WorldWideScience

Sample records for altered cell morphology

  1. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders;

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  2. Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology.

    Directory of Open Access Journals (Sweden)

    Wilhelm Paulander

    Full Text Available It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH• formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP. Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed.

  3. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing; Wang; Ting-Jun; Fan; Xiu-Xia; Yang; Shi-Min; Chang

    2014-01-01

    AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P <0.01) and the length of F-actin,reduced the mean optical density(P <0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  4. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    Science.gov (United States)

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.

  5. Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage.

    Science.gov (United States)

    Henrich-Noack, Petra; Voigt, Nadine; Prilloff, Sylvia; Fedorov, Anton; Sabel, Bernhard A

    2013-05-24

    Traumatic optic nerve injury leads to retrograde death of retinal ganglion cells (RGCs), but transcorneal electrical stimulation (TES) can increase the cell survival rate. To understand the mechanisms and to further define the TES-induced effects we monitored in living animals RGC morphology and survival after optic nerve crush (ONC) in real time by using in vivo confocal neuroimaging (ICON) of the retina. ONC was performed in rats and ICON was performed before crush and on post-lesion days 3, 7 and 15 which allowed us to repeatedly record RGC number and size. TES or sham-stimulation were performed immediately after the crush and on post-injury day 11. Three days after ONC we detected a higher percentage of surviving RGCs in the TES group as compared to sham-treated controls. However, the difference was below significance level on day 7 and disappeared completely by day 15. The death rate was more variable amongst the TES-treated rats than in the control group. Morphological analysis revealed that average cell size changed significantly in the control group but not in stimulated animals and the morphological alterations of surviving neurons were smaller in TES-treated compared to control cells. In conclusion, TES delays post-traumatic cell death significantly. Moreover, we found "responder animals" which also benefited in the long-term from the treatment. Our in vivo cellular imaging results provide evidence that TES reduces ONC-associated neuronal swelling and shrinkage especially in RGCs which survived long-term. Further studies are now needed to determine the differences of responders vs. non-responders.

  6. Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2005-05-01

    Full Text Available Abstract Background Plant pigmentation is affected by a variety of factors. Light, an important plant developmental signal, influences the accumulation of anthocyanins primarily through the activation of the transcription factors that regulate the flavonoid biosynthetic pathway. In this study, we utilized maize Black Mexican Sweet (BMS cells expressing the R and C1 regulators of anthocyanin biosynthesis from a light-insensitive promoter as a means to investigate the existence of additional levels of control of pigmentation by light. Results BMS cells expressing the R and C1 regulators from the CaMV 35S constitutive promoter accumulate anthocyanins when grown in complete darkness, suggesting that the transcription factors R and C1 are sufficient for the transcription of the genes corresponding to the structural enzymes of the pathway, with no requirement for additional light-induced regulators. Interestingly, light induces a "darkening" in the color of the purple anthocyanin pigmentation of transgenic BMS cells expressing R and C1. This change in the pigment hue is not associated with a variation in the levels or types of anthocyanins present, or with an alteration of the transcript levels of several flavonoid biosynthetic genes. However, cytological observations show that light drives unexpected changes in the morphology and distribution of the anthocyanins-containing vacuolar compartments. Conclusion By uncoupling the effect of light on anthocyanin accumulation, we have found light to induce the fusion of anthocyanin-containing vacuoles, the coalescence of anthocyanic vacuolar inclusion (AVI-like structures contained, and the spread of anthocyanins from the inclusions into the vacuolar sap. Similar light-induced alterations in vacuolar morphology are also evident in the epidermal cells of maize floral whorls accumulating anthocyanins. Our findings suggest a novel mechanism for the action of light on the vacuolar storage of anthocyanin.

  7. A deficiency of uPAR alters endothelial angiogenic function and cell morphology

    Directory of Open Access Journals (Sweden)

    Balsara Rashna D

    2011-05-01

    Full Text Available Abstract The angiogenic potential of a cell requires dynamic reorganization of the cytoskeletal architecture that involves the interaction of urokinase-type plasminogen activator receptor (uPAR with the extracellular matrix. This study focuses on the effect of uPAR deficiency (uPAR-/- on angiogenic function and associated cytoskeletal organization. Utilizing murine endothelial cells, it was observed that adhesion, migration, proliferation, and capillary tube formation were altered in uPAR-/- cells compared to wild-type (WT cells. On a vitronectin (Vn matrix, uPAR-/- cells acquired a "fried egg" morphology characterized by circular actin organization and lack of lamellipodia formation. The up-regulation of β1 integrin, FAK(P-Tyr925, and paxillin (P-Tyr118, and decreased Rac1 activation, suggested increased focal adhesions, but delayed focal adhesion turnover in uPAR-/- cells. This accounted for the enhanced adhesion, but attenuated migration, on Vn. VEGF-enriched Matrigel implants from uPAR-/- mice demonstrated a lack of mature vessel formation compared to WT mice. Collectively, these results indicate that a uPAR deficiency leads to decreased angiogenic functions of endothelial cells.

  8. Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization.

    Science.gov (United States)

    Ciccoli, Lucia; De Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Cortelazzo, Alessio; Zollo, Gloria; Pecorelli, Alessandra; Rossi, Marcello; Hayek, Joussef

    2015-11-01

    In this review, we summarize the current evidence on the erythrocyte as a previously unrecognized target cell in Rett syndrome, a rare (1:10 000 females) and devastating neurodevelopmental disorder caused by loss-of-function mutations in a single gene (i.e. MeCP2, CDKL5, or rarely FOXG1). In particular, we focus on morphological changes, membrane oxidative damage, altered membrane fatty acid profile, and aberrant skeletal organization in erythrocytes from patients with typical Rett syndrome and MeCP2 gene mutations. The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) are also summarized for this condition to be considered as a 'model' condition for autism spectrum disorders.

  9. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells.

    Directory of Open Access Journals (Sweden)

    Joanna eŚlusarczyk

    2015-03-01

    Full Text Available Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test, the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive in 3 month old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4 and beneficial (IGF-1, BDNF phenotypes in cultures of microglia obtained from the cortices of 1-2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats.Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood.

  10. Apoptosis and morphological alterations after UVA irradiation in red blood cells of p53 deficient Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Sayed, Alla El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-08-01

    Morphological alterations in red blood cells were described as hematological bioindicators of UVA exposure to investigate the sensitivity to UVA in wild type Japanese medaka (Oryzias latipes) and a p53 deficient mutant. The fewer abnormal red blood cells were observed in the p53 mutant fish under the control conditions. After exposure to different doses of UVA radiation (15min, 30min and 60min/day for 3days), cellular and nuclear alterations in red blood cells were analyzed in the UVA exposed fish compared with non-exposed controls and those alterations included acanthocytes, cell membrane lysis, swollen cells, teardrop-like cell, hemolyzed cells and sickle cells. Those alterations were increased after the UVA exposure both in wild type and the p53 deficient fish. Moreover, apoptosis analyzed by acridine orange assay showed increased number of apoptosis in red blood cells at the higher UVA exposure dose. No micronuclei but nuclear abnormalities as eccentric nucleus, nuclear budding, deformed nucleus, and bilobed nucleus were observed in each group. These results suggested that UVA exposure induced both p53 dependent and independent apoptosis and morphological alterations in red blood cells but less sensitive to UVA than Wild type in medaka fish.

  11. Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable.

    Directory of Open Access Journals (Sweden)

    Julián Tejada

    Full Text Available Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.

  12. Photoinduced cell morphology alterations quantified within adipose tissues by spectral optical coherence tomography.

    Science.gov (United States)

    Yanina, Irina Yu; Trunina, Natalia A; Tuchin, Valery V

    2013-11-01

    Morphological changes of the adipose tissue at phototreatment are studied in vitro using optical coherence tomography. The 200 to 600 μm fat tissue slices are used in the experiments. The observed change in the tissue structure was associated with fat cell lipolysis and destruction caused by the photodynamic effect. It is found that overall heating of a sample from room to physiological temperature leads to deeper and faster morphology tissue changes if other processing conditions are kept constant. These data support the hypothesis that photodynamic/photothermal treatment induces fat cell lipolysis during some period after treatment.

  13. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  14. Sublethal concentrations of carbapenems alter cell morphology and genomic expression of Klebsiella pneumoniae biofilms.

    Science.gov (United States)

    Van Laar, Tricia A; Chen, Tsute; You, Tao; Leung, Kai P

    2015-03-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells.

  15. Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB.

    Science.gov (United States)

    Danzer, Steve C; Kotloski, Robert J; Walter, Cynthia; Hughes, Maya; McNamara, James O

    2008-01-01

    Dentate granule cells play a critical role in the function of the entorhinal-hippocampal circuitry in health and disease. Dentate granule cells are situated to regulate the flow of information into the hippocampus, a structure required for normal learning and memory. Correspondingly, impaired granule cell function leads to memory deficits, and, interestingly, altered granule cell connectivity may contribute to the hyperexcitability of limbic epilepsy. It is important, therefore, to understand the molecular determinants of synaptic connectivity of these neurons. Brain-derived neurotrophic factor and its receptor TrkB are expressed at high levels in the dentate gyrus (DG) of the hippocampus, and are implicated in regulating neuronal development, neuronal plasticity, learning, and the development of epilepsy. Whether and how TrkB regulates granule cell structure, however, is incompletely understood. To begin to elucidate the role of TrkB in regulating granule cell morphology, here we examine conditional TrkB knockout mice crossed to mice expressing green fluorescent protein in subsets of dentate granule cells. In stratum lucidum, where granule cell mossy fiber axons project, the density of giant mossy fiber boutons was unchanged, suggesting similar output to CA3 pyramidal cell targets. However, filopodial extensions of giant boutons, which contact inhibitory interneurons, were increased in number in TrkB knockout mice relative to wildtype controls, predicting enhanced feedforward inhibition of CA3 pyramidal cells. In knockout animals, dentate granule cells possessed fewer primary dendrites and enlarged dendritic spines, indicative of disrupted excitatory synaptic input to the granule cells. Together, these findings demonstrate that TrkB is required for development and/or maintenance of normal synaptic connectivity of the granule cells, thereby implying an important role for TrkB in the function of the granule cells and hippocampal circuitry.

  16. H-ras-transformed NRK-52E renal epithelial cells have altered growth, morphology, and cytoskeletal structure that correlates with renal cell carcinoma in vivo.

    Science.gov (United States)

    Best, C J; Tanzer, L R; Phelps, P C; Merriman, R L; Boder, G G; Trump, B F; Elliget, K A

    1999-04-01

    We studied the effect of the ras oncogene on the growth kinetics, morphology, cytoskeletal structure, and tumorigenicity of the widely used NRK-52E rat kidney epithelial cell line and two H-ras oncogene-transformed cell lines, H/1.2-NRK-52E (H/1.2) and H/6.1-NRK-52E (H/6.1). Population doubling times of NRK-52E, H/1.2, and H/6.1 cells were 28, 26, and 24 h, respectively, with the transformed cells reaching higher saturation densities than the parent cells. NRK-52E cells had typical epithelial morphology with growth in colonies. H/1.2 and H/6.1 cell colonies were more closely packed, highly condensed, and had increased plasma membrane ruffling compared to parent cell colonies. NRK-52E cells showed microfilament, microtubule, and intermediate filament networks typical of epithelial cells, while H/1.2 and H/6.1 cells showed altered cytoskeleton architecture, with decreased stress fibers and increased microtubule and intermediate filament staining at the microtubule organizing center. H/1.2 and H/6.1 cells proliferated in an in vitro soft agar transformation assay, indicating anchorage-independence, and rapidly formed tumors in vivo with characteristics of renal cell carcinoma, including mixed populations of sarcomatoid, granular, and clear cells. H/6.1 cells consistently showed more extensive alterations of growth kinetics, morphology, and cytoskeleton than H/1.2 cells, and formed tumors of a more aggressive phenotype. These data suggest that analysis of renal cell characteristics in vitro may have potential in predicting tumor behavior in vivo, and significantly contribute to the utility of these cell lines as in vitro models for examining renal epithelial cell biology and the role of the ras proto-oncogene in signal transduction involving the cytoskeleton.

  17. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges.

  18. Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation

    Science.gov (United States)

    Werner, Maike; Blanquer, Sébastien B. G.; Haimi, Suvi P.; Korus, Gabriela; Dunlop, John W. C.; Duda, Georg N.; Grijpma, Dirk. W.

    2016-01-01

    Signals from the microenvironment around a cell are known to influence cell behavior. Material properties, such as biochemical composition and substrate stiffness, are today accepted as significant regulators of stem cell fate. The knowledge of how cell behavior is influenced by 3D geometric cues is, however, strongly limited despite its potential relevance for the understanding of tissue regenerative processes and the design of biomaterials. Here, the role of surface curvature on the migratory and differentiation behavior of human mesenchymal stem cells (hMSCs) has been investigated on 3D surfaces with well‐defined geometric features produced by stereolithography. Time lapse microscopy reveals a significant increase of cell migration speed on concave spherical compared to convex spherical structures and flat surfaces resulting from an upward‐lift of the cell body due to cytoskeletal forces. On convex surfaces, cytoskeletal forces lead to substantial nuclear deformation, increase lamin‐A levels and promote osteogenic differentiation. The findings of this study demonstrate a so far missing link between 3D surface curvature and hMSC behavior. This will not only help to better understand the role of extracellular matrix architecture in health and disease but also give new insights in how 3D geometries can be used as a cell‐instructive material parameter in the field of biomaterial‐guided tissue regeneration.

  19. Cell cycle-dependent alteration in NAC1 nuclear body dynamics and morphology

    Science.gov (United States)

    Wu, Pei-Hsun; Hung, Shen-Hsiu; Ren, Tina; Shih, Ie-Ming; Tseng, Yiider

    2011-02-01

    NAC1, a BTB/POZ family member, has been suggested to participate in maintaining the stemness of embryonic stem cells and has been implicated in the pathogenesis of human cancer. In ovarian cancer, NAC1 upregulation is associated with disease aggressiveness and with the development of chemoresistance. Like other BTB/POZ proteins, NAC1 forms discrete nuclear bodies in non-dividing cells. To investigate the biological role of NAC1 nuclear bodies, we characterized the expression dynamics of NAC1 nuclear bodies during different phases of the cell cycle. Fluorescence recovery after photobleaching assays revealed that NAC1 was rapidly exchanged between the nucleoplasm and NAC1 nuclear bodies in interphase cells. The number of NAC1 bodies significantly increased and their size decreased in the S phase as compared to the G0/G1 and G2 phases. NAC1 nuclear bodies disappeared and NAC1 became diffuse during mitosis. NAC1 nuclear bodies reappeared immediately after completion of mitosis. These results indicate that a cell cycle-dependent regulatory mechanism controls NAC1 body formation in the nucleus and suggest that NAC1 body dynamics are associated with mitosis or cytokinesis.

  20. Early postnatal respiratory viral infection alters hippocampal neurogenesis, cell fate, and neuron morphology in the neonatal piglet.

    Science.gov (United States)

    Conrad, Matthew S; Harasim, Samantha; Rhodes, Justin S; Van Alstine, William G; Johnson, Rodney W

    2015-02-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development.

  1. Altered Morphology of Hippocampal Dentate Granule Cell Presynaptic and Postsynaptic Terminals Following Conditional Deletion of TrkB

    OpenAIRE

    Danzer, Steve C.; Kotloski, Robert J.; Walter, Cynthia; Hughes, Maya; McNamara, James O.

    2008-01-01

    Dentate granule cells play a critical role in the function of the entorhinal-hippocampal circuitry in health and disease. Dentate granule cells are situated to regulate the flow of information into the hippocampus, a structure required for normal learning and memory. Correspondingly, impaired granule cell function leads to memory deficits, and, interestingly, altered granule cell connectivity may contribute to the hyperexcitability of limbic epilepsy. It is important, therefore, to understand...

  2. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study).

    Science.gov (United States)

    Michałowicz, Jaromir; Mokra, Katarzyna; Bąk, Agata

    2015-10-01

    Few studies have addressed the cellular effects of bisphenol S (BPS) and bisphenol AF (BPAF) on cells, and no study has been conducted to analyze the mechanism of action of bisphenols in blood cells. In this study, the effect of bisphenol A (BPA), bisphenol F (BPF), BPS and BPAF on human peripheral blood mononuclear cells (PBMCs) was analyzed. It was shown that BPA, BPF and BPAF in particular, decreased cell viability, which was associated with depletion of intracellular ATP level and alterations in PBMCs size and granulation. Bisphenols enhanced ROS (including OH˙) formation, which led to damage to lipids and proteins in PBMCs. The most significant alterations in ROS level were induced by BPF, and particularly BPAF. Moreover, it was shown that BPAF most strongly provoked lipid peroxidation, while BPA and BPS caused the greatest damage to proteins. It may be concluded that BPA and its analogs were capable of inducing oxidative stress and damage in PBMCs in the concentrations ranging from 0.06 to 0.5 μM (0.02-0.1 μg/ml), which may be present in human blood as a result of environmental exposure. Although, most of bisphenols studied decreased cell viability, size and ATP level at higher concentrations, BPAF exhibited its cytotoxic potential at low concentrations ranging from 0.3 to 3 μM (0.1-1.0 μg/ml) that may correspond to concentrations in humans following occupational exposure.

  3. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549).

    Science.gov (United States)

    Gualtieri, Maurizio; Mantecca, Paride; Corvaja, Viviana; Longhin, Eleonora; Perrone, Maria Grazia; Bolzacchini, Ezio; Camatini, Marina

    2009-07-10

    Samples of PM(2.5) were gravimetrically collected during the winter 2005/2006 in the urban area of Milan (North Italy). Samples were chemically characterized and the particles were detached from filters to determine their cytotoxic effects on the A549 cell line. Based on the potential toxicological relevance of its components, Milan winter PM(2.5) contained high concentrations of pro-oxidant transition metals and PAHs, while re-suspended particles showed a relatively high frequency of dimensional classes ranging from 40 nm to 300 nm. A549 cells exposed to particle suspensions showed a concentration-dependent decrease in viability, starting from 10 microg/cm(2). Phagocytosis of particles by A549 cells and particle aggregates were morphologically characterized and seemed to depend on both particle concentration and exposure time, with the majority of particles being engulfed in membrane-bound vacuoles after 24h of exposure. The ability of ultrafine particles to penetrate and spread throughout the cells was also verified. Cell membrane lysis and mitochondrial ultrastructural disruption appeared to be the main modifications induced by PM(2.5) on A549 cells. Concomitantly to the adverse effects observed in terms of cell mortality and ultrastructural lesions, a significant intracellular production of reactive oxygen species (ROS) was observed, suggesting that the cytotoxicity, exerted by the winter PM(2.5) in Milan, derived also from its oxidative potential, probably associated with particle-adsorbed metals and PAHs.

  4. The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes.

    Science.gov (United States)

    Eisenbeis, Janina; Peisker, Henrik; Backes, Christian S; Bur, Stephanie; Hölters, Sebastian; Thewes, Nicolas; Greiner, Markus; Junker, Christian; Schwarz, Eva C; Hoth, Markus; Junker, Kerstin; Preissner, Klaus T; Jacobs, Karin; Herrmann, Mathias; Bischoff, Markus

    2017-02-01

    Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the

  5. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.

  6. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies.

    Science.gov (United States)

    Fritzsch, Bernd; Straka, Hans

    2014-01-01

    Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.

  7. Alteration of Kupffer cell function and morphology by low melt point paraffin wax in female Fischer-344 but not Sprague-Dawley rats.

    Science.gov (United States)

    Hoglen, N C; Regan, S P; Hensel, J L; Younis, H S; Sauer, J M; Steup, D R; Miller, M J; Waterman, S J; Twerdok, L E; Sipes, I G

    1998-11-01

    This study was conducted to compare the effects of 60-day dietary exposure (2%) to low melt point paraffin wax (LMPW) on both general liver morphology and Kupffer cell (KC) function and morphology in female F-344 and Sprague-Dawley (SD) rats. Livers from only F-344 rats fed LMPW had granuloma formation/lymphoid cell aggregates with small areas of necrosis. Significant increases in serum alanine and aspartate aminotransferase as well as gamma-glutamyltransferase activities were detected only in treated F-344 rats. Additionally, detectable amounts of LMPW were present only in livers of treated F-344 rats. Because KC can be involved in granuloma formation, their morphology and function were examined. Electron microscopy revealed the presence of large, irregularly shaped, membrane-associated vacuoles in cells isolated from F-344 rats exposed to LMPW. These vacuoles were not seen in KC from control rats and rarely detected in KC isolated from LMPW-exposed SD rats. Moreover, indices of KC function including phagocytic activity and nitric oxide and superoxide anion production were significantly increased by KC isolated from F-344 rats exposed to LMPW (1.6-, 36-, and 2.2-fold increases, respectively) over untreated controls. In contrast, LPS-stimulated production of TNF and LTB4 was significantly decreased only in KC of LMPW-fed F-344 rats. No significant changes in these functions were observed in KC isolated from SD rats exposed to LMPW or from KC isolated from control F-344 or SD rats. These data provide evidence that dietary LMPW alters the morphology and functional capacity of KC of F-344 but not SD rats and these changes may ultimately lead to granuloma formation.

  8. THE MORPHOLOGICAL CHANGES IN MUSCLE SPINDLES AND ALTERATIONS IN CELL ACTIVITY OF THE RATS' RED NUCLEUS AFTER 2 WEEKS' SIMULATED WEIGHTLESSNESS

    Institute of Scientific and Technical Information of China (English)

    Zhu Yongjin; Fan Xiaoli; Wu Sudi; Li Qiang

    2006-01-01

    Objective To study the morphological changes of soleus muscle spindle and electrical activity of neurons in Red Nucleus(RN) of the rat after 2 weeks' simulated weightlessness, and to reveal the interaction between proprioceptive inputs of muscle spindles and reciprocal alterations in RN under simulated weightlessness. Methods Twenty female rats were exposed to weightlessness simulated by tail-suspension for 14 days (SW-14d). Body weight(200-220g) matched female rats were control group(Con). The morphological changes in isolated muscle spindle of soleus muscle, the discharges of red nucleus neurons were observed after 14d tail-suspensions by silver staining and extracellular recording respectively. Results Compared with control group ,the nerve ending of muscle spindle in SW-14d was distorted, degenerated and dissolved; the diameters of intrafusal fibers and capsule in equatorial region of soleus muscle spindles were diminished(P<0.05). The spontaneous cell activity and discharge of RN neurons (spikes/s) induced by afferent firing from muscle spindles after injection of succinylcholine were reduced after 2 weeks' simulated weightlessness respectively (18.44±5.96 vs. 10.19±6.88, 32.50±8.08 vs. 16.86±5.97, P<0.01). Conclusion The degeneration of muscle spindle induced by simulated weightlessness may be one of the causes that led to alterations in discharges of RN.

  9. Diabetic rat testes: morphological and functional alterations.

    Science.gov (United States)

    Ricci, G; Catizone, A; Esposito, R; Pisanti, F A; Vietri, M T; Galdieri, M

    2009-12-01

    Reproductive dysfunction is a consequence of diabetes, but the underlying mechanisms are poorly understood. This study investigated the histological and molecular alterations in the testes of rats injected with streptozotocin at prepuperal (SPI rats) and adult age (SAI rats) to understand whether diabetes affects testicular tissue with different severity depending on the age in which this pathological condition starts. The testes of diabetic animals showed frequent abnormal histology, and seminiferous epithelium cytoarchitecture appeared altered as well as the occludin distribution pattern. The early occurrence of diabetes increased the percentage of animals with high number of damaged tubules. The interstitial compartment of the testes was clearly hypertrophic in several portions of the organs both in SPI and SAI rats. Interestingly, fully developed Leydig cells were present in all the treated animals although abnormally distributed. Besides the above-described damages, we found a similar decrease in plasma testosterone levels both in SPI and SAI rats. Oxidative stress (OS) is involved in the pathogenesis of various diabetic complications, and in our experimental models we found that manganese superoxide dismutase was reduced in diabetic animals. We conclude that in STZ-induced diabetes, the altered spermatogenesis, more severe in SPI animals, is possibly due to the effect of OS on Leydig cell function which could cause the testosterone decrease responsible for the alterations found in the seminiferous epithelium of diabetic animals.

  10. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to β-lactams.

    Science.gov (United States)

    Schoonmaker, Maia K; Bishai, William R; Lamichhane, Gyanu

    2014-04-01

    Virtually all bacteria possess a peptidoglycan layer that is essential for their growth and survival. The β-lactams, the most widely used class of antibiotics in human history, inhibit D,D-transpeptidases, which catalyze the final step in peptidoglycan biosynthesis. The existence of a second class of transpeptidases, the L,D-transpeptidases, was recently reported. Mycobacterium tuberculosis, an infectious pathogen that causes tuberculosis (TB), is known to possess as many as five proteins with L,D-transpeptidase activity. Here, for the first time, we demonstrate that loss of L,D-transpeptidases 1 and 2 of M. tuberculosis (LdtMt1 and LdtMt2) alters cell surface morphology, shape, size, organization of the intracellular matrix, sorting of some low-molecular-weight proteins that are targeted to the membrane or secreted, cellular physiology, growth, virulence, and resistance of M. tuberculosis to amoxicillin-clavulanate and vancomycin.

  11. Small changes in environmental parameters lead to alterations in antibiotic resistance, cell morphology and membrane fatty acid composition in Staphylococcus lugdunensis.

    Directory of Open Access Journals (Sweden)

    Marcus J Crompton

    Full Text Available Staphylococcus lugdunensis has emerged as a major cause of community-acquired and nosocomial infections. This bacterium can rapidly adapt to changing environmental conditions to survive and capitalize on opportunities to colonize and infect through wound surfaces. It was proposed that S. lugdunensis would have underlying alterations in metabolic homeostasis to provide the necessary levels of adaptive protection. The aims of this project were to examine the impacts of subtle variations in environmental conditions on growth characteristics, cell size and membrane fatty acid composition in S. lugdunensis. Liquid broth cultures of S. lugdunensis were grown under varying combinations of pH (6-8, temperature (35-39°C and osmotic pressure (0-5% sodium chloride w/w to reflect potential ranges of conditions encountered during transition from skin surfaces to invasion of wound sites. The cells were harvested at the mid-exponential phase of growth and assessed for antibiotic minimal inhibitory concentration (MIC, generation time, formation of small colony variants, cell size (by scanning electron microscopy and membrane fatty acid composition. Stress regimes with elevated NaCl concentrations resulted in significantly higher antibiotic resistance (MIC and three of the combinations with 5% NaCl had increased generation times (P<0.05. It was found that all ten experimental growth regimes, including the control and centroid cultures, yielded significantly different profiles of plasma membrane fatty acid composition (P<0.0001. Alterations in cell size (P<0.01 were also observed under the range of conditions with the most substantial reduction occurring when cells were grown at 39°C, pH 8 (514±52 nm, mean ± Standard Deviation compared with cells grown under control conditions at 37°C with pH 7 (702±76 nm, P<0.01. It was concluded that S. lugdunensis responded to slight changes in environmental conditions by altering plasma membrane fatty acid composition

  12. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  13. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Science.gov (United States)

    Tejada, Julian; Garcia-Cairasco, Norberto; Roque, Antonio C

    2014-05-01

    Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  14. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Julian Tejada

    2014-05-01

    Full Text Available Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  15. Viable and morphologically normal boar spermatozoa alter the expression of heat-shock protein genes in oviductal epithelial cells during co-culture in vitro.

    Science.gov (United States)

    Yeste, Marc; Holt, William V; Bonet, Sergi; Rodríguez-Gil, Joan E; Lloyd, Rhiannon E

    2014-09-01

    The principal aim of this study was to determine if boar spermatozoa influence the expression of four selected chaperone and heat-shock protein (HSP) genes-namely clusterin (CLU), HSP90AA1, HSPA5, and HSPA8-in oviductal epithelial cells (OECs) during in vitro co-culture. All corresponding proteins of these genes were previously identified in a sperm-interacting, 70-kDa soluble fraction derived from apical plasma membranes of OECs. The present study also sought to determine whether or not: (i) spermatozoa must directly bind to OEC for an effect on gene expression to be elicited and (ii) reproductive and nonreproductive epithelial cell types (LLC-PK1, pig kidney) respond equivalently, in terms of alterations in chaperone and HSP gene expression, during co-culture with sperm. Spermatozoa induced a significant upregulation (P sperm-binding index and on the viability and morphological quality of the bound sperm population. In conclusion, the upregulation of HSP genes caused by direct contact between spermatozoa and OECs, rather than nonreproductive epithelial cells, suggests HSPs could play an integral role in the modulation of sperm function in the oviductal reservoir.

  16. Developmental alterations of the C. elegans male anal depressor morphology and function require sex-specific cell autonomous and cell non-autonomous interactions.

    Science.gov (United States)

    Chen, Xin; René García, L

    2015-02-01

    We studied the Caenorhabditis elegans anal depressor development in larval males and hermaphrodites to address how a differentiated cell sex-specifically changes its morphology prior to adulthood. In both sexes, the larval anal depressor muscle is used for defecation behavior. However in the adult males, the muscle's sarcomere is reorganized to facilitate copulation. To address when the changes occur in the anal depressor, we used YFP:actin to monitor, and mutant analysis, laser-ablation and transgenic feminization to perturb the cell's morphological dynamics. In L1 and L2 stage larva, the muscle of both sexes has similar sarcomere morphology, but the hermaphrodite sex-determination system promotes more growth. The male anal depressor begins to change in the L3 stage, first by retracting its muscle arm from the neurons of the defecation circuit. Then the muscle's ventral region develops a slit that demarcates an anterior and posterior domain. This demarcation is not dependent on the anal depressor's intrinsic genetic sex, but is influenced by extrinsic interactions with the developing male sex muscles. However, subsequent changes are dependent on the cell's sex. In the L4 stage, the anterior domain first disassembles the dorsal-ventral sarcomere region and develops filopodia that elongates anteriorly towards the spicule muscles. Later, the posterior domain dissembles the remnants of its sarcomere, but still retains a vestigial attachment to the ventral body wall. Finally, the anterior domain attaches to the sex muscles, and then reassembles an anterior-posteriorly oriented sarcomere. Our work identifies key steps in the dimorphic re-sculpting of the anal depressor that are regulated by genetic sex and by cell-cell signaling.

  17. High copy arrays containing a sequence upstream of mec-3 alter cell migration and axonal morphology in C. elegans

    Directory of Open Access Journals (Sweden)

    Patchen Brandi

    2001-01-01

    Full Text Available Abstract Background The Caenorhabditis elegans gene mec-3 encodes a LIM-homeodomain protein that is a master regulator of touch receptor neuron genes. Two of the touch neurons, the ALM neurons, are generated in the anterior of the animal and then migrate to near the middle of the animal. In animals transformed with a sequence upstream of mec-3, the ALM touch receptor neurons failed to migrate to their normal positions and sometimes migrated in the wrong direction, and the PLM touch receptor neurons showed axonal defects. Here we characterize this effect and identify the sequence causing the cell migration and axonal defects. Results The ALM migration defect did not result from RNA interference (RNAi, nonspecific effects of carrying a transgenic array, expression of GFP, or the marker gene used to make the transformants. Instead, the ALM migration defect resulted from transgenic arrays containing many copies of a specific 104 bp DNA sequence. Transgenic arrays containing this sequence did not affect all cell migrations. Conclusions The mec-3 upstream sequence appeared to be sequestering (titrating out a specific DNA-binding factor that is required for the ALMs to migrate correctly. Because titration of this factor could reverse the direction of ALM migrations, it may be part of a program that specifies both the direction and extent of ALM migrations. mec-3 is a master regulator of touch receptor neuron genes, so the factor or factors that bind this sequence may also be involved in specifying the fate of touch receptor neurons.

  18. Rac1 participates in thermally induced alterations of the cytoskeleton, cell morphology and lipid rafts, and regulates the expression of heat shock proteins in B16F10 melanoma cells.

    Directory of Open Access Journals (Sweden)

    Burcin Gungor

    Full Text Available Eukaryotic cells exhibit a characteristic response to hyperthermic treatment, involving morphological and cytoskeletal alterations and the induction of heat shock protein synthesis. Small GTPases of the Ras superfamily are known to serve as molecular switches which mediate responses to extracellular stimuli. We addressed here how small GTPase Rac1 integrates signals from heat stress and simultaneously induces various cellular changes in mammalian cells. As evidence that Rac1 is implicated in the heat shock response, we first demonstrated that both mild (41.5°C and severe (43°C heat shock induced membrane translocation of Rac1. Following inhibition of the activation or palmitoylation of Rac1, the size of its plasma membrane-bound pool was significantly decreased while the heat shock-induced alterations in the cytoskeleton and cell morphology were prevented. We earlier documented that the size distribution pattern of cholesterol-rich rafts is temperature dependent and hypothesized that this is coupled to the triggering mechanism of stress sensing and signaling. Interestingly, when plasma membrane localization of Rac1 was inhibited, a different and temperature independent average domain size was detected. In addition, inhibition of the activation or palmitoylation of Rac1 resulted in a strongly decreased expression of the genes of major heat shock proteins hsp25 and hsp70 under both mild and severe heat stress conditions.

  19. THE MORPHOLOGICAL CHANGES IN MUSCLE SPINDLES AND ALTERATIONS IN CELL ACTIVITY OF THE RATS RED NUCLEUS AFTER 2 WEEKS SIMULATED WEIGHTLESSNESS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The extensive negative effects induced by zerogravity or microgravity where offer special environ-ment are har mful for cos monauts[1-3].The real spaceenvironment has many characteristics,including mi-crogravity,electromagnetic fields,and radiation,which may have an effect on the function and mor-phology of the CNS[4],but the changes in CNSin-duced by si mulated weightlessness on the groundcaused the corresponding adaptive changes of cere-bral circulation,which made alterations in sensoryperception,and the ...

  20. Inactivation of AMPKα1 induces asthenozoospermia and alters spermatozoa morphology.

    Science.gov (United States)

    Tartarin, Pauline; Guibert, Edith; Touré, Aminata; Ouiste, Claire; Leclerc, Jocelyne; Sanz, Nieves; Brière, Sylvain; Dacheux, Jean-Louis; Delaleu, Bernadette; McNeilly, Judith R; McNeilly, Alan S; Brillard, Jean-Pierre; Dupont, Joëlle; Foretz, Marc; Viollet, Benoit; Froment, Pascal

    2012-07-01

    AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, is present in metabolic tissues (muscle and liver) and has been identified as a modulator of the female reproductive functions. However, its function in the testis has not yet been clearly defined. We have investigated the potential role of AMPK in male reproduction by using transgenic mice lacking the activity of AMPK catalytic subunit α1 gene [α1AMPK knockout (KO)]. In the testis, the α1AMPK subunit is expressed in germ cells and also in somatic cells (Sertoli and Leydig cells). α1AMPK KO male mice show a decrease in fertility, despite no clear alteration in the testis morphology or sperm production. However, in α1AMPK(-/-) mice, we demonstrate that spermatozoa have structural abnormalities and are less motile than in control mice. These spermatozoa alterations are associated with a 50% decrease in mitochondrial activity, a 60% decrease in basal oxygen consumption, and morphological defects. The α1AMPK KO male mice had high androgen levels associated with a 5- and 3-fold increase in intratesticular cholesterol and testosterone concentrations, respectively. High concentrations of proteins involved in steroid production (3β-hydroxysteroid dehydrogenase, cytochrome steroid 17 alpha-hydroxylase/17,20 lysate, and steroidogenic acute regulatory protein) were also detected in α1AMPK(-/-) testes. In the pituitary, the LH and FSH concentrations tended to be lower in α1AMPK(-/-) male mice, probably due to the negative feedback of the high testosterone levels. These results suggest that total α1AMPK deficiency in male mice affects androgen production and quality of spermatozoa, leading to a decrease in fertility.

  1. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Nurković, Jasmin; Zaletel, Ivan; Nurković, Selmina; Hajrović, Šefćet; Mustafić, Fahrudin; Isma, Jovan; Škevin, Aleksandra Jurišić; Grbović, Vesna; Filipović, Milica Kovačević; Dolićanin, Zana

    2017-01-01

    In recent years, electromagnetic field (EMF) and low-level laser (LLL) have been found to affect various biological processes, the growth and proliferation of cells, and especially that of stem cells. The aim of this study was to investigate the effects of EMF and LLL on proliferation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and thus to examine the impact of these therapeutic physical modalities on stem cell engraftment. hAT-MSCs were isolated from subcutaneous adipose tissue of six persons ranging in age from 21 to 56 years. EMF was applied for a period of 7 days, once a day for 30 min, via a magnetic cushion surface at a frequency of 50 Hz and an intensity of 3 mT. LLL was applied also for 7 days, once a day for 5 min, at radiation energies of 3 J/cm(2), with a wavelength of 808 nm, power output of 200 mW, and power density of 0.2 W/cm(2). Nonexposed cells (control) were cultivated under the same culture conditions. Seven days after treatment, the cells were examined for cell viability, proliferation, and morphology. We found that after 7 days, the number of EMF-treated hAT-MSCs was significantly higher than the number of the untreated cells, LLL-treated hAT-MSCs were more numerous than EMF-treated cells, and hAT-MSCs that were treated with the combination of EMF and LLL were the most numerous. EMF and/or LLL treatment did not significantly affect hAT-MSC viability by itself. Changes in cell morphology were also observed, in terms of an increase in cell surface area and fractal dimension in hAT-MSCs treated with EMF and the combination of EMF and LLL. In conclusion, EMF and/or LLL treatment accelerated the proliferation of hAT-MSCs without compromising their viability, and therefore, they may be used in stem cell tissue engineering.

  2. Alterations in expression levels of deafness dystonia protein 1 affect mitochondrial morphology

    DEFF Research Database (Denmark)

    Engl, Gertraud; Florian, Stefan; Tranebjærg, Lisbeth

    2012-01-01

    -C66W was overexpressed. Live cell microscopy of primary fibroblasts derived from DDON patients and of DDP1 downregulated HeLa cells displayed alterations of mitochondrial morphology with notable extensions in the length of mitochondrial tubules, whereas overexpression of DDP1 induced the formation...

  3. Alterations of erythrocyte morphology and lipid composition by hyperbilirubinemia.

    Science.gov (United States)

    Brito, M A; Silva, R M; Matos, D C; da Silva, A T; Brites, D T

    1996-05-30

    Morphology and membrane lipid composition of erythrocytes from neonates (jaundiced and healthy) and adults (before and after incubation with bilirubin) were studied. The morphological index, expressing the relative proportions of the different stages of cell distortion, and the membrane cholesterol, phospholipids and cholesterol/phospholipids molar ratio, were determined. In jaundiced neonates a significant increase in the morphological index (P jaundiced neonates compared with healthy babies (P lipid bilayer with loss of phospholipids from the membrane.

  4. Thyroid status alters gill ionic metabolism and chloride cell morphology as evidenced by scanning electron microscopy in a teleost Anabas testudineus (Bloch): short and long term in vivo study.

    Science.gov (United States)

    Sreejith, P; Beyo, R S; Prasad, G; Sunny, F; Oommen, O V

    2007-12-01

    Gill is the main organ of osmotic regulation in teleosts and chloride cells are the sites of ion transport across gill epithelium. Thyroid hormones are implicated in the regulation of osmotic balance in teleosts also. Treatment with 6-propyl thiouracil (6-PTU) inhibited the membrane bound enzyme Na+K+ ATPase in the gill while triiodothyronine (T3) injection stimulated it in a short-term in vivo study in the teleost Anabas testudineus. Na+, K+ and Ca2+ ions were also decreased in the 6-PTU treated fish and the T3 treatment increased their concentrations in the gill lamellae. The gill morphology also changed according to the thyroid status in the long term study. 6-PTU treatment altered the typical serrated morphology of the gill lamellae, while the T3 treatment reversed it. T3 injection increased the density of pavement and chloride cells as evidenced by scanning electron microscopy. The results demonstrate that physiological status of the thyroid influences gill Na+ pump activity and chloride cell morphological changes. Further, the study suggests a regulatory role of T3 on gill ions (Na+, K+ and Ca2+), Na+K+ and Ca2+ ATPase activity and the different gill cell types in A. testudineus.

  5. Fourier and fractal analysis of cytoskeletal morphology altered by xenobiotics

    Science.gov (United States)

    Crosta, Giovanni F.; Urani, Chiara; Fumarola, Laura

    2003-06-01

    The cytoskeletal microtubules (MTs) of rat hepatocytes treated by Benomyl (a fungicide) were imaged by means of immunofluorescent staining and optical microscopy. Images of untreated, or control (C), and of treated (T) cells were processed both by fractal and Fourier analysis. The C-MTs had contour fractal dimensions higher (>= 1.4) than those of T-MTs (enhancement," which corresponds to the application of a (pseudo)differential operator to the image. Enhanced spectra were interpolated by a polynomial, q, of degree 39, from which morphological descriptors were extracted. Descriptors from Fourier analysis made image classification possible. Principal components analysis was applied to the descriptors. In the plane of the first two components, {z1,z2}, the minimum spanning tree was drawn. Images of T-MTs formed a single cluster, whereas images of C-MTs formed two clusters, C1 and C2. The component z1 correlated positively with the local maxima and minima of q, which reflected differences between T and C in power spectral density in the 1 to 2000 cycles/mm spatial frequency band. The difference between C1 and C2 was ascribed to anisotropy of the MT bundles. The implemented image classifier is capable of telling differences in cytoskeletal organization. As a consequence the method can become a tool for testing cytotoxicity and for extracting quantitative information about intracellular alterations of various origin.

  6. The role of GRASPs in morphological alterations of Golgi apparatus: mechanisms and effects.

    Science.gov (United States)

    Ji, Guang; Ji, Hui; Mo, Xiaoye; Li, Ting; Yu, Yaduo; Hu, Zhiping

    2013-01-01

    The Golgi apparatus (GA) is a pivotal organelle in cell metabolism, functioning not only in the processing and transportation of cargoes but also in ion homeostasis, cell apoptosis, and stress sensing. We are interested in the intricate role of GA and the recently present novel concept of 'GA stress'. GA shows various morphological alterations in many neurodegenerative diseases and cell apoptosis induced by biochemical reagents, mechanisms in which oxidative stress is strongly involved. In turn, the structural changes and morphological alterations of the GA could also transduce stress signals. Therefore, besides the biochemical changes, more attention should be paid to the morphological alterations of the GA itself during pathological processes and diseases. The Golgi reassembly and stacking proteins (GRASPs) have been identified as important components acting in the transformation of Golgi structure, and they may thus affect the Golgi functions and cell behavior. In this review, we will discuss the intricate role of the GRASPs in remodeling the GA morphology and focus on their mechanisms and effects in the processes of Golgi stacking, mitosis, cell apoptosis, and cargo secretion. We would also like to provide a further prospective of their potential biological values in neurodegenerative diseases.

