close to zero in large cortical areas at MABP of 30 mmHg. CVP remained essentially unchanged at 10--15 mmHg. The severe and prolonged asphyxia rendered the blood-brain barrier leaky......Cerebral blood flow (CBF) was studied in non-exteriorized near-term sheep fetuses using the radioactive microsphere technique. By partially occluding the umbilical vessels for a period of 1--1 1/2 hours a progressive and severe asphyxia with a final arterial pH of 6.90 was achieved. Varying...... the mean arterial blood pressure in the fetuses by blood withdrawal or infusion in this state, CBF was measured at different perfusion pressures (mean arterial blood pressure (MABP) minus central venous pressure (CVP)). A passive flow/pressure relationship--loss of autoregulation--was found, with hyperemia...

  4. Attacks of common migraine or hortons headache may not be accompanied by changes in regional cerebral blood flow

    International Nuclear Information System (INIS)

    Henriksen, L.; Aebelholt Krabbe, A.; Tfelt-Hansen, P.; Olesen, J.

    1982-01-01

    Vasospasm and cerebral ischemia, followed by cerebral and extracerebral vasodilation and hyperemia, are generally believed to form the common pathophysiology of the various subtypes of migraine. Mild forms of reactions are thought to result in common migraine (no neurological prodromes or accompaniments), and more severe reactions are thought to induce classical migraine. 8 induced common migraine attacks in 6 patients do not support this unitarian view, as no regional cerebral blood flow changes was found, but suggests a different pathophysiology in common migraine compaired to classical migraine. There are few features in Hortons headache to incriminate the cerebral vessels, and generally patients do not have symptoms attributable to cerebral involvement. In 6 out of 14 patients with known Hortons headache we succesfully induced an attack after alcohol alone or in combination with sublingual nitroglycerine. A slight hyperventilation occurred during the attack, correcting cerebral blood flow for these changes left mean CBF totally unchanged. No regional abnormalities occurred in any of the about 700 regions measured from during each investigation in neither the group with common migraine, nor in the patients with Hortons headache. (Author)

  5. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood-brain barrier

    NARCIS (Netherlands)

    Doze, P; Van Waarde, A; Elsinga, P H; Hendrikse, N H; Vaalburg, W

    Low cerebral uptake of some therapeutic drugs can be enhanced by modulation of P-glycoprotein (P-gp), an ATP-driven drug efflux pump at the blood-brain barrier (BBB). We investigated the possibility of increasing cerebral uptake of the beta-adrenergic ligands S-1'-[(18)F]-fluorocarazolol (FCAR) and

  6. The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J. Marc C.; Elting, Jan-Willem J.; Fidler, Vaclav; Staal, Michiel J.

    It has been shown that transcutaneous electrical neurostimulation (TENS) reduces sympathetic tone. Spinal cord stimulation (SCS) has proven qualities to improve coronary, peripheral, and cerebral blood circulation. Therefore, we postulate that TENS and SCS affect the autonomic nervous system in

  7. Egas Moniz: 90 Years (1927–2017) from Cerebral Angiography

    Science.gov (United States)

    Artico, Marco; Spoletini, Marialuisa; Fumagalli, Lorenzo; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco; Salvati, Maurizio; Frati, Alessandro; Pastore, Francesco Saverio; Taurone, Samanta

    2017-01-01

    In June 2017 we celebrate the 90th anniversary of the pioneer discovery of cerebral angiography, the seminal imaging technique used for visualizing cerebral blood vessels and vascular alterations as well as other intracranial disorders. Egas Moniz (1874–1955) was the first to describe the use of this revolutionary technique which, until 1975 (when computed tomography, CT, scan was introduced in the clinical practice), was the sole diagnostic tool to provide an imaging of cerebral vessels and therefore alterations due to intracranial pathology. Moniz introduced in the clinical practice this fundamental and important diagnostic tool. The present contribution wishes to pay a tribute to the Portuguese neurosurgeon, who was also a distinguished neurologist and statesman. Despite his tremendous contribution in modern brain imaging, Egas Moniz was awarded the Nobel Prize in Physiology or Medicine in 1949 for prefrontal leucotomy, the neurosurgical intervention nowadays unacceptable, but should rather be remembered for his key contribution to modern brain imaging. PMID:28974927

  8. Egas Moniz: 90 Years (1927–2017 from Cerebral Angiography

    Directory of Open Access Journals (Sweden)

    Marco Artico

    2017-09-01

    Full Text Available In June 2017 we celebrate the 90th anniversary of the pioneer discovery of cerebral angiography, the seminal imaging technique used for visualizing cerebral blood vessels and vascular alterations as well as other intracranial disorders. Egas Moniz (1874–1955 was the first to describe the use of this revolutionary technique which, until 1975 (when computed tomography, CT, scan was introduced in the clinical practice, was the sole diagnostic tool to provide an imaging of cerebral vessels and therefore alterations due to intracranial pathology. Moniz introduced in the clinical practice this fundamental and important diagnostic tool. The present contribution wishes to pay a tribute to the Portuguese neurosurgeon, who was also a distinguished neurologist and statesman. Despite his tremendous contribution in modern brain imaging, Egas Moniz was awarded the Nobel Prize in Physiology or Medicine in 1949 for prefrontal leucotomy, the neurosurgical intervention nowadays unacceptable, but should rather be remembered for his key contribution to modern brain imaging.

  9. Cerebral blood flow assessed by brain SPECT with 99mTc-HMPAO utilising the acetazolamide test in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Lass, P.; Romanowicz, G.; Koseda-Dragan, M.

    1998-01-01

    Background: Cerebrovascular diseases are one of the most important complications of systemic lupus erythematosus (SLE). The diagnostic imaging of neuropsychiatric SLE complications presents many problems. This study was undertaken to investigate cerebral blood flow char s and its reactivity to hypercapnia by means of acetazolamide test in SLE patients. Methods: Brain SPECT studies using 99mTc-HMPAO were performed in 50 patients with SLE. Acetazolamide test was performed in 35 patients 3 days after the baseline study by means of repetitive scanning 20 min after i.v. injection of 1.0 g of acetazolamide. Results: Significant interhemispheric hypoperfusion areas were shown in 76.3% of all patients, 83.8% symptomatic and 63.1% asymptomatic. Patients with antiphospholipid syndrome showed multifocal perfusion deficits. The reaction of cerebral perfusion to acetazolamide was heterogenous and showed increase, decrease, no change or mixed reaction of baseline-study-found focal hypoperfusion. Acetazolamide test revealed hypoperfusion in two patients with normal baseline study. MRI scanning revealed cerebral lesions in 41% of patients. Conclusions: CBF asymmetries in symptomatic and asymptomatic patients with SLE are frequent. Regional CBF alterations seem to be different in patients with and without antiphospholipid syndrome. The part of the patients with SLE shows no or paradoxically inversed reaction to acetazolamide. (author)

  10. Modelling of impaired cerebral blood flow due to gaseous emboli

    International Nuclear Information System (INIS)

    Hague, J P; Banahan, C; Chung, E M L

    2013-01-01

    Bubbles introduced to the arterial circulation during invasive medical procedures can have devastating consequences for brain function but their effects are currently difficult to quantify. Here we present a Monte Carlo simulation investigating the impact of gas bubbles on cerebral blood flow. For the first time, this model includes realistic adhesion forces, bubble deformation, fluid dynamical considerations, and bubble dissolution. This allows investigation of the effects of buoyancy, solubility, and blood pressure on embolus clearance. Our results illustrate that blockages depend on several factors, including the number and size distribution of incident emboli, dissolution time and blood pressure. We found it essential to model the deformation of bubbles to avoid overestimation of arterial obstruction. Incorporation of buoyancy effects within our model slightly reduced the overall level of obstruction but did not decrease embolus clearance times. We found that higher blood pressures generate lower levels of obstruction and improve embolus clearance. Finally, we demonstrate the effects of gas solubility and discuss potential clinical applications of the model. (paper)

  11. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    International Nuclear Information System (INIS)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-01-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO 2 ) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO 2 , and oxygen extraction fraction were measured by the positron emission tomography using 15 O 2 , C 15 O 2 inhalation technique. In addition to reduction of CBF and CMRO 2 in the basal ganglionic region, CBF and CMRO 2 decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO 2 decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO 2 was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO 2 were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia. These results suggest that measurements of cerebral blood flow and metabolism were necessary to study the responsible lesion for aphasia. (author)

  12. Statistical image analysis of cerebral blood flow in moyamoya disease

    International Nuclear Information System (INIS)

    Yamada, Masaru; Yuzawa, Izumi; Suzuki, Sachio; Kurata, Akira; Fujii, Kiyotaka; Asano, Yuji

    2007-01-01

    The Summary of this study was to investigate pathophysiology of moyamoya disease, we analyzed brain single photon emission tomography (SPECT) images of patients with this disease by using interface software for a 3-dimensional (3D) data extraction format. Presenting symptoms were transient ischemic attack (TIA) in 21 patients and hemorrhage in 6 patients. All the patients underwent brain SPECT scan of 123 I-iofetamine (IMP) at rest and after acetazolamide challenge (17 mg/kg iv, 2-day method). Cerebral blood flow (CBF) was quantitatively measured using arterial blood sampling and an autoradiography model. The group of the patients who presented with TIAs showed decreased CBF in the frontal lobe at rest compared to that of patients with hemorrhage, but Z-score ((mean-patient data)/ standard deviation (SD)) did not reach statistical significance. Significant CBF decrease after acetazolamide challenge was observed in a wider cerebral cortical area in the TIA group than in the hemorrhagic group. The brain region of hemodynamic ischemia (stage II) correlated well with the responsible cortical area for clinical symptoms of TIA. A hemodynamic ischemia stage image clearly represented recovery of reserve capacity after bypass surgery. Statistical evaluation of SPECT may be useful to understand and clarify the pathophysiology of this disease. (author)

  13. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    International Nuclear Information System (INIS)

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki

    1992-01-01

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO 2 ) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO 2 were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author)

  14. Regional cerebral blood flow distribution in newly diagnosed schizophrenia and schizophreniform disorder

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Madsen, P L

    1994-01-01

    Regional cerebral blood flow distribution (rCBF) in 24 first admissions with schizophrenia or schizophreniform disorder and in 17 healthy volunteers was examined. Single photon emission computed tomography with a brain-retained tracer, technetium-99m-d,l-hexamethyl-propylene amine oxime, was used...... interrelationship in schizophrenia and schizophreniform disorder....

  15. Hyperventilation, cerebral perfusion, and syncope

    DEFF Research Database (Denmark)

    Immink, R V; Pott, F C; Secher, N H

    2014-01-01

    dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2...... the contribution of a low PaCO2 to the early postural reduction in middle cerebral artery blood velocity is transient. HV together with postural stress does not reduce cerebral perfusion to such an extent that TLOC develops. However when HV is combined with cardiovascular stressors like cold immersion or reduced...... cardiac output brain perfusion becomes jeopardized. Whether, in patients with cardiovascular disease and/or defect, cerebral blood flow cerebral control HV-induced hypocapnia elicits cerebral hypoperfusion, leading to TLOC, remains to be established....

  16. Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Seifert, Thomas; Brassard, Patrice

    2015-01-01

    Endothelial vascular function and capacity to increase cardiac output during exercise are impaired in patients with type 2 diabetes (T2DM). We tested the hypothesis that the increase in cerebral blood flow (CBF) during exercise is also blunted and, therefore, that cerebral oxygenation becomes...... affected and perceived exertion increased in T2DM patients. We quantified cerebrovascular besides systemic hemodynamic responses to incremental ergometer cycling exercise in eight male T2DM and seven control subjects. CBF was assessed from the Fick equation and by transcranial Doppler-determined middle...... at higher workloads in T2DM patients and their work capacity and increase in cardiac output were only ~80% of that established in the control subjects. CBF and cerebral oxygenation were reduced during exercise in T2DM patients (P

  17. Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities

    NARCIS (Netherlands)

    Couturier, EGM; Laman, DM; vanDuijn, MAJ; vanDuijn, H

    Caffeine consumption may cause headache, particularly migraine. Its withdrawal also produces headaches and may be related to weekend migraine attacks. Transcranial Doppler sonography (TCD) has shown changes in cerebral blood flow velocities (BFV) during and between attacks of migraine. In order to

  18. Analysis of Regional Cerebral Blood Flow Using 99mTc-HMPAO Brain SPECT in Senile Dementia of Alzheimer Type

    International Nuclear Information System (INIS)

    Lee, Myung Hae; Lee, Myung Chul; Koh, Chang Soon; Roh, Jae Kyu; Woo, Chong In

    1988-01-01

    99m Tc-HMPAO brain SPECT studies were performed in 11 patients with Alzheimer's disease, 7 patients with psychological depression and 12 normal controls. Changes of regional cerebral blood flow was semiquantitatively analyzed and the results were as follows. 1) In 11 patients with Alzheimer's disease, significant reduction of regional cerebral blood flow was found In both temporoparietal areas. 2) Relative perfusion between cerebral hemispheres was rather symmetrical in patient with Alzheimer's disease. 3) All patients with depression showed normal SPECT findings. As for conclusion, 99m Tc-HMPAO brain SPECT seemed to be a valuable method for clinical assessment and management of patients with Alzheimer's disease.

  19. In vivo tomographic study of cerebral blood perfusion with SPECT in hemiparkinsonian monkeys

    International Nuclear Information System (INIS)

    Chen Shengdi; Xu Delong

    1994-01-01

    The authors present data on the utility of functional brain imaging with 99m Tc-ECD and SPECT in the study of MPTP induced hemiparkinsonism in monkeys. Injection of MPTP into the right common carotid artery of 10 rhesus monkeys produced hemiparkinsonism in the contralateral limbs which responded to antiparkinsonian medication. The unilateral neurotoxicity of the MPTP treated side was confirmed biochemically by marked reduction of DA contents in the nigrostriatum and histologically by selective neuronal loss in the substantia nigra. These monkeys with hemiparkinsonism were studied with SPECT using 99m Tc-ECD as perfusion marker. The results of brain scanning showed that the cerebral blood perfusion of MPTP treated side was significantly depleted 20∼90 days after MPTP intoxication, and returned to normal 8 months after perfusion. The experiment indicates that abnormal cerebral blood perfusion is involved in the course of parkinsonian pathophysiology

  20. Statistical parametric mapping of Tc-99m HMPAO SPECT cerebral perfusion in the normal elderly

    International Nuclear Information System (INIS)

    Turlakow, A.; Scott, A.M.; Berlangieri, S.U.; Sonkila, C.; Wardill, T.D.; Crowley, K.; Abbott, D.; Egan, G.F.; McKay, W.J.; Hughes, A.

    1998-01-01

    Full text: The clinical value of Tc-99m HMPAO SPECT cerebral blood flow studies in cognitive and neuropsychiatric disorders has been well described. Currently, interpretation of these studies relies on qualitative or semi- quantitative techniques. The aim of our study is to generate statistical measures of regional cerebral perfusion in the normal elderly using statistical parametric mapping (Friston et al, Wellcome Department of Cognitive Neurology, London, UK) in order to facilitate the objective analysis of cerebral blood flow studies in patient groups. A cohort of 20 healthy, elderly volunteers, aged 68 to 81 years, was prospectively selected on the basis of normal physical examination and neuropsychological testing. Subjects with risk factors, or a history of cognitive impairment were excluded from our study group. All volunteers underwent SPECT cerebral blood flow imaging, 30 minutes following the administration of 370 MBq Tc-99m HMPAO, on a Trionix Triad XLT triple-headed scanner (Trionix Research Laboratory Twinsburg, OH) using high resolution, fan-beam collimators resulting in a system resolution of 10 mm full width at half-maximum (FWHM). The SPECT cerebral blood flow studies were analysed using statistical parametric mapping (SPM) software specifically developed for the routine statistical analysis of functional neuroimaging data. The SPECT images were coregistered with each individual's T1-weighted MR volume brain scan and spatially normalized to standardised Talairach space. Using SPM, these data were analyzed for differences in interhemispheric regional cerebral blood flow. Significant asymmetry of cerebral perfusion was detected in the pre-central gyrus at the 95th percentile. In conclusion, the interpretation of cerebral blood flow studies in the elderly should take into account the statistically significant asymmetry in interhemispheric pre-central cortical blood flow. In the future, clinical studies will be compared to statistical data sets in age

  1. Statistical parametric mapping of Tc-99m HMPAO SPECT cerebral perfusion in the normal elderly

    Energy Technology Data Exchange (ETDEWEB)

    Turlakow, A.; Scott, A.M.; Berlangieri, S.U.; Sonkila, C.; Wardill, T.D.; Crowley, K.; Abbott, D.; Egan, G.F.; McKay, W.J.; Hughes, A. [Austin and Repatriation Medical Centre, Heidelberg, VIC (Australia). Departments of Nuclear Medicine and Centre for PET Neurology and Clinical Neuropsychology

    1998-06-01

    Full text: The clinical value of Tc-99m HMPAO SPECT cerebral blood flow studies in cognitive and neuropsychiatric disorders has been well described. Currently, interpretation of these studies relies on qualitative or semi- quantitative techniques. The aim of our study is to generate statistical measures of regional cerebral perfusion in the normal elderly using statistical parametric mapping (Friston et al, Wellcome Department of Cognitive Neurology, London, UK) in order to facilitate the objective analysis of cerebral blood flow studies in patient groups. A cohort of 20 healthy, elderly volunteers, aged 68 to 81 years, was prospectively selected on the basis of normal physical examination and neuropsychological testing. Subjects with risk factors, or a history of cognitive impairment were excluded from our study group. All volunteers underwent SPECT cerebral blood flow imaging, 30 minutes following the administration of 370 MBq Tc-99m HMPAO, on a Trionix Triad XLT triple-headed scanner (Trionix Research Laboratory Twinsburg, OH) using high resolution, fan-beam collimators resulting in a system resolution of 10 mm full width at half-maximum (FWHM). The SPECT cerebral blood flow studies were analysed using statistical parametric mapping (SPM) software specifically developed for the routine statistical analysis of functional neuroimaging data. The SPECT images were coregistered with each individual`s T1-weighted MR volume brain scan and spatially normalized to standardised Talairach space. Using SPM, these data were analyzed for differences in interhemispheric regional cerebral blood flow. Significant asymmetry of cerebral perfusion was detected in the pre-central gyrus at the 95th percentile. In conclusion, the interpretation of cerebral blood flow studies in the elderly should take into account the statistically significant asymmetry in interhemispheric pre-central cortical blood flow. In the future, clinical studies will be compared to statistical data sets in age

  2. Cerebral blood flow in sickle cell cerebrovascular disease

    International Nuclear Information System (INIS)

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-01-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 ( 133 Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the 133 Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The 133 Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke

  3. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks

    DEFF Research Database (Denmark)

    Olesen, J; Friberg, L; Olsen, T S

    1990-01-01

    Ten years of study has resulted in considerable but fragmented knowledge about regional cerebral blood flow in migraine with aura (classic migraine). In the present study, the number of repeatedly studied patients (n = 63) was large enough to determine statistically significant sequences of event...

  4. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    International Nuclear Information System (INIS)

    Waahlin, Anders

    2012-01-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  5. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, Anders

    2012-07-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  6. Evaluation of cerebral intravascular blood flow by time density curve study of intravenous digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Toru; Kogure, Kyuya (Tohoku Univ., Sendai (Japan). School of Medicine); Sekine, Teiko; Satoh, Kei; Endoh, Minoru; Tsuburaya, Kenji; Hoshi, Akihiko

    1992-01-01

    Time density curve (TDC) can be reconstructed from the data of intravenous digital subtraction angiography (IVDSA). We evaluated peak time (PT) and modal transit time (MOTT) of the TDC as the probable indicator of cerebral intravascular blood flow. Cerebral IVDSA and single photon emission CT (SPECT) were performed on 12 patients with ischemic cerebrovascular disease, which consisted of 3 internal carotid artery (ICA) occlusions, one middle cerebral artery (MCA) occlusion, one anterior cerebral artery (ACA) branch occlusion and 7 lacunar infarctions. We classified former 4 patients as occlusion group and latter 8 as reference group. In 3 patients (2 ICA and one MCA occlusions), SPECT study revealed definite hypoaccumulation in the MCA territory of occlusive side. Two regions of interest (ROI) were placed on the territories of right and left middle cerebral arteries in the frontal view of cerebral IVDSA. Digital data processor fitted {gamma} curve to the TDC of each ROI, and calculated PT and MOTT. The absolute lateralities of PT and MOTT of MCA territory was significantly (p<0.05) larger in occlusion group than reference group. Patients with hypoaccumulation in SPECT had significantly (p<0.02) larger laterality of MOTT than patients with isoaccumulation. One ICA occluded patient without hypoaccumulation in corresponding MCA territory had relatively small laterality of MOTT similar to the patients of ACA branch occlusion and lacunar infarction. These results suggest that PT and MOTT are possible to detect the laterality of the intravascular blood flow in MCA territories caused by major artery occlusion. Cerebral TDC study of IVDSA may be useful in some clinical therapeutic situations such as hemodilution or intra-arterial thrombolysis, and worth further clinical evaluation. (author).

  7. Regional cerebral blood flow in the persistent vegetative state

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masaharu; Kuroda, Ryotaro; Ioku, Masahiko [Kinki Univ., Osakasayama, Osaka (Japan). Faculty of Medicine; and others

    1989-05-01

    Regional cerebral blood flow (CBF) in eight patients in a persistent vegetative state was measured and compared with that in five healthy volunteers. The patients were classified into three groups: Group 1 (locked-in syndrome) consisted of a single patient, Group 2 (typical vegetative state) of five patients, and Group 3 (prolonged coma) of two patients. CBF was measured early after onset by single photon emission computed tomography with {sup 123}I-N-isopropyl-p-iodo-amphetamine and/or {sup 99m}Tc-hexamethyl-propyleneamine oxime. The regions of interest (ROIs) were the bilateral frontal, temporal, parietal, occipital, and cerebellar areas and basal ganglia. The values obtained in these areas were averaged, and the ratio for each ROI ((the value in the ROI/the mean value) x 100) was calculated. 'Hyper-frontal distribution' of CBF was found to be rare in both the normal condition and the vegetative state. Higher CBF values were noted in the left than in the right frontal area in four of the five volunteers but in only four of the eight patients. CBF distribution in the frontal lobe was characteristic for each group: Group 1 showed high CBF bilaterally, although the elevation was statistically significant only on the right side, and Group 3 exhibited significantly low values. In Group 2, CBF was variable but, for the most part, within normal limits. Awareness was closely correlated with frontal lobe function and alteration of CBF in the frontal region. (author).

