WorldWideScience

Sample records for altered cellular functions

  1. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture.

    Science.gov (United States)

    Stritt, Simon; Nurden, Paquita; Favier, Remi; Favier, Marie; Ferioli, Silvia; Gotru, Sanjeev K; van Eeuwijk, Judith M M; Schulze, Harald; Nurden, Alan T; Lambert, Michele P; Turro, Ernest; Burger-Stritt, Stephanie; Matsushita, Masayuki; Mittermeier, Lorenz; Ballerini, Paola; Zierler, Susanna; Laffan, Michael A; Chubanov, Vladimir; Gudermann, Thomas; Nieswandt, Bernhard; Braun, Attila

    2016-01-01

    Mg(2+) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg(2+)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7(fl/fl-Pf4Cre)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7(fl/fl-Pf4Cre) MKs, which is rescued by Mg(2+) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. PMID:27020697

  2. Microglia in the Mouse Retina Alter the Structure and Function of Retinal Pigmented Epithelial Cells: A Potential Cellular Interaction Relevant to AMD

    OpenAIRE

    Ma, Wenxin; Zhao, Lian; Fontainhas, Aurora M.; Fariss, Robert N; Wai T Wong

    2009-01-01

    Background Age-related macular degeneration (AMD) is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE) layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been ...

  3. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2011-01-01

    Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing...... are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways...

  4. Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function.

    Science.gov (United States)

    Cortés, Claudio R; McInerney-Leo, Aideen M; Vogel, Ida; Rondón Galeano, Maria C; Leo, Paul J; Harris, Jessica E; Anderson, Lisa K; Keith, Patricia A; Brown, Matthew A; Ramsing, Mette; Duncan, Emma L; Zankl, Andreas; Wicking, Carol

    2016-01-01

    Ciliopathies are a group of genetic disorders caused by defective assembly or dysfunction of the primary cilium, a microtubule-based cellular organelle that plays a key role in developmental signalling. Ciliopathies are clinically grouped in a large number of overlapping disorders, including the orofaciodigital syndromes (OFDS), the short rib polydactyly syndromes and Jeune asphyxiating thoracic dystrophy. Recently, mutations in the gene encoding the centriolar protein C2CD3 have been described in two families with a new sub-type of OFDS (OFD14), with microcephaly and cerebral malformations. Here we describe a third family with novel compound heterozygous C2CD3 mutations in two fetuses with a different clinical presentation, dominated by skeletal dysplasia with no microcephaly. Analysis of fibroblast cultures derived from one of these fetuses revealed a reduced ability to form cilia, consistent with previous studies in C2cd3-mutant mouse and chicken cells. More detailed analyses support a role for C2CD3 in basal body maturation; but in contrast to previous mouse studies the normal recruitment of the distal appendage protein CEP164 suggests that this protein is not sufficient for efficient basal body maturation and subsequent axonemal extension in a C2CD3-defective background. PMID:27094867

  5. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    Directory of Open Access Journals (Sweden)

    Hwang Jong-Hee

    2008-10-01

    Full Text Available Abstract Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap, effects on host cell protein processing (ubiquitin ligase, synapse remodeling (Complement 1q, and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease. Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of

  6. Chronic exposure to MDMA (ecstasyinduces DNA damage, impairs functional antioxidant cellular defenses, enhances the lipid peroxidation process and alters testes histopathology in male rat

    Directory of Open Access Journals (Sweden)

    Nadia Gamal Zaki, ** Laila Abdel Kawy

    2013-04-01

    Full Text Available Background : 3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy" is consumed mainly by young population. For this reason, it is especially relevant to take into consideration the effects on the reproductive system. The influence of MDMA on the fertility and reproduction of the male rat was assessed in this study. Material and methods: MDMA was administered orally at 0 mg/kg (control, 10 and 30 mg/kg to male rats for 15,30,45 consecutive days followed by 15 days withdrawal. Hormonal, biochemical, histological and testicular were evaluated in the rats. The present study aimed to investigate if daily oral administration of ecstasy at low doses(10mg for 45 days has any deleterious effects on reproductive functions of male rats. Animals were randomly divided into four groups of ten rats each, assigned as control rats, or(0mg ecstasy, rats treated with 10mg ecstasy for, (15,30,45 days, rats treated with 30mg/kg body weight ecstasy for(,15,30,45days by oral gavage. The third group(45 days was followed by 15 withdrawal period(W15. Results: The activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in testicular homogenate were decreased while the levels of lipid peroxidation increased significantly in the treated rats as compared with the corresponding group of control animals. In group 30mg, only, arachidonic acid was significantly elevated in the testicular homogenate while linoleic acid was decresed when compared to control. Testis DNA fragmentation was observed in 30mg group, but not 10.mg. It is concluded that low doses of ecstasy exposure(10 mg/Kg had moderate detrimental effects on reproductive organ system and more severe effects are likely to be observed at higher dose levels. These results indicate that ecstasy is directly toxic to primary Leydig cells, and that the decreased percentage of normal cells and the increased level of DNA damage in ecstasy -exposed Leydig cells may be responsible for

  7. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    Science.gov (United States)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  8. [Photodynamic modulation of cellular functions].

    Science.gov (United States)

    Li, Yuan; Jiang, Hong-Ning; Cui, Zong-Jie

    2016-08-25

    Photodynamic action, due to the rather limited lifetime (1 μs) and effective reactive distance of singlet oxygen (lysosomes or endoplasmic reticulum can modulate photodynamically subcellular functions and fine-tune protein activity by targeted photooxidation. With the newly emerged active illumination technique, simultaneous photodynamic action localized at multiple sites is now possible, and the contribution of subcellular regions to the whole cell or individual cells to a cell cluster could be quantitated. Photodynamic action with protein photosensitiser will be a powerful tool for nano-manipulation in cell physiology research. PMID:27546513

  9. Mapping functional connectivity in cellular networks

    OpenAIRE

    Buibas, Marius

    2011-01-01

    My thesis is a collection of theoretical and practical techniques for mapping functional or effective connectivity in cellular neuronal networks, at the cell scale. This is a challenging scale to work with, primarily because of the difficulty in labeling and measuring the activities of networks of cells. It is also important as it underlies behavior, function, and complex diseases. I present methods to measure and quantify the dynamic activities of cells using the optical flow technique, whic...

  10. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    International Nuclear Information System (INIS)

    Research highlights: → TGP52 cells display enhanced functionality in pseudoislet form. → Somatostatin content was reduced, but secretion increased in high glucose conditions. → Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  11. Dolichol alters brain membrane functions

    International Nuclear Information System (INIS)

    It has been well demonstrated that there is a direct correlation between increase in dolichol level in brain and aging. An abnormally high level of dolichol was found in brain tissue of patients with pathological aging disorders. The aim of this study is to examine the physiological significance of dolichol affecting membrane transport activity and phospholipid acyl group turnover. Dolichol added to synaptic plasma membranes resulted in a biphasic effect on (Na+, K+)-ATPase, i.e., an enhancement of activity at low concentrations (5 μg/125 mg protein) and an inhibition of activity at high concentrations (40-100 μg). To probe the membrane acyl group turnover, the incorporation of [14C]-arachidonate into plasma membrane phospholipids was examined in the presence and absence of dolichol. Dolichol elicited an increase in the incorporation of label into phospholipids. However, the effects varied depending on whether BSA is present. In the absence of BSA, the increase in labeling of phosphatidylinositols is higher than that of phosphatidylcholines. These results suggest that dolichols, when inserted into membranes, may alter membrane functions

  12. Dolichol alters brain membrane functions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.Y.; Sun, A.Y.; Schroeder, F.; Wood, G.; Strong, R.

    1986-03-05

    It has been well demonstrated that there is a direct correlation between increase in dolichol level in brain and aging. An abnormally high level of dolichol was found in brain tissue of patients with pathological aging disorders. The aim of this study is to examine the physiological significance of dolichol affecting membrane transport activity and phospholipid acyl group turnover. Dolichol added to synaptic plasma membranes resulted in a biphasic effect on (Na/sup +/, K/sup +/)-ATPase, i.e., an enhancement of activity at low concentrations (5 ..mu..g/125 mg protein) and an inhibition of activity at high concentrations (40-100 ..mu..g). To probe the membrane acyl group turnover, the incorporation of (/sup 14/C)-arachidonate into plasma membrane phospholipids was examined in the presence and absence of dolichol. Dolichol elicited an increase in the incorporation of label into phospholipids. However, the effects varied depending on whether BSA is present. In the absence of BSA, the increase in labeling of phosphatidylinositols is higher than that of phosphatidylcholines. These results suggest that dolichols, when inserted into membranes, may alter membrane functions.

  13. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  14. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    徐永忠; 谢建平; 李瑶; 乐军; 陈建平; 淳于利娟; 王洪海

    2003-01-01

    Objective To examine the global effects of Mycobacterium tuberculosis (M.tuberculosis) infection on macrophages. Methods The gene expression profiling of macrophage U937, in response to infection with M.tuberculosis H37Ra, was monitored using a high-density cDNA microarray. Results M.tuberculosis infection caused 463 differentially expressed genes, of which 366 genes are known genes registered in the Gene Bank. These genes function in various cellular processes including intracellular signalling, cytoskeletal rearrangement, apoptosis, transcriptional regulation, cell surface receptors, cell-mediated immunity as well as a variety of cellular metabolic pathways, and may play key roles in M.tuberculosis infection and intracellular survival. Conclusions M.tuberculosis infection alters the expression of host-cell genes, and these genes will provide a foundation for understanding the infection process of M.tuberculosis. The cDNA microarray is a powerful tool for studying pathogen-host cell interaction.

  15. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome.

    Science.gov (United States)

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  16. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome

    Science.gov (United States)

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W.; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  17. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Erica S. Lovelace

    2015-11-01

    Full Text Available Chronic viral infections like those caused by hepatitis C virus (HCV and human immunodeficiency virus (HIV cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA and keeping HIV viral loads below detection with antiretroviral therapy (ART, there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK and mechanistic target of rapamycin (mTOR, and these pathways directly influence cellular inflammatory status (such as NF-κB and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function.

  18. Hyperglycaemia Alters Thymic Epithelial Cell Function

    Directory of Open Access Journals (Sweden)

    Vera Alexandrovna Abramova

    2013-07-01

    Full Text Available Insulin-dependent diabetes mellitus (IDDM is considered to be a consequence of unchecked auto-immune processes. Alterations in immune system responses are thought to be the cause of the disease, but the possibility that altered metabolite levels (glucose can establish the disease by specifically acting on and altering thymus stroma functions has not been investigated. Therefore, the direct effect of hyperglycaemia (HG on central tolerance mechanisms as a causative agent needs to be investigated.

  19. Cellular Functions of Transient Receptor Potential channels

    OpenAIRE

    Dadon, Daniela; Minke, Baruch

    2010-01-01

    Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca2+. In this review we focus on the roles of these channels in: i) cell death ii) proliferation and differentiation and iii) synaptic vesicle release.

  20. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.

    Science.gov (United States)

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-02-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans. PMID:24219868

  1. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans

    OpenAIRE

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-01-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role o...

  2. Metformin directly acts on mitochondria to alter cellular bioenergetics

    OpenAIRE

    Andrzejewski, Sylvia; Gravel, Simon-Pierre; Pollak, Michael; St-Pierre, Julie

    2014-01-01

    Background Metformin is widely used in the treatment of diabetes, and there is interest in ‘repurposing’ the drug for cancer prevention or treatment. However, the mechanism underlying the metabolic effects of metformin remains poorly understood. Methods We performed respirometry and stable isotope tracer analyses on cells and isolated mitochondria to investigate the impact of metformin on mitochondrial functions. Results We show that metformin decreases mitochondrial respiration, causing an i...

  3. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    Energy Technology Data Exchange (ETDEWEB)

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  4. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    International Nuclear Information System (INIS)

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers

  5. Alteration of pulmonary function in diabetic nephropathy

    OpenAIRE

    Shafiee, Gita; Khamseh, Mohammad E.; Rezaei, Nader; Aghili, Rokhsareh; MALEK, Mojtaba

    2013-01-01

    Background Type 2 diabetes mellitus is increasing worldwide with an alarming rate. It is associated with the development of various chronic complications. The aim of this study was to explore the alteration of pulmonary function, and its association with renal complications in people with type 2 diabetes mellitus. Methods This cross-sectional study was conducted on three groups; 40 diabetic subjects without nephropathy (urinary albumin300 mg/day) .Diabetic subjects were matched to the control...

  6. Stanniocalcin 2 alters PERK signalling and reduces cellular injury during cerulein induced pancreatitis in mice

    Directory of Open Access Journals (Sweden)

    DiMattia Gabriel E

    2011-05-01

    Full Text Available Abstract Background Stanniocalcin 2 (STC2 is a secreted protein activated by (PKR-like Endoplasmic Reticulum Kinase (PERK signalling under conditions of ER stress in vitro. Over-expression of STC2 in mice leads to a growth-restricted phenotype; however, the physiological function for STC2 has remained elusive. Given the relationship of STC2 to PERK signalling, the objective of this study was to examine the role of STC2 in PERK signalling in vivo. Results Since PERK signalling has both physiological and pathological roles in the pancreas, STC2 expression was assessed in mouse pancreata before and after induction of injury using a cerulein-induced pancreatitis (CIP model. Increased Stc2 expression was identified within four hours of initiating pancreatic injury and correlated to increased activation of PERK signalling. To determine the effect of STC2 over-expression on PERK, mice systemically expressing human STC2 (STC2Tg were examined. STC2Tg pancreatic tissue exhibited normal pancreatic morphology, but altered activation of PERK signalling, including increases in Activating Transcription Factor (ATF 4 accumulation and autophagy. Upon induction of pancreatic injury, STC2Tg mice exhibited limited increases in circulating amylase levels and increased maintenance of cellular junctions. Conclusions This study links STC2 to the pathological activation of PERK in vivo, and suggests involvement of STC2 in responding to pancreatic acinar cell injury.

  7. Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions

    OpenAIRE

    Griffin, M.; Nayyer, L.; Butler, P. E.; R.G. Palgrave; Seifalian, A. M.; Kalaskar, D. M.

    2016-01-01

    We demonstrate an efficient method to produce mechano-responsive polymeric scaffolds which can alter cellular functions using two different functionalized (OH and NH2) silica nano-fillers. Fumed silica-hydroxyl and fumed silica-amine nano-fillers were mixed with a biocompatible polymer (POSS-PCU) at various wt% to produce scaffolds. XPS and mechanical testing demonstrate that bulk mechanical properties are modified without changing the scaffold's surface chemistry. Mechanical testing showed s...

  8. Microgravity and Cellular Consequences in Lymphocyte Function

    Science.gov (United States)

    Pellis, Neal R.; Sundaresan, Alamelu

    2004-01-01

    Mammalian cells adapt to the environment of low gravity and express a series of responses, some possibly from direct effects on cells and others based on environmental conditions created by microgravity. Human lymphocytes in microgravity culture are functionally diminished in activation and locomotion. Both processes are integral to optimal immune response to fight pathogens. The NASA Rotating-wall vessel (RWV) is a well-accepted analog for microgravity culture on the ground. Gene array experiments and immunoblotting identified upstream events in human lymphocytes adapting to microgravity analog culture. Microgravity induces selective changes, many of which are cell membrane related. Results showed that upstream of PKC in the T cell activation cascade, PLC-gamma and LAT are significantly diminished. ZAP 70 which controls LAT activation is also down regulated in modeled microgravity. Thus events governing cell shape might warrant attention in microgravity conditions. The goal of this study is to delineate response suites that are consequential, direct or indirect effects of the microgravity environment and which of these are essential to lymphocytes

  9. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    International Nuclear Information System (INIS)

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action

  10. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  11. Functional alterations in macrophages after hypoxia selection.

    Science.gov (United States)

    Degrossoli, Adriana; Giorgio, Selma

    2007-01-01

    Regions of low oxygen tension are common features of inflamed and infected tissues and provide physiologic selective pressure for the expansion of cells with enhanced hypoxia tolerance. The aim of this study was to investigate whether macrophages resistant to death induced by hypoxia were accompanied by functional alterations. A mouse macrophage cell line (J774 cells) was used to obtain subpopulations of death-resistant macrophages induced by long-term exposure to severe hypoxia (J774 macrophages to periods of severe hypoxia results in the selection of cells with phenotypes associated with the modulation of heat-shock protein 70 kDa (HSP70) expression, tumor necrosis factor-alpha (TNF-alpha), and nitric oxide (NO) production and reduced susceptibility to parasite Leishmania infection. Thus, we suggest that hypoxia-selected macrophages may influence the outcome of inflammation and infection. PMID:17202589

  12. Altered cellular communication network in skin fibrosis: from early to late events

    International Nuclear Information System (INIS)

    Severe late radiation injury of normal tissues is observed after months or years following irradiation. This late phase occurs after a latent phase, where no clinical reaction can be observed. Recent studies brought new insights on these processes. They indicate that the early, so-called latent period is in fact a very active phase at the cellular and molecular levels. Modifications of the genetic program of cell expression are induced within minutes following irradiation, and trigger a cascade of cellular reactions, signal transduction and alterations of cellular inter-communications. Protein kinases, transcription factors, growth factors and their receptors play key roles in these processes. PDGF, TNFα, and TNF-β activation occurs within the first hours after irradiation, thus before any clinical alteration. Studies of radiation damage in normal skin have been developed. Late radiation fibrosis was more particularly assessed in the pig model of fibrosis of the skin induced by high doses of γrays. Although many cytokines and growth factors may be involved in late skin damage, the results point to a key role for the TGF-β1 growth factor in the development of skin radiation fibrosis. (N.C.)

  13. Altered thalamic functional connectivity in multiple sclerosis

    International Nuclear Information System (INIS)

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  14. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  15. Temporal Alterations in Cellular Bax:Bcl-2 Ratio following Traumatic Brain Injury in the Rat

    OpenAIRE

    Raghupathi, Ramesh; Strauss, Kenneth I.; Zhang, Chen; Krajewski, Stanislaw; Reed, John C.; McIntosh, Tracy K.

    2003-01-01

    Cell death/survival following CNS injury may be a result of alterations in the intracellular ratio of death and survival factors. Using immunohistochemistry, Western analysis and in situ hybridization, the expression of the anti-cell death protein, Bcl-2, and the pro-cell death protein, Bax, was evaluated following lateral fluid-percussion (FP) brain injury of moderate severity (2.3–2.6 atm) in adult male Sprague-Dawley rats. By 2 h post-injury, a marked reduction of cellular Bcl-2-immunoreac...

  16. Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice.

    Science.gov (United States)

    Viatte, Lydie; Nicolas, Gaël; Lou, Dan-Qing; Bennoun, Myriam; Lesbordes-Brion, Jeanne-Claire; Canonne-Hergaux, François; Schönig, Kai; Bujard, Hermann; Kahn, Axel; Andrews, Nancy C; Vaulont, Sophie

    2006-04-01

    We report the generation of a tetracycline-regulated (Tet ON) transgenic mouse model for acute and chronic expression of the iron regulatory peptide hepcidin in the liver. We demonstrate that short-term and long-term tetracycline-dependent activation of hepcidin in adult mice leads to hypoferremia and iron-limited erythropoiesis, respectively. This clearly establishes the key role of hepcidin in regulating the extracellular iron concentration. We previously demonstrated that, when expressed early in fetal development, constitutive transgenic hepcidin expression prevented iron accumulation in an Hfe-/- mouse model of hemochromatosis. We now explore the effect of chronic hepcidin expression in adult Hfe-/- mice that have already developed liver iron overload. We demonstrate that induction of chronic hepcidin expression in 2-month-old Hfe-/- mice alters their pattern of cellular iron accumulation, leading to increased iron in tissue macrophages and duodenal cells but less iron in hepatocytes. These hepcidin-induced changes in the pattern of cellular iron accumulation are associated with decreased expression of the iron exporter ferroportin in macrophages but no detectable alteration of ferroportin expression in the hepatocytes. We speculate that this change in iron homeostasis could offer a therapeutic advantage by protecting against damage to parenchymal cells. PMID:16339398

  17. Violent Video Games Alter Brain Function in Young Men

    Science.gov (United States)

    ... Updates News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A ... functional MRI, researchers have found that playing violent video games for one week causes changes in brain function. ...

  18. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  19. Intravital FRET: Probing Cellular and Tissue Function in Vivo.

    Science.gov (United States)

    Radbruch, Helena; Bremer, Daniel; Mothes, Ronja; Günther, Robert; Rinnenthal, Jan Leo; Pohlan, Julian; Ulbricht, Carolin; Hauser, Anja E; Niesner, Raluca

    2015-01-01

    The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo-ratiometrically and time-resolved by fluorescence lifetime imaging-and show their concrete application in the context of neuroinflammation in adult mice. PMID:26006244

  20. Intravital FRET: Probing Cellular and Tissue Function in Vivo

    OpenAIRE

    Helena Radbruch; Daniel Bremer; Ronja Mothes; Robert Günther; Jan Leo Rinnenthal; Julian Pohlan; Carolin Ulbricht; Hauser, Anja E.; Raluca Niesner

    2015-01-01

    The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo—ratiometrically and time-resolved by fluorescence lifetime imaging—and show their concrete application in the context o...

  1. Bronchoalveolar lavage as a tool for evaluation of cellular alteration during Aelurostrongylus abstrusus infection in cats

    Directory of Open Access Journals (Sweden)

    Vitor M. Ribeiro

    2014-10-01

    Full Text Available Bronchoalveolar lavage (BAL is a procedure that retrieves cells and other elements from the lungs for evaluation, which helps in the diagnosis of pulmonary diseases. The aim of this study was to perform this procedure for cellular analysis of BAL fluid alterations during experimental infection with Aelurostrongylus abstrusus in cats. Fourteen cats were individually inoculated with 800 third stage larvae of A. abstrusus and five non-infected cats lined as a control group. The BAL procedure was performed through the use of an endotracheal tube on the nineteen cats with a mean age of 18 months, on 0, 30, 60, 90, 120, 180 and 270 days after infection. Absolute cell counts in the infected cats revealed that alveolar macrophages and eosinophils were the predominant cells following infection. This study shows that the technique allows us to retrieve cells and first stage larvae what provides information about the inflammatory process caused by aelurostrongylosis.

  2. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  3. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2015-10-01

    Full Text Available Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as C. parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response towards this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi’s virulence by detecting altered innate cellular responses.In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host pathogen interactions.

  4. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    Science.gov (United States)

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  5. Using RNA as Molecular Code for Programming Cellular Function.

    Science.gov (United States)

    Kushwaha, Manish; Rostain, William; Prakash, Satya; Duncan, John N; Jaramillo, Alfonso

    2016-08-19

    RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology. PMID:26999422

  6. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43.

    Directory of Open Access Journals (Sweden)

    Merlin Nanayakkara

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP gene was identified as strongly associated with CD using genome-wide association studies (GWAS. The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD and controls, without and with treatment with A-gliadin peptide P31-43. We observed a "CD cellular phenotype" in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

  7. Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level.

    Science.gov (United States)

    Regan, Lynne; Hinrichsen, Michael R; Oi, Curran

    2016-05-01

    All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic. PMID:27031866

  8. Role of XPD in cellular functions: To TFIIH and beyond.

    Science.gov (United States)

    Houten, Bennett Van; Kuper, Jochen; Kisker, Caroline

    2016-08-01

    XPD, as part of the TFIIH complex, has classically been linked to the damage verification step of nucleotide excision repair (NER). However, recent data indicate that XPD, due to its iron-sulfur center interacts with the iron sulfur cluster assembly proteins, and may interact with other proteins in the cell to mediate a diverse set of biological functions including cell cycle regulation, mitosis, and mitochondrial function. In this perspective, after first reviewing the function and some of the key disease causing variants that affect XPD's interaction with TFIIH and the CDK-activating kinase complex (CAK), we investigate these intriguing cellular roles of XPD and highlight important unanswered questions that provide a fertile ground for further scientific exploration. PMID:27262611

  9. Computer Modeling of the Earliest Cellular Structures and Functions

    Science.gov (United States)

    Pohorille, Andrew

    2000-03-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells), the most direct way to test ourunderstanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform protocellular functions. Many of these functions, such as import of nutrients, capture and storage of energy, and response to changes in the environment are carried out by proteins bound to membranes. We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides)organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (e.g. channels), and (c) by what mechanisms such aggregates perform essential protocellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each atom in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10^6-10^8 time steps.

  10. Intravital FRET: Probing Cellular and Tissue Function in Vivo

    Directory of Open Access Journals (Sweden)

    Helena Radbruch

    2015-05-01

    Full Text Available The development of intravital Förster Resonance Energy Transfer (FRET is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo—ratiometrically and time-resolved by fluorescence lifetime imaging—and show their concrete application in the context of neuroinflammation in adult mice.

  11. PEG functionalized luminescent lipid particles for cellular imaging

    Science.gov (United States)

    Rana, Suman; Barick, K. C.; Shetake, Neena G.; Verma, Gunjan; Aswal, V. K.; Panicker, Lata; Pandey, B. N.; Hassan, P. A.

    2016-08-01

    We report here the synthesis, characterization and cellular uptake of luminescent micelle-like particles with phospholipid core and non-ionic PEG based surfactant polysorbate 80 shell. The adsorption of polysorbate 80 at the interface of lipid containing microemulsion droplets and its solidification upon removal of solvent leads to anchoring of PEG chain to the lipid particles. Hydrophobic partitioning of luminescent molecules, sodium 3-hydroxynaphthalene-2-carboxylic acid to the phospholipid core offers additional functionality to these particles. Thus, the cooperative assembly of lipid, non-ionic amphiphile and organic luminescent probe leads to the formation of multifunctional biocompatible particles which are useful for simultaneous imaging and therapy.

  12. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    Science.gov (United States)

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016. PMID:26482196

  13. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    Science.gov (United States)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Chouker, Alexander

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  14. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    Directory of Open Access Journals (Sweden)

    Susan J Abbondanzo

    Full Text Available Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  15. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging....... Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross-links and a...... buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes...

  16. Altered functional connectivity in persistent developmental stuttering.

    Science.gov (United States)

    Yang, Yang; Jia, Fanlu; Siok, Wai Ting; Tan, Li Hai

    2016-01-01

    Persistent developmental stuttering (PDS) is a speech disorder that impairs communication skills. Despite extensive research, the core causes of PDS are elusive. Converging evidence from task-induced neuroimaging methods has demonstrated the contributions of the basal ganglia and the cerebellum to PDS, but such task-state neuroimaging findings are often confounded by behavioral performance differences between subjects who stutter and normal controls. Here, using resting-state functional magnetic resonance imaging, we investigated functional connectivity within cerebellar-cortical and basal ganglia-thalamocortical networks in 16 adults who stutter and 18 age-matched fluent speakers. Seed-to-voxel analysis demonstrated that, compared to controls, adults who stutter showed alternations in functional connectivity of cerebellum to motor cortex as well as connectivity among different locals within cerebellum. Additionally, we found that functional connectivity within cerebellar circuits was significantly correlated with severity of stuttering. The alternations of functional connectivity within basal ganglia-thalamocortical networks were identified as the reduced connectivity of the putamen to the superior temporal gyrus and inferior parietal lobules in adults who stutter. The abnormalities of resting state functional connectivity are assumed to affect language planning and motor execution critical for speaking fluently. Our findings may yield neurobiological cues to the biomarkers of PDS. PMID:26743821

  17. Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Donger Zhou

    Full Text Available Most of colorectal adenocarcinomas are believed to arise from adenomas, which are premalignant lesions. Sequencing the whole exome of the adenoma will help identifying molecular biomarkers that can predict the occurrence of adenocarcinoma more precisely and help understanding the molecular pathways underlying the initial stage of colorectal tumorigenesis. We performed the exome capture sequencing of the normal mucosa, adenoma and adenocarcinoma tissues from the same patient and sequenced the identified mutations in additional 73 adenomas and 288 adenocarcinomas. Somatic single nucleotide variations (SNVs were identified in both the adenoma and adenocarcinoma by comparing with the normal control from the same patient. We identified 12 nonsynonymous somatic SNVs in the adenoma and 42 nonsynonymous somatic SNVs in the adenocarcinoma. Most of these mutations including OR6X1, SLC15A3, KRTHB4, RBFOX1, LAMA3, CDH20, BIRC6, NMBR, GLCCI1, EFR3A, and FTHL17 were newly reported in colorectal adenomas. Functional annotation of these mutated genes showed that multiple cellular pathways including Wnt, cell adhesion and ubiquitin mediated proteolysis pathways were altered genetically in the adenoma and that the genetic alterations in the same pathways persist in the adenocarcinoma. CDH20 and LAMA3 were mutated in the adenoma while NRXN3 and COL4A6 were mutated in the adenocarcinoma from the same patient, suggesting for the first time that genetic alterations in the cell adhesion pathway occur as early as in the adenoma. Thus, the comparison of genomic mutations between adenoma and adenocarcinoma provides us a new insight into the molecular events governing the early step of colorectal tumorigenesis.

  18. Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis.

    Science.gov (United States)

    Zhou, Donger; Yang, Liu; Zheng, Liangtao; Ge, Weiting; Li, Dan; Zhang, Yong; Hu, Xueda; Gao, Zhibo; Xu, Jinghong; Huang, Yanqin; Hu, Hanguang; Zhang, Hang; Zhang, Hao; Liu, Mingming; Yang, Huanming; Zheng, Lei; Zheng, Shu

    2013-01-01

    Most of colorectal adenocarcinomas are believed to arise from adenomas, which are premalignant lesions. Sequencing the whole exome of the adenoma will help identifying molecular biomarkers that can predict the occurrence of adenocarcinoma more precisely and help understanding the molecular pathways underlying the initial stage of colorectal tumorigenesis. We performed the exome capture sequencing of the normal mucosa, adenoma and adenocarcinoma tissues from the same patient and sequenced the identified mutations in additional 73 adenomas and 288 adenocarcinomas. Somatic single nucleotide variations (SNVs) were identified in both the adenoma and adenocarcinoma by comparing with the normal control from the same patient. We identified 12 nonsynonymous somatic SNVs in the adenoma and 42 nonsynonymous somatic SNVs in the adenocarcinoma. Most of these mutations including OR6X1, SLC15A3, KRTHB4, RBFOX1, LAMA3, CDH20, BIRC6, NMBR, GLCCI1, EFR3A, and FTHL17 were newly reported in colorectal adenomas. Functional annotation of these mutated genes showed that multiple cellular pathways including Wnt, cell adhesion and ubiquitin mediated proteolysis pathways were altered genetically in the adenoma and that the genetic alterations in the same pathways persist in the adenocarcinoma. CDH20 and LAMA3 were mutated in the adenoma while NRXN3 and COL4A6 were mutated in the adenocarcinoma from the same patient, suggesting for the first time that genetic alterations in the cell adhesion pathway occur as early as in the adenoma. Thus, the comparison of genomic mutations between adenoma and adenocarcinoma provides us a new insight into the molecular events governing the early step of colorectal tumorigenesis. PMID:23301059

  19. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Directory of Open Access Journals (Sweden)

    Zarbock Ralf

    2012-03-01

    Full Text Available Abstract Background Surfactant protein C (SP-C is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. Methods SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Results Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. Conclusions We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy

  20. Review: 2-mercaptoethanol alteration of in vitro immune functions of species other than murine

    OpenAIRE

    Click, Robert E

    2013-01-01

    Descriptions that organosulfurs could alter biologically relevant cellular functions began some 40 years ago when cell mediated and humoral murine in vitro immune responses were reported to be dramatically enhanced by any of four xenobiotic, sulfhydryl compounds—2-mercaptoethanol (2-ME), dithiothreitol, glutathione, and L-cysteine; the most effective of the four was 2-ME. These findings triggered a plethora of reports defining 2-ME benefits for a multitude of immunological processes, primaril...

  1. Cellular Signaling Pathway Alterations and Potential Targeted Therapies for Medullary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Serena Giunti

    2013-01-01

    Full Text Available Parafollicular C-cell-derived medullary thyroid cancer (MTC comprises 3% to 4% of all thyroid cancers. While cytotoxic treatments have been shown to have limited efficacy, targeted molecular therapies that inhibit rearranged during transfection (RET and other tyrosine kinase receptors that are mainly involved in angiogenesis have shown great promise in the treatment of metastatic or locally advanced MTC. Multi-tyrosine kinase inhibitors such as vandetanib, which is already approved for the treatment of progressive MTC, and cabozantinib have shown distinct advantages with regard to rates of disease response and control. However, these types of tyrosine kinase inhibitor compounds are able to concurrently block several types of targets, which limits the understanding of RET as a specific target. Moreover, important resistances to tyrosine kinase inhibitors can occur, which limit the long-term efficacy of these treatments. Deregulated cellular signaling pathways and genetic alterations in MTC, particularly the activation of the RAS/mammalian target of rapamycin (mTOR cascades and RET crosstalk signaling, are now emerging as novel and potentially promising therapeutic treatments for aggressive MTC.

  2. Mechanism of misonidazole linked cytotoxicity and altered radiation response: role of cellular thiols

    International Nuclear Information System (INIS)

    The effectiveness of misonidazole as a hypoxic radiosensitizer of mammalian cells is increased by prolonged exposure of hypoxic cells to the drug. It was found that drug intermediates might react with endogenous non-protein thiols (NPSH). These thiols function to protect the cell against deleterious intermediates that could otherwise attach and modify critical macromolecules such as DNA, RNA and protein. This paper presents studies on the effects of misonidazole, as well as newly developed hypoxic cell radiosensitizers, in an attempt to (1) identify the alterations in the NPSH, and (2) elucidate the role that the changes in NPSH play in cytotoxic and radiosensitizing effects of nitro compounds

  3. Electrostatic bio-manipulation for the modification of cellular functions

    Science.gov (United States)

    Washizu, Masao

    2013-03-01

    The use of electrostatic field effects, including field-induced reversible-breakdown of the membrane and dielectrophoresis (DEP), in microfabricated structures are investigated. With the use of field constriction created by a micro-orifice whose diameter is smaller than the cells, controlled magnitude of pulsed voltage can be applied across the cell membrane regardless of the cell size, shape or orientation. As a result, the breakdown occurs reproducibly and with minimal invasiveness. The breakdown is used for two purposes, electroporation by which foreign substances can be fed into cells, and electrofusion which creates genetic and/or cytoplasmic mixture among two cells. When GFP plasmid is fed into MSC cell, the gene expression started within 2 hours, and finally observed in more than 50% of cells. For cell fusion, several ten percent fusion yield is achieved for most cell types, with the colony formation in several percents. Timing-controlled feeding foreign substances or mixing cellular contents, with high-yield and low-invasiveness, is expected to bring about a new technology for both genetic and epigenetic modifications of cellular functions, in such field as regenerative medicine.

  4. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  5. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    Directory of Open Access Journals (Sweden)

    Panga Jaipal Reddy

    Full Text Available Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  6. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach.

    Science.gov (United States)

    Madeira, D; Araújo, J E; Vitorino, R; Capelo, J L; Vinagre, C; Diniz, M S

    2016-07-01

    Climate change has pervasive effects on marine ecosystems, altering biodiversity patterns, abundance and distribution of species, biological interactions, phenology, and organisms' physiology, performance and fitness. Fish early life stages have narrow thermal windows and are thus more vulnerable to further changes in water temperature. The aim of this study was to address the sensitivity and underlying molecular changes of larvae of a key fisheries species, the sea bream Sparus aurata, towards ocean warming. Larvae were exposed to three temperatures: 18°C (control), 24°C (warm) and 30°C (heat wave) for seven days. At the end of the assay, i) survival curves were plotted for each temperature treatment and ii) entire larvae were collected for proteomic analysis via 2D gel electrophoresis, image analysis and mass spectrometry. Survival decreased with increasing temperature, with no larvae surviving at 30°C. Therefore, proteomic analysis was only carried out for 18°C and 24°C. Larvae up-regulated protein folding and degradation, cytoskeletal re-organization, transcriptional regulation and the growth hormone while mostly down-regulating cargo transporting and porphyrin metabolism upon exposure to heat stress. No changes were detected in proteins related to energetic metabolism suggesting that larval fish may not have the energetic plasticity needed to sustain cellular protection in the long-term. These results indicate that despite proteome modulation, S. aurata larvae do not seem able to fully acclimate to higher temperatures as shown by the low survival rates. Consequently, elevated temperatures seem to have bottleneck effects during fish early life stages, and future ocean warming can potentially compromise recruitment's success of key fisheries species. PMID:27062348

  7. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    Directory of Open Access Journals (Sweden)

    Aarti eNagayach

    2014-10-01

    Full Text Available Behavioural impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45mg/ kg body weight; intraperitoneally. Motor function alterations were studied using Rotarod test (motor coordination and grip strength (muscle activity at 2nd, 4th, 6th, 8th, 10th and 12th week post diabetic confirmation. Scenario of glial (astroglia and microglia activation, cell death and glutamate transportation was gauged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labelling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioural alterations following STZ-induced diabetes.

  8. Cellular functions of vaults and their involvement in multidrug resistance.

    Science.gov (United States)

    Steiner, E; Holzmann, K; Elbling, L; Micksche, M; Berger, W

    2006-08-01

    Vaults are evolutionary highly conserved ribonucleoprotein (RNP) particles with a hollow barrel-like structure. They are 41 x 73 nm in size and are composed of multiple copies of three proteins and small untranslated RNA (vRNA). The main component of vaults represents the 110 kDa major vault protein (MVP), whereas the two minor vault proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (VPARP) and the 240 kDa telomerase-associated protein-1 (TEP1). Vaults are abundantly present in the cytoplasm of eukaryotic cells and they were found to be associated with cytoskeletal elements as well as occasionally with the nuclear envelope. Vaults and MVP have been associated with several cellular processes which are also involved in cancer development like cell motility and differentiation. Due to the over-expression of MVP (also termed lung resistance-related protein or LRP) in several P-glycoprotein (P-gp)-negative chemoresistant cancer cell lines, vaults have been linked to multidrug resistance (MDR). Accordingly, high levels of MVP were found in tissues chronically exposed to xenobiotics. In addition, the expression of MVP correlated with the degree of malignancy in certain cancer types, suggesting a direct involvement in tumor development and/or progression. Based on the finding that MVP binds several phosphatases and kinases including PTEN, SHP-2 as well as Erk, evidence is accumulating that MVP might be involved in the regulation of important cell signalling pathways including the PI3K/Akt and the MAPK pathways. In this review we summarize the current knowledge concerning the vault particle and discuss its possible cellular functions, focusing on the role of vaults in chemotherapy resistance. PMID:16918321

  9. Quantitative relationship between hepatocytic neoplasms and islands of cellular alteration during hepatocarcinogenesis in the male F344 rat.

    OpenAIRE

    Kaufmann, W. K.; Mackenzie, S. A.; Kaufman, D G

    1985-01-01

    Hepatocytic neoplasms (nodules and carcinomas) and islands of cellular alteration which display abnormal retention of glycogen on fasting were quantified in F344 male rats at intervals after initiation of hepatocarcinogenesis by the combination of a two-thirds partial hepatectomy with a single treatment with methyl(acetoxymethyl)-nitrosamine during the subsequent peak of DNA synthesis in regenerating livers. In initiated rats fed the liver tumor promoter phenobarbital, yields of neoplasms and...

  10. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response

    International Nuclear Information System (INIS)

    Cadmium (Cd) is an environmental pollutant that is able to alter the immune function. Previous studies have shown that, in mammals, chronic exposure to Cd decreases the release of macrophagic cytokines such as IL1 and TNα and decreases phagocytosis activity. On the other hand contradictory results showed an increase in the humoral response. The cellular response could be decreased by exposure to Cd. These alterations were observed in mammals. The present study aimed to investigate some of the toxic effects of Cd exposure in birds. In particular, the main objective of this work was to elucidate the effects of exposure to this pollutant on the cellular immune function of the Japanese quail as a model for the study of toxicity in animals exposed in nature. The animals were exposed to the metal (100 ppm, per os) during development, i.e., from 1 to 28 days old. Body weight, biochemical parameters, and cellular immune response were measured during and at the end of treatment. The results showed that the exposure to Cd for 28 days significantly reduced the body weight and induced hepatic toxicity. The kidney function and cellular immune response were not affected by the Cd exposure

  11. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  12. Insights into the physiological function of cellular prion protein

    Directory of Open Access Journals (Sweden)

    Martins V.R.

    2001-01-01

    Full Text Available Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie, appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.

  13. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae.

    Directory of Open Access Journals (Sweden)

    Johan Panek

    Full Text Available Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi and 8 days post-infection (dpi. A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras and reduction of the translation activity (EIF3 confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.

  14. Eukaryotic protein domains as functional units of cellular evolution

    DEFF Research Database (Denmark)

    Jin, Jing; Xie, Xueying; Chen, Chen;

    2009-01-01

    of different domain types to assess the molecular compartment occupied by each domain. This reveals that specific subsets of domains demarcate particular cellular processes, such as growth factor signaling, chromatin remodeling, apoptotic and inflammatory responses, or vesicular trafficking. We suggest...

  15. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    Science.gov (United States)

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances. PMID:27111147

  16. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Kocer, Armagan; Sack, Jon T; Andersen, Olaf S

    2014-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous

  17. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Cellular and molecular mechanisms of heat stress related to bovine ovarian function.

    Science.gov (United States)

    Roth, Z

    2015-05-01

    In light of the intensive genetic selection for high milk production and the onset of global warming, it seems that the reduced fertility of lactating cows during the summer will worsen in coming years. Although not entirely clear, the mechanism appears to be multifactorial in nature. It includes alterations in follicular development, depression of follicular dominance, and impairment of steroidogenesis and gonadotropin secretion. Heat-induced perturbations in the physiology of the follicle-enclosed oocyte have also been documented, expressed by impaired cleavage rate and reduced developmental competence. With respect to the oocyte, alterations include an increase in PUFA in the membrane, reactive oxygen species, ceramide formation and caspase activity, and induction of apoptosis via the sphingomyelin and/or mitochondrial pathways. New insight into cellular and molecular alterations has revealed that heat induces perturbations in both nuclear and cytoplasmic maturation events, such as resumption of meiosis, metaphase II plate formation, cytoskeleton rearrangement, and translocation of cortical granules. Alterations in mitochondrial distribution (i.e., low proportion of category I mitochondria) and function (i.e., low membrane potential) have recently been reported for oocytes collected during the summer. These were associated with impaired expression of both nuclear (succinate dehydrogenase subunit [SDHD], adenosine triphosphate [ATP] synthase subunit beta [ATP5B]), mitochondrially NADH dehydrogenase subunit 2 (ND2), and mitochondiral (cytochrome c oxidase subunit II [MT-CO2] and cytochrome b [MT-CYB]) genes that are crucial in the mitochondrial respiratory chain. In addition, season-induced alteration in the stored maternal mRNA has been documented, expressed by reduced transcript levels (oocyte maturation factor MOS [C-MOS], growth differentiation factor 9 [GDF9], POU domain class 5 transcription factor 1 [POU5F1], and glyceraldehyde-3-phosphate dehydrogenase

  18. Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions.