  7. Environmental properties set cell mechanics and morphology

    Science.gov (United States)

    Janmey, Paul

    2012-02-01

    Many cell types are sensitive to mechanical signals that are produced either by application of exogenous force to their surfaces, or by the resistance that their surroundings place on forces generated by the cells themselves. Cell morphology, motility, proliferation, and protein expression all change in response to substrate stiffness. Changing the elastic moduli of substrates alters the formation of focal adhesions, the assembly of actin filaments into bundles, and the stability of intermediate filaments. The range of stiffness over which different primary cell types respond can vary over a wide range and generally reflects the elastic modulus of the tissue from which these cells were isolated. Mechanosensing depends on the type of adhesion receptor by which the cell binds, and therefore on both the molecular composition of the extracellular matrix and the nature of its link to the cytoskeleton. Many cell types can alter their own stiffness to match that of the substrate to which they adhere. The maximal elastic modulus that cells such as fibroblasts can attain is similar to that of crosslinked actin networks at the concentrations in the cell cortex. The precise mechanisms of mechanosensing are not well defined, but they presumably require an elastic connection between cell and substrate, mediated by transmembrane proteins. The viscoelastic properties of different extracellular matrices and cytoskeletal elements strongly influence the response of cells to mechanical signals, and the unusual non-linear elasticity of many biopolymer gels, characterized by strain-stiffening, leads to novel mechanisms by which cells alter their stiffness by engagement of molecular motors that produce internal stresses. Cell cortical elasticity is dominated by cytoskeletal polymer networks and can be modulated by internal tension. Simultaneous control of substrate stiffness and adhesive patterns suggests that stiffness sensing occurs on a length scale much larger than single molecular

  8. Gastrointestinal morphological alterations in obese rats kept under hypercaloric diets

    Directory of Open Access Journals (Sweden)

    Nascimento RC

    2013-06-01

    Full Text Available Raphael Castiglioni Nascimento, Haryanne Mabel, Bruna Nunes Queiroz, Roberta ParesqueDepartamento de Ciências da Saúde, Centro Universitário Norte do Espírito Santo, São Mateus, ES, BrazilAbstract: Hypercaloric diets have been successfully used as experimental models of obesity. This work compared morphological characteristics of inferior gastrointestinal organs. The experiment lasted 10 weeks, during which the rats' food consumption, body weight, distance between the mouth and neck, distance between mouth and neck, distance between neck and tail, and abdominal circumference were evaluated weekly. After the sacrifice of the rats, 20 variables referring to inferior gastrointestinal morphology were assessed. The results comprised descriptive statistics of the data, analysis of main components, linear correlation, and t-tests. Significant differences were found between the two groups for the variables of abdominal circumference, retroperitoneal fat, ratio between retroperitoneal fat/animal weight, stomach weight, ratio between animal weight/intestine weight and mesentery/animal weight, length of small intestine, length of large intestine, and lateral line of the cecum. The data allow us to state that a hypercaloric diet can be responsible an increase in fat in the abdominal cavity as well as gastrointestinal morphological alterations, principally in stomach development. Keywords: gastrointestinal morphology; hypercaloric diet; diet-induced obesity

  9. Small Changes in Environmental Parameters Lead to Alterations in Antibiotic Resistance, Cell Morphology and Membrane Fatty Acid Composition in Staphylococcus lugdunensis

    OpenAIRE

    Crompton, Marcus J; R Hugh Dunstan; Macdonald, Margaret M.; Johan Gottfries; Christof von Eiff; Timothy K Roberts

    2014-01-01

    Staphylococcus lugdunensis has emerged as a major cause of community-acquired and nosocomial infections. This bacterium can rapidly adapt to changing environmental conditions to survive and capitalize on opportunities to colonize and infect through wound surfaces. It was proposed that S. lugdunensis would have underlying alterations in metabolic homeostasis to provide the necessary levels of adaptive protection. The aims of this project were to examine the impacts of subtle variations in envi...

  10. Does improved hearing result in altered inner ear morphology?

    Directory of Open Access Journals (Sweden)

    Tanja Schulz-Mirbach

    2015-10-01

    Full Text Available The sense of hearing plays an important role for fishes to obtain information about their (acoustic environment (e.g. Popper 2011, Fay 2011. In numerous taxa, ancillary auditory structures like swimbladder modifications evolved, leading to an improved audition (Braun and Grande 2008. Despite a profound knowledge of inner ear diversity and ancillary auditory structures (for an overview see Schulz-Mirbach and Ladich 2015, Ladich 2015, the relationship between the morphology of these structures and hearing abilities remains to be elucidated. We tested the hypothesis that swimbladder modifications coincide with differences in inner ear morphology, using cichlids as a model because they show considerable intrafamilial diversity in swimbladder morphology and hearing capabilities (Schulz-Mirbach et al. 2012, 2014. We compared Steatocranus tinanti (vestigial swimbladder, Hemichromis guttatus (large swimbladder without extensions, and Etroplus maculatus (intimate connection between swimbladder and inner ears by applying immunostaining together with confocal imaging for the investigation of sensory epithelia, and high-resolution, contrast enhanced microCT imaging for characterizing inner ears in 3D. Compared to S. tinanti and H. guttatus, inner ears of E. maculatus showed an enlargement of all three maculae, and a particularly large lacinia of the macula utriculi. While our analysis of orientation patterns of ciliary bundles on the three macula types using artificially flattened maculae uncovered rather similar orientation patterns of ciliary bundles, interspecific differences became apparent when illustrating the orientation patterns on the 3D models of the maculae: differences in the shape and curvature of the lacinia of the macula utriculi, and the anterior arm of the macula lagenae resulted in an altered arrangement of ciliary bundles. Our results imply that improved hearing in E. maculatus is associated not only with swimbladder modifications but

  11. Morphological and intracellular alterations induced by Serratia marcescens cytotoxin.

    Science.gov (United States)

    Carbonell, Gleize Villela; Falcón, Rosabel; Yamada, Aureo T; da Fonseca, Benedito Antonio Lopes; Yano, Tomomasa

    2004-01-01

    In the present work, in vitro assays were used to investigate the toxicity of Serratia marcescens cytotoxin in cultured Chinese hamster ovary (CHO) cells. The time necessary to detect cellular alterations such as the onset of apoptosis, the perturbation of mitochondrial function, and cytoskeletal changes was assessed. The internalization of the cytotoxin by CHO cells was also examined. Within 10-15 min of exposure to cytotoxin, CHO cells became round, the nucleus shrank, the chromatin became more compact, and cytoplasmic blebs appeared on the cell surface. TUNEL (TdT-mediated dUTP nick end labeling) and propidium iodide staining identified some nuclei with fragmented DNA, and electrophoresis of CHO cell DNA obtained after 30-min exposure to S. marcescens toxin showed a pattern of DNA fragments typically associated with apoptosis. The cells also lost their characteristic actin organization within 10 min of exposure to cytotoxin. Lactate dehydrogenase leakage was detected after 20-min exposure to the cytotoxin and increased with time thereafter. Concomitantly, there was a time-dependent reduction in mitochondrial activity. Fluorescein-labeled S. marcescens cytotoxin was detected only on the surface of CHO cells, even after 30-min exposure to the toxin. These results show that there was no internalization of the toxin by CHO cells, and that, once bound to the cell surface, the toxin was able to induce changes in intracellular metabolism and to trigger cell death by apoptosis.

  12. Pneumoperitoneum induces morphological alterations in the rat testicle

    Directory of Open Access Journals (Sweden)

    Carina Teixeira Ribeiro

    2013-06-01

    Full Text Available PURPOSE:To investigate the seminiferous tubule histological morphology after an 8 mmHg pneumoperitoneum in the rat model. METHODS: Fourteen rats were divided into two groups: a Sham group submitted to anesthesia and a pneumoperitoneum (Pp group submitted to abdominal insufflation at 8 mmHg during three hours, followed by desuflation. All rats were killed after six weeks, testicles were collected and evaluated for the tubule diameter, germinative epithelium height and Johnsen´s score. Means were compared by using the Student's-t-test. RESULTS:The seminiferous tubule diameter was diminished by 11.3% in the group submitted to pneumoperitoneum (p<0.05. No significant difference was found among the groups when analyzing the epithelium height and Johnsen´s score. CONCLUSION:In the rat model, the seminiferous tubules present structural alterations when subjected to pneumoperitoneum of 8 mmHg during three hours.

  13. Alteration of Paramecium candatum germinal nucleus morphology after UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, S.I. (Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.)

    1982-09-01

    A study was made on morphologic changes of micronucleus (Mi) after whole-body ultraviolet (UV) irradiation of paramecia as well as after local irradiation of this nucleus or the area of macronucleus (Ma). The whole-body irradiation of its Ma part leads to generative nucleus growth in sizes and chromatin structure change, which is expressed in occurence of large chromatin bodies. Aftereffects of local action on Mi for viable descendants are expressed in nucleus size transformation (usually in reduction), gaining ''comet-shaped'' form and probably in reduction of dna amount. Irradiation of Ma and total effect on cell cause Mi changes of reversible character. All morphologic changes of Mi after local ultraviolet irradiation are conserved in descendants and are not photoreactivated. Possible reasons for this phenomenon are discussed. The results obtained make it possible to speak about different mechanisms of action on Mi in the case of local and whole-body UV irradiation of cell. The effect of irradiated Ma on generative nucleus, but not direct damage of this nucleus is the reason for Mi morphologic reconstruction after whole-body action on paramecium.

  14. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  15. Oxidative stress alters physiological and morphological neuronal properties.

    Science.gov (United States)

    Hasan, Sonia M; Joe, Mary; Alshuaib, Waleed B

    2007-07-01

    We investigated the effects of H(2)O(2)-induced oxidative stress on the delayed-rectifier current (IK(DR)), neuronal physiological and morphological properties. Measurements were obtained from hippocampal CA1 neurons in control solution and from the same neurons after exposure to oxidative stress (short- and long-term H(2)O(2) external applications at 0.1, 1, and 10 mM). With short-term (6 min) H(2)O(2) (1 mM) treatment, IK(DR) measured in the H(2)O(2)-containing solution (778 +/- 23 pA, n=20), was smaller than that measured in the control Ca(2+)-free Hepes solution (1,112 +/- 38 pA, n=20). Coenzyme Q(10) (0.1 mM) pretreatment prevented the H(2)O(2)-induced inhibition of IK(DR). With long-term (40, 80 min) H(2)O(2) (0.1, 10 mM) treatment, the neuron lost its distinctive shape (rounded up) and the neurite almost disappeared. These results suggest that oxidative stress, which inhibits IK(DR), can alter neural activity. The morphological changes caused by H(2)O(2) support the idea that oxidative stress causes intracellular damage and compromises neural function.

  16. Non-classical processes in surface hemostasis: mechanisms for the poly-N-acetyl glucosamine-induced alteration of red blood cell morphology and surface prothrombogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Thomas H; Smith, Carr J; Scull, Christopher M; Merricks, Elizabeth P; Nichols, Timothy C [Francis Owen Blood Research Laboratory, Department of Pathology and Laboratory Medicine, 125 University Lake Dr., CB 3114, University of North Carolina at Chapel Hill, NC (United States); Valeri, C Robert [Naval Blood Research Laboratory, Inc., Boston, MA (United States); Demcheva, Marina; Vournakis, John N [Marine Polymer Technologies, Inc., Danvers, MA (United States)

    2008-03-01

    It is well established that platelets and the intrinsic plasma coagulation pathway can be activated when blood contacts artificial surfaces. Experiments were performed to assess the effect of hemostatic poly-N-acetyl glucosamine (pGlcNAc) nanofibers on red blood cells. The pGlcNAc nanofibers, isolated from a marine diatom, interact with red blood cells (RBCs) to produce stomatocytes. The stomatocytes could be converted to echinocytes by treatment with echinocytic reagents, as measured by electron microscopy. Electrophoretic and Western blot analysis of RBC surface proteins demonstrated that pGlcNAc fibers were bound to band 3 of the RBC. An important and unique result of the interaction of RBCs with pGlcNAc fibers was the activation of the intrinsic coagulation cascade. This prothrombotic effect was associated with the presentation of phosphatidylserine on the outer layer of the surface membrane of nanofiber bound RBCs. The results demonstrate that RBCs can play a direct and important role in achieving surface hemostasis by accelerating the generation of thrombin, and add to the growing body of evidence that RBCs can strongly interact with hemostatic systems.

  17. Altered hippocampal morphology in unmedicated patients with major depressive illness

    Directory of Open Access Journals (Sweden)

    Carrie E Bearden

    2009-11-01

    Full Text Available Despite converging evidence that major depressive illness is associated with both memory impairment and hippocampal pathology, findings vary widely across studies and it is not known whether these changes are regionally specific. In the present study we acquired brain MRIs (magnetic resonance images from 31 unmedicated patients with MDD (major depressive disorder; mean age 39.2±11.9 years; 77% female and 31 demographically comparable controls. Three-dimensional parametric mesh models were created to examine localized alterations of hippocampal morphology. Although global volumes did not differ between groups, statistical mapping results revealed that in MDD patients, more severe depressive symptoms were associated with greater left hippocampal atrophy, particularly in CA1 (cornu ammonis 1 subfields and the subiculum. However, previous treatment with atypical antipsychotics was associated with a trend towards larger left hippocampal volume. Our findings suggest effects of illness severity on hippocampal size, as well as a possible effect of past history of atypical antipsychotic treatment, which may reflect prolonged neuroprotective effects. This possibility awaits confirmation in longitudinal studies.

  18. Recent Advances in Morphological Cell Image Analysis

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed.

  19. Altered islet morphology but normal islet secretory function in vitro in a mouse model with microvascular alterations in the pancreas.

    Directory of Open Access Journals (Sweden)

    Elena Kostromina

    Full Text Available BACKGROUND: Our previous studies have shown that signal transducer and activator of transcription 3 (STAT3 signaling is important for the development of pancreatic microvasculature via its regulation of vascular endothelial growth factor-A (VEGF-A. Pancreas-specific STAT3-KO mice exhibit glucose intolerance and impaired insulin secretion in vivo, along with microvascular alterations in the pancreas. However, the specific role of STAT3 signaling in the regulation of pancreatic islet development and function is not entirely understood. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of STAT3 signaling in the formation and maintenance of pancreatic islets, we studied pancreas-specific STAT3-KO mice. Histological analysis showed that STAT3 deficiency affected pancreatic islet morphology. We found an increased proportion of small-sized islets and a reduced fraction of medium-sized islets, indicating abnormal islet development in STAT3-KO mice. Interestingly, the islet area relative to the whole pancreas area in transgenic and control mice was not significantly different. Immunohistochemical analysis on pancreatic cryosections revealed abnormalities in islet architecture in STAT3-KO mice: the pattern of peripheral distribution of glucagon-positive α-cells was altered. At the same time, islets belonging to different size categories isolated from STAT3-KO mice exhibited normal glucose-stimulated insulin secretion in perifusion experiments in vitro when compared to control mice. CONCLUSIONS: Our data demonstrate that STAT3 signaling in the pancreas is required for normal islet formation and/or maintenance. Altered islet size distribution in the KO mice does not result in an impaired islet secretory function in vitro. Therefore, our current study supports that the glucose intolerance and in vivo insulin secretion defect in pancreas-specific STAT3-KO mice is due to altered microvasculature in the pancreas, and not intrinsic beta-cell function.

  20. Morphological alterations in mouse testis by a single dose of malathion.

    Science.gov (United States)

    Contreras, H R; Bustos-Obregón, E

    1999-08-01

    Malathion((R)) is a widely used organophosphorate agropesticide. In spite of its low toxicity for mammalian cells, it provokes cytogenetic and genotoxic damage both in vivo and in vitro. The effect of Malathion was analyzed in CF-1 young adult male mice. Commercial Malathion (96.6% purity) was injected intraperitoneally in a single dose (250 mg/kg body weight corresponding to 1/12 LD50). Four, 14, 18, and 26 days after injection animals were sacrificed to study epididymal sperm (count and morphology), testicular histology (percentage of depleted seminiferous tubules), and ultrastructural alterations in the germinal epithelium. The effect of Malathion on different germinal cell populations was studied. Teratozoospermia was induced by Malathion at all times studied. Spermatozoa midpiece and flagella were the most affected and at day 18 we observed less alterations of the head. The sperm count at different time intervals was significatively increased compared to controls and there was a parallel increase in depletion of the seminiferous tubules. In conclusion, all germinal cell populations studied were affected by Malathion. Malathion has a teratogenic effect on mice spermatid differentiation, which compromises mostly the flagella, perhaps due to an alkylating effect that disturbs the normal assembling of tail structural protein components. Apparently, the pachytene spermatocyte stage may be relatively more resistant to the pesticide. The Sertoli cells were affected by the insecticide and their damage at an ultrastructural level is highly significant. Cytoplasmatic vacuolization probably revealed metabolic alteration of these cells.

  1. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology.

    Science.gov (United States)

    Tasseva, Guergana; Bai, Helin Daniel; Davidescu, Magdalena; Haromy, Alois; Michelakis, Evangelos; Vance, Jean E

    2013-02-08

    Mitochondrial dysfunction is implicated in neurodegenerative, cardiovascular, and metabolic disorders, but the role of phospholipids, particularly the nonbilayer-forming lipid phosphatidylethanolamine (PE), in mitochondrial function is poorly understood. Elimination of mitochondrial PE (mtPE) synthesis via phosphatidylserine decarboxylase in mice profoundly alters mitochondrial morphology and is embryonic lethal (Steenbergen, R., Nanowski, T. S., Beigneux, A., Kulinski, A., Young, S. G., and Vance, J. E. (2005) J. Biol. Chem. 280, 40032-40040). We now report that moderate mitochondrial morphology and function and impairs cell growth. Acute reduction of mtPE by RNAi silencing of phosphatidylserine decarboxylase and chronic reduction of mtPE in PSB-2 cells that have only 5% of normal phosphatidylserine synthesis decreased respiratory capacity, ATP production, and activities of electron transport chain complexes (C) I and CIV but not CV. Blue native-PAGE analysis revealed defects in the organization of CI and CIV into supercomplexes in PE-deficient mitochondria, correlated with reduced amounts of CI and CIV proteins. Thus, mtPE deficiency impairs formation and/or membrane integration of respiratory supercomplexes. Despite normal or increased levels of mitochondrial fusion proteins in mtPE-deficient cells, and no reduction in mitochondrial membrane potential, mitochondria were extensively fragmented, and mitochondrial ultrastructure was grossly aberrant. In general, chronic reduction of mtPE caused more pronounced mitochondrial defects than did acute mtPE depletion. The functional and morphological changes in PSB-2 cells were largely reversed by normalization of mtPE content by supplementation with lyso-PE, a mtPE precursor. These studies demonstrate that even a modest reduction of mtPE in mammalian cells profoundly alters mitochondrial functions.

  2. Mitochondrial dynamics and morphology in beta-cells.

    Science.gov (United States)

    Stiles, Linsey; Shirihai, Orian S

    2012-12-01

    Mitochondrial dynamics contribute to the regulation of mitochondrial shape as well as various mitochondrial functions and quality control. This is of particular interest in the beta-cell because of the key role mitochondria play in the regulation of beta-cell insulin secretion function. Moreover, mitochondrial dysfunction has been suggested to contribute to the development of Type 2 Diabetes. Genetic tools that shift the balance of mitochondrial fusion and fission result in alterations to beta-cell function and viability. Additionally, conditions that induce beta-cell dysfunction, such as exposure to a high nutrient environment, disrupt mitochondrial morphology and dynamics. While it has been shown that mitochondria display a fragmented morphology in islets of diabetic patients and animal models, the mechanism behind this is currently unknown. Here, we review the current literature on mitochondrial morphology and dynamics in the beta-cell as well as some of the unanswered question in this field.

  3. Morphological alterations in small intestine of rats with myenteric plexus denervation.

    Science.gov (United States)

    Deniz, M; Kilinç, M; Hatipoğlu, E S

    2004-01-01

    We aimed to investigate the effect of myenteric denervation by benzalkonium chloride (BAC) on small intestine morphology in the rat, and whether segmental myenteric denervation alters morphology elsewhere in the small intestine. Forty male Sprague-Dawley rats were equally divided into 4 groups: control (0.9% NaCl); denervation (0.062% BAC); chemical inflammation (5% acetic acid), and intraluminal stasis produced by partial obstruction. 28 days after operation tissue samples were taken from the treated segment, 10 cm distal to the treated segment, and 20 cm proximal to the treated segment. Morphological changes and the number of ganglion cells were examined under the light microscope. BAC application reduced the number of myenteric neurons by 85% in the treated segment. Denervation increased villus height and crypt depth in the treated and proximal segments. But changes in muscle thickness were seen throughout the intestine. As a result, although myenteric plexus denervation caused mucosa morphology in the treated and proximal segments, it caused smooth muscle changes throughout the small intestine.

  4. Morphological and functional alterations in adult boar epididymis: Effects of prenatal and postnatal administration of flutamide

    Directory of Open Access Journals (Sweden)

    Chojnacka Katarzyna

    2011-02-01

    Full Text Available Abstract Background The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43 and androgen receptor (AR expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis. Methods First two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80 and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90. Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay. Results Histological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p p p p Conclusions The region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43

  5. Morphological Alterations in Gastrocnemius and Soleus Muscles in Male and Female Mice in a Fibromyalgia Model.

    Directory of Open Access Journals (Sweden)

    Gabriel Alejandro Bonaterra

    Full Text Available Fibromyalgia (FM is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS, we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice.Male and female ICS mice were kept under alternating temperature (4 °C/room temperature [22 °C]; mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen-cooled isopentane or fixed for electron microscopy.In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA, which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%-, MuRF+ (14.7%-, Fbxo32+ (17.8%-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm(2 of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice.The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or delayed. The sex-specificity of

  6. Morphological Alterations in Gastrocnemius and Soleus Muscles in Male and Female Mice in a Fibromyalgia Model

    Science.gov (United States)

    Oezel, Lisa; Schwarzbach, Hans; Ocker, Matthias; Thieme, Kati; Di Fazio, Pietro; Kinscherf, Ralf

    2016-01-01

    Background Fibromyalgia (FM) is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS), we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice. Methods Male and female ICS mice were kept under alternating temperature (4°C/room temperature [22°C]); mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen–cooled isopentane or fixed for electron microscopy. Results In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA), which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%)-, MuRF+ (14.7%)-, Fbxo32+ (17.8%)-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm2) of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice. Conclusion The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or

  7. Bariatric surgery, gut morphology and enteroendocrine cells

    DEFF Research Database (Denmark)

    Hansen, Carl Frederik

    Considering that obesity and diabetes are some of the most important health problems in the world today, a lot studies have investigated the powerful effects of bariatric surgery on weight loss and diabetes remission during the past decade. An increased release of gut hormones is believed...... 40 hormones. In this PhD study, gut morphology and the population of endocrine cells have been examined in three rodent animal models using stereological techniques. First, in a rodent model of type-2 diabetes (T2DM), the Zucker diabetic fatty rat (ZDF), the population of endocrine L......-cells and the gut morphology were quantified. The number of Lcells was 4.8 million in the normal rat and the L-cells were found to double in number in the diabetic ZDF rat model. Second, the L-cell population, gut morphology and endocrine cell gene expression were examined in a rodent model of Roux-en-Y gastric...

  8. Morphology of polymer solar cells

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.

    of making the transition from the laboratory into the commercial market. One of the biggest challenges in this process is upscaling the production. The object of this thesis is to investigate the morphology of OPV devices produced from pilot scale roll to roll (R2R) coaters. OPV devices still struggle...... domain size to be studied, in the nanometer regime, and the poor contrast due to the similarity of the organic materials. The physical impact of the ink and the process of coating it, was investigated by electron microscopy, X-ray scattering, hard X-ray ptychography and soft X-ray transmission imaging......Organic electronic devices are an intense area of research. While some devices, such as organic light emitting diodes (OLED) have matured and are found in a vast amount of consumer electronic devices, their energy producing counterpart, organic photovoltaics (OPV), are still in the process...

  9. Asyndromic hypodontia associated with tooth morphology alteration: A rare case report

    Directory of Open Access Journals (Sweden)

    Abhinay Agarwal

    2013-01-01

    Full Text Available Clinicians frequently encounter hypodontia in their practice. It can be associated with any syndrome or more commonly it is asyndromic. This asyndromic form is commonly familial and can be followed in heredity of the patient. The patient referred in this report presented with a rare anomaly of hypodontia with altered morphology where the patient had all the teeth single rooted and single canalled. Studies have indicated several genes that affect the tooth morphology and number. A genetic correlation of hypodontia with altered permanent teeth morphology may be explored further in studies.

  10. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    Science.gov (United States)

    Sarowar, Tasnuva

    2016-01-01

    Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.

  11. Different methods to alter surface morphology of high aspect ratio structures

    Science.gov (United States)

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  12. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.;

    2011-01-01

    the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death......Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about......, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during...

  13. [Morphological alterations induced by preservatives in eye drops].

    Science.gov (United States)

    Huber-van der Velden, K K; Thieme, H; Eichhorn, M

    2012-11-01

    A large number of experimental and clinical investigations carried out recently have confirmed that the chronic application of eye drops induces significant cytological and histological impairment in ocular tissues. It is also generally accepted that preservatives are the components responsible for the observed changes. The most commonly used preservative in ophthalmology is benzalkonium chloride (BAC), which has a relatively high toxicity. Possible consequences of preservatives on the eye are chronic inflammation and subsequent fibrosis of the subconjunctiva and cell loss and structural changes in the conjunctival epithelium as well as in the epithelial and endothelial layers of the cornea. Frequently, dry eye symptoms occur or deteriorate during therapy. During the last few years new preservatives have been developed which seem to have fewer side effects; however, relatively little data are available with regard to these new substances. To minimize impairments of the eye, preservative-free formulations should be considered for therapy.

  14. Organic Based Solar Cells with Morphology Control

    OpenAIRE

    Andersen, Thomas Rieks; Bundgaard, Eva; Jørgensen, Mikkel

    2013-01-01

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need to be addressed. Among these are a more direct transfer of new materials tested on a laboratory scale to large scale production than offered by spincoating, a method offering direct control of the morpholog...

  15. Morphological and biochemical analysis of the secretory pathway in melanoma cells with distinct metastatic potential

    NARCIS (Netherlands)

    Ayala, [No Value; Babia, T; Baldassarre, M; Pompeo, A; Fabra, A; Kok, JW; Luini, A; Buccione, R; Egea, G

    1999-01-01

    In this report, we have investigated whether alterations of the morphological and functional aspects of the biosecretory membrane system are associated with the metastatic potential of tumor cells. To this end, we have analyzed the morphology of the Golgi complex, the cytoskeleton organization and m

  16. Morphological and Functional Alterations of Small Intestine in Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Natalya B Gubergrits

    2012-09-01

    Full Text Available Context The small intestine in chronic pancreatitis has not been investigated yet thoroughly. It would be important to understand fat metabolism in the course of this disease and could be explained if the small intestine has some pathological conditions and, due to this reason, pancreatic enzyme substitution does not work in all patients. Objective To investigate the pathophysiology of small intestine in chronic pancreatitis and to show the reason why in some cases pancreatic enzyme substitution does not work properly. Patients In the process of the study 33 chronic pancreatitis patients have been examined. Controls The control group includes 30 subjects without chronic pancreatitis similar for age, sex and alcohol consumption to the patients with chronic pancreatitis patients. Investigations Aspiration biopsy of jejunum mucosa followed by histological examination and investigation of intestinal enzymes by aspiration has been performed. Main outcome measures Metabolism at membranic level has been studied by enzymatic activity of amylase and lipase in the small intestine. Production of enzymes (monoglyceride lipase, lactase, saccharase, maltase, glycyl-lleucine dipeptidase promoting metabolism in enterocytes has been estimated as to their activity in homogenates of jejunum mucosasamples. Participation of mucosa in intestinal digestion has been assessed by alkaline phosphatase activity in a secretory chyme from proximal portion of jejunum. Absorptive capacity of jejunum was evaluated by D-xylose test results. DNA, lysozyme, immunoglobulin contents of chyme have also been calculated and bacteriological study of chyme has been also performed. Results Secondary enteritis, accompanied by moderate dystrophic changes of mucous membrane, thinning of limbus, and decrease of Paneth cell mitotic index, was found to occur in chronic pancreatitis patients. Enteritis is followed by changes in enzymatic processes in the sphere of membrane and intestinal

  17. Plastic solar cell interface and morphological characterization

    Science.gov (United States)

    Guralnick, Brett W.

    Plastic solar cell research has become an intense field of study considering these devices may be lightweight, flexible and reduce the cost of photovoltaic devices. The active layer of plastic solar cells are a combination of two organic components which blend to form an internal morphology. Due to the poor electrical transport properties of the organic components it is important to understand how the morphology forms in order to engineer these materials for increased efficiency. The focus of this thesis is a detailed study of the interfaces between the plastic solar cell layers and the morphology of the active layer. The system studied in detail is a blend of P3HT and PCBM that acts as the primary absorber, which is the electron donor, and the electron acceptor, respectively. The key morphological findings are, while thermal annealing increases the crystallinity parallel to the substrate, the morphology is largely unchanged following annealing. The deposition and mixing conditions of the bulk heterojunction from solution control the starting morphology. The spin coating speed, concentration, solvent type, and solution mixing time are all critical variables in the formation of the bulk heterojunction. In addition, including the terminals or inorganic layers in the analysis is critical because the inorganic surface properties influence the morphology. Charge transfer in the device occurs at the material interfaces, and a highly resistive transparent conducting oxide layer limits device performance. It was discovered that the electron blocking layer between the transparent conducting oxide and the bulk heterojunction is compromised following annealing. The electron acceptor material can diffuse into this layer, a location which does not benefit device performance. Additionally, the back contact deposition is important since the organic material can be damaged by the thermal evaporation of Aluminum, typically used for plastic solar cells. Depositing a thin thermal and

  18. Plant cells in vitro under altered gravity.

    Science.gov (United States)

    Klymchuk, D O

    1998-07-01

    Establishing the role of gravity in plant requires information about how gravity regulates the metabolism of individual cells. Plant cells and tissues in vitro are valuable models for such purpose. Disrupted intercellular relations in such models have allowed to elucidate both the gravity role in non-specialised to gravity plant cells and the correlative relation role of an intact plant organism. The data obtained from non-numerous space and clinostat experiments with plant cells in vitro have demonstrated that their metabolism is sensitive to g-environment. The most experiments have shown a decrease in the biomass production and cell proliferation of spaceflight samples compared with ground controls, although there is study reporting of increased biomass production in an anise suspension culture and D. carota crown gall tissue culture. At the same time, results of experiments with single carrot cells and tomato callus culture demonstrated similarities in differentiation process in microgravity and in ground controls. Noted ultrastructural arrangement in cells, especially mitochondria and plastids, have been related to altered energy load and functions of organelles in microgravity, as well as changes in the lipid peroxidation and the content of malonic dyaldehyde in a haplopappus tissue culture under altered gravity supposed with modification of membrane structural-functional state. This article focuses on growth aspects of the cultured cells in microgravity and under clinostat conditions and considers those aspects that require further analysis.

  19. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology.

    Science.gov (United States)

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi

    2016-02-29

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.

  20. Changes in cell morphology of Listeria monocytogenesnes and Shewanella putrefaciens resulting from the action of protamine

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Gill, T.; Gram, Lone

    1996-01-01

    Protamine, which is an antibacterial basic peptide, was shown to alter the cell morphology of Listeria monocytogenes and Shewanella putrefaciens. Atomic force microscopy revealed that protamine smoothed the surface of cells, formed holes in the cell envelope, and caused fusion of S. putrefaciens...

  1. Cryptococcal cell morphology affects host cell interactions and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Laura H Okagaki

    Full Text Available Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.

  2. Alterations induced in Escherichia Coli cells by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da [Federal University of Technology of Parana (CPGEI/UTFPR), Curitiba, PR (Brazil)]. E-mails: jaquekap@yahoo.com.br; schelin@cpgei.cefetpr.br; sergei@utfpr.edu.br; Jesus, E.F.O. de; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: ricardo@lin.ufrj.br; edgar@lin.ufrj.br; Carlin, N.; Toledo, E.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica]. E-mail: nelson.carlin@dfn.if.usp.br

    2007-07-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ({sup 60}Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  3. Repeated dose oral toxicity of inorganic mercury in wistar rats: biochemical and morphological alterations

    Directory of Open Access Journals (Sweden)

    M. D. Jegoda

    2013-06-01

    Full Text Available Aim: The study was conducted to find out the possible toxic effect of mercuric chloride (HgCl2 at the histological, biochemical, and haematological levels in the wistar rats for 28 days. Materials and Methods: The biochemical and hematological alteration were estimated in four groups of rat (each group contain ten animals, which were treated with 0 (control, 2, 4, and 8 mg/kg body weight of HgCl2 through oral gavage. At the end of study all rats were sacrificed and subjected for histopathology. Result: A significantly (P < 0.05 higher level of serum alanine amino transferase (ALT, gamma Glutamyle Transferase, and creatinine were recorded in treatment groups, while the level of alkaline phosphtase (ALP was significantly decreased as compared to the control group. The toxic effect on hematoclogical parameter was characterized by significant decrease in hemoglobin, packed cell volume, total erythrocytes count, and total leukocyte count. Gross morphological changes include congestion, severe haemorrhage, necrosis, degenerative changes in kidneys, depletion of lymphocyte in spleen, decrease in concentration of mature spermatocyte, and edema in testis. It was notable that kidney was the most affected organ. Conclusion: Mercuric chloride (HgCl caused dose-dependent toxic effects on blood parameters and kidney. [Vet World 2013; 6(8.000: 563-567

  4. Metabolic alterations in renal cell carcinoma.

    Science.gov (United States)

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Brunelli, Matteo; Piva, Francesco; Modena, Alessandra; Bimbatti, Davide; Fantinel, Emanuela; Santini, Daniele; Cheng, Liang; Cascinu, Stefano; Montironi, Rodolfo; Tortora, Giampaolo

    2015-11-01

    Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). We analyzed the key metabolic abnormalities underlying RCC carcinogenesis, highlighting those altered pathways that may represent potential targets for the development of more effective therapeutic strategies.

  5. Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil

    Science.gov (United States)

    Rachitha, P.; Krupashree, K.; Jayashree, G. V.; Gopalan, Natarajan; Khanum, Farhath

    2017-01-01

    Objective: The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. Methods: The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. Result: In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. Conclusion: The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides

  6. Morphological alterations of the parotid gland of rats maintained on a liquid diet

    OpenAIRE

    Leal, Soraya Coelho; de TOLEDO, Orlando Ayrton; Ana Cristina Barreto BEZERRA

    2003-01-01

    The purpose of this study was to analyze the morphological alterations that occurred in the parotid glands of rats maintained on a liquid diet compared to a solid diet. Thirty-six animals were randomly divided into two groups. The control group received a solid diet, and the experimental group received a liquid diet. The animals were killed after 8, 15 and 30 days. The glands were prepared for inclusion in paraffin and analyzed with a light microscope. The results showed a statistica...

  7. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Krestin, G.P. [Dept. of Medical Radiology, University Hospital Zurich (Switzerland); Fischbach, R. [Dept. of Radiology, Univ. of Cologne (Germany); Vorreuther, R. [Dept. of Urology, Univ. of Cologne (Germany); Schulthess, G.K. von [Dept. of Medical Radiology, University Hospital Zurich (Switzerland)

    1993-06-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  8. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  9. Altered morphologies and functions of the olfactory bulb and hippocampus induced by miR-30c

    Directory of Open Access Journals (Sweden)

    Tingting eSun

    2016-05-01

    Full Text Available Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ and dentate gyrus (DG by stereotaxic injection with their respective up-and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for three months, we detected significant morphological changes in the olfactory bulb (OB and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain.

  10. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice.

    Science.gov (United States)

    Leduc-Gaudet, Jean-Philippe; Picard, Martin; St-Jean Pelletier, Félix; Sgarioto, Nicolas; Auger, Marie-Joëlle; Vallée, Joanne; Robitaille, Richard; St-Pierre, David H; Gouspillou, Gilles

    2015-07-20

    Skeletal muscle aging is associated with a progressive decline in muscle mass and strength, a process termed sarcopenia. Evidence suggests that accumulation of mitochondrial dysfunction plays a causal role in sarcopenia, which could be triggered by impaired mitophagy. Mitochondrial function, mitophagy and mitochondrial morphology are interconnected aspects of mitochondrial biology, and may coordinately be altered with aging. However, mitochondrial morphology has remained challenging to characterize in muscle, and whether sarcopenia is associated with abnormal mitochondrial morphology remains unknown. Therefore, we assessed the morphology of SubSarcolemmal (SS) and InterMyoFibrillar (IMF) mitochondria in skeletal muscle of young (8-12wk-old) and old (88-96wk-old) mice using a quantitative 2-dimensional transmission electron microscopy approach. We show that sarcopenia is associated with larger and less circular SS mitochondria. Likewise, aged IMF mitochondria were longer and more branched, suggesting increased fusion and/or decreased fission. Accordingly, although no difference in the content of proteins regulating mitochondrial dynamics (Mfn1, Mfn2, Opa1 and Drp1) was observed, a mitochondrial fusion index (Mfn2-to-Drp1 ratio) was significantly increased in aged muscles. Our results reveal that sarcopenia is associated with complex changes in mitochondrial morphology that could interfere with mitochondrial function and mitophagy, and thus contribute to aging-related accumulation of mitochondrial dysfunction and sarcopenia.

  11. Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ayanabha Chakraborti

    Full Text Available Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9% and 1 month (26.9% after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7% in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.

  12. Volume morphology of printable solar cells

    Directory of Open Access Journals (Sweden)

    Joachim Loos

    2010-10-01

    Full Text Available Printable polymer or hybrid solar cells (PSCs have the potential to become one of the leading technologies of the 21st century in conversion of sunlight to electrical energy. Because of their ease of processing from solution fast and low cost mass production of devices is possible in a roll-to-roll printing fashion. The performance of such printed devices, in turn, is determined to a large extent by the three-dimensional organization of the photoactive layer, i.e. layer where light is absorbed and converted into free electrical charges, and its contacts with the charge collecting electrodes. In this review I briefly introduce our current understanding of morphology-performance relationships in PSCs with specific focus on electron tomography as analytical tool providing volume information with nanometer resolution.

  13. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  14. Correlating the morphological and light scattering properties of biological cells

    Science.gov (United States)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness

  15. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury.

  16. Morphological alterations in salivary glands of Rhipicephalus sanguineus ticks (Acari: Ixodidae) exposed to neem seed oil with known azadirachtin concentration.

    Science.gov (United States)

    Remedio, R N; Nunes, P H; Anholeto, L A; Oliveira, P R; Sá, I C G; Camargo-Mathias, M I

    2016-04-01

    Neem (Azadirachta indica) has attracted the attention of researchers worldwide due to its repellent properties and recognized effects on the morphology and physiology of arthropods, including ticks. Therefore, this study aimed to demonstrate the effects of neem seed oil enriched with azadirachtin on salivary glands of Rhipicephalus sanguineus ticks, targets of great veterinary interest because of their ability to transmit pathogens to dogs. For this, R. sanguineus semi-engorged females were subjected to treatment with neem seed oil, with known azadirachtin concentrations (200, 400 and 600ppm). After dissection, salivary glands were collected and evaluated through morphological techniques in light microscopy, confocal scanning laser microscopy and transmission electron microscopy, so that the possible relation between neem action and further impairment in these ectoparasites feed performance could be established. Neem oil demonstrated a clear dose-dependent effect in the analyzed samples. The agranular (type I) and granular acini (types II and III) showed, particularly in individuals treated with the highest concentrations of the product, cells with irregular shape, intense cytoplasmic disorganization and vacuolation, dilation of rough endoplasmic reticulum lumen, besides alterations in mitochondrial intermembrane space. These morphological damages may indicate modifications in salivary glands physiology, demonstrating the harmful effects of compounds present in neem oil on ticks. These results reinforce the potential of neem as an alternative method for controlling R. sanguineus ticks, instead of synthetic acaricides.

  17. Alterations in cell surface area and deformability of individual human red blood cells in stored blood

    CERN Document Server

    Park, HyunJoo; Lee, SangYun; Kim, Kyoohyun; Sohn, Yong-Hak; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusion. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called CPDA-1. With 3-D quantitative phase imaging techniques, the optical measurements of the 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and their progressive alterations in stored RBCs. Our results show that the stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within 2 weeks which was accompanied with significant ...

  18. Morphological and Metabolic Alteration of Cerebellum in Patients with Post-Stroke Depression

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2016-11-01

    Full Text Available Background: To study morphological and metabolic changes of cerebellum with multimodality magnetic resonance imaging (MRI and proton magnetic resonance spectroscopy (1H-MRS, respective, to explore correlation between cerebellum alteration and severity of depression in patients with post-stroke depression. Methods: 60 subjects, including 40 stroke patients and 20 healthy volunteers were enrolled. Depression of stroke patients was tested by Self-rating Depression Scale (SDS and Hamilton Depression Scale (HAMD, based on which stroke-patients were grouped into post-stroke depression (PSD group and without post-stroke depression (CONT group. Results: Volume of cerebellum decreased in PSD group and CONT group compared with healthy volunteer (NORM group. White matter of cerebellum in PSD group and CONT group was disrupted; such disruption was significantly in PSD group. In addition, there was correlation between cerebellum volume and FA and HDRS scores (PConclusion: Morphologic and metabolic alterations are evident in patients with post-stroke depression, indicating possible involvement of cerebellum in post-stroke-depression occurrence.