  8. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo [Research Inst. for Brain and Blood Vessels, Akita (Japan)

    1997-04-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4{+-}107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  9. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    International Nuclear Information System (INIS)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo

    1997-01-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4±107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  10. Influence of antihypertensive therapy on cerebral perfusion in patients with metabolic syndrome: relationship with cognitive function and 24-h arterial blood pressure monitoring.

    Science.gov (United States)

    Efimova, Nataliya Y; Chernov, Vladimir I; Efimova, Irina Y; Lishmanov, Yuri B

    2015-08-01

    To investigate the regional cerebral blood flow, cognitive function, and parameters of 24-h arterial blood pressure monitoring in patients with metabolic syndrome before and after combination antihypertensive therapy. The study involved 54 patients with metabolic syndrome (MetS) investigated by brain single-photon emission computed tomography, 24-h blood pressure monitoring (ABPM), and comprehensive neuropsychological testing before and after 24 weeks of combination antihypertensive therapy. Patients with metabolic syndrome had significantly poorer regional cerebral blood flow compared with control group: by 7% (P = 0.003) in right anterior parietal cortex, by 6% (P = 0.028) in left anterior parietal cortex, by 8% (P = 0.007) in right superior frontal lobe, and by 10% (P = 0.00002) and 7% (P = 0.006) in right and left temporal brain regions, correspondingly. The results of neuropsychological testing showed 11% decrease in mentation (P = 0.002), and 19% (P = 0.011) and 20% (P = 0.009) decrease in immediate verbal and visual memory in patients with MetS as compared with control group. Relationships between the indices of ABPM, cerebral perfusion, and cognitive function were found. Data showed an improvement of regional cerebral blood flow, ABPM parameters, and indicators of cognitive functions after 6 months of antihypertensive therapy in patients with MetS. The study showed the presence of diffuse disturbances in cerebral perfusion is associated with cognitive disorders in patients with metabolic syndrome. Combination antihypertensive treatment exerts beneficial effects on the 24-h blood pressure profile, increases cerebral blood flow, and improves cognitive function in patients with MetS. © 2015 John Wiley & Sons Ltd.

  11. Effect of anxiety on cortical cerebral blood flow and metabolism

    International Nuclear Information System (INIS)

    Gur, R.C.; Gur, R.E.; Resnick, S.M.; Skolnick, B.E.; Alavi, A.; Reivich, M.

    1987-01-01

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using 18 Flurodeoxyglucose ( 18 FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance

  12. Effects of prostacyclin on cerebral blood flow and vasospasm after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Wetterslev, Jørn; Stavngaard, Trine

    2015-01-01

    and blood flow regulation, on factors related to DIND. METHODS: This trial is a single-center, randomized, blinded, clinical, pilot trial with 3 arms. Ninety patients were randomized to continuous infusion of prostacyclin 1 ng/kg per minute, prostacyclin 2 ng/kg per minute, or placebo. The intervention...... parameters or clinical outcome were found between the 3 groups. CONCLUSIONS: Administration of prostacyclin to patients with subarachnoid hemorrhage may be safe and feasible. Global cerebral blood flow after subarachnoid hemorrhage is not markedly affected by administration of prostacyclin in the tested dose...

  13. Regional cerebral blood flow in older patients with chronic subdural hematoma

    International Nuclear Information System (INIS)

    Hoshi, Yutaka; Fuse, Masaaki; Iio, Masahiro; Fuziwara, Keigo; Kawaguchi, Shinichiro

    1978-01-01

    Regional cerebral blood flow (rCBF) was measured in 4 regions (frontal, parietal, occipital, and temporal) over the entire hemisphere using modified 133 Xe clearance method in 5 patients with chronic subdural hematoma. In 5 patients, rCBF was measured both pre- and postoperation and those values were compared. CBF (average cerebral blood flow) measurements were compared. CBF measurements were carried out in each patients respectively, that is before the operation and 3 weeks after the operation. Before the operation, the presence of chronic subdural hematoma, but brought about only slight or moderate generalized decrease in rCBF. The older patients presented subnormal values of 31.5 - 45.1 ml/100 g/min. Mean f sub(g) (the flow in the grey matter) of 5 patients was 66.8 +- 5.0 ml/100 g/min on the hematoma site, 58.1 +- 2.8 ml/100 g/min on the non-hematoma site before operation. Three weeks after operation mean f sub(g) was 65.5 +- 7.6 ml/100 g/min on the non-hematoma site, 64.2 +- 3.5 ml/100 g/min on the hematoma site, and CBFr of non-hematoma site was 40.2 +- 5.7 ml/100 g/min and that of hematoma site, 38.5 +- 8.8 ml/100 g/min. These figures are moderately smaller than that of the normal values. A comparison between regional flow values noted in patients of pre- and post-operation who has a removal of hematomas indicated that the flow values of non-hematoma site increased slightly 3 weeks after operation, inspite of the only slight or no improvement in neurological features. But the flow values (f sub(g), CBFr) of hematoma site decreased 3 weeks after operation. It seems that post-operative follow up of mean cerebral blood flow change might be of help in the assessment of prognosis of operation. (auth.)

  14. Regional cerebral blood flow in older patients with chronic subdural hematoma

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Y; Fuse, M; Iio, M; Fuziwara, K; Kawaguchi, S [Tokyo Metropolitan Geriatric Medical Center (Japan)

    1978-02-01

    Regional cerebral blood flow (rCBF) was measured in 4 regions (frontal, parietal, occipital, and temporal) over the entire hemisphere using modified /sup 133/Xe clearance method in 5 patients with chronic subdural hematoma. In 5 patients, rCBF was measured both pre- and postoperation and those values were compared. CBF (average cerebral blood flow) measurements were compared. CBF measurements were carried out in each patients respectively, that is before the operation and 3 weeks after the operation. Before the operation, the presence of chronic subdural hematoma, but brought about only slight or moderate generalized decrease in rCBF. The older patients presented subnormal values of 31.5 - 45.1 ml/100 g/min. Mean f sub(g) (the flow in the grey matter) of 5 patients was 66.8 +- 5.0 ml/100 g/min on the hematoma site, 58.1 +- 2.8 ml/100 g/min on the non-hematoma site before operation. Three weeks after operation mean f sub(g) was 65.5 +- 7.6 ml/100 g/min on the non-hematoma site, 64.2 +- 3.5 ml/100 g/min on the hematoma site, and CBFr of non-hematoma site was 40.2 +- 5.7 ml/100 g/min and that of hematoma site, 38.5 +- 8.8 ml/100 g/min. These figures are moderately smaller than that of the normal values. A comparison between regional flow values noted in patients of pre- and post-operation who has a removal of hematomas indicated that the flow values of non-hematoma site increased slightly 3 weeks after operation, inspite of the only slight or no improvement in neurological features. But the flow values (f sub(g), CBFr) of hematoma site decreased 3 weeks after operation. It seems that post-operative follow up of mean cerebral blood flow change might be of help in the assessment of prognosis of operation.

  15. Regional cerebral blood flow and oxygen consumption during normal human sleep

    International Nuclear Information System (INIS)

    Takahashi, Ken

    1989-01-01

    Regional cerebral blood flow (rCBF), regional oxygen extraction fraction (rCEF) and regional cerebral metabolic rate for oxygen (rCMRO 2 ) were measured using the continuous inhalation technique for 15 O with positron emission tomography (PET) during both wakefulness and sleep. Ten paid volunteers, with a mean age of 21.6 yrs., were deprived of sleep for a period of approximately 20 hours, and the experiments were performed mostly in the morning. 15 O activity of both whole blood and the plasma, pixel count of PET, total arterial blood oxygen content were used for analysis of rCBF, rOEF and rCMRO 2 . PET scannings were carried out mostly during the very light non-rapid eye movement (NREM) sleep, i.e. stage 1 and/or 2, and wakefulness. About 10 minutes after the start of continuous inhalation of 15 O gas, the 15 O activity of the brain was found to be in a steady-state condition. During this steady-state condition, PET scannings were performed for about 10 minutes. Regions of interest, square in shape and having an area of 2.8 cm 3 , were set in each cortex on PET images of a horizontal cross-section of the brain, set at 45 mm above the orbitomeatal line. The rCBF and rCMRO 2 were analysed in 5 of 10 male subjects during both wakefulness and NREM sleep, and only 3 were done during three sleep stages, including REM sleep. Levels of rCBF and rCMRO 2 were found to be decreased in NREM sleep, and the decreasing rates were calculated at 10.2% and 7.6% from the level of wakefulness, respectively. There was no significant difference in the mean value of rOEF between wakefulness and NREM sleep. There were no significant regional differences found in the rate of decrease among the frontal, temporal and occipital cortices. It was considered that the decrease of rCBF and rCMRO 2 during NREM sleep suggested a decrease of the activity levels in the cerebral functions. (author)

  16. Cerebral blood flow in temporal lobe epilepsy: a partial volume correction study

    International Nuclear Information System (INIS)

    Giovacchini, Giampiero; Bonwetsch, Robert; Theodore, William H.; Herscovitch, Peter; Carson, Richard E.

    2007-01-01

    Previous studies in temporal lobe epilepsy (TLE) have shown that, owing to brain atrophy, positron emission tomography (PET) can overestimate deficits in measures of cerebral function such as glucose metabolism (CMR glu ) and neuroreceptor binding. The magnitude of this effect on cerebral blood flow (CBF) is unexplored. The aim of this study was to assess CBF deficits in TLE before and after magnetic resonance imaging-based partial volume correction (PVC). Absolute values of CBF for 21 TLE patients and nine controls were computed before and after PVC. In TLE patients, quantitative CMR glu measurements also were obtained. Before PVC, regional values of CBF were significantly (p glu in middle and inferior temporal cortex, fusiform gyrus and hippocampus both before and after PVC. A significant positive relationship between disease duration and AIs for CMR glu , but not CBF, was detected in hippocampus and amygdala, before but not after PVC. PVC should be used for PET CBF measurements in patients with TLE. Reduced blood flow, in contrast to glucose metabolism, is mainly due to structural changes. (orig.)

  17. Hemoglobin, hematocrit, and changes in cerebral blood flow : The Second Manifestations of ARTerial disease-Magnetic Resonance study

    NARCIS (Netherlands)

    van der Veen, Pieternella H.; Muller, Majon; Vincken, Koen L.; Westerink, Jan; Mali, Willem P. T. M.; van der Graaf, Yolanda; Geerlings, Mirjam I.; Doevendans, PAFM

    Hemoglobin and hematocrit are important determinants of blood viscosity and arterial oxygen content and may therefore influence cerebral blood flow (CBF). We examined cross-sectional and prospective associations of hemoglobin and hematocrit with CBF in 569 patients with manifest arterial disease

  18. Elimination of extracranial blood flow during dynamic cerebral perfusion studies using diffusible and non-diffusible radioisotope

    International Nuclear Information System (INIS)

    Ahonen, A.; Koivula, A.; Kallanranta, T.; Kuikka, J.

    1981-01-01

    The extracranial blood flow seriously complicates the interpretation of dynamic cerebral studies. To eliminate this, we used a blood pressure cuff placed around the head in 50 patients with no evidence of cerebrovascular disease. The pressure in the headband was increased to 30 mmHg above the patient's systolic pressure, and the first 60 sec static scintigram was taken exactly 3 min after the injection of sup(99m)Tc-pertechnetate. A second 60 sec static scintigram was taken without pressure in the headband at 6 min after injection. After correction for diffusion of tracer into extravascular compartments we could still show 13% reduction in counting rates over the hemispheric regions and 30% over the convexity regions during application of the pressure headband. With the Xenon method, the application of the headband appears to have insignificant influence on the results of cerebral perfusion. We thus recommend that a headband should be used for dynamic sup(99m)Tc-isotope cerebral circulation studies. (author)

  19. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Cermik, Tevfik F.; Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N.; Ugur-Altun, Betuel

    2007-01-01

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 ± 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 ± 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  20. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Cermik, Tevfik F. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Trakya Universitesi Hastanesi, Nukleer Tip Anabilim Dali, Gullapoglu Yerleskesi, Edirne (Turkey); Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Ugur-Altun, Betuel [Hospital of the University of Trakya, Department of Internal Medicine, Division of Endocrinology, Edirne (Turkey)

    2007-04-15

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 {+-} 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 {+-} 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  1. Regional cerebral blood flow and CSF pressures during Cushing response induced by a supratentorial expanding mass

    International Nuclear Information System (INIS)

    Schrader, H.; Zwetnow, N.N.; Moerkrid, L.

    1985-01-01

    In order to delineate the critical blood flow pattern during the Cushing response in intracranial hypertension, regional cerebral blood flow was measured with radioactive microspheres in 12 anesthetized dogs at respiratory arrest caused either by expansion of an epidural supratentorial balloon or by cisternal infusion. Regional cerebrospinal fluid pressures were recorded and the local cerebral perfusion pressure calculated in various cerebrospinal compartments. In the 8 dogs of the balloon expansion group, the systemic arterial pressure was unmanipulated in 4, while it was kept at a constant low level (48 and 70 mm Hg) in 2 dogs and, in another 2 dogs, at a constant high level (150 and 160 mm Hg) induced by infusion of Aramine. At respiratory arrest, regional cerebral blood flow had a stereotyped pattern and was largely independent of the blood pressure level. In contrast, concomitant pressure gradients between the various cerebrospinal compartments varied markedly in the 3 animal groups increasing with higher arterial pressure. Flow decreased by 85-100% supratentorially and by 70-100% in the upper brain stem down to the level of the upper pons, while changes in the lower brain stem were minor, on the average 25%. When intracranial pressure was raised by cisternal infusion in 4 dogs, the supratentorial blood flow pattern at respiratory arrest was appriximately similar to the flow pattern in the balloon inflation group. However, blood flow decreased markedly (74-85%) also in the lower brain stem. The results constitute another argument in favour of the Cushing response in supratentorial expansion being caused by ischemia in the brain stem. The critical ischemic region seems to be located rostrally to the oblongate medulla, probably in the pons. (author)

  2. Regional cerebral blood flow changes associated with focal electrically administered seizure therapy (FEAST).

    Science.gov (United States)

    Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad

    2014-01-01

    Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Quantitative cerebral blood flow assessment in senile dementia of Alzheimer type and multi-infarct dementia using sup 123 I-IMP SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Hisayuki; Hanyu, Haruo; Kobayashi, Yasutaka; Uno, Masanobu; Hatano, Nobuyoshi; Shin, Kouichi; Katsunuma, Hideyo; Suzuki, Takanari; Murayama, Hiroyasu [Tokyo Medical Coll. (Japan)

    1990-06-01

    In order to compare senile dementia of Alzheimer type (SDAT) with multi-infarct dementia (MID) from the standpoint of cerebral blood flow, a study was carried out by using single photon emission CT (SPECT) with N-isopropyl-p-({sup 123}I) iodoamphetamine on 14 healthy aged subjects, 12 patients with SDAT, 8 patients with MID and 7 patients with multiple infarction (MI). The diagnosis of SDAT, MID and MI was based on a clinical history, X-ray CT findings and Hachinski's ischemic score. Venous blood sampling method of Matsuda et al. was used as quantitative cerebral blood flow measurements. The mean cerebral blood flow (mCBF) values in controls was 52.1{plus minus}5.5 ml/100 g/min, while the corresponding values in SDAT, MI and MID were 36.9{plus minus}5.0, 41.0{plus minus}6.2, and 37.7{plus minus}4.3 ml/100 g/min. The regional cerebral blood flow (rCBF) was decreased mainly at bilateral frontal lobes in MID and at temporal and parietal lobes in SDAT. Verbal intelligence score (Hasegawa's dementia score) correlated with rCBF at frontal lobes in MID. These findings suggest that quantitative rCBF measurement by {sup 123}I-IMP SPECT is useful to differentiate MID from SDAT. (author).

  4. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    International Nuclear Information System (INIS)

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P.

    1991-01-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 [11-2-[[2-[diethylaminomethyl]- 1-piperidinyl]acetyl]-5,11-dihydro-6H- pyrido[2,3-b][1,4]benzodiazepine-6-one], hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of [3H]quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of [3H]-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated

  5. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    International Nuclear Information System (INIS)

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.; Homan, R.W.

    1983-01-01

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flow interictally

  6. Effects of smoking on regional cerebral blood flow in cerebral vascular disease patients and normal subjects

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Yamaguchi, Tatsuo; Fujiwara, Takehiko; Matsuzawa, Taiju

    1987-01-01

    The chronic effect of smoking on the regional cerebral blood flow (r-CBF) was studied by 133-Xenon inhalation method and described with the Initial Slope Index (ISI). Fifty-two patients as the control group who had no abnormality neurologically or with CT scan, 32 patients with old cerebral infarction and 20 patients with old cerebral hemorrhage were introduced to the present study, and these patients were divided into smokers and non-smokers in each group. Those whose smoking index of 200 or more [(number of cigarettes/day) x (years of smoking history) ≥ 200] were designated as smokers. ISI values were decreased significantly in smokers than non-smokers in all groups. Mean ISI value of unaffected hemisphere in smokers decreased by 16 % in the infarction group and 22 % in the hemorrhage group comparing to the non-smokers', respectively. In the control group, mean ISI value of right hemisphere decreased by 15 % and left 14 % in smokers compared to the non-smokers. The r-CBF values in 44 of the 47 smokers were found to be lower than the expected age matched values in non-smokers. Serum high density lipoprotein cholesterol value in smokers was significantly lower than that in non-smokers. We demonstrated preliminarily that the smoking chronically reduced the r-CBF. Advanced atherosclerosis associated with the smoker was suggested to affect the CBF. (author)

  7. Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten

    2000-01-01

    BACKGROUND AND PURPOSE: Cerebral blood flow (CBF) autoregulation is impaired in patients with acute bacterial meningitis: this may be caused by cerebral arteriolar dilatation. We tested the hypothesis that CBF autoregulation is recovered by acute mechanical hyperventilation in 9 adult patients...... with acute bacterial meningitis. METHODS: Norepinephrine was infused to increase mean arterial pressure (MAP) 30 mm Hg from baseline. Relative changes in CBF were concomitantly recorded by transcranial Doppler ultrasonography of the middle cerebral artery, measuring mean flow velocity (V...... completely during hyperventilation. The slope of the autoregulation curve decreased during hyperventilation compared with normoventilation (Pmeningitis, indicating...

  8. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    . They showed in the acute phase (Days 1-3) very large low-flow areas, larger than the hypodense areas seen on the CT scan. The cerebral vasoconstrictor and vasodilator capacity was tested in the acute phase following aminophylline and acetazolamide, respectively. A preserved but reduced reactivity was seen......Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  9. Effects of felodipine, a newly developed calcium antagonist, on blood pressure, and cerebral and renal blood flow in patients with essential hypertension

    International Nuclear Information System (INIS)

    Ono, Yoshiaki; Konno, Yoshio; Shibuya, Hiroshi; Watanabe, Tsuyoshi; Mizuno, Kenji.

    1997-01-01

    Felodipine, a recently developed calcium channel antagonist, was administered twice daily (10 mg/day) for 1 month to 5 patients with mild to moderate essential hypertension. Its antihypertensive effect, as well as its effect on cerebral and renal blood flow, was investigated. After 1 month of therapy, sitting systolic and diastolic blood pressure were significantly decreased. The antihypertensive effect was well tolerated and sustained during the administration period. Total cerebral blood flow, as assessed by 99m Tc-hexamethyl-propyleneamine oxime, increased to 46.8±6.4 ml/100 g/min from a pretreatment level of 43.6±6.4 ml/100 g/min (P 99m Tc-diethylenetriamine pentaacetic acid, unchanged: 70.2±19.9 ml/ min before and 71.8±13.6 ml/min after. Blood viscosity and the number of blood platelet tended to decrease during treatment. There were essentially no significant changes in biochemical parameters, and no severe side effects were encountered during the administration. These results not only confirmed the safety and usefulness of felodipine as an antihypertensive agent for the treatment of essential hypertension, but also suggested that this new calcium channel antagonist may exert beneficial effects on central as well as renal hemodynamics in essential hypertensives. (author)

  10. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  11. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio

    2010-02-01

    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  12. Cognitive profiles and regional cerebral blood flow patterns in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Bruhn, P; Schmidt, E

    1994-01-01

    Individual cognitive profiles and correlations between cognitive functions and regional cerebral blood flow (rCBF) were analyzed in 20 consecutive patients with a clinical diagnosis of probable Alzheimer's disease (AD). CBF was measured with high resolution single photon emission computed...

  13. Analysis of Regional Cerebral Blood Flow Using {sup 99m}Tc-HMPAO Brain SPECT in Senile Dementia of Alzheimer Type

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Hae; Lee, Myung Chul; Koh, Chang Soon; Roh, Jae Kyu; Woo, Chong In [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1988-03-15

    {sup 99m}Tc-HMPAO brain SPECT studies were performed in 11 patients with Alzheimer's disease, 7 patients with psychological depression and 12 normal controls. Changes of regional cerebral blood flow was semiquantitatively analyzed and the results were as follows. 1) In 11 patients with Alzheimer's disease, significant reduction of regional cerebral blood flow was found In both temporoparietal areas. 2) Relative perfusion between cerebral hemispheres was rather symmetrical in patient with Alzheimer's disease. 3) All patients with depression showed normal SPECT findings. As for conclusion, {sup 99m}Tc-HMPAO brain SPECT seemed to be a valuable method for clinical assessment and management of patients with Alzheimer's disease.

  14. Cerebral Blood Flow Autoregulation in Sepsis for the Intensivist: Why Its Monitoring May Be the Future of Individualized Care.