    Science.gov (United States)

    Griffin, Michelle; Nayyer, Leila; Butler, Peter E; Palgrave, Robert G; Seifalian, Alexander M; Kalaskar, Deepak M

    2016-08-01

    We demonstrate an efficient method to produce mechano-responsive polymeric scaffolds which can alter cellular functions using two different functionalized (OH and NH2) silica nano-fillers. Fumed silica-hydroxyl and fumed silica-amine nano-fillers were mixed with a biocompatible polymer (POSS-PCU) at various wt% to produce scaffolds. XPS and mechanical testing demonstrate that bulk mechanical properties are modified without changing the scaffold's surface chemistry. Mechanical testing showed significant change in bulk properties of POSS-PCU scaffolds with an addition of silica nanofillers as low as 1% (P<0.01). Scaffolds modified with NH2 silica showed significantly higher bulk mechanical properties compared to the one modified with the OH group. Enhanced cell adhesion, proliferation and collagen production over 14days were observed on scaffolds with higher bulk mechanical properties (NH2) compared to those with lower ones (unmodified and OH modified) (P<0.05) during in vitro analysis. This study provides an effective method of manufacturing mechano-responsive polymeric scaffolds, which can help to customize cellular responses for biomaterial applications. PMID:27013128

  19. Review: 2-mercaptoethanol alteration of in vitro immune functions of species other than murine.

    Science.gov (United States)

    Click, Robert E

    2014-01-15

    Descriptions that organosulfurs could alter biologically relevant cellular functions began some 40years ago when cell mediated and humoral murine in vitro immune responses were reported to be dramatically enhanced by any of four xenobiotic, sulfhydryl compounds-2-mercaptoethanol (2-ME), dithiothreitol, glutathione, and l-cysteine; the most effective of the four was 2-ME. These findings triggered a plethora of reports defining 2-ME benefits for a multitude of immunological processes, primarily with murine models. This led to investigations on 2-ME alterations of (a) immune functions in other species, (b) activities of other cell-types, and (c) in situ diseases. In addition, the early findings may have been instrumental in the identification of the previously undefined anticarcinogenic chemicals in specific foods as organosulfurs. Outside the plant organosulfurs, there are no comprehensive reviews of these areas to help define mechanisms by which organosulfurs function as well as identify potential alternative uses. Therefore, the present review will focus on 2-ME alterations of in vitro immune functions in species other than murine; namely, fish, amphibian, reptile, avian, whales, dolphins, rat, hamster, rabbit, guinea pig, feline, canine, porcine, ovine, bovine, and human. Processes, some unique to a given species, were in general, enhanced and in some cases dependent upon the presence of 2-ME. The largest benefits occurred in media that were serum free, followed by those in autologous serum and then fetal bovine serum supplemented medium. Concentrations of 2-ME were generally in the low μM range, with exceptions of those for salamander (20mM), turtles (70mM) and dolphins (7mM). The few studies designed to assess mechanisms found that changes induced by 2-ME were generally accompanied by alterations of reduced/oxidized glutathione cellular concentrations. The major benefit for most studies, however, was to increase the sensitivity of the culture environment, which

  20. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    Science.gov (United States)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  1. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    Science.gov (United States)

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish. PMID:26143618

  2. PROGRESSION TO ANDROGEN-INDEPENDENT LNCAP HUMAN PROSTATE TUMORS: CELLULAR AND MOLECULAR ALTERATIONS

    OpenAIRE

    Zhou, Jin-Rong; Yu, Lunyin; Zerbini, Luiz F.; Libermann, Towia A.; Blackburn, George L.

    2004-01-01

    Lethal phenotypes of human prostate cancer are characterized by progression to androgen-independence and metastasis. For want of a clinically relevant animal model, mechanisms behind this progression remain unclear. Our study used an in vivo model of androgen-sensitive LNCaP human prostate cancer cell xenografts in male SCID mice to study the cellular and molecular biology of tumor progression. Primary tumors were established orthotopically, and the mice were then surgically castrated to with...

  3. Adolescent social defeat alters markers of adult dopaminergic function

    OpenAIRE

    Novick, Andrew M.; Forster, Gina L.; Tejani-Butt, Shanaz M.; Watt, Michael J.

    2011-01-01

    Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defe...

  4. Altered striatal intrinsic functional connectivity in pediatric anxiety.

    Science.gov (United States)

    Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique

    2016-05-01

    Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799

  5. Alteration of the Cyclin D1/p16-pRB Pathway, Cellular Proliferation and Apoptosis in Glioma

    Institute of Scientific and Technical Information of China (English)

    WANGCun-zu; FUZhen; ZHAOZhu.qing

    2004-01-01

    To study the alteration of cyclin D1, p16 and pRB in glioma, analyze proliferation and apoptosis of tmnor cells, and discuss the pathogenesis of glioma, Methods : Thirty-seven glioma specimens were classified as astrocytoma(25 cases, including 7 fibrillary cases; 6 protoplasmic cases; 12 anaplastic cases), and glioblastoma( 12 cases, including 4 GBM cases). Ten normal brain tissues were taken as controls. The expression of cyclin D1, p16 and pRB were detected by imrnunohistochemical method, Cellular proliferation was assessed by Ki-67 label index( Ki-67 LI). Cellular apoptosis was detected by TUNEL and apoptotic indices(AI) was calculated. Resu/ts: The alterations of three proteins were cyclin D1 overexpression( 28/37,75.7% ), p16 and pRB deletion( 20/37.54.1% and 12/37,32.4% ), which were closely related to tumor types, particularly in malignant glioma. Ki-67 LI and AI were higher when pRB pathway was abnormal. Apoptosis was minor in astrocytic tumors( astrocytomas, 0.010±0.002; glioblastomas, 0.057±0.016). Condusion:The abnormalities of cyclin DI/pl6-pRB pathway correlated closely with pathogenesis of glioma.

  6. Altered Expression of Cellular Bcl-2 in the Progression of Hamster Cholangiocarcinogenesis

    OpenAIRE

    Byung-suk Jeon; Byung-IL Yoon

    2012-01-01

    Bcl-2 is an intracytoplasmic and membrane-associated apoptosis suppressor, and its overexpression is closely associated with survival of malignant tumors, in particular their aggressive behavior and poor prognosis. The role of Bcl-2 is, however, still controversial in cholangiocarcinogenesis because of the discrepancies in the expression of the protein. In the present study, alteration in the expression of Bcl-2 in cholangiocarcinogenesis was investigated by studying the immunoreactivities of...

  7. HIV-1 Transgenic Rats Display Alterations in Immunophenotype and Cellular Responses Associated with Aging

    OpenAIRE

    Abbondanzo, Susan J.; Chang, Sulie L.

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, parti...

  8. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  9. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    International Nuclear Information System (INIS)

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed

  10. Limb immobilization alters functional electrophysiological parameters of sciatic nerve.

    Science.gov (United States)

    Alves, J S M; Leal-Cardoso, J H; Santos-Júnior, F F U; Carlos, P S; Silva, R C; Lucci, C M; Báo, S N; Ceccatto, V M; Barbosa, R

    2013-08-01

    Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13 ± 0.05 V and 52.31 ± 1.95 µs (control group, n=13) to 2.84 ± 0.06 V and 59.71 ± 2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63 ± 7.49 to 79.14 ± 5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function. PMID:23969978

  11. Limb immobilization alters functional electrophysiological parameters of sciatic nerve

    Directory of Open Access Journals (Sweden)

    J.S.M. Alves

    2013-08-01

    Full Text Available Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34, animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13±0.05 V and 52.31±1.95 µs (control group, n=13 to 2.84±0.06 V and 59.71±2.79 µs (immobilized group, n=15, respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63±7.49 to 79.14±5.59 m/s but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function.

  12. Cellular interactions during tracheary elements formation and function

    OpenAIRE

    Menard, Delphine; Pesquet, Edouard

    2015-01-01

    The survival of higher plant species on land depends on the development and function of an efficient vascular system distributing water and minerals absorbed by roots to all aerial organs. This conduction and distribution of plant sap relies on specialized cells named tracheary elements (TEs). In contrast to many other cell types in plants, TEs are functionalized by cell death that hollows the cell protoplast to make way for the sap. To maintain a stable conducting function during plant devel...

  13. Altered Cardiomyocyte Function and Trypanosoma cruzi Persistence in Chagas Disease.

    Science.gov (United States)

    Cruz, Jader Santos; Santos-Miranda, Artur; Sales-Junior, Policarpo Ademar; Monti-Rocha, Renata; Campos, Paula Peixoto; Machado, Fabiana Simão; Roman-Campos, Danilo

    2016-05-01

    Chagas disease, caused by the triatominae Trypanosoma cruzi, is one of the leading causes of heart malfunctioning in Latin America. The cardiac phenotype is observed in 20-30% of infected people 10-40 years after their primary infection. The cardiac complications during Chagas disease range from cardiac arrhythmias to heart failure, with important involvement of the right ventricle. Interestingly, no studies have evaluated the electrical properties of right ventricle myocytes during Chagas disease and correlated them to parasite persistence. Taking advantage of a murine model of Chagas disease, we studied the histological and electrical properties of right ventricle in acute (30 days postinfection [dpi]) and chronic phases (90 dpi) of infected mice with the Colombian strain of T. cruzi and their correlation to parasite persistence. We observed an increase in collagen deposition and inflammatory infiltrate at both 30 and 90 dpi. Furthermore, using reverse transcriptase polymerase chain reaction, we detected parasites at 90 dpi in right and left ventricles. In addition, we observed action potential prolongation and reduced transient outward K(+) current and L-type Ca(2+) current at 30 and 90 dpi. Taking together, our results demonstrate that T. cruzi infection leads to important modifications in electrical properties associated with inflammatory infiltrate and parasite persistence in mice right ventricle, suggesting a causal role between inflammation, parasite persistence, and altered cardiomyocyte function in Chagas disease. Thus, arrhythmias observed in Chagas disease may be partially related to altered electrical function in right ventricle. PMID:26976879

  14. Selective alterations within executive functions in adolescents with excess weight.

    Science.gov (United States)

    Verdejo-García, Antonio; Pérez-Expósito, Manuel; Schmidt-Río-Valle, Jacqueline; Fernández-Serrano, Maria J; Cruz, Francisco; Pérez-García, Miguel; López-Belmonte, Gemma; Martín-Matillas, Miguel; Martín-Lagos, Jose A; Marcos, Ascension; Campoy, Cristina

    2010-08-01

    Increasing evidence underscores overlapping neurobiological pathways to addiction and obesity. In both conditions, reward processing of preferred stimuli is enhanced, whereas the executive control system that would normally regulate reward-driven responses is altered. This abnormal interaction can be greater in adolescence, a period characterized by relative immaturity of executive control systems coupled with the relative maturity of reward processing systems. The aim of this study is to explore neuropsychological performance of adolescents with excess weight (n = 27, BMI range 24-51 kg/m(2)) vs. normal-weight adolescents (n = 34, BMI range 17-24 kg/m(2)) on a comprehensive battery of executive functioning tests, including measures of working memory (letter-number sequencing), reasoning (similarities), planning (zoo map), response inhibition (five-digit test (FDT)-interference and Stroop), flexibility (FDT-switching and trail-making test (TMT)), self-regulation (revised-strategy application test (R-SAT)), and decision-making (Iowa gambling task (IGT)). We also aimed to explore personality traits of impulsivity and sensitivity to reward. Independent sample t- and Z Kolmogorov-Smirnov tests showed significant differences between groups on indexes of inhibition, flexibility, and decision-making (excess-weight participants performed poorer than controls), but not on tests of working memory, planning, and reasoning, nor on personality measures. Moreover, regression models showed a significant association between BMI and flexibility performance. These results are indicative of selective alterations of particular components of executive functions in overweight adolescents. PMID:20057376

  15. Ethanol alters cellular activation and CD14 partitioning in lipid rafts

    International Nuclear Information System (INIS)

    Alcohol consumption interferes with innate immunity. In vivo EtOH administration suppresses cytokine responses induced through Toll-like receptor 4 (TLR4) and inhibits TLR4 signaling. Actually, EtOH exhibits a generalized suppressive effect on signaling and cytokine responses induced by through most TLRs. However, the underlying mechanism remains unknown. RAW264.7 cells were treated with LPS or co-treated with EtOH or with lipid raft-disrupting drugs. TNF-α production, IRAK-1 activation, and CD14 partition were evaluated. EtOH or nystatin, a lipid raft-disrupting drug, suppressed LPS-induced production of TNF-α. The suppressive effect of EtOH on LPS-induced TNF-α production was additive with that of methyl-β-cyclodextrin (MCD), another lipid raft-disrupting drug. EtOH interfered with IRAK-1 activation, an early TLR4 intracellular signaling event. Cell fractionation analyses show that acute EtOH altered LPS-related partition of CD14, a critical component of the LPS receptor complex. These results suggest a novel mechanism of EtOH action that involves interference with lipid raft clustering induced by LPS. This membrane action of EtOH might be one of the mechanisms by which EtOH acts as a generalized suppressor for TLR signaling

  16. Altered expression of cellular Bcl-2 in the progression of hamster cholangiocarcinogenesis.

    Science.gov (United States)

    Jeon, Byung-Suk; Yoon, Byung-Il

    2012-01-01

    Bcl-2 is an intracytoplasmic and membrane-associated apoptosis suppressor, and its overexpression is closely associated with survival of malignant tumors, in particular their aggressive behavior and poor prognosis. The role of Bcl-2 is, however, still controversial in cholangiocarcinogenesis because of the discrepancies in the expression of the protein. In the present study, alteration in the expression of Bcl-2 in cholangiocarcinogenesis was investigated by studying the immunoreactivities of this protein in normal, hyperplastic bile ducts with or without dysplastic changes, and neoplastic bile duct cells from a hamster cholangiocarcinoma (ChC) model. Cytoplasmic staining, which reflects high-Bcl-2 immunoreactivity, was negative to very weak in normal and hyperplastic bile ducts without dysplastic changes, while hyperplastic bile ducts with dysplasia indicated heterogeneously strong expression. On the other hand, most of the neoplastic cells of invasive cholangiocarcinomas were negative to weak as much as the level of normal bile ducts. The results suggest that the antiapoptotic factor Bcl-2 plays a limited role in the survival of highly proliferative, potentially dysplastic bile duct cells. However, the role of Bcl-2 in biliary cancer cells was not significant. PMID:22654601

  17. Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth

    International Nuclear Information System (INIS)

    In this study, we report the production of amine functionalized nanodiamond. The amine functionalized nanodiamond forms a conformal monolayer on a negatively charged surface produced via plasma polymerization of acrylic acid. Nanodiamond terminated surfaces were studied as substrates for neuronal cell culture. NG108-15 neuroblastoma-glyoma hybrid cells were successfully cultured upon amine functionalized nanodiamond coated surfaces for between 1 and 7 d. Additionally, primary dorsal root ganglion (DRG) neurons and Schwann cells isolated from Wistar rats were also successfully cultured over a period of 21 d illustrating the potential of the coating for applications in the treatment of peripheral nerve injury. (paper)

  18. Cellular proliferation and infiltration following interstitial irradiation of normal dog brain is altered by an inhibitor of polyamine synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fike, J.R.; Gobbel, G.T.; Chou, D. [Univ. of California, San Francisco, CA (United States)] [and others

    1995-07-15

    The objectives of this study were to quantitatively define proliferative and infiltrative cell responses after focal {sup 125}I irradiation of normal brain, and to determine the effects of an intravenous infusion of {alpha}-defluoromethylornithine (DFMO) on those responses. Adult beagle dogs were irradiated using high activity {sup 125}I sources. Cellular responses were quantified using a histomorphometric analysis. After radiation alone, cellular events included a substantial acute inflammatory response followed by increased BrdU labeling and progressive increases in numbers of capillaries and astrocytes. {alpha}-Difluoromethylornithine treatment significantly affected the measured cell responses. As in controls, an early inflammatory response was measured, but after 2 weeks there were more PMNs/unit area than in controls. The onset of measurable BrdU labeling was delayed in DFMO-treated animals, and the magnitude of labeling was significantly reduced. Increases in astrocyte and vessel numbers/mm{sup 2} were observed after a 2-week delay. At the site of implant, astrocytes from DFMO-treated dogs were significantly smaller than those from controls. There is substantial cell proliferation and infiltration in response to interstitial irradiation of normal brain, and these responses are significantly altered by DFMO treatment. Although the precise mechanisms by which DFMO exerts its effects in this model are not known, the results from this study suggest that modification of radiation injury may be possible by manipulating the response of normal cells to injury. 57 refs., 6 figs.

  19. Cellular alterations and enhanced induction of cleft palate after coadministration of retinoic acid and TCDD

    International Nuclear Information System (INIS)

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and retinoic acid (RA) are both teratogenic in mice. TCDD is a highly toxic, stable environmental contaminant, while RA is a naturally occurring form of vitamin A. Exposure to TCDD induces hydronephrosis and cleft palate, and exposure to RA induces limb defects and cleft palate. Teratology studies previously have shown that the incidence of clefting is higher after exposure to RA + TCDD than would be observed for the same doses of either compound given alone. This study examines the cellular effects which result in cleft palate, after po administration on gestation Day (GD) 10 or 12 of RA + TCDD in corn oil (10 ml/kg total volume). Exposure on GD 10 to 6 micrograms TCDD + 40 mg RA/kg inhibited early growth of the shelves and clefting was due to a failure of shelves to meet and fuse. This effect on mesenchyme was observed in previous studies to occur after exposure on GD 10 to 40 mg/kg RA alone, but not after TCDD alone. After exposure on GD 12 to 6 micrograms TCDD + 80 mg RA/kg, clefting was due to a failure of shelves to fuse after making contact, because the medial cells differentiated into an oral-like epithelium. This response was observed in previous studies to occur after exposure to TCDD alone, but RA alone on GD 12 resulted in differentiation toward nasal-like cells. The interaction between TCDD and RA results in RA-like clefting after exposure on GD 10 and TCDD-like clefting after exposure on GD 12, and this clefting occurs at higher incidences than would occur after the same levels of either agent alone. After exposure on either GD 10 or 12 to RA + TCDD, the programmed cell death of the medial cells does not occur, and these cells continue to express EGF receptors and to bind 125I-EGF. The effects of RA and TCDD may involve modulation of the cells responses to embryonic growth and differentiation factors

  20. Cellular alterations and enhanced induction of cleft palate after coadministration of retinoic acid and TCDD

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.D.; Birnbaum, L.S. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and retinoic acid (RA) are both teratogenic in mice. TCDD is a highly toxic, stable environmental contaminant, while RA is a naturally occurring form of vitamin A. Exposure to TCDD induces hydronephrosis and cleft palate, and exposure to RA induces limb defects and cleft palate. Teratology studies previously have shown that the incidence of clefting is higher after exposure to RA + TCDD than would be observed for the same doses of either compound given alone. This study examines the cellular effects which result in cleft palate, after po administration on gestation Day (GD) 10 or 12 of RA + TCDD in corn oil (10 ml/kg total volume). Exposure on GD 10 to 6 micrograms TCDD + 40 mg RA/kg inhibited early growth of the shelves and clefting was due to a failure of shelves to meet and fuse. This effect on mesenchyme was observed in previous studies to occur after exposure on GD 10 to 40 mg/kg RA alone, but not after TCDD alone. After exposure on GD 12 to 6 micrograms TCDD + 80 mg RA/kg, clefting was due to a failure of shelves to fuse after making contact, because the medial cells differentiated into an oral-like epithelium. This response was observed in previous studies to occur after exposure to TCDD alone, but RA alone on GD 12 resulted in differentiation toward nasal-like cells. The interaction between TCDD and RA results in RA-like clefting after exposure on GD 10 and TCDD-like clefting after exposure on GD 12, and this clefting occurs at higher incidences than would occur after the same levels of either agent alone. After exposure on either GD 10 or 12 to RA + TCDD, the programmed cell death of the medial cells does not occur, and these cells continue to express EGF receptors and to bind 125I-EGF. The effects of RA and TCDD may involve modulation of the cells responses to embryonic growth and differentiation factors.

  1. Alterations of idiotypic profiles: The cellular basis of T15 dominance in BALB/c mice

    International Nuclear Information System (INIS)

    Phosphorylcholine (PC) is a component of cell walls and membranes from a variety of widely distributed microorganisms. It is highly immunogenic in mice and most murine strains have circulating anti-PC antibodies which are known to confer protection against certain bacterial infections. BALB/c mice offer a striking example of a high responsiveness to PC, a propensity to generate PC-binding myelomas, and a great restriction of idiotype expression in anti-PC antibodies; in fact, most BALB/c anti-PC IgM antibodies express the T15 idiotype marker. Although it has been suspected that T15 dominance is somewhat related to the continuous antigenic load presented by microorganismal flora found in conventional mice, a complete experimental account of how antigenic selection brings about such extreme idiotypic dominance is not yet available. In the studies presented below, we investigated the role played by the host environment, T cells, and antigen in affecting the generation of the anti-PC T15 idiotype profile in lethally irradiated adoptive hosts reconstituted with syngeneic neonatal liver cells. The results presented herein indicate that the transfer of mature carrier-primed T cells with neonatal liver cells does not influence the generation of the T15 idiotype profile. We also demonstrated that anti-T15 idiotype suppressed mice, used as lethally irradiated hosts of immature immunocompetent cells, allow an increased rate of reconstitution of the anti-PC response when compared to nonsuppressed hosts. Since the administration of a T15+ anti-PC antibody inhibits both reconstitution and idiotype expansion, we conclude that T15+ B cells do not self-promote themselves. In contrast, we observed that exposure of adoptive hosts to PC antigens can enhance the anti-PC response and alter the idiotypic profile in favor of T15-bearing clones

  2. Myocardial perfusion alterations observed months after radiotherapy are related to the cellular damage

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, I.; Sonmez, B. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Nuclear Medicine; Sezen, O.; Zengin, A.Y.; Bahat, Z. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Radiation Oncology; Yenilmez, E.; Yulug, E. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Histology and Embryology; Abidin, I. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Biophysics

    2010-07-01

    Myocardial perfusion scintigraphy (MPS) is one of the widely used tools to follow developing radiation-induced heart disease (RIHD). But the clinical significance of MPS defects has not been fully understood. We have investigated the biodistribution alterations related to perfusion defects following radiotherapy (RT) and showed coexisting morphological changes. Animals, methods: A total of 18 Wistar rats were divided into three groups (1 control and 2 irradiated groups). A single cardiac 20 Gy radiation dose was used to induce long term cardiac defects. Biodistribution studies with technetium ({sup 99m}Tc) sestamibi and histological evaluations were performed 4 and 6 months after irradiation. The percent radioactivity (%ID/g) was calculated for each heart. For determination of the myocardial damage, positive apoptotic cardiomyocytes, myocardial cell degeneration, myocardial fibrosis, vascular damage and ultrastructural structures were evaluated. Results: Six months after treatment, a significant drop of myocardial uptake was observed (p < 0.05). Irradiation-induced apoptosis rose within the first 4 months after radiation treatment and were stayed elevated until the end of the observation period (p < 0.05). Also, the irradiation has induced myocardial degeneration, perivascular and interstitial fibrosis in the heart at the end of six and four months (p < 0.01). The severity and extent of myocardial injury has became more evident at the end of six month (p < 0.05). At ultrastructural level, prominent changes have been observed in the capillary endothelial and myocardial cells. Conclusion: Our findings suggest that the reduced rest myocardial perfusion, occuring months after the radiation, indicates a serious myocard tissue damage which is characterized by myocardial degeneration and fibrosis. (orig.)

  3. Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1.

    Science.gov (United States)

    Dawson, N; Kurihara, M; Thomson, D M; Winchester, C L; McVie, A; Hedde, J R; Randall, A D; Shen, S; Seymour, P A; Hughes, Z A; Dunlop, J; Brown, J T; Brandon, N J; Morris, B J; Pratt, J A

    2015-01-01

    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal-PFC connectivity. Altered hippocampal-PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1-PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity. PMID:25989143

  4. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha).

    OpenAIRE

    Reyes, J C; Barra, J.; Muchardt, C; Camus, A.; Babinet, C; Yaniv, M

    1998-01-01

    The mammalian SWI-SNF complex is an evolutionarily conserved, multi-subunit machine, involved in chromatin remodelling during transcriptional activation. Within this complex, the BRM (SNF2alpha) and BRG1 (SNF2beta) proteins are mutually exclusive subunits that are believed to affect nucleosomal structures using the energy of ATP hydrolysis. In order to characterize possible differences in the function of BRM and BRG1, and to gain further insights into the role of BRM-containing SWI-SNF comple...

  5. New Functions for Oxysterols and Their Cellular Receptors

    Directory of Open Access Journals (Sweden)

    Vesa M. Olkkonen

    2008-01-01

    Full Text Available Oxysterols are naturally occurring oxidized derivatives of cholesterol, or by-products of cholesterol biosynthesis, with multiple biologic functions. These compounds display cytotoxic, pro-apoptotic, and pro-inflammatory activities and may play a role in the pathology of atherosclerosis. Their functions as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol are well established. During the past decade, however, novel physiologic activities of oxysterols have emerged. They are now thought to act as endogenous regulators of gene expression in lipid metabolism. Recently, new intracellular oxysterol receptors have been identified and novel functions of oxysterols in cell signaling discovered, evoking novel interest in these compounds in several branches of biomedical research.

  6. Cellular Functions of NSF: Not Just SNAPs and SNAREs

    OpenAIRE

    Zhao, Chunxia; Slevin, John T.; Whiteheart, Sidney W.

    2007-01-01

    NSF is an AAA protein, broadly required for intracellular membrane fusion. NSF functions as a SNARE chaperone which binds, through SNAPs, to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and β2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transie...

  7. Implication of altered proteasome function in alcoholic liver injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The proteasome is a major protein-degrading enzyme,which catalyzes degradation of oxidized and aged proteins, signal transduction factors and cleaves peptides for antigen presentation. Proteasome exists in the equilibrium of 26S and 20S particles. Proteasome function is altered by ethanol metabolism, depending on oxidative stress levels: low oxidative stress induces proteasome activity, while high oxidative stress reduces it. The proposed mechanisms for modulation of proteasome activity are related to oxidative modification of proteasomal proteins with primary and secondary products derived from ethanol oxidation.Decreased proteolysis by the proteasome results in the accumulation of insoluble protein aggregates, which cannot be degraded by proteasome and which further inhibit proteasome function. Mallory bodies, a common signature of alcoholic liver diseases, are formed by liver cells, when proteasome is unable to remove cytokeratins.Proteasome inhibition by ethanol also promotes the accumulation of pro-apoptotic factors in mitochondria of ethanol-metabolizing liver cells that are normally degraded by proteasome. In addition, decreased proteasome function also induces accumulation of the negative regulators of cytokine signaling (Ⅰ-κB and SOCS), thereby blocking cytokine signal transduction.Finally, ethanol-elicited blockade of interferon type 1 and 2 signaling and decreased proteasome function impairs generation of peptides for MHC class Ⅰ-restricted antigen presentation.

  8. Mnk kinase pathway: Cellular functions and biological outcomes

    Institute of Scientific and Technical Information of China (English)

    Sonali; Joshi; Leonidas; C; Platanias

    2014-01-01

    The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.

  9. Altered expression of prohibitin in psoriatic lesions and its cellular implication

    International Nuclear Information System (INIS)

    Psoriasis is characterized by excessive proliferation of keratinocytes accompanying acanthosis and incomplete differentiation. Prohibitin was investigated by examining its function of HaCaT as well as psoriasis. Psoriatic involved skin revealed high level of prohibitin in the basal layer. Prohibitin was analyzed by applying RNAi (PHBi) with HaCaT, which demonstrated increased S-phase. PHBi showed enhanced sensitivity to anthralin-mediated cell death due to enhanced loss of mitochondrial membrane potential, suggesting a protective role of prohibitin against apoptosis. Collectively, prohibitin plays a role both in cell cycle regulation and in maintaining mitochondrial integrity, implying its association with pathogenesis of psoriasis

  10. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha).

    Science.gov (United States)

    Reyes, J C; Barra, J; Muchardt, C; Camus, A; Babinet, C; Yaniv, M

    1998-12-01

    The mammalian SWI-SNF complex is an evolutionarily conserved, multi-subunit machine, involved in chromatin remodelling during transcriptional activation. Within this complex, the BRM (SNF2alpha) and BRG1 (SNF2beta) proteins are mutually exclusive subunits that are believed to affect nucleosomal structures using the energy of ATP hydrolysis. In order to characterize possible differences in the function of BRM and BRG1, and to gain further insights into the role of BRM-containing SWI-SNF complexes, the mouse BRM gene was inactivated by homologous recombination. BRM-/- mice develop normally, suggesting that an observed up-regulation of the BRG1 protein can functionally replace BRM in the SWI-SNF complexes of mutant cells. Nonetheless, adult mutant mice were approximately 15% heavier than control littermates. This may be caused by increased cell proliferation, as demonstrated by a higher mitotic index detected in mutant livers. This is supported further by the observation that mutant embryonic fibroblasts were significantly deficient in their ability to arrest in the G0/G1 phase of the cell cycle in response to cell confluency or DNA damage. These studies suggest that BRM participates in the regulation of cell proliferation in adult mice. PMID:9843504

  11. Anks3 alters the sub-cellular localization of the Nek7 kinase

    International Nuclear Information System (INIS)

    Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease, and a frequent cause of end-stage renal failure in children. To date, 17 NPH-associated gene products (NPHPs) have been identified. Most NPHPs participate in large multi-protein complexes that localize to the cilium and/or basal body; however, the precise composition of these complexes and their biological function remain largely unknown. We recently observed that the ankyrin repeat protein Anks3 interacts with the NPH family member Anks6. Both Anks3 and Anks6 form complexes with multiple other NPHPs, suggesting that both proteins function in similar or overlapping signaling pathways. Here, we show that Anks3, but not Anks6 interacted with the NIMA-related kinase Nek7, and was heavily modified in the presence of Nek7, resulting in an approximately 20 kD increase in molecular weight. Although mass spectrometry revealed increased serine and threonine phosphorylation of Anks3 primarily within the N-terminal ankyrin repeats also required for Nek7 interaction, the molecular weight increase occurred even in the presence of a kinase-dead Nek7 mutant, indicating that this modification was not caused by Nek7-dependent Anks3 phosphorylation. Furthermore, the Anks3 modification was specific for Nek7, and did not occur in the presence of Nek8. Importantly, Anks3 retained Nek7 in the cytoplasm, suggesting that, Nek7 triggers the modification of Anks3, which in turn prevents the nuclear localization of Nek7. - Highlights: • Anks3 interacted with Nek7 kinase, and was heavily modified in the presence of Nek7. • Anks3 N-terminal ankyrin repeats, but not SAM domain required for Nek7 interaction. • Nek7 increased Ser/Thr phosphorylation of Anks3 primarily within ankyrin domain. • Interaction with Anks3 led to cytoplasmic retention and nuclear exclusion of Nek7

  12. Anks3 alters the sub-cellular localization of the Nek7 kinase

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Haribaskar; Engel, Christina; Müller, Barbara [Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg (Germany); Dengjel, Jörn [Department of Dermatology, University Freiburg Medical Center and Center of Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg (Germany); Walz, Gerd [Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg (Germany); Center for Biological Signaling Studies (BIOSS), Albertstr. 19, 79104 Freiburg (Germany); Yakulov, Toma A., E-mail: toma.antonov.yakulov@uniklinik-freiburg.de [Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg (Germany)

    2015-08-28

    Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease, and a frequent cause of end-stage renal failure in children. To date, 17 NPH-associated gene products (NPHPs) have been identified. Most NPHPs participate in large multi-protein complexes that localize to the cilium and/or basal body; however, the precise composition of these complexes and their biological function remain largely unknown. We recently observed that the ankyrin repeat protein Anks3 interacts with the NPH family member Anks6. Both Anks3 and Anks6 form complexes with multiple other NPHPs, suggesting that both proteins function in similar or overlapping signaling pathways. Here, we show that Anks3, but not Anks6 interacted with the NIMA-related kinase Nek7, and was heavily modified in the presence of Nek7, resulting in an approximately 20 kD increase in molecular weight. Although mass spectrometry revealed increased serine and threonine phosphorylation of Anks3 primarily within the N-terminal ankyrin repeats also required for Nek7 interaction, the molecular weight increase occurred even in the presence of a kinase-dead Nek7 mutant, indicating that this modification was not caused by Nek7-dependent Anks3 phosphorylation. Furthermore, the Anks3 modification was specific for Nek7, and did not occur in the presence of Nek8. Importantly, Anks3 retained Nek7 in the cytoplasm, suggesting that, Nek7 triggers the modification of Anks3, which in turn prevents the nuclear localization of Nek7. - Highlights: • Anks3 interacted with Nek7 kinase, and was heavily modified in the presence of Nek7. • Anks3 N-terminal ankyrin repeats, but not SAM domain required for Nek7 interaction. • Nek7 increased Ser/Thr phosphorylation of Anks3 primarily within ankyrin domain. • Interaction with Anks3 led to cytoplasmic retention and nuclear exclusion of Nek7.

  13. Alterations in cognitive and psychological functioning after organic solvent exposure

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  14. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    Science.gov (United States)

    Zakikhani, Mahvash; Bazile, Miguel; Hashemi, Sina; Javeshghani, Shiva; Avizonis, Daina; St Pierre, Julie; Pollak, Michael N

    2012-01-01

    KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation. PMID:23185347

  15. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    Directory of Open Access Journals (Sweden)

    Mahvash Zakikhani

    Full Text Available KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM, an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT, we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation.

  16. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    OpenAIRE

    Zarbock Ralf; Woischnik Markus; Sparr Christiane; Thurm Tobias; Kern Sunčana; Kaltenborn Eva; Hector Andreas; Hartl Dominik; Liebisch Gerhard; Schmitz Gerd; Griese Matthias

    2012-01-01

    Abstract Background Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We al...

  17. Altered Interhemispheric Functional Coordination in Chronic Tinnitus Patients

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2015-01-01

    Full Text Available Purpose. Recent studies suggest that tinnitus may be due in part to aberrant callosal structure and interhemispheric interaction. To explore this hypothesis we use a novel method, voxel-mirrored homotopic connectivity (VMHC, to examine the resting-state interhemispheric functional connectivity and its relationships with clinical characteristics in chronic tinnitus patients. Materials and Methods. Twenty-eight chronic tinnitus patients with normal hearing thresholds and 30 age-, sex-, education-, and hearing threshold-matched healthy controls were included in this study and underwent the resting-state fMRI scanning. We computed the VMHC to analyze the interhemispheric functional coordination between homotopic points of the brain in both groups. Results. Compared to the controls, tinnitus patients showed significantly increased VMHC in the middle temporal gyrus, middle frontal gyrus, and superior occipital gyrus. In tinnitus patients, a positive correlation was found between tinnitus duration and VMHC of the uncus. Moreover, correlations between VMHC changes and tinnitus distress were observed in the transverse temporal gyrus, superior temporal pole, precentral gyrus, and calcarine cortex. Conclusions. These results show altered interhemispheric functional connectivity linked with specific tinnitus characteristics in chronic tinnitus patients, which may be implicated in the neuropathophysiology of tinnitus.

  18. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells.

    Science.gov (United States)

    Kim, Dong Kyun; Kim, Song Ja; Kang, Shin Sung; Jin, Eun Jung

    2009-09-30

    Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling. PMID:19478554

  19. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    International Nuclear Information System (INIS)

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis

  20. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, C.H.L.; Kraft, S.C.; Rothberg, R.M.

    1975-10-01

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis.

  1. Loss of VHL in RCC reduces repair and alters cellular response to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    MartenSchults

    2013-10-01

    Full Text Available Mutations of the von Hippel-Lindau (VHL tumor suppressor gene occur in the majority of sporadic renal-cell carcinomas (RCC. Loss of VHL function is associated with stabilization of hypoxia-inducible factor α (HIFα. We and others demonstrated that there is a two-way interaction between the aryl hydrocarbon receptor, which is an important mediator in the metabolic activation and detoxification of carcinogens, and the HIF1-pathway leading to an increased genetic instability when both pathways are simultaneously activated. The aim of this study was to investigate how environmental carcinogens, such as benzo[a]pyrene (BaP, which can be metabolically activated to BaP-7,8-diOH-9,10-epoxide (BPDE play a role in the etiology of renal-cell carcinomas (RCC. We exposed VHL deficient RCC4 cells, in which HIFα is stabilized regardless of oxygen tension, to 0.1µM BaP for 18 hours. The mutagenic BPDE-DNA adduct levels were increased in HIFα stabilized cells. Using qRT-PCR, we demonstrated that absence of VHL significantly induced the mRNA levels of AhR downstream target CYP1A1. Furthermore, HPLC analysis indicated that loss of VHL increased the concentration of BaP-7,8-dihydroxydiol, the pre-cursor metabolite of BPDE. Interestingly, the capacity to repair BPDE-DNA adducts in the HIFα stabilized RCC4 cells, was markedly reduced. Taken together, these data indicate that loss of VHL affects BaP-mediated genotoxic responses in renal-cell carcinoma and decreases repair capacity.

  2. Cellular proliferation and infiltration following interstitial irradiation of normal dog brain is altered by an inhibitor of polyamine synthesis

    International Nuclear Information System (INIS)

    Purpose: The objectives of this study were to quantitatively define proliferative and infiltrative cell responses after focal 125I irradiation of normal brain, and to determine the effects of an intravenous infusion of α-difluoromethylornithine (DFMO) on those responses. Methods and Materials: Adult beagle dogs were irradiated using high activity 125I sources. Saline (control) or DFMO (150 mg/kg/day) was infused for 18 days starting 2 days before irradiation. At varying times up to 8 weeks after irradiation, brain tissues were collected and the cell responses in and around the focal lesion were quantified. Immunohistochemical stains were used to label astrocytes (GFAP), vascular endothelial cells (Factor VIII), polymorphonuclear leukocytes (PMNs; MAC 387) and cells synthesizing deoxyribonucleic acid (DNA) (BrdU). Cellular responses were quantified using a histomorphometric analysis. Results: After radiation alone, cellular events included a substantial acute inflammatory response followed by increased BrdU labeling and progressive increases in numbers of capillaries and astrocytes. α-Difluoromethylornithine treatment significantly affected the measured cell responses. As in controls, an early inflammatory response was measured, but after 2 weeks there were more PMNs/unit area than in controls. The onset of measurable BrdU labeling was delayed in DFMO-treated animals, and the magnitude of labeling was significantly reduced. Increases in astrocyte and vessel numbers/mm2 were observed after a 2-week delay. At the site of implant, astrocytes from DFMO-treated dogs were significantly smaller than those from controls. Conclusions: There is substantial cell proliferation and infiltration in response to interstitial irradiation of normal brain, and these responses are significantly altered by DFMO treatment. Although the precise mechanisms by which DFMO exerts its effects in this model are not known, the results from this study suggest that modification of radiation

  3. Fluorescence-Based Codetection with Protein Markers Reveals Distinct Cellular Compartments for Altered MicroRNA Expression in Solid Tumors

    DEFF Research Database (Denmark)

    Sempere, Lorenzo F.; Preis, Meir; Yezefski, Todd;

    2010-01-01

    of altered miRNA expression in solid tumors, we developed a sensitive fluorescence-based in situ hybridization (ISH) method to visualize miRNA accumulation within individual cells in formalin-fixed, paraffin-embedded tissue specimens. This ISH method was implemented to be compatible with routine......Purpose: High-throughput profiling experiments have linked altered expression of microRNAs (miRNA) to different types of cancer. Tumor tissues are a heterogeneous mixture of not only cancer cells, but also supportive and reactive tumor microenvironment elements. To clarify the clinical significance...... clinical immunohistochemical (IHC) assays to enable the detection of miRNAs and protein markers in the same tissue section for colocalization and functional studies. Experimental Design: We used this combined ISH/IHC assay to study a subset of cancer-associated miRNAs, including miRNAs frequently detected...

  4. Stress-induced alterations in large-scale functional networks of the rodent brain.

    Science.gov (United States)

    Henckens, Marloes J A G; van der Marel, Kajo; van der Toorn, Annette; Pillai, Anup G; Fernández, Guillén; Dijkhuizen, Rick M; Joëls, Marian

    2015-01-15

    Stress-related psychopathology is associated with altered functioning of large-scale brain networks. Animal research into chronic stress, one of the most prominent environmental risk factors for development of psychopathology, has revealed molecular and cellular mechanisms potentially contributing to human mental disease. However, so far, these studies have not addressed the system-level changes in extended brain networks, thought to critically contribute to mental disorders. We here tested the effects of chronic stress exposure (10 days immobilization) on the structural integrity and functional connectivity patterns in the brain, using high-resolution structural MRI, diffusion kurtosis imaging, and resting-state functional MRI, while confirming the expected changes in neuronal dendritic morphology using Golgi-staining. Stress effectiveness was confirmed by a significantly lower body weight and increased adrenal weight. In line with previous research, stressed animals displayed neuronal dendritic hypertrophy in the amygdala and hypotrophy in the hippocampal and medial prefrontal cortex. Using independent component analysis of resting-state fMRI data, we identified ten functional connectivity networks in the rodent brain. Chronic stress appeared to increase connectivity within the somatosensory, visual, and default mode networks. Moreover, chronic stress exposure was associated with an increased volume and diffusivity of the lateral ventricles, whereas no other volumetric changes were observed. This study shows that chronic stress exposure in rodents induces alterations in functional network connectivity strength which partly resemble those observed in stress-related psychopathology. Moreover, these functional consequences of stress seem to be more prominent than the effects on gross volumetric change, indicating their significance for future research. PMID:25462693

  5. Hunting alters seedling functional trait composition in a Neotropical forest.

    Science.gov (United States)

    Kurten, Erin L; Wright, S Joseph; Carson, Walter P

    2015-07-01

    Defaunation alters trophic interactions between plants and vertebrates, whichmay disrupt trophic cascades, thereby favoring a subset of plant species and reducing diversity. If particular functional traits characterize the favored plant species,.then defaunation may alter community-wide patterns of functional trait composition. Changes in plant functional traits occurring with defaunation may help identify the species interactions affected by defaunation and the potential for other cascading effects of defaunation. We tested the hypotheses that defaunation would (1) disrupt seed dispersal, thereby favoring species whose dispersal agents are not affected (e.g., small birds, bats, and abiotic agents), (2) reduce seed predation, thereby favoring larger-seeded species, and (3) reduce herbivory, thereby favoring species with lower leaf mass per area (LMA), leaf toughness, and wood density. We examined how these six traits responded to vertebrate defaunation caused by hunters or by experimental exclosures among more than-30 000 woody seedlings in a lowland tropical moist forest. Exclosures reduced terrestrial frugivores, granivores, and herbivores, while hunters also reduced volant and arboreal frugivores and granivores. The comparison of exclosures and hunting allowed us to parse the impacts of arboreal and volant species (reduced by hunters only) and terrestrial species (reduced by both hunters and exclosures). The loss of terrestrial vertebrates alone had limited effects on plant trait composition. The additional loss of volant and arboreal vertebrates caused significant shifts in plant species composition towards communities with more species dispersed abiotically, including lianas and low wood-density tree species, and fewer species dispersed by large vertebrates. In contrast to previous studies, community seed mass did not decline significantly in hunted sites. Our exclosure results suggest this is because reducing seed predators disproportionately benefits large

  6. Sildenafil alters retinal function in mouse carriers of retinitis pigmentosa.

    Science.gov (United States)

    Nivison-Smith, Lisa; Zhu, Yuan; Whatham, Andrew; Bui, Bang V; Fletcher, Erica L; Acosta, Monica L; Kalloniatis, Michael

    2014-11-01

    Sildenafil, the active ingredient in Viagra, has been reported to cause transient visual disturbance from inhibition of phosphodiesterase 6 (PDE6), a key enzyme in the visual phototransduction pathway. This study investigated the effects of sildenafil on the rd1(+/-) mouse, a model for carriers of Retinitis Pigmentosa which exhibit normal vision but may have a lower threshold for cellular stress caused by sildenafil due to a heterozygous mutation in PDE6. Sildenafil caused a dose-dependent decrease in electroretinogram (ERG) responses of normal mice which mostly recovered two days post administration. In contrast, rd1(+/-) mice exhibited a significantly reduced photoreceptor and a supernormal bipolar cell response to sildenafil within 1 h of treatment. Carrier mice retinae took two weeks to return to baseline levels suggesting sildenafil has direct effects on both the inner and outer retina and these effects differ significantly between normal and carrier mice. Anatomically, an increase in expression of the early apoptotic marker, cytochrome C in rd1(+/-) mice indicated that the effects of sildenafil on visual function may lead to degeneration. The results of this study are significant considering approximately 1 in 50 people are likely to be carriers of recessive traits leading to retinal degeneration. PMID:25239397

  7. How linear features alter predator movement and the functional response.

    KAUST Repository

    McKenzie, Hannah W

    2012-01-18

    In areas of oil and gas exploration, seismic lines have been reported to alter the movement patterns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on an anisotropic elliptic partial differential equation, and used this to explore how wolf movement responses to seismic lines influence the encounter rate of the wolves with their prey. The model was parametrized using 5 min GPS location data. These data showed that wolves travelled faster on seismic lines and had a higher probability of staying on a seismic line once they were on it. We simulated wolf movement on a range of seismic line densities and drew implications for the rate of predator-prey interactions as described by the functional response. The functional response exhibited a more than linear increase with respect to prey density (type III) as well as interactions with seismic line density. Encounter rates were significantly higher in landscapes with high seismic line density and were most pronounced at low prey densities. This suggests that prey at low population densities are at higher risk in environments with a high seismic line density unless they learn to avoid them.

  8. Altered hippocampus synaptic function in selenoprotein P deficient mice

    Directory of Open Access Journals (Sweden)

    Peters Melinda M

    2006-09-01

    Full Text Available Abstract Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1 results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/- mice and wild type littermate controls (Sepp1(+/+ fed a high-selenium diet (1 mg Se/kg were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/- mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/- mice on a 1 mg Se/kg diet and Sepp1(+/+ mice fed a selenium-deficient (0 mg Se/kg diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS.