  19. Morphological alteration of the Dráva as the result of human impact

    Directory of Open Access Journals (Sweden)

    Tímea Kiss

    2011-10-01

    Full Text Available The Croatian-Hungarian border section of the Dráva River has been undisturbed for almost a century, and it is characterised by unique fluvial morphology (braided pattern and islands supporting rich habitats and wildlife. However, during the last decades human impact became more and moreintensive. Between 1975 and 1989 three water reservoirs were built on the Croatian section of the river, just 16 km from the beginning of the border-section, altering the hydrology and the sediment characteristics of the river. On a local scale cut-offs, revetments and groynes were built. The aim of the study was to evaluate the effect of these human interventions. As the result of the alteration of the hydrology the channel pattern of the Dráva has been changing from braided to meandering, though on the upstream meandering part the territory and number of islands increased due to the drop of water stages. A cut-off and a groyne influenced only the morphology of a short section. As the result of the cut-off braided pattern became more pronounced, and the groyne caused intensive channel aggradation and gave way to lateral island development.

  20. Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

    Directory of Open Access Journals (Sweden)

    Stichtenoth Guido

    2006-06-01

    Full Text Available Abstract Background Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM and stereology allows the differentiation of active (large aggregates = LA and inactive (small aggregates = SA subtypes. Methods To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf, Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL, multilamellar vesicles (MV, unilamellar vesicles (UV] were determined stereologically. Results All preparations contained LBL and MV (corresponding to LA as well as UV (corresponding to SA. The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV ratio (resembling the SA/LA ratio increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. Conclusion Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation.

  1. Correlation of frequency of spermatozoa morphological alterations with sperm concentration in ejaculates of Polish Landrace boars

    Directory of Open Access Journals (Sweden)

    Kondracki S.

    2013-01-01

    Full Text Available The experiments were performed on 448 ejaculates obtained from 41 Polish Landrace boars. Ejaculates collected from each boar at one-month intervals for approximately 10 months were analysed. Sperm morphometric measurements were taken from each boar and assessment of semen morphology was done on the basis of examination under a microscope of preparations made from fresh ejaculates. The ejaculates were classified based on the criterion of sperm concentration and divided into three groups. An attempt was made in the present study to assess the correlation of ejaculate parameters, morphological sperm alteration incidence and morphometric sperm parameters with the sperm concentration in ejaculates of Polish Landrace boars. It should be stated that morphometric traits of spermatozoa are related to sperm concentration. The spermatozoa in concentrated ejaculates had smaller heads than the spermatozoa in the ejaculates with lower sperm concentrations. This can mean that the high fertility of males that produce highly concentrated semen does not only result from a high sperm concentration, but also from the fact that the spermatozoa in such ejaculates have smaller heads. The highest frequency of morphologically well-formed spermatozoa was identified in ejaculates with the sperm concentration ranging from 400 to 500 thousand/mm3.

  2. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    Directory of Open Access Journals (Sweden)

    Daniel P. Venâncio

    2012-01-01

    Full Text Available We investigated the effect of 96 h paradoxical sleep deprivation (PSD and 21-day sleep restriction (SR on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR.

  3. Retinol induces morphological alterations and proliferative focus formation through free radicalmediated activation of multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Daniel Pens GELAIN; Matheus Augusto de Bittencourt PASQUALI; Fernanda Freitas CAREGNATO; Mauro Antonio Alves CASTRO; José Claudio Fonseca MOREIRA

    2012-01-01

    Aim:Toxicity of retinol (vitamin A)has been previously associated with apoptosis and/or cell malignant transformation.Thus,we investigated the pathways involved in the induction of proliferation,deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats.Methods:Sertoli cells were isolated from immature rats and cultured.The cells were subjected to a 24-h treatment with different concentrations of retinol.Parameters of oxidative stress and cytotoxicity were analyzed.The effects of the p38 inhibitor SB203580(10 μmol/L),the JNK inhibitor SP600125 (10 μmol/L),the Akt inhibitor LY294002 (10 μmol/L),the ERK inhibitor U0126 (10 μmol/L)the pan-PKC inhibitor G(O)6983 (10 μmol/L)and the PKA inhibitor H89 (1 μmol/L)on morphological and proliferative/transformationassociated modifications were studied.Results:Retinol (7 and 14 μmol/L)significantly increases the reactive species production in Sertoli cells,inhibition of p38,JNK,ERK1/2,Akt,and PKA suppressed retinol-induced[3H]dT incorporation into the cells,while PKC inhibition had no effect.ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells,while Akt and JNK inhibition partially decreased focus formation.ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells,while other treatments had no effect.Conclusion:Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level.

  4. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells.

    Science.gov (United States)

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F; He, Rong-Qiao

    2016-03-31

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation.

  5. Functional and morphological alterations associated with working memory dysfunction in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2017-03-01

    Background Generalized anxiety disorder (GAD) has been related to functional brain activities and structural brain abnormalities. Purpose To investigate the neural mechanism on working memory dysfunction in patients with GAD in terms of the combined functional and morphological brain abnormalities. Material and Methods Patients with GAD and healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted (T1W) magnetic resonance imaging (MRI) and functional MRI (fMRI). In this study, fMRI and voxel-based morphometry (VBM) were used for assessing the differential brain activation patterns, as well as for comparing the morphological alterations between the two groups. Results In response to the neutral distractors, the patients showed significantly lower activities in the regions of the fusiform gyrus (FuG), superior parietal gyrus (SPG), precuneus (PCu), superior occipital gyrus (SOG), lingual gyrus (LiG), cuneus (Cun), calcarine cortex (CaC), parahippocampal gyrus (PHG) and cerebellar cortex (Cb) compared to the controls. In response to the anxiety-inducing distractors, the patients showed significantly higher activity in the hippocampus and lower activities in the regions of the dorsolateral prefrontal cortex (DLPFC), FuG, SPG, PCu, SOG, and Cb. Also, the patients showed a significant reduction of the white matter volumes in the DLPFC, anterior limb of the internal capsule (ALIC) and midbrain. Conclusion This study provides the first evidence for the association between the morphometric alterations and functional deficit in the working memory processing with the neutral and anxiety-inducing distractors in GAD patients. These findings would be helpful to understand the neural mechanisms on working memory impairment in connection with GAD symptoms.

  6. Distinct mesenchymal alterations in N-cadherin and E-cadherin positive primary renal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christof Keller

    Full Text Available BACKGROUND: Renal tubular epithelial cells of proximal and distal origin differ markedly in their physiological functions. Therefore, we hypothesized that they also differ in their capacity to undergo epithelial to mesenchymal alterations. RESULTS: We used cultures of freshly isolated primary human tubular cells. To distinguish cells of different tubular origin we took advantage of the fact that human proximal epithelial cells uniquely express N-cadherin instead of E-cadherin as major cell-cell adhesion molecule. To provoke mesenchymal alteration we treated these cocultures with TGF-β for up to 6 days. Within this time period, the morphology of distal tubular cells was barely altered. In contrast to tubular cell lines, E-cadherin was not down-regulated by TGF-β, even though TGF-β signal transduction was initiated as demonstrated by nuclear localization of Smad2/3. Analysis of transcription factors and miRNAs possibly involved in E-cadherin regulation revealed high levels of miRNAs of the miR200-family, which may contribute to the stability of E-cadherin expression in human distal tubular epithelial cells. By contrast, proximal tubular epithelial cells altered their phenotype when treated with TGF-β. They became elongated and formed three-dimensional structures. Rho-kinases were identified as modulators of TGF-β-induced morphological alterations. Non-specific inhibition of Rho-kinases resulted in stabilization of the epithelial phenotype, while partial effects were observed upon downregulation of Rho-kinase isoforms ROCK1 and ROCK2. The distinct reactivity of proximal and distal cells was retained when the cells were cultured as polarized cells. CONCLUSIONS: Interference with Rho-kinase signaling provides a target to counteract TGF-β-mediated mesenchymal alterations of epithelial cells, particularly in proximal tubular epithelial cells. Furthermore, primary distal tubular cells differed from cell lines by their high phenotypic stability

  7. Spaceflight alters immune cell function and distribution

    Science.gov (United States)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  8. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat.

    Science.gov (United States)

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P Andy; Sun, Tao

    2013-11-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral seizures were recorded and ovarian morphology was evaluated by light and electron microscopies. Our results showed that the kindled rats lost their ovarian periodicity displayed significant ovarian enlargement. H&E staining revealed increased number of growing follicles and total follicles, as well as polycysts in the ovaries of the kindled animals compared to sham and control animals. Ultrastructural study detected numerous apoptotic granulosa cells in growing follicles and thecal cell hyperplasia with secretary granules in the thecal cells in the kindled rats. The results suggest that amygdala kindling is a risk factor for the development of polycystic ovary syndrome.

  9. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders;

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...

  10. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    Science.gov (United States)

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli.

  11. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression.

    Directory of Open Access Journals (Sweden)

    David M Gravano

    Full Text Available BACKGROUND: Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach. METHODOLOGY/PRINCIPAL FINDINGS: We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αβ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted. CONCLUSIONS/SIGNIFICANCE: In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and

  12. Deletion of glucose-inhibited division (gidA) gene alters the morphological and replication characteristics of Salmonella enterica Serovar typhimurium.

    Science.gov (United States)

    Shippy, Daniel C; Heintz, Joseph A; Albrecht, Ralph M; Eakley, Nicholas M; Chopra, Ashok K; Fadl, Amin A

    2012-06-01

    Salmonella is an important food-borne pathogen that continues to plague the United States food industry. Characterization of bacterial factors involved in food-borne illnesses could help develop new ways to control salmonellosis. We have previously shown that deletion of glucose-inhibited division gene (gidA) significantly altered the virulence potential of Salmonella in both in vitro and in vivo models of infection. Most importantly, the gidA mutant cells displayed a filamentous morphology compared to the wild-type Salmonella cells. In our current study, we investigated the role of GidA in Salmonella cell division using fluorescence and electron microscopy, transcriptional, and proteomic assays. Scanning electron microscopy data indicated a filamentous morphology with few constrictions in the gidA mutant cells. The filamentation of the gidA mutant cells is most likely due to the defect in chromosome segregation, with little to no sign of septa formation observed using fluorescence and transmission electron microscopy. Furthermore, deletion of gidA altered the expression of many genes and proteins responsible for cell division and chromosome segregation as indicated by global transcriptional profiling and semi-quantitative western blot analysis. Taken together, our data indicate GidA as a potential regulator of Salmonella cell division genes.

  13. Raman spectroscopic study of a genetically altered kidney cell

    Science.gov (United States)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  14. Effect of hydroxyapatite surface morphology on cell adhesion.

    Science.gov (United States)

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties.

  15. Cell sorting enriches Escherichia coli mutants that rely on peptidoglycan endopeptidases to suppress highly aberrant morphologies.

    Science.gov (United States)

    Laubacher, Mary E; Melquist, Amy L; Chandramohan, Lakshmi; Young, Kevin D

    2013-02-01

    Bacterial morphology imparts physiological advantages to cells in different environments and, judging by the fidelity with which shape is passed to daughter cells, is a tightly regulated characteristic. Surprisingly, only in the past 10 to 15 years has significant headway been made in identifying the mechanisms by which cells create and maintain particular shapes. One reason for this is that the relevant discoveries have relied heavily on the arduous, somewhat subjective process of manual microscopy. Here, we show that flow cytometry, coupled with the sorting capability of fluorescence-activated cell sorting (FACS), can detect, quantify, and enrich bacteria with morphological alterations. The light scattering properties of several highly aberrant morphological mutants of Escherichia coli were characterized by flow cytometry. Cells from a region that overlapped the distribution of normal rod-shaped cells were collected by FACS and reincubated. After 4 to 15 iterations of this enrichment process, suppressor mutants were isolated that returned almost all the population to a near-normal shape. Suppressors were successfully isolated from strains lacking three or four penicillin binding proteins (PBPs) but not from a mutant lacking a total of seven PBPs. The peptidoglycan endopeptidase, AmpH, was identified as being important for the suppression process, as was a related endopeptidase, MepA. The results validate the use of cell sorting as a means for studying bacterial morphology and identify at least one new class of enzymes required for the suppression of cell shape defects.

  16. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  17. Heteroresistance to Itraconazole Alters the Morphology and Increases the Virulence of Cryptococcus gattii.

    Science.gov (United States)

    Ferreira, Gabriella Freitas; Santos, Julliana Ribeiro Alves; Costa, Marliete Carvalho da; Holanda, Rodrigo Assunção de; Denadai, Ângelo Márcio Leite; Freitas, Gustavo José Cota de; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Paixão, Tatiane Alves; Santos, Daniel Assis

    2015-08-01

    Cryptococcus gattii is the main etiological agent of cryptococcosis in immunocompetent individuals. The triazole drug itraconazole is one of the antifungals used to treat patients with cryptococcosis. Heteroresistance is an adaptive mechanism to counteract the stress of increasing drug concentrations, and it can enhance the ability of a microorganism to survive under antifungal pressure. In this study, we evaluated the ability of 11 C. gattii strains to develop itraconazole heteroresistance. Heteroresistant clones were analyzed for drug susceptibility, alterations in cell diameter, capsule properties, and virulence in a murine model. Heteroresistance to itraconazole was intrinsic in all of the strains analyzed, reduced both the capsule size and the cell diameter, induced molecular heterogeneity at the chromosomal level, changed the negatively charged cells, reduced ergosterol content, and improved the antioxidant system. A positive correlation between surface/volume ratio of original cells and the level of heteroresistance to itraconazole (LHI) was observed in addition to a negative correlation between capsule size of heteroresistant clones and LHI. Moreover, heteroresistance to itraconazole increased the engulfment of C. gattii by macrophages and augmented fungal proliferation inside these cells, which probably accounted for the reduced survival of the mice infected with the heteroresistant clones and the higher fungal burden in lungs and brain. Our results indicate that heteroresistance to itraconazole is intrinsic and increases the virulence of C. gattii. This phenomenon may represent an additional mechanism that contributes to relapses of cryptococcosis in patients during itraconazole therapy.

  18. Targeted alteration of real and imaginary refractive index of biological cells by histological staining

    OpenAIRE

    Cherkezyan, Lusik; Subramanian, Hariharan; Stoyneva, Valentina; Rogers, Jeremy D.; Yang, Seungmoo; Damania, Dhwanil; Taflove, Allen; Backman, Vadim

    2012-01-01

    Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2-D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of sta...

  19. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  20. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy.

  1. Kruppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT, was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell

  2. Nylon wool purification alters the activation of T cells.

    Science.gov (United States)

    Wohler, Jillian E; Barnum, Scott R

    2009-02-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method.

  3. Morphological alterations in the synganglion and integument of Rhipicephalus sanguineus ticks exposed to aqueous extracts of neem leaves (Azadirachta indica A. JUSS).

    Science.gov (United States)

    Remedio, R N; Nunes, P H; Anholeto, L A; Camargo-Mathias, M I

    2014-12-01

    Currently, the necessity of controlling infestation by ticks, especially by Rhipicephalus sanguineus, has led researchers and public health managers around the world to search for new and more efficient control methods. This way, we can highlight neem (Azadirachta indica A. Juss) leaf, bark, and seed extracts, which have been very effective on tick control, and moreover causing less damage to the environment and to the host. This study showed the potential of neem as a control method for R. sanguineus through morphological and morphometric evaluation of the integument and synganglion of females, in semiengorged stage. To attain this, routine techniques of optical microscopy, scanning electron microscopy and morphometry of the cuticle and subcuticle of the integument were applied. Expressive morphological alterations were observed in both organs, presenting a dose-dependent effect. Integument epithelial cells and nerve cells of the synganglion showed signs of cell vacuolation, dilated intercellular boundaries, and cellular disorganization, alterations not previously reported in studies with neem. In addition, variations in subcuticle thickness were also observed. In general, the effects of neem are multiple, and affect the morphology and physiology of target animals in various ways. The results presented in this work are the first evidence of its effects in the coating and nervous system of ticks, thus allowing an indication of neem aqueous extracts as a potential control method of the brown dog tick and opening new perspectives on acaricide use.

  4. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils.

    Science.gov (United States)

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F; Currano, Ellen D; Jacobs, Louis L; Sylvestersen, Rene Lyng; Gabbott, Sarah E; Vinther, Jakob

    2015-10-13

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  5. MRI morphologic alterations after liver SBRT. Direct dose correlation with intermodal matching

    Energy Technology Data Exchange (ETDEWEB)

    Boda-Heggemann, Judit; Jahnke, Anika; Jahnke, Lennart; Vogel, Lena; Simeonova-Chergou, Anna O.; Herskind, Carsten; Wenz, Frederik; Lohr, Frank [University of Heidelberg, Department of Radiation Oncology, University Medical Center Mannheim, Mannheim (Germany); Attenberger, Ulrike; Budjan, Johannes [University of Heidelberg, Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim (Germany)

    2016-09-15

    CT morphologic and histopathologic alterations have been reported after SBRT. We analyzed the correlation of MRI morphologic alterations with radiation doses to assess the potential for MRI-based dose-effect correlation in healthy liver tissue. MRI data of 24 patients with liver metastases 7±3 weeks after image-guided SBRT in deep-inspiration breath-hold were retrospectively analyzed. MRI images were intermodally matched to the planning CT and corresponding dose distribution. Absolute doses were converted to EQD{sub 2,α/β=x} with α/β values of 2, 3 for healthy liver tissue, 8 Gy for modelled predamaged liver tissue and 10 Gy for tumor tissue. A central nonenhancing area was observed within the isodose lines of nominally 48.2 ± 15.2 Gy, EQD{sub 2Gy/α/β=10} 92.5 ± 27.7 Gy. Contrast-enhancement around the central nonenhancing area was observed within the isodose lines of nominally 46.9 ± 15.3 Gy, EQD{sub 2Gy/α/β=10} 90.5 ± 28.3 Gy. Outside the high-dose volume, in the beam path, characteristic sharply defined, nonblurred MRI morphologic alterations were observed that corresponded with the following isodose lines: T1-intensity changes occurred at isodose lines of nominally 21.9 ± 6.7 Gy (EQD{sub 2,α/β=2} 42.5 ± 8.7 Gy, EQD{sub 2,α/β=3} 38.5 ± 7.6 Gy, EQD{sub 2,α/β=8} 30.2 ±6.3 Gy). T2-hyper/hypointensity was observed within isodose lines of nominally 22.4 ± 6.6 Gy (EQD{sub 2,α/β=2} 42.7 ± 8.1 Gy, EQD{sub 2,α/β=3} 38.7 ± 7 Gy; EQD{sub 2,α/β=8} 30.5 ± 5.9 Gy). Using deformable matching, direct spatial/dosimetric correlation of SBRT-induced changes in liver tissue was possible. In the PTV high-dose region, a central nonenhancing area and peripheral contrast medium accumulation was observed. Beam path doses of 38-42 Gy (EQD{sub 2,α/β=2-3}) induce characteristic MRI morphologic alterations. (orig.) [German] CT-morphologische Veraenderungen nach SBRT sind beschrieben und korrelieren mit histopathologischen Veraenderungen. Ziel war es, MRT

  6. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    Science.gov (United States)

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Lyng Sylvestersen, Rene; Gabbott, Sarah E.; Vinther, Jakob

    2015-10-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  7. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    Science.gov (United States)

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc.

  8. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  9. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-02-24

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends upon the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology in order to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus sp. PCC 7942. The Min system has established functions in controlling cell division by regulating assembly of FtsZ, a tubulin-like protein required to define the bacterial division plane. We show that altering expression of two FtsZ-regulatory proteins, MinC and Cdv3, permits control over cell morphology by disrupting FtsZ localization and cell division, without preventing continued cell growth. By varying the expression of these proteins, we can tune the length of cyanobacterial cells across a broad dynamic range: anywhere from a ∼20% increased length relative to wildtype to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach towards decreasing harvesting and processing costs associated with mass cyanobacterial cultivation through altering morphology at the cellular level.Importance: We show that the cell length of a model cyanobacterial species can be programmed through the rational manipulation of expression of protein factors that suppress cell division. In some instances, we are able to increase the size of these cells to near millimeter lengths through this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore

  10. A functional genomic analysis of cell morphology using RNA interference

    Directory of Open Access Journals (Sweden)

    Jones MR

    2003-10-01

    Full Text Available Abstract Background The diversity of metazoan cell shapes is influenced by the dynamic cytoskeletal network. With the advent of RNA-interference (RNAi technology, it is now possible to screen systematically for genes controlling specific cell-biological processes, including those required to generate distinct morphologies. Results We adapted existing RNAi technology in Drosophila cell culture for use in high-throughput screens to enable a comprehensive genetic dissection of cell morphogenesis. To identify genes responsible for the characteristic shape of two morphologically distinct cell lines, we performed RNAi screens in each line with a set of double-stranded RNAs (dsRNAs targeting 994 predicted cell shape regulators. Using automated fluorescence microscopy to visualize actin filaments, microtubules and DNA, we detected morphological phenotypes for 160 genes, one-third of which have not been previously characterized in vivo. Genes with similar phenotypes corresponded to known components of pathways controlling cytoskeletal organization and cell shape, leading us to propose similar functions for previously uncharacterized genes. Furthermore, we were able to uncover genes acting within a specific pathway using a co-RNAi screen to identify dsRNA suppressors of a cell shape change induced by Pten dsRNA. Conclusions Using RNAi, we identified genes that influence cytoskeletal organization and morphology in two distinct cell types. Some genes exhibited similar RNAi phenotypes in both cell types, while others appeared to have cell-type-specific functions, in part reflecting the different mechanisms used to generate a round or a flat cell morphology.

  11. Morphological Control Agent in Ternary Blend Bulk Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsueh-Chung Liao

    2014-11-01

    Full Text Available Bulk heterojunction (BHJ organic photovoltaic (OPV promise low cost solar energy and have caused an explosive increase in investigations during the last decade. Control over the 3D morphology of BHJ blend films in various length scales is one of the pillars accounting for the significant advance of OPV performance recently. In this contribution, we focus on the strategy of incorporating an additive into BHJ blend films as a morphological control agent, i.e., ternary blend system. This strategy has shown to be effective in tailoring the morphology of BHJ through different inter- and intra-molecular interactions. We systematically review the morphological observations and associated mechanisms with respect to various kinds of additives, i.e., polymers, small molecules and inorganic nanoparticles. We organize the effects of morphological control (compatibilization, stabilization, etc. and provide general guidelines for rational molecular design for additives toward high efficiency and high stability organic solar cells.

  12. Tuning the Morphology of All-Polymer OPVs through Altering Polymer–Solvent Interactions

    KAUST Repository

    Pavlopoulou, Eleni

    2014-09-09

    © 2014 American Chemical Society. In this work, we investigated the effects of solvent(s)-polymer(s) interactions on the morphology of all-polymer bulk-heterojunction (BHJ) active layers cast from cosolutions. We demonstrate that altering the interactions between the solvent and both the donor and acceptor polymers in the cosolution prior to film-casting induces different solid-state morphological characteristics that subsequently leads to differences in the device performance of organic photovoltaics (OPV). Poly(3-hexylthiophene), P3HT, was codissolved poly[[N,N\\'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5 ′-(2,2 ′-bithiophene)], P(NDI2OD-T2), or otherwise known as ActivInk N2200, in dichlorobenzene, chlorobenzene, and xylene. According to the qualitative interaction map we propose, all three solvents exhibit favorable interactions with P3HT. The extent of incompatibility these solvents exhibit with P(NDI2OD-T2), however, varies, with xylene as the worst solvent for P(NDI2OD-T2) among those examined. Polymer-polymer interactions in xylene are, thus, more favorable compared to P(NDI2OD-T2)-xylene interactions. Grazing-incidence wide-angle X-ray scattering measurements on the cast films suggest that this preferential affinity between the two polymers disrupts crystallization in the blends; P(NDI2OD-T2) crystallinity decreases and, concurrently, results in shorter P3HT coherence lengths. Significant mixing of the two polymers is also evidenced. OPVs comprising P3HT and P(NDI2OD-T2) active layers cast from xylene exhibit the best device characteristics compared to OPVs whose active layers are cast from di- or mono-chlorobenzene. We attribute the improved OPV performance for the xylene-cast active layer to the presence of a more intermixed network of nanocrystalline domains of the two polymers, which originates from the affinity of P3HT and P(NDI2OD-T2) in the parent cosolution.

  13. Calcium signaling in plant cells in altered gravity

    Science.gov (United States)

    Kordyum, E. L.

    2003-10-01

    Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface

  14. Semiautomated analysis of dendrite morphology in cell culture.

    Science.gov (United States)

    Sweet, Eric S; Langhammer, Chris L; Kutzing, Melinda K; Firestein, Bonnie L

    2013-01-01

    Quantifying dendrite morphology is a method for determining the effect of biochemical pathways and extracellular agents on neuronal development and differentiation. Quantification can be performed using Sholl analysis, dendrite counting, and length quantification. These procedures can be performed on dendrite-forming cell lines or primary neurons grown in culture. In this protocol, we describe the use of a set of computer programs to assist in quantifying many aspects of dendrite morphology, including changes in total and localized arbor complexity.

  15. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis

    DEFF Research Database (Denmark)

    Muller, C.; Mcintyre, Mhairi; Hansen, Kim;

    2002-01-01

    Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth...... than that in the wild type., whereas that in the ChsB/G strain was 188% higher. During batch cultivation, inseparable clumps were formed in the wild-type strain., while no or fewer large inseparable clumps existed in the cultivations of the ChsB/G and CM101 strains. The alpha-amylase productivity...... an important role for chsB in branching. However, the pattern of branching responded very slowly to the change in transcription, and increased branching did not affect alpha-amylase productivity. alpha-Amylase residing in the cell wall was stained by immunofluorescence, and the relationship between tip number...

  16. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation.

    Science.gov (United States)

    Gokhale, Paul J; Au-Young, Janice K; Dadi, SriVidya; Keys, David N; Harrison, Neil J; Jones, Mark; Soneji, Shamit; Enver, Tariq; Sherlock, Jon K; Andrews, Peter W

    2015-01-01

    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal ('Culture Adapted') human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.

  17. Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases.

    Science.gov (United States)

    Zuo, Lijian; Dong, Shiqi; De Marco, Nicholas; Hsieh, Yao-Tsung; Bae, Sang-Hoon; Sun, Pengyu; Yang, Yang

    2016-12-07

    Morphology is critical component to achieve high device performance hybrid perovskite solar cells. Here, we develop a vapor induced intermediate phase (VIP) strategy to manipulate the morphology of perovskite films. By exposing the perovskite precursor films to different saturated solvent vapor atmospheres, e.g., dimethylformamide and dimethylsufoxide, dramatic film morphological evolution occurs, associated with the formation of different intermediate phases. We observe that the crystallization kinetics is significantly altered due to the formation of these intermediate phases, yielding highly crystalline perovskite films with less defect states and high carrier lifetimes. The perovskite solar cells with the reconstructed films exhibits the highest power conversion efficiency (PCE) up to 19.2% under 1 sun AM 1.5G irradiance, which is among the highest planar heterojunction perovskite solar cells. Also, the perovskite solar cells with VIP processing shows less hysteresis behavior and a stabilized power output over 18%. Our work opens up a new direction for morphology control through intermediate phase formation, and paves the way toward further enhancing the device performances of perovskite solar cells.

  18. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... of the nanoparticles was investigated both internally and externally, both were attempted to be controlled by variation in preparation solvent and particle sizes. The inks were slot-die coated on both the R2R coater and mini roll coater but only after a number of inks modifications and adjustments of the coating...... deposition techniques which have been downscaled from the R2R coater i.e. slot-die coating and flexographic printing. Thereby allowing the device optimizations to be transferred almost directly from small to large scale. This is in contrast to devices prepared by spincoating. Another advantage...

  19. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige, E-mail: tkawakami@ph.bunri-u.ac.jp; Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight. - Highlights: • Maternal exposure to excessive ER stress induced preterm birth and IUGR. • Prolonged excessive ER stress altered the formation of the placental labyrinth. • ER stress decreased GLUT1 mRNA expression in the placenta, but increased GLUT3. • ER stress-induced IUGR causes decreased glycogen and altered glucose transport.

  20. Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells.

    Science.gov (United States)

    Cinar, Ozgur; Semiz, Olcay; Can, Alp

    2015-04-01

    Although many countries banned of its usage, carbofuran (CF) is still one of the most commonly used carbamate derivative insecticides against insects and nematodes in agriculture and household, threatening the human and animal health by contaminating air, water, and food. Our goal was to evaluate the potential toxic effects of CF on mammalian oocytes besides mitotic cells. Caspase-dependent apoptotic pathway was assessed by immunofluorescence and western blot techniques. Alterations in the meiotic spindle formation after CF exposure throughout the in vitro maturation of mice oocyte-cumulus complexes (COCs) were analyzed by using a 3D confocal laser microscope. Maturation efficiency and kinetics were assessed by direct observation of the COCs. Results indicated that the number of TUNEL-positive cells increased in CF-exposed groups, particularly higher doses (>250 µM) in a dose-dependent fashion. The ratio of anticleaved caspase-3 labeled cells in those groups positively correlated with TUNEL-positivity. Western blot analysis confirmed a significant increase in active caspase-3 activity. CF caused a dose-dependent accumulation of oocytes at prometaphase-I (PM-I) of meiosis. Partial loss of spindle microtubules (MTs) was noted, which consequently gave rise to a diamond shape spindle. Aberrant pericentrin foci were noted particularly in PM-I and metaphase-I (M-I) stages. Conclusively, CF (1) induces programmed cell death in a dose-dependent manner, and (2) alters spindle morphology most likely through a mechanism that interacts with MT assembly and/or disorientation of pericentriolar proteins. Overall, data suggest that CF could give rise to aneuploidy or cell death in higher doses, therefore reduce fertilization and implantation rates.

  1. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells.

    Science.gov (United States)

    Haruk, Alexander M; Mativetsky, Jeffrey M

    2015-06-11

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  2. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    Science.gov (United States)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  3. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  4. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Díaz, Matías F.F.; Acosta, Mariano; Mohamed, Fabián H.; Ferramola, Mariana L.; Oliveros, Liliana B.; Gimenez, María S., E-mail: marisofigime44@gmail.com

    2013-11-01

    We investigated the effects of cadmium exposition on thoracic aorta redox status and morphology, and the putative protective effect of soybeans in the diet. Male Wistar rats were separated into 6 groups: 3 fed with a diet containing casein and 3 containing soybeans, as protein source. Within each protein group, one was given tap water (control) and the other two tap water containing 15 and 100 ppm of Cd{sup 2+}, respectively, for two months. In rats fed with casein diet, 15 ppm of Cd induced an increase of thiobarbituric acid-reactive substances (TBARS), and of the catalase (CAT) and glutathione peroxidase (GPx) activities, which were even higher with 100 ppm of Cd{sup 2+}, in aorta. Also, 100 ppm Cd{sup 2+} exposure increased superoxide dismutase (CuZnSOD) activity; CAT, GPX, SOD, Nrf2 and metallothioneine II mRNA expressions and CAT, GPx and NOX-2 protein levels, compared with control. Aorta endothelial and cytoplasmic alterations were observed. However, with the soybeans diet, 15 and 100 ppm of Cd{sup 2+} did not modify TBARS levels; CAT, GPX and Nrf2 mRNA expressions; CAT, GPx and NOX-2 protein; and the aorta morphology, compared with control. The soybean diet attenuates the redox changes and protects against morphological alterations induced, in a dose-dependent way, by Cd in aorta. - Highlights: • Under casein diet, 100 ppm Cd{sup 2+} in drinking water induces oxidative stress in aorta. • Under casein diet, 100 ppm Cd{sup 2+} increases Nrf2, MT II and NOX2 expressions in aorta. • Under casein diet, 100 ppm Cd{sup 2+} induces morphological changes in rat aorta. • The soybean diet attenuates the redox changes induced by Cd in rat aorta. • The soybean diet attenuates morphological alterations induced by Cd in rat aorta.

  5. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells

    Science.gov (United States)

    Cheng, Dengfeng; Li, Xiao; Zhang, Guoxin; Shi, Hongcheng

    2014-04-01

    Forced oscillation of spherical and rod-shaped iron oxide magnetic nanoparticles (MNPs) via low-power and low-frequency alternating magnetic field (AMF) was firstly used to kill cancer cells in vitro. After being loaded by human cervical cancer cells line (HeLa) and then exposed to a 35-kHz AMF, MNPs mechanically damaged cell membranes and cytoplasm, decreasing the cell viability. It was found that the concentration and morphology of the MNPs significantly influenced the cell-killing efficiency of oscillating MNPs. In this preliminary study, when HeLa cells were pre-incubated with 100 μg/mL rod-shaped MNPs (rMNP, length of 200 ± 50 nm and diameter of 50 to 120 nm) for 20 h, MTT assay proved that the cell viability decreased by 30.9% after being exposed to AMF for 2 h, while the cell viability decreased by 11.7% if spherical MNPs (sMNP, diameter of 200 ± 50 nm) were used for investigation. Furthermore, the morphological effect of MNPs on cell viability was confirmed by trypan blue assay: 39.5% rMNP-loaded cells and 15.1% sMNP-loaded cells were stained after being exposed to AMF for 2 h. It was also interesting to find that killing tumor cells at either higher (500 μg/mL) or lower (20 μg/mL) concentration of MNPs was less efficient than that achieved at 100 μg/mL concentration. In conclusion, the relatively asymmetric morphological rod-shaped MNPs can kill cancer cells more effectively than spherical MNPs when being exposed to AMF by virtue of their mechanical oscillations.

  6. Using Pressure and Alteration Indicators to Assess River Morphological Quality: Case Study of the Prahova River (Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Ioana-Toroimac

    2015-06-01

    Full Text Available River morphological quality assessment, derived from quantification of human pressures as well as river channel alteration, is a demand of the Water Framework Directive (WFD in terms of integrating hydromorphological elements in defining ecological status. Our study’s aim is to contribute to the hydromorphological evaluation by proposing indicators and separating classes, based on a revisited Morphological Quality Index (rMQI protocol. The rMQI is based on 12 indicators of human pressures, 10 indicators of channel form adjustments, and 11 indicators of functionality. The rMQI scoring system allows for the quantification of changes when compared to reference conditions, be they undisturbed or nearly undisturbed by human interventions, with absent channel adjustments and a functioning natural river style. We used the lower, meandering sector of the Prahova River to demonstrate our assessment methodology. The Lower Prahova River suffers from a minor local intervention and a diminishing intensity of fluvial processes specific to a meandering style. Meanders geometry was affected by significant changes that included a decrease in the radius of curvature, width and width–to–mean–depth ratio. We concluded that the Lower Prahova River has a good morphological quality, which is rated as second class on a scale of five levels, from natural to severely modified. We recommend an improvement in the hydromorphological evaluation protocol in Romania by additional indicators for morphological alterations specific to each channel pattern.

  7. Nylon Wool Purification Alters the Activation of T Cells

    Science.gov (United States)

    Wohler, Jillian E.; Barnum, Scott R.

    2009-01-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method. PMID:18952296

  8. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    Science.gov (United States)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we

  9. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Veronica Sebastian

    Full Text Available GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ and post-synaptic density-95 (PSD-95 are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML of the dentate gyrus (DG, stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.

  10. Effect of Tricyclazole on morphology, virulence and enzymatic alterations in pathogenic fungi Bipolaris sorokiniana for management of spot blotch disease in barley.

    Science.gov (United States)

    Kumar, Manoj; Chand, Ramesh; Dubey, R S; Shah, Kavita

    2015-01-01

    Bipolaris sorokiniana synthesizes the 1,8-dihydroxynaphthalene (DHN) melanin via pentaketide pathway and promotes the development of aerial mycelia and conidia. A melanin biosynthesis inhibitor Tricyclazole (TCZ), brought changes when applied at 5-100 μg ml(-1) concentration in the colony morphology, radial growth, mycelia weight, melanin content, antioxidant enzymes (SOD and CAT) and extracellular hydrolytic enzymes (cellulase, pectinase, amylase and protease) in black, mixed and white isolates of B. sorokiniana. A significant alteration was recorded in antioxidant enzymes in black and mixed isolates; however, non-significant alteration was recorded in white isolate. Isolates of B. sorokiniana exposed to 100 µg ml(-1) TCZ showed significantly increased formation of superoxide radical (O 2 (·-) ) and hydrogen peroxide (H2O2)·H2O2 was detected significantly high in hyphae and conidia while, O 2 (·-) was found primarily in the conidia. Microscopic results suggest that TCZ damages not only the cell wall but also the cell membrane. The foliar application of TCZ (25, 50 and 100 µg ml(-1)) decreases the area under disease progress curve, lesion development and spore formation on barley leaves thereby reducing potential for the disease development. In conclusion TCZ influences the pathogenic ability by damaging the cell structure of hyphae and conidia and also alters the antioxidant enzyme levels in B. sorokiniana. TCZ may therefore, works against to pathogen for better management of spot blotch disease in barley infected with B. sorokiniana.

  11. Tendon cell outgrowth rates and morphology associated with kevlar-49.

    Science.gov (United States)

    Zimmerman, M; Gordon, K E

    1988-12-01

    A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates.

  12. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic

    Directory of Open Access Journals (Sweden)

    Nina Krešić

    2017-01-01

    Full Text Available Although canine adipose derived stem cells (cASCs morphology characteristics and differentiation ability are well documented, transcriptome alterations of undifferentiated cASCs during ex vivo cultivation remain unknown. Here we demonstrate, for the first time, the transcriptome composition of isolated cASCs in undifferentiated state originating from six donors. Transcriptome changes were monitored during ex vivo cultivation between passage 3 (P3 and P5, which are mostly used in therapy. Influence of donors’ age in given passage number on transcriptome composition was also investigated. Cultivation from P3 to P5 resulted in 16 differentially expressed genes with cooverexpression of pluripotency and self-renewal transcription factors genes SOX2 and POU5F1 dominant in old donors’ cells. Furthermore, cASCs demonstrated upregulation of IL-6 in young and old donors’ cells. In addition, ex vivo cultivation of cASCs revealed well-known morphological alterations accompanied with decrease in expression of CD90 and CD44 markers in P4 and higher monitored by flow cytometry and successful osteo- and chondrodifferentiation but inefficient adipodifferentiation in P3. Our results revealed the impact of ex vivo cultivation on nature of cells. Correlation of transcriptome changes with secretome composition is needed and its further impact on therapeutic potential of cASCs remains to be evaluated in clinical trials.

  13. Heterogeneity in mitochondrial morphology and membrane potential is independent of the nuclear division cycle in multinucleate fungal cells.

    Science.gov (United States)

    Gerstenberger, John P; Occhipinti, Patricia; Gladfelter, Amy S

    2012-03-01

    In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influence the adjacent cytoplasm, we tested whether local mitochondrial morphology and membrane potential in A. gossypii are associated with the division state of a nearby nucleus. We found that mitochondria exhibit substantial heterogeneity in both morphology and membrane potential within a single multinucleated cell. Notably, differences in mitochondrial morphology or potential are not associated with a specific nuclear division state. Heterokaryon mutants with a mixture of nuclei with deletions of and wild type for the mitochondrial fusion/fission genes DNM1 and FZO1 exhibit altered mitochondrial morphology and severe growth and sporulation defects. This dominant effect suggests that the gene products may be required locally near their expression site rather than diffusing widely in the cell. Our results demonstrate that mitochondrial dynamics are essential in these large syncytial cells, yet morphology and membrane potential are independent of nuclear cycle state.

  14. Altered Contralateral Auditory Cortical Morphology in Unilateral Sudden Sensorineural Hearing Loss

    OpenAIRE

    Fan, Wenliang; Zhang, Wenjuan; Li, Jing; Zhao, Xueyan; Mella, Grace; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong; Xu, Haibo

    2015-01-01

    Objective: To investigate the cerebral gray matter volume alterations in unilateral sudden sensorineural hearing loss patients within the acute period by the voxel-based morphometry method, and to determine if hearing impairment is associated with regional gray matter alterations in unilateral sudden sensorineural hearing loss patients. Study Design: Prospective case study. Setting: Tertiary class A teaching hospital. Patients: Thirty-nine patients with left-side unilateral sudden sensorineur...

  15. Organic solar cells: an overview focusing on active layer morphology.

    Science.gov (United States)

    Benanti, Travis L; Venkataraman, D

    2006-01-01

    Solar cells constructed of organic materials are becoming increasingly efficient due to the discovery of the bulk heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief history of organic solar cell development; device construction, definitions, and characteristics; and heterojunction morphology and its relation to device efficiency in conjugated polymer/fullerene systems. The aim of this article is to show that researchers are developing a better understanding of how material structure relates to function and that they are applying this knowledge to build more efficient light-harvesting devices.

  16. Activation of secretion and surface alteration of cytolytic T-lymphocytes interacting with target cells.

    Science.gov (United States)

    Bykovskaya, S N; Shevelev, A A; Kupriyanova, T A

    1988-01-01

    Cells obtained in mixed lymphocyte culture (MLC) and memory cells adsorbed on the surface of target cells (TC) were examined using scanning and transmission electron microscopy depending on the time of interaction with TC. Three types of lymphocytes were revealed: type I - cells of spherical shape with a smooth surface or an insignificant amount of microvilli; predominantly small and medium-sized lymphocytes contacting TC with non significant involvement of their surface or by several microvilli; type II - oval or round-shaped lymphocytes evenly covered with microvilli with considerably enlarged region of contact; type III cells - predominantly large lymphocytes and lymphoblasts flattened (spread) on TC, with multiple microvilli, ridge-like projections, and ruffles on their surface. TEM revealed activation of the secretory apparatus in the cytoplasm of such lymphocytes. With increased time of interaction, type III cells increase in number (from 8.6% after 10 min to 90.2% after 60 min of incubation). Memory cells show no morphologic signs of secretion in correlation with the absence of lysis of TC on which they are adsorbed. The surface of the lymphocytes adsorbed on the substrate with poly-L-lysin is not noticeably altered. It is suggested that 3 morphological types of lymphocytes correspond to 3 stages of secretion activation. Lymphocyte contact with TC surface is evidently a specific stimulus for activating secretory apparatus of CTL. SEM can be used for quantitation of activated lymphocytes.

  17. Understanding and altering cell tropism of vesicular stomatitis virus

    Science.gov (United States)

    Hastie, Eric; Cataldi, Marcela; Marriott, Ian; Grdzelishvili, Valery Z.