    Science.gov (United States)

    Goodson, Carrie M; Rosenblatt, Kathryn; Rivera-Lara, Lucia; Nyquist, Paul; Hogue, Charles W

    2018-02-01

    Cerebral blood flow (CBF) autoregulation maintains consistent blood flow across a range of blood pressures (BPs). Sepsis is a common cause of systemic hypotension and cerebral dysfunction. Guidelines for BP management in sepsis are based on historical concepts of CBF autoregulation that have now evolved with the availability of more precise technology for its measurement. In this article, we provide a narrative review of methods of monitoring CBF autoregulation, the cerebral effects of sepsis, and the current knowledge of CBF autoregulation in sepsis. Current guidelines for BP management in sepsis are based on a goal of maintaining mean arterial pressure (MAP) above the lower limit of CBF autoregulation. Bedside tools are now available to monitor CBF autoregulation continuously. These data reveal that individual BP goals determined from CBF autoregulation monitoring are more variable than previously expected. In patients undergoing cardiac surgery with cardiopulmonary bypass, for example, the lower limit of autoregulation varied between a MAP of 40 to 90 mm Hg. Studies of CBF autoregulation in sepsis suggest patients frequently manifest impaired CBF autoregulation, possibly a result of BP below the lower limit of autoregulation, particularly in early sepsis or with sepsis-associated encephalopathy. This suggests that the present consensus guidelines for BP management in sepsis may expose some patients to both cerebral hypoperfusion and cerebral hyperperfusion, potentially resulting in damage to brain parenchyma. The future use of novel techniques to study and clinically monitor CBF autoregulation could provide insight into the cerebral pathophysiology of sepsis and offer more precise treatments that may improve functional and cognitive outcomes for survivors of sepsis.

  15. WE-FG-206-05: New Arterial Spin Labeling Method for Simultaneous Estimation of Arterial Cerebral Blood Volume, Cerebral Blood Flow and Arterial Transit Time

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M; Whitlow, C; Jung, Y [Wake Forest School of Medicine, Winston-Salem, NC (United States); Liu, H [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To demonstrate the feasibility of a novel Arterial Spin Labeling (ASL) method for simultaneously measuring cerebral blood flow (CBF), arterial transit time (ATT), and arterial cerebral blood volume (aCBV) without the use of a contrast agent. Methods: A series of multi-TI ASL images were acquired from one healthy subject on a 3T Siemens Skyra, with the following parameters: PCASL labeling with variable TI [300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000] ms, labeling bolus 1400 ms when TI allows, otherwise 100 ms less than TI, TR was minimized for each TI, two sinc shaped pre-saturation pulses were applied in the imaging plane immediately before 2D EPI acquisition. 64×64×24 voxels, 5 mm slice thickness, 1 mm gap, full brain coverage, 6 averages per TI, no crusher gradients, 11 ms TE, scan time of 4:56. The perfusion weighted time-series was created for each voxel and fit to a novel model. The model has two components: 1) the traditional model developed by Buxton et al., accounting for CBF and ATT, and 2) a box car function characterizing the width of the labeling bolus, with variable timing and height in proportion to the aCBV. All three parameters were fit using a nonlinear fitting routine that constrained all parameters to be positive. The main purpose of the high-temporal resolution TI sampling for the first second of data acquisition was to precisely estimate the blood volume component for better detection of arrival time and magnitude of signal. Results: Whole brain maps of CBF, ATT, and aCBV were produced, and all three parameters maps are consistent with similar maps described in the literature. Conclusion: Simultaneous mapping of CBF, ATT, and aCBV is feasible with a clinically tractable scan time (under 5 minutes).

  16. Determination of the cerebral blood volume by computer tomography in grey and white matter

    International Nuclear Information System (INIS)

    Ladurner, G.

    1978-01-01

    Until now cerebral blood volume estimations have been made using dye dilution methods, by labelling the red cells with Cr 51 , Tc 99 , or I 131 , or using radiofluorescence or from regional cerebral blood flow. A new method of measurement of rCBV will be described which employs contrast medium and computer tomography. A scan before the intravenous introduction of contrast medium is subtracted from the scan following, using a second computer. At the same time during the scans measurements are made of the contrast medium level in the blood, the haematocrit and the capillary PCO 2 tension. From the subtraction picture which represents the density change in the vascular compartment due to the contrast medium, and knowing the plasma contrast medium level, the regional plasma volume can be calculated. Hence, taking the haematorcrit into account, the regional blood volume can be estimated. The greatest advantage of the subtraction method of measuring rCBV is that it is non-invasive. Also the three dimensional information is better and the definition more exact than in other methods making possible estimations of rCBV in definite anatomical areas so that for the first time CBV can be assessed in the basal ganglion. In addition changes in rCBV with hyperventilation can be measured. (orig./VJ) [de

  17. Cerebral blood perfusion after treatment with zolpidem and flumazenil in the baboon.

    Science.gov (United States)

    Clauss, Ralf P; Dormehl, Irene C; Kilian, Elmaré; Louw, Werner K A; Nel, Wally H; Oliver, Douglas W

    2002-01-01

    Previous studies have shown that zolpidem (CAS 82626-48-0) can lead to improved perfusion in damaged brain tissue. Zolpidem belongs to the imidazopyridine chemical class and it illicits its pharmacological action via the gamma-aminobutyric acid (GABA) receptor system through stimulation of particularly the omega 1 receptors and to a lesser extent omega 2 receptors. Previously it was reported that no cerebral blood flow effects were observed in normal baboons after treatment with zolpidem, whereas an asymmetric regional increase in cerebral blood flow was observed in a neurologically abnormal baboon. In this study, the effect of a combination of the benzodiazepine receptor antagonist flumazenil (CAS 78755-81-4) and zolpidem on brain perfusion was examined by the 99mTc-hexamethyl-propylene amine oxime (99mTc-HMPAO) split dose brain single photon emission computed tomography (SPECT). Four normal baboons and the neurologically abnormal baboon from the previous zolpidem study were examined. In the current study the asymmetric changes observed after zolpidem--only treatment in the abnormal baboon was attenuated by flumazenil intervention. A decreased brain blood flow was observed after combination treatment of zolpidem and flumazenil in the normal baboons. The involvement of the omega receptors is suggested by these results. Up- or down-regulation of omega receptors may also contribute to the observed responses in the abnormal baboon and a brain injured patient.

  18. Cerebral blood flow and oxygen consumption during ethanol withdrawal in the rat.

    Science.gov (United States)

    Hemmingsen, R; Barry, D I; Hertz, M M; Klinken, L

    1979-09-14

    The ethanol withdrawal syndrome in man and animals is characterized by signs of CNS hyperactivity although a direct measurement of a physiological variable reflecting this CNS hyperactivity has never been performed in untreated man or in animals. We induced ethanol dependence in the rat by means of intragastric intubation with a 20% w/v ethanol solution, thus keeping the animals in a state of continuous severe intoxication for 3--4 days; during the subsequent state of withdrawal characterized by tremor, rigidity, stereotyped movements and general seizures a 25% increase in cerebral oxygen consumption (CMRO2) could be measured; this increase was not due to catecholamines originating from adrenal medulla as adrenomedullectomized animals showed a similar increase in CMRO2 (28%); the withdrawing animals showed a corresponding cerebral blood flow (CBF) increase. The elevated CMRO2 and CBF could be reduced to normal by administration of a beta-adrenergic receptor blocker (propranolol 2 mg/kg i.v.), and hence the increased CMRO2 during ethanol withdrawal could be related to catecholaminergic systems in the brain, e.g. the noradrenergic locus coeruleus system which is anatomically well suited as a general activating system. This interpretation is supported by the earlier neurochemical finding of an increased cerebral noradrenaline turnover during ethanol withdrawal. The exact mechanism underlying the increased cerebral oxygen consumption during ethanol withdrawal and the effect of propranolol on cerebral function during this condition remains to be clarified.

  19. Effects of cardiopulmonary bypass on cerebral blood flow in neonates, infants, and children

    International Nuclear Information System (INIS)

    Greeley, W.J.; Ungerleider, R.M.; Kern, F.H.; Brusino, F.G.; Smith, L.R.; Reves, J.G.

    1989-01-01

    Cardiopulmonary bypass (CPB) management in neonates, infants, and children requires extensive alterations in temperature, pump flow rate, and perfusion pressure, with occasional periods of circulatory arrest. The effect of these alterations on cerebral blood flow (CBF) are unknown. This study was designed to determine the relation of temperature and mean arterial pressure to CBF during hypothermic CPB (18-32 degrees C), with and without periods of total circulatory arrest. CBF was measured before, during, and after hypothermic CPB with xenon-clearance techniques in 67 pediatric patients, aged 1 day-16 years. Patients were grouped based on different CPB techniques: group A, repair during moderate-hypothermic bypass at 25-32 degrees C; group B, repair during deep-hypothermic bypass at 18-22 degrees C; and group C, repair with total circulatory arrest at 18 degrees C. There was a significant correlation of CBF with temperature during CPB. CBF significantly decreased under hypothermic conditions in all groups compared with prebypass levels under normothermia. In groups A and B, CBF returned to baseline levels in the rewarming phase of CPB and exceeded baseline levels after bypass. In group C, no significant increase in CBF was observed during rewarming after total circulatory arrest (32 ± 12 minutes) or after weaning from CPB. During moderate-hypothermic CPB (25-32 degrees C), there was no association between CBF and mean arterial pressure. However, during deep-hypothermic CPB (18-22 degrees C), there was a association between CBF and mean arterial pressure

  20. How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns

    International Nuclear Information System (INIS)

    Doepp, Florian; Schreiber, Stephan J.; Muenster, Thomas von; Rademacher, Joerg; Valdueza, Jose M.; Klingebiel, Randolf

    2004-01-01

    The internal jugular veins are considered to be the main pathways of cerebral blood drainage. However, angiographic and anatomical studies show a wide anatomical variability and varying degrees of jugular and non-jugular venous drainage. The study systematically analyses the types and prevalence of human cerebral venous outflow patterns by ultrasound and MRI. Fifty healthy volunteers (21 females; 29 males; mean age 27±7 years) were studied by color-coded duplex sonography. Venous blood volume flow was measured in both internal jugular and vertebral veins in the supine position. Furthermore, the global arterial cerebral blood volume flow was calculated as the sum of volume flows in both internal carotid and vertebral arteries. Three types of venous drainage patterns were defined: a total jugular volume flow of more than 2/3 (type 1), between 1/3 and 2/3 (type 2) and less than 1/3 (type 3) of the global arterial blood flow. 2D TOF MR-venography was performed exemplarily in one subject with type-1 and in two subjects with type-3 drainage. Type-1 drainage was present in 36 subjects (72%), type 2 in 11 subjects (22%) and type 3 in 3 subjects (6%). In the majority of subjects in our study population, the internal jugular veins were indeed the main drainage vessels in the supine body position. However, a predominantly non-jugular drainage pattern was found in approximately 6% of subjects. (orig.)

  1. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women

    NARCIS (Netherlands)

    Georgiadis, Janniko R.; Kortekaas, Rudie; Kuipers, Rutger; Nieuwenburg, Arie; Pruim, Jan; Reinders, A. A. T. Simone; Holstege, Gert

    2006-01-01

    There is a severe lack of knowledge regarding the brain regions involved in human sexual performance in general, and female orgasm in particular. We used [(15)O]-H(2)O positron emission tomography to measure regional cerebral blood flow (rCBF) in 12 healthy women during a nonsexual resting state,

  2. Quantitative assessment of cerebral blood flow employing the Rutland method using N-isopropyl-(123I)-p-iodoamphetamine

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Kitano, Tokio.

    1992-01-01

    The purpose of this study is to evaluate clinical usefulness as the quantitative assessment of the cerebral blood flow by venous sampling supersede arterial sampling using N-isopropyl-( 123 I)-p-iodoamphetamine (IMP) and single-photon emission computed tomography. The method employed Ono's report using the Rutland method. The mean value of total cerebral blood flow by arterial sampling was 388.0±79.4 (standard deviation) ml/min, and that by venous sampling was 448.5±110.3 ml/min. The value of temporal lobe, including basal ganglia where there was no evidence of neurological, electroencephalographic, and other imaging findings was 44.0±3.8 ml/100g/min using arterial sampling and 49.7±6.0 ml/100g/min using venous sampling. (n=22, mean age 57.6) The value of cases with poor peripheral circulation varied a great deal between the arterial and venous samplings. There was a good correlation between arterial and venous samplings in 76 patients without poor peripheral circulation. In conclusion, this method is available for noninvasive quantitative assessment of the cerebral blood flow in patients without poor peripheral circulation. (author)

  3. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord

    2013-01-01

    Studies have shown decreased cerebral oxygen metabolism (CMRO(2)) and blood flow (CBF) in patients with cirrhosis with hepatic encephalopathy (HE). It remains unclear, however, whether these disturbances are associated with HE or with cirrhosis itself and how they may relate to arterial blood...... associated with HE rather than the liver disease as such. The changes in CMRO(2) and CBF could not be linked to blood ammonia concentration or CMRA....

  4. Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Zois, Nora Elisabeth; Simonsen, Mette

    Background: Positron emission tomography (PET) imaging of anaesthetised pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the kinetics of several radiotracers. However, the impact of physiological factors regulating CBF...

  5. Performance on Paced Auditory Serial Addition Test and cerebral blood flow in multiple sclerosis

    NARCIS (Netherlands)

    D'haeseleer, M.; Steen, C.; Hoogduin, J. M.; van Osch, M. J. P.; Fierens, Y.; Cambron, M.; Koch, M. W.; De Keyser, J.

    BackgroundTo assess the relationship between performance on the Paced Auditory Serial Addition Test (PASAT) and both cerebral blood flow (CBF) and axonal metabolic integrity in normal appearing white matter (NAWM) of the centrum semiovale in patients with multiple sclerosis (MS). MethodsNormal

  6. Studies on asymptomatic cerebral ischemia in coronary heart disease with special reference to evaluation of postural changes in cerebral blood flow with {sup 99m}Tc-ECD brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sinozaki, Hideko [Teikyo Univ., Tokyo (Japan). Faculty of Medicine

    2001-03-01

    Postural changes in cerebral blood flow in patients with coronary heart disease (CHD) were evaluated with SPECT to detect asymptomaic cerebral ischemia (ACI). {sup 99m}Tc-ECD was used as a tracer. We developed a new analysis system for the processing of multiple images, making it possible to avoid the spatial shift in ROIs in different positions. The severity of ACI was classified into 3 groups based on SPECT findings in the supine position: group 1 without any abnormalities in cerebral perfusion, group 2 with a single perfusion defect, and group 3 with a number of perfusion defects. No cerebral siteobserved in any group showed a significant difference between the supine and upright positions in cerebral perfusion. Each group in each position, however, revealed a consistent perfusion pattern characterized by a significant decrease in perfusion in the occipital, temporal and frontal lobes. Moreover, the decrease in the latter two sites was significantly greater than in the former site. Concerning clinical profiles, hypertension and the thickness of the intima and media complex (TIMC) of the common carotid artery significantly correlated with the severity of ACI. Furthermore, in multiple regression analysis, only TIMC was identified as a significant determinant of ACI. In conclusion, cerebral blood flow determined with {sup 99m}Tc-ECD SPECT could accurately detect ACI in patients with CHD. (author)

  7. Changes in cerebral blood flow and psychometric indicators in veterans with early forms of chronic brain ischemia

    Directory of Open Access Journals (Sweden)

    Vasilenko Т.М.

    2015-09-01

    Full Text Available The goal is to study the cerebral blood flow and psychometric characteristics in veterans of Afghanistan with early forms of chronic brain ischemia. Material and Methods. The study included 74 veterans of the Afghan war aged from 45 to 55 years: group 1, 28 people with NPNKM; Group 2-28 patients with circulatory encephalopathy stage 1; group 3-18 healthy persons. Doppler examination of cerebral vessels was carried out on the unit «Smart-lite». Reactive and personal anxiety of patients was assessed using the scale of Spielberger, evaluation of the quality of life through the test SAN. Determining the level of neuroticism and psychoticism was conducted by the scale of neuroticism and psy-choticism. Results: The study of cerebral blood flow in the Afghan war veterans showed signs of insolvency of carotid and carotid-basilar anastomoses, hypoperfusion phenomenon with the depletion of autoregulation, violation of the outflow of venous blood at the level of the microvasculature, accompanied by cerebral arteries spasm. More than 40% of patients with early forms of chronic brain ischemia had high personal anxiety, low levels of well-being and activity, with maximum expression of dyscirculatory hypoxia. Conclusion. Readaptation of veterans of Afghanistan is accompanied by the changes in psychometric performance and the formation of the earliest forms of brain chronic ischemia associated with inadequate hemodynamics providing increased functional activity of the brain and the inefficiency of compensatory-adaptive reactions.

  8. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  9. Effects of cigarette smoking on cerebral blood flow in normal adults

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Takao [Tokyo Medical Coll. (Japan)

    1997-11-01

    To elucidate the pharmacological effects of cigarette smoking on cerebral function and blood flow in normal adults, cerebral blood flow (CBF) was measured by positron emission tomography (PET) in 10 right-handed male healthy volunteers with a smoking habit after 12-hour abstinence. By the oxygen-15 intravenous injection method, quantitative CBF was measured repeatedly 6 times; during normal breathing (baseline), 5% CO{sub 2} inhalation and cigarette smoking. Sham smoking was performed during baseline and CO{sub 2} inhalation. To eliminate the effects from PaCO{sub 2}, CBF was adjusted based on the vascular reactivity to CO{sub 2} and PaCO{sub 2} during smoking. Pulse rate, systemic blood pressure and arterial nicotine level were increased during smoking. In the overall comparison, there was no significant change in the mean CBF during smoking as compared with baseline. Out of 19 sessions, CBF increased significantly in 7 sessions, while CBF decreased in 7 sessions and was unchanged in 5 sessions. The arterial concentration of nicotine correlated inversely with CBF. When the baseline CBF was relatively low, CBF increased during smoking, while it decreased when the baseline value was high. In the 3-dimensional statistical analysis of normalized CBF, a significant increase was seen in the nucleus accumbens, which is assumed to be related to the drug habits or addiction in previous studies. In the first smoking after abstinence, CBF increased in the orbitofrontal gyri, and this can be linked to reward or relaxation. By contrast, a significant decrease was observed in the occipital lobes and paracentral areas. (author)

  10. Effects of cigarette smoking on cerebral blood flow in normal adults

    International Nuclear Information System (INIS)

    Shinohara, Takao

    1997-01-01

    To elucidate the pharmacological effects of cigarette smoking on cerebral function and blood flow in normal adults, cerebral blood flow (CBF) was measured by positron emission tomography (PET) in 10 right-handed male healthy volunteers with a smoking habit after 12-hour abstinence. By the oxygen-15 intravenous injection method, quantitative CBF was measured repeatedly 6 times; during normal breathing (baseline), 5% CO 2 inhalation and cigarette smoking. Sham smoking was performed during baseline and CO 2 inhalation. To eliminate the effects from PaCO 2 , CBF was adjusted based on the vascular reactivity to CO 2 and PaCO 2 during smoking. Pulse rate, systemic blood pressure and arterial nicotine level were increased during smoking. In the overall comparison, there was no significant change in the mean CBF during smoking as compared with baseline. Out of 19 sessions, CBF increased significantly in 7 sessions, while CBF decreased in 7 sessions and was unchanged in 5 sessions. The arterial concentration of nicotine correlated inversely with CBF. When the baseline CBF was relatively low, CBF increased during smoking, while it decreased when the baseline value was high. In the 3-dimensional statistical analysis of normalized CBF, a significant increase was seen in the nucleus accumbens, which is assumed to be related to the drug habits or addiction in previous studies. In the first smoking after abstinence, CBF increased in the orbitofrontal gyri, and this can be linked to reward or relaxation. By contrast, a significant decrease was observed in the occipital lobes and paracentral areas. (author)

  11. Cerebral venous outflow and cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Clive B. Beggs

    2014-12-01

    Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.

  12. A study of acetazolamide-induced changes in cerebral blood flow using {sup 99m}Tc HMPAO SPECT in patients with cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Asenbaum, S. [Neurological Clinic, Univ. Vienna (Austria); Reinprecht, A. [Neurosurgical Clinic, Univ. Vienna (Austria); Bruecke, T. [Neurological Clinic, Univ. Vienna (Austria); Wenger, S. [Neurological Clinic, Univ. Vienna (Austria); Podreka, I. [Neurological Clinic, Univ. Vienna (Austria); Deecke, L. [Neurological Clinic, Univ. Vienna (Austria)

    1995-01-01

    For semiquantification of SPECT studies we tried to calculate cerebral {sup 99m}Tc-HMPAO uptake related to injected dose and estimated brain volume. The method was applied to SPECT investigations of 27 patients who had a least one ischaemic attack and a confirmed 80-100% stenosis of the corresponding internal carotid artery (ICA). Vascular reactivity was tested by parenteral administration of acetazolamide (AZ). Increase in HMPAO uptake after AZ was evident in both hemispheres, although the increase (AZ effect) was significantly lower in the affected hemisphere (+24% versus +28%). No interhemispheric uptake differences were seen in patients with largely normal SPECT studies, although local asymmetries in HMPAO deposition were visible. Patients with low density lesions on CT and with a well-demarcated lesion in the same location on SPECT revealed interhemispheric uptake differences, with lower uptake on the affected side. This was not due solely to alterations in the lesion, but also to reduced HMPAO uptake and AZ effect in the surrounding area. The AZ effect showed no correlation with angiographic findings, indicating no major haemodynamic influence of the ICA stenosis on cerebral hemisphere perfusion. Calculated cerebral HMPAO uptake changes after AZ administration were in good accordance with absolute cerebral blood flow measurements, and made interindividual comparisons possible. However, as changes in the area around an infarct or local reduction in vascular reserve may not be reproduced adequately by uptake calculations, visual inspection is still necessary. (orig.)

  13. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion

    NARCIS (Netherlands)

    van Hoften, Jacorina C. R.; Verhagen, Elise A.; Keating, Paul; ter Horst, Hendrik J.; Bos, Arend F.

