WorldWideScience

Sample records for alterations frequency induced

  1. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  2. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  3. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings.

    Directory of Open Access Journals (Sweden)

    Youbo You

    Full Text Available As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36 and a nearby non-meridian point (NAP would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz, beta (13-30 Hz and gamma (30-48 Hz bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend

  4. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Science.gov (United States)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  5. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  6. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  7. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  8. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.

    Directory of Open Access Journals (Sweden)

    Elyse L Walk

    Full Text Available Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC, provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl. Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy.

  9. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.

    Science.gov (United States)

    Walk, Elyse L; McLaughlin, Sarah; Coad, James; Weed, Scott A

    2014-01-01

    Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy. PMID:24955984

  10. Ventilation-induced Alterations in Lung Development

    OpenAIRE

    Kroon, André

    2011-01-01

    textabstractMechanical ventilation is a lifesaving treatment in critically ill neonates. However, mechanical ventilation is also one of the most important risk factors (Table 1) of Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infancy with long-term pulmonary and neurological complications (1). Exposure of immature lungs to positive pressure ventilation results in oxidative stress and ventilator-induced lung injury. The resulting injury and inflammation lead to abn...

  11. Omeprazole induces altered bile acid metabolism

    OpenAIRE

    Shindo, K; Machida, M.; Fukumura, M; Koide, K.; Yamazaki, R.

    1998-01-01

    Background—It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. 
Aims—To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. 
Methods—Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover o...

  12. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  13. What the Erythrocytic Nuclear Alteration Frequencies Could Tell Us about Genotoxicity and Macrophage Iron Storage?

    Science.gov (United States)

    Gomes, Juliana M. M.; Ribeiro, Heder J.; Procópio, Marcela S.; Alvarenga, Betânia M.; Castro, Antônio C. S.; Dutra, Walderez O.; da Silva, José B. B.; Corrêa Junior, José D.

    2015-01-01

    Erythrocytic nuclear alterations have been considered as an indicative of organism’s exposure to genotoxic agents. Due to their close relationship among their frequencies and DNA damages, they are considered excellent markers of exposure in eukaryotes. However, poor data has been found in literature concerning their genesis, differential occurrence and their life span. In this study, we use markers of cell viability; genotoxicity and cellular turn over in order to shed light to these events. Tilapia and their blood were exposed to cadmium in acute exposure and in vitro assays. They were analyzed using flow cytometry for oxidative stress and membrane disruption, optical microscopy for erythrocytic nuclear alteration, graphite furnace atomic absorption spectrometry for cadmium content in aquaria water, blood and cytochemical and analytical electron microscopy techniques for the hemocateretic aspects. The results showed a close relationship among the total nuclear alterations and cadmium content in the total blood and melanomacrophage centres area, mismatching reactive oxygen species and membrane damages. Moreover, nuclear alterations frequencies (vacuolated, condensed and blebbed) showed to be associated to cadmium exposure whereas others (lobed and bud) were associated to depuration period. Decrease on nuclear alterations frequencies was also associated with hemosiderin increase inside spleen and head kidney macrophages mainly during depurative processes. These data disclosure in temporal fashion the main processes that drive the nuclear alterations frequencies and their relationship with some cellular and systemic biomarkers. PMID:26619141

  14. Altered Frequency Distribution in the Electroencephalogram is Correlated to the Analgesic Effect of Remifentanil

    DEFF Research Database (Denmark)

    Graversen, Carina; Malver, Lasse P; Kurita, Geana P;

    2015-01-01

    Opioids alter resting state brain oscillations by multiple and complex factors, which are still to be elucidated. To increase our knowledge, multi-channel electroencephalography (EEG) was subjected to multivariate pattern analysis (MVPA), to identify the most descriptive frequency bands and scalp...... individual changes in heat pain in the delta (p = 0.045), theta (p = 0.038) and alpha (p = 0.039) bands and to bone pain in the alpha band (p = 0.0092). Hence, MVPA of multi-channel EEG was able to identify frequency bands and corresponding channels most sensitive to altered brain activity during...... locations altered by remifentanil in healthy volunteers. Sixty-two channels of resting EEG followed by independent measures of pain scores to heat and bone pain were recorded in 21 healthy males before and during remifentanil infusion in a placebo-controlled, double-blind crossover study. EEG frequency...

  15. Use of High Frequency Ultrasound to Monitor Cervical Lymph Node Alterations in Mice

    OpenAIRE

    Walk, Elyse L.; McLaughlin, Sarah; Coad, James; Weed, Scott A.

    2014-01-01

    Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with...

  16. Reversible tobramycin-induced bilateral high-frequency vestibular toxicity.

    Science.gov (United States)

    Walsh, R M; Bath, A P; Bance, M L

    2000-01-01

    We report an unusual case of tobramycin-induced bilateral high-frequency vestibular toxicity with subsequent clinical and objective evidence of functional recovery. In those patients with a clinical presentation suggestive of aminoglycoside-induced bilateral vestibular toxicity (ataxia and oscillopsia) and normal low-frequency (ENG-caloric) responses, high-frequency rotation chair testing should be performed to exclude a high-frequency vestibular deficit. PMID:10810261

  17. Pressure-induced OH frequency downshift in brucite: frequency-distance and frequency-field correlations

    International Nuclear Information System (INIS)

    The ordered Mg(OH)2 crystal structure has been optimized for different pressures in the pressure range 0-21 GPa, within the trigonal P 3-bar m1 space group. Anharmonic frequencies for the Raman-active OH vibrational mode were calculated from potential energy curves obtained by B3LYP and PW91 calculations with the CRYSTAL06 program. We find that an external pressure leads to an OH frequency downshift, in agreement with experiment, but there are no hydrogen bonds involved. The frequency downshift depends linearly on the electric field exerted on the OH ions from its neighbours in the 'opposite' layer. In agreement with experiment we also find that the pressure-induced 'v(OH) vs. interlayer R(O - - - O)' curve deviates from the well established correlation curves for hydrogen-bonded systems in the literature; the Δv/ΔR slope for high pressure conditions is much smaller. We also point out the merits of reporting both v(OH) and Δvgas-to-solid for comparison with experiment

  18. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants

    OpenAIRE

    Bernal, Autumn J.; Dolinoy, Dana C; Huang, Dale; Skaar, David A.; Weinhouse, Caren; Jirtle, Randy L

    2013-01-01

    Humans are exposed to low-dose ionizing radiation (LDIR) from a number of environmental and medical sources. In addition to inducing genetic mutations, there is concern that LDIR may also alter the epigenome. Such heritable effects early in life can either be positively adaptive or result in the enhanced formation of diseases, including cancer, diabetes, and obesity. Herein, we show that LDIR significantly increased DNA methylation at the viable yellow agouti (Avy) locus in a sex-specific man...

  19. Pacifier-sucking habit duration and frequency on occlusal and myofunctional alterations in preschool children

    Directory of Open Access Journals (Sweden)

    Valdeane Simone Cenci NIHI

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association of pacifier-sucking habit with occlusal and oral myofunctional alterations in preschool children. Eighty-four 2- to 5-year-old children participated in the study. Data on duration and frequency of pacifier use were collected from parents or guardians. Occlusal and oral myofunctional characteristics were examined by a dentist and a speech therapist, respectively. Chi-square tests and Poisson regression were used to analyze the data. The occlusal characteristics that were significantly associated with a pacifier-sucking habit were anterior open bite, altered canine relation, posterior crossbite, increased overjet, and malocclusion. The oral myofunctional characteristics that were significantly associated with a pacifier-sucking habit were resting lip position, resting tongue position, shape of the hard palate, and swallowing pattern. The strongest associations were for anterior open bite (prevalence ratio [PR] = 11.33, malocclusion (PR = 2.33, altered shape of the hard palate (PR = 1.29, and altered swallowing pattern (PR = 1.27. Both duration and frequency of pacifier-sucking habit were associated with occlusal and oral myofunctional alterations. These results emphasize the need for pediatric dentists to advise parents and caregivers about the risks of prolonged pacifier use and refer children to professionals for multidisciplinary assistance to minimize these risks whenever necessary.

  20. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  1. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  2. Apigenin ameliorates gamma radiation-induced cytogenetic alterations in cultured human blood lymphocytes.

    Science.gov (United States)

    Begum, Naziya; Prasad, N Rajendra; Kanimozhi, G; Hasan, Annie Q

    2012-08-30

    The aim of the present study was to assess the protective effect of apigenin, a dietary flavone, against cytogenetic alterations in human peripheral blood lymphocytes (HPBL) induced by Cobalt-60 radiation (3Gy). Results of MTT [3-(4, 5-dimethyl-2-thiaozolyl)-2,5-diphenyl-2H tetrazolium bromide] assay revealed that 37.2μM of apigenin was found to be non-toxic in HPBL. At this dose (37.2μM) of apigenin, the LD(50) radiation dose of HPBL increased from 2.9Gy to 3.4Gy, which resulted in a DMF of 1.17. Apigenin (37.2μM) treatment 1h before irradiation significantly (p<0.05) reduced DNA damage in irradiated HPBL as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment). Moreover, apigenin treatment significantly decreased the frequencies of dicentric (DC), acentric fragments (AF), and acentric rings (AR) in irradiated HPBL. Apigenin pretreatment also reduced the radiation-induced CBMN (cytokinesis blocked micronuclei) anomalies such as micronuclei (MNi), nucleoplasmic bridges (NPB) and nuclear buds (NBUD) in HPBL. These results also showed that there was a significant correlation between NPB and DC frequencies and MNi and AF+AR. Treatment with apigenin alone had no significant effect on DNA damage and chromosomal aberrations in HPBL. Thus, the current studies indicate that apigenin protects HPBL from radiation-induced cytogenetic alterations. PMID:22516036

  3. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia.

    Science.gov (United States)

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  4. Subthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat

    OpenAIRE

    Bertrand Degos; Jean-Michel Deniau; Mario Chavez; Nicolas Maurice

    2013-01-01

    Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized...