  9. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function.

    Science.gov (United States)

    Marguet, Maïté; Bonduelle, Colin; Lecommandoux, Sébastien

    2013-01-21

    The cell is certainly one of the most complex and exciting systems in Nature that scientists are still trying to fully understand. Such a challenge pushes material scientists to seek to reproduce its perfection by building biomimetic materials with high-added value and previously unmatched properties. Thanks to their versatility, their robustness and the current state of polymer chemistry science, we believe polymer-based materials to constitute or represent ideal candidates when addressing the challenge of biomimicry, which defines the focus of this review. The first step consists in mimicking the structure of the cell: its inner compartments, the organelles, with a multicompartmentalized structure, and the rest, i.e. the cytoplasm minus the organelles (mainly cytoskeleton/cytosol) with gels or particular solutions (highly concentrated for example) in one compartment, and finally the combination of both. Achieving this first structural step enables us to considerably widen the gap of possibilities in drug delivery systems. Another powerful property of the cell lies in its metabolic function. The second step is therefore to achieve enzymatic reactions in a compartment, as occurs in the organelles, in a highly controlled, selective and efficient manner. We classify the most exciting polymersome nanoreactors reported in our opinion into two different subsections, depending on their very final concept or purpose of design. We also highlight in a thorough table the experimental sections crucial to such work. Finally, after achieving control over these prerequisites, scientists are able to combine them and push the frontiers of biomimicry further: from cell structure mimics towards a controlled biofunctionality. Such a biomimetic approach in material design and the future research it will stimulate, are believed to bring considerable enrichments to the fields of drug delivery, (bio)sensors, (bio)catalysis and (bio)technology. PMID:23073077

  10. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  11. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  12. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    Science.gov (United States)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-01-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies. PMID:27405011

  13. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    Science.gov (United States)

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:26277093

  14. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    Science.gov (United States)

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism. PMID:26634890

  15. Dynamic alteration in splenic function during acute falciparum malaria

    Energy Technology Data Exchange (ETDEWEB)

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-09-10

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated /sup 51/Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes (mean +/- SD) vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies.

  16. Dynamic alteration in splenic function during acute falciparum malaria

    International Nuclear Information System (INIS)

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated 51Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes [mean +/- SD] vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies

  17. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    Directory of Open Access Journals (Sweden)

    Thomas eGrüter

    2015-05-01

    Full Text Available Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signalling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR results in similar molecular, cellular, cognitive and behavioural changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A, and increase in GABA(B-receptor-expression in PFC, along with a significant increase of GABA(B- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

  18. Does drought alter hydrological functions in forest soils?

    Science.gov (United States)

    Gimbel, Katharina; Puhlmann, Heike; Weiler, Markus

    2014-05-01

    Climate change will probably alter precipitation patterns across central Europe, and (summer) droughts are expected to be more frequent and severe in future. Droughts may modify soil properties, such as the pore volume distribution, soil aggregation, water repellency and rooting patterns. These changes in soil properties affect the hydrological functioning of the soil like water retention, infiltration and percolation and thereby the site conditions for plants. The aim of this research is to investigate the effect of droughts on the hydrological functioning of forest soils. We conducted rainfall-reduction experiments in three woodlands (nine investigation sites) across Germany. We established adaptive roofing systems which allow a flexible reduction of the precipitation between 15 % and 65 % of the incoming precipitation depending on the actual precipitation. The impact of the imposed droughts on the soil properties was assessed by repeated analyses of soil aggregation, hydrophobicity and pore volume distribution. Hydrological functioning of the soil was assessed by means of repeated dye tracer sprinkling experiments. Comparing dye tracer images of 2011 with images taken after two years of imposed drought, we found a general shift in infiltration processes depending on the soil type. Sandy soils showed a shift from front-like infiltration towards a more fingered and scattered infiltration. Soils rich in clay tend to develop unstained (= not wetted) areas in the top layer, which might hint to evolving hydrophobicity. This was confirmed by field and laboratory hydrophobicity tests. Further, the same profiles were showing signs of lower permeability in the bottom layers. Similar to hydrophobicity, we want to link the results of soil aggregation and pore volume distribution to the changes in the infiltration pattern. Our study shows that changes in precipitation pattern can severely affect forest soil properties and their hydrological functions. The results of this

  19. Leading research on artificial techniques controlling cellular function; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Advanced research and its applicability were surveyed to apply the advanced functional cells to industry. The basic target was set to develop, produce, control and utilize the functional cells, such as intelligent materials and self-regulation bioreactors. The regulation factors regarding apotosis, which is a process of cell suicide programmed within the cell itself of multicellular organisms, cell cycle and aging/ageless were investigated. Furthermore, the function of regulatory factors was investigated at the protein level. Injection of factors regulating cellular function and tissue engineering required for the regulation of cell proliferation were investigated. Tissue engineering is considered to be the intracellular regulation by gene transduction and the extracellular regulation by culture methods, such as coculture. Analysis methods for cell proliferation and function of living cells were investigated using the probes recognizing molecular structure. Novel biomaterials, artificial organ systems, cellular therapy and useful materials were investigated for utilizing the regulation techniques of cell proliferation. 425 refs., 85 figs., 9 tabs.

  20. Functional and genetic deconstruction of the cellular origin in liver cancer

    DEFF Research Database (Denmark)

    Marquardt, Jens U; Andersen, Jesper B; Thorgeirsson, Snorri S

    2015-01-01

    During the past decade, research on primary liver cancers has particularly highlighted the uncommon plasticity of differentiated parenchymal liver cells (that is, hepatocytes and cholangiocytes (also known as biliary epithelial cells)), the role of liver progenitor cells in malignant transformation......, the importance of the tumour microenvironment and the molecular complexity of liver tumours. Whereas other reviews have focused on the landscape of genetic alterations that promote development and progression of primary liver cancers and the role of the tumour microenvironment, the crucial importance...... of the cellular origin of liver cancer has been much less explored. Therefore, in this Review, we emphasize the importance and complexity of the cellular origin in tumour initiation and progression, and attempt to integrate this aspect with recent discoveries in tumour genomics and the contribution...

  1. Reconciling paradigms of abnormal pulmonary blood flow and quasi-malignant cellular alterations in pulmonary arterial hypertension.

    Science.gov (United States)

    Happé, C M; Szulcek, R; Voelkel, N F; Bogaard, H J

    2016-08-01

    In pulmonary arterial hypertension (PAH) structural and functional abnormalities of the small lung vessels interact and lead to a progressive increase in pulmonary vascular resistance and right heart failure. A current pathobiological concept characterizes PAH as a 'quasi-malignant' disease focusing on cancer-like alterations in endothelial cells (EC) and the importance of their acquired apoptosis-resistant, hyper-proliferative phenotype in the process of vascular remodeling. While changes in pulmonary blood flow (PBF) have been long-since recognized and linked to the development of PAH, little is known about a possible relationship between an altered PBF and the quasi-malignant cell phenotype in the pulmonary vascular wall. This review summarizes recognized and hypothetical effects of an abnormal PBF on the pulmonary vascular bed and links these to quasi-malignant changes found in the pulmonary endothelium. Here we describe that abnormal PBF does not only trigger a pulmonary vascular cell growth program, but may also maintain the cancer-like phenotype of the endothelium. Consequently, normalization of PBF and EC response to abnormal PBF may represent a treatment strategy in patients with established PAH. PMID:26804008

  2. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    Science.gov (United States)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; Phillips, T.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Spiering, B. A.; Stenger, M. B.; Taylor, L. C.; Wickwire, P. J.; Wood, S. J.

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  3. The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation

    OpenAIRE

    Helfer, Christine M.; Junpeng Yan; Jianxin You

    2014-01-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription act...

  4. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    Directory of Open Access Journals (Sweden)

    Lamichhane SP

    2015-01-01

    Full Text Available Surya P Lamichhane,1 Neha Arya,1,2 Nirdesh Ojha,3 Esther Kohler,1 V Prasad Shastri1,2,41Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, 2Helmholtz Virtual Institute on “Multifunctional Biomaterials for Medicine”, 3Laboratory for Process Technology, Department of Microsystems Engineering, University of Freiburg, Freiburg, 4Centre for Biological Signaling Studies (BIOSS, University of Freiburg, Freiburg, GermanyAbstract: The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG production is altered in many diseases (or pathologies, NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549 cells, human pulmonary microvascular endothelial cells (HPMEC, and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 µg/mL by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of

  5. Function of Membrane Rafts in Viral Lifecycles and Host Cellular Response

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    2011-01-01

    Full Text Available Membrane rafts are small (10–200 nm sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process and the late stage (assembly, budding, and release processes of virus particles. In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.

  6. Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis.

    Science.gov (United States)

    Cader, Sarah; Cifelli, Alberto; Abu-Omar, Yasir; Palace, Jacqueline; Matthews, Paul M

    2006-02-01

    Cognitive dysfunction (affecting particularly attention and working memory) occurs early in patients with multiple sclerosis. Previous studies have focused on identifying potentially adaptive functional reorganization through recruitment of new brain regions that could limit expression of these deficits. However, lesion studies remind us that functional specializations in the brain make certain brain regions necessary for a given task. We therefore have asked whether altered functional interactions between regions normally recruited provide an alternative adaptive mechanism with multiple sclerosis pathology. We used a version of the n-back task to probe working memory in patients with early multiple sclerosis. We applied a functional connectivity analysis to test whether relationships between relative activations in different brain regions change in potentially adaptive ways with multiple sclerosis. We studied 21 patients with relapsing-remitting multiple sclerosis and 16 age- and sex-matched healthy controls with 3T functional MRI. The two groups performed equally well on the task. Task-related activations were found in similar regions for patients and controls. However, patients showed relatively reduced activation in the superior frontal and anterior cingulate gyri (P > 0.01). Patients also showed a variable, but generally substantially smaller increase in activation than healthy controls with greater task complexity, depending on the specific brain region assessed (P memory. Functional connectivity analysis suggests that altered inter-hemispheric interactions between dorsal and lateral prefrontal regions may provide an adaptive mechanism that could limit clinical expression of the disease distinct from recruitment of novel processing regions. Together, these results suggest that therapeutic enhancement of the coherence of interactions between brain regions normally recruited (functional enhancement), as well as recruitment of alternative areas or use of

  7. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    Directory of Open Access Journals (Sweden)

    RamónALorca

    2014-07-01

    Full Text Available The large-conductance voltage- and Ca2+-activated K+ channel (BKCa is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits, association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.

  8. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Science.gov (United States)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  9. Chronic zinc deficiency alters chick gut microbiota composition and function

    Science.gov (United States)

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...

  10. Antisense expression of a rice cellular apoptosis susceptibility gene (OsCAS) alters the height of transgenic rice

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiao; HE Chaozu

    2007-01-01

    Cellular apoptosis susceptibility (CAS) gene plays important roles in mitosis, development and export of importin αfrom the nucleus, but its function in plant is unknown. In this study, a rice CAS ortholog (OsCAS), which encodes a predicted protein of 983 amino acids with 62% similarity to human CAS, was identified. DNA gel blot analysis revealed a single copy of OsCAS in the rice genome. A 973 bp fragment at the 3' end of OsCAS cDNA was cloned from rice cDNA library and transferred into rice in the antisense direction under the control of CaMV 35S promoter via Agrobacterium-mediated transformation method, 105 transgenic lines were obtained. Expression of OsCAS was suppressed in the antisense transgenic lines as revealed by semi-quantitative RT-PCR. The antisense transgenic lines showed dwarf phenotypes. The results indicated that OsCAS was involved in culm development of rice.

  11. Functional and structural alterations induced by copper in xanthine oxidase

    Institute of Scientific and Technical Information of China (English)

    Mahnaz Hadizadeh; Ezzatollah Keyhani; Jacqueline Keyhani; Cyrus Khodadadi

    2009-01-01

    Xanthine oxidase (XO),a key enzyme in purine metab-olism,produces reactive oxygen species causing vascu-lar injuries and chronic heart failure.Here,copper's ability to alter XO activity and structure was investi-gated in vitro after pre-incubation of the enzyme with increasing Cu2+ concentrations for various periods of time.The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions.Structural alterations were assessed by electronic absorption,fluorescence,and circular dichroism spectroscopy.Results showed that Cu2+ either stimulated or inhibited XO activity,depending on metal concentration and pre-incubation length,the latter also determining the inhibition type.Cu2+-XO complex formation was characterized by modifications in XO electronic absorption bands,intrinsic fluorescence,and α-helical and β-sheet content.Apparent dissociation constant values implied high- and low-affinity Cu2+ binding sites in the vicinity of the enzyme's reactive centers.Data indicated that Cu2+ binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleo-tide centers,changes in secondary structure,and mod-erate activity inhibition;binding to low affinity sites caused alterations around all XO reactive centers including FeS,changes in tertiary structure as reflected by alterations in spectral properties,and drastic activity inhibition.Stimulation was attributed to transient stabilization of XO optimal conformation.Results also emphasized the potential role of copper in the regu-lation of XO activity stemming from its binding properties.

  12. Molecular cause and functional impact of altered synaptic lipid signaling due to a prg-1 gene SNP.

    Science.gov (United States)

    Vogt, Johannes; Yang, Jenq-Wei; Mobascher, Arian; Cheng, Jin; Li, Yunbo; Liu, Xingfeng; Baumgart, Jan; Thalman, Carine; Kirischuk, Sergei; Unichenko, Petr; Horta, Guilherme; Radyushkin, Konstantin; Stroh, Albrecht; Richers, Sebastian; Sahragard, Nassim; Distler, Ute; Tenzer, Stefan; Qiao, Lianyong; Lieb, Klaus; Tüscher, Oliver; Binder, Harald; Ferreiros, Nerea; Tegeder, Irmgard; Morris, Andrew J; Gropa, Sergiu; Nürnberg, Peter; Toliat, Mohammad R; Winterer, Georg; Luhmann, Heiko J; Huai, Jisen; Nitsch, Robert

    2016-01-01

    Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases. PMID:26671989

  13. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. PMID:26350218

  14. Discovering the cellular-localized functional modules and modular interactions in response to liver cancer

    Institute of Scientific and Technical Information of China (English)

    Zhu Jing; Guo Zheng; Yang Da; Zhang Min; Wang Jing; Wang Chenguang

    2008-01-01

    In this paper, we firstly identify the functional modules enriched with differentially expressed genes (DEGs) and characterized by biological processes in specific cellular locations, based on gene ontology (GO) and microarray data. Then, we further define and filter disease relevant signature modules according to the ranking of the disease discriminating abilities of the pre-selected functional modules. At last, we analyze the potential way by which they cooperate towards human disease. Application of the proposed method to the analysis of a liver cancer dataset shows that, using the same false discovery rate (FDR) threshold, we can find more biologically meaningful and detailed processes by using the cellular localization information. Some biological evidences support the relevancy of our biological modules to the disease mechanism.

  15. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs.

    Science.gov (United States)

    Ivanina, Anna V; Nesmelova, Irina; Leamy, Larry; Sokolov, Eugene P; Sokolova, Inna M

    2016-06-01

    Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at recovery, combined with the ability to suppress ATP-demanding cellular functions during hypoxia, may contribute to high resilience of clams to H/R stress and help maintain energy homeostasis during frequent H/R cycles in the intertidal zone. PMID:27252455

  16. Copper transporters and chaperones: Their function on angiogenesis and cellular signalling

    Indian Academy of Sciences (India)

    SR BHARATHI DEVI; DHIVYA M ALOYSIUS; KN SULOCHANA

    2016-09-01

    Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studieshave reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate coppertrafficking to various cell organelles. However, the role and function of copper chaperones in relation to angiogenesishas to be further explored. The intracellular copper levels when in excess are deleterious and certain mutations ofcopper chaperones have been shown to induce cell death and influence various cellular metabolisms. The study ofthese chaperones will be helpful in understanding the players in the cascade of events in angiogenesis and their role incellular metabolic pathways. In this review we have briefly listed the copper chaperones associated with angiogenicand metabolic signalling and their function.

  17. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    Science.gov (United States)

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  18. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    OpenAIRE

    F. Bastida; Selevsek, N.; Torres, I F; Hernández, T.; García, C.

    2015-01-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracel...

  19. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    Science.gov (United States)

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-10-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  20. Chronic radiation-induced leukemogenesis: alterations of hematopoietic progenitor repair functions during preclinical phases

    International Nuclear Information System (INIS)

    Chronic exposure to low daily doses of whole-body gamma irradiation elicits a high incidence of myeloid leukemia (ML) and related myeloproliferative diseases (MPD) in beagles. Previously, the authors identified and partially characterized a four-phase sequence of evolving MPD as a consequence of chronic radiation exposure. With a focus on preclinical alterations in granulocyte/monocyte-committed stem cells, they have identified two critical events in the process: (i) an early event, involving the coupling of acquired radioresistance of the stem cell with renewed proliferative capacity; and (ii) a late event, involving acquired autocrine functions and associated change in stem cell clonality. In terms of the early event, repair-associated parameters are currently being examined on the cellular level by both split-dose and low dose-rate-type assays with survival enhancement used as the measured end point. On the molecular level, these parameters are examined by microfluorometric alkaline elution assays with DNA damage and repair used as end points

  1. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  2. Overexpression of Mitochondrial Sirtuins Alters Glycolysis and Mitochondrial Function in HEK293 Cells

    Science.gov (United States)

    Barbi de Moura, Michelle; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S.

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak. PMID:25165814

  3. Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory

    Science.gov (United States)

    del Río, José A.; Gavín, Rosalina

    2016-01-01

    ABSTRACT Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called “Prnp-flanking genes” that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrPC-mediated cell death should be considered, as Ockham's razor theory suggested. PMID:26890218

  4. Chronic Zinc Deficiency Alters Chick Gut Microbiota Composition and Function

    Directory of Open Access Journals (Sweden)

    Spenser Reed

    2015-11-01

    Full Text Available Zinc (Zn deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under conditions of Zn deficiency have yet to be studied. Using the broiler chicken (Gallus gallus model, the aim of this study was to characterize distinct cecal microbiota shifts induced by chronic dietary Zn depletion. We demonstrate that Zn deficiency induces significant taxonomic alterations and decreases overall species richness and diversity, establishing a microbial profile resembling that of various other pathological states. Through metagenomic analysis, we show that predicted Kyoto Encyclopedia of Genes and Genomes (KEGG pathways responsible for macro- and micronutrient uptake are significantly depleted under Zn deficiency; along with concomitant decreases in beneficial short chain fatty acids, such depletions may further preclude optimal host Zn availability. We also identify several candidate microbes that may play a significant role in modulating the bioavailability and utilization of dietary Zn during prolonged deficiency. Our results are the first to characterize a unique and dysbiotic cecal microbiota during Zn deficiency, and provide evidence for such microbial perturbations as potential effectors of the Zn deficient phenotype.

  5. Altered adipocyte structure and function in nutritionally programmed microswine offspring.

    Science.gov (United States)

    DuPriest, E A; Kupfer, P; Lin, B; Sekiguchi, K; Morgan, T K; Saunders, K E; Chatkupt, T T; Denisenko, O N; Purnell, J Q; Bagby, S P

    2012-06-01

    Adipose tissue (AT) dysfunction links obesity of any cause with cardiometabolic disease, but whether early-life nutritional deficiency can program adipocyte dysfunction independently of obesity is untested. In 3-5-month-old juvenile microswine offspring exposed to isocaloric perinatal maternal protein restriction (MPR) and exhibiting accelerated prepubertal fat accrual without obesity, we assessed markers of acquired obesity: adiponectin and tumor necrosis factor (TNF)-α messenger ribonucleic acid (mRNA) levels and adipocyte size in intra-abdominal (ABD-AT) and subcutaneous (SC-AT) adipose tissues. Plasma cortisol, leptin and insulin levels were measured in fetal, neonatal and juvenile offspring. In juvenile low-protein offspring (LPO), adipocyte size in ABD-AT was reduced 22% (P = 0.011 v. controls), whereas adipocyte size in SC-AT was increased in female LPO (P = 0.05) and normal in male LPO; yet, adiponectin mRNA in LPO was low in both sexes and in both depots (P programming of adipocyte size and gene expression and subtly altered glucose homeostasis. Reduced adiponectin mRNA and adipokine dysregulation in juvenile LPO following accelerated growth occurred independently of obesity, adipocyte hypertrophy or inflammatory markers; thus, perinatal MPR and/or growth acceleration can alter adipocyte structure and disturb adipokine homeostasis in metabolically adverse patterns predictive of enhanced disease risk. PMID:25102010

  6. Cellular functions of p53 and p53 gene family members p63 and p73

    Directory of Open Access Journals (Sweden)

    Nadir Koçak

    2011-12-01

    Full Text Available p53 is a transcription factor that regulates multiple cellular processes that are also important in cellular fates such as cell cycle arrest or programmed cell death. Induction of growth arrest or cell death by p53 prevents the replication of damaged DNA and proliferation of genetically abnormal cells. Therefore, inactivation of p53 by mutation or deletion is also important in ensuring the cellular homeostasis. However, studies showed that p53 deficient mice and cells such as Saos-2 cells are maintaining their life. This situation suggests that p53-related proteins might compensate the functions of p53 in p53 deficient organisms. The identification of two p53-related proteins, p63 and p73 revealed the transcription of p53 responsive genes in p53 deficient organisms. Both p63 and p73 proteins have high homology with the p53 protein and share some of the functions of p53. In contrast to p53, p63 and p73 rarely mutated in human cancers. Here we studied to summarize the current information about the p53 and other p53-related proteins, p63 and p73 that are included into the p53 gene family.

  7. Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Jyothi U. Menon, Praveen K. Gulaka, Madalyn A. McKay, Sairam Geethanath, Li Liu, Vikram D. Kodibagkar

    2012-01-01

    Full Text Available An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence, dual-functional (oximetry/detection nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications.

  8. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    . Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross......The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging...... in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some...

  9. Alterations in aggregation function of whole blood platelets following irradiation

    International Nuclear Information System (INIS)

    By using whole blood platelet aggregometer, changes of platelet aggregation function following γ-irradiation with 6 Gy were studied. The results indicated that the function of platelet aggreation was enhanced from 4 hour to the third day after radiation, the peak value being on the third day. But it reduced on the seventh and tenth days. The early elevation of platelet aggregation may aggravate the microcirculation disturbances, while the reduction of platelet aggregation is one of the causes of hemorrhage syndrome following radiation. Therefore, measures effective in early inhibition and late improvement of platelet aggregation function may be helpful in repair of acute radiation injury

  10. Molecular and Cellular Mechanisms Elucidating Neurocognitive Basis of Functional Impairments Associated with Intellectual Disability in Down Syndrome

    Science.gov (United States)

    Rachidi, Mohammed; Lopes, Carmela

    2010-01-01

    Down syndrome, the most common genetic cause of intellectual disability, is associated with brain disorders due to chromosome 21 gene overdosage. Molecular and cellular mechanisms involved in the neuromorphological alterations and cognitive impairments are reported herein in a global model. Recent advances in Down syndrome research have lead to…

  11. Failure to interact with Brd4 alters the ability of HPV16 E2 to regulate host genome expression and cellular movement.

    Science.gov (United States)

    Gauson, Elaine J; Wang, Xu; Dornan, Edward S; Herzyk, Pawel; Bristol, Molly; Morgan, Iain M

    2016-01-01

    The E2 protein of the carcinogen human papillomavirus 16 (HPV16) regulates replication and transcription of the viral genome in association with viral and cellular proteins. Our previous work demonstrated that E2 can regulate transcription from the host genome. E2 can activate transcription from adjacent promoters when located upstream using E2 DNA binding sequences and this activation is dependent upon the cellular protein Brd4; this report demonstrates that a Brd4 binding E2 mutant alters host genome expression differently from wild type E2. Of particular note is that highly down regulated genes are mostly not affected by failure to interact with Brd4 suggesting that the E2-Brd4 interaction is more responsible for the transcriptional activation of host genes rather than repression. Therefore failure to interact efficiently with Brd4, or altered levels of Brd4, would alter the ability of E2 to regulate the host genome and could contribute to determining the outcome of infection. PMID:26365679

  12. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  13. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation.

    Science.gov (United States)

    Helfer, Christine M; Yan, Junpeng; You, Jianxin

    2014-08-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription activation, is important for E2's transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP) analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2's interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+), a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV) life cycle. PMID:25140737

  14. The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation

    Directory of Open Access Journals (Sweden)

    Christine M. Helfer

    2014-08-01

    Full Text Available The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb, a functional interaction partner of Brd4 in transcription activation, is important for E2’s transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2’s interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+, a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV life cycle.

  15. Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function

    Energy Technology Data Exchange (ETDEWEB)

    Sucre, Elliott, E-mail: elliott.sucre@univ-montp2.fr [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Vidussi, Francesca [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Mostajir, Behzad [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Centre d' ecologie marine experimentale MEDIMEER (Mediterranean centre for Marine Ecosystem Experimental Research), Universite Montpellier 2-CNRS (UMS 3301), Station Mediterraneenne de l' Environnement Littoral, MEDIMEER, 2 Rue des Chantiers, 34200 Sete (France); Charmantier, Guy; Lorin-Nebel, Catherine [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France)

    2012-03-15

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 {mu}W cm{sup -2}: 4 h L/20 h D) and medium (80 {mu}W cm{sup -2}: 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na{sup +}/K{sup +}-ATPase and the Na{sup +}/K{sup +}/2Cl{sup -} cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  16. Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function

    International Nuclear Information System (INIS)

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280–320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 μW cm−2: 4 h L/20 h D) and medium (80 μW cm−2: 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na+/K+-ATPase and the Na+/K+/2Cl− cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  17. Modeling altered functional connectivity in brain disease states

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav

    Lorentz Center, 2011. [Computational Neuroscience and the Dynamics of Disease States. 08.08.2012-12.08.2012, Leiden] Institutional research plan: CEZ:AV0Z10300504 Keywords : synchronization * brain disease * computational modelling * functional connectivity * graph theory * structural connectivity Subject RIV: FH - Neurology http://www.lorentzcenter.nl/lc/web/2011/457/abstracts.php3?wsid=457&type=presentations

  18. Does Exercise Alter Immune Function and Respiratory Infections?

    Science.gov (United States)

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  19. Altered monocyte function in experimental preeclampsia in the rat

    NARCIS (Netherlands)

    Faas, MM; Broekema, M; Moes, H; van der Schaaf, G; Heineman, MJ; de Vos, P

    2004-01-01

    Objectives: In the present study, we evaluated functional activity of monocytes in experimental preeclampsia induced by low-dose endotoxin infusion. Study design: Pregnant (n = 12) and cyclic rats (n = 12) were equipped with a permanent jugular vein cannula and infused with either low-dose endotoxin

  20. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Directory of Open Access Journals (Sweden)

    Thomas Wallach

    2013-03-01

    Full Text Available Essentially all biological processes depend on protein-protein interactions (PPIs. Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc. contributing to temporal organization of cellular physiology in an unprecedented manner.

  1. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    Science.gov (United States)

    Hubbard, Catherine S; Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  2. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    Directory of Open Access Journals (Sweden)

    Catherine S Hubbard

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL. Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC, whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC. In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI, whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease

  3. Alterations in auxin homeostasis suppress defects in cell wall function.

    Directory of Open Access Journals (Sweden)

    Blaire J Steinwand

    Full Text Available The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs, FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4. Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.

  4. The anti‑dengue virus properties of statins may be associated with alterations in the cellular antiviral profile expression.

    Science.gov (United States)

    Bryan-Marrugo, Owen Lloyd; Arellanos-Soto, Daniel; Rojas-Martinez, Augusto; Barrera-Saldaña, Hugo; Ramos-Jimenez, Javier; Vidaltamayo, Roman; Rivas-Estilla, Ana María

    2016-09-01

    Dengue virus (DENV) susceptibility to cholesterol depleting treatments has been previously reported. There are numerous questions regarding how DENV seizes cellular machinery and cholesterol to improve viral production and the effect of cholesterol sequestering agents on the cellular antiviral response. The aim of the present study was to evaluate the mechanisms involved in the negative regulation of DENV replication induced by agents that diminish intracellular cholesterol levels. Cholesterol synthesis was pharmacologically (fluvastatin, atorvastatin, lovastatin, pravastatin and simvastatin treatment) and genetically (HMGCR‑RNAi) inhibited, in uninfected and DENV2‑infected hepatoma Huh‑7 cells. The cholesterol levels, DENV titer and cellular antiviral expression profile were evaluated. A reduction in the DENV titer, measured as plaque forming units, was observed in DENV‑infected cells following 48 h treatment with 10 µM fluvastatin, 10 µM atorvastatin, 20 µM lovastatin and 20 µM simvastatin, which achieved 70, 70, 65 and 55% DENV2 inhibition, respectively, compared with the untreated cells. In addition, the cytopathic effect was reduced in the statin‑treated DENV‑infected cells. Statins simultaneously reduced cholesterol levels at 48 h, with the exception of DENV2 infected cells. Genetic inhibition of cholesterol synthesis was performed using RNA interference for 3‑hydroxy‑3‑methylglutaryl‑CoA reductase (HMGCR‑siRNA), which indicated a slight reduction in DENV2 titer at 48 h post‑infection, however, with no significant reduction in cholesterol levels. In addition, DENV2 infection was observed to augment the intracellular cholesterol levels in all experimental conditions. Comparison between the cellular antiviral response triggered by DENV2 infection, statin treatment and HMGCR‑siRNA in infected, uninfected, treated and untreated Huh7 cells, showed different expression profiles for the antiviral genes evaluated. All

  5. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  6. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    Science.gov (United States)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  7. Alterations in mitochondrial number and function in Alzheimer's disease fibroblasts.

    Science.gov (United States)

    Gray, Nora E; Quinn, Joseph F

    2015-10-01

    Mitochondrial dysfunction is observed in brains of Alzheimer's Disease patients as well as many rodent model systems including those modeling mutations in preseinilin 1 (PSEN1). The aim of our study was to characterize mitochondrial function and number in fibroblasts from AD patients with PSEN1 mutations. We used biochemical assays, metabolic profiling and fluorescent labeling to assess mitochondrial number and function in fibroblasts from three AD patients compared to fibroblasts from three controls. The mutant AD fibroblasts had increased Aβ42 relative to controls along with reduction in ATP, basal and maximal mitochondrial respiration as well as impaired spare mitochondrial respiratory capacity. Fluorescent staining and expression of genes encoding electron transport chain enzymes showed diminished mitochondrial content in the AD fibroblasts. This study demonstrates that mitochondrial dysfunction is observable in AD fibroblasts and provides evidence that this model system could be useful as a tool to screen disease-modifying compounds. PMID:25862550

  8. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  9. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  10. A new design for reconfigurable XOR function based on cellular neural networks

    Science.gov (United States)

    Liu, Yanyi; Liu, Wenbo

    2014-10-01

    We have described a new method to construct the reconfigurable XOR logic circuit by using the modification of the standard uncoupled cellular neural network (CNN) cells. The modification of the cell is easier to implement in engineering applications. The scheme proposed in this paper, using the modification of standard uncoupled CNN cells, allows less hardware consumption in comparison to the utilisation of chaos computing system or harnessing piecewise-linear systems. The template parameters of the modified cell have been discussed, and the physical circuit implementing the reconfigurable two-input and three-input XOR function has also been presented.

  11. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Science.gov (United States)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  12. Altered colonic function and microbiota profile in a mouse model of chronic depression

    OpenAIRE

    Park, A J; Collins, J.; BLENNERHASSETT, P. A.; Ghia, J E; Verdu, E. F.; Bercik, P; COLLINS, S. M.

    2013-01-01

    Background Depression often coexists with the irritable bowel syndrome (IBS) which is characterized by alterations in gut function. There is emerging evidence that the microbial composition (microbiota) of the gut is altered in IBS, but the basis for this is poorly understood. The aim of this study was to determine whether the induction of chronic depression results in changes in the colonic function and in its microbial community, and to explore underlying mechanisms. Methods Bilateral olfac...

  13. Dietary Restriction Mitigates Cocaine-Induced Alterations of Olfactory Bulb Cellular Plasticity and Gene Expression, and Behavior

    OpenAIRE

    Xu, Xiangru; Mughal, Mohamed R.; Hall, F. Scott; Perona, Maria T. G.; Pistell, Paul J.; Lathia, Justin D.; Chigurupati, Srinivasulu; Becker, Kevin G.; Ladenheim, Bruce; Niklason, Laura E.; Uhl, George R; Cadet, Jean Lud; Mattson, Mark P.

    2010-01-01

    Because the olfactory system plays a major role in food consumption, and because “food addiction” and associated morbidities have reached epidemic proportions, we tested the hypothesis that dietary energy restriction can modify adverse effects of cocaine on behavior and olfactory cellular and molecular plasticity. Mice maintained on an alternate day fasting (ADF) diet exhibited increased baseline locomotion and increased cocaine-sensitized locomotion during cocaine conditioning, despite no ch...

  14. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    OpenAIRE

    Zhang, Hang; Xu, Lele; Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract mor...

  15. Chorionic plate arterial function is altered in maternal obesity

    OpenAIRE

    Hayward, C.E.; Higgins, L.; Cowley, E.J.; Greenwood, S. l.; Mills, T.A.; Sibley, C. P.; Wareing, M.

    2013-01-01

    Objectives To characterise Chorionic Plate Artery (CPA) function in maternal obesity, and investigate whether leptin exposure reproduces the obese CPA phenotype in normal-BMI women. Study design CPA responses to the thromboxane-A2 mimetic U46619 (pre/post leptin incubation), to the nitric oxide donor sodium nitroprusside (SNP) and the occurrence of tone oscillations (pre/post leptin incubation) were assessed in 46 term placentas from women of normal (18.5–24.9) or obese (>30) Body Mass Index ...

  16. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Torsten Schröder

    2016-04-01

    Conclusions: We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH.

  17. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  18. Altered Functional Connectivity within and between Brain Modules in Absence Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Cui-Ping Xu

    2013-01-01

    Full Text Available Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.

  19. Novel metastasis-related gene CIM functions in the regulation of multiple cellular stress-response pathways.

    Science.gov (United States)

    Yanagisawa, Kiyoshi; Konishi, Hiroyuki; Arima, Chinatsu; Tomida, Shuta; Takeuchi, Toshiyuki; Shimada, Yukako; Yatabe, Yasushi; Mitsudomi, Tetsuya; Osada, Hirotaka; Takahashi, Takashi

    2010-12-01

    Various stresses of the tumor microenvironment produced by insufficient nutrients, pH, and oxygen can contribute to the generation of altered metabolic and proliferative states that promote the survival of metastatic cells. Among many cellular stress-response pathways activated under such conditions are the hypoxia-inducible factor (HIF) pathway and the unfolded protein response (UPR), which is elicited as a response to endoplasmic reticulum (ER) stress. In this study, we report the identification of a novel cancer invasion and metastasis-related gene (hereafter referred to as CIM, also called ERLEC1), which influences both of these stress-response pathways to promote metastasis. CIM was identified by comparing the gene expression profile of a highly metastatic human lung cancer cell line with its weakly metastatic parental clone. We showed that CIM is critical for metastatic properties in this system. Proteomic approaches combined with bioinformatic analyses revealed that CIM has multifaceted roles in controlling the response to hypoxia and ER stress. Specifically, CIM sequestered OS-9 from the HIF-1α complex and PHD2, permitting HIF-1α accumulation by preventing its degradation. Ectopic expression of CIM in lung cancer cells increased their tolerance to hypoxia. CIM also modulated UPR through interaction with the key ER stress protein BiP, influencing cell proliferation under ER stress conditions. Our findings shed light on how tolerance to multiple cellular stresses at a metastatic site can be evoked by an integrated mechanism involving CIM, which can function to coordinate those responses in a manner that promotes metastatic cell survival. PMID:21118962

  20. Lou/C obesity-resistant rat exhibits hyperactivity, hypermetabolism, alterations in white adipose tissue cellularity, and lipid tissue profiles.

    Science.gov (United States)

    Soulage, Christophe; Zarrouki, Bader; Soares, Anisio Francesco; Lagarde, Michel; Geloen, Alain

    2008-02-01

    Lou/C obesity-resistant rat constitutes an original model to understand the phenomena of overweight and obesity. The aim of the present study was to identify metabolic causes for the outstanding leanness of Lou/C rat. To this end, the metabolic profiles (food intake, energy expenditure, and physical activity) and the cellular characteristics of white adipose tissue (lipogenesis, lipolysis, cellularity, and lipid composition) in 30-wk-old Lou/C rats were compared with age-matched Wistar rats. Lou/C rats exhibited a lower body weight (-45%), reduced adiposity (-80%), increased locomotor activity (+95%), and higher energy expenditure (+11%) than Wistar rats. Epididymal adipose tissue of Lou/C rat was twice lower than that of Wistar rat due to both a reduction in both adipocyte size (-25%) and number (three times). Basal lipolysis and sensitivity to noradrenaline were similar; however, the responsiveness to noradrenaline was lower in adipocytes from Lou/C compared with that from Wistar rats. Lipidomic analysis of plasma, adipose tissue, and liver revealed profound differences in lipid composition between the two strains. Of note, the desaturation indexes (ratio C16:1/C16:0 and C18:1/C18:0) were lower in Lou/C, indicating a blunted activity of delta-9-desaturase such as stearoyl-coenzyme A-desaturase-1. Increased physical activity, increased energy expenditure, and white adipose tissue cellularity are in good agreement with previous observations suggesting that a higher sympathetic tone in Lou/C could contribute to its lifelong leanness. PMID:18006635

  1. Non-specific cellular uptake of surface-functionalized quantum dots

    CERN Document Server

    Kelf, T A; Sun, J; Kim, E J; Goldys, E M; Zvyagin, A V; 10.1088/0957-4484/21/28/285105

    2010-01-01

    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically-significant moieties, e.g. carboxyl, amino, streptavidin were used, in combination with the surface derivatization with polyethylene glycol (PEG) in a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG-derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specifi...

  2. The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype.

    Science.gov (United States)

    Raja, Vaishnavi; Greenberg, Miriam L

    2014-04-01

    The phospholipid cardiolipin (CL) plays a role in many cellular functions and signaling pathways both inside and outside of mitochondria. This review focuses on the role of CL in energy metabolism. Many reactions of electron transport and oxidative phosphorylation, the transport of metabolites required for these processes, and the stabilization of electron transport chain supercomplexes require CL. Recent studies indicate that CL is required for the synthesis of iron-sulfur (Fe-S) co-factors, which are essential for numerous metabolic pathways. Activation of carnitine shuttle enzymes that are required for fatty acid metabolism is CL dependent. The presence of substantial amounts of CL in the peroxisomal membrane suggests that CL may be required for peroxisomal functions. Understanding the role of CL in energy metabolism may identify physiological modifiers that exacerbate the loss of CL and underlie the variation in symptoms observed in Barth syndrome, a genetic disorder of CL metabolism. PMID:24445246

  3. TSH RECEPTOR GENETIC ALTERATIONS IN THE AUTONOMOUSLY FUNCTIONING THYROID ADENOMAS

    Institute of Scientific and Technical Information of China (English)

    施秉银; 李雪萍; 李社莉; 薛明战; 王毅; 徐莉

    2004-01-01

    Objective To determine the relationship between TSH receptor gene mutations and autonomously functioning thyroid adenomas (AFTAs). Methods The thyroid samples from 14 cases of diagnosed AFTAs were analyzed, with normal thyroid specimens adjacent to the tumors as controls. The 155 base pairs DNA fragments which encompassed the third cytoplasmic loop and the sixth transmembrane segments in the TSH receptor gene exon 10 were amplified by Polymerase chain reaction (PCR) and analyzed by the single-strand conformation polymorphism (SSCP). Direct sequencing of the PCR products was performed with Prism Dye Terminator Cycle Sequencing Core Kit. Results 6 of 14 AFTA specimens displayed abnormal migration in SSCP analysis. In sequence analysis of 3 abnormally migrated samples, one base substitution at nucleotide 1957 (A to C) and two same insertion mutations of one adenosine nucleotide between nucleotide 1972 and 1973 were identified. No mutations were found in controls. Conclusion This study confirmed the presence of TSH receptor gene mutations in AFTAs; both one-point substitution mutation and one-base insertion mutation were found to be responsible for the pathogenesis of AFTAs.

  4. Free p-Cresol Alters Neutrophil Function in Dogs.

    Science.gov (United States)

    Bosco, Anelise Maria; Pereira, Priscila Preve; Almeida, Breno Fernando Martins; Narciso, Luis Gustavo; Dos Santos, Diego Borba; Santos-Neto, Álvaro José Dos; Ferreira, Wagner Luis; Ciarlini, Paulo César

    2016-05-01

    To achieve a clearer understanding of the mechanisms responsible for neutrophil dysfunction recently described in dogs with chronic renal failure (CRF), the plasma concentrations of free p-cresol in healthy dogs (n = 20) and those with CRF (n = 20) were compared. The degree of correlation was determined between plasma levels of p-cresol and markers of oxidative stress and function of neutrophils in these dogs. The effect of this compound on oxidative metabolism and apoptosis was assessed in neutrophils isolated from 16 healthy dogs incubated in RPMI 1640 supplemented with p-cresol (0.405 mg/L) and compared with medium supplemented with uremic plasma (50%). To achieve this, the plasma concentration of p-cresol was quantified by liquid phase high-performance liquid chromatography. The neutrophil oxidative metabolism was determined using the probes hydroethidine and 2',7'-dichlorofluorescein diacetate and apoptosis was measured using Annexin V-PE by capillary flow cytometry. Compared with the healthy dogs, uremic dogs presented higher concentrations of free p-cresol, greater oxidative stress, and neutrophils primed for accelerated apoptosis. The free p-cresol induced in neutrophils from healthy dogs increased apoptosis and decreased reactive oxygen species production. We conclude that the health status presented during uremia concomitant with the increase in plasma free p-cresol can contribute to the presence of immunosuppression in dogs with CRF. PMID:26496142

  5. Ultrastructure and function of cellular components of the intercentral joint in the percoid vertebral column.

    Science.gov (United States)

    Schmitz, R J

    1995-10-01

    The intervertebral joint of the teleost, Perca flavescens, is formed by opposing amphicoelus centra whose rims are connected by external ligaments. The tissue, located within the space formed by these structures, is derived from the notochord and consists of the elastic externa, the fibrous sheath, and the notochordal cells. The cellular tissue within the joint has many characteristics of a stratified epithelium, and when examined with the transmission electron microscope, at least three morphologically distinct regions can be recognized. First, a peripheral single layer of columnar to squamous-shaped cells lies on a basement membrane immediately deep to the fibrous sheath. Second, several layers of cells, each containing a large central vacuole, occur. Third, in the deepest part of the joint, several layers of attenuated cells surround intracentral fluid-filled lacunae and form a transverse septum across the joint. All cells in this tissue are interconnected by numerous desmosomes. Further, an extensive intermediate filament network exists in all three types of cells. The intermediate filament network in the vacuolated cells is arranged cortically around a membrane-bound vacuole, and suggests that these cells may act as passive cellular hydrostats. The squamous cells surrounding the joint lacunae are structurally similar to mammalian epidermal cells, and the intermediate filament network within them is layered parallel to the surface of the lacunae. The organization of these cells suggests that they are the tensile component of extracellular hydrostats within the intercentral joint. These cellular and extracellular hydrostats within the intercentral joint would function to resist the compressive and tensile stresses encountered during undulatory swimming. PMID:7473764

  6. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    Science.gov (United States)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  7. Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes

    Directory of Open Access Journals (Sweden)

    Feuer Gerold

    2004-11-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30II differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. Results Herein, we further characterized the role of p30II in regulation of cellular gene expression, using stable p30II expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30II expressing Jurkat T cells. In all categories, p30II appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. Conclusions We are the first to demonstrate that p30II, while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo.

  8. Phenyl 2-pyridyl ketoxime induces cellular senescence-like alterations via nitric oxide production in human diploid fibroblasts.