    2013-01-01

    Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV’s broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV’s neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications. PMID:23796410

  18. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    Science.gov (United States)

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  19. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  20. Blood parameter analysis and morphological alterations as biomarkers on the health of Hoplias malabaricus and Geophagus brasiliensis

    Directory of Open Access Journals (Sweden)

    Silvia Romão

    2006-05-01

    Full Text Available This study aimed to assess the influence of the environment on fish health. Samples of Hoplias malabaricus and Geophagus brasiliensis, were collected from three different environments: area I was urban and areas II and III were rural. Analyses of red blood cell count, microhematocrit, hemoglobin concentration, white blood cell count and differential white cell count in blood smear were carried out. Mean corpuscular volume and mean corpuscular hemoglobin concentration were calculated. To analyze morphological alterations, gills, liver, kidney and gonads were submitted to routine histological processing. Individuals collected from area III had slightly lower blood indices than collected from area I . Severe kidney changes, degeneration of and crystallization within kidney tubules were observed. In area I, crystallization was observed in 92% of the specimens of G. brasiliensis. These results suggested that such alterations were related with poor water circulation in the place.Este trabalho teve como objetivo avaliar a influência do ambiente sobre a higidez dos peixes. Animais, das espécies Hoplias malabaricus e Geophagus brasiliensis foram coletados em três ambientes distintos, sendo ambiente I região urbana e ambientes II e III em região rural. Foram realizadas análises do número total de eritrócitos por microlitro de sangue, microhematócrito, taxa de hemoglobina, porcentagem de leucócito e contagem diferencial de leucócitos em extensão sanguínea. Calcularam-se os índices hematimétricos absolutos: volume corpuscular médio e concentração de hemoglobina corpuscular média. Para análises das alterações morfológicas, brânquias, fígado, gônadas e rim seguiram processamento histológico de rotina. Foram observados índices hematológicos ligeiramente menores em indivíduos coletados no ambiente III em relação aos animais coletados no ambiente I. As análises histológicas de brânquias, fígado e gônadas das espécies G

  1. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk

    2015-06-01

    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  2. A spectral and morphologic method for white blood cell classification

    Science.gov (United States)

    Wang, Qian; Chang, Li; Zhou, Mei; Li, Qingli; Liu, Hongying; Guo, Fangmin

    2016-10-01

    The identification of white blood cells is important as it provides an assay for diagnosis of various diseases. To overcome the complexity and inaccuracy of traditional methods based on light microscopy, we proposed a spectral and morphologic method based on hyperspectral blood images. We applied mathematical morphology-based methods to extract spatial information and supervised method is employed for spectral analysis. Experimental results show that white blood cells could be segmented and classified into five types with an overall accuracy of more than 90%. Moreover, the experiments including spectral features reached higher accuracy than the spatial-only cases, with a maximum improvement of nearly 20%. By combing both spatial and spectral features, the proposed method provides higher classification accuracy than traditional methods.

  3. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities

    Institute of Scientific and Technical Information of China (English)

    LINZHONGXIANG; WUBINGQUAN; 等

    1990-01-01

    Cytoskeletal changes in transformed cells (LM-51) eshibiting obviously metastatic capabilities were investigated by utilization of double-fluorescent labelling through combinations of:(1) tubulin indirect immunofluorescence plus Rhodamine-phalloidin staining of F-actins;(2) indirect immunofluorescent staining with α-actinin polyclonal-and vinculin monoclonal antibodies.The LM-51 cells which showed metastatic index of >50% were derived from lung metastasis in nude mice after subcutaneous inoculation of human highly metastatic tumor DNA transfected NIH3T3 cell transformants.The parent NIH3T3 cells exhibited well-organized microtubules,prominent stress fibers and adhesion plaques while their transformants showed remarkable cytoskeletal alterations:(1)reduced microtubules but increased MTOC fluorescence;(2)disrupted stress fibers and fewer adhesion plaques with their protein components redistributed in the cytoplasm;(3)Factin-and α-actinin/vinculin aggregates appeared in the cytoplasm.These aggregates were dot-like,varied in size(0.1-0.4μm) and number,located near the ventral surface of the cells.TPA-induced actin/vinculin bodies were studied too.Indications that actin and α-actinin/vinculin redistribution might be important alterations involved in the expression of metastatic capabilities of LM-51 transformed cells were discussed.

  4. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels.

    Science.gov (United States)

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Regunathan, Soundar

    2007-12-01

    In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 mug/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with beta-tubulin III. However, 21-day treatment (50 mug/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo.

  5. Tetrachlorodibenzo-p-dioxin exposure alters radial arm maze performance and hippocampal morphology in female AhR mice.

    Science.gov (United States)

    Powers, B E; Lin, T-M; Vanka, A; Peterson, R E; Juraska, J M; Schantz, S L

    2005-02-01

    Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter spatial learning in rats tested on a radial arm maze (RAM). TCDD is believed to exert most of its effects through binding to the aryl hydrocarbon receptor (AhR). To determine whether the AhR mediates TCDD-induced alterations in spatial learning, we tested male and female AhR-knockout (AhR-/-), heterozygous (AhR+/-) and wild-type (AhR+/+) mice on the RAM. AhR+/- male and female mice were time mated, and treated dams were dosed with 5 microg TCDD/kg body weight on day 13 of gestation. When offspring reached adulthood, male and female AhR+/+, AhR+/- and AhR-/- mice from TCDD-exposed and unexposed litters were tested on the eight-arm RAM. After testing, we examined hippocampal morphology as visualized by the Timm's silver sulfide stain. TCDD-exposed female AhR+/- mice made more errors than their respective controls on the RAM and exhibited a decrease in the size of the intra- and infrapyramidal mossy fiber (IIP-MF) field of the hippocampus. None of the other TCDD-exposed groups differed from their respective control groups with regard to maze performance or hippocampal morphology. The reduction of IIP-MF field indicates a possible morphological basis for the learning deficit that was observed in the female AhR+/- mice. It is hypothesized that the effect of TCDD exposure is AhR dependent and that TCDD may alter GABAergic activity in the hippocampus of female mice during development.

  6. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  7. Morphology Control in co-evaporated bulk heterojunction solar cells

    OpenAIRE

    Kovacik, P; Assender, HE; Watt, AAR

    2013-01-01

    Bulk heterojunction solar cells made by vacuum co-evaporation of polythiophene (PTh) and fullerene (C60) are reported and the blend morphology control through donor-acceptor composition and post-situ annealing demonstrated. Co-deposited heterojunctions are shown to generate about 60% higher photocurrents than their thickness-optimized PTh/C60 planar heterojunction counterparts. Furthermore, by annealing the devices post-situ the power conversion efficiency is improved by as much as 80%. UV-vi...

  8. Targeted cellular ablation based on the morphology of malignant cells

    Science.gov (United States)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  9. Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Tisdale Michael J

    2008-01-01

    Full Text Available Abstract Background Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. Methods In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF, which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. Results WF decreased the viability of C2C12 myotubes, especially at concentrations of 20–25 μg.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. Conclusion These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model.

  10. Morphological alterations on Citrobacter freundii bacteria induced by erythrosine dye and laser light.

    Science.gov (United States)

    Silva, Josmary R; Cardoso, Gleidson; Maciel, Rafael R G; de Souza, Nara C

    2015-01-01

    The effect of the laser irradiation (532 nm) on films prepared from Citrobacter freundii mixed with erythrosine dye was investigated by using atomic force microscopy. It was observed that morphological changes of bacterial surfaces after irradiations, which were attributed to cellular damage of the outer membranes, are a result of a photodynamic effect. The results suggested that the combination of erythrosine and laser light at 532 nm could be a candidate to a photodynamic therapy against C. freundii.

  11. Apoptosis induction and mitochondria alteration in human HeLa tumour cells by photoproducts of Rose Bengal acetate.

    Science.gov (United States)

    Panzarini, Elisa; Tenuzzo, Bernadette; Palazzo, Fabio; Chionna, Alfonsina; Dini, Luciana

    2006-04-01

    The aim of this work was to investigate the apoptosis induction and mitochondria alteration after photodamage exerted by incubation of HeLa cells with Rose Bengal acetate-derivative (RBAc) followed by irradiation for a total dose of 1.6 J/cm2. This treatment was previously demonstrated to reduce cell viability under mild treatment conditions, suggesting the restoration of the photoactive molecule in particularly sensitive cell sites. Indeed, Rose Bengal (RB) is a very efficient photosensitizer, whose photophysical properties are inactivated by addition of the quencher group acetate. The RBAc behaves as a fluorogenic substrate by entering easily the cells where the original, photoactive molecule is restored by specific esterases. Different intracellular sites of photodamage of RB are present. In particular, fluorescence imaging of Rodamine 123 and JC-1 labelled cells showed altered morphology and loss of potential membrane of mitochondria. MTT and NR assays gave indications of alteration of mitochondrial and lysosomal enzyme activities. These damaged sites were likely responsible for triggering apoptosis. Significant amount of apoptotic cell death (about 40%) was induced after light irradiation followed RBAc incubation as revealed by morphological (modification of cell shape and blebs formation), cytochemical (FITC-Annexin-V positive cells) and nuclear fragmentation assays.

  12. Cell alterations induced by a biotherapic for influenza

    Directory of Open Access Journals (Sweden)

    José Nelson Couceiro

    2011-07-01

    Full Text Available Introduction: Influenza viruses have been responsible for highly contagious acute respiratory illnesses with high mortality, mainly in the elderly, which encourages the development of new drugs for the treatment of human flu. The biotherapics are medicines prepared from biological products, which are not chemically defined. They are compounded following the homeopathic procedures indicated for infectious diseases with known etiology [1]. Aim: The purpose of the present study is to verify cellular alterations induced by a biotherapic prepared from the infectious influenza A virus. Methodology: This biotherapic was prepared for this study in the homeopathic potency of 30X according to the Brazilian Homeopathic Pharmacopeia [2]. The concentration of 10% was not cytotoxic to cells, as verified by neutral red assay. The cellular alterations observed in MDCK cells were analyzed by optical microscopy for the quantification of mitosis, nucleoli and lipid bodies. The mitochondrial activity was assessed by MTT assay and the phosphosfructokinase-1 (PFK-1 enzyme activity was analyzed on the MDCK cells treated for 5, 10 and 30 days. Macrophages J778.G8 were treated with this biotherapic to evaluate the immunostimulatory cytokine release. Results: The cellular alterations observed in MDCK cells were verified by optical microscopy. The number of lipid bodies present in MDCK cells stimulated for 10 days was significantly lower (p <0.05 when compared to controls. The biotherapic significantly increased (p <0.05 the number of mitosis and the mitochondrial activity of MDCK cells stimulated for 10 and 30 days. These changes were confirmed by a significant reduction (p <0.05 on the PFK-1 activity. These results suggest that the biotherapic was able to activate the Krebs cycle and pentose-phosphate metabolism to the generation of amino acids and nucleotides, situations common to cells whose rate of mitosis is increased. The quantification of immunostimulatory

  13. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology.

    Science.gov (United States)

    Baum, Philip; Vogt, Miriam A; Gass, Peter; Unsicker, Klaus; von Bohlen und Halbach, Oliver

    2016-05-01

    Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test.

  14. Metabolic monosaccharides altered cell responses to anticancer drugs.

    Science.gov (United States)

    Chen, Long; Liang, Jun F

    2012-06-01

    Metabolic glycoengineering has been used to manipulate the glycochemistry of cell surfaces and thus the cell/cell interaction, cell adhesion, and cell migration. However, potential application of glycoengineering in pharmaceutical sciences has not been studied until recently. Here, we reported that Ac(4)ManNAc, an analog of N-acetyl-D-mannosamine (ManNAc), could affect cell responses to anticancer drugs. Although cells from different tissues and organs responded to Ac(4)ManNAc treatment differently, treated cells with increased sialic acid contents showed dramatically reduced sensitivity (up to 130 times) to anti-cancer drugs as tested on various drugs with distinct chemical structures and acting mechanisms. Neither increased P-glycoprotein activity nor decreased drug uptake was observed during the course of Ac(4)ManNAc treatment. However, greatly altered intracellular drug distributions were observed. Most intracellular daunorubicin was found in the perinuclear region, but not the expected nuclei in the Ac(4)ManNAc treated cells. Since sialoglycoproteins and gangliosides were synthesized in the Golgi, intracellular glycans affected intracellular signal transduction and drug distributions seem to be the main reason for Ac(4)ManNAc affected cell sensitivity to anticancer drugs. It was interesting to find that although Ac(4)ManNAc treated breast cancer cells (MDA-MB-231) maintained the same sensitivity to 5-Fluorouracil, the IC(50) value of 5-Fluorouracil to the same Ac(4)ManNAc treated normal cells (MCF-10A) was increased by more than 20 times. Thus, this Ac(4)ManNAc treatment enlarged drug response difference between normal and tumor cells provides a unique opportunity to further improve the selectivity and therapeutic efficiency of anticancer drugs.

  15. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  16. Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated Smoothened.

    Science.gov (United States)

    Visbal, Adriana P; LaMarca, Heather L; Villanueva, Hugo; Toneff, Michael J; Li, Yi; Rosen, Jeffrey M; Lewis, Michael T

    2011-04-01

    The Hedgehog (Hh) signaling network is critical for patterning and organogenesis in mammals, and has been implicated in a variety of cancers. Smoothened (Smo), the gene encoding the principal signal transducer, is overexpressed frequently in breast cancer, and constitutive activation in MMTV-SmoM2 transgenic mice caused alterations in mammary gland morphology, increased proliferation, and changes in stem/progenitor cell number. Both in transgenic mice and in clinical specimens, proliferative cells did not usually express detectable Smo, suggesting the hypothesis that Smo functioned in a non-cell autonomous manner to stimulate proliferation. Here, we employed a genetically tagged mouse model carrying a Cre-recombinase-dependent conditional allele of constitutively active Smo (SmoM2) to test this hypothesis. MMTV-Cre- or adenoviral-Cre-mediated SmoM2 expression in the luminal epithelium, but not in the myoepithelium, was required for the hyper-proliferative phenotypes. High levels of proliferation were observed in cells adjacent or in close-proximity to Smo expressing cells demonstrating that SmoM2 expressing cells were stimulating proliferation via a paracrine or juxtacrine mechanism. In contrast, Smo expression altered luminal cell differentiation in a cell-autonomous manner. SmoM2 expressing cells, purified by fluorescence activated cell sorting (FACS) via the genetic fluorescent tag, expressed high levels of Ptch2, Gli1, Gli2, Jag2 and Dll-1, and lower levels of Notch4 and Hes6, in comparison to wildtype cells. These studies provide insight into the mechanism of Smo activation in the mammary gland and its possible roles in breast tumorigenesis. In addition, these results also have potential implications for the interpretation of proliferative phenotypes commonly observed in other organs as a consequence of hedgehog signaling activation.

  17. Sucralose sweetener in vivo effects on blood constituents radiolabeling, red blood cell morphology and radiopharmaceutical biodistribution in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, G.S.; Pereira, M.O. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Benarroz, M.O.; Frydman, J.N.G.; Rocha, V.C. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Pereira, M.J. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Fisiologia, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Fonseca, A.S., E-mail: adnfonseca@ig.com.b [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Estado do Rio de Janeiro, Instituto Biomedico, Departamento de Ciencias Fisiologicas, Rua Frei Caneca, 94, Rio de Janeiro 20211040 (Brazil); Medeiros, A.C. [Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Bernardo-Filho, M. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Instituto Nacional do Cancer, Coordenadoria de Pesquisa Basica, Praca Cruz Vermelha, 23, 20230130 Rio de Janeiro (Brazil)

    2011-01-15

    Effects of sucralose sweetener on blood constituents labelled with technetium-99m ({sup 99m}Tc) on red blood cell (RBC) morphology, sodium pertechnetate (Na{sup 99m}TcO{sub 4}) and diethylenetriaminepentaacetic acid labeled with {sup 99m}Tc ({sup 99m}Tc-DTPA) biodistribution in rats were evaluated. Radiolabeling on blood constituents from Wistar rats was undertaken for determining the activity percentage (%ATI) on blood constituents. RBC morphology was also evaluated. Na{sup 99m}TcO{sub 4} and {sup 99m}Tc-DTPA biodistribution was used to determine %ATI/g in organs. There was no alteration on RBC blood constituents and morphology %ATI. Sucralose sweetener was capable of altering %ATI/g of the radiopharmaceuticals in different organs. These findings are associated to the sucralose sweetener in specific organs.

  18. Altered expression of nuclear matrix proteins in etoposide induced apoptosis in HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The events of cell death and the expression of nuclear matrix protein(NMP)have been investigated in a promyelocytic leukemic cell line HL-60 induced with etoposide.By means of TUNEL assay,the nuclei displayed a characteristic morphology change,and the amount of apoptotic cells increased early and reached maximun about 39% after treatment with etoposide for 2 h.Nucleosomal DNA fragmentation was observed after treatment for 4 h.The morphological change of HL-60 cells,thus,occurred earlier than the appearance of DNA ladder.Total nuclear matrix proteins were analyzed by 2-dimensional gel electrophoresis.Differential expression of 59 nuclear matrix proteins was found in 4 h etoposide treated cells.Western blotting was then performed on three nuclear matrix acssociated proteins,PML,HSC70 and NuMA.The expression of the suppressor PML protein and heat shock protein HSC70 were significantly upregulated after etoposide treatment,while NuMA,a nuclear mitotic apparatus protein,was down regulated.These results demonstrate that significant biochemical alterations in nuclear matrix proteins take place during the apoptotic process.

  19. Genetic alterations in head and neck squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Nagai M.A.

    1999-01-01

    Full Text Available The genetic alterations observed in head and neck cancer are mainly due to oncogene activation (gain of function mutations and tumor suppressor gene inactivation (loss of function mutations, leading to deregulation of cell proliferation and death. These genetic alterations include gene amplification and overexpression of oncogenes such as myc, erbB-2, EGFR and cyclinD1 and mutations, deletions and hypermethylation leading to p16 and TP53 tumor suppressor gene inactivation. In addition, loss of heterozygosity in several chromosomal regions is frequently observed, suggesting that other tumor suppressor genes not yet identified could be involved in the tumorigenic process of head and neck cancers. The exact temporal sequence of the genetic alterations during head and neck squamous cell carcinoma (HNSCC development and progression has not yet been defined and their diagnostic or prognostic significance is controversial. Advances in the understanding of the molecular basis of head and neck cancer should help in the identification of new markers that could be used for the diagnosis, prognosis and treatment of the disease.

  20. Redefining lumbosacral transitional vertebrae (LSTV) classification: integrating the full spectrum of morphological alterations in a biomechanical continuum.

    Science.gov (United States)

    Mahato, Niladri Kumar

    2013-07-01

    In light of advancements in imaging techniques and basic science studies, this study proposes modifications in the existing Castellvi's classification for better clinical and biomechanical correlation of LSTV subtypes. LSTVs are commonly occurring variations of the lower spine. The current system does not include functionally important structural variations of the neural arch components and sacral auricular surfaces induced by LSTV afflictions within the classification. This study is an attempt to integrate vital biomechanical correlates into the proposed modification. Emerging diagnostic and clinical evidence also point out the need of understating subdivisions within LSTV anomalies as distinctly stratified entities to get a better correlation with the biomechanical continuum involved with LSTV associated low back pain. Important neural arch element and sacral auricular surface alterations associated with each LSTV subtypes were studied from a large number of osseous samples and data available from published LSTV related clinical and morphological studies. Sacralisation and lumbarisation were designated separate stratifications in the proposed revision, with arrangement of the LSTV subtypes as members of a LSTV anatomical 'array' extending cranio-caudally at the lumbo-sacral junction. The proposed modification is capable of identifying LSTV associated structural defects (in anterior and posterior elements), their exact level of occurrence and status of facet and auricular surface morphologies. Coding for the inclusion of biomechanically important alterations associated with LSTV types within the proposed new classification would probably be helpful in better clinical correlation of LSTV.

  1. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters.

    Science.gov (United States)

    Ikeno, Tomoko; Nelson, Randy J

    2015-02-01

    In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.

  2. CD20(+) B Cell Depletion Alters T Cell Homing

    NARCIS (Netherlands)

    Kap, Yolanda S.; van Driel, Nikki; Laman, Jon D.; Tak, Paul P.; 't Hart, Bert A.

    2014-01-01

    Depleting mAbs against the pan B cell marker CD20 are remarkably effective in the treatment of autoimmune-mediated inflammatory disorders, but the underlying mechanisms are poorly defined. The primary objective of this study was to find a mechanistic explanation for the remarkable clinical effect of

  3. Altered B cell receptor signaling in human systemic lupus erythematosus

    Science.gov (United States)

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  4. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2.

    Science.gov (United States)

    Bucha, Sudha; Mukhopadhyay, Debashis; Bhattacharyya, Nitai Pada

    2015-10-02

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the increase in CAG repeats beyond 36 at the exon1 of the gene Huntingtin (HTT). Among the various dysfunctions of biological processes in HD, transcription deregulation due to abnormalities in actions of transcription factors has been considered to be one of the important pathological conditions. In addition, deregulation of microRNA (miRNA) expression has been described in HD. Earlier, expression of microRNA-214 (miR-214) has been shown to increase in HD cell models and target HTT gene; the expression of the later being inversely correlated to that of miR-214. In the present communication, we observed that the expressions of several HTT co-expressed genes are modulated by exogenous expression of miR-214 or by its mutant. Among several HTT co-expressed genes, MFN2 was shown to be the direct target of miR-214. Exogenous expression of miR-214, repressed the expression of MFN2, increased the distribution of fragmented mitochondria and altered the distribution of cells in different phases of cell cycle. In summary, we have shown that increased expression of miR-214 observed in HD cell model could target MFN2, altered mitochondrial morphology and deregulated cell cycle. Inhibition of miR-214 could be a possible target of intervention in HD pathogenesis.

  5. Aluminum oxide nanoparticles alter cell cycle progression through CCND1 and EGR1 gene expression in human mesenchymal stem cells.

    Science.gov (United States)

    Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2016-05-01

    Aluminum oxide nanoparticles (Al2 O3 -NPs) are important ceramic materials that have been used in a variety of commercial and industrial applications. However, the impact of acute and chronic exposure to Al2 O3 -NPs on the environment and on human health has not been well studied. In this investigation, we evaluated the cytotoxic effects of Al2 O3 -NPs on human mesenchymal stem cells (hMSCs) by using a cell viability assay and observing cellular morphological changes, analyzing cell cycle progression, and monitoring the expression of cell cycle response genes (PCNA, EGR1, E2F1, CCND1, CCNC, CCNG1, and CYCD3). The Al2 O3 -NPs reduced hMSC viability in a dose- and time-dependent manner. Nuclear condensation and fragmentation, chromosomal DNA fragmentation, and cytoplasmic vacuolization were observed in Al2 O3 -NP-exposed cells. The nuclear morphological changes indicated that Al2 O3 -NPs alter cell cycle progression and gene expression. The cell cycle distribution revealed that Al2 O3 -NPs cause cell cycle arrest in the sub-G0-G1 phase, and this is associated with a reduction in the cell population in the G2/M and G0/G1 phases. Moreover, Al2 O3 -NPs induced the upregulation of cell cycle response genes, including EGR1, E2F1, and CCND1. Our results suggested that exposure to Al2 O3 -NPs could cause acute cytotoxic effects in hMSCs through cell cycle regulatory genes.

  6. Morphological and protein profile comparison of large vessel and microvascular endothelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Beer, D.M.; Kim, J.S.; Carson, M.P.; Haudeuschild, C.C.; Patton, W.F.; Jacobson, B.S.

    1986-05-01

    Bovine adrenal medulla (AmMEC) and brain (BrMEC) microvessel endothelial cells, and bovine aortic (BAE) endothelial cells were isolated and cultured under identical conditions using a modification of a technique previously described for BrMEC. The cells were isolated and passaged under conditions minimizing cell surface alterations. Primary cultures were confluent in 4-6 days at a plating density in the region of 10/sup 4/ cells/cm/sup 2/. BAEs maintained a cobblestone morphology and a denser monolayer than MECs in primary and passaged cells whether the cells were passaged using Pancreatin, Trypsin-EDTA, or Collagenase-EDTA. MECs were initially elongate and became more like BAEs with passaging. BAEs and AmMECs were examined for differences in whole cell, Triton extracted cytoskeleton and plasma membrane (PM) protein profiles by two-dimensional gel electrophoresis. Cells were labeled with /sup 35/S-methionine and PM by lactoperoxidase catalyzed iodination. Though for the most part protein patterns were similar, several proteins in the PM and cytoskeletal preparations differed. A significant difference in the isoelectric forms of proteins with the same molecular weight was observed in the PM.

  7. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex.

    Science.gov (United States)

    Muhammad, A; Carroll, C; Kolb, B

    2012-08-02

    The long-term effects of stress during development have been well characterized. However, the effects of developmental stress on the underlying neurological mechanisms related to the reward system are not well understood. The present report studied the long term effects of stress during development on the structural plasticity in the cortical and subcortical regions. Rats exposed to stress during embryonic development (prenatal stress; PS) or soon after birth (maternal separation; MS) were studied for structural alteration at the neuronal level in the nucleus accumbens (NAc), orbital frontal cortex (OFC), and medial prefrontal cortex (mPFC). The findings show that stress during development increased dendritic branching, length, and spine density in the NAc, and subregions of the PFC. PS experience increased dendritic branching and length in the mPFC apical and basilar dendrites. In contrast, a PS-associated decrease in dendritic branching and length was observed in the basilar branches of the OFC. MS resulted in an increase in dendritic growth and spine density in the subregions of the PFC. The effect of PS on neuroanatomy was more robust than MS despite the shorter duration and intensity. The altered dendritic growth and spine density associated with stress during development could have potential impact on NAc and PFC related behaviors.

  8. Decreased Reelin Expression and Organophosphate Pesticide Exposure Alters Mouse Behaviour and Brain Morphology

    Directory of Open Access Journals (Sweden)

    Brian R. Mullen

    2013-01-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders. In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon. Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.

  9. Altered river morphology in south africa related to the permian-triassic extinction

    Science.gov (United States)

    Ward; Montgomery; Smith

    2000-09-08

    The Permian-Triassic transition in the Karoo Basin of South Africa was characterized by a rapid and apparently basin-wide change from meandering to braided river systems, as evidenced by preserved sedimentary facies. This radical changeover in river morphology is consistent with geomorphic consequences stemming from a rapid and major die-off of rooted plant life in the basin. Evidence from correlative nonmarine strata elsewhere in the world containing fluvial Permian-Triassic boundary sections suggests that a catastrophic terrestrial die-off of vegetation was a global event, producing a marked increase in sediment yield as well as contributing to the global delta(13)C excursion across the Permian-Triassic boundary.

  10. Experimental Diabetes Alters the Morphology and Nano-Structure of the Achilles Tendon

    Science.gov (United States)

    de Oliveira, Rodrigo Ribeiro; Medina de Mattos, Rômulo; Magalhães Rebelo, Luciana; Guimarães Meireles Ferreira, Fernanda; Tovar-Moll, Fernanda; Eurico Nasciutti, Luiz; de Castro Brito, Gerly Anne

    2017-01-01

    Although of several studies that associate chronic hyperglycemia with tendinopathy, the connection between morphometric changes as witnessed by magnetic resonance (MR) images, nanostructural changes, and inflammatory markers have not yet been fully established. Therefore, the present study has as a hypothesis that the Achilles tendons of rats with diabetes mellitus (DM) exhibit structural changes. The animals were randomly divided into two experimental groups: Control Group (n = 06) injected with a vehicle (sodium citrate buffer solution) and Diabetic Group (n = 06) consisting of rats submitted to intraperitoneal administration of streptozotocin. MR was performed 24 days after the induction of diabetes and images were used for morphometry using ImageJ software. Morphology of the collagen fibers within tendons was examined using Atomic Force microscopy (AFM). An increase in the dimension of the coronal plane area was observed in the diabetic group (8.583 ± 0.646 mm2/100g) when compared to the control group (4.823 ± 0.267 mm2/100g) resulting in a significant difference (p = 0.003) upon evaluating the Achilles tendons. Similarly, our analysis found an increase in the size of the transverse section area in the diabetic group (1.328 ± 0.103 mm2/100g) in comparison to the control group (0.940 ± 0.01 mm2/100g) p = 0.021. The tendons of the diabetic group showed great irregularity in fiber bundles, including modified grain direction and jagged junctions and deformities in the form of collagen fibrils bulges. Despite the morphological changes observed in the Achilles tendon of diabetic animals, IL1 and TNF-α did not change. Our results suggest that DM promotes changes to the Achilles tendon with important structural modifications as seen by MR and AFM, excluding major inflammatory changes. PMID:28095484

  11. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hjort, C.M.; Hansen, K.;

    2002-01-01

    abnormalities, such as ballooning cells, intrahyphal hyphae and conidial scars. The growth was severely inhibited in the presence of 10 mg CFW l(-1). In none of the constructed strains did the cell-wall composition differ from the wild-type. Northern analysis indicated no change in the transcription......, analysis of the cell-wall composition and growth in the presence of Calcofluor white (CFW). The chsB disrupted strain and the uninduced P-niiA,-ChsB strain exhibited hyperbranching, they had a lower level of conidiation than the wild-type and were sensitive to CFW at 50 mg l(-1). When chsB transcription...... was induced in the strain containing the p(niiA)-chsB construct, the strain displayed wild-type morphology on solid medium and at sub-maximum growth rates but the wild-type morphology was not fully restored during rapid growth in batch cultivation. The csmA disruption strain displayed morphological...

  12. Metabolic flux prediction in cancer cells with altered substrate uptake.

    Science.gov (United States)

    Schwartz, Jean-Marc; Barber, Michael; Soons, Zita

    2015-12-01

    Proliferating cells, such as cancer cells, are known to have an unusual metabolism, characterized by an increased rate of glycolysis and amino acid metabolism. Our understanding of this phenomenon is limited but could potentially be used in order to develop new therapies. Computational modelling techniques, such as flux balance analysis (FBA), have been used to predict fluxes in various cell types, but remain of limited use to explain the unusual metabolic shifts and altered substrate uptake in human cancer cells. We implemented a new flux prediction method based on elementary modes (EMs) and structural flux (StruF) analysis and tested them against experimentally measured flux data obtained from (13)C-labelling in a cancer cell line. We assessed the quality of predictions using different objective functions along with different techniques in normalizing a metabolic network with more than one substrate input. Results show a good correlation between predicted and experimental values and indicate that the choice of cellular objective critically affects the quality of predictions. In particular, lactate gives an excellent correlation and correctly predicts the high flux through glycolysis, matching the observed characteristics of cancer cells. In contrast with FBA, which requires a priori definition of all uptake rates, often hard to measure, atomic StruFs (aStruFs) are able to predict uptake rates of multiple substrates.

  13. Quantitative analysis of the nanoscale intra-nuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy study

    CERN Document Server

    Sahay, Peeyush; Ghimire, Hemendra M; Almabadi, Huda; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2015-01-01

    Chronic alcoholism is known to alter morphology of hippocampal, an important region of cognitive function in the brain. We performed quantification of nanoscale structural alterations in nuclei of hippocampal neuron cells due to chronic alcoholism, in mice model. Transmission electron microscopy images of the neuron cells were obtained and the degrees of structural alteration, in terms of mass density fluctuations, were determined using the recently developed light localization analysis technique. The results, obtained at the length scales ranging from 33 to 195 nm, show that the 4-week alcohol fed mice have higher degree of structural alteration in comparison to the control mice. The degree of structural alterations starts becoming significantly distinguishable around 100 nm sample length, which is the typical length scale of the building blocks of cells, such as DNA, RNA, etc. Different degrees of structural alterations at such length scales suggest possible structural rearrangement of chromatin inside the ...

  14. Genetic alterations in B-cell non-Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Magić Zvonko

    2005-01-01

    Full Text Available Background. Although the patients with diagnosed B-NHL are classified into the same disease stage on the basis of clinical, histopathological, and immunological parameters, they respond significantly different to the applied treatment. This points out the possibility that within the same group of lymphoma there are different diseases at molecular level. For that reason many studies deal with the detection of gene alterations in lymphomas to provide a better framework for diagnosis and treatment of these hematological malignancies. Aim. To define genetic alterations in the B-NHL with highest possibilities for diagnostic purposes and molecular detection of MRD. Methods. Formalin fixed and paraffin embedded lymph node tissues from 45 patients were examined by different PCR techniques for the presence of IgH and TCR γ gene rearrangement; K-ras and H-ras mutations; c-myc amplification and bcl-2 translocation. There were 34 cases of B-cell non-Hodgkin’s lymphoma (B-NHL, 5 cases of T-cell non-Hodgkin’s lymphoma (T-NHL and 6 cases of chronic lymphadenitis (CL. The mononuclear cell fraction of the peripheral blood of 12 patients with B-NHL was analyzed for the presence of monoclonality at the time of diagnosis and in 3 to 6 months time intervals after an autologous bone marrow transplantation (BMT. Results. The monoclonality of B-lymphocytes, as evidenced by DNA fragment length homogeneity, was detected in 88 % (30/34 of B-NHL, but never in CL, T-NHL, or in normal PBL. Bcl-2 translocation was detected in 7/31 (22.6% B-NHL specimens, c-myc amplification 9/31 (29%, all were more than doubled, K-ras mutations in 1/31 (3.23% and H-ras mutations in 2/31 (6.45% of the examined B-NHL samples. In the case of LC and normal PBL, however, these gene alterations were not detected. All the patients (12 with B-NHL had dominant clone of B-lymphocyte in the peripheral blood at the time of diagnosis while only in 2 of 12 patients MRD was detected 3 or 6 months after

  15. Altered T cell costimulation during chronic hepatitis B infection.

    Science.gov (United States)

    Barboza, Luisa; Salmen, Siham; Peterson, Darrell L; Montes, Henry; Colmenares, Melisa; Hernández, Manuel; Berrueta-Carrillo, Leidith E; Berrueta, Lisbeth

    2009-01-01

    T-cell response to hepatitis B virus (HBV) is vigorous, polyclonal and multi-specific in patients with acute hepatitis who ultimately clear the virus, whereas it is narrow and inefficient in patients with chronic disease, where inappropriate early activation events could account for viral persistence. We investigated the induction of activation receptors and cytokine production in response to HBcAg and crosslinking of CD28 molecules, in CD4+ cells from a group of chronically infected patients (CIP) and naturally immune subjects (NIS). We demonstrated that CD4+ cells from CIP did not increase levels of CD40L and CD69 following stimulation with HBcAg alone or associated to CD28 crosslinking, in contrast to subjects that resolved the infection (p<0.01). Furthermore, CD4+ cells from CIP produced elevated levels of IL-10 in response to HBcAg. These results suggest that a predominant inhibitory environment may be responsible for altered T cell costimulation, representing a pathogenic mechanism for viral persistence.

  16. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  17. Low-Intensity physical activity beneficially alters the ultrastructural renal morphology of spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Angélica Beatriz Garcia-Pinto

    2011-01-01

    Full Text Available INTRODUCTION AND OBJECTIVE: Kidney disorders can cause essential hypertension, which can subsequently cause renal disease. High blood pressure is also common among those with chronic kidney disease; moreover, it is a well-known risk factor for a more rapid progression to kidney failure. Because hypertension and kidney function are closely linked, the present study aimed to observe the beneficial effects of low-intensity physical activity on structural and ultrastructural renal morphology and blood pressure in normotensive and spontaneously hypertensive rats. METHOD: Male Wistar-Kyoto rats and spontaneously hypertensive rats were randomly allocated into four groups: sedentary or exercised Wistar-Kyoto and sedentary or exercised spontaneously hypertensive rats. The exercise lasted 20 weeks and consisted of treadmill training for 1 hour/day, 5 days/week. RESULTS: The exercised, spontaneously hypertensive rats showed a significant blood pressure reduction of 26%. The body masses of the Wistar-Kyoto and spontaneously hypertensive strains were significantly different. There were improvements in some of the renal structures of the animals treated with physical activity: (i the interdigitations of the proximal and distal convoluted tubules; (ii the basal membrane of the proximal and distal convoluted tubules; and (iii in the basal membrane, slit diaphragm and pedicels of the glomerular filtration barrier. The spontaneously hypertensive rats also showed a decreased expression of connexin-43. CONCLUSION: Physical exercise could be a therapeutic tool for improving kidney ultrastructure and, consequently, renal function in hypertensive individuals.

  18. Suppression of gliadins results in altered protein body morphology in wheat.

    Science.gov (United States)

    Gil-Humanes, Javier; Pistón, Fernando; Shewry, Peter R; Tosi, Paola; Barro, Francisco

    2011-08-01

    Wheat gluten proteins, gliadins and glutenins, are of great importance in determining the unique biomechanical properties of wheat. Studies have therefore been carried out to determine their pathways and mechanisms of synthesis, folding, and deposition in protein bodies. In the present work, a set of transgenic wheat lines has been studied with strongly suppressed levels of γ-gliadins and/or all groups of gliadins, using light and fluorescence microscopy combined with immunodetection using specific antibodies for γ-gliadins and HMW glutenin subunits. These lines represent a unique material to study the formation and fusion of protein bodies in developing seeds of wheat. Higher amounts of HMW subunits were present in most of the transgenic lines but only the lines with suppression of all gliadins showed differences in the formation and fusion of the protein bodies. Large rounded protein bodies were found in the wild-type lines and the transgenic lines with reduced levels of γ-gliadins, while the lines with all gliadins down-regulated had protein bodies of irregular shape and irregular formation. The size and number of inclusions, which have been reported to contain triticins, were also higher in the protein bodies in the lines with all the gliadins down-regulated. Changes in the protein composition and PB morphology reported in the transgenic lines with all gliadins down-regulated did not result in marked changes in the total protein content or instability of the different fractions.

  19. Acetylsalicylic acid and morphology of red blood cells

    Directory of Open Access Journals (Sweden)

    Jacques Natan Grinapel Frydman

    2010-06-01

    Full Text Available This work evaluated the effect of in vitro and in vivo treatment with ASA on the morphology of the red blood cells. Blood samples or Wistar rats were treated with ASA for one hour. Blood samples or animals treated with saline were used as control group. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of red blood cells were evaluated under optical microscopy. Data showed that the in vitro treatment for one hour with ASA at higher dose used significantly (pEste trabalho avaliou o efeito do tratamento in vitro e in vivo com AAS na morfologia dos eritrócitos. Amostras de sangue ou ratos Wistar foram tratadas com AAS por uma hora. Amostras sangüíneas ou animais tratados com salina foram utilizados como grupos controle. Distensões de sangue foram preparadas, fixadas, coradas e a análise morfológica qualitativa e quantitativa dos eritrócitos foi realizada em microscópio óptico. Os dados mostraram que o tratamento in vitro por uma hora com AAS na maior dose utilizada modificou significativamente (p<0.05 a relação perímetro/área dos eritrócitos. Não foram obtidas alterações morfológicas com o tratamento in vivo. O uso do AAS em doses altas poderia interferir na forma dos eritrócitos.

  20. Depolarization of the tegument precedes morphological alterations in Echinococcus granulosus protoscoleces incubated with ivermectin.

    Science.gov (United States)

    Pérez-Serrano, J; Grosman, C; Urrea-París, M A; Denegri, G; Casado, N; Rodríguez-Caabeiro, F

    2001-10-01

    The nematocidal activity of ivermectin (IVM) largely arises from its activity as a potent agonist of muscular and neuronal glutamate-gated chloride channels. A cestocidal effect has also been suggested following in vitro treatments, but the molecular basis of this activity is not clear. We studied the effect of IVM on the metacestode stage of the tapeworm Echinococcus granulosus by assessing the viability, ultrastructure, and tegumental membrane potential as a function of drug concentration and incubation time. Concentrations of 0.1 and 1.0 microg/ml of IVM had no effect on any of these three parameters for up to 6 days of treatment. A concentration of 10 microg/ml, however, elicited a sequence of alterations that started with a approximately 20-mV depolarization of the tegumental membrane, and was followed by rostellar disorganization, rigid paralysis and, eventually, loss of viability. It is likely that the IVM-induced depolarization of the tegument acts as the signal that initiates the cascade of degenerative processes that leads to the parasite's death. This would place the tegument as the primary target of action of IVM on cestodes. As an appropriate chemotherapy for the hydatid disease is still lacking, the cestocidal effect of IVM reported here is worth considering.

  1. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K.; Ghimire, Hemendra M.; Almabadi, Huda M.; Tripathi, Vibha; Mohanty, Samarendra K.; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-04-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10–12 week-old mice fed a Lieber–DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  2. Is there a correlation between structural alterations and retinal sensitivity in morphological patterns of diabetic macular edema?

    Directory of Open Access Journals (Sweden)

    Abhishek R Kothari

    2013-01-01

    Full Text Available Spectral domain optical coherence tomography (SDOCT enables enhanced visualization of retinal layers and delineation of structural alterations in diabetic macular edema (DME. Microperimetry (MP is a new technique that allows fundus-related testing of local retinal sensitivity. Combination of these two techniques would enable a structure-function correlation with insights into pathomechanism of vision loss in DME. To correlate retinal structural derangement with retinal sensitivity alterations in cases with diabetic macular edema, using SDOCT and MP. Prospective study of 34 eyes of 30 patients with DME. All patients underwent comprehensive ophthalmic examination, fluorescein angiography, microperimetry and SDOCT. Four distinct morphological patterns of DME were identified- diffuse retinal thickening (DRT, cystoid macular edema (CME, schitic retinal thickening (SRT and neourosensory detachment (NSD of fovea. Some retinal loci presented with a mixture of above patterns There was significant difference in retinal thickness between groups (P<0.001. Focal retinal sensitivity measurement revealed relatively preserved retinal sensitivity in areas with DRT (13.8 dB, moderately reduced sensitivity (7.9 dB in areas with CME, and gross retinal sensitivity loss in areas with SRT (1.2 dB and NSD (4.7 dB (P<0.001. Analysis of regional scotoma depth demonstrated similar pattern. Retinal sensitivity showed better correlation to OCT pattern (r=-0.68, P<0.001 than retinal thickness (r=-0.44, P<0.001. Structure-function correlation allows better understanding of the pathophysiology of visual loss in different morphological types of DME. Classification of macular edema into these categories has implications on the prognosis and predictive value of treatment.

  3. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function.

    Directory of Open Access Journals (Sweden)

    Javier R Ambrosio

    Full Text Available The effects of testosterone (T4 and dihydrotestosterone (DHT on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml and time exposed (10 days in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.

  4. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function.

    Science.gov (United States)

    Ambrosio, Javier R; Valverde-Islas, Laura; Nava-Castro, Karen E; Palacios-Arreola, M Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge

    2015-01-01

    The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.