    Objective Preterm infants often need red blood cell (RBC) transfusions. The aim of this study was to determine whether haemoglobin levels before transfusion were associated with regional cerebral tissue oxygen saturation (r(c)SO(2)) and fractional tissue oxygen extraction (FTOE) and whether RBC

  14. Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males

    DEFF Research Database (Denmark)

    Hirasawa, Ai; Kaneko, Takahito; Tanaka, Naoki

    2016-01-01

    We estimated cerebral oxygenation during handgrip exercise and a cognitive task using an algorithm that eliminates the influence of skin blood flow (SkBF) on the near-infrared spectroscopy (NIRS) signal. The algorithm involves a subtraction method to develop a correction factor for each subject. ...

  15. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  16. Regional cerebral blood flow in the patient with brain tumor

    International Nuclear Information System (INIS)

    Tsuchida, Shohei

    1993-01-01

    Regional cerebral blood flow (rCBF) was measured with xenon-enhanced CT (Xe-CT) in 21 cases of intracranial tumors (13 meningiomas, 5 gliomas, 3 metastatic brain tumors). Peritumoral edema was graded as mild, moderate or severe based on the extent of edema on CT and MRI. According to intratumoral blood flow distribution patterns, three patterns were classified as central type with relatively high blood flow at the center of the tumor, homogeneous type with an almost homogeneous blood flow distribution, and marginal type with relatively high blood flow at the periphery of the tumor. High grade astrocytoma and metastatic brain tumor showed marginal type blood flow and moderate or severe edema except in one case. Five meningiomas with severe peritumoral edema revealed marginal type blood flow and four with mild peritumoral edema showed central type blood flow, except for one case. No correlation was found between the extent of peritumoral edema and histological subtype, tumor size, location, duration of clinical history, vascularization on angiogram, and mean blood flow in the tumor. These results suggest that blood flow distribution patterns within the tumor may affect the extension of peritumoral edema. Pre- and postoperative rCBFs were evaluated with Xe-CT and IMP-SPECT in 7 cases, mean rCBF of peritumoral edema was 6.2 ml/100 g/min preoperatively, and discrepancy between rCBF on Xe-CT and that on IMP-SPECT was shown in the remote cortical region ipsilateral to the tumor. Postoperative rCBF revealed an improved blood flow in both adjacent and remote areas, suggesting that the decreased blood flow associated with brain tumors might be relieved after surgery. (author) 53 refs

  17. Transient cerebral hypoperfusion and hypertensive events during atrial fibrillation: a plausible mechanism for cognitive impairment.

    Science.gov (United States)

    Anselmino, Matteo; Scarsoglio, Stefania; Saglietto, Andrea; Gaita, Fiorenzo; Ridolfi, Luca

    2016-06-23

    Atrial fibrillation (AF) is associated with an increased risk of dementia and cognitive decline, independent of strokes. Several mechanisms have been proposed to explain this association, but altered cerebral blood flow dynamics during AF has been poorly investigated: in particular, it is unknown how AF influences hemodynamic parameters of the distal cerebral circulation, at the arteriolar and capillary level. Two coupled lumped-parameter models (systemic and cerebrovascular circulations, respectively) were here used to simulate sinus rhythm (SR) and AF. For each simulation 5000 cardiac cycles were analyzed and cerebral hemodynamic parameters were calculated. With respect to SR, AF triggered a higher variability of the cerebral hemodynamic variables which increases proceeding towards the distal circulation, reaching the maximum extent at the arteriolar and capillary levels. This variability led to critical cerebral hemodynamic events of excessive pressure or reduced blood flow: 303 hypoperfusions occurred at the arteriolar level, while 387 hypertensive events occurred at the capillary level during AF. By contrast, neither hypoperfusions nor hypertensive events occurred during SR. Thus, the impact of AF per se on cerebral hemodynamics candidates as a relevant mechanism into the genesis of AF-related cognitive impairment/dementia.

  18. Analysis of cerebral blood flow and intracranial hypertension in critical patients with non-hepatic hyperammonemia.

    Science.gov (United States)

    Larangeira, Alexandre Sanches; Tanita, Marcos Toshiyuki; Dias, Marcos Antonio; Filho, Olavo Franco Ferreira; Delfino, Vinicius Daher Alvares; Cardoso, Lucienne Tibery Queiroz; Grion, Cintia Magalhães Carvalho

    2018-05-03

    Hyperammonemia in adults is generally associated with cerebral edema, decreased cerebral metabolism, and increased cerebral blood flow. The aim of this study was to evaluate the association between non-hepatic hyperammonemia and intracranial hypertension assessed by Doppler flowmetry and measurement of the optic nerve sheath. A prospective cohort study in critically ill patients hospitalized in intensive care units of a University Hospital between March 2015 and February 2016. Clinical data and severity scores were collected and the Glasgow coma scale was recorded. Serial serum ammonia dosages were performed in all study patients. Transcranial Doppler evaluation was carried out for the first 50 consecutive results of each stratum of ammonemia: normal (<35 μmol/L), mild hyperammonemia (≥35 μmol/L and < 50 μmol/L), moderate hyperammonemia (≥50 μmol/L and < 100 μmol/L), and severe hyperammonemia (≥100 μmol/L). The measurement of the optic nerve sheath was performed at the same time as the Doppler examination if the patient scored less than 8 on the Glasgow coma scale. There was no difference in flow velocity in the cerebral arteries between patients with and without hyperammonemia. Patients with hyperammonemia presented longer ICU stay. Optic nerve sheath thickness was higher in the group with severe hyperammonemia and this group presented an association with intracranial hypertension. Higher mortality was observed in the severe hyperammonemia group. There was an association between severe hyperammonemia and signs of intracranial hypertension. No correlation was found between ammonia levels and cerebral blood flow velocity through the Doppler examination.

  19. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    Science.gov (United States)

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  20. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  1. Rat Pial Microvascular Changes During Cerebral Blood Flow Decrease and Recovery: Effects of Cyanidin Administration

    Directory of Open Access Journals (Sweden)

    Teresa Mastantuono

    2018-05-01

    Full Text Available The reactive oxygen species (ROS are known to play a major role in many pathophysiological conditions, such as ischemia and reperfusion injury. The present study was aimed to evaluate the in vivo cyanidin (anthocyanin effects on damages induced by rat pial microvascular hypoperfusion-reperfusion injury by cerebral blood flow decrease (CBFD and subsequent cerebral blood flow recovery (CBFR. In particular, the main purpose was to detect changes in ROS production after cyanidin administration. Rat pial microvasculature was investigated using fluorescence microscopy through a cranial window (closed; Strahler's method was utilized to define the geometric features of pial vessels. ROS production was investigated in vivo by 2′-7′-dichlorofluorescein-diacetate assay and neuronal damage was measured on isolated brain sections by 2,3,5-triphenyltetrazolium chloride staining. After 30 min of CBFD, induced by bilateral common carotid artery occlusion, and 60 min of CBFR, rats showed decrease of arteriolar diameter and capillary perfusion; furthermore, increase in microvascular leakage and leukocyte adhesion was observed. Conversely, cyanidin administration induced dose-related arteriolar dilation, reduction in microvascular permeability as well as leukocyte adhesion when compared to animals subjected to restriction of cerebral blood flow; moreover, capillary perfusion was protected. ROS generation increase and marked neuronal damage were detected in animals subjected to CBFD and CBFR. On the other hand, cyanidin was able to reduce ROS generation and neuronal damage. In conclusion, cyanidin treatment showed dose-related protective effects on rat pial microcirculation during CBFD and subsequent CBFR, inducing arteriolar dilation by nitric oxide release and inhibiting ROS formation, consequently preserving the blood brain barrier integrity.

  2. Cerebral pressure-flow relationship in lowlanders and natives at high altitude.

    Science.gov (United States)

    Smirl, Jonathan D; Lucas, Samuel J E; Lewis, Nia C S; duManoir, Gregory R; Dumanior, Gregory R; Smith, Kurt J; Bakker, Akke; Basnyat, Aperna S; Ainslie, Philip N

    2014-02-01

    We investigated if dynamic cerebral pressure-flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat-stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure-flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (Pflow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure-flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP.

  3. Cerebral blood flow in the occlusive cerebrovascular disease. 133Xe intravenous injection method

    Energy Technology Data Exchange (ETDEWEB)

    Kuda, Hitoshi; Mukawa, Jiro; Takara, Eiichi; Kinjo, Toshihiko; Ishikawa, Yasunari

    1988-04-01

    From December 1985 to May 1986, cerebral blood flow (CBF) was studied in 11 patients with occlusive cerebrovascular diseases confined by angiography. 133Xe (5mci) intravenous injection method designed by Kuikka and coworkers was applied for the measurement of regional-CBF and mean-CBF, and the calculation was based on the initial slope index. They were composed of 4 patients of the middle cerebral artery occlusion, 2 of the posterior cerebral artery occlusion, 1 of the internal carotid artery occlusion, 2 of the middle cerebral artery stenosis, 1 of the internal carotid artery stenosis, and 1 of the anterior cerebral artery stenosis. The period from the vascular attack to the initial CBF study was 2-29 days(mean 9.2 days). Recovery of mean-CBF was correlated with clinical and neurological improvement, and vice versa. There was no correlation between mean-CBF and neurological severity. CBF study alone is not sufficient to evaluate neuronal conditions in the occlusive disease. Additional other means, such as CT-scan, angiography and etc. should be requested for it. Intravenous 133Xe injection technique has an advantage over intracarotid injection method; less dangerous, especially in ages and capable of simultaneous measurement of bilateral hemisphere. Considering /sup c/ross talk/sup /regional-CBF of a low density area on X-ray CT-scan was equal to the one obtained by intracarotid injection method.

  4. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    Science.gov (United States)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  5. Effectiveness of treatment with donepezil hydrochloride and changes in regional cerebral blood flow in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Yoshida, Tsunetaka; Ha-Kawa, S.; Yoshimura, Masafumi; Nobuhara, Kenji; Kinoshita, Toshihiko; Sawada, Satoshi

    2007-01-01

    The objective of this study was to elucidate the relationship between the effects of donepezil hydrochloride (donepezil) and cerebral blood flow, and to evaluate the usefulness of cerebral blood flow imaging in assessing and predicting treatment effectiveness. The subjects were 29 outpatients (12 men and 17 women; age 50-82 years; mean age 69.2 years), who had received a diagnosis of Alzheimer's disease (AD). Efficacy was evaluated before donepezil administration; after 1 month, 3 months, and 6 months of drug administration; and at 1 year after completion of administration using the Japanese version of the Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog), as a measure of cognitive function. The ADAS-cog has been frequently used to evaluate cognitive function in AD patients. Patients whose ADAS-cog scores improved by 3 or more points during the observation period were classified as responders, and those with no improvement were classified as nonresponders. 123 I-iofetamine (IMP) was used for single photon emission computed tomography cerebral blood flow scintigraphy. On the basis of ADAS-cog score improvement, 22 of the 29 patients were responders (7 men and 15 women; age 50-82 years; mean age 69.0 years) and seven were nonresponders (5 men and 2 women; age 61-80 years; mean age 70.0 years). The results indicate that a difference in cerebral blood flow responsiveness after 1 month of treatment distinguishes responders from nonresponders. After 1 month, blood flow was significantly decreased in all regions of nonresponders, whereas significant increases in blood flow were seen in the anterior frontal lobe and parietal lobe of responders. At that time point, blood flow in the basal ganglion differed significantly between the two groups, indicating that this difference in responsiveness after 1 month of treatment may distinguish responders from nonresponders. In cognitive function testing, the group that exhibited a complete response showed

  6. Evaluation of regional cerebral blood flow and volume of rapidly exchangeable water in man by positron emission tomography

    International Nuclear Information System (INIS)

    Depresseux, J.C.; Cheslet, J.P.; Hodiaumont, J.

    1982-01-01

    The present investigation uses bolus inhalation of C 15 O 2 and sequential positron emission tomography of the brain in view to simultaneously evaluate regional cerebral blood flow and regional cerebral volume of rapidly exchangeable water in normal human subjects. Arguments allow to infer that the cerebral distribution volume of radiowater does vary with time during the initial period of invasion of tissue by the indicator. Implications of this variation on the validity of classical data procedures is discussed and an alternative original method is proposed [fr

  7. Measurement of cerebral blood flow by single photon emission tomography: principles and application to functional studies of the language areas

    International Nuclear Information System (INIS)

    Tran Dinh, Y.R.; Seylaz, J.

    1989-01-01

    Quantitative measurement of cerebral blood flow by single photon emission computerized tomography (SPECT) is a new technique which is particularly suitable for routine studies of cerebro-vascular diseases. SPECT can be used to examine the deep structures of the brain and cerebellum. The functional areas of the brain, which have hitherto been only accessible by clinical-anatomical methods, can be imaged by this technique, based on the correlation between cerebral blood flow and metabolism. The demonstration of preferential activation of temporal and frontal zones in the left hemisphere by active speech stimulation confirms the general principles of hemispheric lateralization of cerebral functions. In addition to this role in studying the physiology of normal subjects, the technique has practical pathological applications. Knowledge of hemispheric lateralization of spoken language should be a pre-operative test for cerebral lesion when there is a risk that surgical intervention may produce irreversible neuropsychological lesions [fr

  8. Genetic KCa3.1-deficiency produces locomotor hyperactivity and alterations in cerebral monoamine levels

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Gramsbergen, Jan Bert; Sivasaravanaparan, Mithula

    2012-01-01

    The calmodulin/calcium-activated K(+) channel KCa3.1 is expressed in red and white blood cells, epithelia and endothelia, and possibly central and peripheral neurons. However, our knowledge about its contribution to neurological functions and behavior is incomplete. Here, we investigated whether...... genetic deficiency or pharmacological activation of KCa3.1 change behavior and cerebral monoamine levels in mice....

  9. Focal ischaemia caused by instability of cerebrovascular tone during attacks of hemiplegic migraine. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1987-01-01

    During the course of hemiplegic migraine in 3 patients, changes in regional cerebral blood flow (rCBF) were recorded by the intracarotid 133Xe method and a 254 multidetector camera covering one hemisphere. The rCBF measurements were performed in conjunction with cerebral angiography. During...... the patients developed transient motor and/or sensory deficits and subsequently severe headache. No signs of arterial occlusion were found. In the over and underperfused regions blood flow fluctuated rapidly because of instability of cerebrovascular tone, defined as transient constriction of the smallest...

  10. Cerebral blood flow measured by positron emission tomography during normothermic cardiopulmonary bypass: An experimental porcine study

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Kjaergaard, Benedict; Alstrup, Aage Kristian Olsen

    2018-01-01

    emission tomography (PET) using 15O-labelled water with no pharmacological interventions to maintain the MAP. Methods: Eight pigs (69-71 kg) were connected to normothermic CPB. After 60 minutes (min) with a CPB pump flow of 60 mL/kg/min, the pigs were changed to either 35 mL/kg/min or 47.5 mL/kg/min for 60......Background: Mean arterial blood pressure (MAP) and/or pump flow during normothermic cardiopulmonary bypass (CPB) are the most important factors of cerebral perfusion. The aim of this study was to explore the influence of CPB blood flow on cerebral blood flow (CBF) measured by dynamic positron...... min and, thereafter, all the pigs returned to 60 mL/kg/min for another 60 min. The MAP was measured continuously and the CBF was measured by positron emission tomography (PET) during spontaneous circulation and at each CPB pump flow after 30 min of steady state. Results: Two pigs were excluded due...

  11. Ultrasound tagged near infrared spectroscopy does not detect hyperventilation-induced reduction in cerebral blood flow

    DEFF Research Database (Denmark)

    Lund, Anton; Secher, Niels H.; Hirasawa, Ai

    2016-01-01

    Introduction: Continuous non-invasive monitoring of cerebral blood flow (CBF) may be important during anaesthesia and several options are available. We evaluated the CerOx monitor that employs ultrasound tagged near infrared spectroscopy to estimate changes in a CBF index (CFI).Methods: Seven...... healthy males (age 21-26 years) hyperventilated and were administered phenylephrine to increase mean arterial pressure by 20-30 mmHg. Frontal lobe tissue oxygenation (ScO2) and CFI were obtained using the CerOx and mean blood flow velocity in the middle cerebral artery (MCAvmean) was determined....... Administration of phenylephrine was not associated with any changes in MCAvmean, ICAf, ECAf, ScO2, SkBF, SskinO2, or CFI.Conclusion: The CerOx was able to detect a stable CBF during administration of phenylephrine. However, during hyperventilation MCAvmean and ICAf decreased while CFI increased, likely due...

  12. Regional cerebral blood flow changes related to affective speech presentation in persistent vegetative state

    NARCIS (Netherlands)

    deJong, BM; Willemsen, ATM; Paans, AMJ

    A story told by his mother was presented on tape to a trauma patient in persistent vegetative state (PVS). During auditory presentation, measurements of regional cerebral blood flow (rCBF) were performed by means of positron emission tomography (PET). Changes in rCBF related to this stimulus

  13. Noninvasive regional cerebral blood flow measurements at pre- and post-acetazolamide test using 99mTc-ECD

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Nakano, Seigo; Tanaka, Masaaki.

    1996-01-01

    A technique for serial noninvasive cerebral blood flow measurements at pre- and post-acetazolamide (Diamox) test was newly developed using 99m Tc-ECD without blood sampling. Baseline mean cerebral blood flow (mCBF) was measured from graphical analysis of time activity curves for brain and aortic arch obtained from radionuclide angiography by injection of 370-555 MBq 99m Tc-ECD. The first SPECT study was performed immediately after intravenous administration of 1 g of Diamox, then baseline regional cerebral blood flow (rCBF) was calculated using Lassen's correction algorithm. Immediately after the stop of the first SPECT study, additional 555-740 MBq of 99m Tc-ECD was administered, thereafter the second SPECT study was started. Post-Diamox SPECT images were obtained by subtraction of the first baseline images from the second images. Using Lassen's algorithm, post-Diamox mCBF was estimated from the baseline mCBF, the baseline mean SPECT counts, and post-Diamox mean SPECT counts corrected for administered dose and imaging time. Post-Diamox rCBF was obtained from the post-Diamox mCBF and the post-Diamox mean SPECT counts using Lassen's algorithm. Coefficient variation was shown 2.7% and 3.5%: mCBF and rCBF, respectively in test-retest results in six patients without Diamox administration. Nine demented patients without vascular disorders showed significant mCBF increase of 35.7% on the average by post-Diamox. In conclusion, this simplified method is practically useful for measuring CBF at pre- and post-Diamox test within short period of time without any blood sample. (author)

  14. Regional cerebral blood flow and oxygen consumption during normal human sleep

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ken [Toho Univ., Tokyo (Japan). School of Medicine

    1989-09-01

    Regional cerebral blood flow (rCBF), regional oxygen extraction fraction (rCEF) and regional cerebral metabolic rate for oxygen (rCMRO{sub 2}) were measured using the continuous inhalation technique for {sup 15}O with positron emission tomography (PET) during both wakefulness and sleep. Ten paid volunteers, with a mean age of 21.6 yrs., were deprived of sleep for a period of approximately 20 hours, and the experiments were performed mostly in the morning. {sup 15}O activity of both whole blood and the plasma, pixel count of PET, total arterial blood oxygen content were used for analysis of rCBF, rOEF and rCMRO{sub 2}. PET scannings were carried out mostly during the very light non-rapid eye movement (NREM) sleep, i.e. stage 1 and/or 2, and wakefulness. About 10 minutes after the start of continuous inhalation of {sup 15}O gas, the {sup 15}O activity of the brain was found to be in a steady-state condition. During this steady-state condition, PET scannings were performed for about 10 minutes. Regions of interest, square in shape and having an area of 2.8 cm{sup 3}, were set in each cortex on PET images of a horizontal cross-section of the brain, set at 45 mm above the orbitomeatal line. The rCBF and rCMRO{sub 2} were analysed in 5 of 10 male subjects during both wakefulness and NREM sleep, and only 3 were done during three sleep stages, including REM sleep. Levels of rCBF and rCMRO{sub 2} were found to be decreased in NREM sleep, and the decreasing rates were calculated at 10.2% and 7.6% from the level of wakefulness, respectively. There was no significant difference in the mean value of rOEF between wakefulness and NREM sleep. There were no significant regional differences found in the rate of decrease among the frontal, temporal and occipital cortices. It was considered that the decrease of rCBF and rCMRO{sub 2} during NREM sleep suggested a decrease of the activity levels in the cerebral functions. (author).

  15. Sleep apnea termination decreases cerebral blood volume: a near-infrared spectroscopy case study

    Science.gov (United States)

    Virtanen, Jaakko; Noponen, Tommi; Salmi, Tapani; Toppila, Jussi; Meriläinen, Pekka

    2009-07-01

    Medical near-infrared spectroscopy (NIRS) can be used to estimate cerebral haemodynamic changes non-invasively. Sleep apnea is a common sleep disorder where repetitive pauses in breathing decrease the quality of sleep and exposes the individual to various health problems. We have measured oxygenated and deoxygenated haemoglobin concentration changes during apneic events in sleep from the forehead of one subject using NIRS and used principal component analysis to extract extracerebral and cortical haemodynamic changes from NIRS signals. Comparison of NIRS signals with EEG, bioimpedance, and pulse oximetry data suggests that termination of apnea leads to decreases in cerebral blood volume and flow that may be related to neurological arousal via neurovascular coupling.

  16. Scaling of cerebral blood perfusion in primates and marsupials.

    Science.gov (United States)

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates. © 2015. Published by The Company of Biologists Ltd.