  5. Frequency-specific Alterations of Large-scale Functional Brain Networks in Patients with Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Qin; Ya-Peng Li; Shun Zhang; Ying Xiong; Lin-Ying Guo; Shi-Qi Yang; Yi-Hao Yao

    2015-01-01

    Background:Previous studies have indicated that the cognitive deficits in patients with Alzheimer's disease (AD) may be due to topological deteriorations of the brain network.However,whether the selection of a specific frequency band could impact the topological properties is still not clear.Our hypothesis is that the topological properties of AD patients are also frequency-specific.Methods:Resting state functional magnetic resonance imaging data from l0 right-handed moderate AD patients (mean age:64.3 years; mean mini mental state examination [MMSE]:18.0) and 10 age and gender-matched healthy controls (mean age:63.6 years; mean MMSE:28.2) were enrolled in this study.The global efficiency,the clustering coefficient (CC),the characteristic path length (CpL),and "small-world" property were calculated in a wide range of thresholds and averaged within each group,at three different frequency bands (0.01-0.06 Hz,0.06-0.11 Hz,and 0.11-0.25 Hz).Results:At lower-frequency bands (0.01-0.06 Hz,0.06-0.11 Hz),the global efficiency,the CC and the "small-world" properties of AD patients decreased compared to controls.While at higher-frequency bands (0.11-0.25 Hz),the CpL was much longer,and the "small-world" property was disrupted in AD,particularly at a higher threshold.The topological properties changed with different frequency bands,suggesting the existence of disrupted global and local functional organization associated with AD.Conclusions:This study demonstrates that the topological alterations of large-scale functional brain networks inAD patients are frequency dependent,thus providing fundamental support for optimal frequency selection in future related research.

  6. Cell alterations induced by a biotherapic for influenza

    Directory of Open Access Journals (Sweden)

    José Nelson Couceiro

    2011-07-01

    Full Text Available Introduction: Influenza viruses have been responsible for highly contagious acute respiratory illnesses with high mortality, mainly in the elderly, which encourages the development of new drugs for the treatment of human flu. The biotherapics are medicines prepared from biological products, which are not chemically defined. They are compounded following the homeopathic procedures indicated for infectious diseases with known etiology [1]. Aim: The purpose of the present study is to verify cellular alterations induced by a biotherapic prepared from the infectious influenza A virus. Methodology: This biotherapic was prepared for this study in the homeopathic potency of 30X according to the Brazilian Homeopathic Pharmacopeia [2]. The concentration of 10% was not cytotoxic to cells, as verified by neutral red assay. The cellular alterations observed in MDCK cells were analyzed by optical microscopy for the quantification of mitosis, nucleoli and lipid bodies. The mitochondrial activity was assessed by MTT assay and the phosphosfructokinase-1 (PFK-1 enzyme activity was analyzed on the MDCK cells treated for 5, 10 and 30 days. Macrophages J778.G8 were treated with this biotherapic to evaluate the immunostimulatory cytokine release. Results: The cellular alterations observed in MDCK cells were verified by optical microscopy. The number of lipid bodies present in MDCK cells stimulated for 10 days was significantly lower (p <0.05 when compared to controls. The biotherapic significantly increased (p <0.05 the number of mitosis and the mitochondrial activity of MDCK cells stimulated for 10 and 30 days. These changes were confirmed by a significant reduction (p <0.05 on the PFK-1 activity. These results suggest that the biotherapic was able to activate the Krebs cycle and pentose-phosphate metabolism to the generation of amino acids and nucleotides, situations common to cells whose rate of mitosis is increased. The quantification of immunostimulatory

  7. Treadmill exercise induces hippocampal astroglial alterations in rats.

    Science.gov (United States)

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  8. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  9. Modulation Of Acrylamide-Induced Biochemical Alterations In Albino Rats

    International Nuclear Information System (INIS)

    Acrylamide (ACR) is an industrial neurotoxic chemical that has been recently found in carbohydrate rich foods cooked at high temperature. The objective of the current study is to evaluate the protective effects of rosemary extract against ACR-induced toxicity in rats. The experimental rats were divided into four groups included a control group, a group treated orally with rosemary extract by supercritical fluid extractor (150 mg/kg/day) for 14 days, a group treated orally with ACR (50 mg/kg/day) for 14 days and a group treated orally with rosemary extract + acrylamide for 14 days. The results indicated that treatment with ACR alone resulted in a significant decrease in the haematological parameters, triglycerides, insulin, creatine kinase and choline esterase while the concentrations of urea, creatinine, ALT, AST and alkaline phosphatase were increased. Treatment with rosemary extract during ACR treatment reduced the effects induced by ACR. It could be concluded that rosemary extract exhibited a protective action against ACR-induced biochemical alterations in rats. For this reason, rosemary is recommended to be used in cooked food due to its palatable taste and prophylactic effect.

  10. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  11. Altered Cortical Responsiveness to Pain Stimuli after High Frequency Electrical Stimulation of the Skin in Patients with Persistent Pain after Inguinal Hernia Repair

    OpenAIRE

    Broeke, E.N. van den; Koeslag, L.; Arendsen, L.J.; Nienhuijs, S.W.; Rosman, C.; van Rijn, C.M.

    2013-01-01

    Background High Frequency electrical Stimulation (HFS) of the skin induces enhanced brain responsiveness expressed as enhanced Event-Related Potential (ERP) N1 amplitude to stimuli applied to the surrounding unconditioned skin in healthy volunteers. The aim of the present study was to investigate whether this enhanced ERP N1 amplitude could be a potential marker for altered cortical sensory processing in patients with persistent pain after surgery. Materials and Methods Nineteen male patients...

  12. Altered Cortical Responsiveness to Pain Stimuli after High Frequency Electrical Stimulation of the Skin in Patients with Persistent Pain after Inguinal Hernia Repair

    OpenAIRE

    van den Broeke, Emanuel N; Lonneke Koeslag; Arendsen, Laura J.; Nienhuijs, Simon W; Camiel Rosman; van Rijn, Clementina M.; Oliver H G Wilder-Smith; Harry van Goor

    2013-01-01

    BACKGROUND: High Frequency electrical Stimulation (HFS) of the skin induces enhanced brain responsiveness expressed as enhanced Event-Related Potential (ERP) N1 amplitude to stimuli applied to the surrounding unconditioned skin in healthy volunteers. The aim of the present study was to investigate whether this enhanced ERP N1 amplitude could be a potential marker for altered cortical sensory processing in patients with persistent pain after surgery. MATERIALS AND METHODS: Nineteen male patien...

  13. Altered cortical responsiveness to pain stimuli after high frequency electrical stimulation of the skin in patients with persistent pain after inguinal hernia repair

    OpenAIRE

    Broeke, E.N. van den; Koeslag, L.; Arendsen, L.J.; Nienhuijs, S.W.; Rosman, C.; Rijn, C.M. van; Wilder-Smith, O.H.G.; van Goor, H.

    2013-01-01

    BACKGROUND: High Frequency electrical Stimulation (HFS) of the skin induces enhanced brain responsiveness expressed as enhanced Event-Related Potential (ERP) N1 amplitude to stimuli applied to the surrounding unconditioned skin in healthy volunteers. The aim of the present study was to investigate whether this enhanced ERP N1 amplitude could be a potential marker for altered cortical sensory processing in patients with persistent pain after surgery. MATERIALS AND METHODS: Nineteen male patien...

  14. Genomic alterations in radiation-induced murine acute myeloid leukemias

    International Nuclear Information System (INIS)

    High-dose radiation induces acute myeloid leukemia (AML) in C3H mice, most of which have a high frequent hemizygous deletion around the D2Mit15 marker on the interstitially deleted region of chromosome 2. This region involves PU.1 (Sfpi-1), which is a critical candidate gene for initiation of mouse leukemogenesis. To identify other genes contributing to leukemogenesis with PU.1, we analyzed chromosomal aberrations and changes of expression in 18 AML-related genes in 39 AMLs. Array CGH analysis revealed that 35 out of 39 AMLs had hemizygous deletions of chromosome 2, and recurrent aberrations on chromosomes 4, 6, 8, 10, 11, 12, 15, and 18. Expressions of 18 AML-related genes, within the altered chromosome regions detected by array CGH were analyzed by using RT-PCR and/or real-time PCR. Although Wnt5b, Wnt16, G-CSFR, M-CSFR, SCL/Tal-1 and GATA1 genes were down-regulated, the c-myc gene was, on the contrary, up-regulated. Expression levels of two genes, Rasgrp1 and Wt1, within the deleted region of chromosome 2 correlated with the loss of one of two alleles, although the expression of PU.1 showed an inverse correlation. In addition, the expression level of PU.1 appeared to be higher with a coincidental missense point mutation in DNA-binding domain of PU.1 in the remaining allele, suggesting a feedback transcription control on PU.1. Such an autoregulation might be relevant to the fact that PU.1 haploinsufficiency per se triggers radiation-induced AML. Together with the detection of chromosomal aberrations, these findings provide useful clues to identify cooperative genes that are responsible for molecular pathogenesis of AMLs induced by low-dose-rate radiation exposure. (author)

  15. Chemisorption-Induced Resonance Frequency Shift of a Microcantilever

    International Nuclear Information System (INIS)

    The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption. The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example. We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation, which depends on the bond configurations formed by the adsorbed atoms and substrate atoms. This study is helpful for optimal design of microcantilever-based sensors for various applications. (condensed matter: structure, mechanical and thermal properties)

  16. Sensorimotor learning in children and adults: Exposure to frequency-altered auditory feedback during speech production.