  5. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells.

    Directory of Open Access Journals (Sweden)

    Verόnica Contreras-Shannon

    Full Text Available BACKGROUND: Metabolic syndrome (MetS is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined. METHODOLOGY/PRINCIPAL FINDINGS: Cultured mouse myoblasts (C2C12, adipocytes (3T3-L1, hepatocytes (FL-83B, and monocytes (RAW 264.7 were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line. CONCLUSIONS/SIGNIFICANCE: Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated

  6. OSTEOPROTEGERIN INJECTION INDUCES MORPHOLOGICAL AND FUNCTIONAL ALTERATIONS IN MOUSE PANCREATIC ISLETS

    OpenAIRE

    2010-01-01

    Abstract Although serum osteoprotegerin (OPG) is significantly increased in diabetic subjects, its potential role in beta cell dysfunction has not been investigated. This study aimed to assess the effect of full length OPG administered in vivo in mice on pancreatic islet structure and function and its interaction with the renin-angiotensin system (RAS). OPG-treated mice showed increased islet monocyte/macrophage infiltration, fibrosis and apoptosis with reduction of isle...

  7. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    Directory of Open Access Journals (Sweden)

    Paolo Cremaschi

    Full Text Available Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  8. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    Science.gov (United States)

    Cremaschi, Paolo; Oliverio, Matteo; Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  9. Preserved sensory-motor function despite large-scale morphological alterations in a series of patients with holocord syringomyelia.

    Science.gov (United States)

    Awai, Lea; Curt, Armin

    2015-03-15

    Although the central nervous system has a limited capacity for regeneration after acute brain and spinal cord injuries, it can reveal extensive morphological changes. Occasionally, the formation of an extensive syrinx in the spinal cord can be observed that causes no or only limited signs of functional impairment. This condition creates a unique opportunity to evaluate the mismatch between substantial morphological changes and functional outcomes. We identified seven patients with holocord syringomyelia affecting the cervical cord following chronic traumatic thoracic/lumbar spinal cord injury (19-34 years after injury) or holocord syringomyelia of non-traumatic origin, and anatomical syrinx dimensions (length, cross-sectional area) were determined using sagittal and axial magnetic resonance imaging scans. Motor- and sensory-pathway integrity were evaluated using electrophysiological assessments (i.e., motor, dermatomal sensory, and dermatomal contact-heat [dCHEP] evoked potentials, as well as nerve conduction studies). These were specifically compared to clinical measures of upper-limb strength and grasping performance, including three-dimensional motion analysis. Despite extensive anatomical changes of the cervical cord (on average 26% reduction of residual spinal cord area and intrusion of almost the entire cervical spinal cord), a clinically relevant impairment of upper-limb motor function was absent while only subtle sensory deficits could be detected. dCHEPs revealed the highest sensitivity by disclosing impairments of spinothalamic pathways. Comparable to that of the brain, extensive anatomical changes of the spinal cord can occur with only subtle functional impairment. The time scale of slowly-emerging morphological alterations is essential to permit an enormous capacity for plasticity of the spinal cord.

  10. Prenatal stress alters the behavior and dendritic morphology of the medial orbitofrontal cortex in mouse offspring during lactation.

    Science.gov (United States)

    Gutiérrez-Rojas, Cristian; Pascual, Rodrigo; Bustamante, Carlos

    2013-11-01

    Several preclinical and clinical studies have shown that prenatal stress alters neuronal dendritic development in the prefrontal cortex, together with behavioral disturbances (anxiety). Nevertheless, neither whether these alterations are present during the lactation period, nor whether such findings may reflect the onset of anxiety disorders observed in childhood and adulthood has been studied. The central aim of the present study was to determine the effects of prenatal stress on the neuronal development and behavior of mice offspring during lactation (postnatal days 14 and 21). We studied 24 CF-1 male mice, grouped as follows: (i) control P14 (n=6), (ii) stressed P14 (n=6), (iii) control P21 (n=6) and (iv) stressed P21 (n=6). On the corresponding days, animals were evaluated with the open field test and sacrificed. Their brains were then stained in Golgi-Cox solution for 30 days. The morphological analysis dealt with the study of 96 pyramidal neurons. The results showed, first, that prenatal stress resulted in a significant (i) decrease in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 14, (ii) increase in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 21, and (iii) reduction in exploratory behavior at postnatal day 14 and 21.

  11. Alteration of gene expression in human cells treated with the agricultural chemical diazinon: possible interaction in fetal development.

    Science.gov (United States)

    Mankame, T; Hokanson, R; Fudge, R; Chowdhary, R; Busbee, D

    2006-05-01

    Agricultural chemicals frequently alter human health or development, typically because they have endocrine agonist or antagonist activities and alter hormone-regulation of gene expression. The insecticide, diazinon, was evaluated for gene expression disrupting activity using MCF-7 cells, an estrogen-dependent human cell line, to examine the capacity of the insecticide to disrupt gene expression essential for morphological development, immune system development or function, and/or central nervous system development and function. MCF-7 cells were treated with 30, 50 or 67 ppm diazinon, and gene expression was measured in treated cells compared to expression in untreated or estrogen-treated cells. DNA microarray analysis of diazinon-treated cells showed significant up- or down-regulation of a large number of genes compared to untreated cells. Of the 600 human genes on the Phase 1 chip utilized for these studies, two specific genes--calreticulin and TGF-beta3--were selected for corroboration using quantitative real time PCR (qrtPCR). qrtPCR, completed to assess gene expression levels for calreticulin and TGFbeta3, confirmed results showing significant up-regulation of these two genes obtained from the microarray data. These studies were designed to provide baseline data on the gene expression-altering capacity of a specific chemical, diazinon, and allow a partial assessment of the potentially deleterious effects associated with exposure of human cells to this chemical. Currently, it is not known whether results from cells in vitro can be extrapolated to human health consequences of chemical exposure.

  12. Morphological Changes of Myoepithelial Cells in the Rat Submandibular Gland Following the Application of Surgical Stimuli

    Science.gov (United States)

    Kawabe, Yoshihiro; Mizobe, Kenich; Bando, Yasuhiko; Sakiyama, Koji; Taira, Fuyoko; Tomomura, Akito; Araki, Hisao; Amano, Osamu

    2016-01-01

    Myoepithelial cells (MECs) exist on the basal surface of acini in major exocrine glands, include myofilaments and various constructive proteins, and share characteristics with smooth muscle and epithelial cells. MECs project several ramified processes to invest acini, and possibly contract to compress acini to support the secretion by the glandular cells. However, the functional roles of MECs in salivary secretion are still unclear. We investigated morphological changes in immunostained MECs using the anti-α-smooth muscle actin (αSMA) antibody in operated or non-operated contralateral (NC) submandibular glands after partial or total resection. Furthermore, we investigated and discuss other salivary glands of rats. MECs in the parotid, sublingual and submandibular gland of adult rats exhibited different shapes and localizations. After surgery, in both operated and NC glands, the number of MECs and αSMA-immunopositive areas increased significantly. Three-dimensional analysis using a confocal laser-scanning microscope revealed that substantial and significant enhancement became evident in the number, length, and thickness of MEC-processes covering acini of the operated and NC submandibular glands. The preset findings indicate that MECs alter the morphology of their processes in operated and NC glands after surgery of the partial or total resection. It is suggested that MECs promote salivary secretion using elongated, thickened, and more ramified processes. PMID:28127104

  13. Altered Polarization, Morphology, and Impaired Innate Immunity Germane to Resident Peritoneal Macrophages in Mice with Long-Term Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hui-Fang Liu

    2012-01-01

    Full Text Available Type 2 diabetes (T2D is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.

  14. Neuronize: a tool for building realistic neuronal cell morphologies

    Science.gov (United States)

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  15. Drug-induced hemolytic anemia and thrombocytopenia associated with alterations of cell membrane lipids and acanthocyte formation.

    Science.gov (United States)

    Poulet, Frederique M; Penraat, Kelley; Collins, Nathaniel; Evans, Ellen; Thackaberry, Evan; Manfra, Denise; Engstrom, Laura; Geissler, Richard; Geraci-Erck, Maria; Frugone, Carlos; Abutarif, Malaz; Fine, Jay S; Peterson, Brianna L; Cummings, Brian S; Johnson, Robert C

    2010-10-01

    CXCR3 is a chemokine receptor, upregulated upon activation of T cells and expressed on nearly 100% of T cells in sites of inflammation. SCH 900875 is a selective CXCR3 receptor antagonist. Thrombocytopenia and severe hemolytic anemia with acanthocytosis occurred in rats at doses of 75, 100, and 150 mg/kg/day. Massively enlarged spleens corresponded histologically to extramedullary hematopoiesis, macrophages, and hemosiderin pigment and sinus congestion. Phagocytosed erythrocytes and platelets were within splenic macrophages. IgG and/or IgM were not detected on erythrocyte and platelet membranes. Ex vivo increased osmotic fragility of RBCs was observed. Lipid analysis of the RBC membrane revealed modifications in phosphatidylcholine, overall cholesterol, and/or sphingomyelin. Platelets exhibited slender filiform processes on their plasma membranes, analogous to those of acanthocytes. The presence of similar morphological abnormalities in acanthocytes and platelets suggests that possibly similar alterations in the lipid composition of the plasma membrane have taken place in both cell types. This phenotype correlated with alterations in plasma lipids (hypercholesterolemia and low triglycerides) that occurred after SCH 900875 administration, although other factors cannot be excluded. The increased cell destruction was considered triggered by alterations in the lipid profile of the plasma membranes of erythrocytes and platelets, as reflected morphologically.

  16. Cell wall staining with Trypan Blue enables quantitative analysis of morphological changes in yeast cells

    Directory of Open Access Journals (Sweden)

    Johannes eLiesche

    2015-02-01

    Full Text Available Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  17. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  18. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  19. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control or 6% (vol/vol ethanol (EtOH throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult or 15 months (Aged of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.

  20. Specific N-glycan alterations are coupled in epithelial-mesenchymal transition induced by EGF in GE11 epithelial cells.

    Science.gov (United States)

    Xu, Qingsong; Qu, Chen; Wang, Wenjing; Gu, Jianguo; Du, Yuguang; Song, Linsheng

    2017-02-01

    Epithelial-mesenchymal transition (EMT) is a phenomenon in cancer progression during which cancer cells undergo remarkable alteration acquiring highly invasive property. The aim of this study was to evaluate specific N-glycan alterations during EMT induced by epidermal growth factor (EGF) in GE11 epithelial cells. Herein, we demonstrated that EGF activated epidermal growth factor receptor (EGFR)/Akt/extracellular signal-regulated kinase (ERK) phosphorylation and promoted GE11 cell proliferation. Meanwhile, EGF stimulated the epithelial cells to undergo morphological alteration, destroying cell-cell inter-contact and exhibiting mesenchymal cells higher metastatic potential. A wound-healing assay showed the migratory ability increased 1.5-fold after EGF treatment. Moreover, the relative intensity of N-cadherin versus E-cadherin increased 2.6-fold, and the E-cadherin distribution in cell-cell junctions became jagged and faint after EGF incubation for 72 h. Interestingly, the amounts of bisecting GlcNAc structure were dramatically declined, by contrast, the formation of β1,6 GlcNAc branches on cell surface was upregulated during EMT induced by EGF. To understand the roles of N-glycans in EGF-induced EMT, the cells were stably transfected with N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the bisecting GlcNAc structure formation. As the markers for EMT, EGF-induced E-cadherin decrease and fibronectin increase were delayed in GnT-III-overexpressing cells. Taken together, these results demonstrated that specific N-glycan alterations were coupled in EMT induced by EGF, which might be contributed to diagnosis and therapy of tumor metastasis.

  1. HPV detection and p53 alteration in squamous cell verrucous malignancies of the lower genital tract.

    Science.gov (United States)

    Pilotti, S; Donghi, R; D'Amato, L; Giarola, M; Longoni, A; Della Torre, G; De Palo, G; Pierotti, M A; Rilke, F

    1993-12-01

    We examined five cases of verrucous carcinoma (VC) and two cases of giant condyloma of Buschke-Löwenstein (GCBL) associated with invasive squamous cell carcinoma (ISCC), by immunocytochemistry and molecular techniques. Neither human papillomavirus (HPV) footprints nor p53-altered expression and/or mutation were observed among the cases of VC. By contrast, both cases of GCBL with ISCC turned out to be HPV 6 or 11 positive, showed overexpression of p53 and, one of the two, a mutation in the nucleotide sequence of this tumor suppressor gene. The results point out that VC and GCBL with ISCC, in spite of some morphologic similarities, are two distinct entities, the former being unrelated to both HPV and p53 inactivation and the latter related to both. Regarding p53, immunocytochemical and molecular data on GCBL with ISCC suggest a role of mutant p53 in the progression of malignancy into invasion.

  2. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    OpenAIRE

    Wei-Chuan Mo; Zi-Jian Zhang; Dong-Liang Wang; Ying Liu; Bartlett, Perry F.; Rong-Qiao He

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expres...

  3. Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1.

    Directory of Open Access Journals (Sweden)

    Anna Sandebring

    Full Text Available PTEN-induced novel kinase 1 (PINK1 mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1 exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential.

  4. [Morphological characteristics and intracellular electrolytic composition of blood cells at surgeries on lower extremities arteries].

    Science.gov (United States)

    Katel'nitskiĭ, I I; Dudarev, I V; Matsionis, A E; Povilaĭtite, P E; Kvitko, I A

    2007-01-01

    Morphological characteristics and trace and macroelement composition of blood cells flowing out of ischemic lower limb before, during and after reconstructive surgeries under different type of anesthesia. A total of 102 male patients aged 45 to 60 years with atherosclerotic occlusions of the arteries of the femoral-popliteal zone were included into the study. According to anesthesia type all the patients were divided into 3 groups: group 1 consisted of 34 patients operated under spinal anesthesia, 37 patients of group 2 underwent surgery under combined anesthesia (spinal anesthesia with intravenous sedation), 31 patients of group 3 - under total intravenous anesthesia with myoplegia and artificial pulmonary ventilation. All the blood examinations were carried out with scanning electron microscope XL-30 ("Philips") and X-ray spectrum microanalyzer Edax ( "Edax International", USA). It is demonstrated that in spinal and combined anesthesia morphological characteristics of blood cells normalized due to optimization of intraerythrocytic and intrathrombocytic electrolytic homeostasis unlike total intravenous anesthesia, when intracellular imbalance of trace and macroelements progresses and ultrastructural cellular alterations persist.

  5. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Silvestre, J. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Coste, M.; Delmas, F. [Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Pinelli, E. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France)], E-mail: pinelli@ensat.fr

    2008-06-02

    Benthic diatoms are well known bio-indicators of river pollution by nutrients (nitrogen and phosphorus). Biological indexes, based on diatom sensitivity for non-toxic pollution, have been developed to assess the water quality. Nevertheless, they are not reliable tools to detect pollution by pesticides. Many authors have suggested that toxic agents, like pesticides, induce abnormalities of the diatom cell wall (frustule). High abnormal frustule abundances have been reported in natural diatom communities sampled in streams contaminated by pesticides. However, no direct link was found between the abundances of abnormal frustules in these communities and the pesticide concentrations in stream water. In the present study, a freshwater benthic diatom community, isolated from natural biofilm and cultured under controlled conditions, was treated with a known genotoxic herbicide, maleic hydrazide (MH). Cells were exposed to three concentrations of MH (5 x 10{sup -6}, 10{sup -6}, 10{sup -7} M) for 6 h followed by a 24 h-recovery time. After MH treatments, nucleus alterations were observed: abnormal nucleus location, micronucleus, multinuclear cell or disruption of the nuclear membrane. A dose-dependent increase of nuclear alterations was observed. The difference between the control (9.65 nuclear alterations per 1000 cells observed (9.65 per mille), S.D. = 4.23) and the highest concentrations (29.40 per mille, S.D. = 8.49 for 10{sup -6} M and 35.96 per mille , S.D. = 3.71 for 5 x 10{sup -6} M) was statistically significant (Tukey test, P < 0.05). Diatoms also exhibited frustules with deformed morphology and abnormal ornamentation. Significantly increased abundances of abnormal frustules were observed for the highest concentrations (10{sup -6} and 5 x 10{sup -6} M; Tukey test, P < 0.05). These two parameters tended to increase together (Pearson correlation = 0.702, P < 0.05). The results suggest that the induction of abnormal frustules could be associated with the genotoxic

  6. Growth Inhibition and Morphological Alterations of Trichophyton Rubrum Induced by Essential oil from Cymbopogon Winterianus Jowitt Ex Bor.

    Science.gov (United States)

    de Oliveira Pereira, Fillipe; Alves Wanderley, Paulo; Cavalcanti Viana, Fernando Antônio; Baltazar de Lima, Rita; Barbosa de Sousa, Frederico; de Oliveira Lima, Edeltrudes

    2011-01-01

    Trichophyton rubrum is one of the most common fungi causer of dermatophytosis, mycosis that affect humans and animals around the world. Researches aiming new products with antifungal activity become necessary to overcome difficulties on treatment of these infections. Accordingly, this study aimed to investigate the antifungal activity of essential oil from Cymbopogon winterianus against the dermatophyte T. rubrum. The antifungal screening was performed by solid medium diffusion method with 16 T. rubrum strains, minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were determined using the microdilution method. The effects on mycelial dry weight and morphology were also observed. Screening showed essential oil in natura inhibited all the tested strains, with inhibition zones between 24-28 mm diameter. MIC50 and MIC90 values of the essential oil were 312 μg/mL for nearly all the essayed strains (93.75 %) while the MFC50 and MFC90 values were about eight times higher than MIC for all tested strains. All tested essential oil concentrations managed to inhibit strongly the mycelium development. Main morphological changes on the fungal strains observed under light microscopy, which were provided by the essential oil include loss of conidiation, alterations concerning form and pigmentation of hyphae. In the oil presence, colonies showed folds, cream color and slightly darker than the control, pigment production was absent on the reverse and with evident folds. It is concluded that C. winterianus essential oil showed activity against T. rubrum. Therefore, it could be known as potential antifungal compound especially for protection against dermatophytosis.

  7. Morphological and functional platelet abnormalities in Berkeley sickle cell mice.

    Science.gov (United States)

    Shet, Arun S; Hoffmann, Thomas J; Jirouskova, Marketa; Janczak, Christin A; Stevens, Jacqueline R M; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A; Cynober, Therese; Coller, Barry S

    2008-01-01

    Berkeley sickle cell mice are used as animal models of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37+/-3.2 vs. 27+/-1.4, mean+/-SD; p<0.001), in association with moderate thrombocytopenia (505+/-49 x 10(3)/microl vs. 1151+/-162 x 10(3)/microl; p<0.001). Despite having marked splenomegaly, SS mice had elevated levels of Howell-Jolly bodies and "pocked" erythrocytes (p<0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5+/-1% vs. 1+/-1%; p<0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease.

  8. Corneal endothelial cell density and morphology in Phramongkutklao Hospital

    Directory of Open Access Journals (Sweden)

    Narumon Sopapornamorn

    2008-03-01

    Full Text Available Narumon Sopapornamorn1, Manapon Lekskul1, Suthee Panichkul21Department of Ophthalmology, Phramongkutklao Hospital, Bangkok, Thailand; 2Department of Obstetrics and Gynecology, Phramongkutklao College of Medicine, Bangkok, ThailandObjective: To describe the corneal endothelial density and morphology in patients of Phramongkutklao Hospital and the relationship between endothelial cell parameters and other factors.Methods: Four hundred and four eyes of 202 volunteers were included. Noncontact specular microscopy was performed after taking a history and testing the visual acuity, intraocular pressure measurement, Schirmer’s test and routine eye examination by slit lamp microscope. The studied parameters included mean endothelial cell density (MCD, coefficient of variation (CV, and percentage of hexagonality.Results: The mean age of volunteers was 45.73 years; the range being 20 to 80 years old. Their MCD (SD, mean percentage of CV (SD and mean (SD percentage of hexagonality were 2623.49(325 cell/mm2, 39.43(8.23% and 51.50(10.99%, respectively. Statistically, MCD decreased significantly with age (p < 0.01. There was a significant difference in the percentage of CV between genders. There was no statistical significance between parameters and other factors.Conclusion: The normative data of the corneal endothelium of Thai eyes indicated that, statistically, MCD decreased significantly with age. Previous studies have reported no difference in MCD, percentage of CV, and percentage of hexagonality between gender. Nevertheless, significantly different percentages of CV between genders were presented in this study.Keywords: Corneal endothelial cell, parameters, age, gender, smoking, Thailand

  9. Semi-automatic classification of skeletal morphology in genetically altered mice using flat-panel volume computed tomography.

    Directory of Open Access Journals (Sweden)

    Christian Dullin

    2007-07-01

    Full Text Available Rapid progress in exploring the human and mouse genome has resulted in the generation of a multitude of mouse models to study gene functions in their biological context. However, effective screening methods that allow rapid noninvasive phenotyping of transgenic and knockout mice are still lacking. To identify murine models with bone alterations in vivo, we used flat-panel volume computed tomography (fpVCT for high-resolution 3-D imaging and developed an algorithm with a computational intelligence system. First, we tested the accuracy and reliability of this approach by imaging discoidin domain receptor 2- (DDR2- deficient mice, which display distinct skull abnormalities as shown by comparative landmark-based analysis. High-contrast fpVCT data of the skull with 200 microm isotropic resolution and 8-s scan time allowed segmentation and computation of significant shape features as well as visualization of morphological differences. The application of a trained artificial neuronal network to these datasets permitted a semi-automatic and highly accurate phenotype classification of DDR2-deficient compared to C57BL/6 wild-type mice. Even heterozygous DDR2 mice with only subtle phenotypic alterations were correctly determined by fpVCT imaging and identified as a new class. In addition, we successfully applied the algorithm to classify knockout mice lacking the DDR1 gene with no apparent skull deformities. Thus, this new method seems to be a potential tool to identify novel mouse phenotypes with skull changes from transgenic and knockout mice on the basis of random mutagenesis as well as from genetic models. However for this purpose, new neuronal networks have to be created and trained. In summary, the combination of fpVCT images with artificial neuronal networks provides a reliable, novel method for rapid, cost-effective, and noninvasive primary screening tool to detect skeletal phenotypes in mice.

  10. Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Sudipta Das

    2016-05-01

    Full Text Available Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2, glycosylphosphotidylinositol (GPI-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.

  11. Effect of triamcinolone in keloids morphological changes and cell apoptosis

    Directory of Open Access Journals (Sweden)

    João Márcio Prazeres dos Santos

    2015-06-01

    Full Text Available OBJECTIVE:to assess the effects of injectable triamcinolone on keloid scars length, height and thickness, and on the number of cells undergoing apoptosis.METHODS:This study consists in a prospective, controlled, randomized, single-blinded clinical trial, conducted with fifteen patients with ear keloids divided into two groups: group 1 - seven patients undergoing keloid excisions, and group 2 - eight patients undergoing keloid excisions after three sessions of infiltration with one ml of Triamcinolone hexacetonide (20mg/ml with three week intervals between them and between the last session and surgery. The two groups were homogeneous regarding age, gender and evolution of the keloid scar. The keloid scars of patients in group 2 were measured for the length, height and thickness before triamcinolone injection and before surgery. A blinded observer performed morphological detailing and quantification of cells in hematoxylin-eosin-stained surgical specimens. An apoptotic index was created.RESULTS: The apoptotic index in group 1 was 56.82, and in group 2, 68.55, showing no significant difference as for apoptosis (p=0.0971. The reduction in keloid dimensions in Group 2 was 10.12% in length (p=0.6598, 11.94% in height (p=0.4981 and 15.62% in thickness (p=0.4027.CONCLUSION:This study concluded that the infiltration of triamcinolone in keloid scars did not increase the number of apoptosit and did not reduce keloids' size, length, height or thickness.

  12. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations

    Science.gov (United States)

    Mangum, Joshua E.; Hardee, Justin P.; Fix, Dennis K.; Puppa, Melissa J.; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R.; Schmidt, Paul J.; Sendamarai, Anoop K.; Lidov, Hart G. W.; Barlow, Shayne C.; Fischel-Ghodsian, Nathan; Fleming, Mark D.; Carson, James A.; Patton, Jeffrey R.

    2016-01-01

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1−/− animals. Pus1−/− mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1−/− mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1−/− mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1−/− mice. PMID:27197761

  13. Elevated Carbon Dioxide Altered Morphological and Anatomical Characteristics, Ascorbic Acid Accumulation, and Related Gene Expression during Taproot Development in Carrots

    Science.gov (United States)

    Wu, Xue-Jun; Sun, Sheng; Xing, Guo-Ming; Wang, Guang-Long; Wang, Feng; Xu, Zhi-Sheng; Tian, Yong-Sheng; Hou, Xi-Lin; Xiong, Ai-Sheng

    2017-01-01

    The CO2 concentration in the atmosphere has increased significantly in recent decades and is projected to rise in the future. The effects of elevated CO2 concentrations on morphological and anatomical characteristics, and nutrient accumulation have been determined in several plant species. Carrot is an important vegetable and the effects of elevated CO2 on carrots remain unclear. To investigate the effects of elevated CO2 on the growth of carrots, two carrot cultivars (‘Kurodagosun’ and ‘Deep purple’) were treated with ambient CO2 (a[CO2], 400 μmol⋅mol-1) and elevated CO2 (e[CO2], 3000 μmol⋅mol-1) concentrations. Under e[CO2] conditions, taproot and shoot fresh weights and the root/shoot ratio of carrot significantly decreased as compared with the control group. Elevated CO2 resulted in obvious changes in anatomy and ascorbic acid accumulation in carrot roots. Moreover, the transcript profiles of 12 genes related to AsA biosynthesis and recycling were altered in response to e[CO2]. The ‘Kurodagosun’ and ‘Deep purple’ carrots differed in sensitivity to e[CO2]. The inhibited carrot taproot and shoot growth treated with e[CO2] could partly lead to changes in xylem development. This study provided novel insights into the effects of e[CO2] on the growth and development of carrots. PMID:28119712

  14. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle.

    Science.gov (United States)

    Zhang, Yuan; Iqbal, Sobia; O'Leary, Michael F N; Menzies, Keir J; Saleem, Ayesha; Ding, Shuzhe; Hood, David A

    2013-09-01

    The function Bax and/or Bak in constituting a gateway for mitochondrial apoptosis in response to apoptotic stimuli has been unequivocally demonstrated. However, recent work has suggested that Bax/Bak may have unrecognized nonapoptotic functions related to mitochondrial function in nonstressful environments. Wild-type (WT) and Bax/Bak double knockout (DKO) mice were used to determine alternative roles for Bax and Bak in mitochondrial morphology and protein import in skeletal muscle. The absence of Bax and/or Bak altered mitochondrial dynamics by regulating protein components of the organelle fission and fusion machinery. Moreover, DKO mice exhibited defective mitochondrial protein import, both into the matrix and outer membrane compartments, which was consistent with our observations of impaired membrane potential and attenuated expression of protein import machinery (PIM) components in intermyofibrillar mitochondria. Furthermore, the cytosolic chaperones heat-shock protein 90 (Hsp90) and binding immunoglobulin protein (BiP) were markedly increased with the deletion of Bax/Bak, indicating that the cytosolic environment related to protein folding may be changed in DKO mice. Interestingly, endurance training fully restored the deficiency of protein import in DKO mice, likely via the upregulation of PIM components and through improved cytosolic chaperone protein expression. Thus our results emphasize novel roles for Bax and/or Bak in mitochondrial function and provide evidence, for the first time, of a curative function of exercise training in ameliorating a condition of defective mitochondrial protein import.

  15. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    Science.gov (United States)

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.

  16. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...... Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals...

  17. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  18. Ectopic expression of soybean GmKNT1 in Arabidopsis results in altered leaf morphology and flower identity

    Institute of Scientific and Technical Information of China (English)

    Jun Liu; Da Ha; Zongming Xie; Chunmei Wang; Huiwen Wang; Wanke Zhang; Jinsong Zhang; Shouyi Chen

    2008-01-01

    Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.

  19. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    Science.gov (United States)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  20. Membrane alterations in irreversibly sickled cells: hemoglobin--membrane interaction.

    Science.gov (United States)

    Lessin, L S; Kurantsin-Mills, J; Wallas, C; Weems, H

    1978-01-01

    Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated of ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane--hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, parallelling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre--band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.

  1. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays.

    Science.gov (United States)

    Noguchi, M; Kanari, Y; Yokoya, A; Narita, A; Fujii, K

    2015-09-01

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death.

  2. [Ultrastructural organization of the epithelial layers and surface morphological characteristics of cells in adenocarcinomas of the cervix uteri].

    Science.gov (United States)

    Chernyĭ, A P

    1984-08-01

    The cell interrelations, and cellular attachment to the stroma in normal columnar epithelium and adenocarcinoma of the cervix uteri were examined by transmission and scanning electron microscopy. The application of rapid enzymatic digestion technique allows to visualize the topography of cell membranes, otherwise disguised in ordinary conditions. Four types of disordered epithelial sheets characterized by different apical, lateral and basal cell surface changes are described. Various alterations in morphology of the basement membrane and adjacent conjunctive tissue are associated with the tumor appearance. Marked deviations in cell-stroma contact may lead to the inversion of cell polarity revealed in cervical adenocarcinoma: cellular parts adjoining to stroma acquire characteristic features of the apical pole.

  3. Inflammatory cytokines, goblet cell hyperplasia and altered lung mechanics in Lgl1+/- mice

    Directory of Open Access Journals (Sweden)

    Bao Tim

    2009-09-01

    Full Text Available Abstract Background Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned Lgl1, a developmentally regulated secreted glycoprotein in the lung. In rat, O2 toxicity caused reduced levels of Lgl1, which normalized during recovery. We report here on the generation of an Lgl1 knockout mouse in order to determine whether deficiency of Lgl1 is associated with arrested alveolarization and contributes to neonatal lung injury. Methods An Lgl1 knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the Lgl1 gene. To evaluate the pulmonary phenotype of Lgl1+/- mice, we assessed lung morphology, Lgl1 RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL-4 and IL-13 as markers of inflammation. Results Absence of Lgl1 was lethal prior to lung formation. Postnatal Lgl1+/- lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of TH2 cytokines (IL-4 and IL-13. At one month of age, reduced expression of Lgl1 was associated with elevated tropoelastin expression and altered pulmonary mechanics. Conclusion Our findings confirm that Lgl1 is essential for viability and is required for developmental processes that precede lung formation. Lgl1+/- mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. Lgl1 haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease.

  4. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    Directory of Open Access Journals (Sweden)

    Valentina Conti

    Full Text Available Rett syndrome (RTT is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  5. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    Science.gov (United States)

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  6. The effect of morphology upon mobility : Implications for bulk heterojunction solar cells with nonuniform blend morphology

    NARCIS (Netherlands)

    Groves, C.; Koster, L. J. A.; Greenham, N. C.

    2009-01-01

    We use a Monte Carlo model to predict the effect of composition, domain size, and energetic disorder upon the mobility of carriers in an organic donor-acceptor blend. These simulations show that, for the changes in local morphology expected within the thickness of a typical bulk heterojunction photo

  7. Tumor promoters alter the temporal program of adenovirus replication in human cells.

    Science.gov (United States)

    Fisher, P B; Young, C S; Weinstein, I B; Carter, T H

    1981-04-01

    In this study we evaluated the effect of phorbol ester tumor promoters on the kinetics of adenovirus type 5 (Ad5) replication in human cells. When added at the time of infection, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) accelerated the appearance of an early virus antigen (72,000-molecular-weight [72K] deoxyribonucleic acid-binding protein), the onset of viral deoxyribonucleic acid synthesis, and the production of infectious virus. The appearance of an Ad5-specific cytopathic effect (CPE) was also accelerated in infected cultures exposed to TPA, whereas phorbol, 4 alpha-phorbol-12,13-didecanoate and 4-OmeTPA, which are inactive as tumor promoters, were ineffective in inducing this morphological change. The acceleration of the CPE seen in TPA-treated Ad5-infected cells was not caused by TPA induction of the protease plasminogen activator, since the protease inhibitors leupeptin and antipain do not inhibit the earlier onset of this CPE and, in contrast, epidermal growth factor, which induces plasminogen activator in HeLa cells, does not induce an earlier CPE. Evidence for a direct effect of TPA on viral gene expression was obtained by analyzing viral messenger ribonucleic acid (mRNA) synthesis. TPA accelerated the appearance of mRNA from all major early regions of Ad5, transiently stimulated the accumulation of region III mRNA, and accelerated the appearance of late Ad5 mRNA. Thus, TPA altered the temporal program of Ad5 mRNA production and accelerated the appearance of at least some Ad5-specific polypeptides during lytic infection of human cells. These effects presumably explain the earlier onset of the Ad5-specific CPE in TPA-treated cells and may have relevance to the effects of TPA on viral gene expression in nonpermissive cells carrying integrated viral deoxyribonucleic acid sequences.

  8. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory.

    Science.gov (United States)

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-11-19

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.

  9. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory

    Science.gov (United States)

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-11-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.

  10. Effects of Nano-CeO₂ with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells.

    Science.gov (United States)

    Wang, Lili; Ai, Wenchao; Zhai, Yanwu; Li, Haishan; Zhou, Kebin; Chen, Huiming

    2015-09-02

    Cerium oxide nanoparticles (nano-CeO₂) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO₂ with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO₂ at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO₂ were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO₂ were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO₂ entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO₂ with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell's ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO₂, the rod-like nano-CeO₂ has lowest toxicity to HepG2 cells owing to its larger specific surface areas.

  11. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  12. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    Science.gov (United States)

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus.

  13. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na{sup +}/K{sup +}-ATPase localization

    Energy Technology Data Exchange (ETDEWEB)

    Bernabò, Ilaria; Bonacci, Antonella; Coscarelli, Francesca [Department of Ecology, University of Calabria, Via P. Bucci, 87036 Rende (Cosenza) (Italy); Tripepi, Manuela [University of Pennsylvania, Department of Biology, 201 Leidy Laboratories, Philadelphia, PA 19104 (United States); Brunelli, Elvira, E-mail: brunelli@unical.it [Department of Ecology, University of Calabria, Via P. Bucci, 87036 Rende (Cosenza) (Italy)

    2013-05-15

    Freshwater habitats are globally threatened by human-induced secondary salinization. Amphibians are generally poorly adapted to survive in saline environments. We experimentally investigated the effects of chronic exposure to various salinities (5%, 10%, 15%, 20%, 25%, 30% and 35% seawater, SW) on survival, larval growth and metamorphosis of tadpoles from two amphibian populations belonging to two species: the green toad Bufo balearicus and the common toad Bufo bufo. In addition, gill morphology of tadpoles of both species after acute exposure to hypertonic conditions (20%, 25%, and 30% SW) was examined by light and electron microscopy. Tadpoles experienced 100% mortality above 20% SW in B. balearicus while above 15% SW in B. bufo. We detected also sublethal effects of salinity stress on growth and metamorphosis. B. bufo cannot withstand chronic exposure to salinity above 5% SW, tadpoles grew slower and were significantly smaller than those in control at metamorphosis. B. balearicus tolerated salinity up to 20% SW without apparent effects during larval development, but starting from 15% SW tadpoles metamorphosed later and at a smaller size compared with control. We also revealed a negative relation between increasing salt concentration and gill integrity. The main modifications were increased mucous secretion, detachment of external layer, alteration of epithelial surface, degeneration phenomena, appearance of residual bodies, and macrophage immigration. These morphological alterations of gill epithelium can interfere with respiratory function and both osmotic and acid-base regulation. Significant variations in branchial Na{sup +}/K{sup +}-ATPase activity were also observed between two species; moreover an increase in enzyme activity was evident in response to SW exposure. Epithelial responses to increasing salt concentration were different in the populations belonging to two species: the intensity of histological and ultrastructural pathology in B. bufo was

  14. Pectin from Prunus domestica L. induces proliferation of IEC-6 cells through the alteration of cell-surface heparan sulfate on differentiated Caco-2 cells in co-culture.

    Science.gov (United States)

    Nishida, Mitsutaka; Murata, Kazuma; Oshima, Kazuya; Itoh, Chihiro; Kitaguchi, Kohji; Kanamaru, Yoshihiro; Yabe, Tomio

    2015-05-01

    Dietary fiber intake provides various physiological and metabolic effects for human health. Pectin, a water-soluble dietary fiber, induces morphological changes of the small intestine in vivo. However, the molecular mechanisms underlying pectin-derived morphological alterations have not been elucidated. Previously, we found that pectin purified from Prunus domestica L. altered the sulfated structure of cell-surface heparan sulfate (HS) on differentiated Caco-2 cells via fibronectin and α5β1 integrin. In this study, we investigated the biological significance of the effect of pectin on HS in differentiated Caco-2 cells. An in vitro intestinal epithelium model was constructed by co-culture of differentiated Caco-2 cells and rat IEC-6 cells, which were used as models of intestinal epithelium and intestinal crypt cells, respectively. We found that pectin-treated differentiated Caco-2 cells promoted growth of IEC-6 cells. Real-time RT-PCR analysis and western blotting showed that relative mRNA and protein expression levels of Wnt3a were upregulated by pectin treatment in differentiated Caco-2 cells. Analysis by surface plasmon resonance spectroscopy demonstrated that pectin-induced structural alteration of HS markedly decreased the interaction with Wnt3a. However, depression in the secretion of Wnt3a from Caco-2 cells by anti-Wnt3a antibody did not affect the proliferation of IEC-6 cells in co-culture system. These observations indicated that pectin altered the sulfated structure of cell-surface HS to promote secretion of Wnt3a from differentiated Caco-2 cells and Wnt3a indirectly stimulated the proliferation of IEC-6 cells.

  15. Altered Competitive Fitness, Antimicrobial Susceptibility, and Cellular Morphology in a Triclosan-Induced Small-Colony Variant of Staphylococcus aureus.

    Science.gov (United States)

    Forbes, Sarah; Latimer, Joe; Bazaid, Abdulrahman; McBain, Andrew J

    2015-08-01

    Staphylococcus aureus can produce small-colony variants (SCVs) that express various phenotypes. While their significance is unclear, SCV propagation may be influenced by relative fitness, antimicrobial susceptibility, and the underlying mechanism. We have investigated triclosan-induced generation of SCVs in six S. aureus strains, including methicillin-resistant S. aureus (MRSA). Parent strains (P0) were repeatedly passaged on concentration gradients of triclosan using a solid-state exposure system to generate P10. P10 was subsequently passaged without triclosan to generate X10. Susceptibility to triclosan and 7 antibiotics was assessed at all stages. For S. aureus ATCC 6538, SCVs were further characterized by determining microbicide susceptibility and competitive fitness. Cellular morphology was examined using electron microscopy, and protein expression was evaluated through proteomics. Triclosan susceptibility in all SCVs (which could be generated from 4/6 strains) was markedly decreased, while antibiotic susceptibility was significantly increased in the majority of cases. An SCV of S. aureus ATCC 6538 exhibited significantly increased susceptibility to all tested microbicides. Cross-wall formation was impaired in this bacterium, while expression of FabI, a target of triclosan, and IsaA, a lytic transglycosylase involved in cell division, was increased. The P10 SCV was 49% less fit than P0. In summary, triclosan exposure of S. aureus produced SCVs in 4/6 test bacteria, with decreased triclosan susceptibility but with generally increased antibiotic susceptibility. An SCV derived from S. aureus ATCC 6538 showed reduced competitive fitness, potentially due to impaired cell division. In this SCV, increased FabI expression could account for reduced triclosan susceptibility, while IsaA may be upregulated in response to cell division defects.

  16. Sds22, a PP1 phosphatase regulatory subunit, regulates epithelial cell polarity and shape [Sds22 in epithelial morphology

    Directory of Open Access Journals (Sweden)

    Sung Hsin-Ho

    2009-02-01

    Full Text Available Abstract Background How epithelial cells adopt their particular polarised forms is poorly understood. In a screen for genes regulating epithelial morphology in Drosophila, we identified sds22, a conserved gene previously characterised in yeast. Results In the columnar epithelia of imaginal discs or follicle cells, mutation of sds22 causes contraction of cells along their apical-basal axis, resulting in a more cuboidal morphology. In addition, the mutant cells can also display altered cell polarity, forming multiple layers in follicle cells and leaving the epithelium in imaginal discs. In yeast, sds22 encodes a PP1 phosphatase regulatory subunit. Consistent with this, we show that Drosophila Sds22 binds to all four Drosophila PP1s and shares an overlapping phenotype with PP1beta9c. We also show that two previously postulated PP1 targets, Spaghetti Squash and Moesin are hyper-phosphorylated in sds22 mutants. This function is shared by the human homologue of Sds22, PPP1R7. Conclusion Sds22 is a conserved PP1 phosphatase regulatory subunit that controls cell shape and polarity.

  17. Effects of Nano-CeO2 with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2015-09-01

    Full Text Available Cerium oxide nanoparticles (nano-CeO2 have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO2 with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals in human hepatocellular carcinoma cells (HepG2. The cells were treated with the nano-CeO2 at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL. The crystal structure, size and morphology of nano-CeO2 were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP, reactive oxygen species (ROS and glutathione (GSH in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO2 were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO2 entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO2 with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell’s ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO2, the rod-like nano-CeO2 has lowest toxicity to HepG2 cells owing to its larger specific surface areas.

  18. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells.

  19. Induction of Neuronal Morphology in the 661W Cone Photoreceptor Cell Line with Staurosporine.

    Directory of Open Access Journals (Sweden)

    Alex F Thompson

    Full Text Available RGC-5 cells undergo differentiation into a neuronal phenotype with low concentrations of staurosporine. Although the RGC-5 cell line was initially thought to be of retinal ganglion cell origin, recent evidence suggests that the RGC-5 line could have been the result of contamination with 661W mouse cone photoreceptor cells. This raised the possibility that a cone photoreceptor cell line could be multipotent and could be differentiated to a neuronal phenotype.661W and RGC-5 cells, non-neuronal retinal astrocytes, retinal endothelial cells, retinal pericytes, M21 melanoma cells, K562 chronic myelogenous leukemia cells, and Daudi Burkitt lymphoma cells, were differentiated with staurosporine. The resulting morphology was quantitated using NeuronJ with respect to neurite counts and topology.Treatment with staurosporine induced similar-appearing morphological differentiation in both 661W and RGC-5 cells. The following measures were not significantly different between 661W and RGC-5 cells: number of neurites per cell, total neurite field length, number of neurite branch points, and cell viability. Neuronal-like differentiation was not observed in the other cell lines tested.661W and RGC-5 cells have virtually identical and distinctive morphology when differentiated with low concentrations of staurosporine. This result demonstrates that a retinal neuronal precursor cell with cone photoreceptor lineage can be differentiated to express a neuronal morphology.