  17. Evaluation and investigation of regional cerebral blood flow by 1 point arterial blood collection method using 99mTc-ECD. Intravenous injection for 4 minutes with constant speed

    International Nuclear Information System (INIS)

    Itoh, Takeo; Shibata, Kazuhiro; Sudoh, Hideaki; Tanaka, Masato; Itoh, Kenjiro; Ueno, Yasushi

    1998-01-01

    Regional cerebral blood flow (rCBF) was measured using a 99m Tc-ECD through the 4-min constant intravenous infusion/one point arterial blood sampling method, proposed by Nakagawara et al. of Nakamura Memorial Hospital, and 133Xenon ( 133 Xe)-SPECT was performed on the same subjects to investigate the reproducibility of this method. We also determined whether cerebral blood flow (CBF) could be measured on the day of blood sampling through dilution of the obtained blood because it was difficult to measure the radioactivity in the blood on the day of blood sampling by this method. More, we investigated fixation of an octanol extraction rate and the substitution of venous blood for arterial blood in this method. The results revealed that CBF measured by this method with a 99m Tc-ECD were closely correlated to those measured by 133 Xe-SPECT, indicating the reliability as a method of measuring CBF. rCBF could be measured on the day of blood sampling through appropriate dilution of the obtained arterial blood. Octanol extraction rates were almost constant, indicating possible omission of cumbersome extraction procedure by fixation. However, the substitution of venous blood for arterial blood showed no correlation under the study system examined. (author)

  18. Simultaneous and sequential hemorrhage of multiple cerebral cavernous malformations: a case report.

    Science.gov (United States)

    Louis, Nundia; Marsh, Robert

    2016-02-09

    The etiology of cerebral cavernous malformation hemorrhage is not well understood. Causative physiologic parameters preceding hemorrhagic cavernous malformation events are often not reported. We present a case of an individual with sequential simultaneous hemorrhages in multiple cerebral cavernous malformations with a new onset diagnosis of hypertension. A 42-year-old white man was admitted to our facility with worsening headache, left facial and tongue numbness, dizziness, diplopia, and elevated blood pressure. His past medical history was significant for new onset diagnosis of hypertension and chronic seasonal allergies. Serial imaging over the ensuing 8 days revealed sequential hemorrhagic lesions. He underwent suboccipital craniotomy for resection of the lesions located in the fourth ventricle and right cerebellum. One month after surgery, he had near complete resolution of his symptoms with mild residual vertigo but symptomatic chronic hypertension. Many studies have focused on genetic and inflammatory mechanisms contributing to cerebral cavernous malformation rupture, but few have reported on the potential of hemodynamic changes contributing to cerebral cavernous malformation rupture. Systemic blood pressure changes clearly have an effect on angioma pressures. When considering the histopathological features of cerebral cavernous malformation architecture, changes in arterial pressure could cause meaningful alterations in hemorrhage propensity and patterns.

  19. Cerebral blood flow of the non-affected brain in patients with malignant brain tumors as studied by SPECT

    International Nuclear Information System (INIS)

    Araki, Yuzo; Imao, Yukinori; Hirata, Toshifumi; Ando, Takashi; Sakai, Noboru; Yamada, Hiroshi

    1990-01-01

    In 40 patients (age range, 20-69 years) receiving radiation and chemotherapy for brain tumors, the mean cerebral blood flow (mCBF) in the non-affected area has been examined by single photon emission CT (SPECT) with Xe-133. Forty volunteers (age range, 25-82 years) served as controls. Although mCBF during external irradiation was transiently increased, it was significantly decreased at 3 months after beginning of external irradiation compared with that in the control group. Factors responsible for the decrease in mCBF were radiation doses, lesion volume, the degree of cerebral atrophy, and age; this was more pronounced when chemotherapy such as ACNU was combined with radiation. A decreased mCBF was independent of intraoperative radiation combined with external radiation and either local or whole brain irradiation. SPECT with Xe-133 was useful in determining minute changes in cerebral blood flow that precedes parenchymal brain damage. (N.K.)

  20. A quantitative study of cerebral blood flow in childhood using {sup 99m}Tc-ECD patlak-plot method

    Energy Technology Data Exchange (ETDEWEB)

    Yamamori, Hiroyuki; Kohira, Ryutaro; Fujita, Yukihiko [Nihon Univ., Tokyo (Japan). School of Medicine] (and others)

    2001-12-01

    Mean cerebral blood flow (mCBF) was measured by SPECT using the {sup 99m}Tc-ECD Patlak-Plot method in 54 subjects (age: 1 to 14 years). Regional cerebral blood flow (rCBF) values were obtained using Lassen's correction algorithm. The mCBF values were 52.2 ml/100 g/min in those aged 1-4 years, 49.3 ml/100 g/min in those aged 5-9 years, and 48.1 ml/100 g/min in those aged 10-14 years. There was a slight decrease with advancing age. The rCBF in the frontal region was lower than in other regions in those aged 1-4 years. The Patlak-Plot method is suitable for examination of children, because it does not require arterial blood sampling. (author)

  1. Dynamic change in cerebral microcirculation and focal cerebral metabolism in experimental subarachnoid hemorrhage in rabbits.

    Science.gov (United States)

    Song, Jin-Ning; Chen, Hu; Zhang, Ming; Zhao, Yong-Lin; Ma, Xu-Dong

    2013-03-01

    Regional cerebral blood flow (rCBF) in the cerebral metabolism and energy metabolism measurements can be used to assess blood flow of brain cells and to detect cell activity. Changes of rCBF in the cerebral microcirculation and energy metabolism were determined in an experimental model of subarachnoid hemorrhage (SAH) model in 56 large-eared Japanese rabbits about 12 to 16-month old. Laser Doppler flowmetry was used to detect the blood supply to brain cells. Internal carotid artery and vein blood samples were used for duplicate blood gas analysis to assess the energy metabolism of brain cells. Cerebral blood flow (CBF) was detected by single photon emission computed tomography (SPECT) perfusion imaging using Tc-99m ethyl cysteinate dimer (Tc-99m ECD) as an imaging reagent. The percentage of injected dose per gram of brain tissue was calculated and analyzed. There were positive correlations between the percentage of radionuclide injected per gram of brain tissue and rCBF supply and cerebral metabolic rate for oxygen (P brain cells after SAH, and also found that deterioration of energy metabolism of brain cells played a significant role in the development of SAH. There are matched reductions in CBF and metabolism. Thus, SPECT imaging could be used as a noninvasive method to detect CBF.

  2. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  3. Malaria cerebral Cerebral malaria

    Directory of Open Access Journals (Sweden)

    Carlos Hugo Zapata Zapata

    2003-03-01

    Full Text Available La malaria Cerebral (MC es la complicación más frecuente de la malaria por P. falciparum; aproximadamente el 90% de las personas que la han padecido se recuperan completamente sin secuelas neurológicas. Aún no se conoce con claridad su patogénesis pero se han postulado cuatro hipótesis o mecanismos posibles: 1 citoadherencia y secuestro de glóbulos rojos parasitados en la microvasculatura cerebral; 2 formación de rosetas y aglutinación de glóbulos rojos parasitados; 3 producción de citoquinas y activación de segundos mensajeros y, 4 apertura de la barrera hematoencefálica. Sin embargo, queda un interrogante sin resolver aún: ¿qué proceso se lleva a cabo para que el parásito, desde el espacio microvascular, pueda interferir transitoriamente con la función cerebral? Recientemente se ha utilizado el precursor de la proteína b-Amiloide como un marcador de daño neuronal en MC; este precursor será de gran ayuda en futuras investigaciones realizadas en nuestro medio que aporten información para comprender la patogénesis de la MC. Is the most common complication of P. falciparum malaria; nearly 90% of people who have suffered CM can recover without neurological problems. Currently there are four hypotheses that explain pathogenesis of CM: cytoadherence and sequestering of parasitized red blood cells to cerebral capillaries; rosette formation and parasitized red blood cells agglutination; production of cytokines and activation of second messengers and opening of the blood-brain barrier. However the main question remains to be answered; how the host-parasite interaction in the vascular space interferes transiently with cerebral function? Recently, the beta amyloid precursor peptide has been employed as marker of neural injury in CM. It is expected that the beta amyloid precursor peptide will help to understand the pathogenesis of CM in complicated patients of endemic areas of Colombia.

  4. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  5. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations.

    Science.gov (United States)

    Tymko, Michael M; Rickards, Caroline A; Skow, Rachel J; Ingram-Cotton, Nathan C; Howatt, Michael K; Day, Trevor A

    2016-09-01

    Steady-state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end-tidal carbon dioxide (PETCO2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head-up tilt (HUT; decreased central blood volume and intracranial pressure) and head-down tilt (HDT; increased central blood volume and intracranial pressure), and LBNP on cerebral blood flow (CBF) responses. We hypothesized that (a) cerebral blood velocity (CBV; an index of CBF) responses during LBNP would not change with HUT and HDT, and (b) CBV in the anterior cerebral circulation would decrease to a greater extent compared to posterior CBV during LBNP when controlling PETCO2 In 13 male participants, we measured CBV in the anterior (middle cerebral artery, MCAv) and posterior (posterior cerebral artery, PCAv) cerebral circulations using transcranial Doppler ultrasound during LBNP stress (-50 mmHg) in three body positions (45°HUT, supine, 45°HDT). PETCO2 was measured continuously and maintained at constant levels during LBNP through coached breathing. Our main findings were that (a) steady-state tilt had no effect on CBV responses during LBNP in both the MCA (P = 0.077) and PCA (P = 0.583), and (b) despite controlling for PETCO2, both the MCAv and PCAv decreased by the same magnitude during LBNP in HUT (P = 0.348), supine (P = 0.694), and HDT (P = 0.407). Here, we demonstrate that there are no differences in anterior and posterior circulations in response to LBNP in different body positions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. The effects of 'Oren-gedoku-to' and quantitative evaluation of cerebral blood flow for cerebrovascular diseases

    International Nuclear Information System (INIS)

    Ushikubo, Yukio; Sakurai, Takatoshi; Yokouchi, Tetuya

    1998-01-01

    Fifty-seven patients with sequela of cerebrovascular diseases were treated with 'Oren-gedoku-to' for 8 weeks to examine the possibilities of improvements in subjective symptom, motive deterioration, mental disorder, unusual behaviors and intellectual malfunction. These symptoms showed improvement of 41.6%, 54.2%, 75.0%, 63.0%, 21.3%, respectively. For 21 patients, amount of regional cerebral blood flow were measured with SPECT. Results showed an increase of 1.7ml/100g/min. at average. However, there was no statistical difference observed among 'improved' cases, 'slightly improved' cases and 'no change or deteriorated' cases. 'Oren-gedoku-to' worked effectively for cerebrovascular diseases with the exception of intellectual malfunction. Results of the SPECT suggest though, it is uncertain whether these improvements were brought about by the increase of cerebral blood flow. (author)

  7. Alterations of cerebral blood flow and cerebrovascular reserve in patients with chronic traumatic brain injury accompanying deteriorated intelligence

    International Nuclear Information System (INIS)

    Song, Ho Chun; Bom, Hee Seung

    2000-01-01

    The purpose of this study was to evaluate alterations of regional cerbral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunctin in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolaminde brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM '97). CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.=20

  8. Prefrontal cerebral blood volume patterns while playing video games--a near-infrared spectroscopy study.

    Science.gov (United States)

    Nagamitsu, Shinichiro; Nagano, Miki; Yamashita, Yushiro; Takashima, Sachio; Matsuishi, Toyojiro

    2006-06-01

    Video game playing is an attractive form of entertainment among school-age children. Although this activity reportedly has many adverse effects on child development, these effects remain controversial. To investigate the effect of video game playing on regional cerebral blood volume, we measured cerebral hemoglobin concentrations using near-infrared spectroscopy in 12 normal volunteers consisting of six children and six adults. A Hitachi Optical Topography system was used to measure hemoglobin changes. For all subjects, the video game Donkey Kong was played on a Game Boy device. After spectroscopic probes were positioned on the scalp near the target brain regions, the participants were asked to play the game for nine periods of 15s each, with 15-s rest intervals between these task periods. Significant increases in bilateral prefrontal total-hemoglobin concentrations were observed in four of the adults during video game playing. On the other hand, significant decreases in bilateral prefrontal total-hemoglobin concentrations were seen in two of the children. A significant positive correlation between mean oxy-hemoglobin changes in the prefrontal region and those in the bilateral motor cortex area was seen in adults. Playing video games gave rise to dynamic changes in cerebral blood volume in both age groups, while the difference in the prefrontal oxygenation patterns suggested an age-dependent utilization of different neural circuits during video game tasks.

  9. A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 iodoamphetamine with one blood sampling

    International Nuclear Information System (INIS)

    Iida, Hidehiro; Itoh, Hiroshi; Bloomfield, P.M.; Munaka, Masahiro; Higano, Shuichi; Murakami, Matsutaro; Inugami, Atsushi; Eberl, S.; Aizawa, Yasuo; Kanno, Iwao; Uemura, Kazuo

    1994-01-01

    A method has been developed to quantitate regional cerebral blood blow (rCBF) using iodine-123-labelled N-isopropyl-p-iodoamphetamine (IMP). This technique requires only two single-photon emission tomography (SPET) scans and one blood sample. Based on a two-compartment model, radioactivity concentrations in the brain for each scan time are calculated. A standard input function has been generated by combining the input functions from 12 independent studies prior to this work to avoid frequent arterial blood sampling, and one blood sample is taken at 10 min following IMP administration for calibration of the standard arterial input function. This calibration time was determined such that the integration of the first 40 min of the calibrated, combined input function agreed best with those from 12 individual input functions (the difference was 5.3% on average). This method was applied to eight subjects (two normals and six patients with cerebral infarction), and yielded rCBF values which agreed well with those obtained by a positron emission tomography H 2 15 O autoradiography method. This method was also found to provide rCBF values that were consistent with those obtained by the non-linear least squares fitting technique and those obtained by conventional microsphere model analysis. The optimum SPET scan times were found to be 40 and 180 min for the early and delayed scans, respectively. These scan times allow the use of a conventional rotating gamma camera for clinical purposes. V d values ranged between 10 and 40 ml/g depending on the pathological condition, thereby suggesting the importance of measuring V d for each ROI. In conclusion, optimization of the blood sampling time and the scanning time enabled quantitative measurement of rCBF with two SPET scans and one blood sample. (orig.)

  10. Regional cerebral blood flow in neuropediatrics

    International Nuclear Information System (INIS)

    Junik, R.

    2001-01-01

    Single photon emission computed tomography can effectively and non-invasively measure regional blood flow. Mostly used 99mTc-HMPAO is a safe brain imaging agent for pediatric applications. The radiation dose is acceptable. Knowledge of the normal rCBF pattern, including normal asymmetries and variations due to age, is necessary prerequisite for the evaluation and reporting of the results of 99mTc-HMPAO brain SPECT studies in clinical practice. The interpretation of he rCBF study in a child requires knowledge of normal brain maturation. The aim of the present review is to focus on the contribution to clinical developmental neurology of SPECT The clinical use of SPECT in developmental neurology are epilepsy, brain death, acute neurological loss including stroke, language disorders, cerebral palsy, high-risk neonates, hypertension due to renovascular disease, traumatic brain injury, migraine, anorexia nervosa, autism, Gilles de la Tourette syndrome, attention deficit disorder-hyperactivity, and monitoring therapy. Sedation is not routinely used, rather each child is evaluated. However, drug sedation is mandatory in some uncooperative children. (author)

  11. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Stock, Christopher G

    2014-01-01

    Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle...... cerebral artery velocity (MCA Vmean), arterial-venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38.......3 ± 0.1 vs. 36.8 ± 0.1°C), impaired exercise capacity (269 ± 11 vs. 336 ± 14 W), and lowered ICA and MCA Vmean by 12-23% without compromising CCA blood flow. During euhydrated incremental exercise on a separate day, however, exercise capacity and ICA, MCA Vmean and CCA dynamics were preserved. The fast...

  12. Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; St. Lawrence, Keith

    2010-02-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF). Since current non-invasive bedside methods can only indirectly assess blood flow, the goal of this research was to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (NIR) apparatus was built and its ability to accurately measure changes in optical properties was demonstrated in tissue-mimicking phantoms. The time-resolved system was combined with a bolus-tracking method for measuring CBF using the dye indocyanine green (ICG) as an intravascular flow tracer. Cerebral blood flow was measured in newborn piglets and for comparison, CBF was concurrently measured using a previously developed continuous-wave NIR method. Measurements were acquired with both techniques under three conditions: normocapnia, hypercapnia and following occlusion of the carotid arteries. Mean CBF values (N = 3) acquired with the TR-NIR system were 31.9 +/- 11.7 ml/100g/min during occlusion, 39.7 +/- 1.6 ml/100g/min at normocapnia, and 58.8 +/- 9.9 ml/100g/min at hypercapnia. Results demonstrate that the developed TR-NIR technique has the sensitivity to measure changes in CBF; however, the CBF measurements were approximately 25% lower than the values obtained with the CW-NIRS technique.

  13. Cerebral blood flow and metabolism during controlled hypotension with sodium-nitroprusside and general anaesthesia for total hip replacement a.m. Charnley

    International Nuclear Information System (INIS)

    Buenemann, L.; Jensen, K.; Thomsen, L.; Riisager, S.

    1987-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRo 2 ) were studied during hypotension induced with sodium nitroprusside (SNP) in 10 patients undergoing total hip replacement a.m. Charnley. Cerebral blood flow was measured using an injection of xenon-133 into an arm vein. The decay curve was detected by five scintillation counters placed over each hemisphere and analysed with the Novo 10a cerebrograph. Blood samples were drawn from the radial artery and the jugular venous bulb to calculate the CMRo 2 . In the gropu as a whole, there were significant decreases in mean arterial pressure and in cerebrovascular resistance. There were no significant changes, in either CBF or CMRo 2 in the gropu as a whole, but there were substantial individual differences. In conclusion, the use of SNP-induced hypotension for extracranial surgery should be used only in patients monitored closely. (author)

  14. Multi-modal assessment of neurovascular coupling during cerebral ischaemia and reperfusion using remote middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Sutherland, Brad A; Fordsmann, Jonas C; Martin, Chris

    2017-01-01

    . Male Wistar rats were subjected to remote middle cerebral artery occlusion, where a long filament was advanced intraluminally through a guide cannula in the common carotid artery. Transcallosal stimulation evoked increases in blood flow, tissue oxygenation and neuronal activity, which were diminished...... that neurovascular dysfunction was not sustained. These data show for the first time that the rat remote middle cerebral artery occlusion model coupled with transcallosal stimulation provides a novel method for continuous assessment of hyperacute neurovascular coupling changes during ischaemia and reperfusion......Hyperacute changes in cerebral blood flow during cerebral ischaemia and reperfusion are important determinants of injury. Cerebral blood flow is regulated by neurovascular coupling, and disruption of neurovascular coupling contributes to brain plasticity and repair problems. However, it is unknown...

  15. The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Su-Youn Cho

    2017-04-01

    Full Text Available Although regular Taekwondo (TKD training has been reported to be effective for improving cognitive function in children, the mechanism underlying this improvement remains unclear. The purpose of the present study was to observe changes in neuroplasticity-related growth factors in the blood, assess cerebral blood flow velocity, and verify the resulting changes in children’s cognitive function after TKD training. Thirty healthy elementary school students were randomly assigned to control (n = 15 and TKD (n = 15 groups. The TKD training was conducted for 60 min at a rating of perceived exertion (RPE of 11–15, 5 times per week, for 16 weeks. Brain-derived neurotrophic factor (BDNF, vascular endothelial growth factor (VEGF, and insulin-like growth factor-1 (IGF-1 levels were measured by blood sampling before and after the training, and the cerebral blood flow velocities (peak systolic [MCAs], end diastolic [MCAd], mean cerebral blood flow velocities [MCAm], and pulsatility index [PI] of the middle cerebral artery (MCA were measured using Doppler ultrasonography. For cognitive function assessment, Stroop Color and Word Tests (Word, Color, and Color-Word were administered along with other measurements. The serum BDNF, VEGF, and IGF-1 levels and the Color-Word test scores among the sub-factors of the Stroop Color and Word Test scores were significantly higher in the TKD group after the intervention (p < 0.05. On the other hand, no statistically significant differences were found in any factors related to cerebral blood flow velocities, or in the Word test and Color test scores (p > 0.05. Thus, 16-week TKD training did not significantly affect cerebral blood flow velocities, but the training may have been effective in increasing children’s cognitive function by inducing an increase in the levels of neuroplasticity-related growth factors.

  16. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI

    OpenAIRE

    Pinkham, Amy; Loughead, James; Ruparel, Kosha; Wu, Wen-Chau; Overton, Eve; Gur, Raquel; Gur, Ruben

    2011-01-01

    Arterial spin labeling imaging (ASL) perfusion MRI is a relatively novel technique that can allow for quantitative measurement of cerebral blood flow (CBF) by using magnetically labeled arterial blood water as an endogenous tracer. Available data on resting CBF in schizophrenia primarily comes from invasive and expensive nuclear medicine techniques that are often limited to small samples and yield mixed results. The noninvasive nature of ASL offers promise for larger-scale studies. The utilit...

  17. Regional cerebral blood flow changes in patients with internet addiction: Authors' reply.

    Science.gov (United States)

    Liu, Guobing; Shi, Hongcheng

    2016-01-01

    To the comments of Prof. Andreas Otte to our work we reply as follows: As was mentioned by Prof. Andreas Otte, our study was the first study of regional cerebral blood flow changes in patients with internet addiction. Therefore, there was not much previous, established experience to refer to. As an exploration study, it was inevitable that there were some insufficiencies. We feel great appreciation to Prof. Andreas Otte for his comments on our work, which will improve our studying quality in this field in the future. Prof. Andreas Otte inquired in his letter how the regional cerebral blood flow (rCBF) was calculated, and was scaled, relatively to the whole brain mean value or to the cerebellar mean value. All rCBF data were scaled relatively to the whole brain, in our study. As for the question in relation to the test level, the P-value of 0.05 was only used when comparing intergroup differences of baseline or clinical information of patients using SPSS, while the P-value of 0.01 was used for the statistical parametric mapping (SPM) t-test. We had tried using the test level of Pfalse-positive results. However, in order to control false-positive errors, we performed intragroup comparisons from rest to adenosine-stressed status firstly by paired t test to identify cerebral regions with obvious rCBF changes because of administration of adenosine. On the basis of these cerebral regions, we subsequently performed a two-sample t test to compare intergroup differences to identify cerebral regions with rCBF that could have attributed to internet addiction. We believed that this "twostep" statistical mode might reduce the probability of falsepositive results to some extent. As for the cluster question in relation to SPM analysis, it seems more problematic and more prone for clusterwise inference to produce false-positive results than voxelwise inference, as mentioned in the paper by Eklund et al (2016). We did not take the two-way ANOVA analysis, instead, we performed the

  18. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    Science.gov (United States)

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  19. Coupling between arterial and venous cerebral blood flow during postural change

    DEFF Research Database (Denmark)

    Ogoh, Shigehiko; Washio, Takuro; Sasaki, Hiroyuki

    2016-01-01

    In supine humans the main drainage from the brain is through the internal jugular vein (IJV) but the vertebral veins (VV) become important during orthostatic stress because the IJV is partially collapsed. To identify the effect of this shift in venous drainage from the brain on the cerebral...... blood flow (r=0.649, P=0.004) and the two flows were coupled during manipulation of the end-tidal CO2 tension (supine, r=0.551, P=0.004; seated, r=0.612, P

  20. Diabetic microangiopathy: impact of impaired cerebral vasoreactivity and delayed angiogenesis after permanent middle cerebral artery occlusion on stroke damage and cerebral repair in mice.