    Science.gov (United States)

    Scheerer, N E; Jacobson, D S; Jones, J A

    2016-02-01

    Auditory feedback plays an important role in the acquisition of fluent speech; however, this role may change once speech is acquired and individuals no longer experience persistent developmental changes to the brain and vocal tract. For this reason, we investigated whether the role of auditory feedback in sensorimotor learning differs across children and adult speakers. Participants produced vocalizations while they heard their vocal pitch predictably or unpredictably shifted downward one semitone. The participants' vocal pitches were measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback modified subsequent speech motor commands. Sensorimotor learning was observed in both children and adults, with participants' initial vocal pitch increasing following trials where they were exposed to predictable, but not unpredictable, frequency-altered feedback. Participants' vocal pitch was also measured across each vocalization, to index the extent to which the deviant auditory feedback was used to modify ongoing vocalizations. While both children and adults were found to increase their vocal pitch following predictable and unpredictable changes to their auditory feedback, adults produced larger compensatory responses. The results of the current study demonstrate that both children and adults rapidly integrate information derived from their auditory feedback to modify subsequent speech motor commands. However, these results also demonstrate that children and adults differ in their ability to use auditory feedback to generate compensatory vocal responses during ongoing vocalization. Since vocal variability also differed across the children and adult groups, these results also suggest that compensatory vocal responses to frequency-altered feedback manipulations initiated at vocalization onset may be modulated by vocal variability. PMID:26628403

  17. Energy fluctuations induced by stochastic frequency changes in atom traps

    International Nuclear Information System (INIS)

    We study the quantum description of energy fluctuations induced by stochastic changes in the frequency of atom traps. Using the connection between classical and quantum descriptions of parametric oscillators, the classical cumulant expansion method is used to obtain quantum results beyond standard perturbation theory. Both the case of static and time-dependent traps are explicitly worked out

  18. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus;

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss is...

  19. Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2011-03-01

    Full Text Available Abstract Background Intermittent fasting (IF improves healthy lifespan in animals by a mechanism involving reduced oxidative damage and increased resistance to stress. However, no studies have evaluated the impact of controlled meal frequency on immune responses in human subjects. Objective A study was conducted to establish the effects of controlled diets with different meal frequencies, but similar daily energy intakes, on cytokine production in healthy male and female subjects. Design In a crossover study design with an intervening washout period, healthy normal weight middle-age male and female subjects (n = 15 were maintained for 2 months on controlled on-site one meal per day (OMD or three meals per day (TMD isocaloric diets. Serum samples and peripheral blood mononuclear cells (PBMCs culture supernatants from subjects were analyzed for the presence of inflammatory markers using a multiplex assay. Results There were no significant differences in the inflammatory markers in the serum of subjects on the OMD or TMD diets. There was an increase in the capacity of PBMCs to produce cytokines in subjects during the first month on the OMD or TMD diets. Lower levels of TNF-α, IL-17, MCP-1 and MIP-1β were produced by PBMCs from subjects on the OMD versus TMD diet. Conclusions PBMCs of subjects on controlled diets exhibit hypersensitivities to cellular stimulation suggesting that stress associated with altered eating behavior might affect cytokine production by immune cells upon stimulation. Moreover, stimulated PBMCs derived from healthy individuals on a reduced meal frequency diet respond with a reduced capability to produce cytokines.

  20. Tissue cholesterol content alterations in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xin-ting WANG; Jia LI; Li LIU; Nan HU; Shi JIN; Can LIU; Dan MEI; Xiao-dong LIU

    2012-01-01

    Aim:Diabetes is associated with elevated serum total cholesterol level and disrupted lipoprotein subfractions.The aim of this study was to examine alterations in the tissue cholesterol contents closely related to diabetic complications.Methods:Intraperitoneal injection of streptozotocin was used to induce type 1 diabetes in adult male Sprague-Dawley rats.On d 35 after the injection,liver,heart,intestine,kidney,pancreas,cerebral cortex and hippocampus were isolated from the rats.The content of total and free cholesterol in the tissues was determined using HPLC.The ATP-binding cassette protein A1 (ABCA1) protein and ApoE mRNA were measured using Western blot and QT-PCR analyses,respectively.Results:In diabetic rats,the level of free cholesterol was significantly decreased in the peripheral tissues,but significantly elevated in hippocampus,as compared with those in the control rats.Diabetic rats showed a trend of decreasing the total cholesterol level in the peripheral tissues,but significant change was only found in kidney and liver.In diabetic rats,the level of the ABCA1 protein was significantly increased in the peripheral tissues and cerebral cortex; the expression of ApoE mRNA was slightly decreased in hippocampus and cerebral cortex,but the change had no statistical significance.Conclusion:Type 1 diabetes decreases the free cholesterol content in the peripheral tissues and increases the free cholesterol content in hippocampus.The decreased free cholesterol level in the peripheral tissues may be partly due to the increased expression of the ABCA1 protein.

  1. Analysis of radiation-induced genome alterations in Vigna unguiculata

    Directory of Open Access Journals (Sweden)

    van der Vyver C

    2011-09-01

    Full Text Available Christell van der Vyver1, B Juan Vorster2, Karl J Kunert3, Christopher A Cullis41Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa; 2Department of Plant Production and Soil Science, and 3Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa; 4Case Western Reserve University, Department of Biology, Cleveland, OH, USAAbstract: Seeds from an inbred Vigna unguiculata (cowpea cultivar were gamma-irradiated with a dose of 180 Gy in order to identify and characterize possible mutations. Three techniques, ie, random amplified polymorphic DNA, microsatellites, and representational difference analysis, were used to characterize possible DNA variation among the mutants and nonirradiated control plants both immediately after irradiation and in subsequent generations. A large portion of putative radiation-induced genome changes had significant similarities to chloroplast sequences. The frequency of mutation at three of these isolated polymorphic regions with chloroplast similarity was further determined by polymerase chain reaction screening using a large number of individual parental, M1, and M2 plants. Analysis of these sequences indicated that the rate at which various regions of the genome is mutated in irradiation experiments differs significantly and also that mutations have variable “repair” rates. Furthermore, regions of the nuclear DNA derived from the chloroplast genome are highly susceptible to modification by radiation treatment. Overall, data have provided detailed information on the effects of gamma irradiation on the cowpea genome and about the ability of the plant to repair these genome changes in subsequent plant generations.Keywords: mutation breeding, gamma radiation, genetic mutations, cowpea, representational difference analysis

  2. Radiation and cadmium induced histological alteration in the mice liver

    International Nuclear Information System (INIS)

    radiation and cadmium induced changes at histological level. Alterations in the histological changes were found dose dependent. More pronounced histopathological changes were registered after the combined exposure of cadmium chloride and gamma rays. (author)

  3. Sound frequencies induce drought tolerance in rice plant

    International Nuclear Information System (INIS)

    To test the sound's effect on plant and its contribution in drought tolerance, plants were subjected to various sound frequencies for an hour. After 24 h sound treatment, plants were exposed to drought for next five days. During the experiment it was observed that sound initiated physiological changes showing tolerance in plant. Sound frequency with = 0.8 kHz enhanced relative water content, stomatal conductance and quantum yield of PSII (Fv/Fm ratio) in drought stress environment. Hydrogen peroxide (H/sub 2/O/sub 2/) production in sound treated plant was declined compared to control. ThermaCAM (Infra-red camera) a software which was used to analyze the plant images temperature showed that sound treated plant and leaf had less temperature (heat) compared to control. The physiological mechanism of sound frequencies induce tolerance in rice plants are discussed. (author)

  4. Pulsed radio frequency therapy of experimentally induced arthritis in ponies.

    OpenAIRE

    Crawford, W. H.; Houge, J C; Neirby, D T; Di Mino, A; Di Mino, A A

    1991-01-01

    The effect of pulsed radio frequency therapy (PRFT) was evaluated on seven ponies with no arthritis and in 28 ponies in which arthritis was created using intra-articular amphotericin B to induce synovitis in the right middle carpal joint. The ponies were divided into five treatment and two control groups. Two levels of arthritis were created and two dosage levels of PRFT were evaluated. The effect of PRFT on arthritic and nonarthritic joints was measured by comparing synovial fluid parameters...

  5. Impedance Alterations in Healthy and Diseased Mice During Electrically Induced Muscle Contraction.

    Science.gov (United States)

    Sanchez, Benjamin; Li, Jia; Geisbush, Tom; Bardia, Ramon Bragos; Rutkove, Seward B

    2016-08-01

    Alterations in the health of muscles can be evaluated through the use of electrical impedance myography (EIM). To date, however, nearly all work in this field has relied upon the measurement of muscle at rest. To provide an insight into the contractile mechanisms of healthy and disease muscle, we evaluated the alterations in the spectroscopic impedance behavior of muscle during the active process of muscle contraction. The gastrocnemii from a total of 13 mice were studied (five wild type, four muscular dystrophy animals, and four amyotrophic lateral sclerosis animals). Muscle contraction was induced via monophasic current pulse stimulation of the sciatic nerve. Simultaneously, multisine EIM (1 kHz to 1 MHz) and force measurements of the muscle were performed. Stimulation was applied at three different rates to produce mild, moderate, and strong contractions. We identified changes in both single and multifrequency data, as assessed by the Cole impedance model parameters. The processes of contraction and relaxation were clearly identified in the impedance spectra and quantified via derivative plots. Reductions in the center frequency fc were observed during the contraction consistent with the increasing muscle fiber diameter. Different EIM stimulation rate-dependencies were also detected across the three groups of animals. PMID:24800834

  6. OVA-induced airway hyperresponsiveness alters murine heart rate variability and body temperature

    Directory of Open Access Journals (Sweden)

    Nicolle Jasmin Domnik

    2012-12-01

    Full Text Available Altered autonomic (ANS tone in chronic respiratory disease is implicated as a factor in cardiovascular co-morbidities, yet no studies address its impact on cardiovascular function in the presence of murine allergic airway (AW hyperresponsiveness (AHR. Since antigen (Ag-induced AHR is used to model allergic asthma (in which ANS alterations have been reported, we performed a pilot study to assess measurement feasibility of, as well as the impact of allergic sensitization to ovalbumin (OVA on, heart rate variability (HRV in a murine model. Heart rate (HR, body temperature (TB and time- and frequency-domain HRV analyses, a reflection of ANS control, were obtained in chronically instrumented mice (telemetry before, during and for 22 h after OVA or saline aerosolization in sensitized (OVA or Alum adjuvant control exposed animals. OVA mice diverged significantly from Alum mice with respect to change in HR during aerosol challenge (P < 0.001, two-way ANOVA; HR max change Ctrl = +80 ± 10 bpm vs. OVA = +1 ± 23 bpm, mean ± SEM, and displayed elevated HR during the subsequent dark cycle (P = 0.006. Sensitization decreased the TB during aerosol challenge (P < 0.001. Sensitized mice had decreased HRV prior to challenge (SDNN: P = 0.038; Low frequency (LF power: P = 0.021; Low/high Frequency (HF power: P = 0.042, and increased HRV during Ag challenge (RMSSD: P = 0.047; pNN6: P = 0.039. Sensitized mice displayed decreased HRV subsequent to OVA challenge, primarily in the dark cycle (RMSSD: P = 0.018; pNN6: P < 0.001; LF: P < 0.001; HF: P = 0.040; LF/HF: P < 0.001. We conclude that implanted telemetry technology is an effective method to assess the ANS impact of allergic sensitization. Preliminary results show mild sensitization is associated with reduced HRV and a suppression of the acute TB response to OVA challenge. This approach to assess altered ANS control in the acute OVA model may also be beneficial in chronic AHR models.