  20. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients.

    Science.gov (United States)

    Pecorelli, Alessandra; Cervellati, Franco; Belmonte, Giuseppe; Montagner, Giulia; Waldon, PhiAnh; Hayek, Joussef; Gambari, Roberto; Valacchi, Giuseppe

    2016-01-01

    A potential role for immune dysfunction in autism spectrum disorders (ASD) has been well established. However, immunological features of Rett syndrome (RTT), a genetic neurodevelopmental disorder closely related to autism, have not been well addressed yet. By using multiplex Luminex technology, a panel of 27 cytokines and chemokines was evaluated in serum from 10 RTT patients with confirmed diagnosis of MECP2 mutation (typical RTT), 12 children affected by classic autistic disorder and 8 control subjects. The cytokine/chemokine gene expression was assessed by real time PCR on mRNA of isolated peripheral blood mononuclear cells (PBMCs). Moreover, ultrastructural analysis of PBMCs was performed using transmission electron microscopy (TEM). Significantly higher serum levels of interleukin-8 (IL-8), IL-9, IL-13 were detected in RTT compared to control subjects, and IL-15 shows a trend toward the upregulation in RTT. In addition, IL-1β and VEGF were the only down-regulated cytokines in autistic patients with respect to RTT. No difference in cytokine/chemokine profile between autistic and control groups was detected. These data were also confirmed by ELISA real time PCR. At the ultrastructural level, the most severe morphological abnormalities were observed in mitochondria of both RTT and autistic PBMCs. In conclusion, our study shows a deregulated cytokine/chemokine profile together with morphologically altered immune cells in RTT. Such abnormalities were not quite as evident in autistic subjects. These findings indicate a possible role of immune dysfunction in RTT making the clinical features of this pathology related also to the immunology aspects, suggesting, therefore, novel possible therapeutic interventions for this disorder.

  1. Analysis and recognition of touching cell images based on morphological structures.

    Science.gov (United States)

    Yu, Donggang; Pham, Tuan D; Zhou, Xiaobo

    2009-01-01

    Automated analysis and recognition of cell-nuclear phases using fluorescence microscopy images play an important role for high-content screening. A major task of automated imaging based high-content screening is to segment and reconstruct each cell from the touching cell images. In this paper we present new useful method for recognizing morphological structural models of touching cells, detecting segmentation points, determining the number of segmented cells in touching cell image, finding the related data of segmented cell arcs and reconstructing segmented cells. The conceptual frameworks are based on the morphological structures where a series of structural points and their morphological relationships are established. Experiment results have shown the efficient application of the new method for analysis and recognition of touching cell images of high-content screening.

  2. Trypsin-induced proteome alteration during cell subculture in mammalian cells

    Directory of Open Access Journals (Sweden)

    Lin Cheng-Wen

    2010-05-01

    Full Text Available Abstract Background It is essential to subculture the cells once cultured cells reach confluence. For this, trypsin is frequently applied to dissociate adhesive cells from the substratum. However, due to the proteolytic activity of trypsin, cell surface proteins are often cleaved, which leads to dysregulation of the cell functions. Methods In this study, a triplicate 2D-DIGE strategy has been performed to monitor trypsin-induced proteome alterations. The differentially expressed spots were identified by MALDI-TOF MS and validated by immunoblotting. Results 36 proteins are found to be differentially expressed in cells treated with trypsin, and proteins that are known to regulate cell metabolism, growth regulation, mitochondrial electron transportation and cell adhesion are down-regulated and proteins that regulate cell apoptosis are up-regulated after trypsin treatment. Further study shows that bcl-2 is down-regulated, p53 and p21 are both up-regulated after trypsinization. Conclusions In summary, this is the first report that uses the proteomic approach to thoroughly study trypsin-induced cell physiological changes and provides researchers in carrying out their experimental design.

  3. R-(+)-perillyl alcohol-induced cell cycle changes, altered actin cytoskeleton, and decreased ras and p34(cdc2) expression in colonic adenocarcinoma SW480 cells.

    Science.gov (United States)

    Cerda, S R; Wilkinson, J; Thorgeirsdottir, S; Broitman, S A

    1999-01-01

    Monoterpenes as S-(-)-perillyl alcohol (PA) have been shown to inhibit the isoprenylation of such growth regulatory proteins as ras. In this study, we investigated the effects of the R-(+) enantiomer of PA on cell cycle, signaling, and cytoskeletal control in the colonic adenocarcinoma cell line SW480, which carries a K-ras mutation. Cell cycle analysis by flow cytometry of SW480 cells treated with 1 mM PA for 24 hours demonstrated an increase in the number of cells in G0/G1 with a decrease in S phase, compared with untreated control cells. These cell cycle changes correlated with an inhibition of protein isoprenylation from (14)C-mevalonate and decreased expression of the cell cycle regulatory kinase p34(cdc2). Additionally, PA-treated cells acquired a flattened morphology with a condensation of cytoskeletal actin spikes to the periphery. This was in contrast to treatment with 15 microM mevinolin (MVN), a direct mevalonate synthesis inhibitor, which imparted to SW480 cells a more rounded and spindly morphology, associated with the depolymerization of actin microfilaments. Together, these data suggest that fluctuations in mevalonate and isoprenoid pools may involve different morphologic phenomenon. Because ras mediated signaling is related to the organization of the actin cytoskeleton, we investigated the effects of PA on the isoprenylation of ras. Although MVN treatment inhibited ras farnesylation, PA treatment decreased the expression of total ras protein. In summary, R-(+)-PA-induced cell signaling events correlated with alterations in the organization of cytoskeletal actin and decreased protein expression of growth regulatory proteins, such as ras and cdc2 kinase. These effects may contribute to the growth inhibitory activity of R-(+)-PA.

  4. Genetic alteration in notch pathway is associated with better prognosis in renal cell carcinoma.

    Science.gov (United States)

    Feng, Chenchen; Xiong, Zuquan; Jiang, Haowen; Ding, Qiang; Fang, Zujun; Hui, Wen

    2016-01-01

    Notch signaling was associated with a variety of cancers but was not comprehensively studied in clear-cell renal cell carcinoma (ccRCC). We have in this study studied the genetic alteration (mutation and copy number variance) of Notch gene set in the Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) database. We found that Notch pathway was frequently altered in ccRCC. The Notch gene set was genetically altered in 182 (44%) of the 415 ccRCC patients. CNV was the predominant type of alteration in most genes. Alterations in KAT2B and MAML1 occurred in 13% and 19% of patients, respectively, both of which were functionally active in ccRCC. Deletion of VHL was exclusively found in cases with Notch alteration. Overall survival was longer in ccRCC patients with altered-Notch pathway. The median survival was 90.41 months in Notch-altered cases and 69.15 in Notch-unaltered cases (P = 0.0404). The median disease free time was 89.82 months in Notch-altered cases and 77.27 months in in Notch-unaltered cases (P = 0.935). Conclusively, Notch signaling was altered in almost half of the ccRCC patients and copy number variances in MAML1 and KAT2B were predominant changes. These findings broadened our understanding of the role of Notch in ccRCC.

  5. Altered status of glutathione and its metabolites in cystinotic cells.

    NARCIS (Netherlands)

    Levtchenko, E.N.; Graaf-Hess, A.C. de; Wilmer, M.J.G.; Heuvel, L.P.W.J. van den; Monnens, L.A.H.; Blom, H.J.

    2005-01-01

    BACKGROUND: Cystinosis is an autosomal recessive disorder, caused by mutations of the lysosomal cystine carrier cystinosin, encoded by the CTNS gene (17p13). The concomitant intralysosomal cystine accumulation leads to multi-organ damage, with kidneys being the first affected. Altered mitochondrial

  6. Virus Innexins induce alterations in insect cell and tissue function

    Science.gov (United States)

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  7. Alterations in the growth and adhesion pattern of Vero cells induced by nutritional stress conditions.

    Science.gov (United States)

    Genari, S C; Gomes, L; Wada, M L

    1998-01-01

    The pattern of growth, adhesion and protein synthesis in Vero cells submitted to nutritional stress conditions was investigated. The control cells presented a characteristic pattern, with monolayer growth, while the stressed cells presented multilayered growth, with aggregate or spheroid formation which detached on the flask surface and continued their growth in another region. In the soft agar assay, with reduced amount of nutrients, only the stressed cells presented growth, indicating physical and nutritional independence. A 44-kDa protein was observed in stressed cells and was absent in non-stressed cells. The adhesion index and fibronectin synthesis and distribution were altered in stressed cells. After confluence, control cells presented fibronectin accumulation in lateral cell-cell contact regions, while this fibronectin accumulation pattern was not observed in stressed cells. These alterations may be responsible for the multilayered growth and decreased adhesion index observed in stressed cells which were transformed by nutritional stress conditions.

  8. Altering β-cell number through stable alteration of miR-21 and miR-34a expression

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Novotny, Guy Wayne; Christensen, Dan Ploug;

    2014-01-01

    RNAs, miR-21 and miR-34a, may be involved in mediating cytokine-induced β-cell dysfunction. Therefore, manipulation of miR-21 and miR-34a levels may potentially be beneficial to β cells. To study the effect of long-term alterations of miR-21 or miR-34a levels upon net β-cell number, we stably overexpressed...... miR-21 and knocked down miR-34a, and investigated essential cellular processes. Materials and Methods: miRNA expression was manipulated using Lentiviral transduction of the β-cell line INS-1. Stable cell lines were generated, and cell death, NO synthesis, proliferation, and total cell number were...... monitored in the absence or presence of cytokines. Results: Overexpression of miR-21 decreased net β-cell number in the absence of cytokines, and increased apoptosis and NO synthesis in the absence and presence of cytokines. Proliferation was increased upon miR-21 overexpression. Knockdown of miR-34a...

  9. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.

    Directory of Open Access Journals (Sweden)

    Kishore R Mosaliganti

    Full Text Available The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1 detection of local membrane planes, 2 voting to fill structural gaps, and 3 region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is

  10. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  11. Effects of rotational culture on morphology, nitric oxide production and cell cycle of endothelial cells.

    Science.gov (United States)

    Tang, Chaojun; Wu, Xue; Ye, Linqi; Xie, Xiang; Wang, Guixue

    2012-12-01

    Devices for the rotational culture of cells and the study of biological reactions have been widely applied in tissue engineering. However, there are few reports exploring the effects of rotational culture on cell morphology, nitric oxide (NO) production, and cell cycle of the endothelial cells from human umbilical vein on the stent surface. This study focuses on these parameters after the cells are seeded on the stents. Results showed that covering of stents by endothelial cells was improved by rotational culture. NO production decreased within 24 h in both rotational and static culture groups. In addition, rotational culture significantly increased NO production by 37.9% at 36 h and 28.9% at 48 h compared with static culture. Flow cytometry showed that the cell cycle was not obviously influenced by rotational culture. Results indicate that rotational culture may be helpful for preparation of cell-seeded vascular grafts and intravascular stents, which are expected to be the most frequently implanted materials in the future.

  12. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization.

    Science.gov (United States)

    Orvis, Tess; Hepperla, Austin; Walter, Vonn; Song, Shujie; Simon, Jeremy; Parker, Joel; Wilkerson, Matthew D; Desai, Nisarg; Major, Michael B; Hayes, D Neil; Davis, Ian J; Weissman, Bernard

    2014-11-15

    SWI/SNF chromatin remodeling complexes regulate critical cellular processes, including cell-cycle control, programmed cell death, differentiation, genomic instability, and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver, and pediatric cancers. In particular, approximately 10% of primary human lung non-small cell lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes.

  13. Nanoparticle induced cell magneto-rotation: monitoring morphology, stress and drug sensitivity of a suspended single cancer cell.

    Directory of Open Access Journals (Sweden)

    Remy Elbez

    Full Text Available Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower. The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing.

  14. Transfection of oral squamous cell carcinoma with human papillomavirus-16 induces proliferative and morphological changes in vitro

    Directory of Open Access Journals (Sweden)

    O'Malley Susan

    2006-05-01

    Full Text Available Abstract Background Human papillomavirus has been implicated in virtually all cervical cancers and is believed to be the primary etiological factor that transforms cervical epithelia. The presence of HPV in oral cancers suggests that HPV may play a similar role in transforming the oral epithelia. The prevalence of HPV in oral cancers is highly variable, however, presenting problematic issues regarding the etiology of oral cancers, which must be investigated more thoroughly. Past analyses of HPV in cancers of the oral cavity have largely been confined to retrospective studies of cancer patients. The purpose of this study was to examine the potential for HPV16 infection to alter the proliferative phenotype of oral squamous cell carcinoma in vitro. Results This study found that the oral squamous cell carcinoma cell line, CAL27, transfected with HPV16, exhibited significantly increased proliferation, compared with non-transfected CAL27. The increased proliferation was observed under low density conditions, even in the absence of serum. Moreover, these effects were specific to proliferation, adhesion, and morphology, while cell viability was not affected. Conclusion This study represents one of the first investigations of the effects of HPV16 infection on the proliferation, adhesion, and morphology of an oral squamous cell carcinoma cell line in vitro. The finding that HPV16 has the ability to measurably alter adhesion and proliferative potential is significant, indicating that HPV may have multiple influences on precancerous and cancerous lesions and should be explored as a risk factor and mediator of cancer phenotypes. These measurements and observations will be of benefit to researchers interested in elucidating the mechanisms of oral cancer transformation and the factors governing carcinogenesis and progression.

  15. Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Gradinaru, Cristian; Wierzbicki, Rafal;

    2012-01-01

    viability and proliferation show little dependence on substrate type. We conclude that motility analysis can show a wide range of cell responses e. g. over a factor of two in cell speed to different nano-topographies, where standard assays, such as viability or proliferation, in the tested cases show much...... standard measurements of cell viability, proliferation, and morphology on various surfaces. We also analyzed the motility of cells on the same surfaces, as recorded in time lapse movies of sparsely populated cell cultures. We find that motility and morphology vary strongly with nano-patterns, while...

  16. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis

    Science.gov (United States)

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  17. Cytoskeleton disorder and cell cycle arrest may be associated with the alteration of protein CEP135 by microgravity

    Science.gov (United States)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Liu, Zhiyuan

    In the past decades, alterations in the morphology, cytoskeleton and cell cycle have been observed in cells in vitro under microgravity conditions. But the underlying mechanisms are not absolutely identified yet. Our previous study on proteomic and microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity has demonstrated a serial of microgravity-sensitive molecules. Centrosomal protein of 135 kDa (CEP135) was found down-regulated, but the mRNA expression level of it was up-regulated in zebrafish embryos after simulated-microgravity. However, the functional study on CEP135 is very limited and it has not been cloned in zebrafish till now. In this study, we try to determine whether the cytoskeleton disorder and cell cycle arrest is associated with the alteration of CEP135 by microgravity. Full-length cDNA of cep135 gene was firstly cloned from mitosis phase of ZF4. The sequence was analyzed and the phylogenetic tree was constructed based on the similarity to other species. Zebrafish embryonic cell line ZF4 were exposed to simulated microgravity for 24 and 48 hours, using a rotary cell culture system (RCCS) designed by NASA. Quantitative analysis by western blot showed that CEP135 expression level was significantly decreased two times after 24 hour simulated microgravity. Cell cycle detection by flow cytometer indicated ZF4 cells were blocked in G1 phase after 24 and 48 hour simulated microgravity. Moreover, double immunostained ZF4 cells with anti-tubulin and anti-CEP135antibodies demonstrated simulated microgravity could lead to cytoskeleton disorder and CEP135 abnormality. Further investigations are currently being carried out to determine whether knockdown and over-expression of CEP135 will modulate cytoskeleton and cell cycle. In vitro data in combination within vivo results might, at least in part, explain the dramatic effects of microgravity. Key Words: microgravity; CEP135; Cytoskeleton disorder; G1 arrest; ZF4 cell line

  18. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    Science.gov (United States)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  19. Inhibitory effects of isoproterenol on PAF-induced endothelial cell permeability and morphological changes

    Institute of Scientific and Technical Information of China (English)

    丁自强; 李少华; 吴中立

    1996-01-01

    Using a model to study vascular permeability under hydrostatically perfused bovine pulmonary artery endothelial cell (EC) monolayers and a software to automatically analyse cell morphological parameters in a computer image workstation, the effects of isoproterenol (IPN) on platelet-activating factor (PAF)-induced changes in EC monolayer permeability and cell morphological parameters were studied. Albumin has the fortifying effect on endothelial barrier function. After treatment of EC monolayer with 10-8mol/L PAF, trans-monolayer permeability increased, cell surface area decreased, and intercellular space enlarged. As pretreatment with 10-4mol/L IPN, PAF-induced EC permeability increment and morphological changes were blocked. The results suggest that EC contraction and intercellular gap expansion are important mechanisms for PAF-induced high vascular permeability. IPN inhibits the effects of PAF via stabilization of EC morphology and prevention of intercellular gap formation.

  20. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  1. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions

    Science.gov (United States)

    Wessler, Timothy; Yang, Xiaofeng; Chen, Alex; Roach, Nathan; Elston, Timothy C.; Wang, Qi; Jacobson, Ken; Forest, M. Gregory

    2016-01-01

    Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs), whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D) posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model “learns” from the thin section transmission electron micrograph image (2D) or the “seed and growth” model image (3D). Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts. PMID:27015526

  2. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions.

    Directory of Open Access Journals (Sweden)

    Maryna Kapustina

    2016-03-01

    Full Text Available Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs, whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model "learns" from the thin section transmission electron micrograph image (2D or the "seed and growth" model image (3D. Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts.

  3. Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials.

    Science.gov (United States)

    Lombello, C B; Santos, A R; Malmonge, S M; Barbanti, S H; Wada, M L F; Duek, E A R

    2002-09-01

    Cell adhesion is influenced by the physical and chemical characteristics of the materials used as substrate for cell culturing. In this work, we evaluated the influence of the morphological and chemical characteristics of different polymeric substrates on the adhesion and morphology of fibroblastic cells. Cell growth on poly (L-lactic acid) [PLLA] membranes and poly(2-hydroxy ethyl methacrylate) [polyHEMA], poly(2-hydroxy ethyl methacrylate)-cellulose acetate [polyHEMA-CA] and poly(2-hydroxy ethyl methacrylate)-poly(methyl methacrylate-co-acrylic acid) [polyHEMA-poly(MMA-co-AA)] hydrogels of different densities and pore diameters was examined. Cells adhered preferentially to more negatively charged substrates, with polyHEMA hydrogels being more adhesive than the other substractes. The pores present in PLLA membranes did not interfere with adhesion, but the cells showed a distinctive morphology on each membrane.

  4. Altered susceptibility to infection by Sinorhizobium meliloti and Nectria haematococca in alfalfa roots with altered cell cycle.

    Science.gov (United States)

    Woo, H-H; Hirsch, A M; Hawes, M C

    2004-07-01

    Most infections of plant roots are initiated in the region of elongation; the mechanism for this tissue-specific localization pattern is unknown. In alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter, the cell cycle in roots is completed in 48 h instead of 24 h, and border cell number is decreased by more than 99%. These plants were found to exhibit increased root-tip infection by a fungal pathogen and reduced nodule formation by a bacterial symbiont. Thus, the frequency of infection in the region of elongation by Nectria haematocca was unaffected, but infection of the root tip was increased by more than 90%; early stages of Sinorhizobium meliloti infection and nodule morphology were normal, but the frequency of nodulation was fourfold lower than in wild-type roots.

  5. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  6. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  7. Late steps of parvoviral infection induce changes in cell morphology.

    Science.gov (United States)

    Pakkanen, Kirsi; Nykky, Jonna; Vuento, Matti

    2008-11-01

    Previously, virus-induced non-filopodial extensions have not been encountered in connection with viral infections. Here, we report emergence of long extensions protruding from Norden laboratory feline kidney (NLFK) and A72 (canine fibroma) cells infected with canine parvovirus for 72 h. These extensions significantly differ in length and number from those appearing in control cells. The most striking feature in the extensions is the length, reaching up to 130 microm, almost twice the average length of a healthy NLFK cell. In A72 cells, the extensions were even longer, up to 200 microm. The results presented here also suggest that the events leading to the growth of these extensions start earlier in infection and abnormal extension growth is detectable already at 24-h post-infection (p.i.). These extensions may have a vital role in the cell-to-cell transmission of the virus.

  8. Correlating cell morphology and stochastic gene expression using fluorescence spectroscopy and GPU-enabled image analysis

    Science.gov (United States)

    Shepherd, Douglas; Shapiro, Evan; Perillo, Evan; Werner, James

    2014-03-01

    Biological processes at the microscopic level appear stochastic, requiring precise measurement and analytical techniques to determine the nature of the underlying regulatory networks. Single-molecule, single-cell studies of gene expression have provided insights into how cells respond to external stimuli. Recent work has suggested that macroscopic cell properties, such as cell morphology, are correlated with gene expression. Here we present single-cell studies of a signal-activated gene network: Interleukin 4 (IL4) RNA production in rat basophil leukemia (RBL) cells during the allergic response. We fluorescently label individual IL4 RNA transcripts in populations of RBL cells, subject to varying external stimuli. A custom super-resolution microscope is used to measure the number of fluorescent labeled IL4 transcripts in populations of RBL cells on a cell-by-cell basis. To test the hypothesis that cell morphology is connected genotype, we analyze white light images of RBL cells and cross-reference cell morphology with IL4 RNA levels. We find that the activation of RBL cells, determined by white-light imaging, is well correlated with IL4 mRNA expression.

  9. Effect of cold plasma on glial cell morphology studied by atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Nina Recek

    Full Text Available The atomic force microscope (AFM is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.

  10. Exposure in utero to di(n-butyl) phthalate alters the vimentin cytoskeleton of fetal rat Sertoli cells and disrupts Sertoli cell-gonocyte contact.

    Science.gov (United States)

    Kleymenova, Elena; Swanson, Cynthia; Boekelheide, Kim; Gaido, Kevin W

    2005-09-01

    Di(n-butyl) phthalate (DBP) is commonly used in personal care products and as a plasticizer to soften consumer plastic products. Male rats exposed to DBP in utero have malformations of the male reproductive tract and testicular atrophy characterized by degeneration of seminiferous epithelium and decreased sperm production. In the fetal testis, in utero exposure to DBP reportedly resulted in reduced testosterone levels, Leydig cell aggregates, and multinucleated gonocytes (MNG). We investigated whether exposure in utero to DBP affects rat fetal Sertoli cells and compromises interactions between Sertoli and germ cells in the developing testis. Histological examination showed that MNG occurred at low frequency in the normal fetal rat testis. Exposure in utero at the dose level of DBP above estimated environmental or occupational human exposure levels significantly increased the number of these abnormal germ cells. Postnatally, MNG exhibited aberrant mitoses and were detected at the basal lamina. MNG were not apoptotic in the fetal and postnatal rat testes, as indicated by TUNEL. Sertoli cells in DBP-exposed fetal testis had retracted apical processes, altered organization of the vimentin cytoskeleton, and abnormal cell-cell contacts with gonocytes. The effect of DBP on Sertoli cell morphology at the level of light microscopy was reversed after birth and cessation of exposure. Our data indicate that fetal Sertoli cells are targeted by exposure in utero to DBP and suggest that abnormal interactions between Sertoli and germ cells during fetal life play a role in the development of MNG.

  11. CHARACTERIZATION OF LACTATE DEHYDROGENASE ISOZYME PATTERN AND MORPHOLOGY OF THREE MARINE FISH CELL LINES

    Institute of Scientific and Technical Information of China (English)

    郭华荣; 张士璀; 李红岩; 童裳亮; 相建海

    2002-01-01

    Three continuous marine fish cell lines of FG (i. e., Hounder Gill) from flounder (Paralichthys olivaceus) gill, SPH (i. e. , Sea Perch Heart) from sea perch (Lateolabrax japonicus) heart and RSBF (i.e., Red Sea Bream Fin) from red sea bream (Pagrosomus major) fin, were characterized by lactate dehydrogenase (LDH) isozyme and morphological analysis. The LDH isozyme patterns of these three cell lines and their corresponding tissues of origin were investigated and compared. The results showed: (1) No difference was found in the LDH isozyme patterns of FG and flounder gill tissue. However, the LDH isozyme patterns of SPH and RSBF were significantly different from their corresponding tissues of origin; (2) LDH isozyme patterns of FG, SPH and RSBF were markedly different from each other and could serve as genetic markers for species identification and detection of cross contamination. Morphological change analysis of these three cell lines in comparison to their original tissues indicated that FG cells still appeared epithelioid without morphological transformation. However, morphological changes were found in SPH and RSBF compared to their original tissues. Therefore, the cellular morphology was still plastic in the relatively stable culture conditions, and it was possible that change of LDH patterns wasrelated to morphological changes of fish cells in vitro.

  12. Automated red blood cell analysis compared with routine red blood cell morphology by smear review

    Directory of Open Access Journals (Sweden)

    Dr.Poonam Radadiya

    2015-01-01

    Full Text Available The RBC histogram is an integral part of automated haematology analysis and is now routinely available on all automated cell counters. This histogram and other associated complete blood count (CBC parameters have been found abnormal in various haematological conditions and may provide major clues in the diagnosis and management of significant red cell disorders. Performing manual blood smears is important to ensure the quality of blood count results and to make presumptive diagnosis. In this article we have taken 100 samples for comparative study between RBC histograms obtained by automated haematology analyzer with peripheral blood smear. This article discusses some morphological features of dimorphism and the ensuing characteristic changes in their RBC histograms.

  13. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Anis Rageh Al-Maleki

    Full Text Available Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV] to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk, ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.

  14. Isolation and morphology of Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC)

    Science.gov (United States)

    Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul

    2016-11-01

    Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.

  15. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    Science.gov (United States)

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-02

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing.

  16. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    NARCIS (Netherlands)

    Ali Niaei Fard, S.; Malcolm Matamoros, P.; Meeteren, van U.

    2014-01-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed the

  17. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    Science.gov (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  18. A mycosis fungoides d'emblee showing morphological change in infiltrating lymphoid cells after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Hideyuki; Ishikawa, Osamu; Ishikawa, Hidekazu (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-11-01

    A 67-year-old woman was treated with electron beam irradiation for Mycosis fungoides d'emblee. Blast-like cells were remarkably increased after irradiation, which replaced mycosis cells. Morphological analysis showed that these cells were similar to those observed in cases of classic mycosis fungoides. Such a noticeable increase of blast-like cells seemed be attributable not only to the aggravation of the underlying disease but also to the involvement of electron beam irradiation. (N.K.).

  19. Endothelial cells undergo morphological, biomechanical, and dynamic changes in response to tumor necrosis factor-α

    OpenAIRE

    Stroka, Kimberly M.; Vaitkus, Janina A.; Aranda-Espinoza, Helim

    2012-01-01

    The immune response triggers a complicated sequence of events, one of which is release of the cytokine tumor necrosis factor-α (TNF-α) from stromal cells such as monocytes and macrophages. In this work we explored the biophysical effects of TNF-α on endothelial cells (ECs), including changes in cell morphology, biomechanics, migration, and cytoskeletal dynamics. We found that TNF-α induces a wide distribution of cell area and aspect ratio, with these properties increasing on average during tr...

  20. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size.

    Science.gov (United States)

    Löfke, Christian; Dünser, Kai; Scheuring, David; Kleine-Vehn, Jürgen

    2015-03-05

    The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.

  1. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-01-31

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  2. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Makowska

    2015-12-01

    Full Text Available We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-muscle myosin 2A-associated actin filament arrays in the lamella and reduced directional persistence of 2D migration. Myo9b knockdown increased stress fiber formation, decreased 2D migration speed, and increased directional persistence. Conversely, Myo1b knockdown increased numbers of stress fibers but did not affect 2D migration. In all cases, the cell spread area was increased and 3D migration potential was decreased. Therefore, myosins not only act as molecular motors but also directly influence actin organization and cell morphology, which can contribute to the metastatic phenotype.

  3. Lowering extracellular chloride concentration alters outer hair cell shape.

    Science.gov (United States)

    Cecola, R P; Bobbin, R P

    1992-08-01

    In general, increasing external K+ concentration, as well as exposure to hypotonic medium, induces a shortening of outer hair cells (OHCs) accompanied by an increase in width and volume. One possible mechanism suggested for these changes is a movement of Cl- and/or water across the cell membrane. We therefore examined the role of Cl- in OHC volume maintenance by testing the effect of decreasing extracellular Cl- concentration on OHC length and shape. In addition, the effect of hypotonic medium was examined. OHCs were isolated from guinea pig cochleae, mechanically dissociated and dispersed, and placed in a modified Hanks balanced salt solution (HBS). Exposing the cells to a Cl(-)-free HBS produced an initial shortening, which was rapidly followed by an increase in length. After about 9 min of exposure to Cl(-)-free HBS, the cells appeared to lose all water and collapsed. Upon return to normal HBS, the OHCs returned to their normal shape. We speculate that the collapse of the OHCs may be due to the loss of intracellular Cl-, which, in turn, resulted in the loss of intracellular K+ and water. The results indicate that Cl- contributes greatly to the maintenance of OHC volume. In addition, we confirmed that isolated OHCs swell in hypotonic medium and maintain their swollen state until returned to normal medium. The mechanism for maintenance of the swollen state is unknown.

  4. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B;

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  5. Spatial distributions of red blood cells significantly alter local haemodynamics.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics.

  6. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  7. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  8. Analysis of cancer cell morphology in fluorescence microscopy image exploiting shape descriptor

    Science.gov (United States)

    Kang, Mi-Sun; Kim, Hye-Ryun; Kim, Sudong; Ryu, Gyu Ha; Kim, Myoung-Hee

    2016-04-01

    Cancer cell morphology is closely related to their phenotype and activity. These characteristics are important in drug-response prediction for personalized cancer therapeutics. We used multi-channel fluorescence microscopy images to analyze the morphology of highly cohesive cancer cells. First, we detected individual nuclei regions in single-channel images using advanced simple linear iterative clustering. The center points of the nuclei regions were used as seeds for the Voronoi diagram method to extract spatial arrangement features from cell images. Human cancer cell populations form irregularly shaped aggregates, making their detection more difficult. We overcame this problem by identifying individual cells using an image-based shape descriptor. Finally, we analyzed the correlation between cell agglutination and cell shape.

  9. Alterations of digestive enzyme activities, intestinal morphology and microbiota in juvenile paddlefish, Polyodon spathula, fed dietary probiotics.

    Science.gov (United States)

    Fang, Cheng; Ma, Mingyang; Ji, Hong; Ren, Tongjun; Mims, Steven D

    2015-02-01

    The effects of dietary supplementation of probiotics on digestive enzymes activities, intestinal morphology and microbiota in juvenile paddlefish (Polyodon spathula) were studied. A total of 400 fish were reared in two cages and fed with a basal diet (control group, CG) or diet supplemented with commercial probiotics (treatment group, TG) for 80 days. Enzymes activities analysis indicated that protease and α-amylase activities increased (P intestinal microbial species increased in TG. The similarity between the commercial bacteria product and intestinal microbiota of TG were higher than the microbiota from CG. The quantities of bacterium, Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, present an increasing trend from foregut to hindgut both in two groups. To our knowledge, this is the first in vivo study to reveal the effect of dietary probiotics on intestinal digestive enzymes activities, morphology and microbiota in paddlefish.

  10. Differences in regulation of tight junctions and cell morphology between VHL mutations from disease subtypes

    Directory of Open Access Journals (Sweden)

    Isanova Bella

    2009-07-01

    Full Text Available Abstract Background In von Hippel-Lindau (VHL disease, germline mutations in the VHL tumor suppressor gene cause clear cell renal carcinomas, hemangioblastomas, and pheochromocytomas. The VHL gene product is part of an ubiquitin E3 ligase complex and hypoxia-inducible factor alpha (HIF-α is a key substrate, although additional VHL functions have been described. A genotype-phenotype relationship exists in VHL disease such that specific VHL mutations elicit certain subsets of these tumors. Here, we examine VHL genotype-phenotype correlations at the cellular level, focusing on the regulation of tight junctions and cell morphology. Methods Wild-type and various mutant VHL proteins representing VHL disease subtypes were stably expressed in 3 VHL-negative renal carcinoma cell lines. Using these cell lines, the roles of various VHL-associated cellular functions in regulation of cell morphology were investigated. Results As a whole, type 1 mutants varied greatly from type 2 mutants, demonstrating high levels of HIF-2α, cyclin D1 and α5 integrin, lower p27 levels, and a spindly, fibroblastic cellular appearance. Type 2 mutations demonstrated an epithelial morphology similar to wild-type VHL in the majority of the renal cell lines used. Knockdown of p27 in cells with wild-type VHL led to perturbations of both epithelial morphology and ZO-1 localization to tight junctions. ZO-1 localization correlated well with VHL disease subtypes, with greater mislocalization observed for genotypes associated with a higher risk of renal carcinoma. HIF-2α knockdown in 786-O partially restored ZO-1 localization, but did not restore an epithelial morphology. Conclusion VHL has both HIF-α dependent and HIF-α independent functions in regulating tight junctions and cell morphology that likely impact the clinical phenotypes seen in VHL disease.

  11. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity.

    Science.gov (United States)

    Garcia-Abellan, José O; Fernandez-Garcia, Nieves; Lopez-Berenguer, Carmen; Egea, Isabel; Flores, Francisco B; Angosto, Trinidad; Capel, Juan; Lozano, Rafael; Pineda, Benito; Moreno, Vicente; Olmos, Enrique; Bolarin, Maria C

    2015-11-01

    Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.

  12. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Directory of Open Access Journals (Sweden)

    Nathalia R. Lestard

    2016-01-01

    Full Text Available Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  13. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    Science.gov (United States)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  14. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation

    Directory of Open Access Journals (Sweden)

    Dobkin Carl

    2011-05-01

    Full Text Available Abstract Background Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Methods Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. Results In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Conclusions Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.

  15. GM-CSF alters dendritic cells in autoimmune diseases.

    Science.gov (United States)

    Li, Bao-Zhu; Ye, Qian-Ling; Xu, Wang-Dong; Li, Jie-Hua; Ye, Dong-Qing; Xu, Yuekang

    2013-11-01

    Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.

  16. Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review

    Science.gov (United States)

    Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany

    2014-01-01

    Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.

  17. Cytomorphometric analysis and morphological assessment of oral exfoliated cells in type 2 diabetes mellitus and healthy individuals: A comparative study

    Science.gov (United States)

    Sahay, Khushboo; Rehani, Shweta; Kardam, Priyanka; Kumra, Madhumani; Sharma, Rashi; Singh, Nisha

    2017-01-01

    Context: Oral exfoliative cytology is a simple, nonaggressive technique that is well accepted by patients. Therefore, it is an attractive option, which aids in the diagnosis and observation of epithelial atypias associated with oral mucosal diseases. Aims: The aim of this study was to evaluate and compare the quantitative and qualitative alterations in exfoliative smears from type 2 diabetics and healthy individuals. Patients and Methods: The study includes 30 type 2 diabetics and 30 healthy persons of both sexes. PAP and hematoxylin and eosin (H and E) stained smears were prepared from buccal mucosa (BM), tongue (T), floor of the mouth (FOM), and palate (P). Under a light microscope, 50 clearly defined unfolded epithelial cells were quantitatively evaluated for cellular area (CA), nuclear area (NA), and cellular-to-nuclear area ratio (CA:NA) and assessed for morphological features. Statistical Analysis: Collected data was manually entered into the Statistical Package for the Social Sciences version 13.5 for analysis. Student's t-test was used at 95% confidence interval. Results: Quantitative assessment of the overall mean CA was less, mean NA was more, and mean CA:NA was less in diabetics than that in healthy persons at all the four sites. Diabetic oral cells showed qualiative cytoplasmic and nuclear alterations: cytoplasmic vacuoles, karyorrhexis, karyolysis, pyknosis, peri-nuclear halo, binucleation, nuclear vacuoles, inflammation, and microbial colonies. Conclusion: Oral cytology from type 2 diabetics is associated with detectable cytomorphological changes with alteration in size of the cell and nucleus, which is site specific, indicating epithelial cell degeneration in cytoplasm and nucleus.

  18. Butachlor, a suspected carcinogen, alters growth and transformation characteristics of mouse liver cells.

    Science.gov (United States)

    Ou, Y H; Chung, P C; Chang, Y C; Ngo, F Q; Hsu, K Y; Chen, F D

    2000-12-01

    Butachlor is a widely used herbicide in Asia and South America. Previous investigations have indicated that it is a suspected carcinogen. To understand more about the biological effects of butachlor on cultured cells and the mechanism(s) of its carcinogenicity, we studied the alteration of the growth characteristics that was induced by butachlor in normal mouse liver cells (BNL CL2). This study demonstrates that butachlor decreases the population-doubling time of BNL CL2 cells, suggesting that it stimulates cell proliferation. To support this finding, a thymidine incorporation assay was conducted and a similar result that butachlor stimulates cell proliferation was elucidated. In addition, we show that butachlor increases the saturation density of the BNL CL2 cells. When combined with the tumor initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), butachlor transforms cells efficiently, as demonstrated by loss of contact inhibition. These findings indicate that butachlor alters the growth characteristics of BNL CL2 cells and suggest that butachlor may induce malignant transformation through stimulation of cell proliferation, alteration of cell cycle regulation, and suppression of cell density-dependent inhibition of proliferation.

  19. CHARACTERIZATION OF LACTATE DEHYDROGENASE ISOZYME PATTERN AND MORPHOLOGY OF THREE MARINE FISH CELL LINES

    Institute of Scientific and Technical Information of China (English)

    郭华荣; 张士璀; 李红岩; 童裳亮; 相建海

    2002-01-01

    Three continuous marine fish cell lines of FG (i.e. , Flounder Gill) from flounder (Paralichthys olivaceus) gill, SPH (i.e., Sea Perch Heart) fro m sea perch (Lateolabrax japonicus) heart and RSBF (i.e., Red Sea Bream Fin) from red se a bream (Pagrosomus major) fin, were characterized by lactate dehydrogenase (LDH) is ozyme and morphological analysis. The LDH isozyme patterns of these three cell lines and their corresponding tissues of origin were investigated and compared. The results sho wed: (1) No difference was found in the LDH isozyme patterns of FG and flounder gill tissue. However, the LDH isozyme patterns of SPH and RSBF were significantly different from their cor responding tissues of origin; (2) LDH isozyme patterns of FG, SPH and RSBF were markedly di fferent from each other and could serve as genetic markers for species identification and de tection of cross contamination. Morphological change analysis of these three cell lines in compa rison to their original tissues indicated that FG cells still appeared epithelioid without mor phological transformation. However, morphological changes were found in SPH and RSBF compa red to their original tissues. Therefore, the cellular morphology was still plastic in the relatively stable culture conditions, and it was possible that change of LDH patterns was related to morphological changes of fish cells in vitro.

  20. Morphological changes in nerve cells during normal aging.

    Science.gov (United States)

    Pannese, Ennio

    2011-06-01

    During normal aging, widespread loss of nerve cells does not occur. Neuronal loss is limited to restricted regions of the nervous system and is slight (probably no more than 10%). The commonest age-related structural changes undergone by nerve cells are as follows: dendrites decrease in number and length and many dendritic spines are lost; axons decrease in number and their myelin sheaths may become less compact and undergo segmental demyelination followed by remyelination; and significant loss of synapses occurs. These changes probably make a significant contribution to the behavioral impairment and cognitive decline that often accompany normal aging.

  1. Use of Genetically Altered Stem Cells for the Treatment of Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Andrew T. Crane

    2014-03-01

    Full Text Available Transplantation of stem cells for the treatment of Huntington’s disease (HD garnered much attention prior to the turn of the century. Several studies using mesenchymal stem cells (MSCs have indicated that these cells have enormous therapeutic potential in HD and other disorders. Advantages of using MSCs for cell therapies include their ease of isolation, rapid propagation in culture, and favorable immunomodulatory profiles. However, the lack of consistent neuronal differentiation of transplanted MSCs has limited their therapeutic efficacy to slowing the progression of HD-like symptoms in animal models of HD. The use of MSCs which have been genetically altered to overexpress brain derived neurotrophic factor to enhance support of surviving cells in a rodent model of HD provides proof-of-principle that these cells may provide such prophylactic benefits. New techniques that may prove useful for cell replacement therapies in HD include the use of genetically altering fate-restricted cells to produce induced pluripotent stem cells (iPSCs. These iPSCs appear to have certain advantages over the use of embryonic stem cells, including being readily available, easy to obtain, less evidence of tumor formation, and a reduced immune response following their transplantation. Recently, transplants of iPSCs have shown to differentiate into region-specific neurons in an animal model of HD. The overall successes of using genetically altered stem cells for reducing neuropathological and behavioral deficits in rodent models of HD suggest that these approaches have considerable potential for clinical use. However, the choice of what type of genetically altered stem cell to use for transplantation is dependent on the stage of HD and whether the end-goal is preserving endogenous neurons in early-stage HD, or replacing the lost neurons in late-stage HD. This review will discuss the current state of stem cell technology for treating the different stages of HD and

  2. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Matilda A Haas

    Full Text Available Down Syndrome (DS is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.

  3. The influence of salinity on growth, morphology, leaf ultrastructure, and cell viability of the seagrass Halodule wrightii Ascherson.

    Science.gov (United States)

    Ferreira, Chirle; Simioni, Carmen; Schmidt, Éder C; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2016-11-12

    Halodule wrightii is an ecologically important seagrass; however, little is known about the adaptation of this species in the context of environmental change, particularly changes arising from alterations in salinity of coastal ecosystems. This study aimed to determine the effects of different salinities on growth, morphology, leaf ultrastructure, and cell viability of H. wrightii. To accomplish this, plants were cultivated for 21 days in salinities of 25, 35, and 45. More hydropotens were observed in samples exposed to salinity of 45 with increased invagination of the plasma membrane and cell wall. These invaginations were also observed in other epidermal cells of the leaf blade. In particular, a significant retraction of plasma membrane was seen in samples exposed to salinity of 45, with possible deposition of compounds between the membrane and cell wall. Osmotic stress in samples exposed to salinity of 45 affected the chloroplasts through an increase in plastoglobules and thylakoids by granum in the epidermal chloroplasts of the leaf and decrease in the number of chloroplasts. Overall, this study showed that H. wrightii can survive within salinities that range between 25 and 45 without changing growth rate. However, the plant did have higher cell viability at salinity of 35. Salt stress in mesocosms, at both salinity of 25 and 45, decreased cell viability in this species. H . wrightii had greater changes in salinity of 45; this showed that the species is more tolerant of salinities below this value.