    Science.gov (United States)

    Poittevin, Marine; Bonnin, Philippe; Pimpie, Cynthia; Rivière, Léa; Sebrié, Catherine; Dohan, Anthony; Pocard, Marc; Charriaut-Marlangue, Christiane; Kubis, Nathalie

    2015-03-01

    Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. [Sensitivity and specificity of the cerebral blood flow reactions to acupuncture in the newborn infants presenting with hypoxic ischemic encephalopathy].

    Science.gov (United States)

    Filonenko, A V; Vasilenko, A M; Khan, M A

    2015-01-01

    To evaluate the effects of acupuncture integrated into the standard therapy, the condition of cerebral blood flow, and other syndromes associated with cerebral ischemia in the newborn infants. MATERIAL AND METHODS. A total of 131 pairs of puerperae and newborns with hypoxic ischemic encephalopathy were divided into four treatment groups. 34 children of the first group were given standard therapy (control), in the second group comprised of 33 mothers and children the standard treatment was supplemented by acupuncture, the third group included only 32 mothers given the acupuncture treatment alone, and the fourth group contained only 32 newborn infants treated by acupuncture. Each course of acupuncture treatment consisted of five sessions. Sensitivity and specificity of cerebral blood flow reactions were determined based on the results of the ROC-analysis and the area under the curve before and after the treatment. The treatment with the use of acupuncture greatly improved the cerebrospinal hemodynamics (p newborn babies. The high level of sensitivity (84.4-94.8%) associated with good specificity makes it possible to distinguish between the true positive and true negative cases. Acupuncture integrated into the treatment of "mother-baby" pairs presenting with hypoxic ischemic encephalopathy can be used to improve the initially low level of cerebral blood flow in neonates presenting with this condition.

  2. Equal contribution of increased intracranial pressure and subarachnoid blood to cerebral blood flow reduction and receptor upregulation after subarachnoid hemorrhage. Laboratory investigation

    DEFF Research Database (Denmark)

    Ansar, Saema; Edvinsson, Lars

    2009-01-01

    OBJECT: Cerebral ischemia remains the key cause of disability and death in the late phase after subarachnoid hemorrhage (SAH), and its pathogenesis is still poorly understood. The purpose of this study was to examine whether the change in intracranial pressure or the extravasated blood causes the...

  3. Cerebral blood flow in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Sugiyama, Hirotaka

    1984-01-01

    Cerebral blood flow (CBF) is usually decreased in patients with hypertensive intracerebral hemorrhage. A total of 81 regional CBF measurements were performed using an Anger-type dynamic gamma camera with the Xe-133 intracarotid injection technique in 23 patients with thalamic hemorrhage, 18 with small putaminal hemorrhage, and 5 with large putaminal hemorrhage. The results were as follows: Bilateral CBF in thalamic hemorrhages was markedly reduced from 1 week to 2 or 3 weeks after onset; it then showed a tendency to increase from 4 weeks to 3 months. In putaminal hemorrhages, however, CBF in the affected hemisphere did not tend to increase despite increased CBF in the contralateral hemisphere. CBF of the affected hemisphere was plotted against the hematoma volume, and the biphasic curve showed an initial steep and subsequent gentle slope in both putaminal and thalamic hemorrhages. The degree of CBF reduction in the affected hemisphere was more evident in thalamic than in putaminal hemorrhages. However, the flow reduction in the contralateral hemisphere was more obvious in thalamic than in putaminal hemorrhages. Factors such as mean arterial blood pressure, partial pressure of arterial carbon dioxide, cerebrospinal fluid pressure, hematocrit and the degree of involvement of the internal capsule, as shown on CT scan were not directly related to CBF reduction. In conclusion, it is unlikely that the mass effect of the hematoma plays an important role in the discrepancy between CBF reduction in putaminal and thalamic hemorrhages. Rather, the discrepancy may result from the impairment of respective anatomical sites in the thalamic and putaminal regions. It is also suggested that ipsilateral as well as contralateral CBF reduction is probably caused by the decreased cortical metabolic demand. This may be based on the disruption of the transneural fiber pathways, which connect both the thalamus and putamen to the cerebral cortex. (author)

  4. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2001-01-01

    In this review I summarize observations of PET and SPECT studies about cerebral blood flow and metabolic abnormalities in Alzheimer's disease (AD). In very early AD flow or metabolism reduces first in the posterior cingulate gyrus and precuneus. This reduction may arise from functional deafferentation caused by primary neural degeneration in the remote area of the entorhinal cortex that is the first to be pathologically affected in AD. Then medial temporal structures and parietotemporal association cortex show flow or metabolic reduction as disease processes. The reason why flow or metabolism in medial temporal structures shows delay in starting to reduce in spite of the earliest pathological affection remains to be elucidated. It is likely that anterior cingulate gyrus is functionally involved, since attention is the first non-memory domain to be affected, before deficits in language and visuospatial functions. However few reports have described involvement in the anterior cingulate gyrus. Relationship between cerebral blood flow or metabolism and apolipoprotein E (APOE) genotype has been investigated. Especially, the APOEε4 allele has been reported to increase risk and to lower onset age as a function of the inherited dose of the ε4 allele. Reduction of flow or metabolism in the posterior cingulate gyrus and precuneus has been reported even in presymptomatic nondemented subjects who were cognitively normal and had at least a single ε4 allele. On the contrary the relation of ε4 allele to the progression rate of AD has been controversial from neuroimaging approaches. PET and SPECT imaging has become to be quite useful for assessing therapeutical effects of newly introduced treatment for AD. Recent investigations observed significant regional flow increase after donepezil hydrochloride treatment. Most of these observations have been made by applying computer assisted analysis of three-dimensional stereotactic surface projection or statistical parametric mapping

  5. Cerebral blood flow and cerebrovascular reserve capacity in patients with occlusion or severe stenosis of cerebral arterial trunk

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Shinya; Tanaka, Akira; Nakayama, Yoshiya; Tomonaga, Masamichi [Fukuoka Univ., Chikushino (Japan). Chikushi Hospital

    1997-12-01

    The cerebral blood flow (CBF) and the cerebrovascular reserve capacity (CVRC) were sequentially measured using a xenon enhanced CT scan in patients with transient ischemic attack or minor stroke due to an occlusion or a severe stenosis of the cerebral arterial trunk. The patients consisted of twelve males and one female ranging from 37 to 71 years of age (53 years on average). The vascular lesion was located in the internal carotid artery (7 patients) and in the middle cerebral artery (6 patients). Eleven patients received antiplatelet drug therapy, while two other patients underwent STA-MCA anastomosis. The CBF measurements were initially done within one month after the attack and then from 6 to 24 months (12 months on average) after the first study. Only one of 13 patients demonstrated a reattack during the period of observation and the CVRC decreased to 0% from the 14% level observed prior to the reattack, although the CBF was preserved. In the other twelve patients without a reattack, the CVRC was found to improve to 29.4% from 9.9% with statistical significance, even though the CBF remained the same in the first study. This study suggests hemodynamic insult to be closely related to the decreased in the CVRC, while STA-MCA anastomosis does not for prevent hemodynamic reattack based on a decrease in the CVRC in the early stage. (author)

  6. Investigation of regional cerebral blood flow in alcoholic Korsakoff's syndrome with 123I-IMP SPECT

    International Nuclear Information System (INIS)

    Nakamura, Makoto; Nomura, Soichiro; Kato, Motoichiro; Nakazawa, Tsuneyuki.

    1995-01-01

    Regional cerebral blood flow (rCBF) was determined quantitatively by single photon emission computed tomography (SPECT) using N-isopropyl-p-[ 123 I]iodoamphetamine ( 123 I-IMP) in 6 patients with alcoholic Korsakoff's syndrome (A group). The findings were compared with concurrently available findings from 6 alcoholic patients with no evidence of cerebral disordres such as Korsakoff's syndrome and dementia (B group) and 4 healthy persons (C group). In both A and B groups, diffuse decrease in blood flow was significantly observed in the entire brain, as compared with the C group; no significant difference in the decreased blood flow existed between the A and B groups. According to the WAIS results, the patients in the A group were classified as 'typical Korsakoff's syndrome' (full IQ of 90 or more) and as 'serious Korsakoff's syndrome' (full IQ of 89 or less). rCBF in the thalamus was significantly lower in the A group of patients with typical Korsakoff's syndrome than the B group. These findings may reflect the variety of alcoholic Korsakoff's syndrome. This may also have an implication for the possible classification of several types in this syndrome. (N.K.)

  7. Frontiers in optical imaging of cerebral blood flow and metabolism.

    Science.gov (United States)

    Devor, Anna; Sakadžić, Sava; Srinivasan, Vivek J; Yaseen, Mohammad A; Nizar, Krystal; Saisan, Payam A; Tian, Peifang; Dale, Anders M; Vinogradov, Sergei A; Franceschini, Maria Angela; Boas, David A

    2012-07-01

    In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.

  8. Effect of prewarming the forearm on the measurement of regional cerebral blood flow with one-point venous sampling by autoradiography method

    International Nuclear Information System (INIS)

    Itoh, Youko H.; Kurabe, Teruhisa; Kazaoka, Yoshiaki; Ishiguchi, Tsuneo; Kawashima, Sadao

    2004-01-01

    Autoradiography (ARG) using 123 I-iodoamphetamine ( 123 I-IMP) is widely performed as an efficient method of measuring local cerebral blood flow. Recently, ARG by a single collection of venous blood has been appreciated as a simple method. In this study, we investigated the effect of warming of the site for collecting venous blood (forearm). The coefficient of correlation of the local cerebral blood flow value obtained from arterial and venous blood samples was 0.766 (p<0.05) in the group without warming (38 patients). The coefficient of correlation similarly obtained in the group with warming (53 patients) was 0.908 (p<0.05). The difference in the correlation efficient was significant (p<0.05) between the two groups. From these results it was concluded that warming the blood-collecting site decreased the difference between the arterial and venous radioactive concentrations and increased the precision of the test. (author)

  9. Cerebral extraction of N-13 ammonia: its dependence on cerebral blood flow and capillary permeability, surface area product

    International Nuclear Information System (INIS)

    Phelps, M.E.; Huang, S.C.; Kuhl, D.E.; Hoffman, E.J.; Slin, C.

    1979-01-01

    13 N-labeled ammonia was used to investigate: (1) the cerebral extraction and clearance of ammonia; (2) the mechanicsm by which capillaries accommodate changes in cerebral blood flow (CBF); and (3) its use for the measure of CBF. This was investigated by measuring the single pass extraction of 13 NH 3 in rhesus monkeys during P/sub a/CO 2 induced changes in CBF, and with dog studies using in vitro tissue counting techniques to examine 13 NH 3 extraction in gray and white matter, mixed tissue, and cerebellum during variations in CBF produced by combinations of embolization, local brain compression, and changes in P/sub a/CO 2 . The single pass extraction fraction of 13 NH 3 varied from about 70 to 20% over a CBF range of 12 to 140cc/min/100gms. Capillary permeability-surface area product (PS) estimates from this data and the dog experiments show PS increasing with CBF. The magnitude and rate of increase in PS with CBF was highest in gray matter > mixed tissue > white matter. Tissue extraction of 13 NH 3 vs CBF relationship was best described by a unidirectional transport model in which CBF increases by both recruitment of capillaries and by increases of blood velocity in open capillaries. Glutamine synthetase, which incorporates 13 NH 3 into glutamine, appears to be anatomically located in astrocytes in general and specifically in the astrocytic pericapillary end-feet that are in direct contact with gray and white matter capillaries. The net 13 NH 3 extraction subsequent to an i.v. injection increases nonlinearly with CBF. Doubling or halving basal CBF produced from 40 to 50% changes in the 13 N tissue concentrations with further increases in CBF associated with progressively smaller changes in 13 N concentrations. 13 NH 3 appears to be a good tracer for the detection of cerebral ischemia with positron tomography but exhibits a poor response at high values of CBF

  10. Assessment of cerebral blood flow by means of non-diffusible tracers

    Energy Technology Data Exchange (ETDEWEB)

    Bagni, B; Carraro, P L; Candini, G; Feggi, L M

    1985-01-01

    A program for the evaluation of cerebral blood flow based on the analysis of the time activity curves is presented. The method is based on the Meier and Zierler formula, applying the partition coefficients suggested by Lassen et al. for the corrections deriving from the use of non-diffusible indicators (Technetium-99m-DTPA). Particular attention is given to the smoothing of the time-activity curve (using Legendre's polynomials) and to the correction function for reflux. The computation procedures and their validity are discussed.

  11. Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects.

    Science.gov (United States)

    Dombrowski, Stephen M; Schenk, Soren; Leichliter, Anna; Leibson, Zack; Fukamachi, Kiyotaka; Luciano, Mark G

    2006-10-01

    Decreased cerebral blood flow (CBF) in hydrocephalus is believed to be related to increased intracranial pressure (ICP), vascular compression as the result of enlarged ventricles, or impaired metabolic activity. Little attention has been given to the relationship between cardiac function and systemic blood flow in chronic hydrocephalus (CH). Using an experimental model of chronic obstructive hydrocephalus developed in our laboratory, we investigated the relationship between the duration and severity of hydrocephalus and cardiac output (CO), CBF, myocardial tissue perfusion (MTP), and peripheral blood flow (PBF). Blood flow measures were obtained using the microsphere injection method under controlled hemodynamic conditions in experimental CH (n=23) and surgical control (n=8) canines at baseline and at 2, 4, 8, 12, and 16 weeks. Cardiac output measures were made using the Swan-Ganz thermodilution method. Intracranial compliance (ICC) via cerebrospinal fluid (CSF) bolus removal and infusion, and oxygen delivery in CSF and prefrontal cortex (PFC) were also investigated. We observed an initial surgical effect relating to 30% CO reduction and approximately 50% decrease in CBF, MTP, and PBF in both groups 2 weeks postoperatively, which recovered in control animals but continued to decline further in CH animals at 16 weeks. Cerebral blood flow, which was positively correlated with CO (P=0.028), showed no significant relationship with either CSF volume or pressure. Decreased CBF correlated with oxygen deprivation in PFC (P=0.006). Cardiac output was inversely related with ventriculomegaly (P=0.019), but did not correlate with ICP. Decreased CO corresponded to increased ICC, as measured by CSF infusion (P=0.04). Our results suggest that CH may have more of an influence on CO and CBF in the chronic stage than in the early condition, which was dominated by surgical effect. The cause of this late deterioration of cardiac function in hydrocephalus is uncertain, but may reflect

  12. Cerebral blood flow imaging by I-123 IMP and Tc-99m HM-PAO

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Koichi; Yoshikawa, Kyosan; Minoshima, Satoshi; Imaseki, Keiko; Arimizu, Noboru; Yamaura, Akira; Uematsu, Sadao

    1988-02-01

    SPECT studies with either N-isopropyl-p-(I-123)iodo- amphetamine (I-123 IMP) or Tc-99m hexamethyl propylene amine oxime (Tc-99m HM-PAO) were cuncurrently performed in 12 patients with brain disorders, comprising cerebral infarction (7), cerebral aneurysm (one), intracranial hemorrhage (3), and subdural hematoma (one). Whereas I-123 IMP was taken up gradually into the brain, the uptake of Tc-99m-HM-PAO in the brain reached the peak immediately after the iv injection, with 90% or more remaining constant by 15 min postinjection. On early SPECT images, a high uptake of I-123 IMP was observed in the lung, and the uptake of Tc-99m HM-PAO was observed as well in the soft tissue of cervical region. In all patients except for one, decreased rCBF was observed in the lesions on both I-123 and Tc-99m SPECT scans. Both of the radiopharmaceuticals were analogous in that decreased blood flow corresponded to cerebral lesions. (Namekawa, K).

  13. Findings of 99mTc-HMPAO Regional Cerebral Blood Flow SPECT in a Case of Herpes Simplex Encephalitis

    International Nuclear Information System (INIS)

    Ahn, Myeong Im; Lee, Sung Yong; Kim, Jong Woo; Bahk, Yong Whee

    1989-01-01

    Herpes simplex encephalitis (HSE) is one of the fulminant necrotizing, often fatal sporadic form of the encephalitis caused by herpes simplex type I virus. Characteristically, there is early and almost constant involvement of one or both temporal lobes, although there are common additional areas of involvement. Appropriate early treatment following correct diagnosis by clinical findings, CSF study, EEG and several radiological studies including angiography, radionuclide studies, CT or MRI can reduce its mortality and severity of the sequelae. We report a case of HSE diagnosed by adjuvant study of 99m Tc-HMPAO regional cerebral blood flow SPECT, which showed a marked increase in bitemporal cerebral blood flow in a 24-year-old man.

  14. Equal contribution of increased intracranial pressure and subarachnoid blood to cerebral blood flow reduction and receptor upregulation after subarachnoid hemorrhage. Laboratory investigation

    DEFF Research Database (Denmark)

    Ansar, Saema; Edvinsson, Lars

    2009-01-01

    chain reaction was used to determine the mRNA levels for ET(A), ET(B), and 5-HT(1) receptors. Regional and global cerebral blood flow (CBF) were quantified by means of an autoradiographic technique. RESULTS: Compared with the sham condition, both SAH and saline injection resulted in significantly...

  15. On the effect of dihydroergocristin-methansulfonate on human cerebral blood flow in an acute test

    International Nuclear Information System (INIS)

    Kohlmeyer, K.; Blessing, J.

    1978-01-01

    In 20 patients suffering from acute cerebrovascular diseases, cerebral trauma, cerebral atrophy and an apallic syndrome due to heart arrest, studies of regional cerebral blood flow (rCBF) were performed by means of the intracaroticial 133 xenon clearance method using 35 scintillation detectors to test the effect of dihydroegocristin-methansulfonate (DHEC) on the cerebral circulation. 0.6 mg and 0.9 mg, resp., DHEC dissolved in 200 mg levulose 5% were administered by a slow i.v. infusion during 20 min. Taking into consideration both the administered dosage of DHEC and the clinical diagnoses of the material, the results are the following: 0.6 mg DHEC lead to a significant increase of mean hemispheric flow in the average of 10 patients. On the other hand, 0.9 mg DHEC does not effect a significant change of mean hemispheric flow in the average of 10 patients. The highest increase of mean hemispheric flow was observed in the group of cases with cerebrovascular diseases receiving 0.6 mg DHEC. (orig./AJ) [de

  16. Posttherapeutic cerebral radionecrosis: a complication of head and neck tumor therapy

    International Nuclear Information System (INIS)

    Araoz, C.; Weems, A.M.

    1981-01-01

    Patients with treated head and neck cancer may have focal neurologic symptoms and personality changes due to delayed cerebral radionecrosis. A history of past treatment should direct the physician to consider these lesions in the differential diagnosis. Craniotomy is the management recommended. Histopathologic changes include fibrotic response of the meninges with pleomorphic and vacuolated fibroblasts, capillary hyperplasia, reactive astrocytes, and fibrosis of the blood vessels. Amyloid is deposited in the arteriolar walls and extracellular space. Ischemic, autoimmune, or vascular mechanisms, and glial alterations have all been considered in the pathogensis of delayed cerebral radionecrosis. Some researchers have concluded that chemotherapeutic agents, such as methotrexate, may contribute to its production

  17. Alterations of cerebral blood flow and cerebrovascular reserve in patients with chronic traumatic brain injury accompanying deteriorated intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun; Bom, Hee Seung [Chonnam National Univ. Hospital, Kwangju (Korea, Republic of)

    2000-06-01

    The purpose of this study was to evaluate alterations of regional cerbral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunctin in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolaminde brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM '97). CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.

  18. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-03-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO/sub 2/) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO/sub 2/, and oxygen extraction fraction were measured by the positron emission tomography using /sup 15/O/sub 2/, C/sup 15/O/sub 2/ inhalation technique. In addition to reduction of CBF and CMRO/sub 2/ in the basal ganglionic region, CBF and CMRO/sub 2/ decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO/sub 2/ decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO/sub 2/ was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO/sub 2/ were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia.

  19. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent

    International Nuclear Information System (INIS)

    Spuentrup, E.; Wiethoff, A.J.; Parsons, E.C.; Spangenberg, P.; Stracke, C.P.

    2010-01-01

    Purpose: The purpose of this study was to investigate the feasibility of clot visualization in small sinus and cortical veins with contrast enhanced MRA in a cerebral venous thrombosis animal model using a blood pool contrast agent, Gadofosveset, and high spatial resolution imaging. Material and methods: For induction of cerebral venous thrombosis a recently developed combined interventional and microsurgical model was used. Cerebral sinus and cortical vein thrombosis was induced in six pigs. Two further pigs died during the procedure. Standard structural, time-of-flight- and phase contrast-angiograms were followed by fast time resolved high resolution 3D MRA (4D MRA) and subsequent high spatial resolution 3D MRA in the equilibrium phase with and without addition of parallel imaging. Visualization of the clots using the different sequences was subjectively compared and contrast-to-noise ratio (CNR) was assessed. Results: In the remaining six animals the procedure and MR-imaging protocol including administration of Gadofosveset was successfully completed. The 3D high resolution MRA in the equilibrium phase without the addition of parallel imaging was superior to all the other applied MR measurement techniques in terms of visualization of the clots. Only applying this sequence bridging vein thromboses were also seen as a small filling defect with a high CNR of >18. Conclusion: Only the non-accelerated high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset allows for high-contrast visualization of very small clots in the cerebral sinus and cortical veins. Statement clinical impact: Detection of cortical vein thrombosis is of high clinical impact. Conventional MRI sequences often fail to visualize the clot. We could demonstrate that, in contrast to conventional sequences, with high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset very small clots in the cerebral sinus and

  20. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... and hyperventilation with single-photon emission computed tomography (SPECT) (14 patients) and/or the Kety-Schmidt technique (KS) (11 patients and all controls). In KS studies, CMR was measured by multiplying the arterial to jugular venous concentration difference (a-v D) by CBF. RESULTS: CBF did not differ...