    Science.gov (United States)

    Yang, Kyeong Eun; Jang, Hyun-Jin; Hwang, In-Hu; Chung, Young-Ho; Choi, Jong-Soon; Lee, Tae-Hoon; Chung, Yun-Jo; Lee, Min-Seung; Lee, Mi Young; Yeo, Eui-Ju; Jang, Ik-Soon

    2016-04-01

    Phenyl-2-pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near-senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose- and time-dependent manner and resulted in senescence-associated β-galactosidase (SA-β-gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence-associated proteins, such as phosphorylated ERK1/2, caveolin-1, p53, p16(ink4a) , and p21(waf1) , were elevated in PPKO-treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N-acetylcysteine, 2,2,6,6-tetramethylpiperidinyloxy, and L-buthionine-(S,R)-sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L-NG-nitroarginine methyl ester and L-NG-monomethylarginine, PPKO-induced transient NO production and SA-β-gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence-associated proteins. PMID:26696133

  9. A Current View of Functional Biomaterials for Wound Care, Molecular and Cellular Therapies

    Directory of Open Access Journals (Sweden)

    Francesco Piraino

    2015-01-01

    Full Text Available The intricate process of wound healing involves activation of biological pathways that work in concert to regenerate a tissue microenvironment consisting of cells and external cellular matrix (ECM with enzymes, cytokines, and growth factors. Distinct stages characterize the mammalian response to tissue injury: hemostasis, inflammation, new tissue formation, and tissue remodeling. Hemostasis and inflammation start right after the injury, while the formation of new tissue, along with migration and proliferation of cells within the wound site, occurs during the first week to ten days after the injury. In this review paper, we discuss approaches in tissue engineering and regenerative medicine to address each of these processes through the application of biomaterials, either as support to the native microenvironment or as delivery vehicles for functional hemostatic, antibacterial, or anti-inflammatory agents. Molecular therapies are also discussed with particular attention to drug delivery methods and gene therapies. Finally, cellular treatments are reviewed, and an outlook on the future of drug delivery and wound care biomaterials is provided.

  10. Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1

    OpenAIRE

    Dawson, N.; Kurihara, M.; Thomson, D. M.; Winchester, C L; McVie, A.; Hedde, J.R.; Randall, A.D.; Shen, S.; Seymour, P.A.; Hughes, Z.A.; Dunlop, J; Brown, J.T.; Brandon, N. J.; Morris, B J; Pratt, J.A.

    2015-01-01

    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the...

  11. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol alters cellular cholesterol homeostasis by modulating the endosome lipid domains.

    Science.gov (United States)

    Makino, Asami; Ishii, Kumiko; Murate, Motohide; Hayakawa, Tomohiro; Suzuki, Yusuke; Suzuki, Minoru; Ito, Kazuki; Fujisawa, Tetsuro; Matsuo, Hirotami; Ishitsuka, Reiko; Kobayashi, Toshihide

    2006-04-11

    D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) is a frequently used inhibitor of glycosphingolipid biosynthesis. However, some interesting characteristics of D-PDMP cannot be explained by the inhibition of glycolipid synthesis alone. In the present study, we showed that d-PDMP inhibits the activation of lysosomal acid lipase by late endosome/lysosome specific lipid, bis(monoacylglycero)phosphate (also called as lysobisphosphatidic acid), through alteration of membrane structure of the lipid. When added to cultured fibroblasts, D-PDMP inhibits the degradation of low-density lipoprotein (LDL) and thus accumulates both cholesterol ester and free cholesterol in late endosomes/lysosomes. This accumulation results in the inhibition of LDL-derived cholesterol esterification and the decrease of cell surface cholesterol. We showed that D-PDMP alters cellular cholesterol homeostasis in a glycosphingolipid-independent manner using L-PDMP, a stereoisomer of D-PDMP, which does not inhibit glycosphingolipid synthesis, and mutant melanoma cell which is defective in glycolipid synthesis. Altering cholesterol homeostasis by D-PDMP explains the unique characteristics of sensitizing multidrug resistant cells by this drug. PMID:16584188

  12. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system.

    Science.gov (United States)

    Vitlic, Ana; Lord, Janet M; Phillips, Anna C

    2014-06-01

    The immune response is essential for keeping an organism healthy and for defending it from different types of pathogens. It is a complex system that consists of a large number of components performing different functions. The adequate and controlled interaction between these components is necessary for a robust and strong immune response. There are, however, many factors that interfere with the way the immune response functions. Stress and ageing now consistently appear in the literature as factors that act upon the immune system in the way that is often damaging. This review focuses on the role of stress and ageing in altering the robustness of the immune response first separately, and then simultaneously, discussing the effects that emerge from their interplay. The special focus is on the psychological stress and the impact that it has at different levels, from the whole system to the individual molecules, resulting in consequences for physical health. PMID:24562499

  13. Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS).

    Science.gov (United States)

    Berney, Michael; Weilenmann, Hans-Ulrich; Egli, Thomas

    2006-06-01

    The effectiveness of solar disinfection (SODIS), a low-cost household water treatment method for developing countries, was investigated with flow cytometry and viability stains for the enteric bacterium Escherichia coli. A better understanding of the process of injury or death of E. coli during SODIS could be gained by investigating six different cellular functions, namely: efflux pump activity (Syto 9 plus ethidium bromide), membrane potential [bis-(1,3-dibutylbarbituric acid)trimethine oxonol; DiBAC4(3)], membrane integrity (LIVE/DEAD BacLight), glucose uptake activity (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose; 2-NBDG), total ATP concentration (BacTiter-Glo) and culturability (pour-plate method). These variables were measured in E. coli K-12 MG1655 cells that were exposed to either sunlight or artificial UVA light. The inactivation pattern of cellular functions was very similar for both light sources. A UVA light dose (fluence) of pump activity and ATP synthesis decreased significantly. The loss of membrane potential, glucose uptake activity and culturability of >80 % of the cells was observed at a fluence of approximately 1500 kJ m(-2), and the cytoplasmic membrane of bacterial cells became permeable at a fluence of >2500 kJ m(-2). Culturable counts of stressed bacteria after anaerobic incubation on sodium pyruvate-supplemented tryptic soy agar closely correlated with the loss of membrane potential. The results strongly suggest that cells exposed to >1500 kJ m(-2) solar UVA (corresponding to 530 W m(-2) global sunlight intensity for 6 h) were no longer able to repair the damage and recover. Our study confirms the lethal effect of SODIS with cultivation-independent methods and gives a detailed picture of the 'agony' of E. coli when it is stressed with sunlight. PMID:16735735

  14. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    International Nuclear Information System (INIS)

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area (∼400 m2/g) and large-size mesopores (∼17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N2 adsorption, TG-DTA and 29Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 oC which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a Km of 2.1 x 10-2 mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 x 10-2 mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G-MCF were improved remarkably.

  15. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  16. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels.

    Directory of Open Access Journals (Sweden)

    Brian Fallica

    Full Text Available Most investigations into cancer cell drug response are performed with cells cultured on flat (2D tissue culture plastic. Emerging research has shown that the presence of a three-dimensional (3D extracellular matrix (ECM is critical for normal cell behavior including migration, adhesion, signaling, proliferation and apoptosis. In this study we investigate differences between cancer cell signaling in 2D culture and a 3D ECM, employing real-time, live cell tracking to directly observe U2OS human osteosarcoma and MCF7 human breast cancer cells embedded in type 1 collagen gels. The activation of the important PI3K signaling pathway under these different growth conditions is studied, and the response to inhibition of both PI3K and mTOR with PI103 investigated. Cells grown in 3D gels show reduced proliferation and migration as well as reduced PI3K pathway activation when compared to cells grown in 2D. Our results quantitatively demonstrate that a collagen ECM can protect U2OS cells from PI103. Overall, our data suggests that 3D gels may provide a better medium for investigation of anti-cancer drugs than 2D monolayers, therefore allowing better understanding of cellular response and behavior in native like environments.

  17. RNase-L Control of Cellular mRNAs: Roles in Biologic Functions and Mechanisms of Substrate Targeting

    OpenAIRE

    Brennan-Laun, Sarah E.; Ezelle, Heather J.; Li, Xiao-Ling; Hassel, Bret A.

    2014-01-01

    RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mR...

  18. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  19. Relations between functionality and macromolecular properties of alterated coals: the behaviour in solubility and swelling

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P.N.; Gruber, R.; Bimer, J.; Salbut, P.D.; Djega-Mariadassou, G.; Kruchinin, A.V.; Kuznetsova, L.I. [Institute of Chemistry and Chemico-Metallurgical Processes, Krasnoyarsk (Russian Federation)

    1995-12-31

    Describes the study of the effects of chemical alteration of brown and bituminous coals on the solubility and swelling behaviour. A variety of chemical procedures such as ion-exchange with HCl, O-methylation and reductive methylation, reduction with LiAlH{sub 4} and with K/isopropanol in THF and oxidation with performic acid was applied in order to vary the oxygen functionality, the content of the alkyl substitutes and the proportion of aromatic to hydroaromatic rings. The extent of degradation of the macromolecular structure was evaluated as a function of chemical alteration. 6 refs., 2 tabs.

  20. Functional characterization and cellular dynamics of the CDC-42 - RAC - CDC-24 module in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Cynthia L Araujo-Palomares

    Full Text Available Rho-type GTPases are key regulators that control eukaryotic cell polarity, but their role in fungal morphogenesis is only beginning to emerge. In this study, we investigate the role of the CDC-42 - RAC - CDC-24 module in Neurospora crassa. rac and cdc-42 deletion mutants are viable, but generate highly compact colonies with severe morphological defects. Double mutants carrying conditional and loss of function alleles of rac and cdc-42 are lethal, indicating that both GTPases share at least one common essential function. The defects of the GTPase mutants are phenocopied by deletion and conditional alleles of the guanine exchange factor (GEF cdc-24, and in vitro GDP-GTP exchange assays identify CDC-24 as specific GEF for both CDC-42 and RAC. In vivo confocal microscopy shows that this module is organized as membrane-associated cap that covers the hyphal apex. However, the specific localization patterns of the three proteins are distinct, indicating different functions of RAC and CDC-42 within the hyphal tip. CDC-42 localized as confined apical membrane-associated crescent, while RAC labeled a membrane-associated ring excluding the region labeled by CDC42. The GEF CDC-24 occupied a strategic position, localizing as broad apical membrane-associated crescent and in the apical cytosol excluding the Spitzenkörper. RAC and CDC-42 also display distinct localization patterns during branch initiation and germ tube formation, with CDC-42 accumulating at the plasma membrane before RAC. Together with the distinct cellular defects of rac and cdc-42 mutants, these localizations suggest that CDC-42 is more important for polarity establishment, while the primary function of RAC may be maintaining polarity. In summary, this study identifies CDC-24 as essential regulator for RAC and CDC-42 that have common and distinct functions during polarity establishment and maintenance of cell polarity in N. crassa.

  1. Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Yang Hailiu

    2012-09-01

    fission yeast as a possible surrogate system to study the effects of HIV-1 protease on cellular functions and to explore its utility as a HTS system to search for new PIs to battle HIV-1 resistant strains.

  2. Functional evaluation of DNA repair in human biopsies and their relation to other cellular biomarkers

    Directory of Open Access Journals (Sweden)

    Jana eSlyskova

    2014-05-01

    Full Text Available Thousands of DNA lesions are estimated to occur in each cell every day and almost all are recognized and repaired. DNA repair is an essential system that prevents accumulation of mutations which can lead to serious cellular malfunctions. Phenotypic evaluation of DNA repair activity of individuals is a relatively new approach. Methods to assess base and nucleotide excision repair pathways (BER and NER in peripheral blood cells based on modified comet assay protocols have been widely applied in human epidemiological studies. These provided some interesting observations of individual DNA repair activity being suppressed among cancer patients. However, extension of these results to cancer target tissues requires a different approach. Here we describe the evaluation of BER and NER activities in extracts from deep-frozen colon biopsies using an upgraded version of the in vitro comet-based DNA repair assay in which twelve reactions on one microscope slide can be performed. The aim of this report is to provide a detailed, easy-to-follow protocol together with results of optimization experiments. Additionally, results obtained by functional assays were analysed in the context of other cellular biomarkers, namely single nucleotide polymorphisms and gene expressions. We have shown that measuring DNA repair activity is not easily replaceable by genomic or transcriptomic approaches, but should be applied with the latter techniques in a complementary manner. The ability to measure DNA repair directly in cancer target tissues might finally answer questions about the tissue-specificity of DNA repair processes and their real involvement in the process of carcinogenesis.

  3. Tribulus terrestris (Linn.) Attenuates Cellular Alterations Induced by Ischemia in H9c2 Cells Via Antioxidant Potential.

    Science.gov (United States)

    Reshma, P L; Lekshmi, V S; Sankar, Vandana; Raghu, K G

    2015-06-01

    Tribulus terrestris L. was evaluated for its cardioprotective property against myocardial ischemia in a cell line model. Initially, methanolic extract was prepared and subjected to sequential extraction with various solvents. The extract with high phenolic content (T. terrestris L. ethyl acetate extract-TTME) was further characterized for its chemical constituents and taken forward for evaluation against cardiac ischemia. HPLC analysis revealed the presence of phenolic compounds like caffeic acid (12.41 ± 0.22 mg g(-1)), chlorogenic acid (0.52 ± 0.06 mg g(-1)) and 4-hydroxybenzoic acid (0.60 ± 0.08 mg g(-1)). H9c2 cells were pretreated with TTME (10, 25, 50 and 100 µg/ml) for 24 h before the induction of ischemia. Then ischemia was induced by exposing cells to ischemia buffer, in a hypoxic chamber, maintained at 0.1% O2, 95% N2 and 5% CO2, for 1 h. A significant (p ≤ 0.05) increase in reactive oxygen species generation (56%), superoxide production (18%), loss of plasma membrane integrity, dissipation of transmembrane potential, permeability transition pore opening and apoptosis had been observed during ischemia. However, pretreatment with TTME was found to significantly (p ≤ 0.05) attenuate the alterations caused by ischemia. The overall results of this study partially reveal the scientific basis of the use of T. terrestris L. in the traditional system of medicine for heart diseases. PMID:25858861

  4. Cultured fibroblast monolayers secrete a protein that alters the cellular binding of somatomedin-C/insulinlike growth factor I

    International Nuclear Information System (INIS)

    We studied somatomedin-C/insulinlike growth factor (Sm-C/IGF-I) binding to human fibroblasts in both adherent monolayers and in suspension cultures. The addition of Sm-C/IGF-I in concentrations between 0.5 and 10 ng/ml to monolayers cultures resulted in a paradoxical increase in 125I-Sm-C/IGF-I binding and concentrations between 25 and 300 ng/ml were required to displace the labeled peptide. The addition of unlabeled insulin resulted in no displacement of labeled Sm-C/IGF-I from the adherent cells. When fibroblast suspensions were used Sm-C/IGF-I concentrations between 1 and 10 ng/ml caused displacement, the paradoxical increase in 125I-Sm-C/IGF-I binding was not detected, and insulin displaced 60% of the labeled peptide. Affinity cross-linking to fibroblast monolayers revealed a 43,000-mol wt 125I-Sm-C-binding-protein complex that was not detected after cross-linking to suspended cells. The 43,000-mol wt complex was not detected after cross-linking to smooth muscle cell monolayers, and binding studies showed that 125I-Sm-C/IGF-I was displaced greater than 90% by Sm-C/IGF-I using concentrations between 0.5 and 10 ng/ml. Because fibroblast-conditioned medium contains the 43,000-mol wt complex, smooth muscle cells were incubated with conditioned medium for 24 h prior to initiation of the binding studies. 125I-Sm-C/IGF-I-binding increased 1.6-fold compared to control cultures and after cross-linking the 43,000-mol wt complex could be detected on the smooth muscle cell surface. Human fibroblast monolayers secrete a protein that binds 125I-Sm-C/IGF-I which can be transferred to the smooth muscle cell surface and alters 125I-Sm-C/IGF-I binding

  5. Cocaine and MDMA Induce Cellular and Molecular Changes in Adult Neurogenic Systems: Functional Implications

    Directory of Open Access Journals (Sweden)

    Vivian Capilla-Gonzalez

    2011-06-01

    Full Text Available The capacity of the brain to generate new adult neurons is a recent discovery that challenges the old theory of an immutable adult brain. A new and fascinating field of research now focuses on this regenerative process. The two brain systems that constantly produce new adult neurons, known as the adult neurogenic systems, are the dentate gyrus (DG of the hippocampus and the lateral ventricules/olfactory bulb system. Both systems are involved in memory and learning processes. Different drugs of abuse, such as cocaine and MDMA, have been shown to produce cellular and molecular changes that affect adult neurogenesis. This review summarizes the effects that these drugs have on the adult neurogenic systems. The functional relevance of adult neurogenesis is obscured by the functions of the systems that integrate adult neurons. Therefore, we explore the effects that cocaine and MDMA produce not only on adult neurogenesis, but also on the DG and olfactory bulbs. Finally, we discuss the possible role of new adult neurons in cocaine- and MDMA-induced impairments. We conclude that, although harmful drug effects are produced at multiple physiological and anatomical levels, the specific consequences of reduced hippocampus neurogenesis are unclear and require further exploration.

  6. Insights into the cellular function of YhdE, a nucleotide pyrophosphatase from Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jin Jin

    Full Text Available YhdE, a Maf-like protein in Escherichia coli, exhibits nucleotide pyrophosphatase (PPase activity, yet its cellular function remains unknown. Here, we characterized the PPase activity of YhdE on dTTP, UTP and TTP and determined two crystal structures of YhdE, revealing 'closed' and 'open' conformations of an adaptive active site. Our functional studies demonstrated that YhdE retards cell growth by prolonging the lag and log phases, particularly under stress conditions. Morphology studies showed that yhdE-knockout cells transformed the normal rod shape of wild-type cells to a more spherical form, and the cell wall appeared to become more flexible. In contrast, YhdE overexpression resulted in filamentous cells. This study reveals the previously unknown involvement of YhdE in cell growth inhibition under stress conditions, cell-division arrest and cell-shape maintenance, highlighting YhdE's important role in E. coli cell-cycle checkpoints.

  7. Functional adaptation and phenotypic plasticity at the cellular and whole plant level

    Indian Academy of Sciences (India)

    Karl J Niklas

    2009-10-01

    The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient ``stress-perception response system” that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic.

  8. Alterations in Cellular Energy Metabolism Associated with the Antiproliferative Effects of the ATM Inhibitor KU-55933 and with Metformin

    OpenAIRE

    Zakikhani, Mahvash; Bazile, Miguel; Hashemi, Sina; Javeshghani, Shiva; Avizonis, Daina; Pierre, Julie St; Pollak, Michael N.

    2012-01-01

    KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AM...

  9. Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment

    Directory of Open Access Journals (Sweden)

    Aravind L

    2007-05-01

    Full Text Available Abstract Background A widely-used approach for discovering functional and physical interactions among proteins involves phylogenetic profile comparisons (PPCs. Here, proteins with similar profiles are inferred to be functionally related under the assumption that proteins involved in the same metabolic pathway or cellular system are likely to have been co-inherited during evolution. Results Our experimentation with E. coli and yeast proteins with 16 different carefully composed reference sets of genomes revealed that the phyletic patterns of proteins in prokaryotes alone could be adequate enough to make reasonably accurate functional linkage predictions. A slight improvement in performance is observed on adding few eukaryotes into the reference set, but a noticeable drop-off in performance is observed with increased number of eukaryotes. Inclusion of most parasitic, pathogenic or vertebrate genomes and multiple strains of the same species into the reference set do not necessarily contribute to an improved sensitivity or accuracy. Interestingly, we also found that evolutionary histories of individual pathways have a significant affect on the performance of the PPC approach with respect to a particular reference set. For example, to accurately predict functional links in carbohydrate or lipid metabolism, a reference set solely composed of prokaryotic (or bacterial genomes performed among the best compared to one composed of genomes from all three super-kingdoms; this is in contrast to predicting functional links in translation for which a reference set composed of prokaryotic (or bacterial genomes performed the worst. We also demonstrate that the widely used random null model to quantify the statistical significance of profile similarity is incomplete, which could result in an increased number of false-positives. Conclusion Contrary to previous proposals, it is not merely the number of genomes but a careful selection of informative genomes in the

  10. Cellular functions of p53 and p53 gene family members p63 and p73

    OpenAIRE

    Nadir Koçak; İbrahim Halil Yıldırım; Seval Cing Yıldırım

    2011-01-01

    p53 is a transcription factor that regulates multiple cellular processes that are also important in cellular fates such as cell cycle arrest or programmed cell death. Induction of growth arrest or cell death by p53 prevents the replication of damaged DNA and proliferation of genetically abnormal cells. Therefore, inactivation of p53 by mutation or deletion is also important in ensuring the cellular homeostasis. However, studies showed that p53 deficient mice and cells such as Saos-2 cells are...

  11. Altered functional connectivity and small-world in mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Wei Liao

    Full Text Available BACKGROUND: The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE, using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length. CONCLUSIONS/SIGNIFICANCE: We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.

  12. Interferon-γ: biological function and application for study of cellular immune response

    Directory of Open Access Journals (Sweden)

    A. A. Lutckii

    2015-01-01

    Full Text Available Cellular immune response plays a central role in control of intracellular pathogens like viruses, some bacteria and parasites. Evaluation of presence, specificity and strength of cellular immune response can be done by investigation of reaction of immune cells to specific stimulus, like antigen. The major cellular reactions to antigen stimulation are production of cytokines, proliferation and cytotoxicity. This review is focused on interferon-gamma as one of the central Th1 cytokines: its biology, immunological role and application as marker of cellular immune response.

  13. PPAR- γ Impairment Alters Peroxisome Functionality in Primary Astrocyte Cell Cultures

    OpenAIRE

    Lorenzo Di Cesare Mannelli.; Matteo Zanardelli; Laura Micheli; Carla Ghelardini

    2014-01-01

    Peroxisomes provide glial cells with protective functions against the harmful effects of H2O2 on neurons and peroxisome impairment results in nervous lesions. Agonists of the γ -subtype of the Peroxisome-Proliferator-Activated-Receptors (PPAR) have been proposed as neuroprotective agents in neurodegenerative disorders. Nevertheless, the role of PPAR- γ alterations in pathophysiological mechanisms and the relevance of peroxisome functions in the PPAR- γ effects are not yet clear. In a primary ...

  14. Diet-Induced Weight Loss alters Functional Brain Responses during an Episodic Memory Task

    OpenAIRE

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 mon...

  15. Altered Default Network Resting-State Functional Connectivity in Adolescents with Internet Gaming Addiction

    OpenAIRE

    Ding, Wei-na; Sun, Jin-Hua; Sun, Ya-Wen; Zhou, Yan; Li, Lei; Xu, Jian-Rong; Du, Ya-Song

    2013-01-01

    Purpose Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA). Methods Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by inve...

  16. Altered rectal sensory response induced by balloon distention in patients with functional abdominal pain syndrome

    OpenAIRE

    Kudaira Miwako; Nozu Tsukasa

    2009-01-01

    Abstract Background Functional abdominal pain syndrome (FAPS) has chronic unexplained abdominal pain and is similar to the psychiatric diagnosis of somatoform pain disorder. A patient with irritable bowel syndrome (IBS) also has chronic unexplained abdominal pain, and rectal hypersensitivity is observed in a majority of the patients. However, no reports have evaluated the visceral sensory function of FAPS precisely. We aimed to test the hypothesis that FAPS would show altered visceral sensati...

  17. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly.

    Science.gov (United States)

    Mejia, Edgard M; Chau, Sarah; Sparagna, Genevieve C; Sipione, Simonetta; Hatch, Grant M

    2016-05-01

    Huntington's Disease (HD) is an autosomal dominant disease that occurs as a result of expansion of the trinucleotide repeat CAG (glutamine) on the HTT gene. HD patients exhibit various forms of mitochondrial dysfunction within neurons and peripheral tissues. Cardiolipin (Ptd2Gro) is a polyglycerophospholipid found exclusively in mitochondria and is important for maintaining mitochondrial function. We examined if altered Ptd2Gro metabolism was involved in the mitochondrial dysfunction associated with HD. Mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis were markedly diminished in Epstein-Barr virus transformed HD lymphoblasts compared to controls (CTRL). Mitochondrial supercomplex formation and Complex I activity within these supercomplexes did not vary between HD patients with different length of CAG repeats and appeared unaltered compared to CTRL. In contrast, in vitro Complex I enzyme activity in mitochondrial enriched samples was reduced in HD lymphoblasts compared to CTRL. The total cellular pool size of Ptd2Gro and its synthesis/remodeling from [(3)H]acetate/[(14)C]oleate were unaltered in HD lymphoblasts compared to CTRL. In addition, the molecular species of Ptd2Gro were essentially unaltered in HD lymphoblasts compared to CTRL. We conclude that compared to CTRL lymphoblasts, HD lymphoblasts display impaired mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis with any pathological CAG repeat length, but this is not due to alterations in Ptd2Gro metabolism. We suggest that HD patient lymphoblasts may be a useful model to study defective energy metabolism that does not involve alterations in Ptd2Gro metabolism. PMID:26846325

  18. Role of cellular prion proteins in the function of macrophages and dendritic cells.

    Science.gov (United States)

    Nitta, Kayako; Sakudo, Akikazu; Masuyama, Jun; Xue, Guangai; Sugiura, Katsuaki; Onodera, Takashi

    2009-01-01

    The cellular isoform of prion proteins (PrPC) is expressed in hematopoietic stem cells, granulocytes, T and B lymphocyte natural killer cells, platelets, monocytes, dendritic cells, and follicular dendritic cells, which may act as carrier cells for the spread of its abnormal isoform (PrPSc) before manifesting transmissible spongiform encephalopathies (TSEs). In particular, macrophages and dendritic cells seem to be involved in the replication of PrPSc after ingestion. In addition, information on the role of PrPC during phagocytotic activity in these cells has been obtained. A recent study showed that resident macrophages from ZrchI PrP gene (Prnp)-deficient (Prnp-/-) mice show augmented phagocytotic activity compared to Prnp+/+ counterparts. In contrast, our study suggests that Rikn Prnp-/- peritoneal macrophages show pseudopodium extension arrest and up-regulation of phagocytotic activity compared to Prnp+/+ cells. Although reports regarding phagocytotic activity in resident and peritoneal macrophages are inconsistent between ZrchI and Rikn Prnp-/- mice, it seems plausible that PrPC in macrophages could contribute to maintain the immunological environment. This review will introduce the recent progress in understanding the functions of PrPC in macrophages and dendritic cells under physiological conditions and its involvement in the pathogenesis of prion diseases. PMID:19275736

  19. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Science.gov (United States)

    Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

    2013-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948

  20. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  1. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    Science.gov (United States)

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1. PMID:23226257

  2. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    Directory of Open Access Journals (Sweden)

    Mohamed Hamed

    Full Text Available By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  3. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress

    Science.gov (United States)

    Tijchon, Esther; van Ingen Schenau, Dorette; van Emst, Liesbeth; Levers, Marloes; Palit, Sander A.L.; Rodenbach, Caroline; Poelmans, Geert; Hoogerbrugge, Peter M.; Shan, Jixiu; Kilberg, Michael S.; Scheijen, Blanca; van Leeuwen, Frank N.

    2016-01-01

    Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses. PMID:26657730

  4. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  5. Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients.

    Science.gov (United States)

    Fallon, Nicholas; Chiu, Yee; Nurmikko, Turo; Stancak, Andrej

    2016-01-01

    Fibromyalgia syndrome (FMS) patients show altered connectivity with the network maintaining ongoing resting brain activity, known as the default mode network (DMN). The connectivity patterns of DMN with the rest of the brain in FMS patients are poorly understood. This study employed seed-based functional connectivity analysis to investigate resting-state functional connectivity with DMN structures in FMS. Sixteen female FMS patients and 15 age-matched, healthy control subjects underwent T2-weighted resting-state MRI scanning and functional connectivity analyses using DMN network seed regions. FMS patients demonstrated alterations to connectivity between DMN structures and anterior midcingulate cortex, right parahippocampal gyrus, left superior parietal lobule and left inferior temporal gyrus. Correlation analysis showed that reduced functional connectivity between the DMN and the right parahippocampal gyrus was associated with longer duration of symptoms in FMS patients, whereas augmented connectivity between the anterior midcingulate and posterior cingulate cortices was associated with tenderness and depression scores. Our findings demonstrate alterations to functional connectivity between DMN regions and a variety of regions which are important for pain, cognitive and emotional processing in FMS patients, and which may contribute to the development or maintenance of chronic symptoms in FMS. PMID:27442504

  6. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    Science.gov (United States)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  7. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells

    International Nuclear Information System (INIS)

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival

  8. Serial changes in longitudinal graft function and implications of acute cellular graft rejections during the first year after heart transplantation

    DEFF Research Database (Denmark)

    Clemmensen, Tor Skibsted; Løgstrup, Brian Bridal; Eiskjær, Hans;

    2015-01-01

    AIMS: The aim of this prospective study was to use left ventricular global longitudinal strain (LV-GLS) as a non-invasive tool for the monitoring of graft function in relation to acute cellular rejection (ACR) during the first year after heart transplantation (HTX). METHODS AND RESULTS: The study...

  9. Alterations in the phosphoproteomic profile of cells expressing a non-functional form of the SHP2 phosphatase.

    Science.gov (United States)

    Corallino, Salvatore; Iwai, Leo K; Payne, Leo S; Huang, Paul H; Sacco, Francesca; Cesareni, Gianni; Castagnoli, Luisa

    2016-09-25

    The phosphatase SHP-2 plays an essential role in growth factor signaling and mutations in its locus is the cause of congenital and acquired pathologies. Mutations of SHP-2 are known to affect the activation of the RAS pathway. Gain-of-function mutations cause the Noonan syndrome, the most common non-chromosomal congenital disorder. In order to obtain a holistic picture of the intricate regulatory mechanisms underlying SHP-2 physiology and pathology, we set out to characterize perturbations of the cell phosphorylation profile caused by an altered localization of SHP-2. To describe the proteins whose activity may be directly or indirectly modulated by SHP-2 activity, we identified tyrosine peptides that are differentially phosphorylated in wild type SHP-2 cells and isogenic cells expressing a non-functional SHP-2 variant that cannot dephosphorylate the physiological substrates due to a defect in cellular localization upon growth factor stimulation. By an iTRAQ based strategy coupled to mass spectrometry, we have identified 63 phosphorylated tyrosine residues in 53 different proteins whose phosphorylation is affected by SHP-2 activity. Some of these confirm already established regulatory mechanisms while many others suggest new possible signaling routes that may contribute to the modulation of the ERK and p38 pathways by SHP-2. Interestingly many new proteins that we found to be regulated by SHP-2 activity are implicated in the formation and regulation of focal adhesions. PMID:26316256

  10. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation.

    Science.gov (United States)

    Gerlai, R; McNamara, A; Choi-Lundberg, D L; Armanini, M; Ross, J; Powell-Braxton, L; Phillips, H S

    2001-10-01

    Exogenous glial cell line-derived neurotrophic factor (GDNF) exhibits potent survival-promoting effects on dopaminergic neurons of the nigrostriatal pathway that is implicated in Parkinson's disease and also protects neurons in forebrain ischemia of animal models. However, a role for endogenous GDNF in brain function has not been established. Although mice homozygous for a targeted deletion of the GDNF gene have been generated, these mice die within hours of birth because of deficits in kidney morphogenesis, and, thus, the effect of the absence of GDNF on brain function could not be studied. Herein, we sought to determine whether adult mice, heterozygous for a GDNF mutation on two different genetic backgrounds, demonstrate alterations in the nigrostriatal dopaminergic system or in cognitive function. While both neurochemical and behavioural measures suggested that reduction of GDNF gene expression in the mutant mice does not alter the nigrostriatal dopaminergic system, it led to a significant and selective impairment of performance in the spatial version of the Morris water maze. A standard panel of blood chemistry tests and basic pathological analyses did not reveal alterations in the mutants that could account for the observed performance deficit. These results suggest that endogenous GDNF may not be critical for the development and functioning of the nigrostriatal dopaminergic system but it plays an important role in cognitive abilities. PMID:11683907

  11. Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice

    Science.gov (United States)

    Hu, Wei

    Background: The medial prefrontal cortex (mPFC) inhibits impulsive and compulsive behaviors that characterize drug abuse and dependence. Acamprosate is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Whether acamprosate can modulate executive functions that are impaired by chronic ethanol exposure is unknown. Here we explored the effects of acamprosate on an attentional set-shifting task, and tested whether these behavioral effects are correlated with modulation of glutamatergic synaptic transmission and intrinsic excitability of mPFC neurons. Methods: We induced alcohol dependence in mice via chronic intermittent ethanol (CIE) exposure in vapor chambers and measured changes in alcohol consumption in a limited access 2-bottle choice paradigm. Impairments of executive function were assessed in an attentional set-shifting task. Acamprosate was applied subchronically for 2 days during withdrawal before the final behavioral test. Alcohol-induced changes in cellular function of layer 5/6 pyramidal neurons, and the potential modulation of these changes by acamprosate, were measured using patch clamp recordings in brain slices. Results: Chronic ethanol exposure impaired cognitive flexibility in the attentional set-shifting task. Acamprosate improved overall performance and reduced perseveration. Recordings of mPFC neurons showed that chronic ethanol exposure increased use-dependent presynaptic transmitter release and enhanced postsynaptic N-methyl-D-aspartate receptor (NMDAR) function. Moreover, CIE-treatment lowered input resistance, and decreased the threshold and the afterhyperpolarization (AHP) of action potentials, suggesting chronic ethanol exposure also impacted membrane excitability of mPFC neurons. However, acamprosate treatment did not reverse these ethanol-induced changes cellular function. Conclusion: Acamprosate improved attentional control of ethanol exposed animals

  12. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern

    Science.gov (United States)

    González-Fernández, Carlos; Mancuso, Renzo; del Valle, Jaume; Navarro, Xavier; Rodríguez, Francisco Javier

    2016-01-01

    Background Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression. Findings Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor. Conclusions Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology. PMID:27192435

  13. Altered intrinsic functional connectivity of anterior and posterior insular regions in high-functioning participants with autism spectrum disorder

    OpenAIRE

    Ebisch, S.; Gallese, V.; Willems, R.; Mantini, D.; Groen, W; Romani, G; Buitelaar, J.; Bekkering, H

    2011-01-01

    Impaired understanding of others' sensations and emotions as well as abnormal experience of their own emotions and sensations is frequently reported in individuals with Autism Spectrum Disorder (ASD). It is hypothesized that these abnormalities are based on altered connectivity within “shared” neural networks involved in emotional awareness of self and others. The insula is considered a central brain region in a network underlying these functions, being located at the transition of informatio...

  14. Cellular and behavioral outcomes of dorsal striatonigral neuron ablation: new insights into striatal functions.

    Science.gov (United States)

    Révy, Delphine; Jaouen, Florence; Salin, Pascal; Melon, Christophe; Chabbert, Dorian; Tafi, Elisiana; Concetta, Lena; Langa, Francina; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Marie, Hélène; Beurrier, Corinne

    2014-10-01

    The striatum is the input structure of the basal ganglia network that contains heterogeneous neuronal populations, including two populations of projecting neurons called the medium spiny neurons (MSNs), and different types of interneurons. We developed a transgenic mouse model enabling inducible ablation of the striatonigral MSNs constituting the direct pathway by expressing the human diphtheria toxin (DT) receptor under the control of the Slc35d3 gene promoter, a gene enriched in striatonigral MSNs. DT injection into the striatum triggered selective elimination of the majority of striatonigral MSNs. DT-mediated ablation of striatonigral MSNs caused selective loss of cholinergic interneurons in the dorsal striatum but not in the ventral striatum (nucleus accumbens), suggesting a region-specific critical role of the direct pathway in striatal cholinergic neuron homeostasis. Mice with DT injection into the dorsal striatum showed altered basal and cocaine-induced locomotion and dramatic reduction of L-DOPA-induced dyskinesia in the parkinsonian condition. In addition, these mice exhibited reduced anxiety, revealing a role of the dorsal striatum in the modulation of behaviors involving an emotional component, behaviors generally associated with limbic structures. Altogether, these results highlight the implication of the direct striatonigral pathway in the regulation of heterogeneous functions from cell survival to regulation of motor and emotion-associated behaviors. PMID:24903652

  15. H2O2 alters rat cardiac sarcomere function and protein phosphorylation through redox signaling

    OpenAIRE

    Avner, Benjamin S.; Hinken, Aaron C.; Yuan, Chao; Solaro, R. John

    2010-01-01

    ROS, such as H2O2, are a component of pathological conditions in many organ systems and have been reported to be elevated in cardiac pathophysiology. The experiments presented here test the hypothesis that H2O2 induces alterations in cardiac myofilament function by the posttranslational modification of sarcomeric proteins indirectly through PKC signaling. In vitro assessment of actomyosin Mg2+-ATPase activity of myofibrillar fractions showed blunted relative ATP consumption in the relaxed sta...

  16. Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity

    OpenAIRE

    Petersen, Nicole; Kilpatrick, Lisa A.; Goharzad, Azaadeh; Cahill, Larry

    2013-01-01

    At rest, brain activity can be characterized not by an absence of organized activity but instead by spatially and temporally correlated patterns of activity. In this experiment, we investigated whether and to what extent resting state functional connectivity is modulated by sex hormones in women, both across the menstrual cycle and when altered by oral contraceptive pills. Sex hormones have been shown to have important effects on task-related activity, but few studies have investigated the ex...

  17. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    OpenAIRE

    GeraldineAWright; ChristopherMoffat

    2013-01-01

    Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony healt...

  18. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    OpenAIRE

    Taché, Yvette; Bonaz, Bruno

    2007-01-01

    Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive activity of the gastrointe...

  19. Altering the function of commands presented to boys with oppositional and hyperactive behavior

    OpenAIRE

    Danforth, Jeffrey S.

    2002-01-01

    Mentalistic and behavioral analyses of noncompliance among children with hyperactive behavior are contrasted. Then, a behavioral training program for 3 boys with behavior characteristic of attention deficit hyperactivity disorder and oppositional defiant disorder is described. The child-focused training was conducted in conjunction with parent training. In an effort to increase the rate of compliance, the child-training program was designed to alter the function of parent commands by teaching...

  20. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity.

    Directory of Open Access Journals (Sweden)

    Maximilian W Plank

    Full Text Available MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics.

  1. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    Directory of Open Access Journals (Sweden)

    Jonathan M Behrendt

    Full Text Available The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide. Following internal labeling, bioconjugation of green fluorescent protein (GFP to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630 and shells (GFP. In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular

  2. Thermal discharge-created increasing temperatures alter the bacterioplankton composition and functional redundancy.

    Science.gov (United States)

    Xiong, Jinbo; Xiong, Shangling; Qian, Peng; Zhang, Demin; Liu, Lian; Fei, Yuejun

    2016-12-01

    Elevated seawater temperature has altered the coupling between coastal primary production and heterotrophic bacterioplankton respiration. This shift, in turn, could influence the feedback of ocean ecosystem to climate warming. However, little is known about how natural bacterioplankton community responds to increasing seawater temperature. To investigate warming effects on the bacterioplankton community, we collected water samples from temperature gradients (ranged from 15.0 to 18.6 °C) created by a thermal flume of a coal power plant. The results showed that increasing temperatures significantly stimulated bacterial abundance, grazing rate, and altered bacterioplankton community compositions (BCCs). The spatial distribution of bacterioplankton community followed a distance similarity decay relationship, with a turnover of 0.005. A variance partitioning analysis showed that temperature directly constrained 2.01 % variation in BCCs, while temperature-induced changes in water geochemical and grazing rate indirectly accounted for 4.03 and 12.8 % of the community variance, respectively. Furthermore, the relative abundances of 24 bacterial families were linearly increased or decreased (P < 0.05 in all cases) with increasing temperatures. Notably, the change pattern for a given bacterial family was in concert with its known functions. In addition, community functional redundancy consistently decreased along the temperature gradient. This study demonstrates that elevated temperature, combined with substrate supply and trophic interactions, dramatically alters BCCs, concomitant with decreases in functional redundancy. The responses of sensitive assemblages are temperature dependent, which could indicate temperature departures. PMID:27620732

  3. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  4. Dancing on damaged chromatin. Functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage

    International Nuclear Information System (INIS)

    In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling. (author)

  5. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    International Nuclear Information System (INIS)

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  6. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  7. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    OpenAIRE

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection o...

  8. Liver disease alters high-density lipoprotein composition, metabolism and function.

    Science.gov (United States)

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk. PMID:27106140

  9. Manganese Upregulates Cellular Prion Protein and Contributes to Altered Stabilization and Proteolysis: Relevance to Role of Metals in Pathogenesis of Prion Disease

    Science.gov (United States)

    Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrP**C) into an abnormal form of scrapie prion (PrP**Sc). The cellular mechanisms underlying the misfolding of PrP**C are not well understood. Since cellular prion proteins harbor divalent metal b...

  10. Forest to reclaimed mine land use change leads to altered ecosystem structure and function.

    Science.gov (United States)

    Simmons, Jeffrey A; Currie, William S; Eshleman, Keith N; Kuers, Karen; Monteleone, Susan; Negley, Tim L; Pohlad, Bob R; Thomas, Carolyn L

    2008-01-01

    The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function. PMID:18372559

  11. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder.

    Science.gov (United States)

    Demirtaş, Murat; Tornador, Cristian; Falcón, Carles; López-Solà, Marina; Hernández-Ribas, Rosa; Pujol, Jesús; Menchón, José M; Ritter, Petra; Cardoner, Narcis; Soriano-Mas, Carles; Deco, Gustavo

    2016-08-01

    Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27120982

  12. LV function monitoring to discard functional abnormalities in athletes with altered ventricular re-polarization

    International Nuclear Information System (INIS)

    Aim: Marked ventricular re-polarization abnormalities (MRA) in athletes may suggest the presence of associated heart disease. Assessment of LV function during exercise may contribute to rule out heart disease and help to decide continuation of physical training. The aim of the study was to assess whether athletes with MRA show a particular response of LV function to exhausting exercise. Material and Methods: Thirty-nine male athletes underwent monitoring of LV function with a miniaturised radionuclide detector (VEST, Capintec, Inc.) during bicycle exhausting exercise. There were 22 athletes with MRA in the ECG at rest (negative T waves equal or more than 2mm in up to 3 ECG leads) and 17 with normal ECG. All were symptom free. Age and physical fitness were comparable in both groups. Clinical examination, ECG, exercise test and echocardiography were performed in all athletes. Results: In all cases LV wall thickness was that expected for highly conditioned sportsmen. Both groups of athletes attained a similar energy expenditure. During exercise, athletes with MRA showed a tendency to normalise re-polarization. There were no differences in heart rate, LV end-systolic volume, LVEF, cardiac output , and peak ejection and filling rates at rest, 50%, 75%, 85% and 100% of peak HR, nor at 2, 5 and 10 min of recovery between both groups of athletes. At rest stroke volume was lower in athletes with MRA (60% vs. 64%, p=0.044). There were also no differences in LV end-diastolic volume (EDV), except at peak HR, when EDV increased in athletes with normal ECG while it decreased in athletes with MRA (p=0.047). Conclusions: The presence of marked ventricular re-polarization abnormalities in athletes does not substantially affect exercise performance nor LV function and should not preclude physical training. The VEST is a useful means to assess LV function during exhausting upright bicycle exercise

  13. Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Rigbolt, Kristoffer T.G.; Emdal, Kristina B;

    2013-01-01

    The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferati...

  14. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction.

    Science.gov (United States)

    Cisler, Josh M; Elton, Amanda; Kennedy, Ashley P; Young, Jonathan; Smitherman, Sonet; Andrew James, George; Kilts, Clinton D

    2013-07-30

    Interoception is theorized to be an important process mediating substance use disorders, and the insular cortex is recognized as a core neural region supporting interoception. The purpose of this study was to compare the integration of the insular cortex into prefrontal-related resting-state networks between individuals with cocaine dependence and healthy controls. Participants comprised 41 patients with cocaine dependence and 19 controls who underwent a resting-state 3-T functional magnetic resonance imaging scan. Individuals with cocaine dependence demonstrated altered functional connectivity of the insular cortex, predominantly the right insular cortex, with all eight prefrontal-related resting-state networks identified through Independent Component Analysis (ICA). A conjunction analysis demonstrated that the right insular cortex was the neural region with the highest number of common group differences across the networks. There was no evidence that insular cortex connectivity commonly differed between groups for non-prefrontal-related networks. Further, seed-based functional connectivity analyses extended the network analyses and indicated that cocaine dependence was associated with greater connectivity of the right insula with the dorsomedial prefrontal cortex, inferior frontal gyrus, and bilateral dorsolateral prefrontal cortex. These data support the hypothesis that cocaine dependence is related to altered functional interactions of the insular cortex with prefrontal networks. The results suggest possible neural mechanisms by which the insular cortex and interoceptive information influence cognitive control and decision-making processes presumably mediated by prefrontal networks in the cocaine dependence process. PMID:23684980

  15. Neuromorphological and wiring pattern alterations effects on brain function: a mixed experimental and computational approach.