  4. A Biphasic Pleural Tumor with Features of an Epithelioid and Small Cell Mesothelioma: Morphologic and Molecular Findings

    Science.gov (United States)

    2016-01-01

    Malignant mesotheliomas are generally classified into epithelioid, sarcomatoid, desmoplastic, and biphasic types with rare reports of a small cell form. These small cell variants display some morphologic overlap with desmoplastic small round cell tumors (DSRCTs) which generally occur within the abdominal cavity of young males and are defined by a characteristic t(11;22)(p13;q12) translocation. However, there are rare reports of DSRCTs lacking this translocation. We present a 78-year-old man with a pleura-based biphasic neoplasm with features of both epithelioid mesothelioma and a small cell blastema-like neoplasm. The epithelioid portion showed IHC reactivity for pan cytokeratin, CK5/6, D2-40, and calretinin and the small cell portion marked with CD99, pan cytokeratin, WT1, FLI1, S100, CD200, MyoD1, and CD15. Fluorescence in situ hybridization testing for the t(11;22)(p13;q12) translocation disclosed loss of the EWSR1 gene in 94% of tumor cell nuclei, but there was no evidence of the classic translocation. Array based-comparative genomic hybridization (a-CGH) confirmed the tumor had numerous chromosome copy number losses, including 11p15.5-p11.12 and 22q12.1-q13.33, with loss of the EWSR1 and WT1 gene regions. Herein, we report novel complex CGH findings in a biphasic tumor and review the molecular genetic alterations in both mesothelioma and DSRCTs. PMID:27403364

  5. A Biphasic Pleural Tumor with Features of an Epithelioid and Small Cell Mesothelioma: Morphologic and Molecular Findings

    Directory of Open Access Journals (Sweden)

    Sarah Hackman

    2016-01-01

    Full Text Available Malignant mesotheliomas are generally classified into epithelioid, sarcomatoid, desmoplastic, and biphasic types with rare reports of a small cell form. These small cell variants display some morphologic overlap with desmoplastic small round cell tumors (DSRCTs which generally occur within the abdominal cavity of young males and are defined by a characteristic t(11;22(p13;q12 translocation. However, there are rare reports of DSRCTs lacking this translocation. We present a 78-year-old man with a pleura-based biphasic neoplasm with features of both epithelioid mesothelioma and a small cell blastema-like neoplasm. The epithelioid portion showed IHC reactivity for pan cytokeratin, CK5/6, D2-40, and calretinin and the small cell portion marked with CD99, pan cytokeratin, WT1, FLI1, S100, CD200, MyoD1, and CD15. Fluorescence in situ hybridization testing for the t(11;22(p13;q12 translocation disclosed loss of the EWSR1 gene in 94% of tumor cell nuclei, but there was no evidence of the classic translocation. Array based-comparative genomic hybridization (a-CGH confirmed the tumor had numerous chromosome copy number losses, including 11p15.5-p11.12 and 22q12.1-q13.33, with loss of the EWSR1 and WT1 gene regions. Herein, we report novel complex CGH findings in a biphasic tumor and review the molecular genetic alterations in both mesothelioma and DSRCTs.

  6. Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates.

    Directory of Open Access Journals (Sweden)

    Seyed Jamaleddin Mousavi

    Full Text Available Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell's physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively

  7. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces

    DEFF Research Database (Denmark)

    Justesen, Jørn; Lorentzen, M.; Andersen, L. K.;

    2009-01-01

    of time with regard to the two-dimensional pattern and vertical dimension of the structure. Microstructures of parallel grooves/ridges caused elongated cell growth after 1 and 4 h in comparison to a flat, nonstructured, reference surface. For microstructures consisting of pillars, cell spreading was found......, and length of preosteoblastic cells (MC3T3-E1). Cells were examined after 0.5, 1, 4, and 24 h on different Ta microstructures with vertical dimensions (heights) of 0.25 and 1.6 mu m. Cell morphologies depended upon the underlying Surface topography, and the length and spreading of cells varied as a function...

  8. In situ visualization of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy

    Science.gov (United States)

    Egawa, Mariko; Tokunaga, Kyoya; Hosoi, Junichi; Iwanaga, Shinya; Ozeki, Yasuyuki

    2016-08-01

    Visualization of epidermal cells is important because the differentiation patterns of keratinocytes (KCs) are considered to be related to the functions and condition of skin. Optical microscopy has been widely used to investigate epidermal cells, but its applicability is still limited because of the need for sample fixation and staining. Here, we report our staining-free observation of epidermal cells in both tissue and culture by stimulated Raman scattering (SRS) microscopy that provides molecular vibrational contrast. SRS allowed us to observe a variety of cellular morphologies in skin tissue, including ladder-like structures in the spinous layer, enucleation of KCs in the granular layer, and three-dimensional cell column structures in the stratum corneum. We noticed that some cells in the spinous layer had a brighter signal in the cytoplasm than KCs. To examine the relevance of the observation of epidermal layers, we also observed cultured epidermal cells, including KCs at various differentiation stages, melanocytes, and Langerhans cell-like cells. Their SRS images also demonstrated various morphologies, suggesting that the morphological differences observed in tissue corresponded to the cell lineage. These results indicate the possible application of SRS microscopy to dermatological investigation of cell lineages and types in the epidermis by cellular-level analysis.

  9. Polymer solar cells. Morphology-property-correlation; Polymere Solarzellen. Morphologie-Eigenschafts-Korrelation

    Energy Technology Data Exchange (ETDEWEB)

    Erb, Tobias

    2008-09-22

    The aim of the presented dissertation is to clarify open questions concerning the development and control of the morphology in the active layer of polymer bulk heterojunction solar cells. The new findings hereby derived shall modify the existing models of the active layer morphology as found in today's literature. The experimental investigations were performed by X-ray diffraction, spectroscopic ellipsometry, and photoluminescence spectroscopy. In addition to those methods, light microscopy and differential scanning calorimetry were applied to investigate three chosen material systems: P3HT/PCBM-C{sub 60}, P3HT/MDHE-C{sub 60}, and P3HT/(MDHE){sub 2}-C{sub 60}. On the basis of experimental results a morphological model is developed, which is discussed in the context of existing literature. The solar cells were electrically characterised by current-voltage and external quantum efficiency measurements. The structural model is set into relation with photovoltaic parameters of the polymer solar cell, such as short circuit photocurrent, open circuit voltage, fill factor, and power conversion efficiency. This contributes to the explanation and analysis of the electrical properties of the organic solar cell as a device. In summary, this work yields morphology-property-relations that are able to explain the interaction between physical properties, such as light absorption, charge carrier generation, and transport, with the morphology present within the active layer. Finally, the three investigated systems are compared and evaluated with respect to their applicability in polymer solar cells. Further on, the morphology-propertyrelations are used to develop a strategy to estimate the suitability of new twocomponent polymer-fullerene donor-acceptor systems for polymer solar cells. Based on these findings it becomes possible to evaluate the optimization potential for new materials. In conclusion, this helps to develop polymer solar cells with increased power conversion

  10. The role of Golgi reassembly and stacking protein 65 phosphorylation in H2O2-induced cell death and Golgi morphological changes.

    Science.gov (United States)

    Ji, Guang; Zhang, Weiwei; Quan, Moyuan; Chen, Yang; Qu, Hui; Hu, Zhiping

    2016-12-01

    This study aimed to investigate the effects of H2O2-induced oxidative stress on cell viability and survival, as well as changes in the distribution of Golgi apparatus and in the level of Golgi reassembly and stacking protein 65 (GRASP65). Cell viability of cultured N2a cells treated with H2O2 was measured by the MTT assay. Apoptosis was measured by flow cytometry analyses. Cells labeled by indirect immunofluorescence were observed under confocal microscope to detect any Golgi morphological alterations; electron microscopy of Golgi apparatus was also done. Expression of GRASP65 and phospho-GRASP65 was examined by immunoblotting. H2O2 treatment reduced the cell viability and raised the cell mortality of N2a cells in a time-dependent manner. Notable changes were only observed in the distribution and morphology of Golgi apparatus at 6 h after H2O2 treatment. The expression of GRASP65 showed no significant changes at different time points; the phosphorylated GRASP65 level was significantly increased after H2O2 treatment, peaked at 3 h, and finally dropped at 6 h. Taken together, GRASP65 phosphorylation may have a critical role in inducing cell death at the early stage after H2O2 treatment, while its role in H2O2-induced Golgi morphological changes may be complex.

  11. The role of FGF-2/HGF and fibronectin matrix on pleomorphic adenoma myoepithelial cell morphology and immunophenotype: an in vitro study.

    Science.gov (United States)

    Silva, Carolina Amália Barcellos; Nardello, Laura Cristina Leite; Garcia, Frederico Windlin; Araújo, Ney Soares de; Montalli, Victor Angelo; Araújo, Vera Cavalcanti de; Martinez, Elizabeth Ferreira

    2015-02-01

    Myoepithelial cells play a central role in glandular tumors, regulating the progression of in situ to invasive neoplasias, with the tumor microenvironment being shown to be involved in both initiation and progression. This study aimed to analyze the in vitro effects of fibroblast growth factor-2 (FGF-2) and hepatocyte growth factor (HGF) in myoepithelial cells under the influence of the fibronectin matrix extracellular protein. Benign myoepithelial cells were obtained from pleomorphic adenoma and cultured on a fibronectin substratum. FGF-2 and HGF were supplemented at different concentrations and time intervals, in order to evaluate cell proliferation, morphology and immunophenotype. Individually, FGF-2 and HGF supplementation did not alter myoepithelial cell proliferation, morphology or immunophenotype. The fibronectin substratum provoked an increase in cell proliferation and immunopositivity for α-smooth muscle actin and FGF-2. The myoepithelial cell morphology changed when the fibronectin substratum and FGF-2 acted together, highlighting the importance of the fibronectin extracellular matrix protein on the behavior of these cells.

  12. Early exposure of 17α-ethynylestradiol and diethylstilbestrol induces morphological changes and alters ovarian steroidogenic pathway enzyme gene expression in catfish, Clarias gariepinus.

    Science.gov (United States)

    Sridevi, P; Chaitanya, R K; Prathibha, Y; Balakrishna, S L; Dutta-Gupta, A; Senthilkumaran, B

    2015-04-01

    Environmental estrogens are major cause of endocrine disruption in vertebrates, including aquatic organisms. Teleosts are valuable and popular models for studying the effects of endocrine disrupting chemicals (EDCs) in the environment. In the present study, we investigated the changes caused by exposure to the synthetic estrogens 17α-ethynylestradiol (EE2 ) and diethylstilbesterol (DES) during early stages of growth and sex differentiation of air-breathing catfish, Clarias gariepinus, at the morphological, histological, and molecular levels. Catfish hatchlings, 0 day post hatch (dph) were exposed continuously to sublethal doses of EE2 (50 ng/L) and DES (10 ng/L) until 50 dph and subsequently monitored for ovarian structural changes and alteration in the gene expression of steroidogenic enzymes till adulthood. Treated fish exhibited morphological deformities such as spinal curvature, stunted growth, and yolk-sac fluid retention. In addition to ovarian atrophy, DES-treated fish showed either rudimentary or malformed ovaries. Detailed histological studies revealed precocious oocyte development as well as follicular atresia. Further, transcript levels of various steroidogenic enzyme and transcription factor genes were altered in response to EE2 and DES. Activity of the rate-limiting enzyme of estrogen biosynthesis, aromatase, in the ovary as well as the brain of treated fish was in accordance with transcript level changes. These developmental and molecular effects imparted by EE2 and DES during early life stages of catfish could demonstrate the deleterious effects of estrogen exposure and provide reliable markers for estrogenic EDCs exposure in the environment.

  13. Three-Dimensional Numerical Model of Cell Morphology during Migration in Multi-Signaling Substrates

    Science.gov (United States)

    Mousavi, Seyed Jamaleddin; Hamdy Doweidar, Mohamed

    2015-01-01

    Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell’s physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the

  14. Investigation of cell morphology for disease diagnostics via high content screening

    Science.gov (United States)

    Khatau, Shyam

    2013-03-01

    Ninety percent of all cancer-related deaths are caused by metastatic disease, i.e. the spreading of a subset of cells from a primary tumor in an organ to distal sites in other organs. Understanding this progression from localized to metastatic disease is essential for further developing effective therapeutic and treatment strategies. However, despite research efforts, no distinct genetic, epigenetic, or proteomic signature of cancer metastasis has been identified so far. Metastasis is a physical event: through invasion and migration through the dense, tortuous stromal matrix, intravasation, shear forces of blood flow, successful re-attachment to blood vessel walls, migration, the colonization of a distal site, and, finally, reactivation following dormancy, metastatic cells may share precise physical properties. Cell morphology is the most direct physical property that can be measured. In this work, we develop a high throughput cell phenotyping process and investigate the morphological signature of primary tumor cells and liver metastatic pancreatic cancer cells.

  15. Effects of tebuconazole on morphology, structure, cell wall components and trichothecene production of Fusarium culmorum in vitro.

    Science.gov (United States)

    Kang, Z; Huang, L; Krieg, U; Mauler-Machnik, A; Buchenauer, H

    2001-06-01

    The effects of tebuconazole, a systemic fungicide, on the morphology, structure, cell wall components and toxin production of Fusarium culmorum were investigated in vitro. Treatment was by application of four filter paper strips (0.75 cm x 5.0 cm) soaked in 20 micrograms ml-1 fungicide placed around a point inoculum in Petri dishes. Mycelial growth was strongly inhibited by fungicide treatment. Scanning electron microscopic observations showed that the fungicide caused irregular swelling and excessive branching of hyphae. The morphological changes induced by the fungicide at the ultrastructural level included considerable thickening of the hyphal cell walls, excessive septation, the formation of the incomplete septa, extensive vacuolisation, accumulation of lipid bodies and progressing necrosis or degeneration of the hyphal cytoplasm. Non-membrane inclusion bodies were often detected in the hyphal cytoplasm. Furthermore, the formation of new hyphae (daughter hyphae) inside collapsed hyphal cells was common following treatment. The daughter hyphae also displayed severe alterations such as irregular thickening of the cell walls and necrosis of the cytoplasm. Using cytochemical techniques, the labelling densities of chitin and beta-1,3-glucan in the cell walls of the fungicide-treated hyphae were more pronounced than in those of the control hyphae. Moreover, immunogold labelling with antiserum against deoxynivalenol (DON) revealed that Fusarium toxin DON was localized in the cell walls, cytoplasm, mitochondria and vacuoles of the hyphae from the control and the fungicide treatment, but the labelling density in the fungicide-treated hyphae decreased dramatically compared with the control hyphae, indicating that tebuconazole reduced Fusarium toxin production of the fungus.

  16. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  17. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    Science.gov (United States)

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds.

  18. Alterations in archaeological bones thermally treated: structure and morphology; Alteraciones en huesos arqueologicos termicamente tratados: estructura y morfologia

    Energy Technology Data Exchange (ETDEWEB)

    Pijoan, C.M.; Mansilla, J.; Leboreiro, I. [Direccion de Antropologia Fisica, INAH, Gandhi s/n, Polanco, 11560 Mexico D. F. (Mexico); Lara, V.H. [Universidad Autonoma Metropolitana-lztapalapa, Michoacan esquina La Purisima, Apdo.Postal 55-534, Mexico D. F. (Mexico); Bosch, P. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2004-07-01

    Archaeological bones found close to Mexico city (Tlatelcomila) have been characterized by X-ray Diffraction, Small Angle X-ray Spectroscopy and Scanning Electron Microscopy. These techniques, which are not conventionally used in archaeological research, provided useful information. The boiled bones were clearly distinguished from grilled bones. The degree of deterioration of the bone structure was quantified through parameters such as gyration radius or fractal dimension. The morphology followed the structural modifications and changes resulting from thermic exposure. (Author) 23 refs., 1 tab., 2 figs.

  19. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.

    Science.gov (United States)

    Hibi, Masaaki; Kaneda, Hiroyasu; Tanizaki, Junko; Sakai, Kazuko; Togashi, Yosuke; Terashima, Masato; De Velasco, Marco Antonio; Fujita, Yoshihiko; Banno, Eri; Nakamura, Yu; Takeda, Masayuki; Ito, Akihiko; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko; Okamoto, Isamu; Nishio, Kazuto

    2016-11-01

    Fibroblast growth factor receptor (FGFR) gene alterations are relatively frequent in lung squamous cell carcinoma (LSCC) and are a potential targets for therapy with FGFR inhibitors. However, little is known regarding the clinicopathologic features associated with FGFR alterations. The angiokinase inhibitor nintedanib has shown promising activity in clinical trials for non-small cell lung cancer. We have now applied next-generation sequencing (NGS) to characterize FGFR alterations in LSCC patients as well as examined the antitumor activity of nintedanib in LSCC cell lines positive for FGFR1 copy number gain (CNG). The effects of nintedanib on the proliferation of and FGFR signaling in LSCC cell lines were examined in vitro, and its effects on tumor formation were examined in vivo. A total of 75 clinical LSCC specimens were screened for FGFR alterations by NGS. Nintedanib inhibited the proliferation of FGFR1 CNG-positive LSCC cell lines in association with attenuation of the FGFR1-ERK signaling pathway in vitro and in vivo. FGFR1 CNG (10.7%), FGFR1 mutation (2.7%), FGFR2 mutation (2.7%), FGFR4 mutation (5.3%), and FGFR3 fusion (1.3%) were detected in LSCC specimens by NGS. Clinicopathologic features did not differ between LSCC patients positive or negative for FGFR alterations. However, among the 36 patients with disease recurrence after surgery, prognosis was significantly worse for those harboring FGFR alterations. Screening for FGFR alterations by NGS warrants further study as a means to identify patients with LSCC recurrence after surgery who might benefit from nintedanib therapy.

  20. Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells.

    Science.gov (United States)

    Proellocks, Nicholas I; Coppel, Ross L; Mohandas, Narla; Cooke, Brian M

    2016-01-01

    Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.

  1. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    2007-09-01

    Full Text Available Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP, affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged "canoe" shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features--cell shape, leading-edge shape, filamentous actin (F-actin distribution, cell speed, and directional persistence--that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes--which had VASP highly enriched at their leading edges and migrated fast with straight trajectories--to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and

  2. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  3. Effects of exposure to electromagnetic radiation at 835 MHz on growth, morphology and secretory characteristics of a mast cell analogue, RBL-2H3.

    Science.gov (United States)

    Donnellan, M; McKenzie, D R; French, P W

    1997-07-01

    A mast cell line, RBL-2H3, was exposed to 835 MHz for 20 minutes, three times per day for 7 days at a power density of 8.1 +/- 3 mW/cm2. From day 4 onwards, it was observed that the rate of DNA synthesis and cell replication increased, that actin distribution and cell morphology became altered, and the amount of beta-hexosaminidase (a marker of granule secretion) released in response to a calcium ionophore was significantly enhanced, in comparison to unexposed cultures. There were no effects seen on levels of cytoskeletal protein synthesis or of beta-actin mRNA. Morphological changes persisted following subculture for at least 7 days in the absence of further exposure. It is hypothesized that effects of exposure to an electromagnetic field at 835 MHz may be mediated via a signal transduction pathway.

  4. MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis.

    Science.gov (United States)

    Yamaoka, Shohei; Nakajima, Masaki; Fujimoto, Masaru; Tsutsumi, Nobuhiro

    2011-02-01

    Regulating the morphology and intracellular distribution of mitochondria is essential for embryo development in animals. However, the importance of such regulation is not clearly defined in plants. The evolutionarily conserved Miro proteins are known to be involved in the regulation of mitochondrial morphology and motility. We previously demonstrated that MIRO1, an Arabidopsis thaliana orthologue of the Miro protein, is required for embryogenesis. An insertional mutation in the MIRO1 gene causes arrest of embryonic cell division, leading to abortion of the embryo at an early stage. Here we investigated the role of MIRO1 in the regulation of mitochondrial behaviour in egg cells and early-stage embryos using GFP-labeled mitochondria. Two-photon laser scanning microscopy revealed that, in miro1 mutant egg cells, mitochondria are abnormally enlarged, although egg cell formation is nearly unaffected. After fertilization and subsequent zygotic cell division, the homozygous miro1 mutant two-celled embryo contained a significantly reduced number of mitochondria in its apical cell compared with the wild type, suggesting that the miro1 mutation inhibits proper intracellular distribution of mitochondria, leading to an arrest of embryonic cell division. Our findings suggest that proper mitochondrial morphology and intracellular distribution are maintained by MIRO1 and are vital for embryonic cell division.

  5. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Allen, Scott P; Duffy, Lynn M; Shaw, Pamela J; Grierson, Andrew J

    2015-10-01

    Mitochondria play a key role in aging, which is a well-established risk factor in amyotrophic lateral sclerosis (ALS). We have previously modeled metabolic dysregulation in ALS using fibroblasts isolated from sporadic ALS (SALS) and familial ALS patients. In the present study, we show that fibroblasts from SALS patients have an altered metabolic response to aging. Control fibroblasts demonstrated increased mitochondrial network complexity and spare respiratory capacity with age which was not seen in the SALS cases. SALS cases displayed an increase in uncoupled mitochondrial respiration, which was not evident in control cases. Unlike SALS cases, controls showed a decrease in glycolysis and an increase in the oxygen consumption rate/extracellular acidification rate ratio, indicating an increased reliance on mitochondrial function. Switching to a more oxidative state by removing glucose with in the culture media resulted in a loss of the mitochondrial interconnectivity and spare respiratory capacity increases observed in controls grown in glucose. Glucose removal also led to an age-independent increase in glycolysis in the SALS cases. This study is, to the best our knowledge, the first to assess the effect of aging on both mitochondrial and glycolytic function simultaneously in intact human fibroblasts and demonstrates that the SALS disease state shifts the cellular metabolic response to aging to a more glycolytic state compared with age-matched control fibroblasts. This work highlights that ALS alters the metabolic equilibrium even in peripheral tissues outside the central nervous system. Elucidating at a molecular level how this occurs and at what stage in the disease process is crucial to understanding why ALS affects cellular energy metabolism and how the disease alters the natural cellular response to aging.

  6. Morphological alterations in cryopreserved spermatozoa of scallop Argopecten purpuratus Alteraciones morfológicas en espermatozoides criopreservados de concha de abanico Argopecten purpuratus

    Directory of Open Access Journals (Sweden)

    Carlos Espinoza

    2010-01-01

    Full Text Available The present work identifies and quantifies the morphological alterations of scallop Argopecten purpuratus spermatozoa caused by long-term cryopreservation. Percentages of motility, fertilization and injured spermatozoa were quantified by optic microscopy and scanned electron microscopy. These parameters were evaluated in sperm without treatment (CTR, spermatozoa incubated in cryoprotective solution but not freezed (ICS and freezed-thawed spermatozoa (FTS. Spermatozoa of ICS treatment remained motile longer than those of CTR, whereas those of FTS treatment were lowest. Morphology of the spermatozoa was affected in several ways by the freeze-thawing treatment; some had their head deformed or swollen, others had their cell membrane folded or broken; acrosome reaction; anomalous positions or absence of mitochondria as well as broken, stiff or loss of lineal structure of tail. CTR and ICS treatments had higher percentages of undamaged sperm (87.7% and 79.0% respectively, while FTS samples had 14.2% of undamaged sperm. The tail was the spermatic structure most commonly injured in FTS (77.0%, the percentage of sperm with head injury was 55.1% and with acrosome reaction was 28.7%, whereas middle piece was affected in 23.9% of sperm. Percentages of fertilization were 68.3%, 67.9% and 58.2% for CTR, ICS and FTS respectively, which were not significantly different. There was a higher correlation between injuries and motility than between injuries and fertilization success. Correlation between motility and fertilization was low (0.605 and 0.668 with motility at 5 and 30 min, respectively.El presente trabajo identifica y cuantifica las alteraciones morfológicas en espermatozoides de concha de abanico A. purpuratus causadas por la criopreservación en nitrógeno líquido. Porcentajes de motilidad, fecundación de ovocitos frescos y espermatozoides lesionados (en cabeza, acrosoma, pieza media y flagelo fueron determinados bajo microscopía óptica y electr

  7. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    Directory of Open Access Journals (Sweden)

    Tong-Jiang Xu

    2014-09-01

    Full Text Available This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2–4 μm hyphae diameter. Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  8. Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness.

    Directory of Open Access Journals (Sweden)

    Whittney Dotzler Barkhuff

    Full Text Available The inner membrane complex (IMC, a series of flattened vesicles at the periphery of apicomplexan parasites, is thought to be important for parasite shape, motility and replication, but few of the IMC proteins that function in these processes have been identified. TgPhIL1, a Toxoplasma gondii protein that was previously identified through photosensitized labeling with 5-[(125I] iodonapthaline-1-azide, associates with the IMC and/or underlying cytoskeleton and is concentrated at the apical end of the parasite. Orthologs of TgPhIL1 are found in other apicomplexans, but the function of this conserved protein family is unknown. As a first step towards determining the function of TgPhIL1 and its orthologs, we generated a T. gondii parasite line in which the single copy of TgPhIL1 was disrupted by homologous recombination. The TgPhIL1 knockout parasites have a distinctly different morphology than wild-type parasites, and normal shape is restored in the knockout background after complementation with the wild-type allele. The knockout parasites are outcompeted in culture by parasites expressing functional TgPhIL1, and they generate a reduced parasite load in the spleen and liver of infected mice. These findings demonstrate a role for TgPhIL1 in the morphology, growth and fitness of T. gondii tachyzoites.

  9. Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness.

    Science.gov (United States)

    Barkhuff, Whittney Dotzler; Gilk, Stacey D; Whitmarsh, Ryan; Tilley, Lucas D; Hunter, Chris; Ward, Gary E

    2011-01-01

    The inner membrane complex (IMC), a series of flattened vesicles at the periphery of apicomplexan parasites, is thought to be important for parasite shape, motility and replication, but few of the IMC proteins that function in these processes have been identified. TgPhIL1, a Toxoplasma gondii protein that was previously identified through photosensitized labeling with 5-[(125)I] iodonapthaline-1-azide, associates with the IMC and/or underlying cytoskeleton and is concentrated at the apical end of the parasite. Orthologs of TgPhIL1 are found in other apicomplexans, but the function of this conserved protein family is unknown. As a first step towards determining the function of TgPhIL1 and its orthologs, we generated a T. gondii parasite line in which the single copy of TgPhIL1 was disrupted by homologous recombination. The TgPhIL1 knockout parasites have a distinctly different morphology than wild-type parasites, and normal shape is restored in the knockout background after complementation with the wild-type allele. The knockout parasites are outcompeted in culture by parasites expressing functional TgPhIL1, and they generate a reduced parasite load in the spleen and liver of infected mice. These findings demonstrate a role for TgPhIL1 in the morphology, growth and fitness of T. gondii tachyzoites.

  10. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    Science.gov (United States)

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  11. Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Sara Freitas

    2016-08-01

    Full Text Available Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50 concentration of hierridin B (100.2 μM for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function.

  12. The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells.

    Science.gov (United States)

    Paavilainen, Linda; Edvinsson, Asa; Asplund, Anna; Hober, Sophia; Kampf, Caroline; Pontén, Fredrik; Wester, Kenneth

    2010-03-01

    Pathology archives harbor large amounts of formalin-fixed, paraffin-embedded tissue samples, used mainly in clinical diagnostics but also for research purposes. Introduction of heat-induced antigen retrieval has enabled the use of tissue samples for extensive immunohistochemical analysis, despite the fact that antigen retrieval may not recover all epitopes, owing to alterations of the native protein structure induced by formalin. The aim of this study was to investigate how different fixatives influence protein recognition by immunodetection methods in tissues, cell preparations, and protein lysates, as compared with formalin. Seventy-two affinity-purified polyclonal antibodies were used to evaluate seven different fixatives. The aldehyde-based fixative Glyo-fixx proved to be excellent for preservation of proteins in tissue detected by immunohistochemistry (IHC), similar to formalin. A non-aldehyde-based fixative, NEO-FIX was superior for fixation of cultured cells, in regard to morphology, and thereby also advantageous for IHC. Large variability in the amount of protein extracted from the differently fixed tissues was observed, and the HOPE fixative provided the overall highest yield of protein. In conclusion, morphological resolution and immunoreactivity were superior in tissues fixed with aldehyde-based fixatives, whereas the use of non-aldehyde-based fixatives can be advantageous in obtaining high protein yield for Western blot analysis. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.

  13. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  14. Alterations of FHIT Gene and P16 Gene in Nickel Transformed Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG JI; JIA-KUN CHEN; JIA-CHUN LU; ZHONG-LIANG WU; FEI YI; SU-MEI FENG

    2006-01-01

    To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immoral human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P<0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.

  15. Ligation of the left renal vein in epm1-wistar rats: functional and morphologic alterations in the kidneys, testes and suprarenal glands

    Directory of Open Access Journals (Sweden)

    José Carlos Costa Baptista-Silva

    Full Text Available OBJECTIVE: The ligation of the left renal vein (LLVR in man is a contraversial procedure in view of the risks of lesion to the renal parenchyma. With the objective of studying the morphologic and functional alterations caused by these lesions, we conducted experimental research with rats. MATERIAL AND METHODS: 64 male adult EPM1-WISTAR rats were used, divided into 8 groups - 4 for LLRV and four for control. Each LLRV group and corresponding control group were sacrificed progressively on the 7th, 15th, 30th and 60th day after the initial surgery. RESULTS: We found morphofunctional alterations only in animals that underwent LLRV in the four periods of sacrifice.The proteinuria creatinine in serum, testosterone in serum and serum corticosterone in serum showed practically no alteration in relation to the normal values for rats. Statistically significant severe histological lesions were found in the kidneys and testes of the LLRV groups. Lesions in the suprarenal glands were also present in these groups, but no sufficient to demonstrate statistical significance CONCLUSION: Based on these results we can conclude that the ligation of the left renal vein is a procedure of high risk in these animals.

  16. Morphological characterization of cells in concentrated suspensions using multispectral diffuse optical tomography.

    Science.gov (United States)

    Hajihashemi, Mohammad Reza; Li, Xiaoqi; Jiang, Huabei

    2012-10-01

    Based on a non-spherical model of particle scattering, we investigate the capabilities and limitations of a T-matrix based inverse algorithm to morphologically characterize cells in concentrated suspensions. Here the cells are modeled as randomly orientated spheroidal particles with homogenous dielectric properties and suspended in turbid media. The inverse algorithm retrieves the geometrical parameters and the concentration of cells simultaneously by inverting the reduced scattering coefficient spectra obtained from multispectral diffuse optical tomography (MS-DOT). Both round and spheroidal cells are tested and the role of multiple and higher order scattering of particles on the performance of the algorithm is evaluated using different concentrations of cells.

  17. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip

    Science.gov (United States)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L.; Huissoon, Jan P.

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  18. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.

    Science.gov (United States)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L; Huissoon, Jan P

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  19. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology.

    Science.gov (United States)

    Qaddoumi, Ibrahim; Orisme, Wilda; Wen, Ji; Santiago, Teresa; Gupta, Kirti; Dalton, James D; Tang, Bo; Haupfear, Kelly; Punchihewa, Chandanamali; Easton, John; Mulder, Heather; Boggs, Kristy; Shao, Ying; Rusch, Michael; Becksfort, Jared; Gupta, Pankaj; Wang, Shuoguo; Lee, Ryan P; Brat, Daniel; Peter Collins, V; Dahiya, Sonika; George, David; Konomos, William; Kurian, Kathreena M; McFadden, Kathryn; Serafini, Luciano Neder; Nickols, Hilary; Perry, Arie; Shurtleff, Sheila; Gajjar, Amar; Boop, Fredrick A; Klimo, Paul D; Mardis, Elaine R; Wilson, Richard K; Baker, Suzanne J; Zhang, Jinghui; Wu, Gang; Downing, James R; Tatevossian, Ruth G; Ellison, David W

    2016-06-01

    Low-grade neuroepithelial tumors (LGNTs) are diverse CNS tumors presenting in children and young adults, often with a history of epilepsy. While the genetic profiles of common LGNTs, such as the pilocytic astrocytoma and 'adult-type' diffuse gliomas, are largely established, those of uncommon LGNTs remain to be defined. In this study, we have used massively parallel sequencing and various targeted molecular genetic approaches to study alterations in 91 LGNTs, mostly from children but including young adult patients. These tumors comprise dysembryoplastic neuroepithelial tumors (DNETs; n = 22), diffuse oligodendroglial tumors (d-OTs; n = 20), diffuse astrocytomas (DAs; n = 17), angiocentric gliomas (n = 15), and gangliogliomas (n = 17). Most LGNTs (84 %) analyzed by whole-genome sequencing (WGS) were characterized by a single driver genetic alteration. Alterations of FGFR1 occurred frequently in LGNTs composed of oligodendrocyte-like cells, being present in 82 % of DNETs and 40 % of d-OTs. In contrast, a MYB-QKI fusion characterized almost all angiocentric gliomas (87 %), and MYB fusion genes were the most common genetic alteration in DAs (41 %). A BRAF:p.V600E mutation was present in 35 % of gangliogliomas and 18 % of DAs. Pathogenic alterations in FGFR1/2/3, BRAF, or MYB/MYBL1 occurred in 78 % of the series. Adult-type d-OTs with an IDH1/2 mutation occurred in four adolescents, the youngest aged 15 years at biopsy. Despite a detailed analysis, novel genetic alterations were limited to two fusion genes, EWSR1-PATZ1 and SLMAP-NTRK2, both in gangliogliomas. Alterations in BRAF, FGFR1, or MYB account for most pathogenic alterations in LGNTs, including pilocytic astrocytomas, and alignment of these genetic alterations and cytologic features across LGNTs has diagnostic implications. Additionally, therapeutic options based upon targeting the effects of these alterations are already in clinical trials.

  20. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  1. Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing NMDA receptors in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Natalie S McGuier

    2015-02-01

    Full Text Available Repeated exposure to ethanol followed by withdrawal leads to the alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc in both clinical and preclinical models of ethanol exposure. Homer2 is a member of a family of postsynaptic density (PSD scaffolding proteins that functions in part to cluster NMDA signaling complexes in the PSD, and has been shown to be critically important for plasticity in multiple models of drug and alcohol abuse. Here we used Homer2 KO mice and a chronic intermittent intraperitoneal (IP ethanol injection model to investigate a potential role for the protein in ethanol-induced adaptations in dendritic spine morphology and PSD protein expression. While deletion of Homer2 was associated with increased density of long spines on medium spiny neurons of the NAc core of saline treated mice, ethanol exposure had no effect on dendritic spine morphology in either wild-type (WT or Homer2 KO mice. Western blot analysis of tissue samples from the NAc enriched for PSD proteins revealed a main effect of ethanol treatment on the expression of GluN2B, but there was no effect of genotype or treatment on the expression other glutamate receptor subunits or PSD95. These data indicate that the global deletion of Homer2 leads to aberrant regulation of dendritic spine morphology in the NAc core that is associated with an increased density of long, thin spines. Unexpectedly, intermittent IP ethanol did not affect spine morphology in either WT or KO mice. Together these data implicate Homer2 in the formation of long, thin spines and further supports its role in neuronal structure.

  2. New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions.

    Science.gov (United States)

    Romanenko, Konstantin; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria

    2015-07-15

    Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

  3. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    Science.gov (United States)

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes.

  4. Nanoporous gold membranes: From morphological control to fuel cell catalysis

    Science.gov (United States)

    Ding, Yi

    stable, low Pt usage, and better tolerance to CO poisoning. We incorporated it as a membrane electrode into a working proton exchange membrane fuel cells (PEMFC). Preliminary results show that Pt/NPG has very good fuel cell performance at a very low platinum loading.

  5. Alteration of media composition and light conditions change morphology, metabolic profile, and beauvericin biosynthesis in Cordyceps bassiana mycelium.

    Science.gov (United States)

    Hyun, Sun-Hee; Lee, Seok-Young; Park, Shin Jung; Kim, Da Yeon; Chun, Young-Jin; Sung, Gi-Ho; Kim, Seong Hwan; Choi, Hyung-Kyoon

    2013-01-01

    Metabolic alterations of Cordyceps bassiana mycelium were investigated under the following culture medium and light conditions: dextrose agar supplemented with 0.5% yeast extract (SDAY) medium with light (SL), SDAY medium without light (SD), nut medium without light (ND), and iron-supplemented SDAY medium without light (FD). The levels of asparagine, aspartic acid, glutamic acid, glutamine, histidine, lysine, ornithine, and proline were significantly higher under SD and SL conditions. The levels of most of the alcohols, saturated fatty acids, unsaturated fatty acids, fatty acid esters, sterols, and terpenes were higher under the ND condition than in the other conditions, but beauvericin was not detectable under the ND condition. The FD condition was favorable for the enhanced production of aminomalonic acid, malic acid, mannonic acid, and erythritol. Thus, the metabolic characteristics of C. bassiana can be manipulated by varying the cultivation conditions, rendering this fungus potentially favorable as a nutraceutical and medicinal resource.

  6. Acinetobacter baylyi long-term stationary-phase protein StiP is a protease required for normal cell morphology and resistance to tellurite.

    Science.gov (United States)

    Reichert, Blake; Dornbusch, Amber J; Arguello, Joshua; Stanley, Sarah E; Lang, Kristine M; Lostroh, C Phoebe; Daugherty, Margaret A

    2013-11-01

    We investigated the Acinetobacter baylyi gene ACIAD1960, known from previous work to be expressed during long-term stationary phase. The protein encoded by this gene had been annotated as a Conserved Hypothetical Protein, surrounded by putative tellurite resistance ("Ter") proteins. Sequence analysis suggested that the protein belongs to the DUF1796 putative papain-like protease family. Here, we show that the purified protein, subsequently named StiP, has cysteine protease activity. Deletion of stiP causes hypersensitivity to tellurite, altered population dynamics during long-term batch culture, and most strikingly, dramatic alteration of normal cell morphology. StiP and associated Ter proteins (the StiP-Ter cluster) are therefore important for regulating cell morphology, likely in response to oxidative damage or depletion of intracellular thiol pools, triggered artificially by tellurite exposure. Our finding has broad significance because while tellurite is an extremely rare compound in nature, oxidative damage, the need to maintain a particular balance of intracellular thiols, and the need to regulate cell morphology are ubiquitous.

  7. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-02-24

    A difference in the expression and metabolism of (/sup 35/S)sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells.

  8. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis.

    Science.gov (United States)

    Khalfallah, Olfa; Jarjat, Marielle; Davidovic, Laetitia; Nottet, Nicolas; Cestèle, Sandrine; Mantegazza, Massimo; Bardoni, Barbara

    2017-02-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27(kip1) , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.

  9. Effects of Chemotherapy-Induced Alterations in Cell Mechanical Properties on Cancer Metastasis

    Science.gov (United States)

    Prathivadhi, Sruti; Ekpenyong, Andrew; Nichols, Michael; Taylor, Carolyn; Ning, Jianhao

    Biological cells can modulate their mechanical properties to suit their functions and in response to changes in their environment. Thus, mechanical phenotyping of cells has been employed for tracking stem cell differentiation, bacterial infection, cell death, etc. Malignant transformation of cells also involves changes in mechanical properties. However, the extent to which mechanical properties of cancer cells contribute to metastasis is not well understood. Yet, more than 90% of all cancer deaths are directly related to metastasis. Transit of cells through the microcirculation is one of the key features of metastasis. We hypothesize that cancer treatment regimens do inadvertently alter cell mechanical properties in ways that might promote cancer metastasis. We use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that cancer cells treated with chemotherapeutic drugs such as daunorubicin, become more deformable at short timescales (0.1 s) and transit faster through the device. Our results are first steps in evaluating the pro- or anti-metastatic effects of chemotherapeutic drugs based on their induced alterations in cell mechanical properties.

  10. Gadd45a inhibits cell migration and invasion by altering the global RNA expression.

    Science.gov (United States)

    Shan, Zhanhai; Li, Guiyuan; Zhan, Qimin; Li, Dan

    2012-09-01

    Gadd45a, the first well-defined p53 downstream gene, can be induced by multiple DNA-damaging agents, which plays important roles in the control of cell cycle checkpoint, DNA repair process and signaling transduction. Our previous findings suggested that Gadd45a maintains cell-cell adhesion and cell contact inhibition. However, little is known about how Gadd45a participates in the suppression of malignancy in human cancer cells. To examine the functions of Gadd45a in cell invasion and metastasis, we performed the adhesion, wound-healing and transwell assays in Gadd45a (+/+) and Gadd45a (-/-) MEF cell lines. We found the adhesion, migration and invasive abilities were much higher in Gadd45a deficient cells. We furthermore applied high-throughput cDNA microarray analysis and bioinformatics analysis to analyze the mechanisms of Gadd45a gene in invasion and metastasis. Compared with the Gadd45a wild type cells, the Gadd45a deficient cells showed a wide range of transcripts alterations. The altered gene pathways were predicted by the MAS software, which indicated focal adhesion,cell communication,ECM-receptor interaction as the three main pathways. Real-time PCR was employed to validate the differentially expressed genes. Interestingly, we figured out that the deregulations of these genes are caused neither by genomic aberrations nor methylation status. These findings provided a novel insight that Gadd45a may involve in tumor progression by regulating related genes expressions.