  7. Alterations in High-Frequency Neuronal Oscillations in a Cynomolgus Macaque Test of Sustained Attention Following NMDA Receptor Antagonism.

    Science.gov (United States)

    Goonawardena, Anushka V; Heiss, Jaime; Glavis-Bloom, Courtney; Trube, Gerhard; Borroni, Edilio; Alberati, Daniela; Wallace, Tanya L

    2016-04-01

    A growing body of evidence indicates that neuronal oscillations in the gamma frequency range (30-80 Hz) are disturbed in schizophrenic patients during cognitive processes and may represent an endophenotype of the disease. N-methyl-D-aspartate (NMDA) receptor antagonists have been used experimentally to induce schizophrenia-like symptoms including cognitive deficits in animals and humans. Here we characterized neuronal oscillations and event-related potentials (ERPs) in Cynomolgus macaques fully trained to perform a continuous performance test (CPT) in the presence and absence of the NMDA antagonist phencyclidine (PCP). Macaques (n=8) were trained to touch 'target' stimuli and ignore 'distractor' stimuli presented randomly on a touchscreen. Subsequently, all subjects were implanted with epidural EEG electrodes over frontal (FC) and parietal cortices (PC) and later tested under vehicle (saline, i.m.) or acute PCP (0.1-0.3 mg/kg, i.m.) conditions. Compared with vehicle treatment, PCP produced a significant dose-dependent decrease in CPT performance accuracy and increased reaction times. Furthermore, PCP elevated the amplitudes of 'low' (30-50 Hz) and 'high' (51-80 Hz) gamma oscillations in FC and PC around target presentations for all correct responses. The CPT accuracy was inversely correlated with the gamma band amplitude in the presence of PCP. Additionally, PCP delayed the N100 peak latency in FC, and prolonged and suppressed the cognitively relevant P300 component of mean ERPs in FC and PC, respectively. The NMDA receptor antagonist-induced alteration in neuronal oscillations and ERPs may contribute to the observed cognitive deficits in macaques, and enhance our understanding of EEG recordings as a translatable biomarker. PMID:26354045

  8. Reversible Altered Consciousness and Brain Atrophy Induced by Valproic Acid

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available A 5-year-old female child with valproic acid (VPA-related alteration of consciousness and brain atrophy that progressed over a 3 day period and resolved within 12 hours of discontinuing VPA is reported from Dokkyo University School of Medicine and Shimotsuga General Hospital, Tochigi, Japan.

  9. Paroxysmal Perceptual Alteration: Drug-Induced Phenomenon or Schizophrenic Psychopathology?

    Science.gov (United States)

    Praharaj, Samir Kumar; Kongasseri, Sreejayan; Acharya, Mahima

    2016-01-01

    Brief and repetitive episodes of perceptual changes, termed paroxysmal perceptual alteration (PPA), have been described in association with antipsychotic treatment. We report a case of paranoid schizophrenia who had such perceptual changes akin to PPA for 15 years, which was not related to antipsychotic treatment. There was a rapid resolution of PPA after treatment with low-dose clonazepam. PMID:26954463

  10. Functional and structural alterations induced by copper in xanthine oxidase

    Institute of Scientific and Technical Information of China (English)

    Mahnaz Hadizadeh; Ezzatollah Keyhani; Jacqueline Keyhani; Cyrus Khodadadi

    2009-01-01

    Xanthine oxidase (XO),a key enzyme in purine metab-olism,produces reactive oxygen species causing vascu-lar injuries and chronic heart failure.Here,copper's ability to alter XO activity and structure was investi-gated in vitro after pre-incubation of the enzyme with increasing Cu2+ concentrations for various periods of time.The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions.Structural alterations were assessed by electronic absorption,fluorescence,and circular dichroism spectroscopy.Results showed that Cu2+ either stimulated or inhibited XO activity,depending on metal concentration and pre-incubation length,the latter also determining the inhibition type.Cu2+-XO complex formation was characterized by modifications in XO electronic absorption bands,intrinsic fluorescence,and α-helical and β-sheet content.Apparent dissociation constant values implied high- and low-affinity Cu2+ binding sites in the vicinity of the enzyme's reactive centers.Data indicated that Cu2+ binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleo-tide centers,changes in secondary structure,and mod-erate activity inhibition;binding to low affinity sites caused alterations around all XO reactive centers including FeS,changes in tertiary structure as reflected by alterations in spectral properties,and drastic activity inhibition.Stimulation was attributed to transient stabilization of XO optimal conformation.Results also emphasized the potential role of copper in the regu-lation of XO activity stemming from its binding properties.

  11. High frequency application of nanosecond pulsed electric fields alters cellular membrane disruption and fluorescent dye uptake

    Science.gov (United States)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.

    2016-03-01

    Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a "threshold" point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.

  12. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Kathryn M. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States); Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)]. E-mail: ghoffmann@holycross.edu

    2007-03-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, {beta}-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv{sup +} revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.

  13. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, β-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv+ revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state

  14. Radiation-induced motility alterations in medulloblastoma cells

    OpenAIRE

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Klaus J. Weber; Debus, Jürgen; Combs, Stephanie E

    2015-01-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metallop...

  15. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    Science.gov (United States)

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  16. Quantum self-induced transparency in frequency gap media

    CERN Document Server

    John, S; John, Sajeev; Rupasov, Valery I.

    1999-01-01

    We study quantum effects of light propagation through an extended absorbing system of two-level atoms placed within a frequency gap medium (FGM). Apart from ordinary solitons and single particle impurity band states, the many-particle spectrum of the system contains massive pairs of confined gap excitations and their bound complexes - gap solitons. In addition, ``composite'' solitons are predicted as bound states of ordinary and gap solitons. Quantum gap and composite solitons propagate without dissipation, and should be associated with self-induced transparency pulses in a FGM.

  17. Extra-Low-Frequency Magnetic Fields alter Cancer Cells through Metabolic Restriction

    CERN Document Server

    Li, Ying

    2012-01-01

    Background: Biological effects of extra-low-frequency (ELF) magnetic fields (MF) have lacked a credible mechanism of interaction between MFs and living material. Objectives: Examine the effect of ELF-MFs on cancer cells. Methods: Five cancer cell lines were exposed to ELF-MFs within the range of 0.025 to 5 microT, and the cells were examined for karyotype changes after 6 days. Results: All cancer cells lines lost chromosomes from MF exposure, with a mostly flat dose-response. Constant MF exposures for three weeks allow a rising return to the baseline, unperturbed karyotypes. From this point, small MF increases or decreases are again capable of inducing karyotype contractions. Our data suggests that the karyotype contractions are caused by MF interference with mitochondria's ATP synthase (ATPS), compensated by the action of AMP-activated Protein Kinase (AMPK). The effects of MFs are similar to those of the ATPS inhibitor oligomycin. They are amplified by metformin, an AMPK stimulator, and attenuated by resisti...

  18. Dependence of enhanced asymmetry-induced transport on collision frequency

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D. L. [Occidental College, Physics Department, Los Angeles, California 90041 (United States)

    2014-07-15

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  19. Uranium-induced sensory alterations in the zebrafish Danio rerio

    International Nuclear Information System (INIS)

    The effect of chronic exposure to uranium ions (UO22+) on sensory tissues including the olfactory and lateral line systems was investigated in zebrafish (Danio rerio) using scanning electron microscopy. The aim of this study was to determine whether exposure to uranium damaged sensory tissues in fish. The fish were exposed to uranium at the concentration of 250 μg l−1 for 10 days followed by a depuration period of 23 days. Measurements of uranium uptake in different fish organs: olfactory rosettes and bulbs, brain, skin, and muscles, were also determined by ICP-AES and ICP-MS during the entire experimental period. The results showed that uranium displayed a strong affinity for sensory structures in direct contact with the surrounding medium, such as the olfactory and lateral line systems distributed on the skin. A decreasing gradient of uranium concentration was found: olfactory rosettes > olfactory bulbs > skin > muscles > brain. At the end of the experiment, uranium was present in non-negligible quantities in sensory tissues. In parallel, fish exposed to uranium showed severe sensory tissue alterations at the level of the olfactory and lateral line systems. In both sensory systems, the gross morphology was altered and the sensory hair cells were significantly damaged very early after the initiation of exposure (from the 3rd day). At the end of the experiment, after 23 days of depuration, the lateral line system still displayed slight tissue alterations, but approximately 80% of the neuromasts in this system had regenerated. In contrast, the olfactory system took more time to recover, as more than half of the olfactory rosettes observed remained destroyed at the end of the experiment. This study showed, for the first time, that uranium is able to damage fish sensory tissues to such an extent that tissue regeneration is delayed.