  1. UBC-Nepal expedition: markedly lower cerebral blood flow in high-altitude Sherpa children compared with children residing at sea level.

    Science.gov (United States)

    Flück, Daniela; Morris, Laura E; Niroula, Shailesh; Tallon, Christine M; Sherpa, Kami T; Stembridge, Mike; Ainslie, Philip N; McManus, Ali M

    2017-10-01

    Developmental cerebral hemodynamic adaptations to chronic high-altitude exposure, such as in the Sherpa population, are largely unknown. To examine hemodynamic adaptations in the developing human brain, we assessed common carotid (CCA), internal carotid (ICA), and vertebral artery (VA) flow and middle cerebral artery (MCA) velocity in 25 (9.6 ± 1.0 yr old, 129 ± 9 cm, 27 ± 8 kg, 14 girls) Sherpa children (3,800 m, Nepal) and 25 (9.9 ± 0.7 yr old, 143 ± 7 cm, 34 ± 6 kg, 14 girls) age-matched sea level children (344 m, Canada) during supine rest. Resting gas exchange, blood pressure, oxygen saturation and heart rate were assessed. Despite comparable age, height and weight were lower (both P sea level children. Mean arterial pressure, heart rate, and ventilation were similar, whereas oxygen saturation (95 ± 2 vs. 99 ± 1%, P sea level children. This was reflected in a lower ICA flow (283 ± 108 vs. 333 ± 56 ml/min, P = 0.05), VA flow (78 ± 26 vs. 118 ± 35 ml/min, P sea level children (425 ± 92 vs. 441 ± 81 ml/min, P = 0.52). Scaling flow and oxygen uptake for differences in vessel diameter and body size, respectively, led to the same findings. A lower cerebral blood flow in Sherpa children may reflect specific cerebral hemodynamic adaptations to chronic hypoxia. NEW & NOTEWORTHY Cerebral blood flow is lower in Sherpa children compared with children residing at sea level; this may reflect a cerebral hemodynamic pattern, potentially due to adaptation to a hypoxic environment. Copyright © 2017 the American Physiological Society.

  2. Anormalidades de fluxo sangüíneo cerebral em indivíduos dependentes de cocaína Cerebral blood flow abnormalities in cocaine dependent subjects

    Directory of Open Access Journals (Sweden)

    Sergio Nicastri

    2000-06-01

    Full Text Available INTRODUÇÃO: Nos últimos anos, tem havido relatos de anormalidades do fluxo sanguíneo cerebral em indivíduos com o abuso de cocaína, detectadas por meio de tomografia computadorizada por emissão de fóton único (SPECT. Esse padrão anormal de perfusão cerebral tem sido associado a prejuízos cognitivos mas não a alterações observáveis por meio de exames de neuroimagem estrutural. Um problema envolvendo a maioria dos trabalhos publicados sobre esse tema é a inclusão de um grande número de usuários de heroína nas amostras estudadas. Essa outra droga também parece afetar o padrão de perfusão cerebral, particularmente durante estados de abstinência. MÉTODOS: Quatorze pacientes dependentes de cocaína (nenhum com uso de opióides e 14 voluntários normais (grupo controle foram submetidos a exames de SPECT com dímero de etil-cisteína marcado com tecnécio-99m. A análise dos exames de SPECT foi realizada por meio de análise visual qualitativa das imagens obtidas (procedimento padrão na prática clínica, realizada por um radiologista não informado sobre o diagnóstico dos indivíduos avaliados. RESULTADOS: A análise visual revelou um padrão sugestivo de irregularidades do fluxo sangüíneo cerebral em nove pacientes, mas em apenas dois controles (p = 0,018; teste exato de Fisher bicaudal. CONCLUSÕES: Anormalidades de circulação cerebral podem ter relação com prejuízos cognitivos relatados em populações de dependentes de cocaína. Embora déficits de perfusão cerebral associados ao uso de cocaína possam ser irreversíveis, têm surgido relatos na literatura de tratamentos para essas anormalidades de fluxo sangüíneo. Alterações de fluxo sangüíneo cerebral associadas à dependência de cocaína ocorrem mesmo na ausência de abuso ou dependência de opióides.INTRODUCTION: In the last years, there have been reports of abnormalities in brain blood flow of cocaine abusers, detected by single photon computed

  3. Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression.

    Science.gov (United States)

    Ho, Tiffany C; Wu, Jing; Shin, David D; Liu, Thomas T; Tapert, Susan F; Yang, Guang; Connolly, Colm G; Frank, Guido K W; Max, Jeffrey E; Wolkowitz, Owen; Eisendrath, Stuart; Hoeft, Fumiko; Banerjee, Dipavo; Hood, Korey; Hendren, Robert L; Paulus, Martin P; Simmons, Alan N; Yang, Tony T

    2013-10-01

    Although substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). A total of 25 medication-naive adolescents (13-17 years of age) diagnosed with major depressive disorder (MDD) and 26 well-matched control subjects underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments, and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Differential increases in blood flow velocity in the middle cerebral artery after tourniquet deflation during sevoflurane, isoflurane or propofol anaesthesia.

    Science.gov (United States)

    Kadoi, Y; Kawauchi, C H; Ide, M; Saito, S; Mizutani, A

    2009-07-01

    The purpose of this study was to examine the comparative effects of sevoflurane, isoflurane or propofol on cerebral blood flow velocity after tourniquet deflation during orthopaedic surgery. Thirty patients undergoing elective orthopaedic surgery were randomly divided into sevoflurane, isoflurane and propofol groups. Anaesthesia was maintained with sevoflurane, isoflurane or propofol infusion in 33% oxygen and 67% nitrous oxide, in whatever concentrations were necessary to keep bispectral index values between 45 and 50. Ventilatory rate or tidal volume was adjusted to target PaCO2 of 35 mmHg. A 2.0 MHz transcranial Doppler probe was attached to the patient's head at the temporal window and mean blood flow velocity in the middle cerebral artery was continuously measured. The extremity was exsanguinated with an Esmarch bandage and the pneumatic tourniquet was inflated to a pressure of 450 mmHg. Arterial blood pressure, heart rate, velocity in the middle cerebral artery and arterial blood gas analysis were measured every minute for 10 minutes after release of the tourniquet in all three groups. Velocity in the middle cerebral artery in the three groups increased for five minutes after tourniquet deflation. Because of the different cerebrovascular effects of the three agents, the degree of increase in flow velocity in the isoflurane group was greater than in the other two groups, the change in flow velocity in the propofol group being the lowest (at three minutes after deflation 40 +/- 7%, 32 +/- 6% and 28 +/- 10% in the isoflurane, sevoflurane and propofol groups respectively, P < 0.05).

  5. Cerebral oxygen metabolism and cerebral blood flow in man during light sleep (stage 2)

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Holm, S

    1991-01-01

    . They differ in respect of arousal threshold as a stronger stimulus is required to awaken a subject from deep sleep as compared to light sleep. Our results suggest that during non-rapid eye movement sleep cerebral metabolism and thereby cerebral synaptic activity is correlated to cerebral readiness rather than...

  6. Decreased cerebral blood flow after administration of sodium bicarbonate in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Fris-Hansen, B

    1978-01-01

    with 1 to 8 meqs of sodium bicarbonate in seven distressed newborn infants. The 133 Xe clearance technique was used. The results showed in six of the seven cases a decrease in cerebral blood flow, which in most cases was reduced to 14 to 22 ml/100 g/min, which is about half the value prior...

  7. Regional cerebral blood flow in acute stage with ischemic cerebrovascular disease by xenon-133 inhalation and single photon emission computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Hiroyuki; Iino, Katsuro; Kojima, Hisashi; Saito, Hitoshi; Suzuki, Mikio; Watanabe, Kazuo; Kato, Toshiro

    1987-05-01

    Single photon emission computed tomography (SPECT) with xenon-133 inhalation method was undertaken within 48 hr after the onset in 68 patients with ischemic cerebrovascular disease. The results for regional cerebral blood flow (rCBF) were compared with concurrently available computed tomography (CT) scans. In patients with cerebral infarction, SPECT detected ischemic lesions earlier than CT, with the detectability being 92 %. The area with a decreased blood flow, as seen on SPECT, was more extensive than the low density area on CT, with a concomitant decrease in blood flow in the contralateral cerebral hemisphere. Crossed cerebellar diaschisis was associated with stenosis of the internal carotid artery in 50 % (7/14), and with stenosis of the middle cerebral artery in 35 % (9/26). Abnormal SPECT findings were seen in 47 % (8/17) of the patients with transient ischemic attack (TIA). Five TIA patients had a decreased rCBF on SPECT, which was not provided by CT scans. On the contrary, small infarct lesions in the cerebral basal ganglia, as observed in 4 patients, was not detected by SPECT, but detected by CT. This may imply the limitations of SPECT in the detection of deep-seated lesions of the cerebrum. The results led to the conclusion that SPECT can be performed safely even in acute, seriously ill patients to know changes in rCBF because it is noninvasive and is capable of being repeated in a short time. (Namekawa, K.).

  8. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    Science.gov (United States)

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  9. Effect of 4-hydroxypyrazolo (3,4-d) pyrimidine (allopurinol) on postirradiation cerebral blood flow: implications of free radical involvement

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Arroyo, C.M.; Hampton, J.D.

    1988-01-01

    In an attempt to elucidate mechanisms underlying the irradiation-induced decrease in regional cerebral blood flow (rCBF) in primates, hippocampal and hypothalamic blood flows of rhesus monkeys were measured by hydrogen clearance, before and after exposure to 100 Gy, whole body, gamma irradiation. Systemic blood pressures were monitored simultaneously. Compared to control animals, the irradiated monkeys exhibited an abrupt decline in systemic blood pressure to 35% of the preirradiation level within 10 min postirradiation, falling to 12% by 60 min. A decrease in hippocampal blood flow to 32% of the preirradiation level was noted at 10 min postirradiation, followed by a slight recovery to 43% at 30 min and a decline to 23% by 60 min. The hypothalamic blood flow of the same animals showed a steady decrease to 43% of the preirradiation levels by 60 min postirradiation. The postradiation systemic blood pressure of the allopurinol treated monkeys was not statistically different from the untreated, irradiated monkeys and was statistically different from the control monkeys. However, the treated, irradiated monkeys displayed rCBF values that were not significantly different from the nonirradiated controls. These findings suggest the involvement of free radicals in the postirradiation decrease in regional cerebral blood flow but not necessarily in the postirradiation hypotension seen in the primate

  10. Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index

    Directory of Open Access Journals (Sweden)

    Zhi-Chao Lai

    2015-01-01

    Full Text Available Background: Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA. An >100% increase in middle cerebral artery velocity (MCAV after CEA is used to predict the cerebral hyperperfusion syndrome (CHS development, but the accuracy is limited. The increase in blood pressure (BP after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Methods: Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR] were compared for predicting CHS occurrence. Results: Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%. The area under the curve (AUC of receiver operating characteristic: AUC VBI = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC VR = 0.935, 95% CI 0.890-0.966, P = 0.02. Conclusions: The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.

  11. Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index.

    Science.gov (United States)

    Lai, Zhi-Chao; Liu, Bao; Chen, Yu; Ni, Leng; Liu, Chang-Wei

    2015-06-20

    Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA). An >100% increase in middle cerebral artery velocity (MCAV) after CEA is used to predict the cerebral hyperperfusion syndrome (CHS) development, but the accuracy is limited. The increase in blood pressure (BP) after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI) was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR]) were compared for predicting CHS occurrence. Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%). The area under the curve (AUC) of receiver operating characteristic: AUC(VBI) = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC(VR) = 0.935, 95% CI 0.890-0.966, P = 0.02. The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.

  12. UBC-Nepal expedition: The use of oral antioxidants does not alter cerebrovascular function at sea level or high altitude.

    Science.gov (United States)

    Hansen, Alexander B; Hoiland, Ryan L; Lewis, Nia C S; Tymko, Michael M; Tremblay, Joshua C; Stembridge, Michael; Nowak-Flück, Daniela; Carter, Howard H; Bailey, Damian M; Ainslie, Philip N

    2018-04-01

    What is the central question of the study? Does the use of antioxidants alter cerebrovascular function and blood flow at sea level (344 m) and/or high altitude (5050 m)? What is the main finding and its importance? This is the first study to investigate whether antioxidant administration alters cerebrovascular regulation and blood flow in response to hypercapnia, acute hypoxia and chronic hypoxia in healthy humans. We demonstrate that an acute dose of antioxidants does not alter cerebrovascular function and blood flow at sea level (344 m) or after 12 days at high altitude (5050 m). Hypoxia is associated with an increase in systemic and cerebral formation of free radicals and associated reactants that may be linked to impaired cerebral vascular function and neurological sequelae. To what extent oral antioxidant prophylaxis impacts cerebrovascular function in humans throughout the course of acclimatization to the hypoxia of terrestrial high altitude has not been examined. Thus, the purpose of the present study was to examine the influence of orally ingested antioxidants at clinically relevant doses (vitamins C and E and α-lipoic acid) on cerebrovascular regulation at sea level (344 m; n = 12; female n = 2 participants) and at high altitude (5050 m; n = 9; female n = 2) in a randomized, placebo-controlled and double-blinded crossover design. Hypercapnic and hypoxic cerebrovascular reactivity tests of the internal carotid artery (ICA) were conducted at sea level, and global and regional cerebral blood flow (CBF; i.e. ICA and vertebral artery) were assessed 10-12 days after arrival at 5050 m. At sea level, acute administration of antioxidants did not alter cerebral hypoxic cerebrovascular reactivity (pre versus post: 1.5 ± 0.7 versus 1.2 ± 0.8%∆CBF/-%∆SpO2; P = 0.96) or cerebral hypercapnic cerebrovascular reactivity (pre versus post: 5.7 ± 2.0 versus 5.8 ± 1.9%∆CBF/∆mmHg; P = 0.33). Furthermore, global CBF (P = 0.43) and

  13. A longitudinal study of altered taste and smell perception and change in blood pressure.

    Science.gov (United States)

    Liu, Y-H; Huang, Z; Vaidya, A; Li, J; Curhan, G C; Wu, S; Gao, X

    2018-05-29

    Previous studies suggest that olfactory receptors, which mediate smell chemosensation, are located in the kidney and involved in blood pressure regulation. Mammalian epithelial sodium channels located in taste receptor cells are also found to participate in blood pressure regulation. However, there is currently no human study that has examined the association between taste and smell function and blood pressure. We thus conducted a longitudinal study to examine whether participants with altered taste and smell perception had larger increases in blood pressure compared with those without altered perception in a community-based cohort. The study included 5190 Chinese adults (4058 men and 1132 women) who were normotensive at baseline. Taste and smell perception were assessed via questionnaire in 2012 (baseline). Blood pressure was measured in 2012 and 2014 to determine relative change in blood pressure. Mean differences of 2-year blood pressure change and 95% confidence intervals (CIs) across four categories of taste and smell perception were calculated after adjusting for known risk factors for hypertension. After adjusting for potential confounders, individuals with altered taste and smell perception had larger increases in systolic blood pressure (adjusted mean difference = 5.1 mmHg, 95% CI: 0.1-10.0, p-value: 0.04) and mean arterial pressure (adjusted mean difference = 3.8 mmHg, 95% CI: 0.4-7.1, p-value: 0.03) after two years of follow-up compared with those having neither altered taste nor altered smell perception. No significant association was observed in individuals with altered taste or smell perception only. Our results suggest an association between chemosensory function and blood pressure. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights

  14. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  15. Regional cerebral blood flow in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Kuroda, Kiyoshi

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 36 patients with hypertensive intracerebral hemorrhage (putaminal hemorrhage) treated surgically, using the Xenon-133 intracarotid injection method. The correlations between CBF in four regions, (the hemisphere, the frontal region, the sensori-motor area and the focal area) and the duration from the operation, the conscious level, the hematoma volume and motor function were investigated. Mean cerebral blood flow (MCBF), rCBF in sensori-motor area and in the focal area showed a value below 30 ml/100g/min. for any duration after the operation within one year. However, in the frontal region rCBF tends to increase from 4 months after the operation. There was a close correlation between the conscious level and CBF, especially in the frontal region. The higher CBF was noted in the better consciousness group. In hematoma cases the larger the hematoma volume (especially those over 31 ml)the lower the CBF in all three regions. In the focal area rCBF showed the lowest value among these three regions and was dependent on the hematoma volume, while frontal region revealed the highest flow value of them all, even in cases with a hematoma volume over 81 ml. There was a significant difference in rCBF between cases with severe motor disturbance and cases with moderate motor disturbance, except in the focal area. In the frontal region rCBF coincides rather well to the degree of motor disturbance. While, rCBF in the focal area was less than 30 ml/100g/min., and showed no correlation to motor function. (J.P.N.)

  16. The baboon model under anaesthesia for in vivo cerebral blood flow studies using single photon emission computed tomographic (SPECT) techniques

    International Nuclear Information System (INIS)

    Dormehl, I.; Redelinghuys, F.; Hugo, N.; Oliver, D.; Pilloy, W.

    1992-01-01

    Single photon computed tomography of the brain can be useful in animal experimentation directed towards cerebral conditions. A well established and understood baboon model, necessarily under anaesthesia, could especially be valuable in such investigations. Six normal baboons were studied under various anesthetic agents and their combinations: ketamine, thiopentone, pentobarbitone and halothane. Cerebral blood flow (CBF) studies were performed with 99m Tc-HMPAO. CBF effects from various anaesthesia were detected, requiring careful choice of the anaesthesia for cerebral investigations. (author). 13 refs, 4 figs, 3 tabs

  17. The baboon model under anaesthesia for in vivo cerebral blood flow studies using single photon emission computed tomographic (SPECT) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I.; Redelinghuys, F.; Hugo, N. [Pretoria Univ. (South Africa); Oliver, D.; Pilloy, W. [Medical Univ. of Southern Africa (MEDUNSA), Pretoria (South Africa)

    1992-12-31

    Single photon computed tomography of the brain can be useful in animal experimentation directed towards cerebral conditions. A well established and understood baboon model, necessarily under anaesthesia, could especially be valuable in such investigations. Six normal baboons were studied under various anesthetic agents and their combinations: ketamine, thiopentone, pentobarbitone and halothane. Cerebral blood flow (CBF) studies were performed with {sup 99m}Tc-HMPAO. CBF effects from various anaesthesia were detected, requiring careful choice of the anaesthesia for cerebral investigations. (author). 13 refs, 4 figs, 3 tabs.

  18. High frequency jet ventilation and intermittent positive pressure ventilation. Effect of cerebral blood flow in patients after open heart surgery

    International Nuclear Information System (INIS)

    Pittet, J.F.; Forster, A.; Suter, P.M.

    1990-01-01

    Attenuation of ventilator-synchronous pressure fluctuations of intracranial pressure has been demonstrated during high frequency ventilation in animal and human studies, but the consequences of this effect on cerebral blood flow have not been investigated in man. We compared the effects of high frequency jet ventilation and intermittent positive pressure ventilation on CBF in 24 patients investigated three hours after completion of open-heart surgery. The patients were investigated during three consecutive periods with standard sedation (morphine, pancuronium): a. IPPV; b. HFJV; c. IPPV. Partial pressure of arterial CO 2 (PaCO 2 : 4.5-5.5 kPa) and rectal temperature (35.5 to 37.5 degree C) were maintained constant during the study. The CBF was measured by intravenous 133 Xe washout technique. The following variables were derived from the cerebral clearance of 133 Xe: the rapid compartment flow, the initial slope index, ie, a combination of the rapid and the slow compartment flows, and the ratio of fast compartment flow over total CBF (FF). Compared to IPPV, HFJV applied to result in the same mean airway pressure did not produce any change in pulmonary gas exchange, mean systemic arterial pressure, and cardiac index. Similarly, CBF was not significantly altered by HFJV. However, important variations of CBF values were observed in three patients, although the classic main determinants of CBF (PaCO 2 , cerebral perfusion pressure, Paw, temperature) remained unchanged. Our results suggest that in patients with normal systemic hemodynamics, the effects of HFJV and IPPV on CBF are comparable at identical levels of mean airway pressure

  19. Association of Lead Levels and Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Neha Bansal MD

    2017-03-01

    Full Text Available Background: Cerebral palsy is a common motor disability in childhood. Raised lead levels affect cognition. Children with cerebral palsy may have raised lead levels, further impairing their residual cognitive motor and behavioral abilities. Environmental exposure and abnormal eating habits may lead to increased lead levels. Aims and Objectives: To measure blood lead levels in children with cerebral palsy and compare them with healthy neurologically normal children. To correlate blood lead levels with environmental factors. Material and Methods: Design: Prospective case-control study. Setting: Tertiary care hospital. Participants: Cases comprised 34 children with cerebral palsy, and controls comprised 34 neurologically normal, age- and sex-matched children. Methods: Clinical and demographic details were recorded as per proforma. Detailed environmental history was recorded to know the source of exposure to lead. These children were investigated and treated as per protocol. Venous blood was collected in ethylenediaminetetraacetic acid vials for analysis of blood lead levels. Lead levels were estimated by Schimadzu Flame AA-6800 (atomic absorption spectrophotometer. Data were analyzed using SPSS version 17. P < .05 was taken as significant. Results: Mean blood lead levels were 9.20 ± 8.31 µg/dL in cerebral palsy cases and 2.89 ± 3.04 µg/dL in their controls (P < .001. Among children with cerebral palsy, 19 (55.88% children had blood lead levels ≥5 µg/dL. Lead levels in children with pica were 12.33 ± 10.02 µg/dL in comparison to children with no history of pica, 6.70 ± 4.60 µg/dL (P = .029. No correlation was found between hemoglobin and blood lead levels in cases and controls. Conclusion: In our study, blood lead levels are raised in children with cerebral palsy. However, further studies are required to show effects of raised levels in these children.