    Directory of Open Access Journals (Sweden)

    Linus Manubens-Gil

    2015-04-01

    In addition, the study of fixed intact brains (by means of the state of the art CLARITY technique brings us closer to biologically and medically relevant situations, allowing not only to confirm whether the functional links in neuronal cultures are also present in vivo, but also enabling the introduction of functional information (like behavioral studies and functional imaging and another layer of structural alterations such as brain region morphology, neuronal density, and long-range connectivity. Taking together the experimental information from these systems we want to feed self-developed computational models that allow us to understand what are the fundamental characteristics of the observed connectivity patterns and the impact of each of the alterations on neuronal network function. These models will also provide a framework able to account for the emergent properties that bridge the gap between spontaneous electrical activity arousal/transmission and higher order information processing and memory storage capacities in the brain. As an additional part of the project we are now working on the application of the clearing, labeling and imaging protocols to human biopsy samples. Our aim is to obtain neuronal architecture and connectivity information from focal cortical dysplasia microcircuits using samples from intractable temporal lobe epilepsy patients that undergo deep-brain electrode recording diagnosis and posterior surgical extraction of the tissue. Our computational models can allow us to discern the contributions of the observed abnormalities to neuronal hyperactivity and epileptic seizure generation.

  16. Altered functional connectivity networks in acallosal and socially impaired BTBR mice.

    Science.gov (United States)

    Sforazzini, Francesco; Bertero, Alice; Dodero, Luca; David, Gergely; Galbusera, Alberto; Scattoni, Maria Luisa; Pasqualetti, Massimo; Gozzi, Alessandro

    2016-03-01

    Agenesis of the corpus callosum (AgCC) is a congenital condition associated with wide-ranging emotional and social impairments often overlapping with the diagnostic criteria for autism. Mapping functional connectivity in the acallosal brain can help identify neural correlates of the deficits associated with this condition, and elucidate how congenital white matter alterations shape the topology of large-scale functional networks. By using resting-state BOLD functional magnetic resonance imaging (rsfMRI), here we show that acallosal BTBR T+tpr3tf/J (BTBR) mice, an idiopathic model of autism, exhibit impaired intra-hemispheric connectivity in fronto-cortical, but not in posterior sensory cortical areas. We also document profoundly altered subcortical and intra-hemispheric connectivity networks, with evidence of marked fronto-thalamic and striatal disconnectivity, along with aberrant spatial extension and strength of ipsilateral and local connectivity. Importantly, inter-hemispheric tracing of monosynaptic connections in the primary visual cortex using recombinant rabies virus confirmed the absence of direct homotopic pathways between posterior cortical areas of BTBR mice, suggesting a polysynaptic origin for the synchronous rsfMRI signal observed in these regions. Collectively, the observed long-range connectivity impairments recapitulate hallmark neuroimaging findings in autism, and are consistent with the behavioral phenotype of BTBR mice. In contrast to recent rsfMRI studies in high functioning AgCC individuals, the profound fronto-cortical and subcortical disconnectivity mapped suggest that compensatory mechanism may not necessarily restore the full connectional topology of the brain, resulting in residual connectivity alterations that serve as plausible substrates for the cognitive and emotional deficits often associated with AgCC. PMID:25445840

  17. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting.

    Science.gov (United States)

    Brennan-Laun, Sarah E; Ezelle, Heather J; Li, Xiao-Ling; Hassel, Bret A

    2014-04-01

    RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications. PMID:24697205

  18. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders

    DEFF Research Database (Denmark)

    van Veen, Sarah; Sørensen, Danny M.; Holemans, Tine;

    2014-01-01

    Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. ...

  19. Impairment of electrical functions of CNS and alterations in cell populations associated with irradiation

    International Nuclear Information System (INIS)

    Two types of cell injury have been described in the gyrus dentatus of the hippocampus. The first (pycnotic cells) located in the proliferative subgranular zone, allowed the quantification of damage and calculation of the RBE of fast neutrons as 3.1 to 3.3. The second (light spots) located in the mature granule cells suggested the hypothesis: the granular layer being the major entrance to the hippocampus could contain the target cells for injury which may explain some electrical disturbances in the downstream pyramidal cells and even perhaps some of the functional disorders which are known to happen in the first days after acute irradiation (of 1 or a few Gy). This hypothesis is based on the fact that early functional disturbances and cellular lesions have the same threshold (1 Gy) and the same time course. (UK)

  20. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state. PMID:26824042

  1. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    Science.gov (United States)

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol. PMID:23454116

  2. Dietary turmeric modulates DMBA-induced p21ras, MAP kinases and AP-1/NF-κB pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    International Nuclear Information System (INIS)

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric during HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-κB, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-κB DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-κB, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements

  3. [Alteration of neurobehavioral and autonomic nervous function in aluminum electrolytic workers].

    Science.gov (United States)

    He, Shuchang; Zhang, Aimin; Niu, Qiao; Wang, Sheng; Chen, Yilan

    2003-05-01

    In order to explore the impairment of Aluminum on the neurobehavioral, autonomic nervous function. Neurobehavioral test battery (NCTB) recommended by WHO and autonomic nervous system (ANS) function test recommended by Ewing DJ were conducted in 32 Al electrolytic workers and 34 controls. Results showed that the scores of confusion-bewilderment and tension-anxious in Al exposed workers were higher than that of control group, while the scores of POMSA, POMSD, POMSF and POMSV in Al-exposed group had no obvious change. The scores of DSY, PA and PAC were lower than that of control group. The scores of DSPF, DDSPB, DSP, SANN, SANP and BVR had no significant alteration. R-R interval variability of maximin ratio of immediate standing up, which reflects parasympathetic nervous modification ability in aluminum electrolytic workers, was lower than that of the control group. This implied that Al exposure had adverse impact on workers' mood state, neurobehavioral and parasympathetic nervous function. PMID:12914271

  4. Female mice with loss-of-function ITCH display an altered reproductive phenotype.

    Science.gov (United States)

    Stermer, Angela R; Myers, Jessica L; Murphy, Caitlin J; Di Bona, Kristin R; Matesic, Lydia; Richburg, John H

    2016-02-01

    Major progress in deciphering the role of the E3 ligase, ITCH, in animal physiology has come from the generation and identification of Itch loss-of-function mutant mice (itchy). Mutant mice display an autoimmune-like phenotype characterized by chronic dermatitis, which has been attributed to increased levels of ITCH target proteins (e.g. transcription factors JUNB and CJUN) in T cells. Autoimmune disorders also exist in humans with Itch frameshift mutations resulting in loss of functional ITCH protein. Recent phenotypic analysis of male itchy mice revealed reduced sperm production, although cross breeding experiments showed no difference in litter size when male itchy mice were bred to wild type females. However, a reduction in litter sizes did occur when itchy females were bred to wild type males. Based on these results, characterization of female reproductive function in itchy mice was performed. Developmental analysis of fetuses at gestational day 18.5, cytological evaluation of estrous cyclicity, histopathological analysis of ovaries, and protein analysis were used to investigate the itchy reproductive phenotype. Gross skeletal and soft tissue analysis of gestational day 18.5 itchy fetuses indicated no gross developmental deformities. Itchy females had reduced implantation sites, decreased corpora lutea, and increased estrous cycle length due to increased number of days in estrus compared to controls. Alterations in the expression of prototypical ITCH targets in the ovaries were not indicated, suggesting that an alteration in an as yet defined ovary-specific ITCH substrate or interaction with the altered immune system likely accounts for the disruption of female reproduction. This report indicates the importance of the E3 ligase, ITCH, in female reproduction. PMID:26515141

  5. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    Science.gov (United States)

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  6. Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocininduced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Lu-lu ZHANG; Guang-ji WANG; Lin XIE; Liang LU; Shi JIN; Xin-yue JING; Dan YAO; Nan HU; Li LIU; Ru DUAN; Xiao-dong LIU

    2011-01-01

    Aim: To investigate the changes of expression and function of P-glycoprotein (P-GP) in cerebral cortex, hippocampus, liver, intestinal mucosa and kidney of streptozocin-induced diabetic rats.Methods: Diabetic rats were prepared via a single dose of streptozocin (65 mg/kg, ip). Abcb1/P-GP mRNA and protein expression levels in tissues were evaluated using quantitative real time polymerase chain reaction (QRT-PCR) analysis and Western blot, respectively.P-GP function was investigated via measuring tissue-to-plasma concentration ratios and body fluid excretion percentages of rhodamine 123.Results: In 5- and 8-week diabetic rats, Abcb1a mRNA levels were significantly decreased in cerebral cortices and intestinal mucosa,but dramatically increased in hippocampus and kidney. In liver, the level was increased in 5-week diabetic rats, and decreased in 8-week diabetic rats. Abcb1b mRNA levels were increased in cerebral cortex, hippocampus and kidney, but reduced in liver and intestinal mucosa in the diabetic rats. Western blot results were in accordance with the alterations of Abcb1a mRNA levels in most tissues examined. P-GP activity was markedly decreased in most tissues of diabetic rats, except kidney tissues.Conclusion: Alterations in the expression and function of Abcb1/P-GP under diabetic conditions are tissue specific, Abcb1 specific and diabetic duration-dependent.

  7. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    Science.gov (United States)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  8. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function.

    Science.gov (United States)

    Pernas, Lena; Scorrano, Luca

    2016-01-01

    Permanent residency in the eukaryotic cell pressured the prokaryotic mitochondrial ancestor to strategize for intracellular living. Mitochondria are able to autonomously integrate and respond to cellular cues and demands by remodeling their morphology. These processes define mitochondrial dynamics and inextricably link the fate of the mitochondrion and that of the host eukaryote, as exemplified by the human diseases that result from mutations in mitochondrial dynamics proteins. In this review, we delineate the architecture of mitochondria and define the mechanisms by which they modify their shape. Key players in these mechanisms are discussed, along with their role in manipulating mitochondrial morphology during cellular action and development. Throughout, we highlight the evolutionary context in which mitochondrial dynamics emerged and consider unanswered questions whose dissection might lead to mitochondrial morphology-based therapies. PMID:26667075

  9. A Pedestrian Navigation System Using Cellular Phone Video-Conferencing Functions

    Directory of Open Access Journals (Sweden)

    Akihiko Sugiura

    2012-01-01

    Full Text Available A user’s position-specific field has been developed using the Global Positioning System (GPS technology. To determine the position using cellular phones, a device was developed, in which a pedestrian navigation unit carries the GPS. However, GPS cannot specify a position in a subterranean environment or indoors, which is beyond the reach of transmitted signals. In addition, the position-specification precision of GPS, that is, its resolution, is on the order of several meters, which is deemed insufficient for pedestrians. In this study, we proposed and evaluated a technique for locating a user’s 3D position by setting up a marker in the navigation space detected in the image of a cellular phone. By experiment, we verified the effectiveness and accuracy of the proposed method. Additionally, we improved the positional precision because we measured the position distance using numerous markers.

  10. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian; Nielsen, Michael L; Rehman, Michael; Walther, Tobias C; Olsen, Jesper V; Mann, Matthias

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600...... lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  11. Senescing human bone-marrow-derived clonal mesenchymal stem cells have altered lysophospholipid composition and functionality.

    Science.gov (United States)

    Lee, Seul Ji; Yi, TacGhee; Ahn, Soo Hyun; Lim, Dong Kyu; Hong, Ji Yeon; Cho, Yun Kyoung; Lim, Johan; Song, Sun U; Kwon, Sung Won

    2014-03-01

    Mesenchymal stem cells (MSCs) have been used in a wide range of research and clinical studies because MSCs do not have any ethical issues and have the advantage of low carcinogenicity due to their limited proliferation. However, because only a small number of MSCs can be obtained from the bone marrow, ex vivo amplification is inevitably required. For that reason, this study was conducted to acquire the metabolic information to examine and control the changes in the activities and differentiation potency of MSCs during the ex vivo culture process. Endogenous metabolites of human bone-marrow-derived clonal MSCs (hcMSCs) during cellular senescence were profiled by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS). To select significant metabolites, we used the linear mixed effects model having fixed effects for batch and time (passage) and random effects for metabolites, determining the mean using a t test and the standard deviation using an F test. We used structural analysis with representative standards and spectrum patterns with different collision energies to distinctly identify eight metabolites with altered expression during senescence as types of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), such as LPC 16:0 and LPE 22:4. The present study revealed changes in endogenous metabolites and mechanisms due to senescence. PMID:24498988

  12. Skin human papillomavirus type 38 alters p53 functions by accumulation of ΔNp73

    OpenAIRE

    Accardi, Rosita; Dong, Wen; Smet, Anouk; Cui, Rutao; Hautefeuille, Agnes; Gabet, Anne-Sophie; Sylla, Bakary S.; Gissmann, Lutz; Hainaut, Pierre; Tommasino, Massimo

    2006-01-01

    The E6 and E7 of the cutaneous human papillomavirus (HPV) type 38 immortalize primary human keratinocytes, an event normally associated with the inactivation of pathways controlled by the tumour suppressor p53. Here, we show for the first time that HPV38 alters p53 functions. Expression of HPV38 E6 and E7 in human keratinocytes or in the skin of transgenic mice induces stabilization of wild-type p53. This selectively activates the transcription of ΔNp73, an isoform of the p53-related protein ...

  13. Phenotypic and Functional Alterations of Dendritic Cells Induced by Human Herpesvirus 6 Infection

    OpenAIRE

    Kakimoto, Miki; Hasegawa, Atsuhiko; Fujita, Shigeru; Yasukawa, Masaki

    2002-01-01

    Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 i...

  14. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential

    OpenAIRE

    Patil, Swanand; Sandberg, Amanda; Heckert, Eric; Self, William; Seal, Sudipta

    2007-01-01

    The surface chemistry of biomaterials can have a significant impact on their performance in biological applications. Our recent work suggests that cerium oxide nanoparticles are potent antioxidants in cell culture models and we have evaluated several therapeutic applications of these nanoparticles in different biological systems. Knowledge of protein adsorption and cellular uptake will be very useful in improving the beneficial effects of cerium oxide nanoparticles in biology. In the present ...

  15. BRCA1 function in T lymphocytes: a cellular specificity of a different kind

    OpenAIRE

    Gardner, Kevin; Liu, Edison T

    2000-01-01

    Recent work by Mak et al demonstrates that mice carrying a T-cell-specific disruption of the brca1 gene display markedly impaired T-lymphocyte development and proliferation in the absence of any increased tendency for the formation of tumors. Interestingly, the extent of these defects was found to be highly dependent on cellular context. Contrasting the rather broad tissue expression pattern of brca1 against its exquisitely selective etiologic role in cancers of the breast and ovary, many of ...

  16. Functional evaluation of DNA repair in human biopsies and their relation to other cellular biomarkers

    OpenAIRE

    Slyskova, Jana; Langie, Sabine A. S.; Collins, Andrew R.; Vodicka, Pavel

    2014-01-01

    Thousands of DNA lesions are estimated to occur in each cell every day and almost all are recognized and repaired. DNA repair is an essential system that prevents accumulation of mutations which can lead to serious cellular malfunctions. Phenotypic evaluation of DNA repair activity of individuals is a relatively new approach. Methods to assess base and nucleotide excision repair pathways (BER and NER) in peripheral blood cells based on modified comet assay protocols have been widely applied i...

  17. Cellular and molecular alterations in 5-HTT knockout mice%5-羟色胺转运体敲除小鼠的分子和细胞改变

    Institute of Scientific and Technical Information of China (English)

    蒋雪

    2011-01-01

    5-羟色胺转运体(5-HTT)在神经精神心理正常功能的维持及疾病的发生和发展中起重要作用.5-HTT的表达能力减低或消失的小鼠(称为:5-HTT敲除小鼠)表现出许多行为的改变,例如:焦虑类似行为增多、对应激更加敏感和攻击性行为减少.这些行为的改变有的与携带5-HTTLPR短等位基因的人很相似.因此5-HTT敲除小鼠被作为研究5-HTTLPR多态性导致情感性精神障碍发病机制的动物模型.本文主要就5-HTT敲除小鼠的5-HT浓度和代谢、下丘脑-垂体-肾卜腺皮质轴以及对其他神经递质转运体影响的分子和细胞改变进行综述.%The function of 5-hydroxytryptamine transporter (5-HTT) is related to the mood regulation.Mice with deficit or reduced 5-HTT function (5-HTT knockout mice) showed several behavioral changes, including increased anxiety-like behavior, more sensitive to stress and reduced aggressive behavior.Some of these behavioral alterations are similar to phenotypes found in human who have short alleles of polymorphism in 5-HT transporter linked promoter region (5-HTTLPR).Therefore, 5-HTT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders.The present review focuses on the cellular and molecular alterations in 5-HTT knockout mice, including changes in 5-HT concentrations and its metabolism, impaired HPA axis, developmental changes in the neurons and brain and the influence on other neurotransmitter transporters.The possible relationships between these alterations and the behavioral changes in these mice are also discussed.

  18. Scintigraphic Methods to Evaluate Alterations of Gastric and Esophageal Functions in Female Obesity

    Directory of Open Access Journals (Sweden)

    Özgür Ömür

    2014-02-01

    Full Text Available Objective: Altered gastrointestinal function has frequently been observed in obese patients. The aim of this study was to investigate the frequency of gastro-esophageal reflux (GER and to determine the alterations of gastric emptying and esophageal transit by scintigraphic methods in obese patients. Methods: Scintigraphic studies of 50 obese female non-diabetic patients who had not received any treatment for weight control were retrospectively reviewed. Mean Body Mass Index (BMI was 34.96±3.04 kg/m² (range:32-39 kg/m². All subjects were submitted to scintigraphic evaluation of esophageal transit, gastro-esophageal reflux, gastric emptying and presence of Helicobacter pylori infection. The data of obese patients were compared with those of sex-age matched 30 non-obese cases who were selected from our clinical archive. Results: In obese group, seventeen (34% patients were found to be GER positive scintigraphically; mean gastric emptying time (t½ was 59.18±30.8 min and the mean esophageal transit time was 8.9±7.2 s. Frequency of positive GER scintigraphy and the mean value of esophageal transit time were significantly higher in obese patients than non-obese control subjects. Gastric emptying time and esophageal transit time values were significantly longer in GER positive obese patients than GER negative ones. There was no statistically significant difference in the frequency of positive C14 urea breath test between obese and non-obese subjects and there were also no statistically significant correlations between BMI, GER, esophageal transit time and gastric emptying time. Conclusion: In our study, 42 of the 50 obese patients had esophago-gastric motility alterations. The significance of these alterations in obesity is not fully understood, but it is believed that these changes could be because of potential contributing factors in the development or maintenance of obesity or changes in eating habits

  19. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  20. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. PMID:27125544

  1. Disruption of BSEP Function in HepaRG Cells Alters Bile Acid Disposition and Is a Susceptive Factor to Drug-Induced Cholestatic Injury.

    Science.gov (United States)

    Qiu, Xi; Zhang, Yueping; Liu, Tongtong; Shen, Hong; Xiao, Yongling; Bourner, Maureen J; Pratt, Jennifer R; Thompson, David C; Marathe, Punit; Humphreys, W Griffith; Lai, Yurong

    2016-04-01

    In the present study, we characterized in vitro biosynthesis and disposition of bile acids (BAs) as well as hepatic transporter expression followed by ABCB11 (BSEP) gene knockout in HepaRG cells (HepaRG-KO cells). BSEP KO in HepaRG cells led to time-dependent BA accumulation, resulting in reduced biosynthesis of BAs and altered BA disposition. In HepaRG-KO cells, the expression of NTCP, OATP1B1, OATP2B1, BCRP, P-gp, and MRP2 were reduced, whereas MRP3 and OCT1 were up-regulated. As a result, BSEP KO altered the disposition of BAs and subsequently underwent adaptive regulations of BA synthesis and homeostasis to enable healthy growth of the cells. Although BSEP inhibitors caused no or slight increase of BAs in HepaRG wild type cells (HepaRG-WT cells), excessive intracellular accumulation of BAs was observed in HepaRG-KO cells exposed to bosentan and troglitazone, but not dipyridamole. LDH release in the medium was remarkably increased in HepaRG-KO cultures exposed to troglitazone (50 μM), suggesting drug-induced cellular injury. The results revealed that functional impairment of BSEP predisposes the cells to altered BA disposition and is a susceptive factor to drug-induced cholestatic injury. In total, BSEP inhibition might trigger the processes but is not a sole determinant of cholestatic cellular injury. As intracellular BA accumulation is determined by BSEP function and the subsequent adaptive gene regulation, assessment of intracellular BA accumulation in HepaRG-KO cells could be a useful approach to evaluate drug-induced liver injury (DILI) potentials of drugs that could disrupt other BA homeostasis pathways beyond BSEP inhibition. PMID:26910619

  2. Elucidating the cellular uptake mechanism of aptamer-functionalized graphene-isolated-Au-nanocrystals with dual-modal imaging.

    Science.gov (United States)

    Wang, Shanshan; Liu, Zhangkun; Zou, Yuxiu; Lai, Xiaofang; Ding, Ding; Chen, Long; Zhang, Liqin; Wu, Yuan; Chen, Zhuo; Tan, Weihong

    2016-05-23

    Elucidating the endocytosis and metabolism of nanoparticles in cells could improve the diagnostic sensitivity and therapeutic efficiency. In this work, we explore the cellular uptake mechanism of a biocompatible nanocrystal nanostructure, graphene-isolated-Au-nanocrystals (GIANs), by monitoring the intrinsic Raman and two-photon luminescence signals of GIANs in live cells. Aptamers functionalized on the GIAN nanostructure through simple, but strong, π-π interactions entered the cells through a clathrin-dependent pathway, while unmodified GIANs mainly entered the cells through a caveolae-mediated endocytosis pathway. Thus, it can be concluded that the mechanism of cellular uptake in these graphene-isolated-Au-nanocrystal nanostructures is determined by the presence or absence of aptamer modification. PMID:27111129

  3. Differential Effects of Polymer-Surface Decoration on Drug Delivery, Cellular Retention, and Action Mechanisms of Functionalized Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    You, Yuanyuan; Hu, Hao; He, Lizhen; Chen, Tianfeng

    2015-12-01

    Polymer-surface decoration has been found to be an effective strategy to enhance the biological activities of nanomedicine. Herein, three different types of polymers with a cancer-targeting ligand Arg-Gly-Asp peptide (RGD) have been used to decorate mesoporous silica nanoparticles (MSNs) and the functionalized nanosystems were used as drug carriers of oxaliplatin (OXA). The results showed that polymer-surface decoration of the MSNs nanosystem by poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) significantly enhanced the anticancer efficacy of OXA, which was much higher than that of chitosan (CTS). This effect was closely related to the enhancement of the cellular uptake and cellular drug retention. Moreover, PEI@MSNs-OXA possessed excellent advantages in penetrating ability and inhibitory effects on SW480 spheroids that were used to simulate the in vivo tumor environments. Therefore, this study provides useful information for the rational design of a cancer-targeted MSNs nanosystem with polymer-surface decoration. PMID:26248202

  4. Modification of collagen IV by glucose or methylglyoxal alters distinct mesangial cell functions.

    Science.gov (United States)

    Pozzi, Ambra; Zent, Roy; Chetyrkin, Sergei; Borza, Corina; Bulus, Nada; Chuang, Peale; Chen, Dong; Hudson, Billy; Voziyan, Paul

    2009-10-01

    Diabetic nephropathy (DN) affects both glomerular cells and the extracellular matrix (ECM), yet the pathogenic mechanisms involving cell-matrix interactions are poorly understood. Glycation alters integrin-dependent cell-ECM interactions, and perturbation of these interactions results in severe renal pathology in diabetic animals. Here, we investigated how chemical modifications of the ECM by hyperglycemia and carbonyl stress, two major features of the diabetic milieu, affect mesangial cell functions. Incubation of collagen IV with pathophysiological levels of either the carbonyl compound methylglyoxal (MGO) or glucose resulted in modification of arginine or lysine residues, respectively. Mouse mesangial cells plated on MGO-modified collagen IV showed decreased adhesion and migration. Cells plated on glucose-modified collagen IV showed reduced proliferation and migration and increased collagen IV production. Inhibiting glucose-mediated oxidative modification of collagen IV lysine residues rescued the alterations in cell growth, migration, and collagen synthesis. We propose that diabetic ECM affects mesangial cell functions via two distinct mechanisms: modification of arginine residues by MGO inhibits cell adhesion, whereas oxidative modification of lysine residues by glucose inhibits cell proliferation and increases collagen IV production. These mechanisms may contribute to mesangial cell hypertrophy and matrix expansion in DN. PMID:19608705

  5. Brain structural and functional alterations in patients with unilateral hearing loss.

    Science.gov (United States)

    Yang, Ming; Chen, Hua-Jun; Liu, Bin; Huang, Zhi-Chun; Feng, Yuan; Li, Jing; Chen, Jing-Ya; Zhang, Ling-Ling; Ji, Hui; Feng, Xu; Zhu, Xin; Teng, Gao-Jun

    2014-10-01

    Alterations of brain structure and functional connectivity have been described in patients with hearing impairments due to distinct pathogenesis; however, the influence of unilateral hearing loss (UHL) on brain morphology and regional brain activity is still not completely understood. In this study, we aim to investigate regional brain structural and functional alterations in patients with UHL. T1-weighted volumetric images and task-free fMRIs were acquired from 14 patients with right-sided UHL (pure tone average ≥ 40 dB HL) and 19 healthy controls. Hearing ability was assessed by pure tone audiometry. Voxel-based morphometry (VBM) was performed to detect brain regions with changed gray matter volume or white matter volume in UHL. The amplitude of low-frequency fluctuation (ALFF) was calculated to analyze brain activity at the baseline and was compared between two groups. Compared with controls, UHL patients showed decreased gray matter volume in bilateral posterior cingulate gyrus and precuneus, left superior/middle/inferior temporal gyrus, and right parahippocampal gyrus and lingual gyrus. Meanwhile, patients showed significantly decreased ALFF in bilateral precuneus, left inferior parietal lobule, and right inferior frontal gyrus and insula and increased ALFF in right inferior and middle temporal gyrus. These findings suggest that chronic UHL could induce brain morphological changes and is associated with aberrant baseline brain activity. PMID:25093284

  6. Skin human papillomavirus type 38 alters p53 functions by accumulation of ΔNp73

    Science.gov (United States)

    Accardi, Rosita; Dong, Wen; Smet, Anouk; Cui, Rutao; Hautefeuille, Agnes; Gabet, Anne-Sophie; Sylla, Bakary S; Gissmann, Lutz; Hainaut, Pierre; Tommasino, Massimo

    2006-01-01

    The E6 and E7 of the cutaneous human papillomavirus (HPV) type 38 immortalize primary human keratinocytes, an event normally associated with the inactivation of pathways controlled by the tumour suppressor p53. Here, we show for the first time that HPV38 alters p53 functions. Expression of HPV38 E6 and E7 in human keratinocytes or in the skin of transgenic mice induces stabilization of wild-type p53. This selectively activates the transcription of ΔNp73, an isoform of the p53-related protein p73, which in turn inhibits the capacity of p53 to induce the transcription of genes involved in growth suppression and apoptosis. ΔNp73 downregulation by an antisense oligonucleotide leads to transcriptional re-activation of p53-regulated genes and apoptosis. Our findings illustrate a novel mechanism of the alteration of p53 function that is mediated by a cutaneous HPV type and support the role of HPV38 and ΔNp73 in human carcinogenesis. PMID:16397624

  7. Skin human papillomavirus type 38 alters p53 functions by accumulation of deltaNp73.

    Science.gov (United States)

    Accardi, Rosita; Dong, Wen; Smet, Anouk; Cui, Rutao; Hautefeuille, Agnes; Gabet, Anne-Sophie; Sylla, Bakary S; Gissmann, Lutz; Hainaut, Pierre; Tommasino, Massimo

    2006-03-01

    The E6 and E7 of the cutaneous human papillomavirus (HPV) type 38 immortalize primary human keratinocytes, an event normally associated with the inactivation of pathways controlled by the tumour suppressor p53. Here, we show for the first time that HPV38 alters p53 functions. Expression of HPV38 E6 and E7 in human keratinocytes or in the skin of transgenic mice induces stabilization of wild-type p53. This selectively activates the transcription of deltaNp73, an isoform of the p53-related protein p73, which in turn inhibits the capacity of p53 to induce the transcription of genes involved in growth suppression and apoptosis. DeltaNp73 downregulation by an antisense oligonucleotide leads to transcriptional re-activation of p53-regulated genes and apoptosis. Our findings illustrate a novel mechanism of the alteration of p53 function that is mediated by a cutaneous HPV type and support the role of HPV38 and deltaNp73 in human carcinogenesis. PMID:16397624

  8. Altered emotion regulation capacity in social phobia as a function of comorbidity.

    Science.gov (United States)

    Burklund, Lisa J; Craske, Michelle G; Taylor, Shelley E; Lieberman, Matthew D

    2015-02-01

    Social phobia (SP) has been associated with amygdala hyperreactivity to fear-relevant stimuli. However, little is known about the neural basis of SP individuals' capacity to downregulate their responses to such stimuli and how such regulation varies as a function of comorbid depression and anxiety. We completed an functional magnetic resonance imaging (fMRI) study wherein SP participants without comorbidity (n = 30), with comorbid depression (n = 18) and with comorbid anxiety (n = 19) and healthy controls (n = 15) were scanned while completing an affect labeling emotion regulation task. Individuals with SP as a whole exhibited a reversal of the pattern observed in healthy controls in that they showed upregulation of amygdala activity during affect labeling. However, subsequent analyses revealed a more complex picture based on comorbidity type. Although none of the SP subgroups showed the normative pattern of amygdala downregulation, it was those with comorbid depression specifically who showed significant upregulation. Effects could not be attributed to differences in task performance, amygdala reactivity or right ventral lateral prefrontal cortex (RVLPFC) engagement, but may stem from dysfunctional communication between amygdala and RVLPFC. Furthermore, the particularly altered emotion regulation seen in those with comorbid depression could not be fully explained by symptom severity or state anxiety. Results reveal altered emotion regulation in SP, especially when comorbid with depression. PMID:24813437

  9. Retinal function and morphology are altered in cattle infected with the prion disease transmissible mink encephalopathy.

    Science.gov (United States)

    Smith, J D; Greenlee, J J; Hamir, A N; Richt, J A; Greenlee, M H West

    2009-09-01

    Transmissible spongiform encephalopathies (TSEs) are a group of diseases that result in progressive and invariably fatal neurologic disease in both animals and humans. TSEs are characterized by the accumulation of an abnormal protease-resistant form of the prion protein in the central nervous system. Transmission of infectious TSEs is believed to occur via ingestion of prion protein-contaminated material. This material is also involved in the transmission of bovine spongiform encephalopathy ("mad cow disease") to humans, which resulted in the variant form of Creutzfeldt-Jakob disease. Abnormal prion protein has been reported in the retina of TSE-affected cattle, but despite these observations, the specific effect of abnormal prion protein on retinal morphology and function has not been assessed. The objective of this study was to identify and characterize potential functional and morphologic abnormalities in the retinas of cattle infected with a bovine-adapted isolate of transmissible mink encephalopathy. We used electroretinography and immunohistochemistry to examine retinas from 10 noninoculated and 5 transmissible mink encephalopathy-inoculated adult Holstein steers. Here we show altered retinal function, as evidenced by prolonged implicit time of the electroretinogram b-wave, in transmissible mink encephalopathy-infected cattle before the onset of clinical illness. We also demonstrate disruption of rod bipolar cell synaptic terminals, indicated by decreased immunoreactivity for the alpha isoform of protein kinase C and vesicular glutamate transporter 1, and activation of Müller glia, as evidenced by increased glial fibrillary acidic protein and glutamine synthetase expression, in the retinas of these cattle at the time of euthanasia due to clinical deterioration. This is the first study to identify both functional and morphologic alterations in the retinas of TSE-infected cattle. Our results support future efforts to focus on the retina for the development of

  10. Canopy structural alterations to nitrogen functions of the soil microbial community in a Quercus virginiana forest

    Science.gov (United States)

    Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.

    2014-12-01

    Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.

  11. Association between functional alterations of senescence and senility and disorders of gait and balance

    Directory of Open Access Journals (Sweden)

    Homero Teixeira-Leite

    2012-07-01

    Full Text Available OBJECTIVES: Declines in cognition and mobility are frequently observed in the elderly, and it has been suggested that the appearance of gait disorders in older individuals may constitute a marker of cognitive decline that precedes significant findings in functional performance screening tests. This study sought to evaluate the relationship between functional capacities and gait and balance in an elderly community monitored by the Preventive and Integrated Care Unit of the Hospital Adventista Silvestre in Rio de Janeiro, RJ, Brazil. METHODS: Elderly individuals (193 females and 90 males were submitted to a broad geriatric evaluation, which included the following tests: 1 a performance-oriented mobility assessment (POMA to evaluate gait; 2 a mini-mental state examination (MMSE; 3 the use of Katz and Lawton scales to assess functional capacity; 4 the application of the geriatric depression scale (GDS; and 5 a mini-nutritional assessment (MNA scale. RESULTS: Reductions in MMSE, Katz and Lawton scores were associated with reductions in POMA scores, and we also observed that significant reductions in POMA scores were present in persons for whom the MMSE and Katz scores did not clearly indicate cognitive dysfunction. We also demonstrated that a decline in the scores obtained with the GDS and MNA scales was associated with a decline in the POMA scores. CONCLUSIONS: Considering that significant alterations in the POMA scores were observed prior to the identification of significant alterations in cognitive capacity using either the MMSE or the Katz systems, a prospective study seems warranted to assess the predictive capacity of POMA scores regarding the associated decline in functional capacity.

  12. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function

    OpenAIRE

    Hubert, Nadia; Hentze, Matthias W.

    2002-01-01

    Divalent metal transporter 1 (DMT1) mediates apical iron uptake into duodenal enterocytes and also transfers iron from the endosome into the cytosol after cellular uptake via the transferrin receptor. Hence, mutations in DMT1 cause systemic iron deficiency and anemia. DMT1 mRNA levels are increased in the duodenum of iron-deficient animals. This regulation has been observed for DMT1 mRNA harboring an iron–responsive element (IRE) in its 3′ UTR, but not for a processing variant lacking a 3′UTR...

  13. Progressive alterations of central nervous system structure and function are caused by charged particle radiation

    Science.gov (United States)

    Nelson, G. A.; Cns Nscor Team

    A new NASA-sponsored program project (NSCOR) has been organized to conduct the first comprehensive investigation of the response of a mammalian brain structure (mouse hippocampus) to charged-particle radiation. The NSCOR collaboration has three main goals. The first goal is to quantify the time- and dose-dependent changes in cellular composition and architecture. By using stereology on preserved brains, subsets of cells (neurons, glia, endothelia and stem cells) will be quantified out to 2 years after irradiation with accelerated protons and iron ions. To further characterize changes in vasculature architecture a polymer infusion technique will be used to produce a three-dimensional vasculature cast that then will be mapped by x-ray tomography to determine topological changes, and microscopic infarcts associated with amyloid protein deposits. The 2nd goal is to quantify hippocampal function(s). The primary measurement of function will be extracellular electrical recordings from hippocampal ``brain slices'' that reflect underlying functions such as connectivity, action potential generation & conduction, and neurotransmitter formation, secretion, and uptake. Individual nerve membrane properties will be assessed by ``patch clamp'' recordings. Two non-invasive methods will evaluate brain function and the evolution of changes with time. Electroencephalograms will map macroscopic spontaneous electrical activity while two state-of-the-art MRI magnetization sequences will visualize and quantify local oxygen utilization and white matter fiber tracts structural integrity. To quantify the brains' overall performance under stress, animals will receive a systemic shock mediated by the immune system in the form of a reaction to lipopolysaccharide. A second strategy will employ the APP23 transgenic mouse that develops the pathological changes associated with Alzheimer's disease. Measurements of irradiated mice will determine whether radiation exposure affects the latency and

  14. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    Science.gov (United States)

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. PMID:26656284

  15. Alterations in Interhemispheric Functional and Anatomical Connectivity are Associated with Tobacco Smoking in Humans

    Directory of Open Access Journals (Sweden)

    Humsini eViswanath

    2015-03-01

    Full Text Available Abnormal interhemispheric functional connectivity correlates with several neurologic and psychiatric conditions, including depression, obsessive-compulsive disorder, schizophrenia, and stroke. Abnormal interhemispheric functional connectivity also correlates with abuse of cannabis and cocaine. In the current report, we evaluated whether tobacco abuse (i.e., cigarette smoking is associated with altered interhemispheric connectivity. To that end, we examined resting state functional connectivity using magnetic resonance imaging (MRI in short term tobacco deprived and smoking as usual tobacco smokers, and in non-smoker controls. Additionally, we compared diffusion tensor imaging (DTI in the same subjects to study differences in white matter. The data reveal a significant increase in interhemispheric functional connectivity in sated tobacco smokers when compared to controls. This difference was larger in frontal regions, and was positively correlated with the average number of cigarettes smoked per day. In addition, we found a negative correlation between the number of DTI streamlines in the genual corpus callosum and the number of cigarettes smoked per day. Taken together, our results implicate changes in interhemispheric functional and anatomical connectivity in current cigarette smokers.

  16. Alterations in interhemispheric functional and anatomical connectivity are associated with tobacco smoking in humans.

    Science.gov (United States)

    Viswanath, Humsini; Velasquez, Kenia M; Thompson-Lake, Daisy Gemma Yan; Savjani, Ricky; Carter, Asasia Q; Eagleman, David; Baldwin, Philip R; De La Garza, Richard; Salas, Ramiro

    2015-01-01

    Abnormal interhemispheric functional connectivity correlates with several neurologic and psychiatric conditions, including depression, obsessive-compulsive disorder, schizophrenia, and stroke. Abnormal interhemispheric functional connectivity also correlates with abuse of cannabis and cocaine. In the current report, we evaluated whether tobacco abuse (i.e., cigarette smoking) is associated with altered interhemispheric connectivity. To that end, we examined resting state functional connectivity (RSFC) using magnetic resonance imaging (MRI) in short term tobacco deprived and smoking as usual tobacco smokers, and in non-smoker controls. Additionally, we compared diffusion tensor imaging (DTI) in the same subjects to study differences in white matter. The data reveal a significant increase in interhemispheric functional connectivity in sated tobacco smokers when compared to controls. This difference was larger in frontal regions, and was positively correlated with the average number of cigarettes smoked per day. In addition, we found a negative correlation between the number of DTI streamlines in the genual corpus callosum and the number of cigarettes smoked per day. Taken together, our results implicate changes in interhemispheric functional and anatomical connectivity in current cigarette smokers. PMID:25805986

  17. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  18. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  19. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness

    International Nuclear Information System (INIS)

    The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins

  20. Differences in functional brain connectivity alterations associated with cerebral amyloid deposition in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Dahyun eYi

    2015-02-01

    Full Text Available Despite potential implications for the early detection of impending AD, very little is known about the differences of large scale brain networks between amnestic MCI (aMCI with high cerebral amyloid beta protein (Aβ deposition (i.e., aMCI+ and aMCI with no or very little Aβ deposition (i.e., aMCI-. We first aimed to extend the current literature on altering intrinsic functional connectivity (FC of the default mode network (DMN and salience network (SN from CN to AD dementia. Second, we further examined the differences of the DMN and the SN between aMCI-, aMCI+, and CN. Forty-three older adult (12 CN, 10 aMCI+, 10 aMCI-, and 11 AD dementia subjects were included. All participants received clinical and neuropsychological assessment, resting state functional MRI, structural MRI, and Pittsburgh compound-B-PET scans. FC data were preprocessed using Multivariate Exploratory Linear Optimized Decomposition into Independent Components of FSL. Group comparisons were carried out using the dual-regression approach. In addition, to verify presence of grey matter (GM volume changes with intrinsic functional network alterations, Voxel Based Morphometry was performed on the acquired T1-weighted data. As expected, AD dementia participants exhibited decreased FC in the DMN compared to CN (in precuneus and cingulate gyrus. The degree of alteration in the DMN in aMCI+ compared to CN was intermediate to that of AD. In contrast, aMCI- exhibited increased FC in the DMN compared to CN (in precuneus as well as aMCI+. In terms of the SN, aMCI- exhibited decreased FC compared to both CN and aMCI+ particularly in the inferior frontal gyrus. FC within the SN in aMCI+ and AD did not differ from CN. Compared to CN, aMCI- showed atrophy in bilateral superior temporal gyri whereas aMCI+ showed atrophy in right precuneus. The results indicate that despite of the similarity in cross-sectional cognitive features aMCI- has quite different functional brain connectivity compared to

  1. Functional Immune Alterations, Latent Herpesvirus Reactivation, Physiological Stress and Clinical Incidence Onboard the International Space Station

    Science.gov (United States)

    Crucian, Brian; Kunz, Hawley; Mehta, Satish; Stowe, Ray; Ploutz-Snyder, Robert; Quiriarte, Heather; Chouker, Alexander; Pierson, Duane

    2016-01-01

    This study (OpNom 'Functional Immune') will be a comprehensive immunity Flight Definition investigation that will use longitudinal repeated measures to assess various aspects of immunity and viral reactivation during long-duration spaceflight. This proposal builds on the successful sampling architecture of the former Integrated Immune flight study, which for the first time returned ambient, live blood samples from space to allow functional assays. Blood (ambient, live) and saliva samples will be collected before, during, and following spaceflight. Previously uninvestigated live cell assays will be performed to assess cellular function during spaceflight. Specialized preservatives will be utilized to assess comprehensive immunophenotype, gene expression and proteomics. Measures of inflammation, stress, antimicrobial activity, etc. will be assessed in blood, saliva, and/or urine. The reactivation of a panel of herpesviruses will be assessed both during flight, and post-flight until shedding resolves. Array technology will be utilized to allow maximal information to be derived from minimal in-flight samples. This study will be a hybrid of NASA internal scientists and researchers external to NASA. The NASA 'Core' science package and implementation strategy was selected and approved in 2014. Via NRA, the solicitation for external participation, with science directed to comply with the parent study sampling architecture, is in progress

  2. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.

    Science.gov (United States)

    Goh, Celeste C; Roggerson, Krystal M; Lee, Hai-Chon; Golden-Mason, Lucy; Rosen, Hugo R; Hahn, Young S

    2016-03-01

    The hepatitis C virus (HCV) infects ∼200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver. PMID:26826241

  3. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    International Nuclear Information System (INIS)

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  4. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Directory of Open Access Journals (Sweden)

    Wei-na Ding

    Full Text Available PURPOSE: Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA. METHODS: Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS and Barratt Impulsiveness Scale-11 (BIS-11 and their hours of Internet use per week. RESULTS: There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours (p<0.0001 and higher CIAS (p<0.0001 and BIS-11 (p = 0.01 scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule. CONCLUSION: Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients

  5. Altered Hub Functioning and Compensatory Activations in the Connectome: A Meta-Analysis of Functional Neuroimaging Studies in Schizophrenia

    Science.gov (United States)

    Crossley, Nicolas A.; Mechelli, Andrea; Ginestet, Cedric; Rubinov, Mikail; Bullmore, Edward T.; McGuire, Philip

    2016-01-01

    Background: Functional neuroimaging studies of schizophrenia have identified abnormal activations in many brain regions. In an effort to interpret these findings from a network perspective, we carried out a meta-analysis of this literature, mapping anatomical locations of under- and over-activation to the topology of a normative human functional connectome. Methods: We included 314 task-based functional neuroimaging studies including more than 5000 patients with schizophrenia and over 5000 controls. Coordinates of significant under- or over-activations in patients relative to controls were mapped to nodes of a normative connectome defined by a prior meta-analysis of 1641 functional neuroimaging studies of task-related activation in healthy volunteers. Results: Under-activations and over-activations were reported in a wide diversity of brain regions. Both under- and over-activations were significantly more likely to be located in hub nodes that constitute the “rich club” or core of the normative connectome. In a subset of 121 studies that reported both under- and over-activations in the same patients, we found that, in network terms, these abnormalities were located in close topological proximity to each other. Under-activation in a peripheral node was more frequently associated specifically with over-activation of core nodes than with over-activation of another peripheral node. Conclusions: Although schizophrenia is associated with altered brain functional activation in a wide variety of regions, abnormal responses are concentrated in hubs of the normative connectome. Task-specific under-activation in schizophrenia is accompanied by over-activation of topologically central, less functionally specialized network nodes, which may represent a compensatory response. PMID:26472684

  6. Altered functional connectivity of the default mode network in Williams syndrome: a multimodal approach.

    Science.gov (United States)

    Sampaio, Adriana; Moreira, Pedro Silva; Osório, Ana; Magalhães, Ricardo; Vasconcelos, Cristiana; Férnandez, Montse; Carracedo, Angel; Alegria, Joana; Gonçalves, Óscar F; Soares, José Miguel

    2016-07-01

    Resting state brain networks are implicated in a variety of relevant brain functions. Importantly, abnormal patterns of functional connectivity (FC) have been reported in several neurodevelopmental disorders. In particular, the Default Mode Network (DMN) has been found to be associated with social cognition. We hypothesize that the DMN may be altered in Williams syndrome (WS), a neurodevelopmental genetic disorder characterized by an unique cognitive and behavioral phenotype. In this study, we assessed the architecture of the DMN using fMRI in WS patients and typically developing matched controls (sex and age) in terms of FC and volumetry of the DMN. Moreover, we complemented the analysis with a functional connectome approach. After excluding participants due to movement artifacts (n = 3), seven participants with WS and their respective matched controls were included in the analyses. A decreased FC between the DMN regions was observed in the WS group when compared with the typically developing group. Specifically, we found a decreased FC in a posterior hub of the DMN including the precuneus, calcarine and the posterior cingulate of the left hemisphere. The functional connectome approach showed a focalized and global increased FC connectome in the WS group. The reduced FC of the posterior hub of the DMN in the WS group is consistent with immaturity of the brain FC patterns and may be associated with the singularity of their visual spatial phenotype. PMID:27412230

  7. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  8. Detection of alterations in testicular and epididymal function in laboratory animals

    Energy Technology Data Exchange (ETDEWEB)

    Amann, R.P.