  20. Uranium-induced sensory alterations in the zebrafish Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Faucher, K., E-mail: kfaucher@hotmail.fr [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France); Floriani, M.; Gilbin, R.; Adam-Guillermin, C. [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France)

    2012-11-15

    The effect of chronic exposure to uranium ions (UO{sub 2}{sup 2+}) on sensory tissues including the olfactory and lateral line systems was investigated in zebrafish (Danio rerio) using scanning electron microscopy. The aim of this study was to determine whether exposure to uranium damaged sensory tissues in fish. The fish were exposed to uranium at the concentration of 250 {mu}g l{sup -1} for 10 days followed by a depuration period of 23 days. Measurements of uranium uptake in different fish organs: olfactory rosettes and bulbs, brain, skin, and muscles, were also determined by ICP-AES and ICP-MS during the entire experimental period. The results showed that uranium displayed a strong affinity for sensory structures in direct contact with the surrounding medium, such as the olfactory and lateral line systems distributed on the skin. A decreasing gradient of uranium concentration was found: olfactory rosettes > olfactory bulbs > skin > muscles > brain. At the end of the experiment, uranium was present in non-negligible quantities in sensory tissues. In parallel, fish exposed to uranium showed severe sensory tissue alterations at the level of the olfactory and lateral line systems. In both sensory systems, the gross morphology was altered and the sensory hair cells were significantly damaged very early after the initiation of exposure (from the 3rd day). At the end of the experiment, after 23 days of depuration, the lateral line system still displayed slight tissue alterations, but approximately 80% of the neuromasts in this system had regenerated. In contrast, the olfactory system took more time to recover, as more than half of the olfactory rosettes observed remained destroyed at the end of the experiment. This study showed, for the first time, that uranium is able to damage fish sensory tissues to such an extent that tissue regeneration is delayed.

  1. Radiation-induced alterations of fracture healing biomechanics

    International Nuclear Information System (INIS)

    The effects of irradiation on the normal temporal progression of the physical properties of healing fractures were studied in a rat model. Fractures were surgically produced in the femur, stabilized with an intramedullary pin, and irradiated. One group of rats was exposed to 2,500 rads in divided doses over 2 weeks, beginning 3 days after fracture, and compared to a control group with fractures which were not irradiated. Animals were sacrificed at periodic intervals and the bones were tested to failure in torsion. The torque, stiffness, and energy increased and the angle decreased for the nonirradiated specimens in the expected fashion. This progression was deleteriously altered in the irradiated femurs

  2. Frequency-specific alterations in the fractional amplitude of low-frequency fluctuations in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Long, Zhiliang; Zheng, Junjie; Wang, Jian; Chen, Huafu

    2016-08-01

    This study used resting-state functional magnetic resonance imaging and fractional amplitude of low-frequency fluctuations (fALFF) method to investigate low-frequency spontaneous neural activity at the bands of slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) in 20 patients with amyotrophic lateral sclerosis (ALS) and 20 healthy controls. We determined that, at slow-5 band, patients with ALS showed increased fALFF in the right middle frontal gyrus and decreased fALFF in the left middle occipital gyrus. However, compared with healthy controls, patients with ALS exhibited higher fALFF in the right caudate nucleus, left superior frontal gyrus, and right anterior cingulate cortex and lower fALFF in the right inferior occipital gyrus and bilateral middle occipital gyrus at slow-4 band. Furthermore, the fALFF value in the left superior frontal gyrus at slow-4 band was negatively correlated with functional rating scale-revised score. Our results demonstrated that the fALFF changes in ALS were widespread and frequency dependent. These findings may provide a novel way to look into the pathophysiology mechanisms underlying ALS. PMID:27139743

  3. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    Science.gov (United States)

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  4. Alterations in glucose kinetics induced by pentobarbital anesthesia

    International Nuclear Information System (INIS)

    Pentobarbital is a common anesthetic agent used in animal research that is known to alter sympathetic function and may also affect carbohydrate metabolism. The in vivo effects of iv pentobarbital on glucose homeostasis were studied in chronically catheterized fasted rats. Whole body glucose kinetics, assessed by the constant iv infusion of [6-3H]- and [U-14C]-glucose, were determined in all rats in the conscious state. Thereafter, glucose metabolism was followed over the next 4 hr in 3 subgroups of rats; conscious, anesthetized with body temperature maintained, and anesthetized with body temperature not maintained. Hypothermia (a 50C decrease) developed spontaneously in anesthetized rats kept at ambient temperature (220C). No differences were seen in MABP and heart rate between conscious and normothermic anesthetized rats; however, hypothermic anesthetized rats showed a decrease in MABP (20%) and heart rate (35%). Likewise, plasma glucose and lactate concentrations, the rate of glucose appearance (Ra), recycling and metabolic clearance (MCR) did not differ between conscious and normothermic anesthetized animals. In contrast, hypothermic anesthetized rats showed a 50% reduction in plasma lactate, a 40% drop in glucose Ra, and a 30-40% decrease in glucose recycling and MCR. Thus, pentobarbital does not appear to alter in vivo glucose kinetics, compared to unanesthetized controls, provided that body temperature is maintained

  5. Alcohol induced alterations to the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Robin D Couch

    Full Text Available Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis. However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1 an elevation in the oxidative stress biomarker tetradecane; (2 a decrease in five fatty alcohols with anti-oxidant property; (3 a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4 a decrease in alcohol consumption natural suppressant caryophyllene; (5 a decrease in natural product and hepatic steatosis attenuator camphene; and (6 decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  6. Radiation-induced motility alterations in medulloblastoma cells.

    Science.gov (United States)

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  7. Radiation-induced motility alterations in medulloblastoma cells

    International Nuclear Information System (INIS)

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. (author)

  8. Alterations induced in Escherichia Coli cells by gamma radiation

    International Nuclear Information System (INIS)

    Modifications occurred in Escherichia coli cells exposed to gamma radiation (60Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  9. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen; Brigo, Francesco

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  10. Study on frequency of dental developmental alterations in a Mexican school-based population

    Science.gov (United States)

    Garcés-Ortíz, Maricela; Salcido-García, Juan-Francisco; Hernández-Flores, Florentino

    2016-01-01

    Background The aim of this study was to know the distribution of dental developmental alterations in the population requesting stomatological attention at the Admission and Diagnosis Clinic of our institution in Mexico City. Material and Methods We reviewed the archives and selected those files with developmental dental alterations. Analyzed data were diagnoses, age, gender, location and number of involved teeth. Results Of the 3.522 patients reviewed, 179 (5.1%) harbored 394 developmental dental alterations. Of them, 45.2% were males and 54.8% were females with a mean age of 16.7 years. The most common were supernumeraries, dental agenesia and dilaceration. Adults were 30.7% of the patients with dental developmental alterations. In them, the most common lesions were agenesia and supernumeraries. Mesiodens was the most frequently found supernumerary teeth (14.7%). Conclusions Our finding that 30.7% of the affected patients were adults is an undescribed and unusually high proportion of patients that have implications on planning and prognosis of their stomatological treatment. Key words:Developmental dental alterations, developmental alterations, supernumerary teeth, dental agenesia, root dilaceration. PMID:26946196

  11. Gelsolin Restores Aβ-Induced Alterations in Choroid Plexus Epithelium

    Directory of Open Access Journals (Sweden)

    Teo Vargas

    2010-01-01

    Full Text Available Histologically, Alzheimer's disease (AD is characterized by senile plaques and cerebrovascular amyloid deposits. In previous studies we demonstrated that in AD patients, amyloid-β (Aβ peptide also accumulates in choroid plexus, and that this process is associated with mitochondrial dysfunction and epithelial cell death. However, the molecular mechanisms underlying Aβ accumulation at the choroid plexus epithelium remain unclear. Aβ clearance, from the brain to the blood, involves Aβ carrier proteins that bind to megalin, including gelsolin, a protein produced specifically by the choroid plexus epithelial cells. In this study, we show that treatment with gelsolin reduces Aβ-induced cytoskeletal disruption of blood-cerebrospinal fluid (CSF barrier at the choroid plexus. Additionally, our results demonstrate that gelsolin plays an important role in decreasing Aβ-induced cytotoxicity by inhibiting nitric oxide production and apoptotic mitochondrial changes. Taken together, these findings make gelsolin an appealing tool for the prophylactic treatment of AD.

  12. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    OpenAIRE

    Papsdorf, Katharina; Christoph J O Kaiser; Drazic, Adrian; Grötzinger, Stefan W.; Haeßner, Carmen; Eisenreich, Wolfgang; Richter, Klaus

    2015-01-01

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast...

  13. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  14. Light-Induced Alterations in Striatal Neurochemical Profiles

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain

  15. Alterations in glucose kinetics induced by pentobarbital anesthesia

    International Nuclear Information System (INIS)

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of [6-3H]- and [U-14C]glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia

  16. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release.

    Directory of Open Access Journals (Sweden)

    Sonja Löfmark

    Full Text Available Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections.

  17. Altered radiation recovery by DNA double-strand break inducers

    International Nuclear Information System (INIS)

    Identical biphasic time-dependent profiles of cell survival were obtained in V79 fibroblasts exposed to a split-dose protocol consisting of a fixed dose of γ-rays followed, at a variable time interval, either by a second exposure to radiation, or by contact with an equi-toxic amount of antitumor drugs acting to produce DNA double-strand breaks. The drugs used in this context were the neocarcinostatin antibiotic (NCS), which preferentially cleaves DNA in the linker region of nucleosomes, and etoposide (VP), whose major target is topoisomerase IIα, a nuclear matrix fraction-linked enzyme acting to relieve topological constraints in replicating DNA and mitotic chromosomes. Radiation-induced DNA strand break rejoining was not inhibited by either drug. The initial number of DNA strand breaks was consistently found o depend only on the radiation dose and/or on the drug concentration. However, the cytotoxicity they induced in combined treatment was determined in essence by the time elapsed after the first radiation exposure. While resistance to NCS and VP in non-irradiated, synchronized cells peaks in G2 phase of the cell cycle, enhanced drug susceptibility was observed within the radiation-induced G2 block. Concomitant exposure to drug and radiation also resulted in supra-additive cytotoxic interaction. Our data suggest that impaired split-dose radiation recovery dose not proceed from inhibition of DNA damage repair, but rather from additional double-strand breaks produced by drug or radiation during the time cells are in the dynamic process of DNA repair; a time range characterized by a dynamic DNA fragility. (authors)

  18. Low frequency terahertz-induced demagnetization in ferromagnetic nickel

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2016-05-01

    A laser stimulus at terahertz (THz) frequency is expected to offer superior control over magnetization dynamics compared to an optical pulse, where ultrafast demagnetization is mediated by heat deposition. As a THz field cycle occurs on a timescale similar to the natural speed of spin motions, this can open a path for triggering precessional magnetization motion and ultimately ultrafast magnetic switching by the THz magnetic field component, without quenching. Here, we explore the ultrafast magnetic response of a ferromagnetic nickel thin film excited by a strong (33 MV/cm) terahertz transient in non-resonant conditions. While the magnetic laser pulse component induces ultrafast magnetic precessions, we experimentally found that at high pump fluence, the THz pulse leads to large quenching which dominates the precessional motion by far. Furthermore, degradation of magnetic properties sets in and leads to permanent modifications of the Ni thin film and damage.