  11. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    Science.gov (United States)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  12. Effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Zheng Wu; Yi Lüi; Bo Wang; Chang Liu; Zuo-Ren Wang,

    2003-01-01

    AIM: Pancreatic cancer in the head is frequently accompanied by jaundice and high bile acid level in serum. This study focused on the direct effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer.METHODS: Pancreatic cancer cell lines PANC-1, MIA PaCa2 and PGHAM-1 were explored in this study. The cell lines were cultured in media supplemented with certain bile acids,CA, DCA, LCA, TCDC, TDCA and GCA. Their influence on cell growth was measured with MTT assay after 72 h of incubation. Cell cycles of PANC-1 cells in 40 μM of bile acids media were analyzed by flow cytometry. Ultrastructural alteration of PANC-1 cells induced by DCA was observed using scanning and transmission electron microscope (SEM and TEM).RESULTS: At various concentrations of bile acids and incubation time, no enhanced effects of bile acids on cell proliferation were observed. Significant inhibitory effects were obtained in almost all media with bile acids. DCA and CA increased the percentage of G0+G1 phase cells, while GCA and TDCA elevated the S phase cell number. After 48 h of incubation in DCA medium, PANC-1 cells showed some structural damages such as loss of their microvilli and vacuolization of organelles in cytoplasm.CONCLUSION: Bile acids can reduce proliferation of pancreatic cancer cells due to their direct cytotoxicity. This result implies that elevation of bile acids in jaundiced serum may inhibit pancreatic cancer progression.

  13. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  14. CdTe thin film solar cells. Optimization of material, morphology and device preparation

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, J.; Barati, A.; Krishnakumar, V.; Fu, G.; Schimper, H.J.; Haindl, A.; Swirschuk, A.; Gunnesch, E.; Schneikart, A.; Tueschen, A.; Klein, A.; Jaegermann, W. [Technische Univ. Darmstadt (Germany). Fachbereich Materialwissenschaft

    2010-07-01

    Correlations between layer-morphology and electrical properties are shown. At substrate temperatures between 330 C and 380 C the layer-morphology is similar to that obtained at the typically used high temperatures above 500 C. First results showed promising efficiencies for growth temperatures around 350 C. With optimized layer-morphology, dense, pinhole-free layers can be achieved. With a CdTe thickness below 3 {mu}m and CdS layers thinner than 100 nm, each of them deposited by a two step process using two different substrate temperatures, efficiencies of more than 10% were reached. For ANTEC CdS/CdTe cells, alternative back contacts were made in an all-dry vacuum process without any need for wet chemical etching. Cell efficiencies close to the efficiencies obtained with wet processing (NP etching and Au back contact) were obtained. This was achieved without the use of highly diffusive copper. (orig.)

  15. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells.

    Science.gov (United States)

    Hedley, Gordon J; Ward, Alexander J; Alekseev, Alexander; Howells, Calvyn T; Martins, Emiliano R; Serrano, Luis A; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D W

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10-50 nm wide and 200-400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells.

  16. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway.

    Directory of Open Access Journals (Sweden)

    Rokhsana Mortuza

    Full Text Available In diabetes, some of the cellular changes are similar to aging. We hypothesized that hyperglycemia accelerates aging-like changes in the endothelial cells (ECs and tissues leading to structural and functional damage. We investigated glucose-induced aging in 3 types of ECs using senescence associated β-gal (SA β-gal staining and cell morphology. Alterations of sirtuins (SIRTs and their downstream mediator FOXO and oxidative stress were investigated. Relationship of such alteration with histone acetylase (HAT p300 was examined. Similar examinations were performed in tissues of diabetic animals. ECs in high glucose (HG showed evidence of early senescence as demonstrated by increased SA β-gal positivity and reduced replicative capacities. These alterations were pronounced in microvascular ECs. They developed an irregular and hypertrophic phenotype. Such changes were associated with decreased SIRT (1-7 mRNA expressions. We also found that p300 and SIRT1 regulate each other in such process, as silencing one led to increase of the others' expression. Furthermore, HG caused reduction in FOXO1's DNA binding ability and antioxidant target gene expressions. Chemically induced increased SIRT1 activity and p300 knockdown corrected these abnormalities slowing aging-like changes. Diabetic animals showed increased cellular senescence in renal glomerulus and retinal blood vessels along with reduced SIRT1 mRNA expressions in these tissues. Data from this study demonstrated that hyperglycemia accelerates aging-like process in the vascular ECs and such process is mediated via downregulation of SIRT1, causing reduction of mitochondrial antioxidant enzyme in a p300 and FOXO1 mediated pathway.

  17. Effects of tachyplesin on the morphology and ultrastructure of the humangastric carcinoma cell line BGC-823

    Institute of Scientific and Technical Information of China (English)

    Zhi Rong Zhang; Bo Tao Yu; Qi Fu Li; Gao Liang Ouyang; Chang You Li; Shui Gen Hong

    2000-01-01

    AIM To investigate the morphological and ultrastructural changes in the human gastric carcinoma cell lineBGC-823 after being treated with tachyplesin.METHODS Tachyplesin was isolated from acid extracts of Chinese horseshoe crab (Tachypleus tridentatus)hemocytes. BGC-823 cells and the cells treated with 2.0 μg/mL tachyplesin were examined respectively withlight microscope, scanning and transmission electron microscope.RESULTS BGC-823 cells had undergone restorative morphological and ultrastructural changes after beingtreated with 2.0 μg/mL tachyplesin. The cells tended to be flat and spread, and their volume enlarged,nucleo-cytoplasmic ratio decreased, the shape of nucleus became relatively regular, the number and volumeof nuleous decreased, heterchromatin decreased while euchromatin increased, the number of mitochondriaincreased with their structure relatively consistent, Golgi apparatus turned to be typical, rough endoplasmicreticulum increased, polyribosome decreased, microvilli and filopodia reduced while lamellipodia increased.CONCLUSION Tachyplesin could change the malignant morphological and ultrastructural characteristics ofhuman gastric carcinoma cells effectively and had certain effects on inducing differentiation of human gastriccarcinoma cells.

  18. Influence of curvature on the morphology of brain microvascular endothelial cells

    Science.gov (United States)

    Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter; Searson Group Team

    2013-03-01

    There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 - 500 μm and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

  19. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Chen, Rong Fu; Dong, Xiao Ying; Lan, Ping; Ma, Jian Feng; Shen, Ren Fang

    2015-07-01

    The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4(+)) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al-binding assay revealed that neither NH4(+) nor NO3(-) altered the Al-binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4(+)-supplied roots displayed lower Al-binding capacity than those from NO3(-)-supplied roots when grown in non-buffered solutions. Fourier-transform infrared microspectroscopy analysis revealed that, compared with NO3(-)-supplied roots, NH4(+)-supplied roots possessed fewer Al-binding groups (-OH and COO-) and lower contents of pectin and hemicellulose. However, when grown in pH-buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al-binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4(+)-reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4(+) uptake rather than direct competition for the cell wall binding sites between Al(3+) and NH4(+).

  20. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of); Jang, Deok-Jin [Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711 (Korea, Republic of); Lee, Jin-A, E-mail: leeja@hnu.kr [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of)

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  1. Morphological alterations and acetylcholinesterase and monoamine oxidase inhibition in liver of zebrafish exposed to Aphanizomenon flos-aquae DC-1 aphantoxins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, De Lu, E-mail: deluzh@163.com [Department of Lifescience and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Jing [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hu, Chun Xiang, E-mail: cxhu@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Gao Hong; Li, Dun Hai; Liu, Yong Ding [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China)

    2014-12-15

    Highlights: • Aphantoxins induced zebrafish hepatic physiological and morphological changes. • AChE and MAO inhibition reflected abnormality of neurotransmitter inactivation. • ROS advance and T-AOC reduction suggested oxidative stress. • ALT, AST, histological and ultrastructural alterations indicated hepatic damage. - Abstract: Aphanizomenon flos-aquae is a cyanobacterium that produces neurotoxins or paralytic shellfish poisons (PSPs) called aphantoxins, which present threats to environmental safety and human health via eutrophication of water bodies worldwide. Although the molecular mechanisms of this neurotoxin have been studied, many questions remain unsolved, including those relating to in vivo hepatic neurotransmitter inactivation, physiological detoxification and histological and ultrastructural alterations. Aphantoxins extracted from the natural strain of A. flos-aquae DC-1 were analyzed by high-performance liquid chromatography. The main components were gonyautoxins 1 and 5 (GTX1, GTX5) and neosaxitoxin (neoSTX), which comprised 34.04%, 21.28%, and 12.77% respectively. Zebrafish (Danio rerio) were exposed intraperitoneally to 5.3 or 7.61 μg STX equivalents (eq)/kg (low and high doses, respectively) of A. flos-aquae DC-1 aphantoxins. Morphological alterations and changes in neurotransmitter conduction functions of acetylcholinesterase (AChE) and monoamine oxidase (MAO) in zebrafish liver were detected at different time points 1–24 h post-exposure. Aphantoxin significantly enhanced hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histological and ultrastructural damage in zebrafish liver at 3–12 h post-exposure. Toxin exposure increased the reactive oxygen species content and reduced total antioxidative capacity in zebrafish liver, suggesting oxidative stress. AChE and MAO activities were significantly inhibited, suggesting neurotransmitter inactivation/conduction function abnormalities in zebrafish

  2. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression

    DEFF Research Database (Denmark)

    Kenny, Paraic A; Lee, Genee Y; Myers, Connie A;

    2007-01-01

    large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene...... expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even...

  3. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping.

    Science.gov (United States)

    Fletcher, Cameron; Jiang, Yijiao; Sun, Chenghua; Amal, Rose

    2014-07-07

    Zinc oxide (ZnO) nanocrystals mono- and co-doped with nickel/iron were prepared using a facile solvothermal procedure. A significant change in the surface morphology from nanorods to plate-like nanoparticles was observed with an increase in the dopant concentration. The variations of their optical and electronic properties induced by metal dopants were investigated using a combination of characterization techniques and ab initio calculations. It is found that both nickel and iron atoms have been successfully incorporated into the crystal lattice rather than forming a secondary phase, suggesting good dispersion of dopants within the ZnO matrix. Doping with iron has red-shifted the absorption edges of ZnO towards the visible portion resulting in lower band gap energies with increasing dopant concentration. Evidenced by Raman and EPR spectroscopy, the addition of iron has been shown to promote the formation of more oxygen vacancy and crystal defects within the host lattice as well as increasing the free-electron density of the nanomaterial. The DFT plus Hubbard model calculations confirm that low concentration Ni-doping does not induce band gap narrowing but results in localized states. The calculations show that Fe-doping has the potential to greatly improve the optical absorption characteristics and lead to structural deformation, corroborating the UV-Vis, Raman, and EPR spectra.

  4. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Atay, Safinur [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Gercel-Taylor, Cicek [Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States); Kesimer, Mehmet [Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Taylor, Douglas D., E-mail: ddtaylor@louisville.edu [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States)

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  5. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  6. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    Science.gov (United States)

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  7. The effects of taurine, hypotaurine, and taurine homologs on erythrocyte morphology, membrane fluidity and cytoskeletal spectrin alterations due to diabetes, alcoholism and diabetes-alcoholism in the rat.

    Science.gov (United States)

    Gossai, Davekanand; Lau-Cam, Cesar A

    2009-01-01

    Taurine (TAU) and compounds representing a TAU analog (hypotaurine = HYTAU) or homolog (aminomethanesulfonic acid = AMSA, homotaurine = HMTAU) were tested for their counteracting effects against alterations in erythrocyte (RBC) morphology, membrane fluidity and cytoskeletal spectrin distribution due to diabetes, alcoholism and diabetes-alcoholism in male Goto-Kakizaki rats (made diabetic with a high fat diet and alcoholic upon feeding on a flavored alcohol solution) and Wistar-Kyoto rats (serving as controls). Both diabetes and alcoholism changed the RBC discoidal biconcave shape to a spiculated one, lowered membrane fluidity, and caused spectrin to become marginalized. While AMSA and HYTAU returned the RBC shape to normal, HMTAU made it only discoidal, and TAU was without effect. All test compounds, but TAU, maintained the membrane fluidity normal; and HYTAU and AMSA, but not TAU or HMTAU, kept spectrin uniformly distributed. The noted effects were correlated with compound structure and RBC values for malondialdehyde and cholesterol/phospholipid ratio.

  8. Effects of clove (Caryophyllus aromaticus L.) on the labeling of blood constituents with technetium-99m and on the morphology of red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Paoli, Severo de; Giani, Tania Santos; Presta, Giuseppe Antonio; Brandao-Neto, Jose; Medeiros, Aldo da Cunha; Santos-Filho, Sebastiao David [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Programa de Pos-graduacao em Ciencias da Saude]. E-mail: severodepaoli@gmail.com; Pereira, Marcia Oliveira; Fonseca, Adenilson de Souza da [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria; Bernardo-Filho, Mario [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Coordenadoria de Pesquisa Basica

    2007-09-15

    Clove (Caryophyllus aromaticus L.) has been used for clinical procedures. Blood constituents labeled with technetium-99m (99mTc) are used in nuclear medicine. The aim of this work was to evaluate the effects of clove extract on the labeling blood constituents with 99mTc and on the morphology of red blood cells. Blood samples were incubated with clove, stannous chloride and 99mTc. Plasma, blood cells, insoluble fractions of plasma and blood cells were separated. The radioactivity was counted and percentage of radioactivity (%ATI) to each blood fraction was calculated. The shape and morphometric parameter (perimeter/area ratio) were evaluated. Clove extract altered significantly (p<0.05) the %ATI of blood constituents and the shape of red blood cells without modifying the perimeter/area ratio. The results indicate that clove extract presents chemical compounds that interfere with the radiolabeling of blood constituents and alter the morphology of red blood cells by oxidative/chelating actions or interacting with the cellular membrane structure. (author)

  9. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells.

    Science.gov (United States)

    Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng

    2016-06-22

    A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only.

  10. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death.

    Science.gov (United States)

    Lantéri, Marion; Giordanengo, Valérie; Hiraoka, Nobuyoshi; Fuzibet, Jean-Gabriel; Auberger, Patrick; Fukuda, Minoru; Baum, Linda G; Lefebvre, Jean-Claude

    2003-12-01

    The massive T cell death that occurs in HIV type 1 (HIV-1) infection contributes profoundly to the pathophysiology associated with AIDS. The mechanisms controlling cell death of both infected and uninfected T cells ("bystander" death) are not completely understood. We have shown that HIV-1 infection of T cells results in altered glycosylation of cell surface glycoproteins; specifically, it decreased sialylation and increased expression of core 2 O-glycans. Galectin-1 is an endogenous human lectin that recognizes these types of glycosylation changes and induces cell death of activated lymphocytes. Therefore we studied the possible contribution of galectin-1 in the pathophysiology of AIDS. O-glycan modifications were investigated on peripheral lymphocytes from AIDS patients. Oligosaccharides from CD43 and CD45 of CEM cells latently infected with HIV-1 were chemically analyzed. Consistent with our previous results, we show that HIV-1 infection results in accumulation of exposed lactosamine residues, oligosaccharides recognized by galectin-1 on cell surface glycoproteins. Both latently HIV-1-infected T cell lines and peripheral CD4 and CD8 T cells from AIDS patients exhibited exposed lactosamine residues and demonstrated marked susceptibility to galectin-1-induced cell death, in contrast to control cultures or cells from uninfected donors. The fraction of cells that died in response to galectin-1 exceeded the fraction of infected cells, indicating that death of uninfected cells occurred. Altered cell surface glycosylation of T cells during HIV-1 infection increases the susceptibility to galectin-1-induced cell death, and this death pathway can contribute to loss of both infected and uninfected T cells in AIDS.

  11. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure

    OpenAIRE

    Coleman, Heather D.; Yan, Jimmy; Mansfield, Shawn D.

    2009-01-01

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in...

  12. Disodium Cromoglycate, A Mast-Cell Stabilizer, Alters Postradiation Regional Cerebral Blood Flow in Primates

    Science.gov (United States)

    1986-01-01

    ranD RISEARCH INSTITUTI SCIENTIFIC REPORTTC SR86-14 ELECTE JUL0186_ _ ~D DISODIUM CROMOGLYCATE , A MAST-CELL STABILIZER, ALTERS POSTRADIATION...were given the mast-cell stabilizers disodium cromoglycate (DSCC) or BRL 22321 (Beecham Phar- maceuticals, Research Division) before exposure to 100 Gy...flow could be mitigated by the pre- radiation administration of either disodium cromoglycate (DSCG) (Fisons Corporation, ledford, Mass.) or BRL 22321

  13. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational.

  14. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    Science.gov (United States)

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.

  15. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Directory of Open Access Journals (Sweden)

    Chen Yan-Hua

    2009-03-01

    Full Text Available Abstract Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.

  16. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study

    Directory of Open Access Journals (Sweden)

    Takashi Itahashi

    2015-01-01

    Full Text Available Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI or diffusion tensor imaging (DTI, and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA, to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder.

  17. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex.

    Science.gov (United States)

    Luczynski, Pauline; Moquin, Luc; Gratton, Alain

    2015-01-01

    We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.

  18. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J;

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec...

  19. Interacting effects of discharge and channel morphology on transport of semibuoyant fish eggs in large, altered river systems.

    Directory of Open Access Journals (Sweden)

    Thomas A Worthington

    Full Text Available Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2-3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was assessed based on median capture time (time at which 50% of beads were captured and sampling period (time period when 2.5% and 97.5% of beads were captured. Habitat complexity was assessed by calculating width∶depth ratios at each site, and several habitat metrics determined using analyses of aerial photographs. Median time of egg capture was negatively correlated to site discharge. The temporal extent of the sampling period at each site was negatively correlated to both site discharge and habitat-patch dispersion. Our results highlight the role of discharge in driving transport times, but also indicate that higher dispersion of habitat patches relates to increased retention of beads within the river. These results could be used to target restoration activities or prioritize water use to create and maintain habitat complexity within large, fragmented river systems.

  20. Dyslipidemia-associated alterations in B cell subpopulation frequency and phenotype during experimental atherosclerosis.

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A; Ramírez-Pineda, José R; Yassin, Lina M

    2016-04-01

    Lymphocytes, the cellular effectors of adaptive immunity, are involved in the chronic inflammatory process known as atherosclerosis. Proatherogenic and atheroprotective properties have been ascribed to B cells. However, information regarding the role of B cells during atherosclerosis is scarce. Both the frequency and the phenotype of B cell subpopulations were studied by flow cytometry in wild type and apolipoprotein-E-deficient (apoE(-/-)) mice fed a high-fat (HFD) or control diet. Whereas the proportion of follicular cells was decreased, transitional 1-like cells were increased in mice with advanced atherosclerotic lesions (apoE(-/-) HFD). B cells in atherosclerotic mice were more activated, indicated by their higher surface expression of CD80, CD86, CD40 and CD95 and increased serum IgG1 levels. In the aorta, a decreased frequency of B cells was observed in mice with advanced atherosclerosis. Low expression of CD19 was observed on B cells from the spleen, aorta and lymph nodes of apoE(-/-) HFD mice. This alteration correlated with serum levels of IgG1 and cholesterol. A reduction in CD19 expression was induced in splenic cells from young apoE(-/-) mice cultured with lipemic serum. These results show that mice with advanced atherosclerosis display a variety of alterations in the frequency and phenotype of B lymphocytes, most of which are associated with dyslipidemia.

  1. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B; Mandel, U

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate......-T antigen. The changes induced by wounding in the expression of collagen IV, laminin gamma2-chain (laminin-5), and laminin alpha5-chain were similar to those found in skin wounds and served to define the region of epithelial movement. This region was found to show a marked increase in staining for both...... epithelium, a pattern of expression similar to K16, which was also strongly upregulated in both the outgrowth and the adjacent nonwounded epithelium. These findings provide further support for an influence of such carbohydrate structures on the migratory behavior of epithelial cells....

  2. Social play in juvenile hamsters alters dendritic morphology in the medial prefrontal cortex and attenuates effects of social stress in adulthood.

    Science.gov (United States)

    Burleson, Cody A; Pedersen, Robert W; Seddighi, Sahba; DeBusk, Lauren E; Burghardt, Gordon M; Cooper, Matthew A

    2016-08-01

    Social play is a fundamental aspect of behavioral development in many species. Social play deprivation in rats alters dendritic morphology in the ventromedial prefrontal cortex (vmPFC) and we have shown that this brain region regulates responses to social defeat stress in Syrian hamsters. In this study, we tested whether play deprivation during the juvenile period disrupts dendritic morphology in the prefrontal cortex and potentiates the effects of social defeat stress. At weaning, male hamsters were either group-housed with peers or pair-housed with their mother, with whom they do not play. In adulthood, animals received acute social defeat stress or no-defeat control treatment. The hamsters were then tested for a conditioned defeat response in a social interaction test with a novel intruder, and were also tested for social avoidance of a familiar opponent. Brains were collected for Golgi-Cox staining and analysis of dendritic morphology in the infralimbic (IL), prelimbic (PL), and orbitofrontal cortex (OFC). Play-deprived animals showed an increased conditioned defeat response and elevated avoidance of a familiar opponent compared with play-exposed animals. Furthermore, play-deprived animals showed increased total length and branch points in apical dendrites of pyramidal neurons in the IL and PL cortices, but not in the OFC. These findings suggest that social play deprivation in juvenile hamsters disrupts neuronal development in the vmPFC and increases vulnerability to the effects of social stress in adulthood. Overall, these results suggest that social play is necessary for the natural dendritic pruning process during adolescence and promotes coping with stress in adulthood. (PsycINFO Database Record

  3. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Science.gov (United States)

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  4. Brain morphological alterations and cellular metabolic changes in patients with generalized anxiety disorder: A combined DARTEL-based VBM and (1)H-MRS study.

    Science.gov (United States)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2016-05-01

    Generalized anxiety disorder (GAD) is characterized by emotional dysregulation and cognitive deficit in conjunction with brain morphometric and metabolic alterations. This study assessed the combined neural morphological deficits and metabolic abnormality in patients with GAD. Thirteen patients with GAD and 13 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and proton magnetic resonance spectroscopy ((1)H-MRS) at 3Tesla. In this study, the combination of voxel-based morphometry (VBM) and (1)H-MRS was used to assess the brain morphometric and metabolic alterations in GAD. The patients showed significantly reduced white matter (WM) volumes in the midbrain (MB), precentral gyrus (PrG), dorsolateral prefrontal cortex (DLPFC) and anterior limb of the internal capsule (ALIC) compared to the controls. In MRS study, the choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC were significantly lower in the patients. Particularly, the WM volume variation of the DLPFC was positively correlated with both of the Cho/Cr and Cho/NAA ratios in patients with GAD. This study provides an evidence for the association between the morphometric deficit and metabolic changes in GAD. This finding would be helpful to understand the neural dysfunction and pathogenesis in connection with cognitive impairments in GAD.

  5. Alteration of cadherin isoform expression and inhibition of gap junctions in stomach carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore cell malignant phenotype correlated changes of cell surface adhesion molecules and cell-cell communication in carcinogenesis, human stomach transformed and cancer cell lines were investigated. Expressions of E-cadherin, N-cadherin, ?-catenin, ?-catenin as well as gap junction (GJ) protein Cx32 were studied by utilization of immunoblotting, immunocytochemical and fluorescent dye transfer methods. Mammalian normal stomach mucosal cells expressed E-cadherin but not N-cadherin. E-cadherin immunofluorescence was detected at cell membranous adherens junctions (AJ) where colocalization with immunofluorescent staining of inner surface adhesion plaque proteins ?- and ?-catenins was observed. The existence of E-cadherin/ catenin (?-, ?-) protein complexes as AJ was suggested. In transformed and stomach cancer cells E-cadherin was inhibited, instead, N-cadherin was expressed and localized at membranous AJ where co-staining with ?- and ?-catenin fluorescence was observed. Formation of N-cadherin/catenin (?-, ?-) protein complex at AJs of transformed and cancer cells was suggested. The above observations were further supported by immunoblotting results. Normal stomach muscosal and transformed cells expressed Cx32 at membranous GJ and were competent of gap junction communication (GJIC). In stomach cancer cells, Cx32 was inhibited and GJIC was defective. The results suggested that changes of signal pathways mediated by both cell adhesion and cell communication systems are associated intracellular events of stomach carcinogenesis. The alteration of cadherin isoform from E- to N-cadherin in transformed and stomach cancer cells is the first report.

  6. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells.

    Science.gov (United States)

    Grosse, Jirka; Wehland, Markus; Pietsch, Jessica; Ma, Xiao; Ulbrich, Claudia; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hauslage, Jens; Hemmersbach, Ruth; Braun, Markus; van Loon, Jack; Vagt, Nicole; Infanger, Manfred; Eilles, Christoph; Egli, Marcel; Richter, Peter; Baltz, Theo; Einspanier, Ralf; Sharbati, Soroush; Grimm, Daniela

    2012-02-01

    This study focused on the effects of short-term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft- und Raumfahrt) parabolic flight campaigns. Hoechst 33342 and acridine orange/ethidium bromide staining showed no signs of cell death in ECs after 31 parabolas (P31). Gene array analysis revealed 320 significantly regulated genes after the first parabola (P1) and P31. COL4A5, COL8A1, ITGA6, ITGA10, and ITGB3 mRNAs were down-regulated after P1. EDN1 and TNFRSF12A mRNAs were up-regulated. ADAM19, CARD8, CD40, GSN, PRKCA (all down-regulated after P1), and PRKAA1 (AMPKα1) mRNAs (up-regulated) provide a very early protective mechanism of cell survival induced by 22 s microgravity. The ABL2 gene was significantly up-regulated after P1 and P31, TUBB was slightly induced, but ACTA2 and VIM mRNAs were not changed. β-Tubulin immunofluorescence revealed a cytoplasmic rearrangement. Vibration had no effect. Hypergravity reduced CARD8, NOS3, VASH1, SERPINH1 (all P1), CAV2, ADAM19, TNFRSF12A, CD40, and ITGA6 (P31) mRNAs. These data suggest that microgravity alters the gene expression patterns and the cytoskeleton of ECs very early. Several gravisensitive signaling elements, such as AMPKα1 and integrins, are involved in the reaction of ECs to altered gravity.

  7. Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats.

    Science.gov (United States)

    Qian, A R; Li, D; Han, J; Gao, X; Di, S M; Zhang, W; Hu, L F; Shang, Peng

    2012-05-01

    Osteoblasts, the bone-forming cells, respond to various mechanical forces, such as stretch and fluid shear force in essentially similar ways. The cytoskeleton, as the load-bearing architecture of the cell, is sensitive to altered inertial forces. Disruption of the cytoskeleton will result in alteration of cellular structure and function. However, it is difficult to quantitatively illustrate cytoskeletal rearrangement because of the complexity of cytoskeletal structure. Usually, the morphological changes in actin organization caused by external stimulus are basically descriptive. In this study, fractal dimensions (D) analysis was used to quantify the morphological changes in the actin cytoskeleton of osteoblast-like cells (MC3T3-E1) under simulated microgravity using 3-D/2-D clinostats. The ImageJ software was used to count the fractal dimension of actin cytoskeleton by box-counting methods. Real-time PCR and immunofluroscent assays were used to further confirm the results obtained by fractal dimension analysis. The results showed significant decreases in D value of actin cytoskeleton, β-actin mRNA expression, and the mean fluorescence intensity of F-actin in osteoblast-like cells after 24 or 48 h of incubation under 3-D/2-D clinorotation condition compared with control. The findings indicate that 3-D/2-D clinorotation affects both actin cytoskeleton architecture and mRNA expression, and fractal may be a promising approach for quantitative analysis of the changes in cytoskeleton in different environments.

  8. Effects of fluoxetine on mast cell morphology and protease-1 expression in gastric antrum in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Zhen-Hua Chen; Ling Xiao; Ji-Hong Chen; He-Shen Luo; Gao-Hua Wang; Yong-Lan Huang; Xiao-Ping Wang

    2008-01-01

    AIM: To investigate the effects of fluoxetine on depression-induced changes of mast cell morphology and protease-1 (rMCP-1) expression in rats.METHODS: A Sprague-Dawley rat model of chronic stress-induced depression was established. Fifty experimental rats were randomly divided into the following groups: normal control group, fluoxetine +normal control group, depressed model group, saline + depressed model group, and fluoxetine + depressed model group. Laser scanning confocal microscopy (LSCM) immunofluorecence and RT-PCR techniques were used to investigate rMCP-1 expression in gastric antrum. Mast cell morphology was observed under transmission electron microscopy. ANOVA was used for statistical analysis among groups.RESULTS: Morphologic observation indicated that depression induced mast cell proliferation, activation,and granule hyperplasia. Compared with the normal control group, the average immunofluorescence intensity of gastric antrum rMCP-1 significantly increased in depressed model group (37.4 4- 7.7 vs 24.5+ 5.6, P < 0.01) or saline + depressed model group (39.9 4- 5.0 vs 24.5 ± 5.6, P < 0.01), while there was no significant difference between fluoxetine + normal control group (23.1 4- 3.4) or fluoxetine + depressed model group (26.1 4- 3.6) and normal control group.The average level of rMCP-lmRNA of gastric antrum significantly increased in depressed model group (0.759 ± 0.357 vs 0.476 ± 0.029, P < 0.01) or saline + depressed model group (0.781 4- 0.451 vs 0.476 ±0.029, P < 0.01 ), while no significant difference was found between fluoxetine + normal control group (0.460 ± 0.027) or fluoxetine + depressed model group (0.488 ± 0.030) and normal control group. Fluoxetine showed partial inhibitive effects on mast cell ultrastructural alterations and de-regulated rMCP-1 expression in gastric antrum of the depressed rat model.CONCLUSION: Chronic stress can induce mast cell proliferation, activation, and granule hyperplasia in gastric antrum. Fluoxetine

  9. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells.

    Science.gov (United States)

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-04-21

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  10. Chronic mast cell leukemia: a novel leukemia-variant with distinct morphological and clinical features.

    Science.gov (United States)

    Valent, Peter; Sotlar, Karl; Sperr, Wolfgang R; Reiter, Andreas; Arock, Michel; Horny, Hans-Peter

    2015-01-01

    Mast cell leukemia (MCL) is a rare form of systemic mastocytosis characterized by leukemic expansion of mostly immature mast cells, organ damage, drug-resistance, and a poor prognosis. Even when treated with chemotherapy, most patients have a life-expectancy of less than one year. However, there are rare patients with MCL in whom the condition is less aggressive and does not cause organ damage within a short time. In these patients, mast cells exhibit a more mature morphology when compared to acute MCL. A recently proposed classification suggests that these cases are referred to as chronic MCL. In the present article, we discuss clinical, histopathological and morphological aspects of acute and chronic MCL.

  11. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2013-09-09

    Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to-date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3-xCl x solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin-film solution processed perovskite solar cells with no mesoporous layer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. No relationship between embryo morphology and successful derivation of human embryonic stem cell lines.

    Directory of Open Access Journals (Sweden)

    Susanne Ström

    Full Text Available BACKGROUND: The large number (30 of permanent human embryonic stem cell (hESC lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002-2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. METHODS: We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. RESULTS: Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. CONCLUSION: Even very poor quality embryos with few cells in the ICM can give origin to hESC lines.

  13. Maintenance of the cell morphology by MinC in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Pei-Yu Chiou

    Full Text Available In the model organism Escherichia coli, Min proteins are involved in regulating the division of septa formation. The computational genome analysis of Helicobacter pylori, a gram-negative microaerophilic bacterium causing gastritis and peptic ulceration, also identified MinC, MinD, and MinE. However, MinC (HP1053 shares a low identity with those of other bacteria and its function in H. pylori remains unclear. In this study, we used morphological and genetic approaches to examine the molecular role of MinC. The results were shown that an H. pylori mutant lacking MinC forms filamentous cells, while the wild-type strain retains the shape of short rods. In addition, a minC mutant regains the short rods when complemented with an intact minCHp gene. The overexpression of MinCHp in E. coli did not affect the growth and cell morphology. Immunofluorescence microscopy revealed that MinCHp forms helix-form structures in H. pylori, whereas MinCHp localizes at cell poles and pole of new daughter cell in E. coli. In addition, co-immunoprecipitation showed MinC can interact with MinD but not with FtsZ during mid-exponential stage of H. pylori. Altogether, our results show that MinCHp plays a key role in maintaining proper cell morphology and its function differs from those of MinCEc.

  14. Beryllium alters lipopolysaccharide-mediated intracellular phosphorylation and cytokine release in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M; Gupta, Goutam; McCleskey, T Mark; Chaudhary, Anu

    2009-12-01

    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide-mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We found that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1beta is enhanced. In addition, not all lipopolysaccharide-mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate-treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1beta secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling.

  15. Epigenetic alteration of imprinted genes during neural differentiation of germline-derived pluripotent stem cells.

    Science.gov (United States)

    Lee, Hye Jeong; Choi, Na Young; Lee, Seung-Won; Ko, Kisung; Hwang, Tae Sook; Han, Dong Wook; Lim, Jisun; Schöler, Hans R; Ko, Kinarm

    2016-03-01

    Spermatogonial stem cells (SSCs), which are unipotent stem cells in the testes that give rise to sperm, can be converted into germline-derived pluripotent stem (gPS) by self-induction. The androgenetic imprinting pattern of SSCs is maintained even after their reprogramming into gPS cells. In this study, we used an in vitro neural differentiation model to investigate whether the imprinting patterns are maintained or altered during differentiation. The androgenetic patterns of H19, Snrpn, and Mest were maintained even after differentiation of gPS cells into NSCs (gPS-NSCs), whereas the fully unmethylated status of Ndn in SSCs was altered to somatic patterns in gPS cells and gPS-NSCs. Thus, our study demonstrates epigenetic alteration of genomic imprinting during the induction of pluripotency in SSCs and neural differentiation, suggesting that gPS-NSCs can be a useful model to study the roles of imprinted genes in brain development and human neurodevelopmental disorders.

  16. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  17. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    Directory of Open Access Journals (Sweden)

    Nakkrasae La-Iad

    2008-05-01

    Full Text Available Abstract Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7 is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network.

  18. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    Science.gov (United States)

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  19. Morphological Transformation of Plant Cells in vitro and Its Effect on Plant Growth

    Institute of Scientific and Technical Information of China (English)

    GUO Zhigang; ZENG Zhaolin; LIU Ruizhi; DENG Ying

    2005-01-01

    Enhancement of cell growth in suspension cultures is urgently needed in plant cell culture engineering. This study investigates the relationship between morphological transformation and cell growth in callus and suspension cultures of saffron cells belonging to the cell line C96 induced from Crocus sativus L. In the suspension culture, an unbalanced osmotic pressure between the intracell and extracell regions induced a large morphological transformation which affected normal division of the saffron cells. An increase in osmotic pressure caused by the addition of sucrose inhibits the vacuolation and shrinkage of cytoplasm in the cells. As the sucrose concentration increases, the total amount of accumulated biomass also increases. Besides the sucrose concentration, increased ionic strength and inoculation ratio also help restrain to a large extent the vacuolation and shrinkage of the cytoplasm in the suspended cells, which results in increased biomass. The conditions for optimal biomass are: Murashige and Skoog's (MS) medium with 40 g/L sucrose and 60% (v/v) inoculation ratio.

  20. Solitary cutaneous histiocytosis with granular cell changes: a morphological variant of reticulohistiocytoma?

    Science.gov (United States)

    Caltabiano, Rosario; Magro, Gaetano; Vecchio, Giada Maria; Lanzafame, Salvatore

    2010-02-01

    We first report a case of granular cell histiocytosis occurring as a solitary polypoid lesion of the nipple in a 15-year-old girl. Histologically, the lesion was composed of a dermal population of medium- to large-sized, short spindle- to round- to epithelioid-shaped cells with eosinophilic cytoplasm containing numerous and small diastase-resistant periodic acid-Schiff (PAS) positive granules. No associated inflammatory cells were observed. Immunohistochemical studies, revealing immunoreactivity exclusively to vimentin and CD68, were consistent with their histiocytic profile. Based on clinical, morphological and immunohistochemical features, the diagnosis of 'solitary cutaneous histiocytosis with granular cell changes' was proposed. The absence of an inflammatory cell component, such as lymphocytes and leucocytes, along with no history of a previous trauma or medical treatment, suggest that the present lesion could fit into the morphological spectrum of the so-called solitary epithelioid histiocytoma, also known as reticulohistiocytoma. Alternatively, the possibility of a histiocytic reaction to unknown stimuli cannot be completely ruled out. Nevertheless, awareness of solitary cutaneous histiocytosis with granular cell changes is useful to avoid confusion with other dermal tumors, especially 'granular cell tumor' and 'dermal non-neural granular cell tumor'.

  1. Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease.

    Directory of Open Access Journals (Sweden)

    Jay R Thiagarajah

    Full Text Available Hirschsprung disease-associated enterocolitis (HAEC leads to significant mortality and morbidity, but its pathogenesis remains unknown. Changes in the colonic epithelium related to goblet cells and the luminal mucus layer have been postulated to play a key role. Here we show that the colonic epithelium of both aganglionic and ganglionic segments are altered in patients and in mice with Hirschsprung disease (HSCR. Structurally, goblet cells were altered with increased goblet cell number and reduced intracellular mucins in the distal colon of biopsies from patients with HSCR. Endothelin receptor B (Ednrb mutant mice showed increased goblet cell number and size and increased cell proliferation compared to wild-type mice in aganglionic segments, and reduced goblet cell size and number in ganglionic segments. Functionally, compared to littermates, Ednrb-/- mice showed increased transepithelial resistance, reduced stool water content and similar chloride secretion in the distal colon. Transcript levels of goblet cell differentiation factors SPDEF and Math1 were increased in the distal colon of Ednrb-/- mice. Both distal colon from Ednrb mice and biopsies from HSCR patients showed reduced Muc4 expression as compared to controls, but similar expression of Muc2. Particle tracking studies showed that mucus from Ednrb-/- mice provided a more significant barrier to diffusion of 200 nm nanoparticles as compared to wild-type mice. These results suggest that aganglionosis is associated with increased goblet cell proliferation and differentiation and subsequent altered surface mucus properties, prior to the development of inflammation in the distal colon epithelium. Restoration of normal goblet cell function and mucus layer properties in the colonic epithelium may represent a therapeutic strategy for prevention of HAEC.

  2. Study of Low Temperature Fuel Cells Thin Films Morphology by GISAXS

    Science.gov (United States)

    Irita, Tomomi; Russell, Thomas

    2007-03-01

    Grazing incidence small angle x-ray scattering experiments were performed on thin films of Nafion solutions as a function of time as the solvent, methanol/water, evaporated. The development and orientation of the structure and morphology in the thin films, at the free surface and in the bulk of the film, was characterized by the scattering below and above the critical angle. The scattering profiles indicated that Nafion thin morphology was strongly influenced by the conformations of Nafion molecules in the solutions. In addition, the morphology in thin films of sulfonated block copolymers of polystyrene-b-poly(ethylene-o-butylene)-b-polystyrene, an alternative material for fuel cell applications, was characterized by GISAXS and scanning force microscopy using different solvents and under an applied electric field. Both the solvents used and the applied field was found to markedly influence the orientation of the ion conducting domains in the films.

  3. Altered Pattern of Naive and Memory B cells and B1 Cells in Patients with Chronic Granulomatous Disease

    NARCIS (Netherlands)

    Mohsenzadegan, Monireh; Fattahi, Fahimeh; Fattahi, Fatemeh; Mirshafiey, Abbas; Fazlollahi, Mohammad Reza; Beni, Fariba Naderi; Movahedi, Masoud; Pourpak, Zahra

    2014-01-01

    Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder characterized by a greatly increased susceptibility to severe fungal and bacterial infections caused by defects in NADPH oxidase of phagocytic cells. We aimed to investigate immunophenotype alterations of naive and memor

  4. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    Science.gov (United States)

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells.

  5. Unusual morphology of desmoplastic small round cell tumor from an ascitic fluid in the postchemotherapy setting

    Directory of Open Access Journals (Sweden)

    Ricardo González-Arango

    2015-01-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT is a malignant neoplasm that most often presents in male adolescents as an abdominal mass. Cytological features have been previously described, but only two reports noted post chemotherapy changes on effusions. We report a case of a 15-year-old male with DSRCT status postchemotherapy that presented with ascitis. Unusual morphology was seen: Numerous malignant large and single cells with prominent nucleoli and abundant cytoplasm in a background without the stroma, occasional mitosis, and the abundant apoptosis. Cell block immunocytochemistry was confirmatory. Awareness of the postchemotherapy changes in this tumor will allow us to diagnose recurrence.

  6. Morphological and biochemical characterization of mitochondria in Torpedo red blood cells.

    Science.gov (United States)

    Pica, A; Scacco, S; Papa, F; De Nitto, E; Papa, S

    2001-02-01

    A study is presented on the morphology and respiratory functions of mitochondria from Torpedo marmorata red blood cells. In vivo staining of red blood cells and transmission electron microscopy showed the existence of a considerable number of vital and orthodox mitochondria which decreased from young erythroblasts to mature erythrocytes from 60-50 to 30-20 per cell. In erythrocytes mitochondria exhibited a canonical, functional respiratory chain. The content and activity of cytochromes in erythrocytes were, however, significantly lower as compared to mammalian tissues.

  7. V(D)J recombination in mature B cells: a mechanism for altering antibody responses.

    Science.gov (United States)

    Papavasiliou, F; Casellas, R; Suh, H; Qin, X F; Besmer, E; Pelanda, R; Nemazee, D; Rajewsky, K; Nussenzweig, M C

    1997-10-10

    The clonal selection theory states that B lymphocytes producing high-affinity immunoglobulins are selected from a pool of cells undergoing antibody gene mutation. Somatic hypermutation is a well-documented mechanism for achieving diversification of immune responses in mature B cells. Antibody genes were also found to be modified in such cells in germinal centers by recombination of the variable (V), diversity (D), and joining (J) segments. The ability to alter immunoglobulin expression by V(D)J recombination in the selective environment of the germinal center may be an additional mechanism for inactivation or diversification of immune responses.

  8. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  9. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  10. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly.

  11. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Schlie-Wolter, Sabrina, E-mail: s.schlie@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ngezahayo, Anaclet, E-mail: ngezahayo@biophysik.uni-hannover.de [Institute of Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover 30419 (Germany); Chichkov, Boris N., E-mail: b.chichkov@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany)

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications.

  12. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  13. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes.

    Science.gov (United States)

    Golic, I; Velickovic, K; Markelic, M; Stancic, A; Jankovic, A; Vucetic, M; Otasevic, V; Buzadzic, B; Korac, B; Korac, A

    2014-09-09

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes.

  14. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes

    Directory of Open Access Journals (Sweden)

    I. Golic

    2014-09-01

    Full Text Available Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1 and mitofusin 2 (MFN2 were increased, and mitochondrial fission as dynamin related protein 1 (DRP1 was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER. The level of uncoupling protein-1 (UCP1 was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes

  15. Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin.

    Science.gov (United States)

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2015-05-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Inte