    1986-12-01

    The potential impact of an agent altering male reproductive function is greater for humans than for animals. Consequently, it is essential that sensitive criteria be used to look for effects on a multiplicity of target sites when an agent is evaluated using an animal model. No animal model has reproductive characteristics similar to those of humans, but this does not negate the validity of using animal models. Classic methodologies for reproductive toxicology are limited by the approaches used for subjective evaluation of testicular histology and use of natural mating for fertility tests. After dosing for an interval at least equal to six times the duration of one cycle of the seminiferous epithelium, sperm from ejaculated semen or the cauda epididymidis can be evaluated for normalacy of morphology or function and should be used for artificial insemination of females to critically evaluate fertility. Normal males of animals models ejaculate a great excess of sperm. Artificial insemination of a critical number of sperm, selected to result in slightly less than maximal fertility for control animals, will maximize the probability of detecting a decrease in fertility if the same critical number of sperm is inseminated for treated animals as for control animals. Testicular function should be evaluated by objective, rather than subjective, criteria. Among the more sensitive criteria of testicular function are the minor diameter of essentially round seminiferous tubules, the ratio of leptotene spermatocytes to Sertoli cells, the corrected numbers of germ cells per seminiferous tubule cross section, and the number of homogenization-resistant spermatids per testis.

  9. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Du, Fengxia [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Minjie [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohua; Yang, Caiyun [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Meng, Hao; Wang, Dong; Chang, Shuang [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Ye [Department of Radiation Oncology, Division of Genomic Stability, Dana Farber Cancer Institute, Harvard Medical School, MA 02134 (United States); Price, Brendan, E-mail: Brendan_Price@dfci.harvard.edu [Department of Radiation Oncology, Division of Genomic Stability, Dana Farber Cancer Institute, Harvard Medical School, MA 02134 (United States); Sun, Yingli, E-mail: sunyl@big.ac.cn [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  10. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    International Nuclear Information System (INIS)

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  11. Morphological and functional alterations in adult boar epididymis: Effects of prenatal and postnatal administration of flutamide

    Directory of Open Access Journals (Sweden)

    Chojnacka Katarzyna

    2011-02-01

    Full Text Available Abstract Background The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43 and androgen receptor (AR expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis. Methods First two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80 and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90. Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay. Results Histological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p p p p Conclusions The region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43

  12. Administration of MPTP to the common marmoset does not alter cortical cholinergic function

    International Nuclear Information System (INIS)

    The administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to common marmosets induced persistent motor deficits and decreased concentrations of dopamine, homovanillic acid, and 3,4-dihydroxy-phenylacetic acid (DOPAC) and [3H]dopamine uptake in the caudate-putamen. There was an 80% reduction in tyrosine hydroxylase immunoreactive cells in substantia nigra. At 10 days following the start of MPTP administration, the activity of choline acetyltransferase in the thalamus and frontal cortex was unchanged compared with control animals. Similarly, specific [3H]QNB binding was unaltered. At 4-6 weeks following the start of MPTP treatment, choline acetyltransferase activity and [3H]QNB binding in the frontal cortex and thalamus remained unaffected. There was no evidence for cell loss in the nucleus basalis of Meynert or alteration in the intensity of staining for acetylcholinesterase. MPTP treatment of the common marmoset produces a nigrostriatal lesion. In contrast, MPTP did not alter cortical cholinergic function and was not neurotoxic to the cholinergic cells in the nucleus basalis of Meynert

  13. In vivo alterations in skeletal muscle form and function after disuse atrophy.

    Science.gov (United States)

    Clark, Brian C

    2009-10-01

    Prolonged reductions in muscle activity and mechanical loading (e.g., bed rest, cast immobilization) result in alterations in skeletal muscle form and function. The purpose of this review article was to synthesize recent findings from several studies on the dramatic effects of disuse on skeletal muscle morphology and muscle performance in humans. Specifically, the following are discussed: 1) how the antigravity muscles are most susceptible to atrophy and how the degree of atrophy varies between muscle groups; 2) how disuse alters muscle composition by increasing intermuscular adipose tissue; 3) the influence of different disuse models on regulating the loss of muscle mass and strength, with immobilization causing greater reductions than bed rest and limb suspension do; 4) the observation that disuse decreases strength to a greater extent than muscle mass and the role of adaptations in both neural and contractile properties that influences this excessive loss of strength; 5) the equivocal findings on the effect of disuse on muscle fatigue resistance; and 6) the reduction in motor control after prolonged disuse. Lastly, emerging data warranting further inquiry into the modulating role of biological sex on disuse-induced adaptations are also discussed. PMID:19727027

  14. Cellular and molecular mechanism study of declined intestinal transit function in the cholesterol gallstone formation process of the guinea pig

    OpenAIRE

    Fan, Ying; Wu, Shuodong; YIN, ZHENHUA; Fu, Bei-Bei

    2014-01-01

    The aim of this study was to investigate the cellular and molecular mechanisms of declined intestinal transit (IT) function in the cholesterol gallstone (CG) formation process. Forty guinea pigs were divided into an experimental group (EG) and a control group (CoG), and the reverse transcription-polymerase chain reaction (RT-PCR) was performed for the analysis of c-kit and stem cell factor (scf) mRNA expression in the small bowel. In addition, immunofluorescence staining and confocal laser mi...

  15. Functional alterations of V1 cortex in patients with primary open angle glaucoma using functional MRI retinotopic mapping

    International Nuclear Information System (INIS)

    Objective: To evaluate the functional changes of visual cortex (V1) in patients with primary open angle glaucoma (POAG) by fMRI retinotopic mapping technology. Methods: Fifteen POAG patients and 15 healthy volunteers underwent stimulations with fMRI retinotopic mapping stimulus and contrast-reversing checkerboard patterns stimulus on a Siemens Trio 3.0 T MRI whole-body scanner for functional data collection. Comparisons of V1 fMRI responses between the glaucomatous eyes and the healthy eyes of the patients were carried out using paired samples t-test, while independent samples t-test was used to compare V1 fMRI responses and activations between the healthy eyes of patients and the age-, gender- and side- matched eyes of normal people. Differences of V1 cortical functions and visual functions were analyzed by linear correlation analysis when the glaucomatous and the healthy eyes were simulated individually., Results: (1) V1 fMRI responses of the individually stimulated glaucomatous eyes [(1.24±0.72)%] were weaker than those of the healthy eyes [(2.18±0.93)%] (t=4.757, P0.05). (2) Differences of V1 cortical functions were negatively correlated with those of visual functions in the individually stimulated glaucomatous and healthy eyes (r=-0.887, P< 0.01). (3) The activated area indexes of V1 cortexes in the healthy eyes from patients (0.72±0.12) were lower than those in the matched eyes of normal people (0.85±0.09) (t=-3.801, P<0.01) . Conclusion: Cortical function impairment was in accordance with visual function impairment in glaucoma. Located and quantified measurement with fMRI retinotopic mapping was a useful method for clinical follow-up and evaluation of functional alteration of glaucomatous visual cortex, and a potentially useful means of studying trans-synaptic degeneration of visual pathways of in vivo glaucoma. (authors)

  16. Multi-functional bio-synthetic hybrid nanostructures for enhanced cellular uptake, endosomal escape and targeted delivery toward diagnostics and therapeutics

    Science.gov (United States)

    Shrestha, Ritu

    Applications of nanotechnology in medicine, also known as nanomedicine, is a rapidly growing field as it holds great potential in the development of novel therapeutics toward treatment of various diseases. Shell crosslinked knedel-like nanoparticles (SCKs) that are self assembled from amphiphilic block copolymers into polymeric micelles followed by crosslinking selectively throughout the shell domain have been investigated as theranostic agents for the delivery of nucleic acids and incorporation of imaging probes. The main focus of this dissertation is to design and develop unique multifunctional bio-synthetic hybrid nanoparticles that can carry agents for radiolabeling, moieties for inducing stealth properties to minimize protein adsorption in vivo, ligands for site-specific targeting, therapeutic payloads, and are optimized for efficient delivery of cargoes intracellularly and to the target sites toward constructing novel nanoscopic objects for therapy and diagnosis. Alteration of polymeric building blocks of the nanoparticles provides opportunities for precise control over the sizes, shapes, compositions, structures and properties of the nanoparticles. To ensure ideal performance of nanoparticles as theranostic agents, it is critical to ensure high intracellular bioavailability of the therapeutic payload conjugated to nanoparticles. Special efforts were made by employing well-defined multi-step polymerization and polymer modification reactions that involved conjugation of peptide nucleic acids (PNAs) to chain terminus of poly(ethylene glycol) (PEG) chain grafts such that they were presented at the outermost surface of SCKs. Additionally, chemical modification reactions were performed on the polymer backbone to integrate positive charges onto the shell of the nanoparticles to afford cationic SCKs (cSCKs) for facilitating cellular entry and electrostatic interactions with negatively charged nucleic acids. Covalent conjugation of F3, a tumor homing peptide, post

  17. Intake of phthalate-tainted foods alters thyroid functions in Taiwanese children.

    Directory of Open Access Journals (Sweden)

    Ming-Tsang Wu

    Full Text Available BACKGROUND: On April-May, 2011, two Taiwan chemical companies were found to have intentionally added phthalates, Di-(2-ethylhexyl phthalate (DEHP and/or Di-isononyl phthalate, as a substitute of emulsifier to many foodstuffs. This study aimed to investigate whether exposure to these foods altered endocrine functions in children aged ≤10 years and, if so, whether those changes could be reversed by stopping exposure. METHODS: One Phthalates Clinic for Children was established in southern Taiwan between May 31 and June 17, 2011. All eligible children had their exposure information, blood and/or urine specimens collected. Endocrine functions were assessed in serum. The exposure groups were categorized into three (High, >500 ppm, Low, 1-500 ppm, and No, <1 ppm of DEHP. After six months, some children were followed up for the selected endocrine hormones. RESULTS: Sixty children were eligible in this study; all were Tanner stage 1 with no pubic hair. Compared to non-exposed group, both high and low exposure groups had significantly lower serum thyroid-stimulating hormone (TSH levels (P = 0.001 and 0.024. At six months follow-up, serum triiodothyronine (T3 levels was significantly changed (P = 0.034 in high exposure group (n = 13. For serum estradiol (E2, the detectable rate (≥8 pg/mL decreased from 76.9% (10/13 to 30.8% (4/13 (P = 0.070. CONCLUSIONS: This study shows that serum TSH levels can be altered when children were exposed to high concentrations of phthalate-tainted foodstuffs. Serum E2 and T3 may be partially recovered after stopping exposure.

  18. Antibody to gp41 MPER alters functional properties of HIV-1 Env without complete neutralization.

    Directory of Open Access Journals (Sweden)

    Arthur S Kim

    2014-07-01

    Full Text Available Human antibody 10E8 targets the conserved membrane proximal external region (MPER of envelope glycoprotein (Env subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.

  19. Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

    International Nuclear Information System (INIS)

    Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain

  20. Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis.

    Science.gov (United States)

    Wang, Ting; Liu, Jia; Zhang, Junran; Zhan, Wang; Li, Lei; Wu, Min; Huang, Hua; Zhu, Hongyan; Kemp, Graham J; Gong, Qiyong

    2016-01-01

    Many functional neuroimaging studies have reported differential patterns of spontaneous brain activity in posttraumatic stress disorder (PTSD), but the findings are inconsistent and have not so far been quantitatively reviewed. The present study set out to determine consistent, specific regional brain activity alterations in PTSD, using the Effect Size Signed Differential Mapping technique to conduct a quantitative meta-analysis of resting-state functional neuroimaging studies of PTSD that used either a non-trauma (NTC) or a trauma-exposed (TEC) comparison control group. Fifteen functional neuroimaging studies were included, comparing 286 PTSDs, 203 TECs and 155 NTCs. Compared with NTC, PTSD patients showed hyperactivity in the right anterior insula and bilateral cerebellum, and hypoactivity in the dorsal medial prefrontal cortex (mPFC); compared with TEC, PTSD showed hyperactivity in the ventral mPFC. The pooled meta-analysis showed hypoactivity in the posterior insula, superior temporal, and Heschl's gyrus in PTSD. Additionally, subgroup meta-analysis (non-medicated subjects vs. NTC) identified abnormal activation in the prefrontal-limbic system. In meta-regression analyses, mean illness duration was positively associated with activity in the right cerebellum (PTSD vs. NTC), and illness severity was negatively associated with activity in the right lingual gyrus (PTSD vs. TEC). PMID:27251865

  1. Modality interactions alter the shape of acoustic mate preference functions in gray treefrogs.

    Science.gov (United States)

    Reichert, Michael S; Höbel, Gerlinde

    2015-09-01

    Sexual selection takes place in complex environments where females evaluating male mating signals are confronted with stimuli from multiple sources and modalities. The pattern of expression of female preferences may be influenced by interactions between modalities, changing the shape of female preference functions, and thus ultimately altering the selective landscape acting on male signal evolution. We tested the hypothesis that the responses of female gray treefrogs, Hyla versicolor, to acoustic male advertisement calls are affected by interactions with visual stimuli. We measured preference functions for several call traits under two experimental conditions: unimodal (only acoustic signals presented), and multimodal (acoustic signals presented along with a video-animated calling male). We found that females were more responsive to multimodal stimulus presentations and, compared to unimodal playbacks, had weaker preferences for temporal call characteristics. We compared the preference functions obtained in these two treatments to the distribution of male call characteristics to make inferences on the strength and direction of selection expected to act on male calls. Modality interactions have the potential to influence the course of signal evolution and thus are an important consideration in sexual selection studies. PMID:26282702

  2. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    Science.gov (United States)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  3. Cellular composition of periapical granulomas and its function. Histological, immunohistochemical and electronmicroscopic study.

    Science.gov (United States)

    Babál, P; Brozman, M; Jakubovský, J; Basset, F; Jány, Z

    1989-01-01

    Periapical granulomas have been investigated histologically, immunohistologically using polyclonal and monoclonal antibodies, as well as electronmicroscopically. Lesions were formed by inflammatory granulation tissue frequently with foci of purulent exudation and fibrosis. Most numerous were plasma cells usually in cellular regions of the granulation tissue where they were tightly pressed. Of other cellular types were numerous lymphocytes, fibroblasts, less frequent were macrophages, scattered granulocytes and mast cells. More than a half of the plasma cells were IgG positive, about 20% IgA positive, up to 10% IgM, rarely IgE and sporadically IgD positive cells. In the vascular walls and their surrounding as well as in the phagocytes fine granular to granular positivities of C3 and C4 components of the complement were present. The majority of lymphocytes beared markers of T lymphocytes of which the T-suppressor markedly prevailed over the T-helper lymphocytes. In electron microscopy the plasma cells were most frequent. They were usually close to each other, sometimes with a disintegrated cytoplasmic membrane and non-damaged organelles being free around the nucleus. Mast cells were numerous and did not show any signs of marked degranulation. Rich production of immunoglobulins as well as the presence of IgG and IgM positive material in phagocytes, and the presence of positivities of the C3 and C4 components of the complement in the surrounding of the vessels and in phagocytes on the other hand supported the presumption that immune complexes participate in the pathogenesis of periapical granulomas. In spite of the presence of the IgE producing cells the morphological picture of mast cells did not suggest the presence of anaphylactic reaction in periapical lesions. Diffuse distribution of T lymphocytes, moreover with the prevalence of T-suppressor/cytotoxic over T-helper lymphocytes and not numerous macrophages in the inflammatory infiltrates did not suggest the

  4. Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags

    Directory of Open Access Journals (Sweden)

    Qiu Pengxin

    2006-06-01

    Full Text Available Abstract Background The snake venom gland is a specialized organ, which synthesizes and secretes the complex and abundant toxin proteins. Though gene expression in the snake venom gland has been extensively studied, the focus has been on the components of the venom. As far as the molecular mechanism of toxin secretion and metabolism is concerned, we still knew a little. Therefore, a fundamental question being arisen is what genes are expressed in the snake venom glands besides many toxin components? Results To examine extensively the transcripts expressed in the venom gland of Deinagkistrodon acutus and unveil the potential of its products on cellular structure and functional aspects, we generated 8696 expressed sequence tags (ESTs from a non-normalized cDNA library. All ESTs were clustered into 3416 clusters, of which 40.16% of total ESTs belong to recognized toxin-coding sequences; 39.85% are similar to cellular transcripts; and 20.00% have no significant similarity to any known sequences. By analyzing cellular functional transcripts, we found high expression of some venom related genes and gland-specific genes, such as calglandulin EF-hand protein gene and protein disulfide isomerase gene. The transcripts of creatine kinase and NADH dehydrogenase were also identified at high level. Moreover, abundant cellular structural proteins similar to mammalian muscle tissues were also identified. The phylogenetic analysis of two snake venom toxin families of group III metalloproteinase and serine protease in suborder Colubroidea showed an early single recruitment event in the viperids evolutionary process. Conclusion Gene cataloguing and profiling of the venom gland of Deinagkistrodon acutus is an essential requisite to provide molecular reagents for functional genomic studies needed for elucidating mechanisms of action of toxins and surveying physiological events taking place in the very specialized secretory tissue. So this study provides a first

  5. Effects of whole flaxseed, raw soybeans, and calcium salts of fatty acids on measures of cellular immune function of transition dairy cows.

    Science.gov (United States)

    Gandra, J R; Barletta, R V; Mingoti, R D; Verdurico, L C; Freitas, J E; Oliveira, L J; Takiya, C S; Kfoury, J R; Wiltbank, M C; Renno, F P

    2016-06-01

    The objective of the current study was to evaluate the effects of supplemental n-3 and n-6 fatty acid (FA) sources on cellular immune function of transition dairy cows. Animals were randomly assigned to receive 1 of 4 diets: control (n=11); whole flaxseed (n-3 FA source; n=11), 60 and 80g/kg of whole flaxseed [diet dry matter (DM) basis] during pre- and postpartum, respectively; whole raw soybeans (n-6 FA source; n=10), 120 and 160g/kg of whole raw soybeans (diet DM basis) during pre- and postpartum, respectively; and calcium salts of unsaturated FA (Megalac-E, n-6 FA source; n=10), 24 and 32g/kg of calcium salts of unsaturated FA (diet DM basis) during pre- and postpartum, respectively. Supplemental FA did not alter DM intake and milk yield but increased energy balance during the postpartum period. Diets containing n-3 and n-6 FA sources increased phagocytosis capacity of leukocytes and monocytes and phagocytosis activity of monocytes. Furthermore, n-3 FA source increased phagocytic capacity of leukocytes and neutrophils and increased phagocytic activity in monocytes and neutrophils when compared with n-6 FA sources. Supplemental FA effects on adaptive immune system included increased percentage of T-helper cells, T-cytotoxic cells, cells that expressed IL-2 receptors, and CD62 adhesion molecules. The results of this study suggest that unsaturated FA can modulate innate and adaptive cellular immunity and trigger a proinflammatory response. The n-3 FA seems to have a greater effect on phagocytic capacity and activity of leukocytes when compared with n-6 FA. PMID:27060809

  6. Impact of cadmium on hOGG1 and APE1 as a function of the cellular p53 status

    International Nuclear Information System (INIS)

    The tumor suppressor protein p53, often called the guardian of the genome, is involved in important cellular processes, such as cell cycle control, apoptosis and DNA repair. With respect to BER, p53 might physically interact with and affect the transcription of different BER proteins such as hOGG1, APE1 or Polβ. In studies in HCT116 p53−/− cells previously published, activity and mRNA expression of hOGG1 were found to be significantly decreased, while down-regulation of APE1 mRNA and protein levels in response to genotoxic stress were only described in HCT116 p53+/+ cells, but not in the isogenic p53 knockout cell line. The predominantly indirect genotoxic carcinogen cadmium inhibits the BER pathway and potentially interferes with zinc binding proteins such as p53. Therefore, this study was accomplished to investigate whether p53 is involved in the cadmium-induced inhibition of BER activity. To address this issue we applied a non-radioactive cleavage test system based on a Cy5-labeled oligonucleotide. We present evidence that p53 is not essential for hOGG1 and APE1 gene expression as well as OGG and APE activity in unstressed HCT116 cells; however, it plays an important role in the cellular response to cadmium treatment. Here, a direct involvement of p53 was only observed with respect to APE1 gene expression contributing to an altered APE activity, while OGG activity was presumably affected indirectly due to a stronger accumulation of cadmium in HCT116 p53+/+ cells. In summary, p53 indeed affects the BER pathway directly and indirectly in response to cadmium treatment.

  7. Flavoprotein imaging in the cerebellar cortex in vivo: cellular and metabolic basis and insights into cerebellar function

    Science.gov (United States)

    Gao, Wangcai; Chen, Gang; Ebner, Timothy J.

    2009-02-01

    Flavoprotein autofluorescence is an activity dependent intrinsic signal. Flavoproteins are involved in the electron transport chain and change their fluorescence according to the cellular redox state. We have been using flavoprotein autofluorescence in the cerebellum to examine properties of cerebellar circuits. Studies have also focused on understanding the cellular and metabolic origins of this intrinsic optical signal. Parallel fiber stimulation evokes a beamlike response intersected by bands of decreased fluorescence. The beam response is biphasic, with an early fluorescence increase (light phase) followed by a slower decrease (dark phase). We show this signal originates from flavoproteins as determined by its wavelength selectivity and sensitivity to blockers of the electron transport chain. Selectively blocking glutamate receptors abolished the on-beam light phase with the dark phase remaining intact. This demonstrates that the light phase is due to postsynaptic neuronal activation and suggests the dark phase is primarily due to glial activation. The bands of reduced fluorescence intersecting the beam are primarily neuronal in origin, mediated by GABAergic transmission, and due to the inhibitory action of molecular layer interneurons on Purkinje cells and the interneurons themselves. This parasagittally organized molecular layer inhibition differentially modulates the spatial pattern of cerebellar cortical activity. Flavoprotein imaging also reveals the functional architectures underlying the responses to inferior olive and peripheral whisker pad stimulation. Therefore, flavoprotein autofluorescence imaging is providing new insights into cerebellar cortical function and neurometabolic coupling.

  8. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains.

    Directory of Open Access Journals (Sweden)

    Marlène Dreux

    2009-02-01

    Full Text Available HCV entry into cells is a multi-step and slow process. It is believed that the initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I (SR-BI, a major receptor of high-density lipoprotein (HDL, the CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading to uptake and cellular penetration of HCV via low-pH endosomes. Several reports have indicated that HDL promotes HCV entry through interaction with SR-BI. This pathway remains largely elusive, although it was shown that HDL neither associates with HCV particles nor modulates HCV binding to SR-BI. In contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed indirectly because of lack of cells in which functional complementation assays with mutant receptors could be performed. Here we identified for the first time two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma cells allowed unambiguous investigation of human SR-BI functions during HCV entry. By expressing different SR-BI mutants in either cell line, our results revealed features of SR-BI intracellular domains that influence HCV infectivity without affecting receptor binding and stimulation of HCV entry induced by HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain that, by altering HCV binding, inhibit entry. Finally, we characterized alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results highlight specific SR-BI determinants required during HCV entry and physiological lipid transfer functions hijacked by HCV to favor infection.

  9. Molecular and cellular mechanisms for the regulation of ovarian follicular function in cows.

    Science.gov (United States)

    Shimizu, Takashi

    2016-08-25

    Ovary is an important organ that houses the oocytes (reproductive cell). Oocyte growth depends on the function of follicular cells such as the granulosa and theca cells. Two-cell two gonadotropin systems are associated with oocyte growth and follicular cell functions. In addition to these systems, it is also known that several growth factors regulate oocyte growth and follicular cell functions. Vascular endothelial growth factor (VEGF) is involved in thecal vasculature during follicular development and the suppression of granulosa cell apoptosis. Metabolic factors such as insulin, growth hormone (GH) and insulin-like growth factor 1 (IGF-1) also play critical roles in the process of follicular development and growth. These factors are associated not only with follicular development, but also with follicular cell function. Steroid hormones (estrogens, androgens, and progestins) that are secreted from follicular cells influence the function of the female genital tract and its affect the susceptibility to bacterial infection. This review covers our current understanding of the mechanisms by which gonadotrophins and/or steroid hormones regulate the growth factors in the follicular cells of the bovine ovary. In addition, this review describes the effect of endotoxin on the function of follicular cells. PMID:27097851

  10. Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics.

    Science.gov (United States)

    Roberts, Logan; Leise, Tanya L; Welsh, David K; Holmes, Todd C

    2016-08-01

    Light is the primary signal that calibrates circadian neural circuits and thus coordinates daily physiological and behavioral rhythms with solar entrainment cues. Drosophila and mammalian circadian circuits consist of diverse populations of cellular oscillators that exhibit a wide range of dynamic light responses, periods, phases, and degrees of synchrony. How heterogeneous circadian circuits can generate robust physiological rhythms while remaining flexible enough to respond to synchronizing stimuli has long remained enigmatic. Cryptochrome is a short-wavelength photoreceptor that is endogenously expressed in approximately half of Drosophila circadian neurons. In a previous study, physiological light response was measured using real-time bioluminescence recordings in Drosophila whole-brain explants, which remain intrinsically light-sensitive. Here we apply analysis of real-time bioluminescence experimental data to show detailed dynamic ensemble representations of whole circadian circuit light entrainment at single neuron resolution. Organotypic whole-brain explants were either maintained in constant darkness (DD) for 6 days or exposed to a phase-advancing light pulse on the second day. We find that stronger circadian oscillators support robust overall circuit rhythmicity in DD, whereas weaker oscillators can be pushed toward transient desynchrony and damped amplitude to facilitate a new state of phase-shifted network synchrony. Additionally, we use mathematical modeling to examine how a network composed of distinct oscillator types can give rise to complex dynamic signatures in DD conditions and in response to simulated light pulses. Simulations suggest that complementary coupling mechanisms and a combination of strong and weak oscillators may enable a robust yet flexible circadian network that promotes both synchrony and entrainment. A more complete understanding of how the properties of oscillators and their signaling mechanisms facilitate their distinct roles

  11. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function.

    Science.gov (United States)

    Hubert, Nadia; Hentze, Matthias W

    2002-09-17

    Divalent metal transporter 1 (DMT1) mediates apical iron uptake into duodenal enterocytes and also transfers iron from the endosome into the cytosol after cellular uptake via the transferrin receptor. Hence, mutations in DMT1 cause systemic iron deficiency and anemia. DMT1 mRNA levels are increased in the duodenum of iron-deficient animals. This regulation has been observed for DMT1 mRNA harboring an iron-responsive element (IRE) in its 3' UTR, but not for a processing variant lacking a 3'UTR IRE, suggesting that the IRE regulates the expression of DMT1 mRNA in response to iron levels. Here, we show that iron regulation of DMT1 involves the expression of a previously unrecognized upstream 5' exon (exon 1A) of the human and murine DMT1 gene. The expression of this previously uncharacterized 5' exon is tissue-specific and particularly prevalent in the duodenum and kidney. It adds an in-frame AUG translation initiation codon extending the DMT1 ORF by a conserved sequence of 29-31 amino acids. In combination with the IRE- and non-IRE variants in the 3'UTR, our results reveal the existence of four DMT1 mRNA isoforms predicting the synthesis of four different DMT1 proteins. We show that two regulatory regions, the 5' promoter/exon 1A region and the IRE-containing terminal exon participate in iron regulation of DMT1 expression, which operate in a tissue-specific way. These results uncover an unexpected complexity of DMT1 expression and regulation, with implications for understanding the physiology, cell biology, and pathophysiology of mammalian iron metabolism. PMID:12209011

  12. A default mode of brain function in altered states of consciousness.

    Science.gov (United States)

    Guldenmund, P; Vanhaudenhuyse, A; Boly, M; Laureys, S; Soddu, A

    2012-01-01

    Using modern brain imaging techniques, new discoveries are being made concerning the spontaneous activity of the brain when it is devoid of attention-demanding tasks. Spatially separated patches of neuronal assemblies have been found to show synchronized oscillatory activity behavior and are said to be functionally connected. One of the most robust of these is the default mode network, which is associated with intrinsic processes like mind wandering and self-projection. Furthermore, activity in this network is anticorrelated with activity in a network that is linked to attention to external stimuli. The integrity of both networks is disturbed in altered states of consciousness, like sleep, general anesthesia and hypnosis. In coma and related disorders of consciousness, encompassing the vegetative state (unresponsive wakefulness syndrome) and minimally conscious state, default mode network integrity correlates with the level of remaining consciousness, offering the possibility of using this information for diagnostic and prognostic purposes. Functional brain imaging is currently being validated as a valuable addition to the standardized behavioral assessments that are already in use. PMID:23165872

  13. Effects of altered ventilatory patterns of rabbit pulmonary endothelial angiotensin converting enzyme function, in vivo

    International Nuclear Information System (INIS)

    Because alveolar pressure can influence pulmonary blood flow, volume and surface area, the authors have studied the effects of airway pressure on endothelial angiotensin converting enzyme (ACE) function in rabbit lungs in vivo, utilizing indicator dilution techniques with 3H-Benzoyl-Phe-Ala-Pro (BPAP) as substate. Static inclation of the lungs to a pressure of 0 or 5 mmHg did not change percent transpulmonary metabolism and Amax/Km ratio in comparison to control measurements during conventional mechanical ventilation. When the inflation pressure was increased to 10 mmHg, percent metabolism of 3H-BPAP remained unaltered but Amax/Km decreased over 40% from control. This decrease was in close relation to the reduction in pulmonary blood flow. Addition of 5 cm H2O positive end-expiratory pressure (PEEP) to the mechanical ventilation also decreased Amax/Km values and pulmonary blood flow but did not influence percent metabolism of 3H-BPAP. These results suggest that the detected alterations in ACE kinetics were more likely due to hemodynamic changes than enzyme dysfunction. The authors propose that high static alveolar pressures as well as PEEP did not affect angiotensin converting enzyme function, but reduced the fraction of perfused microvessels reflected in changes in Amax/Km ratios

  14. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. PMID:26048176

  15. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Sánchez-Gutiérrez, Manuel [Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, D.F. (Mexico); Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Quintanilla-Vega, Betzabet, E-mail: mquintan@cinvestav.mx [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico)

    2014-09-15

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  16. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    International Nuclear Information System (INIS)

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  17. Characterization of 4-HNE modified L-FABP reveals alterations in structural and functional dynamics.

    Directory of Open Access Journals (Sweden)

    Rebecca L Smathers

    Full Text Available 4-Hydroxynonenal (4-HNE is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001 and mRNA (P<0.05, as well as increased poly-ubiquitinated L-FABP (P<0.001. Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69 and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69 L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd(1 = 0.395 µM and Kd(2 = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01. Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand

  18. Aged mice have increased inflammatory monocyte concentration and altered expression of cell-surface functional receptors

    Indian Academy of Sciences (India)

    Kelley Strohacker; Whitney L Breslin; Katie C Carpenter; Brian K McFarlin

    2012-03-01

    The expression of monocyte cell-surface receptors represents one index of immune dysfunction, which is common with aging. Although mouse models of aging are prevalent, monocyte subset assessment is rare. Our purpose was to compare cell receptor expression on classic (CD115+/Gr-1high) and non-classic (CD115+/Gr-1low) monocytes from 80- or 20-week-old CD-1 mice. Three-colour flow cytometry was used to determine the concentration of monocyte subsets and their respective cell-surface expression of TLR2, TLR4, CD80, CD86, MHC II and CD54. These receptors were selected because they have been previously associated with altered monocyte function. Data were analysed with independent -tests; significance was set at < 0.05. Old mice had a greater concentration of both classic (258%, =0.003) and non-classic (70%, =0.026) monocytes. The classic : non-classic monocyte ratio doubled in old as compared with that in young mice (=0.006), indicating a pro-inflammatory shift. TLR4 ($\\downarrow$27%, =0.001) and CD80 ($\\downarrow$37%, =0.004) were decreased on classic monocytes from old as compared with those from young mice. TLR2 ($\\uparrow$24%, =0.002) and MHCII ($\\downarrow$21%, =0.026) were altered on non-classic monocytes from old as compared with those from young mice. The increased classic : non-classic monocyte ratio combined with changes in the cell-surface receptor expression on both monocyte subsets is indicative of immune dysfunction, which may increase age-associated disease risk.

  19. Rapid and selective alterations in the expression of cellular genes accompany conditional transcription of Ha-v-ras in NIH 3T3 cells.

    OpenAIRE

    Owen, R D; Ostrowski, M C

    1987-01-01

    Hormone treatment of NIH 3T3 cells that contain recombinant fusions between the mouse mammary virus long terminal repeat and the v-ras gene of Harvey murine sarcoma virus results in conditional expression of the ras p21 gene product. Levels of ras mRNA and p21 are maximal after 2 to 4 h of hormone treatment. Analysis of cellular RNA by Northern blotting and nuclease S1 protection assays indicates that the expression of two cellular RNA species increases with kinetics similar to v-ras: v-sis-r...

  20. Long acting β2-agonist and corticosteroid restore airway glandular cell function altered by bacterial supernatant

    Directory of Open Access Journals (Sweden)

    Nawrocki-Raby Béatrice

    2010-01-01

    Full Text Available Abstract Background Staphylococcus aureus releases virulence factors (VF that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting β2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal combined with a corticosteroid (fluticasone propionate, FP was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. Methods A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. Results When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFα. Conclusions Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting β2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of β2 adrenergic receptor agonist and glucocorticoid.

  1. Frequency-specific Alterations of Large-scale Functional Brain Networks in Patients with Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Qin; Ya-Peng Li; Shun Zhang; Ying Xiong; Lin-Ying Guo; Shi-Qi Yang; Yi-Hao Yao

    2015-01-01

    Background:Previous studies have indicated that the cognitive deficits in patients with Alzheimer's disease (AD) may be due to topological deteriorations of the brain network.However,whether the selection of a specific frequency band could impact the topological properties is still not clear.Our hypothesis is that the topological properties of AD patients are also frequency-specific.Methods:Resting state functional magnetic resonance imaging data from l0 right-handed moderate AD patients (mean age:64.3 years; mean mini mental state examination [MMSE]:18.0) and 10 age and gender-matched healthy controls (mean age:63.6 years; mean MMSE:28.2) were enrolled in this study.The global efficiency,the clustering coefficient (CC),the characteristic path length (CpL),and "small-world" property were calculated in a wide range of thresholds and averaged within each group,at three different frequency bands (0.01-0.06 Hz,0.06-0.11 Hz,and 0.11-0.25 Hz).Results:At lower-frequency bands (0.01-0.06 Hz,0.06-0.11 Hz),the global efficiency,the CC and the "small-world" properties of AD patients decreased compared to controls.While at higher-frequency bands (0.11-0.25 Hz),the CpL was much longer,and the "small-world" property was disrupted in AD,particularly at a higher threshold.The topological properties changed with different frequency bands,suggesting the existence of disrupted global and local functional organization associated with AD.Conclusions:This study demonstrates that the topological alterations of large-scale functional brain networks inAD patients are frequency dependent,thus providing fundamental support for optimal frequency selection in future related research.

  2. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays

    DEFF Research Database (Denmark)

    Heinen, Christopher D; Juel Rasmussen, Lene

    2012-01-01

    provided an important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete biochemical steps or other aspects of MMR function. Here, we describe......ABSTRACT: With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis of...... LS can direct how clinicians manage the disease as well as prevent future cancers for the patient and their families. A challenge emerges, however, when a germline missense variant is identified in a MMR gene in a suspected LS patient. The significance of a single amino acid change in these large...

  3. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer

    OpenAIRE

    Gusterson, Barry A.; Ross, Douglas T.; Heath, Victoria J; Stein, Torsten

    2005-01-01

    Recent publications have classified breast cancers on the basis of expression of cytokeratin-5 and -17 at the RNA and protein levels, and demonstrated the importance of these markers in defining sporadic tumours with bad prognosis and an association with BRCA1-related breast cancers. These important observations using different technology platforms produce a new functional classification of breast carcinoma. However, it is important in developing hypotheses about the pathogenesis of this tumo...

  4. Bioinspired genotype–phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins

    OpenAIRE

    Van Vliet, Liisa D.; Colin, Pierre-Yves; Hollfelder, Florian

    2015-01-01

    The idea of compartmentalization of genotype and phenotype in cells is key for enabling Darwinian evolution. This contribution describes bioinspired systems that use in vitro compartments—water-in-oil droplets and gel-shell beads—for the directed evolution of functional proteins. Technologies based on these principles promise to provide easier access to protein-based therapeutics, reagents for processes involving enzyme catalysis, parts for synthetic biology and materials with biological comp...

  5. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions

    DEFF Research Database (Denmark)

    Tumova, S; Woods, A; Couchman, J R

    2000-01-01

    , mediates interactions with a variety of extracellular ligands such as growth factors and adhesion molecules. Through these interactions, heparan sulfate proteoglycans participate in many events during cell adhesion, migration, proliferation and differentiation. We are determining the multitude of...... proteoglycan functions, as their intricate roles in many pathways are revealed. They act as coreceptors for growth factors, participate in signalling during cell adhesion, modulate the activity of a broad range of molecules, and partake in many developmental and pathological processes, including tumorigenesis...

  6. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Boudreau, Aaron; Bissell, Mina J

    2008-12-23

    Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.

  7. Cellular resilience.

    Science.gov (United States)

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  8. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Martin

    2015-10-01

    Full Text Available Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability, and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo and central memory (CD62Lhi cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit

  9. Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study.

    Science.gov (United States)

    van Bussel, Frank C G; Backes, Walter H; van Veenendaal, Tamar M; Hofman, Paul A M; van Boxtel, Martin P J; Schram, Miranda T; Sep, Simone J S; Dagnelie, Pieter C; Schaper, Nicolaas; Stehouwer, Coen D A; Wildberger, Joachim E; Jansen, Jacobus F A

    2016-08-01

    Type 2 diabetes is associated with cognitive decrements, accelerated cognitive decline, and increased risk for dementia. Patients with the metabolic syndrome, a major risk factor for diabetes, may display comparable cognitive decrements as seen in type 2 diabetes. Currently, the impact of diabetes and prediabetes on cognition and the underlying organization of functional brain networks still remain to be elucidated. This study investigated whether functional brain networks are affected in type 2 diabetes and prediabetes. Forty-seven participants with diabetes, 47 participants with prediabetes, and 45 control participants underwent detailed cognitive testing and 3-Tesla resting state functional MRI. Graph theoretical network analysis was performed to investigate alterations in functional cerebral networks. Participants with diabetes displayed altered network measures, characterized by a higher normalized cluster coefficient and higher local efficiency, compared with control participants. The network measures of the participants with prediabetes fell between those with diabetes and control participants. Lower processing speed was associated with shorter path length and higher global efficiency. Participants with type 2 diabetes have altered functional brain networks. This alteration is already apparent in the prediabetic stage to a somewhat lower level, hinting at functional reorganization of the cerebral networks as a compensatory mechanism for cognitive decrements. PMID:27217484

  10. Altered Functional Connectivity in Patients with Subcortical Vascular Cognitive Impairment--A Resting-State Functional Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Weina Ding

    Full Text Available Recent neuroimaging studies have shown that people with subcortical vascular cognitive impairment (sVCI have structural and functional abnormalities in the frontal lobe and subcortical brain sites. In this study, we used seed-based resting-state functional connectivity (rsFC analysis and voxel-mirrored homotopic connectivity (VMHC techniques to investigate the alteration of rsFC in patients with sVCI. rsFC and structural magnetic resonance images were acquired for 51 patients with subcortical cerebrovascular disease. All patients were subdivided based on cognitive status into 29 with sVCI and 22 controls; patient characteristics were matched. rsFC of the posterior cingulate cortex (PCC and VMHC were calculated separately, and rsFC of the PCC and VMHC between the two groups were compared. The regions showing abnormal rsFC of the PCC or VMHC in sVCI patients were adopted as regions of interest for correlation analyses. Our results are as follows: The patients with sVCI exhibited increases in rsFC in the left middle temporal lobe, right inferior temporal lobe and left superior frontal gyrus, and significant decreases in rsFC of the left thalamus with the PCC. sVCI patients showed a significant deficit in VMHC between the bilateral lingual gyrus, putamen, and precentral gyrus. Additionally, the z-memory score was significantly positively associated with connectivity between the left thalamus and the PCC (r = 0.41, p = 0.03, uncorrected in the sVCI group. Our findings suggest that the frontal lobe and subcortical brain sites play an important role in the pathogenesis of sVCI. Furthermore, rsFC between the left thalamus and the PCC might indicate the severity of sVCI.

  11. Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bourdeau, Raymond W.; Malito, Enrico; Chenal, Alexandre; Bishop, Brian L.; Musch, Mark W.; Villereal, Mitch L.; Chang, Eugene B.; Mosser, Elise M.; Rest, Richard F.; Tang, Wei-Jen; (CNRS-UMR); (Drexel-MED); (UC)

    2009-06-02

    Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALO exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family.

  12. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.

    Science.gov (United States)

    Pioli, Peter D; Whiteside, Sarah K; Weis, Janis J; Weis, John H

    2016-05-01

    T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology. PMID:26831822

  13. Insulin Resistance-Associated Interhemispheric Functional Connectivity Alterations in T2DM: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Wenqing Xia

    2015-01-01

    Full Text Available We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM by using resting-state functional magnetic resonance imaging (rs-fMRI. In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients.

  14. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function.

    Directory of Open Access Journals (Sweden)

    Lia R Edmunds

    Full Text Available The c-Myc (Myc oncoprotein and AMP-activated protein kinase (AMPK regulate glycolysis and oxidative phosphorylation (Oxphos although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT and ampk-/- (KO murine embryo fibroblasts (MEFs. KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.

  15. Actin—Towards a Deeper Understanding of the Relationship Between Tissue Context, Cellular Function and Tumorigenesis

    International Nuclear Information System (INIS)

    It is well-established that the actin cytoskeleton plays an important role in tumor development yet the contribution made by nuclear actin is ill-defined. In a recent study, nuclear actin was identified as a key mediator through which laminin type III (LN1) acts to control epithelial cell growth. In the breast, epithelial tumors are surrounded by an environment which lacks LN1. These findings point to actin as a potential mediator of tumor development. Here our current understanding of the roles of cytoplasmic and nuclear actin in normal and tumor cell growth is reviewed, relating these functions to cell phenotype in a tissue context

  16. Expression and cellular function of vSNARE proteins in brain astrocytes.

    Science.gov (United States)

    Ropert, N; Jalil, A; Li, D

    2016-05-26

    Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo. PMID:26518463

  17. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression.

    Directory of Open Access Journals (Sweden)

    Marina M Bellet

    Full Text Available Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.

  18. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    Science.gov (United States)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  19. Exercise challenge in Gulf War Illness reveals two subgroups with altered brain structure and function.

    Directory of Open Access Journals (Sweden)

    Rakib U Rayhan

    Full Text Available Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990-1991 have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10. This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18 that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness.