  19. Ecstasy-Induced Caspase Expression Alters Following Ginger Treatment

    OpenAIRE

    Asl, Sara Soleimani; Pourheydar, Bagher; Dabaghian, Fataneh; Nezhadi, Akram; ROOINTAN, AMIR; Mehdizadeh, Mehdi

    2013-01-01

    Introduction Exposure to 3-4, methylenedioxymethamphetamine (MDMA) leads to cell death. Herein, we studied the protective effects of ginger on MDMA- induced apoptosis. Methods 15 Sprague dawley male rats were administrated with 0, 10 mg/kg MDMA, or MDMA along with 100mg/kg ginger, IP for 7 days. Brains were removed to study the caspase 3, 8, and 9 expressions in the hippocampus by RT-PCR. Data was analyzed by SPSS 16 software using the one-way ANOVA test. Results MDMA treatment resulted in a ...

  20. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  1. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    Science.gov (United States)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  2. Plasma-induced Escape and Alterations of Planetary Atmospheres

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  3. Epichloe endophytes alter inducible indirect defences in host grasses.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Epichloë endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloë on constitutive and herbivore-induced emissions of volatile organic compounds (VOC, a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue and Festuca pratensis (meadow fescue. We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloë uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloë coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloë endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloë-grass symbiosis. Whether Epichloë-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation.

  4. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  5. Systematic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis

    International Nuclear Information System (INIS)

    Chronic irradiation of mice with ultraviolet (uv) light produces a systemic alteration of an immunologic nature. This alteration is detectable in mice long before primary skin cancers induced by uv light begin to appear. The alteration results in the failure of uv-irradiated mice to reject highly antigenic, transplanted uv-induced tumors that are rejected by unirradiated syngeneic recipients. The immunologic aspect of this systemic alteration was demonstrated by transferring lymphoid cells from uv-irradiated mice to lethally x-irradiated recipients. These recipients were unable to resist a later challenge with a syngeneic uv-induced tumor, whereas those given lymphoid cells from normal donors were resistant to tumor growth. Parabiosis of normal mice with uv-irradiated mice, followed by tumor challenge of both parabionts with a uv-induced tumor, resulted in the growth of the challenge tumors in both uv-irradiated and unirradiated mice. Splenic lymphocytes from tumor-implanted uv-treated mice were not cytotoxic in vitro against uv-induced tumors, whereas under identical conditions cells from tumor-implanted, unirradiated mice were highly cytotoxic. Our findings suggest that repeated uv irradiation can circumvent an immunologic mechanism that might otherwise destroy nascent uv-induced primary tumors that are strongly antigenic

  6. HIV-Induced Epigenetic Alterations in Host Cells.

    Science.gov (United States)

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI). PMID:26659262

  7. Radiation-induced alteration of gene expression in rat liver

    International Nuclear Information System (INIS)

    Exposure of rats to high dose of γ-radiation (200 Gy) significantly enhanced the ability of mitochondria to accumulate and retain exogenously added Ca2+ one hour after irradiation. 48 hours after irradiation no differences in Ca2+ transporting parameters between mitochondria from control and irradiated animals were found. The stability of mitochondrial membrane potential - the driving force for Ca2+ accumulation and retention, depends on the expression of bcl-2 gene, whose product not only participates in the regulation of Ca2+ fluxes in, but also demonstrates antioxidant properties. The overexpression of this gene was shown to protect cell mitochondria against oxidative stress. However, the investigation of bcl-2 expression in rat liver did not show any significant changes neither 1 nor 48 hours after irradiation. Taking into account that the damage of mitochondria induced action of oxygen radicals and Ca2+ can be prevented by antioxidants, the expression of genes encoded superoxiddismutase and catalase was studied. Expression was gradually stimulated. However, under conditions employed in experiments, direct changes. Presumably this can be explained by a post-translational regulation of the activity of these enzymes. (authors)

  8. Hepatotoxic Alterations Induced by Inhalation of Trichloroethylene (TCE) in Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Trichloroethylene (TCE) is one of the most potent organic unsaturated solvents being used in dry cleaning, metal degreasing, thinner for paints varnishes and electroplating, etc. and has been reported to be a hepatotoxicant through oral and dermal exposure. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation toxicity study was carried out for hepatotoxic studies. Method Inhalation toxicity studies was carried out by exposing rats to TCE for 8, 12 and 24 weeks in a dynamically operated whole body inhalation chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results Significant increase in liver weight (liver enlargement) appearance of necrotic lesions with fatty changes and marked necrosis were observed after longer duration (12 and 24 weeks) of TCE exposure. The lysosomal rupture resulted in increased activity of acid and alkaline phosphatase alongwith reduced glutathione content and total increased sulfhydryl content in liver tissue. Conclusion TCE exposure through Inhalation route induces hepatotoxicity in terms of marked necrosis with fatty changes and by modulating the lysosomal enzymes.

  9. Radiation and cadmium induced biochemical alterations in mouse kidney

    International Nuclear Information System (INIS)

    In the present investigation radiation and cadmium induced biochemical changes in the kidney of Swiss albino mice have been studied. Materials and Methods: For this purpose, adult male Swiss albino mice (6-8 weeks old) were divided into four groups. Group I (sham-irradiated), Group II (treated with CdCl2 solution 20 ppm), Group III (irradiated with 1.25, 2.5 and 5.0 Gy gamma rays), Group IV (both irradiated with 1.25, 2.5 and 5.0 Gy gamma rays and treated with CdCl2 solution). The animals were autopsied after 1, 2, 4, 7, 14 and 28 days of treatment. The kidney was taken out and different biochemical parameters, such as total proteins, glycogen, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA were estimated. Results: In irradiated animals, the values of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA increased continuously up to day-7 and decreased thereafter up to day-28. The changes were dose dependent. In CdCl2 treated animals, the values of glycogen and total proteins decreased during the early intervals and increased thereafter whereas the values of acid and alkaline phosphatase activity and RNA increased during early Intervals and decreased thereafter, The values of cholesterol and DNA showed decrease in all the experimental groups (except group I) up to day-7 and increase thereafter up to day-28. After combined treatment also, the parameters followed the same pattern of increase and decrease, but the changes were more pronounced indicating their synergistic effect. The biochemical parameters showed highly significant values (P<0.001) as compared to normal ones. Conclusion: These results indicate that combined treatment of cadmium and gamma radiations causes synergistic or additive effect

  10. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them. A lymphoblastoid cell line established from a normal donor was used to screen for alterations in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as acetylation at H3K9, H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 15 min, 1 h and 24 h after irradiation with 2 Gy and 10 Gy. The variability of alterations in acetylation marks was in addition investigated in a panel of lymphoblastoid cell lines with differing radiosensitivity established from lung cancer patients. The screening procedure demonstrated consistent hypomethylation at H3K4me3 and hypoacetylation at all acetylation marks tested. In the panel of lymphoblastoid cell lines, however, a high degree of inter-individual variability became apparent. Radiosensitive cell lines showed more pronounced and longer lasting H4K16 hypoacetylation than radioresistant lines, which correlates with higher levels of residual γ-H2AX foci after 24 h. So far, the factors affecting extent and duration of radiation-induced histone alterations are poorly defined. The present work hints at a high degree of inter-individual variability and a potential correlation of DNA damage repair capacity and alterations in PTM levels

  11. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress. PMID:7926607

  12. HeLa cell response proteome alterations induced by mammalian reovirus T3D infection

    OpenAIRE

    Coombs, Kevin M.

    2013-01-01

    Background Cells are exposed to multiple stressors that induce significant alterations in signaling pathways and in the cellular state. As obligate parasites, all viruses require host cell material and machinery for replication. Virus infection is a major stressor leading to numerous induced modifications. Previous gene array studies have measured infected cellular transcriptomes. More recently, mass spectrometry-based quantitative and comparative assays have been used to complement such stud...

  13. Transient and Persistent Pain Induced Connectivity Alterations in Pediatric Complex Regional Pain Syndrome

    OpenAIRE

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles Benjamin; Grant, P. Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. u...

  14. Reversible structural alterations of undifferentiated and differentiated human neuroblastoma cells induced by phorbol ester.

    OpenAIRE

    Tint, I S; Bonder, E. M.; Feder, H. H.; Reboulleau, C P; Vasiliev, J M; Gelfand, I M

    1992-01-01

    Morphological alterations in the structure of undifferentiated and morphologically differentiated human neuroblastoma cells induced by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were examined by video microscopy and immunomorphology. In undifferentiated cells, PMA induced the formation of motile actin-rich lamellas and of stable cylindrical processes rich in microtubules. Formation of stable processes resulted either from the collapse of lamellas or the movement ...

  15. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis.

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A; Ramírez-Pineda, José R; Yassin, Lina M

    2016-06-01

    Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE (-/-) ) mice fed or not with high-fat diet (HFD), by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410) [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia. PMID:27081674

  16. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion p

  17. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    OpenAIRE

    David B. Stone; Coffman, Brian A; Juan Bustillo; Cheryl Aine

    2014-01-01

    Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and heal...

  18. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2014-11-01

    Full Text Available Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46 and healthy controls (N = 57 using magnetoencephalography (MEG. Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia.