  20. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-01-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF

  1. Magnetic resonance spectroscopy and imaging in cerebral ischemia

    International Nuclear Information System (INIS)

    Rijen, P.C. van.

    1991-01-01

    In-vivo proton and phosphorus magnetic resonance spectroscopy was used to detect changes in cerebral metabolism during ischemia and other types of metabolic stress. Magnetic resonance imaging was performed in an animal model to observe morphological alterations during focal cerebral ischemia. Spectroscopy was performed in animal models with global ischemia, in volunteers during hyperventilation and pharmaco-logically altered cerebral perfusion, and in patients with acute and prolonged focal cerebral ischemia. (author). 396 refs.; 44 figs.; 14 tabs

  2. Cerebral blood flow patterns using single photon emission computed tomography in patients with dissociative disorders and healthy controls

    International Nuclear Information System (INIS)

    Shah, M.

    2010-01-01

    To compare the cerebral blood flow (CBF) changes in patients diagnosed to have Dissociative Disorder with healthy controls. This cross sectional comparative study was done at Dept of Psychiatry Military Hospital Rawalpindi in collaboration with nuclear Medical Centre (NMC), at Armed Forces Institute of Pathology (AFIP) which is a tertiary referral center. A sample of 30 patients diagnosed as having Dissociative Disorder was compared with 10 controls for brain perfusion changes using TC-99m HMPAO (Hexamethyl-propylene-amine-oxime) Tc-99m. In group 1 perfusion changes were observed in 27 (90%) cases whereas unremarkable and insignificant changes were noted in 3 (10%) cases but no perfusion were noted in controls (P<0.001) In patients who were suffering from different types of dissociative disorder marked cerebral hypo perfusion was observed in frontal, frontomotor, orbitofrontal and temporal regions whereas hyperperfusion was noted in frontal and orbitofrontal areas in few cases. Conclusion: Cerebral blood flow changes in the fronto parietal brain are associated with symptomotology in dissociative disorders. (author)

  3. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups.

    Science.gov (United States)

    Goettel, Nicolai; Patet, Camille; Rossi, Ariane; Burkhart, Christoph S; Czosnyka, Marek; Strebel, Stephan P; Steiner, Luzius A

    2016-06-01

    Autoregulation of blood flow is a key feature of the human cerebral vascular system to assure adequate oxygenation and metabolism of the brain under changing physiological conditions. The impact of advanced age and anesthesia on cerebral autoregulation remains unclear. The primary objective of this study was to determine the effect of sevoflurane anesthesia on cerebral autoregulation in two different age groups. This is a follow-up analysis of data acquired in a prospective observational cohort study. One hundred thirty-three patients aged 18-40 and ≥65 years scheduled for major noncardiac surgery under general anesthesia were included. Cerebral autoregulation indices, limits, and ranges were compared in young and elderly patient groups. Forty-nine patients (37 %) aged 18-40 years and 84 patients (63 %) aged ≥65 years were included in the study. Age-adjusted minimum alveolar concentrations of sevoflurane were 0.89 ± 0.07 in young and 0.99 ± 0.14 in older subjects (P blood pressure range of 13.8 ± 9.8 mmHg in young and 10.2 ± 8.6 mmHg in older patients (P = 0.079). The lower limit of autoregulation was 66 ± 12 mmHg and 73 ± 14 mmHg in young and older patients, respectively (P = 0.075). The association between sevoflurane concentrations and autoregulatory capacity was similar in both age groups. Our data suggests that the autoregulatory plateau is shortened in both young and older patients under sevoflurane anesthesia with approximately 1 MAC. Lower and upper limits of cerebral blood flow autoregulation, as well as the autoregulatory range, are not influenced by the age of anesthetized patients. Trial registration ClinicalTrials.gov (NCT00512200).

  4. Regional cerebral blood flow after long-term exposure to carbon disulfide

    International Nuclear Information System (INIS)

    Aaserud, O.; Russell, D.; Nyberg-Hansen, R.; Joergensen, E.B.; Gjerstad, L.; Rootwelt, K.; Nakstad, P.; Hommeren, O.J.; Tvedt, B.

    1992-01-01

    Sixteen former rayon viscose workers were investigated four years after the exposure to carbon disulfide was discontinued. Median age was 58 years (range 43-65 years), median exposure time was 17 years (range 10-35 years). Encephalopathy was diagnosed in altogether 14 workers. To further explore pathophysiological mechanisms, cerebrovascular investigations were employed. Doppler ultrasound examination of the precerebral vessels in 15 workers showed a slight stenosis of the left internal carotid artery in one. Regional cerebral blood flow investigation (rCBF) with single photon emission computerized tomography (SPECT) with Xenon-133 gas was performed in 14. There was no significant difference from a control group. Regional side-to-side asymmetries beyond reference limits were demonstrated in eight workers. The abnormalities were modest, but may indicate a tendency toward focal blood flow disturbances in workers with long-term exposure to carbon disulfide. (au)

  5. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations

    OpenAIRE

    Tymko, Michael M.; Rickards, Caroline A.; Skow, Rachel J.; Ingram?Cotton, Nathan C.; Howatt, Michael K.; Day, Trevor A.

    2016-01-01

    Abstract Steady?state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end?tidal carbon dioxide (PETCO 2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head?up tilt (HUT; decreased central blood volume and intracranial pressure) and head?down tilt (HDT; increased ce...

  6. Evidence for developmental programming of cerebral laterality in humans.

    Directory of Open Access Journals (Sweden)

    Alexander Jones

    2011-02-01

    Full Text Available Adverse fetal environments are associated with depression, reduced cognitive ability and increased stress responsiveness in later life, but underlying mechanisms are unknown. Environmental pressures on the fetus, resulting from variations in placental function and maternal nutrition, health and stress might alter neurodevelopment, promoting the development of some brain regions over others. As asymmetry of cerebral activity, with greater right hemisphere activity, has been associated with psychopathology, we hypothesized that regional specialization during fetal life might be reflected persistently in the relative activity of the cerebral hemispheres. We tested this hypothesis in 140 healthy 8-9 year-old children, using tympanic membrane temperature to assess relative blood flow to the cerebral hemispheres at rest and following psychosocial stress (Trier Social Stress Test for Children. Their birth weight and placental weight had already been measured when their mothers took part in a previous study of pregnancy outcomes. We found that children who had a smaller weight at birth had evidence of greater blood flow to the right hemisphere than to the left hemisphere (r = -.09, P = .29 at rest; r = -.18, P = .04 following stress. This finding was strengthened if the children had a relatively low birth weight for their placental weight (r = -.17, P = .05 at rest; r = -.31, P = .0005 following stress. Our findings suggest that lateralization of cerebral activity is influenced persistently by early developmental experiences, with possible consequences for long-term neurocognitive function.

  7. Cerebral blood flow SPECT scanning in cortico-basal degeneration

    International Nuclear Information System (INIS)

    Slawek, J.; Walczak, A.; Krupa-Olchawa, J.; Lass, P.; Dubaniewicz, M.

    1999-01-01

    Idiopathic Parkinson's disease accounts for ca. 75% of all cases of Parkinsonism. Corticobasal degeneration is a relatively rare example of the so-called ''Parkinson-plus'' syndrome. The authors present the case of a 56-year-old woman with rigidity and atypical tremor of upper extremity followed by gait apraxia, dysarthria, bilateral pyramidal signs and myoclonus. There was no improvement after treatment with L-dopa. The disease has progressed, but the patient is still alive. On the basis of clinical data a diagnosis of corticobasal degeneration has been established. Cerebral blood flow SPECT scanning revealed diffuse hypoperfusion of left frontal lobe, antero-inferior part of the left temporal lobe and left basal ganglia. The case illustrates the usefulness of brain SPECT in atypical forma of Parkinson's disease. (author)

  8. The effect of acetazolamide on cerebral blood volume and intracranial pressure in patients with hydrocephalus. Theoretical background of the acetazolamide challenge test

    International Nuclear Information System (INIS)

    Ogawa, Daiji

    2000-01-01

    The acetazolamide challenge test is one of the useful tests for diagnosing normal pressure hydrocephalus (NPH). It has the advantage of being less invasive than other tests. However, the manner of increment in cerebral blood volume (CBV) has not been well clarified. Therefore, the theoretical background of the test is also unclear. The aims of this study were to evaluate the effect of acetazolamide on CBV and intracranial pressure (ICP) and elucidate the theoretical background of the test. Thirteen patients with NPH were studied. CBV and ICP were measured before and after the intravenous injection of acetazolamide (1000 mg). CBV was evaluated by means of cerebral pool SPECT; ICP was evaluated by OSAKA telesensor or a pressure transducer via ventricular catheter. Immediately after the injection, CBV increased rapidly, reaching its maximum (15% increase) at 6 minutes. Then CBV gradually decreased. ICP also elevated rapidly, reaching its maximum (12.6 mmHg elevation) at 4 minutes. A gradual decrement ICP was observed, and 26 minutes after injection, the ICP became lower than the pre-injection level. The rapid increase in CBV caused the ICP elevation, and the increment ratio reflected the cerebral compliance. Therefore, we concluded that the acetazolamide challenge test is based on the alteration of cerebral compliance seen in NPH patients. The decrement ratio of ICP is affected not only by the resistance cerebrospinal fluid (CSF) absorption but also by decrease in the CBV and CSF production induced by acetazolamide. Consequently, it is difficult to evaluate the resistance of CSF absorption by this test. Because CBV increased in all cases, it is assumed that acetazolamide administration can be used to reliably load the volume. (author)

  9. Application of wavelet analysis to detect dysfunction in cerebral blood flow autoregulation during experimental hyperhomocysteinaemia.

    Science.gov (United States)

    Aleksandrin, Valery V; Ivanov, Alexander V; Virus, Edward D; Bulgakova, Polina O; Kubatiev, Aslan A

    2018-04-03

    The purpose of the present study was to investigate the use of laser Doppler flowmetry (LDF) signals coupled with spectral wavelet analysis to detect endothelial link dysfunction in the autoregulation of cerebral blood flow in the setting of hyperhomocysteinaemia (HHcy). Fifty-one rats were assigned to three groups (intact, control, and HHcy) according to the results of biochemical assays of homocysteine level in blood plasma. LDF signals on the rat brain were recorded by LAKK-02 device to measure the microcirculatory blood flow. The laser operating wavelength and output power density were1064 nm and 0.051 W/mm 2 , respectively. A Morlet mother wavelet transform was applied to the measured 8-min LDF signals, and periodic oscillations with five frequency intervals were identified (0.01-0.04 Hz, 0.04-0.15 Hz, 0.15-0.4 Hz, 0.4-2 Hz, and 2-5 Hz) corresponding to endothelial, neurogenic, myogenic, respiratory, and cardiac origins, respectively. In initial state, the amplitude of the oscillations decreased by 38% (P wavelet analysis may be successfully applied to detect the dysfunction of the endothelial link in cerebral vessel tone and to reveal the pathological shift of lower limit of autoregulation.

  10. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion

    DEFF Research Database (Denmark)

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo

    2008-01-01

    INTRODUCTION: In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires...... velocity (CBFV) was measured together with ventilatory parameters and heart rate before, during, and after immersion. RESULTS: Within seconds after immersion in ice-water, heart rate increased significantly from 95 +/- 8 to 126 +/- 7 bpm (mean +/- SEM). Immersion was associated with an elevation...

  11. [Effect of Reading a Book on a Tablet Computer on Cerebral Blood Flow in the Prefrontal Cortex].

    Science.gov (United States)

    Sugiura, Akihiro; Eto, Takuya; Kinoshita, Fumiya; Takada, Hiroki

    2018-01-01

    By measuring cerebral blood flow in the prefrontal cortex, we aimed to determine how reading a book on a tablet computer affects sleep. Seven students (7 men age range, 21-32 years) participated in this study. In a controlled illuminance environment, the subjects read a novel in printed form or on a tablet computer from any distance. As the subjects were reading, the cerebral blood flow in their prefrontal cortex was measured by near-infrared spectroscopy. The study protocol was as follows. 1) Subjects mentally counted a sequence of numbers for 30 s as a pretest to standardized thinking and then 2) read the novel for 10 min, using the printed book or tablet computer. In step 2), the use of the book or tablet computer was in a random sequence. Subjects rested between the two tasks. Significantly increased brain activity (increase in regional cerebral blood flow) was observed following reading a novel on a tablet computer compared with that after reading a printed book. Furthermore, the region around Broca's area was more active when reading on a tablet computer than when reading a printed book. Considering the results of this study and previous studies on physiological characteristics during nonrapid eye movement sleep, we concluded that reading a book on a tablet computer before the onset of sleep leads to the potential inhibition of sound sleep through mechanisms other than the suppression of melatonin secretion.

  12. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume.

    Science.gov (United States)

    Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2016-04-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P QUASAR significantly underestimated CBF by 30% (P QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Relative Abundance of Proteins in Blood Plasma Samples from Patients with Chronic Cerebral Ischemia.

    Science.gov (United States)

    Kaysheva, Anna L; Kopylov, Artur T; Ponomarenko, Elena A; Kiseleva, Olga I; Teryaeva, Nadezhda B; Potapov, Alexander A; Izotov, Alexander А; Morozov, Sergei G; Kudryavtseva, Valeria Yu; Archakov, Alexander I

    2018-03-01

    A comparative protein profile analysis of 17 blood plasma samples from patients with ischemia and 20 samples from healthy volunteers was carried out using ultra-high resolution mass spectrometry. The analysis of measurements was performed using the proteomics search engine OMSSA. Normalized spectrum abundance factor (NSAF) in the biological samples was assessed using SearchGUI. The findings of mass spectrometry analysis of the protein composition of blood plasma samples demonstrate that the depleted samples are quite similar in protein composition and relative abundance of proteins. By comparing them with the control samples, we have found a small group of 44 proteins characteristic of the blood plasma samples from patients with chronic cerebral ischemia. These proteins contribute to the processes of homeostasis maintenance, including innate immune response unfolding, the response of a body to stress, and contribution to the blood clotting cascade.

  14. Interictal "patchy" regional cerebral blood flow patterns in migraine patients. A single photon emission computerized tomographic study

    DEFF Research Database (Denmark)

    Friberg, L; Olesen, J; Iversen, Helle Klingenberg

    1994-01-01

    In 92 migraine patients and 44 healthy control subjects we recorded regional cerebral blood flow (rCBF) with single photon emission computerized tomography and (133) Xe inhalation or with i.v. (99m) Tc-HMPAO. Migraine patients were studied interictally. A quantitated analysis of right-left asymme......In 92 migraine patients and 44 healthy control subjects we recorded regional cerebral blood flow (rCBF) with single photon emission computerized tomography and (133) Xe inhalation or with i.v. (99m) Tc-HMPAO. Migraine patients were studied interictally. A quantitated analysis of right...... rCBF images is insufficient to pick up abnormalities; (2) almost 50% of the migraine sufferers had abnormal rCBF/asymmetries. However, these are discrete compared with those typically seen during the aura phase of a migraine attack. One explanation to the patchy rCBF patterns might...

  15. Random perturbations of arterial blood pressure for the assessment of dynamic cerebral autoregulation

    International Nuclear Information System (INIS)

    Katsogridakis, Emmanuel; Panerai, Ronney B; Bush, Glen; Fan, Lingke; Birch, Anthony A; Simpson, David M; Allen, Robert; Potter, John F

    2012-01-01

    The assessment of cerebral autoregulation (CA) relies mostly on methods that modulate arterial blood pressure (ABP). Despite advances, the gold standard of assessment remains elusive and clinical practicality is limited. We investigate a novel approach of assessing CA, consisting of the intermittent application of thigh cuffs using square wave sequences. Our aim was to increase ABP variability whilst minimizing volunteer discomfort, thus improving assessment acceptability. Two random square wave sequences and two maximum pressure settings (80 and 150 mmHg) were used, corresponding to four manoeuvres that were conducted in random order after a baseline recording. The intermittent application of thigh cuffs resulted in an amplitude dependent increase in ABP (p = 0.001) and cerebral blood flow velocity (CBFV) variability (p = 0.026) compared to baseline. No statistically significant differences in mean heart rate or heart rate variability were observed (p = 0.108 and p = 0.350, respectively), suggesting that no significant sympathetic response was elicited. No significant differences in the CBFV step response were observed, suggesting no distortion of autoregulatory parameters resulted from the use of thigh cuffs. We conclude that pseudorandom binary sequences are an effective and safe alternative for increasing ABP variability. This new approach shows great promise as a tool for the robust assessment of CA. (paper)

  16. Sub-Clinical Cognitive Decline and Resting Cerebral Blood Flow in Middle Aged Men.

    Directory of Open Access Journals (Sweden)

    Otto Mølby Henriksen

    Full Text Available Although dementia is associated with both global and regional cerebral blood flow (CBF changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive decline preceding overt cognitive dysfunction. The aim of this study was to investigate the association of early sub-clinical cognitive decline with CBF.The study participants were recruited from a cohort of Danish men born in 1953. Based on a regression model we selected men who performed better (Group A, n = 94 and poorer (Group B, n = 95 on cognitive testing at age 57 than expected from testing at age 20. Participants underwent supplementary cognitive testing, blood sampling and MRI including measurements of regional and global CBF.Regional CBF was lower in group B than in group A in the posterior cingulate gyrus and the precuneus. The associations were attenuated when corrected for global atrophy, but remained significant in regions of interest based analysis adjusting for regional gray matter volume and vascular risk factors. No influence of group on global CBF was observed.We conclude that early sub-clinical cognitive decline is associated with reduced perfusion in the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular risk factors, but cannot be statistically separated from an association with global atrophy.

  17. A neutral lipophilic technetium-99m complex for regional cerebral blood flow imaging

    International Nuclear Information System (INIS)

    Narra, R.K.; Nunn, A.D.; Kuczynski, B.L.; DiRocco, R.J.; Feld, T.; Silva, D.A.; Eckelman, W.C.

    1990-01-01

    Technetium-99m-DMG-2MP (Chloro[bis[2,3-butanedionedioxime(1-)-0][2,3- butanedionedioximato (2-)-N,N',N double-prime,N'double-prime,N double-prime double-prime,N'double-prime double-prime] (2-methylpropyl borato (2-))technetium]), also known as SQ 32097 is a member of a family of neutral lipophilic compounds generally known as boronic acid adducts of technetium dioxime complexes (BATOs). After i.v. administration, the concentration of [ 99m Tc]DMG-2MP in various regions of the brain appears to be proportional to blood flow. In rats, 1.1% ID was in the brain at 5 min postinjection when the blood contained less than 3% ID. Over 24 hr excretion was 59% in the feces and 23% in the urine. The activity in monkey brain at 5 min was 2.8% ID and it cleared with a t1/2 of 86 min. Autoradiographs of monkey brain sections showed excellent regional detail with a gray/white ratio of 3.6 at 10 min. The distribution of [ 99m Tc]DMG-2MP in the monkey brain corresponds to the known cytoarchitectural pattern of cerebral glucose metabolism. The properties of [ 99m Tc]DMG-2MP make it a potentially useful agent for cerebral perfusion imaging in man

  18. Local cerebral blood flow and local oxygen consumption in prolonged hemiplegic migraine

    International Nuclear Information System (INIS)

    Baron, J.C.; Lebrun-Grandie, P.; Serdaru, M.; Bousser, M.G.; Lhermitte, F.; Cabanis, E.

    1982-09-01

    This work gives the results of a study by positron emission tomography of the cerebral blood flow (CBF), oxygen-extraction rate (O 2 E) and oxygen consumption (CMRO 2 ) during severe and prolonged attack of hemiplegic migraine. The salient facts observed are a high (CBF) in the brain hemisphere affected (ruling out the hypothesis of a persistent cerebral ischemia), together with a collapsed O 2 E (''luxury perfusion'') and especially preservation of the CMRO 2 suggesting a decoupling not only between CBF and CMRO 2 but also between CMRO 2 and functional state of the tissue. Some time after the attack a new study showed the recoupling between CBF and CMRO 2 , but with the latter reduced in the affected hemisphere although the clinical and tomodensitometric state had returned to normal. These new observations should not however be improperly generalised to all migraines, given the unusual characteristics of the disorder in our patient [fr

  19. Elevation of the correlation between cerebral blood volume and permeability surface from CT perfusion images with glioma grade

    International Nuclear Information System (INIS)

    Ding Bei; Ling Huawei; Zhang Huan; Song Qi; Dong Haipeng; Chen Kemin

    2007-01-01

    Objective: To evaluate the correlation between cerebral blood volume and permeability surface by using multislice CT perfusion imaging with glioma grade. Methods: Ninteen patients with gliomas underwent conventional MR and multislice CT perfusion imaging preoperatively. These patients were divided into low grade and high grade groups which were correspond to WHO II grade gliomas and WHO III or IV grade gliomas respectively. CT data were transferred to on-line working station and processed to obtain time-signal curves, color perfusion maps and calculated perfusion parameters, including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTF) and permeability surfaces (PS) in tumoral parenchyma. Kruskal-Wallis test and correlation of CBV and PS was assessed by using SPSS 11.0 software. Results: The median of CBV and PS in low-grade and high-grade glioma were 2.7, 6.5 ml/100 g; 0.389, 12.810 ml·100 g -1 ·min -1 respectively, corresponding t value were 12.907 13.500 with P<0.05. Pearson correlations between CBV and PS were as follows: in low-grade group, r=-0.058, in high-grade group, r=0.648. Conclusion: Both CBV and PS have obvious correlation with glioma grade. The correlation between CBV and PS in low-grade glioma was weaker, probably because of the focal high vascularity in oligodendroglioma. (authors)

  20. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Directory of Open Access Journals (Sweden)

    Gonzalez-Brito Manuel

    2008-02-01

    Full Text Available Abstract Background Assessment of cerebral blood flow (CBF by SPECT could be important in the management of patients with severe traumatic brain injury (TBI because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia, or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI on cerebral blood flow (CBF by SPECT cerebral blood perfusion (CBP imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM. Results A significant area of hypoperfusion (P Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.