  20. Radionuclide assessment of stunned myocardium by alterations in perfusion, metabolism and function

    International Nuclear Information System (INIS)

    A method for the diagnosis of stunned myocardium has not yet been established, although it has been retrospectively demonstrated in patients after intracoronary thrombolysis, unstable angina, and coronary revascularization. In this study, radionuclide cardiac imaging was carried out to evaluate the existence of stunned myocardium. Gated blood pool scanning was performed in patients undergoing intracoronary thrombolysis both at the time of reperfusion (Rp) and 10 days later. In the Rp4 h and control groups. In patients with acute myocardial ischemia, the correlation between thallium perfusion and regional wall motion was assessed semiquantitatively. In unstable angina, 5.8% of the ventricular wall segments showed dissociation between perfusion and wall motion (well-perfused asynergy). These segments had abnormal wall motion although perfusion was maintained, and were thought to be areas of stunned myocardium. Fourteen dogs were studied using thallium and 123I-β-methyl-iodophenyl pentadecanoic acid (BMIPP) fatty acid imaging to evaluate the relationship of perfusion to metabolism. In the reperfusion model, mismatching of the pattern of thallium and BMIPP uptake was observed. Reperfused myocardium probably has an increased triglyceride content, which is related to the degree of myocardial viability. In conclusion, stunned myocardium may be correctly diagnosed acutely on the basis of alterations in its perfusion, metabolism, and function by using radionuclide cardiac imaging. (author)

  1. Altered cingulo-striatal function underlies reward drive deficits in schizophrenia.

    Science.gov (United States)

    Park, Il Ho; Chun, Ji Won; Park, Hae-Jeong; Koo, Min-Seong; Park, Sunyoung; Kim, Seok-Hyeong; Kim, Jae-Jin

    2015-02-01

    Amotivation in schizophrenia is assumed to involve dysfunctional dopaminergic signaling of reward prediction or anticipation. It is unclear, however, whether the translation of neural representation of reward value to behavioral drive is affected in schizophrenia. In order to examine how abnormal neural processing of response valuation and initiation affects incentive motivation in schizophrenia, we conducted functional MRI using a deterministic reinforcement learning task with variable intervals of contingency reversals in 20 clinically stable patients with schizophrenia and 20 healthy controls. Behaviorally, the advantage of positive over negative reinforcer in reinforcement-related responsiveness was not observed in patients. Patients showed altered response valuation and initiation-related striatal activity and deficient rostro-ventral anterior cingulate cortex activation during reward approach initiation. Among these neural abnormalities, rostro-ventral anterior cingulate cortex activation was correlated with positive reinforcement-related responsiveness in controls and social anhedonia and social amotivation subdomain scores in patients. Our findings indicate that the central role of the anterior cingulate cortex is in translating action value into driving force of action, and underscore the role of the cingulo-striatal network in amotivation in schizophrenia. PMID:25468177

  2. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees

    Directory of Open Access Journals (Sweden)

    GeraldineAWright

    2013-02-01

    Full Text Available Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioural effects on honeybees of exposure to a selection of pesticides that target cholinergic signalling by inhibiting acetylcholinesterase (AChE. To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behaviour continuously for 15 min. At a 10nM concentration, all the AChE inhibitors caused similar effects on behaviour, notably increased grooming activity and changes in the frequency of bouts of behaviour such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behaviour, and a 1µM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the 4 compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee acetylcholinesterase inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behaviour that could lead to reduced survival.

  3. Altered rectal sensory response induced by balloon distention in patients with functional abdominal pain syndrome

    Directory of Open Access Journals (Sweden)

    Kudaira Miwako

    2009-11-01

    Full Text Available Abstract Background Functional abdominal pain syndrome (FAPS has chronic unexplained abdominal pain and is similar to the psychiatric diagnosis of somatoform pain disorder. A patient with irritable bowel syndrome (IBS also has chronic unexplained abdominal pain, and rectal hypersensitivity is observed in a majority of the patients. However, no reports have evaluated the visceral sensory function of FAPS precisely. We aimed to test the hypothesis that FAPS would show altered visceral sensation compared to healthy controls or IBS. The present study determined the rectal perceptual threshold, intensity of sensation using visual analogue scale (VAS, and rectal compliance in response to rectal balloon distention by a barostat in FAPS, IBS, and healthy controls. Methods First, the ramp distention of 40 ml/min was induced and the thresholds of discomfort, pain, and maximum tolerance (mmHg were measured. Next, three phasic distentions (60-sec duration separated by 30-sec intervals of 10, 15 and 20 mmHg were randomly loaded. The subjects were asked to mark the VAS in reference to subjective intensity of sensation immediately after each distention. A pressure-volume relationship was determined by plotting corresponding pressures and volumes during ramp distention, and the compliance was calculated over the linear part of the curve by calculating from the slope of the curve using simple regression. Results Rectal thresholds were significantly reduced in IBS but not in FAPS. The VAS ratings of intensity induced by phasic distention (around the discomfort threshold of the controls were increased in IBS but significantly decreased in FAPS. Rectal compliance was reduced in IBS but not in FAPS. Conclusion An inconsistency of visceral sensitivity between lower and higher pressure distention might be a key feature for understanding the pathogenesis of FAPS.

  4. Morphometric and functional alterations of amygdale and hippocampus in patients with depression: a MRI study

    International Nuclear Information System (INIS)

    Objective: To explore the morphometric and functional alterations of amygdale and hippocampus in patients with depression by anatomical and functional MRI, and try to reveal the pattern and pathogenesis of the changes in depression. Methods: Sixty patients (divided equally into mild, moderate and major groups according to patient's scores of HAMD) and 20 healthy control groups were scanned using T1WI and fMRI. The outlines of hippocampus and amygdale were drawn manually by observer and the volumes were calculated and normalized subsequently. Functional MRI was processed using SPM5 and individual activation map was got subsequently. Dunnett-t test and Pearson correlation analysis were separately used to analyze the morphometric and functional changes and the correlations between cerebral changes and clinical severity. Results: The hippocampal volumes of control groups were 2296±202 left for left side and 2283±199 for right side. The hippocampal volumes of depressive patients were smaller than those of control groups, especially for the major group (left 1978±176, Dunnett-t =-10.0, P0.05, right 2210±191, Dunnett-t =-1.6, P>0.05). The amygdale's volumes of control groups was 1762±185, the right was 1749±182, while those in patient group reduced along with the patient's condition, i. e., the mild groups (left 1992±200, Dunnett-t =4.8, P<0.01, right 1989±191, Dunnett-t =5.0, P<0.001), the moderate groups (left 1889±192, Dunnett-t =2.8, P<0.05, right 1896±195, Dunnett-t =2.8, P<0.05), and the major groups (left 1539±178, Dunnett-t =-6.8, P<0.01, right 1543±180, Dunnett-t =-7.0, P< 0.01). For fMRI study, patient group demonstrated more activation of the amygdale and hippocampus under the stimulations of negative images than controls. Furthermore, the strengthens of activation decreased along with the patient's condition, i. e., the major ones showed the weakest activation among the patients, though it was higher than that of control group. In patient group

  5. Structural Aberrations of Cellular Sialic Acids and TheirFunctions in Cancer Metastases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sialic acids (neuraminic acids) are a special series of 9-carbon ring negatively charged carbohydrates, which has been found to be selectively changed in malignant cells from structures (both synthesis and structure modifications) to functions (up and down regulation in cells). Sialic acids, in single forms or conjugates, have been systematically studied both in lab and in clinics by GC, GCMS, NMR, HPTLC, HPLC and other modern analytical means. Sialic acids and related conjugates are predicted to be used in cancer diagnosis, cancer prognostic forecasting, designing of cancer chemotherapy regimens, uncovering carcinogenetic processes and neoplasm metastasis. Tumor cell regulative systems and pathways are correlated with sialic acids, which can be applied to prognostic evaluation of cancer patients, and antimetastatic chemotherapy by sialic acid derivatives and analogues. Searching for new biological characteristics of sialic acids in cells have also been extensively studied these days. In this paper, main stream discoveries and advancements are provided , also discussions of possible mechanisms and hypotheses are invoked.

  6. Alteration of plant meristem function by manipulation of the Retinoblastoma-like plant RRB gene

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, Tim (Madison, WI); Feiler, Heidi (Albany, CA); Gruissem, Wilhelm (Forch, CH); Jenkins, Susan (Martinez, CA); Roe, Judith (Manhattan, KS); Zambryski, Patricia (Berkeley, CA)

    2007-01-16

    This invention provides methods and compositions for altering the growth, organization, and differentiation of plant tissues. The invention is based on the discovery that, in plants, genetically altering the levels of Retinoblastoma-related gene (RRB) activity produces dramatic effects on the growth, proliferation, organization, and differentiation of plant meristem.

  7. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Carughi Stefano

    2010-06-01

    TcS1 was decreased in cancer patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. Conclusion The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system

  8. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Hang; Ji-Xin Shi; Jie-Shou Li; Wei Wu; Hong-Xia Yin

    2003-01-01

    AIM: Gastrointestinal dysfunction is a common complication in patients with traumatic brain injury (TBI). However, the effect of traumatic brain injury on intestinal mucosa has not been studied previously. The aim of the current study was to explore the alterations of intestinal mucosa morphology and barrier function, and to determine how rapidly the impairment of gut barrier function occurs and how long it persists following traumatic brain injury.METHODS: Male Wistar rats were randomly divided into six groups (6 rats each group) including controls without brain injury and traumatic brain injury groups at hours 3,12, 24, and 72, and on day 7. The intestinal mucosa structure was detected by histopathological examination and electron microscopy. Gut barrier dysfunction was evaluated by detecting serum endotoxin and intestinal permeability. The level of serum endotoxin and intestinal permeability was measured by using chromogenic limulus amebocyte lysate and lactulose/mannitol (L/M) ratio, respectively.RESULTS: After traumatic brain injury, the histopathological alterations of gut mucosa occurred rapidly as early as 3 hours and progressed to a serious state, including shedding of epithelial cells, fracture of villi, focal ulcer, fusion of adjacent villi, dilation of central chyle duct, mucosal atrophy,and vascular dilation, congestion and edema in the villous interstitium and lamina propria. Apoptosis of epithelial cells,fracture and sparseness of microvilli, loss of tight junction between enterocytes, damage of mitochondria and endoplasm, were found by electron microscopy. The villous height, crypt depth and surface area in jejunum decreased progressively with the time of brain injury. As compared with that of control group (183.7±41.8 EU/L), serum endotoxin level was signnificantly increased at 3, 12, and 24 hours following TBI (434.8±54.9 EU/L, 324.2±61.7 EU/L and 303.3±60.2 EU/L, respectively), and peaked at 72 hours (560.5±76.2 EU/L), then declined on day 7

  9. Effect of Surface Functionalization on the Cellular Uptake and Toxicity of Nanozeolite A.

    Science.gov (United States)

    Męczyńska-Wielgosz, Sylwia; Piotrowska, Agata; Majkowska-Pilip, Agnieszka; Bilewicz, Aleksander; Kruszewski, Marcin

    2016-12-01

    Extensive use of zeolite nanoparticles in many areas, including medicine, has led to the concern about an impact and possible risk of their use for human health and the environment.In our studies, we investigated an uptake, retention, and cytotoxicity of nanozeolite A (BaA) functionalized with aminopropyl or poly(ethylene glycol) (PEG) of different chain lengths using human cervical carcinoma cell line. For internalization studies, nanozeolite was labeled with (133)Ba radionuclide.The results show that in the case of PEG modification, toxicity and uptake depend on the PEG chain length. The highest toxicity has been observed for nanozeolites coated with short-length chain (Ba-silane-PEGm(MW350). Also, amine-modified nanozeolites exhibited high toxicity, while nanozeolites coated with long PEG molecules, BaA-silane-PEGm(MW1000), and BaA-silane-PEGm(MW2000), as well as unmodified nanozeolite, seem to be nontoxic.In conclusion, this study shows that uptake, retention, and toxicity of nanozeolites coated with various length PEG molecules groups depend on the molecular weight of PEG. PMID:26935303

  10. Indicators of inflammation and cellular damage in chronic asymptomatic or oligosymptomatic alcoholics: correlation with alteration of bilirubin and hepatic and pancreatic enzymes

    Directory of Open Access Journals (Sweden)

    Borini Paulo

    1999-01-01

    Full Text Available Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehydrogenase, altered in 16% of the cases; alpha-1 globulin, 24%; alpha-2 globulin, 88%; leucocyte counts, 28% was correlated with alterations of bilirubin or liver enzymes. Lactic dehydrogenase was poorly sensitive for detection of hepatocytic or muscular damage. Alterations of alpha-globulins seemed to have been due more to alcohol metabolism-induced increase of lipoproteins than to inflammation. Among indicators of cell damage, serum iron, increased in 40% of the cases, seemed to be related to liver damage while creatine phosphokinase, increased in 84% of the cases, related to muscle damage. Hyperamylasemia was found in 20% of the cases and significantly correlated with levels of bilirubin, alkaline phosphatase and gamma-glutamyltransferase. It was indicated that injuries of liver, pancreas, salivary glands, and muscle occurred in asymptomatic or oligosymptomatic chronic alcoholics.

  11. Renal pyramid echogenicity in ureteropelvic junction obstruction: correlation between altered echogenicity and differential renal function

    International Nuclear Information System (INIS)

    Improvement in resolution and use of high-frequency transducers in US has enabled visualization of previously unreported changes in medullary pyramid echogenicity in children with obstructive hydronephrosis. To determine whether these unreported changes in echogenicity and morphology of the renal pyramids in ureteropelvic junction (UPJ) obstruction correlate with differential renal function (DRF) of the kidney as determined by technetium-99m mercaptoacetyltriglycine (99mTc-MAG3) scan. Renal sonograms in 60 children with UPJ obstruction were retrospectively reviewed. Children were divided into three groups based on the echogenicity of the pyramids: (1) normal echogenicity of the pyramids, (2) increased echogenicity of the pyramids with maintained corticomedullary differentiation (CMD), and (3) loss of CMD. DRF, as determined by 99mTc-MAG3 scan, of the obstructed kidney of ≥45% was considered normal and of ≤44% was considered abnormal based on a published study correlating histological changes with DRF. Fisher's exact test was performed for assessing the association between DRF and altered echogenicity of the pyramids. In group 1, which consisted of 13 patients with normal pyramids on US, DRF was normal in 11 and abnormal in two. In group 2, which consisted of 33 patients with echogenic pyramids and preserved CMD, DRF was normal in 15 and abnormal in 18. In group 3, which consisted of 14 patients with complete loss of CMD, DRF was normal in 2 and abnormal in 12. There was a strong correlation between abnormal pyramids and DRF (P=0.0009). The risk ratio (RR) of DRF becoming abnormal for those kidneys with abnormal echogenicity of the pyramids with preserved CMD (group 2) compared to normal pyramid echogenicity (group 1) was 1.56 (95% CI 1.088-2.236). The RR of DRF becoming abnormal for those kidneys with loss of CMD (group 3) compared to normal pyramid echogenicity (group 1) was 5.571 (95% CI 1.530-20.294). We observed that in obstructed kidneys the echogenicity

  12. Altered functional interaction hub between affective network and cognitive control network in patients with major depressive disorder.

    Science.gov (United States)

    Wang, Ya-li; Yang, Shu-zhen; Sun, Wei-li; Shi, Yu-zhong; Duan, Hui-feng

    2016-02-01

    Emotional and cognitive dysregulation in major depressive disorder (MDD) have been consistently considered to be attributed to structural and functional abnormalities in affective network (AN) and cognitive control network (CCN). This study was to investigate the functional connectivity (FC) patterns and altered functional interactions between both networks in MDD. We investigated resting-state functional connectivity magnetic resonance imaging in the AN and the CCN in 25 MDD and 35 healthy controls (HC). The seeds were from voxel-based morphometry (VBM) analysis results. Then FC within the AN was assessed from a seed placed in the left amygdala (AMG) and FC within CCN was determined by placing seeds in the right dorsolateral prefrontal cortex (DLPFC). Compared with HC, MDD showed reduced FC between left AMG and bilateral precuneus and right anterior cingulated cortex (ACC) within AN and reduced FC between right DLPFC and left cuneus, left lingual gyrus, and right ACC within CCN. An interaction hub of altered FC in MDD between AN and CCN located in the right ACC. Interestingly, the altered FC between right ACC and left AMG was negatively correlated with depressive symptom score while the altered FC between right ACC and DLPFC was positively correlated the executive function in MDD. The right ACC not only supports the cognitive and emotional processes, but also is an altered functional interaction hub between AN and CCN in MDD. It further suggest multiple sources of dysregulation in AN and CCN implicate both top-down cognitive control and bottom-up emotional expression dysfunction in MDD. PMID:26519557

  13. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD. PMID:27442922

  14. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian N;

    2016-01-01

    . Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity....... Hum Brain Mapp 37:547-557, 2016. © 2015 Wiley Periodicals, Inc....

  15. Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting state fMRI study

    OpenAIRE

    Liyu Huang

    2015-01-01

    Visual cognition such as face recognition requires a high level of functional interaction between distributed regions of a network. It has been reported that the fusiform gyrus (FG) is an important brain area involved in facial cognition; altered connectivity of FG to some other regions may lead to a deficit in visual cognition especially face recognition. However, whether functional connectivity between the FG and other brain regions changes remains unclear during the resting state in amnest...

  16. Neuroimaging Evidence of Altered Fronto-Cortical and Striatal Function after Prolonged Cocaine Self-Administration in the Rat

    OpenAIRE

    Gozzi, Alessandro; Tessari, Michela; Dacome, Lisa; Agosta, Federica; Lepore, Stefano; Lanzoni, Anna; Cristofori, Patrizia; Merlo Pich, Emilio; Corsi, Mauro; Bifone, Angelo

    2011-01-01

    Abstract Cocaine addiction is often modeled in experimental paradigms where rodents learn to self-administer the drug. However, the extent to which these models replicate the functional alterations observed in clinical neuroimaging studies of cocaine addiction remains unknown. We used Magnetic Resonance Imaging (MRI) to assess basal and evoked brain function in rats subjected to a prolonged, extended-access cocaine self-administration scheme. Specifically, we measured basal cere...

  17. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    Science.gov (United States)

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  18. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings.

    Directory of Open Access Journals (Sweden)

    Youbo You

    Full Text Available As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36 and a nearby non-meridian point (NAP would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz, beta (13-30 Hz and gamma (30-48 Hz bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend

  19. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    Science.gov (United States)

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  20. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    Science.gov (United States)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  1. High levels of circulating extracellular vesicles with altered expression and function during pregnancy.

    Science.gov (United States)

    Nardi, Fabiola da Silva; Michelon, Tatiana Ferreira; Neumann, Jorge; Manvailer, Luis Felipe Santos; Wagner, Bettina; Horn, Peter A; Bicalho, Maria da Graça; Rebmann, Vera

    2016-07-01

    Extracellular vesicles (EVs) are widely considered important modulators of cell-cell communication and may interact with target cells locally and on a systemic level. Several studies had shown that circulating EVs' levels are increased during pregnancy. However, EVs characteristics, composition and biological functions in pregnancy still need to be clarified. This study aims to determine if circulating EVs during pregnancy are modified regarding levels, markers and cytokine profile as well as their reactivity towards peripheral blood cells. 26 pregnant women (PW) being in the second gestational trimester and 59 non-pregnant women (NPW) were investigated. EVs enrichment was performed by ExoQuick™ or ultracentrifugation; nanoparticle tracking analysis, SDS-PAGE followed by Western Blotting and densitometry, and IFN-γ, IL-10 and TGF-β1 ELISA for EVs characterization; imaging flow cytometry to analyze EVs' uptake by peripheral blood cells and flow cytometry were performed to analyze EVs function regarding induction of caspase-3 activity. Circulating EVs' levels were increased during pregnancy [26.9×10(6)EVs/ml (range: 6.4-46.3); p=0.003] vs NPW [18.9×10(6)EVs/ml (range: 2.5-61.3)]. Importantly, the immunosuppressive TGF-β1 and IL-10 cytokine cargo were increased in EVs of PW even after normalization to 1 million EVs [TGF-β1: 0.25pg/10(6)EVs (range: 0.0-2.0); p<0.0001] and [IL-10: 0.21pg/10(6)EVs (range: 0.0-16.8); p=0.006] vs NPW. Although EVs derived from non-pregnant and pregnant women were taken up by NK cells, the latter exclusively enhanced the caspase-3 activity in CD56(dim) NK cells (8.2±0.9; p=0.02). The qualitative and quantitative pregnancy-related alterations of circulating EVs provide first hints for an immune modulating role of circulating EVs during pregnancy. PMID:27005781

  2. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  3. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions.

    Science.gov (United States)

    Pauls, Samantha D; Lafarge, Sandrine T; Landego, Ivan; Zhang, Tingting; Marshall, Aaron J

    2012-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia. PMID:22908014

  4. Resting-state functional connectivity bias of middle temporal gyrus and caudate with altered gray matter volume in major depression.

    Directory of Open Access Journals (Sweden)

    Chaoqiong Ma

    Full Text Available Magnetic resonance imaging (MRI studies have indicated that the structure deficits and resting-state functional connectivity (FC imbalances in cortico-limbic circuitry might underline the pathophysiology of MDD. Using structure and functional MRI, our aim is to investigate gray matter abnormalities in patients with treatment-resistant depression (TRD and treatment-responsive depression (TSD, and test whether the altered gray matter is associated with altered FC. Voxel-based morphometry was used to investigate the regions with gray matter abnormality and FC analysis was further conducted between each gray matter abnormal region and the remaining voxels in the brain. Using one-way analysis of variance, we found significant gray matter abnormalities in the right middle temporal cortex (MTG and bilateral caudate among the TRD, TSD and healthy controls. For the FC of the right MTG, we found that both the patients with TRD and TSD showed altered connectivity mainly in the default-mode network (DMN. For the FC of the right caudate, both patient groups showed altered connectivity in the frontal regions. Our results revealed the gray matter reduction of right MTG and bilateral caudate, and disrupted functional connection to widely distributed circuitry in DMN and frontal regions, respectively. These results suggest that the abnormal DMN and reward circuit activity might be biomarkers of depression trait.

  5. Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis

    Directory of Open Access Journals (Sweden)

    Alessandro Frati

    2015-09-01

    Full Text Available The key role of mitochondria in patients affected by amyotrophic lateral sclerosis (ALS is well documented by electron microscopy studies of motor neurons within spinal cord and brainstem. Nonetheless, recent studies challenged the role of mitochondria placed within the cell body of motor neuron. In fact, it was demonstrated that, despite preservation of mitochondria placed within this compartment, there is no increase in the lifespan of transgenic mouse models of ALS. Thus, the present mini-review comments on morphological findings of mitochondrial alterations in ALS patients in connection with novel findings about mitochondrial dynamics within various compartments of motor neurons. The latter issue was recently investigated in relationship with altered calcium homeostasis and autophagy, which affect mitochondria in ALS. In fact, it was recently indicated that a pathological mitophagy, mitochondriogenesis and calcium homeostasis produce different ultrastructural effects within specific regions of motor neurons. This might explain why specific compartments of motor neurons possess different thresholds to mitochondrial damage. In particular, it appears that motor axons represent the most sensitive compartment which undergoes the earliest and most severe alterations in the course of ALS. It is now evident that altered calcium buffering is compartment-dependent, as well as mitophagy and mitochondriogenesis. On the other hand, mitochondrial homeostasis strongly relies on calcium handling, the removal of altered mitochondria through the autophagy flux (mitophagy and the biogenesis of novel mitochondria (mitochondriogenesis. Thus, recent findings related to altered calcium storage and impaired autophagy flux in ALS may help to understand the occurrence of mitochondrial alterations as a hallmark in ALS patients. At the same time, the compartmentalization of such dysfunctions may be explained considering the compartments of calcium dynamics and

  6. Cellular uptake of poly(allylamine hydrochloride) microcapsules with different deformability and its influence on cell functions.

    Science.gov (United States)

    Yu, Wei; Zhang, Wenbo; Chen, Ying; Song, Xiaoxue; Tong, Weijun; Mao, Zhengwei; Gao, Changyou

    2016-03-01

    It is important to understand the safety issue and cell interaction pattern of polyelectrolyte microcapsules with different deformability before their use in biomedical applications. In this study, SiO2, poly(sodium-p-styrenesulfonate) (PSS) doped CaCO3 and porous CaCO3 spheres, all about 4μm in diameter, were used as templates to prepare microcapsules with different inner structure and subsequent deformability. As a result, three kinds of covalently assembled poly(allylaminehydrochloride)/glutaraldehyde (PAH/GA) microcapsules with similar size but different deformability under external osmotic pressure were prepared. The impact of different microcapsules on cell viability and functions are studied using smooth muscle cells (SMCs), endothelial cells (ECs) and HepG2 cells. The results demonstrated that viabilities of SMCs, ECs and HepG2 cells were not significantly influenced by either of the three kinds of microcapsules. However, the adhesion ability of SMCs and ECs as well as the mobility of SMCs, ECs and HepG2 cells were significantly impaired after treatment with microcapsules in a deformability dependent manner, especially the microcapsules with lower deformability caused higher impairment on cell functions. The cellular uptake kinetics, uptake pathways, intracellular distribution of microcapsules are further investigated in SMCs to reveal the potential mechanism. The SMCs showed faster uptake rate and exocytosis rate of microcapsules with lower deformability (Cap@CaCO3/PSS and Cap@CaCO3), leading to higher intracellular accumulation of microcapsules with lower deformability and possibly larger retardation of cell functions. The results pointed out that the deformability of microcapsules is an important factor governing the biological performance of microcapsules, which requires careful adjustment for further biomedical applications. PMID:26674230

  7. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  8. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  9. Alterations of functional properties of hippocampal networks following repetitive closed-head injury.

    Science.gov (United States)

    Logue, Omar C; Cramer, Nathan P; Xu, Xiufen; Perl, Daniel P; Galdzicki, Zygmunt

    2016-03-01

    Traumatic brain injury (TBI) is the leading cause of death for persons under the age of 45. Military service members who have served on multiple combat deployments and contact-sport athletes are at particular risk of sustaining repetitive TBI (rTBI). Cognitive and behavioral deficits resulting from rTBI are well documented. Optimal associative LTP, occurring in the CA1 hippocampal Schaffer collateral pathway, is required for both memory formation and retrieval. Surprisingly, ipsilateral Schaffer collateral CA1 LTP evoked by 100Hz tetanus was enhanced in mice from the 3× closed head injury (3× CHI) treatment group in comparison to LTP in contralateral or 3× Sham CA1 area, and in spite of reduced freezing during contextual fear conditioning at one week following 3× CHI. Electrophysiological activity of CA1 neurons was evaluated with whole-cell patch-clamp recordings. 3× CHI ipsilateral CA1 neurons exhibited significant increases in action potential amplitude and maximum rise and decay slope while the action potential duration was decreased. Recordings of CA1 neuron postsynaptic currents were conducted to detect spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs/sIPSCs) and respective miniature currents (mEPSCs and mIPSCs). In the 3× CHI mice, sEPSCs and sIPSCs in ipsilateral CA1 neurons had an increased frequency of events but decreased amplitudes. In addition, 3× CHI altered the action potential-independent miniature postsynaptic currents. The mEPSCs of ipsilateral CA1 neurons exhibited both an increased frequency of events and larger amplitudes. Moreover, the effect of 3× CHI on mIPSCs was opposite to that of the sIPSCs. Specifically, the frequency of the mIPSCs was decreased while the amplitudes were increased. These results are consistent with a mechanism in which repetitive closed-head injury affects CA1 hippocampal function by promoting a remodeling of excitatory and inhibitory synaptic inputs leading to impairment in hippocampal

  10. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2004-12-01

    protein (UCP-1 mRNA levels in brown adipose tissue (BAT were seen in Phyto-600 fed males. However, decreased core body temperature was recorded in these same animals compared to Phyto-free fed animals. Conclusions This study demonstrates that consumption of a soy-based (isoflavone-rich diet, significantly alters several parameters involved in maintaining body homeostatic balance, energy expenditure, feeding behavior, hormonal, metabolic and neuroendocrine function in male rats.

  11. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette;

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence of......-Extended. RESULTS: Three months after the injury, elevated stress hormones (i.e. 30 min. stimulated cortisol, prolactin and/or insulin-like growth factor 1) and/or suppressed gonadal- or thyroid hormones were recorded in 68% and 32% of the patients, respectively. At one year, lower functioning level (Functional...

  12. Effects of p35 Mutations Associated with Mental Retardation on the Cellular Function of p35-CDK5.

    Directory of Open Access Journals (Sweden)

    Shunsuke Takada

    Full Text Available p35 is an activation subunit of the cyclin-dependent kinase 5 (CDK5, which is a Ser/Thr kinase that is expressed predominantly in neurons. Disruption of the CDK5 or p35 (CDK5R1 genes induces abnormal neuronal layering in various regions of the mouse brain via impaired neuronal migration, which may be relevant for mental retardation in humans. Accordingly, mutations in the p35 gene were reported in patients with nonsyndromic mental retardation; however, their effect on the biochemical function of p35 has not been examined. Here, we studied the biochemical effect of mutant p35 on its known properties, i.e., stability, CDK5 activation, and cellular localization, using heterologous expression in cultured cells. We also examined the effect of the mutations on axon elongation in cultured primary neurons and migration of newborn neurons in embryonic brains. However, we did not detect any significant differences in the effects of the mutant forms of p35 compared with wild-type p35. Therefore, we conclude that these p35 mutations are unlikely to cause mental retardation.

  13. Investigation of potential effects of cellular phones on human auditory function by means of distortion product otoacoustic emissions

    Science.gov (United States)

    Janssen, Thomas; Boege, Paul; von Mikusch-Buchberg, Jutta; Raczek, Johannes

    2005-03-01

    Outer hair cells (OHC) are thought to act like piezoelectric transducers that amplify low sounds and hence enable the ear's exquisite sensitivity. Distortion product otoacoustic emissions (DPOAE) reflect OHC function. The present study investigated potential effects of electromagnetic fields (EMF) of GSM (Global System for Mobile Communication) cellular phones on OHCs by means of DPOAEs. DPOAE measurements were performed during exposure, i.e., between consecutive GSM signal pulses, and during sham exposure (no EMF) in 28 normally hearing subjects at tone frequencies around 4 kHz. For a reliable DPOAE measurement, a 900-MHz GSM-like signal was used where transmission pause was increased from 4.034 ms (GSM standard) to 24.204 ms. Peak transmitter power was set to 20 W, corresponding to a specific absorption rate (SAR) of 0.1 W/kg. No significant change in the DPOAE level in response to the EMF exposure was found. However, when undesired side effects on DPOAEs were compensated, in some subjects an extremely small EMF-exposure-correlated change in the DPOAE level (physiologically irrelevant. .

  14. Early impact of cryosurgery ablation on the function of T cellular immunity in tumor-bearing rabbits

    International Nuclear Information System (INIS)

    Objective: To discuss the early impact of cryosurgery ablation on the function of T cellular immunity in tumor-bearing rabbits through observing the changes of T cell subsets after cryosurgery procedure in experimental rabbits. Methods: (1) Thirty tumor-bearing rabbits were randomly and equally divided into 3 groups: group A, receiving cryosurgical treatment; group B, receiving surgical resection; and group C, used as control group. (2) Both the preoperative and the postoperative peripheral blood T cell subsets were determine in all experimental rabbits of three groups, the results were compared and statistically analyzed. Results: After the procedure, CD8 was significantly decreased in all three groups (P < 0.05). CD4 showed an obvious increase in group A (P < 0.05), while a marked decrease in both group B and group C (P < 0.05). The ratio of CD4 /CD8 showed a distinct elevation in group A (P < 0.05), while no change in both group B and group C. Conclusion: The results of this study indicates that cryosurgical ablation is superior to the surgical resection in enhancing the early effect of cell-mediated immunity. (authors)

  15. Specific functional connectivity alterations of the dorsal striatum in young people with depression

    Directory of Open Access Journals (Sweden)

    Rebecca Kerestes

    2015-01-01

    Conclusions: The results provide evidence that alterations in corticostriatal connectivity are evident at the early stages of the illness and are not a result of antidepressant treatment. Increased connectivity between the dorsal caudate, which is usually associated with cognitive processes, and the more affectively related ventrolateral prefrontal cortex may reflect a compensatory mechanism for dysfunctional cognitive-emotional processing in youth depression.

  16. Effect of adenosine cyclophosphate combined with vitamin C on cellular immune function of children with viral myocarditis

    Institute of Scientific and Technical Information of China (English)

    Xiu Chang; Lan-Hui Jiu

    2016-01-01

    Objective:To investigate the curative effect of adenosine cyclophosphate combined with vitamin C on children with viral myocarditis andon cellular immune function.Methods:A total of96 cases of children with viral myocarditis were randomly divided into control group and observation group, 48 cases in each. The control group received routine treatment for viral myocarditis. The observation group received routine treatment for viral myocarditis as well as vitamin C and adenosine cyclophosphate.Results:The total effective rate of observation group 89.59% was higher than that of control group 64.58%, and differences were statistical significant. The electrocardiogram total effective rate of observation group 91.67% was higher than that of control group 68.75%, and differences were statistical significant. After treatment, the level of CD3+ (65.09±10.35)%, the level of CD4+ (42.93±6.22)%, the level of CD8+ (29.55±4.87)% and the level of NK (47.37±8.52)% of observation group were higher than the level of CD3+ (51.85±9.33)%, the level of CD4+ (35.18±5.73)%, the level of CD8+(24.46±4.03)% and the level of NK (35.64±7.72)% of control group, and differences were statistical significant. After treatment, myocardial enzyme indexes lactate dehydrogenase (329.65±19.76) U/L, creatine phosphate kinase (126.36±12.92) U/L, hydroxybutyrate dehydrogenase (271.68±14.73) U/L, glutamic oxaloacetic transaminase (31.22±3.76) U/L and creatine kinase (185.28±13.83) U/L of observation group were lower than lactate dehydrogenase (348.06±20.51) U/L, creatine phosphate kinase (163.19±13.15) U/L, hydroxybutyrate dehydrogenase (305.50±16.42) U/L, glutamic oxaloacetic transaminase (37.87±4.07) U/L and creatine kinase (202.79±15.47) U/L of control group, and differences were statistical significant. After treatment, heart function indexes CI, FS and EF levels of observation group were higher than those of control group, and differences were statistical significant

  17. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E;

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O......(2)) and following 6 h passive exposure to hypoxia (12% O(2)). Blood flow velocity in the middle cerebral artery (MCAv) and mean arterial blood pressure (MAP) were measured for determination of CA following calculation of transfer function analysis and rate of regulation (RoR). Nine subjects...... MCAv, S100beta and neuron-specific enolase. In conclusion, these findings suggest that AMS is associated with altered redox homeostasis and disordered CA independent of barrier disruption....

  18. Withdrawal-Associated Increases and Decreases in Functional Neural Connectivity Associated with Altered Emotional Regulation in Alcoholism

    OpenAIRE

    O'Daly, Owen G; Trick, Leanne; Scaife, Jess; Marshall, Jane; Ball, David; Phillips, Mary L.; Williams, Stephen SC; Stephens, David N.; Duka, Theodora

    2012-01-01

    Alcoholic patients who have undergone multiple detoxifications/relapses show altered processing of emotional signals. We performed functional magnetic resonance imaging during performance of implicit and explicit versions of a task in which subjects were presented with morphs of fearful facial emotional expressions. Participants were abstaining, multiply detoxified (MDTx; n=12) or singly detoxified patients (SDTx; n=17), and social drinker controls (n=31). Alcoholic patients were less able th...

  19. Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla

    OpenAIRE

    Mayer, Catherine A.; Macklin, Wendy B.; Avishai, Nanthawan; Balan, Kannan; Wilson, Christopher G.; Miller, Martha J.

    2009-01-01

    Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al. 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plpmsd), and Plpnull mice, as well as shiverer (Mbpshi) mice, a myelin basic protein mutant. Current-voltage relation...

  20. Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane

    Science.gov (United States)

    Petkoski, Spase; Raeder, Johan; Smith, Andrew F.; McClintock, Peter V. E.; Stefanovska, Aneta

    2016-01-01

    The precise mechanisms underlying general anaesthesia pose important and still open questions. To address them, we have studied anaesthesia induced by the widely used (intravenous) propofol and (inhalational) sevoflurane anaesthetics, computing cross-frequency coupling functions between neuronal, cardiac and respiratory oscillations in order to determine their mutual interactions. The phase domain coupling function reveals the form of the function defining the mechanism of an interaction, as well as its coupling strength. Using a method based on dynamical Bayesian inference, we have thus identified and analysed the coupling functions for six relationships. By quantitative assessment of the forms and strengths of the couplings, we have revealed how these relationships are altered by anaesthesia, also showing that some of them are differently affected by propofol and sevoflurane. These findings, together with the novel coupling function analysis, offer a new direction in the assessment of general anaesthesia and neurophysiological interactions, in general. PMID:27045000

  1. Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane.

    Science.gov (United States)

    Stankovski, Tomislav; Petkoski, Spase; Raeder, Johan; Smith, Andrew F; McClintock, Peter V E; Stefanovska, Aneta

    2016-05-13

    The precise mechanisms underlying general anaesthesia pose important and still open questions. To address them, we have studied anaesthesia induced by the widely used (intravenous) propofol and (inhalational) sevoflurane anaesthetics, computing cross-frequency coupling functions between neuronal, cardiac and respiratory oscillations in order to determine their mutual interactions. The phase domain coupling function reveals the form of the function defining the mechanism of an interaction, as well as its coupling strength. Using a method based on dynamical Bayesian inference, we have thus identified and analysed the coupling functions for six relationships. By quantitative assessment of the forms and strengths of the couplings, we have revealed how these relationships are altered by anaesthesia, also showing that some of them are differently affected by propofol and sevoflurane. These findings, together with the novel coupling function analysis, offer a new direction in the assessment of general anaesthesia and neurophysiological interactions, in general. PMID:27045000

  2. Nogo-A-deficient transgenic rats show deficits in higher cognitive functions, decreased anxiety and altered circadian activity patterns

    Directory of Open Access Journals (Sweden)

    Tomas Petrasek

    2014-03-01

    Full Text Available Decreased levels of Nogo-A dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knock-down laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A-knockout rats and their circadian period (tau did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality and activity patterns.

  3. Altered regional homogeneity in spontaneous cluster headache attacks: a resting-state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    QIU En-chao; YU Sheng-yuan; LIU Ruo-zhuo; WANG Yan; MA Lin; TIAN Li-xia

    2012-01-01

    Background Functional neuroimaging study has opened an avenue for exploring the pathophysiology of cluster headache (CH).The aim of our study was to assess the changes in brain activity in CH patients by the regional homogeneity method using resting-state functional magnetic resonance imaging technique.Methods The functional magnetic resonance imaging scans were obtained for 12 male CH patients with spontaneous right-sided headache attacks during “in attack” and “out of attack” periods and 12 age- and sex-matched normal controls.The data were analyzed to detect the altered brain activity by the regional homogeneity method using statistical parametric mapping software.Results Altered regional homogeneity was detected in the anterior cingulate cortex,the posterior cingulate cortex,the prefrontal cortex,insular cortex,and other brain regions involved in pain processing and modulation among different groups.Conclusion It is referred that these brain regions with altered regional homogeneity might be related to the pain processing and modulation of CH.

  4. Cellular alterations in Mytilus galloprovincialis (LMK) and Tapes philippinarum (Adams and Reeve, 1850) as biomarkers of environmental stress: field studies in the Lagoon of Venice (Italy).

    Science.gov (United States)

    Da Ros, L; Nesto, N

    2005-09-01

    A long-term biomonitoring study was carried out in the Lagoon of Venice (North-East Italy) with the aim of evaluating variations in biological responses to environmental stress in estuarine bivalves. Two different species, the mussel Mytilus galloprovincialis and the clam Tapes philippinarum, both widespread in the Lagoon, were studied in several sites. Two cellular biomarkers: lysosomal membrane stability in digestive cells and thickness of digestive epithelia, were evaluated in native organisms (on a seasonal basis), and in organisms which have been transferred from a reference site to several differently influenced ones. Results indicate that, to some extent, both test and organisms were able to highlight site-specific differences, but the effects of pollution were generally more easily detected by reduction in lysosomal stability than by reduction in digestive tubule epithelium. Further findings show that the inherent variability of a number of natural parameters, particularly in the reference sites, produced less effective results when biological responses in the reference organisms were compared with the polluted ones. The assessment of the two conditions was most valuable when they referred to the 25-75% range of values comprised within the seasonal medians, recorded respectively in control and polluted sites. Impaired from steady states were most effectively distinguished when the control values were medians from two reference locations. Lately, the overall results indicate that both biomarkers are more suitably deployed through the translocation approach, revealing it to be more sensitive than traditional biomonitoring, at least in the sense that it may overcome problems related to the adaptation of native organisms to sub lethal chronic pollution levels. PMID:16083961

  5. A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function

    OpenAIRE

    Walsh, Matthew R.; DeLong, John P.; Hanley, Torrance C.; Post, David M

    2012-01-01

    It is becoming increasingly clear that intraspecific evolutionary divergence influences the properties of populations, communities and ecosystems. The different ecological impacts of phenotypes and genotypes may alter selection on many species and promote a cascade of ecological and evolutionary change throughout the food web. Theory predicts that evolutionary interactions across trophic levels may contribute to hypothesized feedbacks between ecology and evolution. However, the importance of ...

  6. Alterations in spleen growth and sequestering function in animals receiving trypan blue.

    OpenAIRE

    Dumont, A. E.; Schinella, R. A.; Fazzini, E. P.

    1981-01-01

    Trypan-blue-induced alterations in spleen size and sequestering activity were studied in rats as possible experimental counterparts of the splenic enlargement and dysfunction associated with lymphomas in man. The spleen was examined radiographically and histologically following the i.v. administration of tantalum particles in animals receiving 4-17 s.c. injections of trypan blue at fort-nightly intervals and in control animals. Spleen size and sequestering activity increased in all rats recei...

  7. Functional and Morphological Adaptation to Peptidoglycan Precursor Alteration in Lactococcus lactis*

    OpenAIRE

    Deghorain, Marie; Fontaine, Laetitia; David, Blandine; Mainardi, Jean-Luc; Courtin, Pascal; Daniel, Richard; Errington, Jeff; Sorokin, Alexei; Bolotin, Alexander; Chapot-Chartier, Marie-Pierre; Hallet, Bernard; Hols, Pascal

    2010-01-01

    Cell wall peptidoglycan assembly is a tightly regulated process requiring the combined action of multienzyme complexes. In this study we provide direct evidence showing that substrate transformations occurring at the different stages of this process play a crucial role in the spatial and temporal coordination of the cell wall synthesis machinery. Peptidoglycan substrate alteration was investigated in the Gram-positive bacterium Lactococcus lactis by substituting the peptidoglycan precursor bi...

  8. Radiopathomorphological alterations in lumbar and thoracic spine fractures consequences in term of their effect on spinal function

    International Nuclear Information System (INIS)

    Basing on clinico-radiological examination of 224 patients who suffered thoracic and lumbar spinal fractures, and on the results of radiopathomorphological study of 56 spines of persons with this pathology correlated with the electrophysiological findings, possible outcomes of the spinal fractures have been described. They are viewed from the standpoint of the effects of alterations that occurred on locomotor and prospective functions of the spine. Complete and relative compensation, as well as sub- and decompensation of spinal function disorders were revealed and characterized

  9. The preventive effect of vitamin C on the cellular and functional integrity of kidney cells in rats following repeated exposure to paraquat

    OpenAIRE

    Benjamin Nnamdi Okolonkwo; Edna Ogechi Nwachuku; Pascal Chuka Ene; Chukwubuike Udoka Okeke

    2014-01-01

    Paraquat (PQ) is a bipyridylium herbicide that is applied around trees in orchards and between crop rows to control broad-leaved and grassy weeds. Its oxidation results in the formation of superoxides which causes damage to cellular components. In this study, we determined the antioxidant effect vitamin C has on the cellular integrity of kidney function in rats following repeated exposure to PQ. Ninety-six male rats, grouped twelve rats per subgroup (A, Avit.c, B, Bvit.c, C, Cvit.c, D and Dvi...

  10. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census

    Science.gov (United States)

    Stewart, Mary K.; Cookson, Brad T.