  19. Mercury induced haemocyte alterations in the terrestrial snail Cantareus apertus as novel biomarker.

    Science.gov (United States)

    Leomanni, Alessandro; Schettino, Trifone; Calisi, Antonio; Lionetto, Maria Giulia

    2016-01-01

    The aim of the present work was to study the response of a suite of cellular and biochemical markers in the terrestrial snail Cantareus apertus exposed to mercury in view of future use as sensitive tool suitable for mercury polluted soil monitoring and assessment. Besides standardized biomarkers (metallothionein, acetylcholinesterase, and lysosomal membrane stability) novel cellular biomarkers on haemolymph cells were analyzed, including changes in the spread cells/round cells ratio and haemocyte morphometric alterations. The animals were exposed for 14days to Lactuca sativa soaked for 1h in HgCl2 solutions (0.5 e 1μM). The temporal dynamics of the responses were assessed by measurements at 3, 7 and 14days. Following exposure to HgCl2 a significant alteration in the relative frequencies of round cells and spread cells was evident, with a time and dose-dependent increase of the frequencies of round cells with respect to spread cells. These changes were accompanied by cellular morphometric alterations. Concomitantly, a high correspondence between these cellular responses and metallothionein tissutal concentration, lysosomal membrane stability and inhibition of AChE was evident. The study highlights the usefulness of the terrestrial snail C. apertus as bioindicator organism for mercury pollution biomonitoring and, in particular, the use of haemocyte alterations as a suitable biomarker of pollutant effect to be included in a multibiomarker strategy. PMID:26811906

  20. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Aseeva, N. V., E-mail: vtyutin@hse.ru; Gromov, E. M.; Tyutin, V. V. [National Research University Higher School of Economics (Russian Federation)

    2015-12-15

    The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

  1. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  2. Metabolic impacts of altering meal frequency and timing - Does when we eat matter?

    Science.gov (United States)

    Hutchison, Amy T; Heilbronn, Leonie K

    2016-05-01

    Obesity prevalence continues to rise throughout the developed world, as a result of positive energy balance and reduced physical activity. At present, there is still a perception within the general community, and amongst some nutritionists, that eating multiple small meals spaced throughout the day is beneficial for weight control and metabolic health. However, intervention trials do not generally support the epidemiological evidence, and data is emerging to suggest that increasing the fasting period between meals may beneficially impact body weight and metabolic health. To date, this evidence is of short term duration, and it is becoming increasingly apparent that meal timing must also be considered if we are to ensure optimal health benefits in response to this dietary pattern. The purpose of this review is to summate the existing human literature on modifying meal frequency and timing on body weight control, appetite regulation, energy expenditure, and metabolic health under conditions of energy balance, restriction and surplus. PMID:26226640

  3. Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2009-01-01

    Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency fH was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.

  4. Altered integrity and decreased expression of hepatocyte tight junctions in rifampicin-induced cholestasis in mice

    International Nuclear Information System (INIS)

    Rifampicin is a well-known hepatotoxicant, but little is known about the mechanism of rifampicin-induced hepatotoxicity. The aim of this study was to characterize the expression and localization of hepatocyte tight junctions in rifampicin-induced cholestasis in mice. Cholestasis was induced by administration of rifampicin (200 mg/kg) for 7 consecutive days or treatment with a single dose of rifampicin (200 mg/kg) by gastric intubation. The expression of mRNA for hepatic zonula occludens (ZO)-1, ZO-2, ZO-3, occludin and claudin-1 was determined using RT-PCR. Localization of ZO-1 and occludin was detected using immunofluorescence. Results showed that there was an 82-fold increase in the conjugated bilirubin in serum in rifampicin-treated mice. In addition, an 8-fold increase in total bile acid in serum was observed after a seven-day administration of rifampicin. The integrity of hepatocyte ZO-1 and occludin was altered by a seven-day administration of rifampicin. Importantly, the integrity and intensity of hepatocyte tight junctions were altered as early as 30 min after a single dose of rifampicin. The expression of hepatic ZO-1 and ZO-2 mRNA was significantly decreased, beginning as early as 30 min and remaining a lower level 12 h after a single dose of rifampicin. Taken together, these results suggest that the altered integrity and internalization of hepatocyte tight junctions are associated with rifampicin-induced cholestasis.

  5. Histological and Physiological Alterations Induced by Thermal Neutron Fluxes in Male Swiss Albino Mice

    International Nuclear Information System (INIS)

    This work was performed to investigate the biological effects of different thermal neutron fluxes (0.27x108, 0.52X108, 1.089X108, 2.16X108 and 4.32X108) on liver and kidney of male mice using neutron irradiation cell with Ra-Be(α,n) 3 mCi neutron source Leybold (55930). Exposed to various fluxes of thermal neutron induced a dramatic alterations in hepatic and renal functions as indicated by biochemical estimation of several parameters (bilirubin, SGT, and alkaline phosphate .Urea , total protein, and albumin) and confirmed by histological examinations Thermal neutron exposure induces marked increase in the serum activities of total bilirubin, alanine amino transaminase (ALT or GPT), and alkaline phosphate, whereas, urea, total protein and albumin showed marked decline as compared to control group. The physiological changes induced in thermal neutron fluxes dependent manner. Histopathological results revealed mild to severe type of necrosis, and degenerative changes in liver and kidney of male mice exposed to thermal neutron fluxes. Also it was found that the histopathological alterations induced in thermal neutron fluxes dependent manner. It was found that exposed to thermal neutron fluxes irradiation plays prominent role in the development of the physiological alterations in male Swiss albino mice. The Former up normalities as a result of the sequence events followed interaction of radiation with the former biological mater (liver and kidney) of male Swiss albino mice, which are, physical, physicochemical, chemical, and biological stages.

  6. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    International Nuclear Information System (INIS)

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  7. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  8. Propofol, but not etomidate, increases corticosterone levels and induces long-term alteration in hippocampal synaptic activity in neonatal rats.

    Science.gov (United States)

    Xu, Changqing; Seubert, Christoph N; Gravenstein, Nikolaus; Martynyuk, Anatoly E

    2016-04-01

    Animal studies provide strong evidence that general anesthetics (GAs), administered during the early postnatal period, induce long-term cognitive and neurological abnormalities. Because the brain growth spurt in rodents is delayed compared to that in humans, a fundamental question is whether the postnatal human brain is similarly vulnerable. Sevoflurane and propofol, GAs that share positive modulation of the gamma-aminobutyric acid type A receptor (GABAAR) function cause marked increase in corticosterone levels and induce long-term developmental alterations in synaptic activity in rodents. If synaptogenesis is affected, investigation of mechanisms of the synaptic effects of GAs is of high interest because synaptogenesis in humans continues for several years after birth. Here, we compared long-term synaptic effects of etomidate with those of propofol. Etomidate and propofol both positively modulate GABAAR activity, but in contrast to propofol, etomidate inhibits the adrenal synthesis of corticosterone. Postnatal day (P) 4, 5, or 6 rats received five injections of etomidate, propofol, or vehicle control during 5h of maternal separation. Endocrine effects of the anesthetics were evaluated by measuring serum levels of corticosterone immediately after anesthesia or maternal separation. The frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal CA1 pyramidal neurons were measured at P24-40 and P≥80. Only propofol caused a significant increase in serum corticosterone levels (F(4.26)=17.739, P<0.001). In contrast to increased frequency of mIPSCs in the propofol group (F(4.23)=8.731, p<0.001), mIPSC activity in the etomidate group was not different from that in the vehicle groups. The results of this study together with previously published data suggest that anesthetic-caused increase in corticosterone levels is required for GABAergic GAs to induce synaptic effects in the form of a long-term increase in the frequency of hippocampal m

  9. Blood chemical changes and renal histological alterations induced by gentamicin in rats

    Science.gov (United States)

    Alarifi, Saud; Al-Doaiss, Amin; Alkahtani, Saad; Al-Farraj, S.A.; Al-Eissa, Mohammed Saad; Al-Dahmash, B.; Al-Yahya, Hamad; Mubarak, Mohammed

    2011-01-01

    Gentamicin is an effective widely used antibiotic, but the risk of nephrotoxicity and oxidative damage limit its long-term use. Hence, the current study aims to elucidate such hazardous effects. To achieve the study aim male Wistar albino rats (Rattus norvegicus) were exposed to gentamicin to investigate the resultant blood chemical changes and renal histological alterations. In comparison with control rats, gentamicin produced outstanding tubular, glomerular and interstitial alterations that included degeneration, necrosis, cytolysis and cortical tubular desquamation together with mesangial hypercellularity, endothelial cell proliferation and blood capillary congestion. Compared with control animals significant blood chemical changes (P < 0.05) including free radicals, ALT, AST, ALP, serum creatinine and serum urea were recorded in gentamicin-injected animals. The findings revealed that exposure to gentamicin can induce significant histological alterations in the kidney as well as remarkable blood chemical changes that might indicate marked renal failure. PMID:23961168

  10. A feasibility study of altered spatial distribution of losses induced by eddy currents in body composition analysis

    Directory of Open Access Journals (Sweden)

    Sepponen Raimo E

    2010-11-01

    Full Text Available Abstract Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA. Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis.

  11. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing; Wang; Ting-Jun; Fan; Xiu-Xia; Yang; Shi-Min; Chang

    2014-01-01

    AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P <0.01) and the length of F-actin,reduced the mean optical density(P <0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  12. The effects of sex, age and cigarette smoking on micronucleus and degenerative nuclear alteration frequencies in human buccal cells of healthy Bosnian subjects

    OpenAIRE

    Hilada Nefić; Jasmin Mušanović; Kemajl Kurteshi; Enida Prutina; Elvira Turcalo

    2013-01-01

    Introduction: This study was performed to establish a baseline value of micronucleus frequency in buccal cells and to estimate the impact of the most common factors (sex and age, and smoking) on micronucleus and degenerative nuclear alteration frequencies in the sample of healthy Bosnian subjects.Methods: The Buccal Micronucleus Cytome (BMCyt) assay, based on scoring not only micronucleus frequency but also other genome damage markers, dead or degenerated cells, provides a measure of cytotoxi...