    2014-01-01

    Summary Bistable flagellar and virulence gene expression generates specialized Salmonella subpopulations with distinct functions. Repressing flagellar genes allows Salmonella to evade caspase-1 mediated host defenses and enhances systemic colonization. By definition, bistability arises when intermediate states of gene expression are rendered unstable by the underlying genetic circuitry. We demonstrate sustained bistable fliC expression in virulent Salmonella 14028 and document dynamic control of the distribution, or single-cell census, of flagellar gene expression by the mutually repressing repressors YdiV and FliZ. YdiV partitions cells into the fliC-OFF subpopulation, while FliZ partitions cells into the fliC-HIGH subpopulation at late timepoints during growth. Bistability of ΔfliZ populations and ydiV-independent FliZ control of flagellar gene expression provide evidence that the YdiV-FliZ mutually repressing repressor circuit is not required for bistability. Repression and activation by YdiV and FliZ (respectively) can shape the census of fliC expression independently, and bistability collapses into a predominantly intermediate population in the absence of both regulators. Metered expression of YdiV and FliZ reveals variable sensitivity to these regulators and defines conditions where expression of FliZ enhances fliC expression and where FliZ does not alter the fliC census. Thus, this evolved genetic circuitry coordinates multiple layers of regulatory heterogeneity into a binary response. PMID:25315056

  11. Depletion of cellular iron by curcumin leads to alteration in histone acetylation and degradation of Sml1p in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar Azad

    Full Text Available Curcumin, a naturally occurring polyphenolic compound, is known to possess diverse pharmacological properties. There is a scarcity of literature documenting the exact mechanism by which curcumin modulates its biological effects. In the present study, we have used yeast as a model organism to dissect the mechanism underlying the action of curcumin. We found that the yeast mutants of histone proteins and chromatin modifying enzymes were sensitive to curcumin and further supplementation of iron resulted in reversal of the changes induced by curcumin. Additionally, treatment of curcumin caused the iron starvation induced expression of FET3, FRE1 genes. We also demonstrated that curcumin induces degradation of Sml1p, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. The degradation of Sml1p was mediated through proteasome and vacuole dependent protein degradation pathways. Furthermore, curcumin exerts biological effect by altering global proteome profile without affecting chromatin architecture. These findings suggest that the medicinal properties of curcumin are largely contributed by its cumulative effect of iron starvation and epigenetic modifications.

  12. Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes.

    Directory of Open Access Journals (Sweden)

    Danielle E Green

    Full Text Available Radiation rapidly undermines trabecular architecture, a destructive process which proceeds despite a devastated cell population. In addition to the 'biologically orchestrated' resorption of the matrix by osteoclasts, physicochemical processes enabled by a damaged matrix may contribute to the rapid erosion of bone quality. 8w male C57BL/6 mice exposed to 5 Gy of Cs(137 γ-irradiation were compared to age-matched control at 2d, 10d, or 8w following exposure. By 10d, irradiation had led to significant loss of trabecular bone volume fraction. Assessed by reflection-based Fourier transform infrared imaging (FTIRI, chemical composition of the irradiated matrix indicated that mineralization had diminished at 2d by -4.3±4.8%, and at 10d by -5.8±3.2%. These data suggest that irradiation facilitates the dissolution of the matrix through a change in the material itself, a conclusion supported by a 13.7±4.5% increase in the elastic modulus as measured by nanoindentation. The decline in viable cells within the marrow of irradiated mice at 2d implies that the immediate collapse of bone quality and inherent increased risk of fracture is not solely a result of an overly-active biologic process, but one fostered by alterations in the material matrix that predisposes the material to erosion.

  13. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  14. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK. We found that extended ACK exposure (40 weeks in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice.

  15. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice.

    Science.gov (United States)

    Cong, Wei-na; Wang, Rui; Cai, Huan; Daimon, Caitlin M; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Turkin, Rebecca; Wood, William H; Becker, Kevin G; Moaddel, Ruin; Maudsley, Stuart; Martin, Bronwen

    2013-01-01

    With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK). We found that extended ACK exposure (40 weeks) in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests) were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion) and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway) in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice. PMID:23950916

  16. Altered surfactant function and structure in SP-A gene targeted mice.

    OpenAIRE

    Korfhagen, T R; Bruno, M D; Ross, G F; Huelsman, K. M.; Ikegami, M; Jobe, A H; Wert, S E; Stripp, B R; Morris, R E; Glasser, S W; Bachurski, C J; Iwamoto, H S; Whitsett, J A

    1996-01-01

    The surfactant protein A (SP-A) gene was disrupted by homologous recombination in embryonic stem cells that were used to generate homozygous SP-A-deficient mice. SP-A mRNA and protein were not detectable in the lungs of SP-A(-/-) mice, and perinatal survival of SP-A(-/-) mice was not altered compared with wild-type mice. Lung morphology, surfactant proteins B-D, lung tissue, alveolar phospholipid pool sizes and composition, and lung compliance in SP-A(-/-) mice were unaltered. At the highest ...

  17. Alteration of Immune Function in Women Collegiate Soccer Players and College Students

    OpenAIRE

    Michael R. McGuigan; Timothy P. Scheett; Sara E. Burton; Kane, Melissa K.; Miskowski, Jennifer A; Carl Foster; Praveen Putlur

    2004-01-01

    The purpose of this study was to monitor the stress-induced alteration in concentrations of salivary immunoglobulin (S-IgA) and cortisol and the incidence of upper respiratory tract infections (URTI) over the course of a 9-week competitive season in college student-athletes and college students. The subjects consisted of 14 NCAA Division III collegiate female soccer athletes (19.8 ¡À 1.0 years, mean ¡À SD) and 14 female college students (22.5 ¡À 2.6 years). Salivary samples were collected for...

  18. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa.

    Science.gov (United States)

    Forrestel, Elisabeth J; Donoghue, Michael J; Smith, Melinda D

    2014-08-01

    The importance of fire in the creation and maintenance of mesic grassland communities is well recognized. Improved understanding of how grasses--the dominant clade in these important ecosystems--will respond to alterations in fire regimes is needed in the face of anthropogenically driven climate and land-use change. Here, we examined how grass communities shift in response to experimentally manipulated fire regimes at multiple levels of community diversity--taxonomic, phylogenetic and functional--in C4-dominanted mesic savanna grassland sites with similar structure and physiognomy, yet disparate biogeographic histories. We found that the grass communities were similar in their phylogenetic response and aspects of their functional response to high fire frequency. Both sites exhibited phylogenetic clustering of highly abundant species in annually burned plots, driven by species of the Andropogoneae, and a narrow range of functional strategies associated with rapid post-fire regeneration in a high-light, nitrogen-limited environment. By examining multiple facets of diversity in a comparative context, we identified convergent phylogenetic and functional responses to altered fire regimes in two mesic savanna grasslands. Our results highlight the importance of a common filtering process associated with fire that is consistent across grasslands of disparate biogeographic histories and taxonomic representation. PMID:24835304

  19. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    Science.gov (United States)

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior. PMID:18485605

  20. Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation function

    International Nuclear Information System (INIS)

    Chronic alcohol consumption affects the gene expression of a NAD-dependent deacetylase Sirtuis 1 (SIRT1) and the peroxisome proliferator-activated receptor-γ coactivator1α (PGC-1α). Our aim was to verify that it also alters the forkhead (FoxO1) and p53 transcription factor proteins, critical in the hepatic response to oxidative stress and regulated by SIRT1 through its deacetylating capacity. Accordingly, rats were pair-fed the Lieber-DeCarli alcohol-containing liquid diets for 28 days. Alcohol increased hepatic mRNA expression of FoxO1 (p = 0.003) and p53 (p = 0.001) while corresponding protein levels remained unchanged. However phospho-FoxO1 and phospho-Akt (protein kinase) were both decreased by alcohol consumption (p = 0.04 and p = 0.02, respectively) while hepatic p53 was found hyperacetylated (p = 0.017). Furthermore, mitochondrial SIRT5 was reduced (p = 0.0025), and PGC-1α hyperacetylated (p = 0.027), establishing their role in protein modification. Thus, alcohol consumption disrupts nuclear-mitochondrial interactions by post-translation protein modifications, which contribute to alteration of mitochondrial biogenesis through the newly discovered reduction of SIRT5

  1. Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments

    OpenAIRE

    Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupt...

  2. Stimulating brain tissue with bright light alters functional connectivity in brain at the resting state

    OpenAIRE

    Timo Takala; Markku Timonen; Juha Nikkinen; Jukka Remes; Antti Aunio; Ahmed Abou-Elseoud; Juuso Nissilä; Tuomo Starck; Osmo Tervonen; Vesa Kiviniemi

    2012-01-01

    Light is considered to modulate human brain function only via the retinal pathway, a way of thinking that we aimed to challenge in the present study. Literature provides evidence of inherent phototransduction for instance in the rat brain and there are potentially photosensitive opsin proteins like melanopsin and panopsin in the human brain too. In order to investigate a short term response, functional connectivity changes of the brain were studied in the resting state with functional magneti...

  3. Seasonal Variations Alter the Impact of Functional Traits on Plankton Dynamics

    OpenAIRE

    Rocha, Marcia R.; Vasseur, David A.; Gaedke, Ursula

    2012-01-01

    Gaining understanding of food-web processes often requires a simplified representation of natural diversity. One such simplification can be based on functional traits, as functionally similar species may provide a similar contribution to ecosystem level-processes. However, understanding how similarity in functional traits actually translates into similar contributions to ecosystem-level properties remains a challenge due to the complex ways in which traits can influence species' dynamics. Mor...

  4. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes

    OpenAIRE

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-explor...

  5. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  6. Intracellular Localization and Cellular Factors Interaction of HTLV-1 and HTLV-2 Tax Proteins: Similarities and Functional Differences

    Science.gov (United States)

    Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia

    2011-01-01

    Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity. PMID:21994745

  7. Intracellular Localization and Cellular Factors Interaction of HTLV-1 and HTLV-2 Tax Proteins: Similarities and Functional Differences

    Directory of Open Access Journals (Sweden)

    Maria Grazia Romanelli

    2011-05-01

    Full Text Available Human T-lymphotropic viruses type 1 (HTLV-1 and type 2 (HTLV-2 present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity.

  8. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    Directory of Open Access Journals (Sweden)

    Katherine Maringer

    2014-08-01

    Full Text Available Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA, and dominant negative (DN forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  9. Lymphocyte Subset Alterations Related to Executive Function Deficits and Repetitive Stereotyped Behavior in Autism

    Science.gov (United States)

    Han, Yvonne M. Y.; Leung, Winnie Wing-man; Wong, Chun Kwok; Lam, Joseph M. K.; Cheung, Mei-Chun; Chan, Agnes S.

    2011-01-01

    Increasing evidence suggests that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASD). The present study examined whether immunological abnormalities are associated with cognitive deficits in children with ASD. Eighteen high-functioning (HFA) and 19 low-functioning (LFA) children with ASD, aged 8-17 years,…

  10. The Brain as a Target for Environmental Toxicants that alter Ovarian Function.

    Science.gov (United States)

    In this review we discuss the ovarian cycle of the laboratory rat in order to familiarize the reader with the well-understood timing of the neuroendocrine events controlling ovarian function. This is followed by a discussion of the location and function of the estrogen and proges...

  11. [Effects of trimetazidine on altered functions of rat kidney induced by cyclosporine].

    Science.gov (United States)

    Simon, N; Morin, C; Bruguerolle, B; Tillement, J P

    2001-01-01

    A mitochondrial dysfunction has been suggested to explain chronic renal toxicity observed in ciclosporine A therapy. Our study has investigated whether trimetazidine allows inhibition of mitochondrial alteration induced by ciclosporine A. Oxidative phosphorylation was measured by polarography, calcium fluxes by a specific calcium electrode and the mitochondrial swelling by determination of the optical density at 520 nm, using a spectrophotometer. The ciclosporine A effect on the respiratory control was fully inhibited by trimetazidine (EC50 5.10 x 10(-7) M; Emax 11 per cent). Trimetazidine also inhibited the ciclosporine effects on calcium fluxes, i.e. calcium accumulation into the matrix and delay of efflux. Trimetazidine allows a decrease of mitochondrial dysfunction induced by ciclosporine A. PMID:11806297

  12. [Night sleep structural alteration as a function of individual strategy of adapting to 520-isolation].

    Science.gov (United States)

    Zavalko, I M; Boritko, Ya S; Kovrov, G V; Vinokhodova, A G; Chekalina, A I; Smoleevsky, A E

    2014-01-01

    Purpose of the work was to establish a relationship between trends in sleep alteration and individual adaptation to the stress-factors in the 520-day isolation study. Psychological evaluations using a battery of motivation tests and L. Sobchik's modification of the Luscher personality test, and Mirror coordinograph enabled to differentiate groups reacting to the stress on the pattern of "control" (G-1) or "search" (G-2) manifested in individual styles of behavior and operator's activity. The 2 groups showed different dynamics of the night sleep structure. Difficulties with falling asleep in G-1 arose on the eve of "landing onto Mars" and end of the experiment, whereas in G-2 they were evident prior to the end only. Besides, the micro- and segmental sleep structures were more stable in G-1 suggesting the integrity of somnogenic mechanisms despite difficult sleep initiation. PMID:25033611

  13. Resting-State Brain Functional Connectivity Is Altered in Type 2 Diabetes

    OpenAIRE

    Musen, Gail; Jacobson, Alan M.; Bolo, Nicolas R.; Simonson, Donald C.; Martha E. Shenton; McCartney, Richard L.; Flores, Veronica L.; Hoogenboom, Wouter S.

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer disease (AD). Populations at risk for AD show altered brain activity in the default mode network (DMN) before cognitive dysfunction. We evaluated this brain pattern in T2DM patients. We compared T2DM patients (n = 10, age = 56 ± 2.2 years, fasting plasma glucose [FPG] = 8.4 ± 1.3 mmol/L, HbA1c = 7.5 ± 0.54%) with nondiabetic age-matched control subjects (n = 11, age = 54 ± 1.8 years, FPG = 4.8 ± 0.2 mmol/L) using resting-state fun...

  14. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson’s disease and other neurological disorders

    Directory of Open Access Journals (Sweden)

    Henrik Waldal Holen

    2014-05-01

    Full Text Available Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease, ATP7B (Wilson disease, the Na+/K+-ATPases ATP1A2 (familial hemiplegic migraine and ATP1A3 (rapid-onset dystonia parkinsonism. Finally, we review the recent literature of ATP13A2 and discuss ATP13A2’s putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events.

  15. Relationship between functional and X-ray alterations in patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Fernandes Andréia Kist

    2003-01-01

    Full Text Available BACKGROUND: Cystic fibrosis (CF is a disease marked by airway inflammation and airflow obstruction, resulting in air trapping in the lungs. OBJECTIVE: To assess the associations between airflow limitation, pulmonary volume and X-ray findings in patients with cystic fibrosis. METHOD: A cross-sectional retrospective study. Review of spirometric, plethysmographic, and chest X-ray findings of outpatients (age ³ 16 years. The airflow findings were classified as within normal limits or as airflow obstruction: mild, moderate or severe obstructive alteration. RESULTS: A total of 23 patients (15 male and eight female; mean age, 21 ± 5.9 years were studied. Six of them were within normal limits, four had a mild, five had a moderate, and eight had a severe obstructive alteration. There was an association between airflow limitation and the increase of residual volume (p = 0.006 and also with the Brasfield score (p = 0.001, but not with the total lung capacity (p = 0.33. There was a correlation between residual volume and Brasfield score (r = 0,73, p = 0,002, but not with the total pulmonary capacity. Moreover, according to X-ray criteria, the air trapping was correlated only with the residual volume (p = 0.006. CONCLUSION: In patients with cystic fibrosis (age ³ 16 years, the progressive airflow limitation is accompanied by an increase in residual volume, while the total pulmonary capacity remains normal or tends to decrease. The X-ray score was associated with airflow limitation and residual volume, but not with total lung capacity.

  16. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  17. Altered Spontaneous Brain Activity in Betel Quid Dependence: A Resting-state Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Liu, Tao; Li, Jian-Jun; Zhao, Zhong-Yan; Yang, Guo-Shuai; Pan, Meng-Jie; Li, Chang-Qing; Pan, Su-Yue; Chen, Feng

    2016-02-01

    It has been suggested by the first voxel-based morphometry investigation that betel quid dependence (BQD) individuals are presented with brain structural changes in previous reports, and there may be a neurobiological basis for BQD individuals related to an increased risk of executive dysfunction and disinhibition, subjected to the reward system, cognitive system, and emotion system. However, the effects of BQD on neural activity remain largely unknown. Individuals with impaired cognitive control of behavior often reveal altered spontaneous cerebral activity in resting-state functional magnetic resonance imaging and those changes are usually earlier than structural alteration.Here, we examined BQD individuals (n = 33) and age-, sex-, and education-matched healthy control participants (n = 32) in an resting-state functional magnetic resonance imaging study to observe brain function alterations associated with the severity of BQD. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were both evaluated to stand for spontaneous cerebral activity. Gray matter volumes of these participants were also calculated for covariate.In comparison with healthy controls, BQD individuals demonstrated dramatically decreased ALFF and ReHo values in the prefrontal gurus along with left fusiform, and increased ALFF and ReHo values in the primary motor cortex area, temporal lobe as well as some regions of occipital lobe. The betel quid dependence scores (BQDS) were negatively related to decreased activity in the right anterior cingulate.The abnormal spontaneous cerebral activity revealed by ALFF and ReHo calculation excluding the structural differences in patients with BQD may help us probe into the neurological pathophysiology underlying BQD-related executive dysfunction and disinhibition. Diminished spontaneous brain activity in the right anterior cingulate cortex may, therefore, represent a biomarker of BQD individuals. PMID:26844480

  18. Neuroimaging evidence of altered fronto-cortical and striatal function after prolonged cocaine self-administration in the rat.

    Science.gov (United States)

    Gozzi, Alessandro; Tessari, Michela; Dacome, Lisa; Agosta, Federica; Lepore, Stefano; Lanzoni, Anna; Cristofori, Patrizia; Pich, Emilio M; Corsi, Mauro; Bifone, Angelo

    2011-11-01

    Cocaine addiction is often modeled in experimental paradigms where rodents learn to self-administer (SA) the drug. However, the extent to which these models replicate the functional alterations observed in clinical neuroimaging studies of cocaine addiction remains unknown. We used magnetic resonance imaging (MRI) to assess basal and evoked brain function in rats subjected to a prolonged, extended-access cocaine SA scheme. Specifically, we measured basal cerebral blood volume (bCBV), an established correlate of basal metabolism, and assessed the reactivity of the dopaminergic system by mapping the pharmacological MRI (phMRI) response evoked by the dopamine-releaser amphetamine. Cocaine-exposed subjects exhibited reduced bCBV in fronto-cortical areas, nucleus accumbens, ventral hippocampus, and thalamus. The cocaine group also showed an attenuated functional response to amphetamine in ventrostriatal areas, an effect that was significantly correlated with total cocaine intake. An inverse relationship between bCBV in the reticular thalamus and the frontal response elicited by amphetamine was found in control subjects but not in the cocaine group, suggesting that the inhibitory interplay within this attentional circuit may be compromised by the drug. Importantly, histopathological analysis did not reveal significant alterations of the microvascular bed in the brain of cocaine-exposed subjects, suggesting that the imaging findings cannot be merely ascribed to cocaine-induced vascular damage. These results document that chronic, extended-access cocaine SA in the rat produces focal fronto-cortical and striatal alterations that serve as plausible neurobiological substrate for the behavioral expression of compulsive drug intake in laboratory animals. PMID:21775976

  19. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism.

    Science.gov (United States)

    Borkowska, Malgorzata; Millar, J Kirsty; Price, David J

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse Disc1 sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated in utero into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons. PMID:27244370

  20. Altered Morphologies and Functions of the Olfactory Bulb and Hippocampus Induced by miR-30c.

    Science.gov (United States)

    Sun, Tingting; Li, Tianpeng; Davies, Henry; Li, Weiyun; Yang, Jing; Li, Shanshan; Ling, Shucai

    2016-01-01

    Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ) and dentate gyrus (DG) by stereotaxic injection with their respective up- and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for 3 months, we detected significant morphological changes in the olfactory bulb (OB) and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain. PMID:27242411

  1. Altered morphologies and functions of the olfactory bulb and hippocampus induced by miR-30c

    Directory of Open Access Journals (Sweden)

    Tingting eSun

    2016-05-01

    Full Text Available Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ and dentate gyrus (DG by stereotaxic injection with their respective up-and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for three months, we detected significant morphological changes in the olfactory bulb (OB and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain.

  2. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function.

    Science.gov (United States)

    Bocarsly, Miriam E; Fasolino, Maria; Kane, Gary A; LaMarca, Elizabeth A; Kirschen, Gregory W; Karatsoreos, Ilia N; McEwen, Bruce S; Gould, Elizabeth

    2015-12-22

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity. PMID:26644559

  3. Functionalization of osmium arene anticancer complexes with (poly)arginine: Effect on cellular uptake, internalization, and cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    van Rijt, S.H.; Kostrhunová, Hana; Brabec, Viktor; Sadler, P.J.

    2011-01-01

    Roč. 22, č. 2 (2011), s. 218-226. ISSN 1043-1802 R&D Projects: GA ČR(CZ) GAP301/10/0598 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : osmium * arginine * cellular accumulation Subject RIV: BO - Biophysics Impact factor: 4.930, year: 2011

  4. Amelioration of altered antioxidant status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains

    Indian Academy of Sciences (India)

    Mohammad Rizwan Siddiqui; Asia Taha; K Moorthy; Mohd Ejaz Hussain; S F Basir; Najma Zaheer Baquer

    2005-09-01

    Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on antioxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose ( < 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase ( < 0.01, < 0.001 and < 0.01), increased levels of GPx and MDA ( < 0.01 and < 0.001) and decreased membrane fluidity ( < 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose of Trigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.

  5. Postnatal Manganese Exposure Alters Dopamine Transporter Function in Adult Rats: Potential Impact on Nonassociative and Associative Processes

    OpenAIRE

    McDougall, S. A.; Reichel, C. M.; Farley, C M; Flesher, M. M.; Der-Ghazarian, T.; Cortez, A. M.; Wacan, J. J.; Martinez, C. E.; VARELA, F. A.; Butt, A E; Crawford, C. A.

    2008-01-01

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 μg/day) on postnatal days (PD) 1–21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to ...

  6. Functional and anatomic alterations in the gentamicin-damaged vestibular system in the guinea pig

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, HM; Dijk, T; Stokroos, [No Value; van der Want, TJL; Albers, FWJ

    2004-01-01

    Hypothesis: The purpose of this study was to investigate the expected functional and morphologic effect of gentamicin on the vestibular system simultaneously by measurement of vestibular evoked potentials and electron microscopic evaluation. Background: Vestibular short-latency evoked potentials to

  7. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder

    OpenAIRE

    Rabinak, Christine A.; Angstadt, Mike; Welsh, Robert C.; Kenndy, Amy E.; Lyubkin, Mark; Martis, Brian; Phan, K. Luan

    2011-01-01

    Post-traumatic stress disorder (PTSD) is often characterized by aberrant amygdala activation and functional abnormalities in corticolimbic circuitry, as elucidated by functional neuroimaging. These “activation” studies have primarily relied on tasks designed to induce region-specific, and task-dependent brain responses in limbic (e.g., amygdala) and paralimbic brain areas through the use of aversive evocative probes. It remains unknown if these corticolimbic circuit abnormalities exist at bas...

  8. Fatigue alters in vivo function within and between limb muscles during locomotion

    OpenAIRE

    Biewener, Andrew A.; Higham, Timothy E.

    2008-01-01

    Muscle fatigue, a reduction in force as a consequence of exercise, is an important factor for any animal that moves, and can result from both peripheral and/or central mechanisms. Although much is known about whole-limb force generation and activation patterns in fatigued muscles under sustained isometric contractions, little is known about the in vivo dynamics of limb muscle function in relation to whole-body fatigue. Here we show that limb kinematics and contractile function in the lateral ...

  9. The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function

    OpenAIRE

    Lidell, Martin E.; Seifert, Erin L.; Westergren, Rickard; Heglind, Mikael; Gowing, Adrienne; Sukonina, Valentina; Arani, Zahra; Itkonen, Paula; Wallin, Simonetta; Westberg, Fredrik; Fernandez-Rodriguez, Julia; Laakso, Markku; Nilsson, Tommy; Peng, Xiao-Rong; Harper, Mary-Ellen

    2011-01-01

    OBJECTIVE Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitati...

  10. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  11. Altered Functional Connectivity of Cognitive-Related Cerebellar Subregions in Well-Recovered Stroke Patients

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available The cerebellum contains several cognitive-related subregions that are involved in different functional networks. The cerebellar crus II is correlated with the frontoparietal network (FPN, whereas the cerebellar IX is associated with the default-mode network (DMN. These two networks are anticorrelated and cooperatively implicated in cognitive control, which may facilitate the motor recovery in stroke patients. In the present study, we aimed to investigate the resting-state functional connectivity (rsFC changes in 25 subcortical ischemic stroke patients with well-recovered global motor function. Consistent with previous studies, the crus II was correlated with the FPN, including the dorsolateral prefrontal cortex (DLPFC and posterior parietal cortex, and the cerebellar IX was correlated with the DMN, including the posterior cingulate cortex/precuneus (PCC/Pcu, medial prefrontal cortex (MPFC, DLPFC, lateral parietal cortices, and anterior temporal cortices. No significantly increased rsFCs of these cerebellar subregions were found in stroke patients, suggesting that the rsFCs of the cognitive-related cerebellar subregions are not the critical factors contributing to the recovery of motor function in stroke patients. The finding of the disconnection in the cerebellar-related cognitive control networks may possibly explain the deficits in cognitive control function even in stroke patients with well-recovered global motor function.

  12. Regulation of autophagy in oxygen-dependent cellular stress.

    Science.gov (United States)

    Ryter, Stefan W; Choi, Augustine M K

    2013-01-01

    Oxidative stress caused by supraphysiological production of reactive oxygen species (ROS), can cause cellular injury associated with protein and lipid oxidation, DNA damage, and mitochondrial dysfunction. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of cell survival or cell death pathways. Recent studies suggest that autophagy, a cellular homeostatic process that governs the turnover of damaged organelles and proteins, may represent a general cellular and tissue response to oxidative stress. The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy may play multifunctional roles in cellular adaptation to stress, by maintaining mitochondrial integrity, and removing damaged proteins. Additionally, autophagy may play important roles in the regulation of inflammation and immune function. Modulation of the autophagic pathway has been reported in cell culture models of oxidative stress, including altered states of oxygen tension (i.e., hypoxia, hyperoxia), and exposure to oxidants. Furthermore, proteins that regulate autophagy may be subject to redox regulation. The heme oxygenase- 1 (HO)-1 enzyme system may have a role in the regulation of autophagy. Recent studies suggest that carbon monoxide (CO), a reaction product of HO activity which can alter mitochondrial function, may induce autophagy in cultured epithelial cells. In conclusion, current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. PMID:23092322

  13. Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study

    International Nuclear Information System (INIS)

    The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease.

  14. Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohu; Xi, Qian; Wang, Peijun; Li, Chunbo [Tong Ji Hospital of Tong Ji University, Shanghai (China); He, Hongjian [Bio-X lab, Dept. of Physics, Zhe Jiang University, Hangzhou (China)

    2014-08-15

    The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease.

  15. Cellular basis of memory for addiction.

    Science.gov (United States)

    Nestler, Eric J

    2013-12-01

    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders. PMID:24459410

  16. From a Global View to Focused Examination:Understanding Cellular Function of Lipid Kinase VPS34-Beclin 1 Complex in Autophagy

    Institute of Scientific and Technical Information of China (English)

    Zhenyu Yue; Yun Zhong

    2010-01-01

    @@ Autophagy is a cell'self-digestion'process via lysosomal degradation.The bestknown type of autophagy is macroauto phagy(hereafter referred to as auto phagy).Which involves the formation,delivery and degradation of autophago somes.The physiological function of autophagy is the controI of cellular nutrient and organelle homeostasis and can be regulated by various extracellular and intracellular cues(Klionsky and Emr,2000;Levine and Klionsky.2004).

  17. Effect of radiation on reconstitution of skin equivalent (dermal alterations)

    International Nuclear Information System (INIS)

    Dermal equivalents have been treated by single doses of gamma irradiation of 10, 20, 30 and 50 Gray. Numerations at different times show a dose and time dependant diminution of cellular population. This diminution is histologically observed in dermal part of reconstituted skin, in association with cellular and functional alterations of fibroblast cells. Modifications of epidermal epithelia are also noted in some reconstituted skin. This model would be useful to apprehend the effect of a dermal irradiation lesion on the later epidermization. (author)

  18. Alterations of Neuromuscular Function after the World's Most Challenging Mountain Ultra-Marathon.

    Directory of Open Access Journals (Sweden)

    Jonas Saugy

    Full Text Available We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF was assessed before (Pre-, during (Mid- and after (Post- the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8. Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (-13±17% and -10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively, and further decreased at Post- (-24±13% and -26±19%, P<0.01 with alteration of the central activation ratio (-24±24% and -28±34% between Pre- and Post-, P<0.05 in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18±18% and PF: -20±15%, P<0.01 and peak twitch (KE: -33±12%, P<0.001 and PF: -19±14%, P<0.01 were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·(1, lactate dehydrogenase (1145±511 UI·L(-1, C-Reactive Protein (13.1±7.5 mg·L(-1 and myoglobin (449.3±338.2 µg·L(-1 were higher (P<0.001 than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.

  19. Macrophages from Patients with Cirrhotic Ascites Showed Function Alteration of Host Defense Receptor

    Science.gov (United States)

    Ahmed, Abdel Motaal M.; Kadaru, Abdel Gadir Y.; Omer, Ibtihal; Musa, Ahmed M.; Enan, Khalid; El Khidir, Isam M.; Williams, Roger

    2014-01-01

    Background Patients with cirrhotic ascites (PCA) are susceptible to spontaneous bacterial peritonitis (SBP) which has increased morbidity and mortality. Since some host defense aspects of peritoneal macrophages (PMф) from PCA are altered this study examined factors related to receptor-mediated phagocytosis. Methods Twelve PCA were studied. PMɸ were isolated from ascitic fluid (AF) samples removed from these patients. Uptake of mannose receptor (MR)-specific ligand, fluorescein isothiocyanate-mannosylated-bovine serum albumin (FITC-man-BSA), by patients' PMɸ and controls, a human monocytic cell line, was measured pre- and post-IL-4 treatment. Phagocytosis of FITC-labeled yeast particles by patients' PMɸ was measured pre- and post-IL-4 treatment. Fluorescence values were obtained using a spectrofuorometer. MRC1 gene was analyzed in blood samples from PCA and controls, healthy donors, using standard polymerase chain reaction (PCR) technique. Results Past SBP episode(s) were reported in 58.3% of patients. Mean AF volume analyzed per patient was 1.3L. PMɸ ratio in cell yield was 53.73% (SD 18.1). Mean uptake absorbance of patients' PMф was 0.0841 (SD 0.077) compared to 0.338 (SD 0.34) of controls, P = 0.023. Following IL-4 treatment absorbance increased to 0.297 (SD 0.28) in patients' PMф (P = 0.018 on paired sample t-test), and to 0.532 (SD 0.398 in controls (P = 0.053 on independent sample t-test). Mean phagocytosis absorbance of patients' PMф was 0.1250 (SD 0.032) before IL-4 treatment compared to 0.2300 (SD 0.104) after (P = 0.026). PCR analysis for MRC1 gene was negative in all PCA samples compared to positive results in all controls. Conclusion Since decreased phagocytosis and MR uptake were enhanced post-IL-4 treatment MR downregulation pre-treatment is plausible. Negative PCR results for MRC1 might suggest an anomaly, but this awaits further ellucidation. These altered host defense findings are relevant to infection pathophysiology, and their

  20. Alteration of canine left ventricular diastolic function by intravenous anesthetics in vivo. Ketamine and propofol.

    Science.gov (United States)

    Pagel, P S; Schmeling, W T; Kampine, J P; Warltier, D C

    1992-03-01

    Diastolic function has been shown to influence overall cardiac performance significantly, but the effect of intravenous anesthetics on diastolic function has not been previously characterized in vivo. The effects of ketamine and propofol on two indices of left ventricular diastolic function were examined in chronically instrumented dogs. Because autonomic nervous system function may significantly influence the systemic hemodynamic actions produced by intravenous anesthetics in vivo, experiments were performed in the presence of pharmacologic blockade of the autonomic nervous system. Two groups comprising a total of 14 experiments were performed using 7 dogs instrumented for measurement of aortic and left ventricular pressure, the maximum rate of increase of left ventricular pressure (dP/dt), subendocardial segment length, and cardiac output. Systemic hemodynamics and diastolic function were recorded and evaluated in the conscious state and after a 20-min equilibration at 25-, 50-, and 100-mg.kg-1.h-1 infusion doses of ketamine or propofol. Ventricular relaxation was described using the time constant of isovolumetric relaxation (tau) assuming a nonzero asymptote of ventricular pressure decay. Regional chamber stiffness, an index of passive ventricular filling, was described using an exponential equation relating segment length to ventricular pressure between minimum ventricular pressure and the onset of atrial systole.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1539854

  1. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum

    Directory of Open Access Journals (Sweden)

    Marjolein Verly

    2014-01-01

    Full Text Available The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD. Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19 and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI.

  2. Alterations in mesolimbic dopamine function during the abstinence period following chronic ethanol consumption.

    Science.gov (United States)

    Bailey, C P; O'Callaghan, M J; Croft, A P; Manley, S J; Little, H J

    2001-12-01

    Previous work demonstrated that the locomotor stimulant actions of amphetamine, cocaine and nicotine were increased when these drugs were given during the abstinence phase after chronic ethanol consumption. These changes were seen at 6 days and at 2 months after cessation of alcohol. The present study examined neuronal alterations which might be related to these changes in behaviour. Markedly reduced spontaneous firing rates of dopaminergic cells in the ventral tegmental area (VTA) in midbrain slices were seen 6 days into the abstinence period after cessation of chronic ethanol consumption, but by 2 months the firing rates had returned to control values. Increased affinity of striatal receptors for the D1-like receptor ligand 3H-SCH23390, but no change in the receptor density, was found both at the 6 day and the 2 month intervals. The binding properties of striatal D2-like receptors, of D1-like and D2-like receptors in the frontal cerebral cortex, and the release of tritiated dopamine from slices of striatum or frontal cerebral cortex, were unchanged at 6 days and 2 months. It is suggested that the decreased neuronal firing leads to a persistent increase in sensitivity of D1-like receptors and that these changes could explain the increased effects of the other drugs of abuse. PMID:11747903

  3. Hyperammonaemia alters the mechanisms by which metabotropic glutamate receptors in nucleus accumbens modulate motor function.

    Science.gov (United States)

    Cauli, Omar; Mlili, Nisrin; Rodrigo, Regina; Felipo, Vicente

    2007-10-01

    Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors. PMID:17587309

  4. Functional integrity of freshwater forested wetlands, hydrologic alteration, and climate change

    Science.gov (United States)

    Middleton, Beth A.; Souter, Nicholas J.;

    2016-01-01

    Climate change will challenge managers to balance the freshwater needs of humans and wetlands. The Intergovernmental Panel on Climate Change predicts that most regions of the world will be exposed to higher temperatures, CO2, and more erratic precipitation, with some regions likely to have alternating episodes of intense flooding and mega-drought. Coastal areas will be exposed to more frequent saltwater inundation as sea levels rise. Local land managers desperately need intra-regional climate information for site-specific planning, management, and restoration activities. Managers will be challenged to deliver freshwater to floodplains during climate change-induced drought, particularly within hydrologically altered and developed landscapes. Assessment of forest health, both by field and remote sensing techniques, will be essential to signal the need for hydrologic remediation. Studies of the utility of the release of freshwater to remediate stressed forested floodplains along the Murray and Mississippi Rivers suggest that brief episodes of freshwater remediation for trees can have positive health benefits for these forests. The challenges of climate change in forests of the developing world will be considered using the Tonle Sap of Cambodia as an example. With little ecological knowledge of the impacts, managing climate change will add to environmental problems already faced in the developing world with new river engineering projects. These emerging approaches to remediate stressed trees will be of utmost importance for managing worldwide floodplain forests with predicted climate changes.

  5. Different Resting-State Functional Connectivity Alterations in Smokers and Nonsmokers with Internet Gaming Addiction

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2014-01-01

    Full Text Available This study investigated changes in resting-state functional connectivity (rsFC of posterior cingulate cortex (PCC in smokers and nonsmokers with Internet gaming addiction (IGA. Twenty-nine smokers with IGA, 22 nonsmokers with IGA, and 30 healthy controls (HC group underwent a resting-state fMRI scan. PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. Compared with the nonsmokers with IGA, the smokers with IGA exhibited decreased rsFC with PCC in the right rectus gyrus. Left middle frontal gyrus exhibited increased rsFC. The PCC connectivity with the right rectus gyrus was found to be negatively correlated with the CIAS scores in the smokers with IGA before correction. Our results suggested that smokers with IGA had functional changes in brain areas related to motivation and executive function compared with the nonsmokers with IGA.

  6. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    Science.gov (United States)

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  7. Prenatal undernutrition and postnatal overnutrition alter thyroid hormone axis function in sheep

    DEFF Research Database (Denmark)

    Johnsen, Lærke; Kongsted, Anna Hauntoft; Nielsen, Mette Olaf

    2013-01-01

    adipose tissues. EL-ON increased TH levels in adolescent lambs, but this was reversed after diet correction, and not evident in adulthood. We conclude that LG-UN programmed TH-axis function at the secretory level and differentially in target tissues, which was increasingly manifested with age...

  8. Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease.

    Science.gov (United States)

    Rosenberg-Katz, Keren; Maidan, Inbal; Jacob, Yael; Giladi, Nir; Mirelman, Anat; Hausdorff, Jeffrey M

    2016-09-01

    Patients with Parkinson's disease (PD) have difficulties in executive functions including conflict monitoring. The neural mechanisms underlying these difficulties are not yet fully understood. In order to examine the neural mechanisms related to conflict monitoring in PD, we evaluated 35 patients with PD and 20 healthy older adults while they performed a word-color Stroop paradigm in the MRI. Specifically, we focused on changes between the groups in task-related functional connectivity using psycho-physiological interaction (PPI) analysis. The anterior cingulate cortex (ACC), which is a brain node previously associated with the Stroop paradigm, was selected as the seed region for this analysis. Patients with PD, as compared to healthy controls, had reduced task-related functional connectivity between the ACC and parietal regions including the precuneus and inferior parietal lobe. This was seen only in the incongruent Stroop condition. A higher level of connectivity between the ACC and precuneus was correlated with a lower error rate in the conflicting, incongruent Stroop condition in the healthy controls, but not in the patients with PD. Furthermore, the patients also had reduced functional connectivity between the ACC and the superior frontal gyrus which was present in both the incongruent and congruent task condition. The present findings shed light on brain mechanisms that are apparently associated with specific cognitive difficulties in patients with PD. Among patients with PD, impaired conflict monitoring processing within the ACC-based fronto-parietal network may contribute to difficulties under increased executive demands. PMID:27453508

  9. Alterations in vascular function in primary aldosteronism: a cardiovascular magnetic resonance imaging study

    OpenAIRE

    Mark, P. B.; Boyle, S; Zimmerli, L U; McQuarrie, E.P.; Delles, C.; Freel, E. M.

    2014-01-01

    Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV). Methods: We studied PA (n=14)...

  10. The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome.

    Science.gov (United States)

    Simons, L E; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D

    2014-09-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear, and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-sex matched control subjects before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared with control subjects, with differences predominantly in the left amygdala in the pretreated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy control subjects from time 1 to time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores; and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity after an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582

  11. Early association of electrocardiogram alteration with infarct size and cardiac function after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    陶则伟; 黄元伟; 夏强; 傅军; 赵志宏; 陆贤; BRUCEI.C.

    2004-01-01

    Objective:Myocardial infarction (MI) is the main cause of heart failure, but the relationship between the extent of MI and cardiac function has not been clearly determined.The present study was undertaken to investigate early changes in the electrocardiogram associated with infarct size and cardiac function after MI. Methods: MI was induced by ligating the left anterior descending coronary artery in rats. Electrocardiograms, echocardiographs and hemodynamic parameters were assessed and myocardial infarct size was measured from mid-transverse sections stained with Masson's trichrome. Results:The sum of pathological Q wave amplitudes was strongly correlated with myocardial infarct size (r=0.920, P<0.0001), left ventricular ejection fraction (r=-0.868, P<0.0001) and left ventricular end diastolic pressure (r=0.835, P<0.0004).Furthermore, there was close relationship between MI size and cardiac function as assessed by left ventricular ejection fraction (r=-0.913, P<0.0001) and left ventricular end diastolic pressure (r=0.893, P<0.0001).Conclusion: The sum of pathological Q wave amplitudes after MI can be used to estimate the extent of MI as well as cardiac function.

  12. Low Urinary Iodine Excretion during Early Pregnancy Is Associated with Alterations in Executive Functioning in Children

    NARCIS (Netherlands)

    Mil, N.H. van; Tiemeier, H.; Bongers-Schokking, J.J.; Ghassabian, A.; Hofman, A.; Hooijkaas, H.; Jaddoe, V.W.; Muinck Keizer-Schrama, S.M. de; Steegers, E.A.P.; Visser, T.J.; Visser, W. de; Ross, H.A.; Verhulst, F.C.; Rijke, Y.B. de; Steegers-Theunissen, R.P.M.

    2012-01-01

    The rare but deleterious effects of severe iodine deficiency during pregnancy on cognitive functioning of children are well known. Reports on possible associations between mild-to-moderate maternal iodine deficiency and child development, however, are scarce. In a population-based cohort we examined

  13. Alterations in Functional and Structural Connectivity in Pediatric-Onset Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Nadine Akbar

    Full Text Available Reduced white matter (WM integrity is a fundamental aspect of pediatric multiple sclerosis (MS, though relations to resting-state functional MRI (fMRI connectivity remain unknown. The objective of this study was to relate diffusion-tensor imaging (DTI measures of WM microstructural integrity to resting-state network (RSN functional connectivity in pediatric-onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural integrity.This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13-24 years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13 years and 16 age- and sex-matched healthy controls (HC. All subjects underwent 3.0T anatomical and functional MRI which included DTI and resting-state acquisitions. DTI processing was performed using Tract-Based Spatial Statistics (TBSS. RSNs were identified using Independent Components Analysis, and a dual regression technique was used to detect between-group differences in the functional connectivity of RSNs. Correlations were investigated between DTI measures and RSN connectivity.Lower fractional anisotropy (FA was observed in the pediatric-onset MS group compared to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected. Relative to HCs, MS patients showed higher functional connectivity involving the anterior cingulate cortex and right precuneus of the default-mode network, as well as involving the anterior cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncorrected, k≥30 voxels. Higher functional connectivity of the right precuneus within the default-mode network was associated with lower FA of the entire WM skeleton (r = -.525, p = .02, genu of the corpus callosum (r = -.553, p = .014, and left (r = -.467, p = .044 and right (r = -.615, p = .005 sagittal stratum.Loss of

  14. How does α-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the 'gene for speed'.

    Science.gov (United States)

    Lee, Fiona X Z; Houweling, Peter J; North, Kathryn N; Quinlan, Kate G R

    2016-04-01

    An estimated 1.5 billion people worldwide are deficient in the skeletal muscle protein α-actinin-3 due to homozygosity for the common ACTN3 R577X polymorphism. α-Actinin-3 deficiency influences muscle performance in elite athletes and the general population. The sarcomeric α-actinins were originally characterised as scaffold proteins at the muscle Z-line. Through studying the Actn3 knockout mouse and α-actinin-3 deficient humans, significant progress has been made in understanding how ACTN3 genotype alters muscle function, leading to an appreciation of the diverse roles that α-actinins play in muscle. The α-actinins interact with a number of partner proteins, which broadly fall into three biological pathways-structural, metabolic and signalling. Differences in functioning of these pathways have been identified in α-actinin-3 deficient muscle that together contributes to altered muscle performance in mice and humans. Here we discuss new insights that have been made in understanding the molecular mechanisms that underlie the consequences of α-actinin-3 deficiency. PMID:26802899

  15. Antioxidant and anti-inflammatory effects of quercetin in functional and morphological alterations in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Maciel, R M; Costa, M M; Martins, D B; França, R T; Schmatz, R; Graça, D L; Duarte, M M M F; Danesi, C C; Mazzanti, C M; Schetinger, M R C; Paim, F C; Palma, H E; Abdala, F H; Stefanello, N; Zimpel, C K; Felin, D V; Lopes, S T A

    2013-10-01

    The aim of this study was to investigate functional and morphological