  13. Antivenom reversal of biochemical alterations induced by black scorpion Heterometrus fastigiousus Couzijn venom in mice

    Directory of Open Access Journals (Sweden)

    MK Chaubey

    2009-01-01

    Full Text Available In the present study, Heterometrus fastigiousus venom (HFV was employed as antigen to produce species-specific scorpion antivenom (SAV in albino mice (NIH strain. To determine SAV efficacy, it was pre-incubated with 10 LD50 of HFV and then injected subcutaneously into mice. Subsequently, mortality was observed after 24 hours. Minimum effective dose (MED was 12.5 LD50 of HFV/mL of SAV. SAV effectiveness to reverse HFV-induced biochemical alterations in mice was analyzed by challenge method. Simultaneously, mice received subcutaneously 40% of 24-hour-LD50 of HFV and intravenously SAV. After four hours, changes in serum glucose, free amino acids, uric acids, pyruvic acid, cholesterol, total protein, alkaline phosphatase, acid phosphatase, lactic dehydrogenase and glutamate-pyruvate transaminase enzyme level were determined. Treatment with species-specific SAV resulted in the reversal of HFV-induced biochemical alterations.

  14. Radiation-induced alterations in mitochondrial protein synthesis in rat liver

    International Nuclear Information System (INIS)

    The incorporation of 14C-labeled leucine into hepatic mitochondrial proteins in vivo is enhanced up to 48 hr following whole-body X irradiation. A similar increase in labeling is also observed with liver slices from irradiated rats, incubated in vitro, but not with isolated liver mitochondria. Evidence is presented to indicate that these divergent labeling data may be related to the dual origin of the mitochondrial proteins and differences in the radiation-induced effects on the synthesis of mitochondrial proteins of intra- and extra-mitochondrial origin. The increased labeling observed in vivo does not denote a stimulation of mitochondrial protein synthesis but merely reflects a contraction of the free leucine pool of mitochondria. The possible significance of the radiation-induced alterations in the pattern of mitochondrial protein synthesis to the reported morphological alterations of this organelle is discussed

  15. In vitro radiation induced alterations in heavy metals and metallothionein content in Plantago ovata Forsk.

    Science.gov (United States)

    Saha, Priyanka; Mishra, Debadutta; Chakraborty, Anindita; Sudarshan, Mathummal; Raychaudhuri, Sarmistha Sen

    2008-09-01

    Proton Induced X-ray emission (PIXE) and fluorescence-activated cell sorting (FACS) have been used to study the effects of gamma irradiation on heavy metal accumulation in callus tissue of Plantago ovata-an important cash crop of India. PIXE analysis revealed radiation-induced alteration in trace element profile during developmental stages of the callus of P. ovata. Subsequent experiments showed antagonism between Fe and Cu and also Cu and Zn and synergistic effect between Fe and Zn. FACS analysis showed significant induction of the metallothionein (MT) protein following gamma-irradiation, and maximum induction was noted at the 50-Gy absorbed dose. This indicated a progressive increment of MTs as a measure for protection against gamma-rays, to combat alteration in the homeostasis of heavy metals like Fe, Cu, Zn, and Mn. PMID:18493724

  16. Pump-induced carrier envelope offset frequency dynamics and stabilization of an Yb-doped fiber frequency comb

    International Nuclear Information System (INIS)

    In this paper, we demonstrate a carrier envelope phase-stabilized Yb-doped fiber frequency comb seeding by a nonlinear-polarization-evolution (NPE) mode-locked laser at a repetition rate of 60 MHz with a pulse duration of 191 fs. The pump-induced carrier envelope offset frequency (f0) nonlinear tuning is discussed and further explained by the spectrum shift of the laser pulse. Through the environmental noise suppression, the drift of the free-running f0 is reduced down to less than 3 MHz within an hour. By feedback control on the pump power with a self-made phase-lock loop (PLL) electronics the carrier envelope offset frequency is well phase-locked with a frequency jitter of 85 mHz within an hour. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Prenatal Immune Activation Induces Maturation-Dependent Alterations in the Prefrontal GABAergic Transcriptome

    OpenAIRE

    Richetto, J; Calabrese, F; M.A. RIVA; Meyer, U.

    2014-01-01

    Neuronal dysfunctions in the cortical GABAergic system have been widely documented in neuropsychiatric disorders with prenatal infectious etiologies, including schizophrenia. At least some of these abnormalities may stem from transcriptional impairments in the GABAergic transcriptome. However, the extent to which prenatal exposure to immune challenge can induce long-term alterations in GABAergic gene transcription remains largely elusive. Here, we use an established mouse model of prenatal im...

  18. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  19. Helicobacter pylori infection induced alteration of gene expression in human gastric cells

    OpenAIRE

    Chiou, C.; Chan, C.; Sheu, D; Chen, K; Li, Y; Chan, E

    2001-01-01

    BACKGROUND—Helicobacter pylori, a human pathogen responsible for many digestive disorders, induces complex changes in patterns of gene expression in infected tissues. cDNA expression arrays provide a useful tool for studying these complex phenomena.
AIM—To identify genes that showed altered expression after H pylori infection of human gastric cells compared with uninfected controls.
METHODS—The gastric adenocarcinoma cell line AGS was cocultivated with H pylori. Growth of infected cells was d...

  20. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  1. Vitamin C Attenuates Chronic Chlorpyrifos-induced Alteration of Neurobehavioral Parameters in Wistar Rats

    OpenAIRE

    Suleiman F. Ambali; Joseph O. Ayo

    2012-01-01

    Background: Oxidative stress is one of the molecular mechanisms in chlorpyrifos toxicity. The present study was designed to evaluate the attenuating effect of vitamin C on chlorpyrifos-induced alteration of neurobehavioral performance and the role of muscle acetylchloinesterase (AChE), glycogen and lipoperoxidation in the accomplishment of this task. Materials and Methods: Male rats were randomly assigned into 4 groups with the following regimens: soya oil (S/oil), vitamin C (VC), chlorpyrifo...

  2. Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities

    OpenAIRE

    Carvalho, Cristina; Cardoso, Susana; Correia, Sónia C; Santos, Renato X.; Santos, Maria S.; Baldeiras, Inês; oliveira, catarina r.; Moreira, Paula I.

    2012-01-01

    Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-A...

  3. Phenotypic and Functional Alterations of Dendritic Cells Induced by Human Herpesvirus 6 Infection

    OpenAIRE

    Kakimoto, Miki; Hasegawa, Atsuhiko; Fujita, Shigeru; Yasukawa, Masaki

    2002-01-01

    Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 i...

  4. Modification of mercury-induced biochemical alterations by Triticum Aestivum Linn in rats.

    Science.gov (United States)

    Lakshmi, B V S; Sudhakar, M; Nireesha, G

    2014-01-01

    The present investigation has been undertaken to evaluate role of Wheat grass extract in modifying mercury-induced biochemical alterations in albino rats. Mercuric chloride 5 mg/kg body weight i.p. was given on 11, 13 & 15th day of the experiment. Wheat grass extract (400 mg/kg) and Quercetin (10 mg/kg) were administered 10 days before mercuric chloride administration and continued up to 30 days after mercuric chloride administration. The animals were sacrificed on 1, 15 and 30 days, the activity of serum alkaline and acid phosphatase and the iron, calcium, BUN, creatinine, SGPT, SGOT, total bilirubin, total protein levels were measured. Tissue lipid peroxidation content, glutathione (GSH) level, anti-oxidant enzymes- CAT and GR were measured. Hematological indices were also estimated. Mercury intoxication causes significant increase (P extract pre- and post-treatment ameliorated mercury-induced alterations in terms of biochemical and hematological parameters. Concomitant treatment of Wheatgrass extract with Mercury showed prominent recovery and normal architecture with mild residual degeneration in the tissues. Thus from present investigation, it can be concluded that Wheat grass extract pre- and post-treatment with HgCl2 significantly modulate or modify mercury-induced biochemical alteration in albino rats. PMID:26215012

  5. Investigation of the induced gate noise of nanoscale MOSFETs in the very high frequency region

    Science.gov (United States)

    Jeon, Jongwook; Kim, Yoon; Kang, Myounggon

    2016-06-01

    In this paper, we investigated the induced gate current noise of nanoscale N/PMOS devices. To analyze the induced gate noise, the induced gate current noise source model was analytically derived. By using the proposed model, the induced gate noise source was compared with other noise sources, and its impact on noise parameters was also analyzed in long-channel and nanoscale N/PMOS devices in the very high frequency region (>100 GHz). The results showed that the induced gate noise of sub-40 nm CMOS technology is negligible, even in the design of very high frequency circuits.

  6. Investigation of the induced gate noise of nanoscale MOSFETs in the very high frequency region

    International Nuclear Information System (INIS)

    In this paper, we investigated the induced gate current noise of nanoscale N/PMOS devices. To analyze the induced gate noise, the induced gate current noise source model was analytically derived. By using the proposed model, the induced gate noise source was compared with other noise sources, and its impact on noise parameters was also analyzed in long-channel and nanoscale N/PMOS devices in the very high frequency region (>100 GHz). The results showed that the induced gate noise of sub-40 nm CMOS technology is negligible, even in the design of very high frequency circuits. (paper)

  7. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  8. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    Science.gov (United States)

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-01-01

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition. PMID:27323191

  9. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J.G.P. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Universidade Iguaçu, Campos V, Itaperuna, RJ (Brazil); Faculdade de Minas, Muriaé, MG (Brazil); Vasques, E.R. [Departamento de Gastroenterologia, LIM 37, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Arida, R.M. [Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cavalheiro, E.A. [Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cabral, F.R.; Torres, L.B. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Godoy, C.M.G. [Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Gomes da Silva, S. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Núcleo de Pesquisas Tecnológicas, Programa Integrado em Engenharia Biomédica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil)

    2015-01-13

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  10. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    International Nuclear Information System (INIS)

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode

  11. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    Science.gov (United States)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  12. Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats

    Science.gov (United States)

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung

    2014-01-01

    Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699

  13. Radiation-induced alterations in murine lymphocyte homing patterns. I. Radiolabeling studies

    International Nuclear Information System (INIS)

    In vitro x-irradiation of 51Cr-labeled spleen, lymph node, bone marrow, or thymus cells was found to alter their subsequent in vivo distribution significantly in syngeneic BDF1 mice. Irradiated cells demonstrated an increased distribution to the liver and a significantly lower retention in the lungs. Cells going to the lymph nodes or Peyer's patches showed a significant exposure-dependent decrease in homing following irradiation. Irradiated lymph node cells homed in greater numbers to the spleen and bone marrow, while irradiated cells from other sources showed no preferential distribution to the same tissues. Sampling host tissues at various times after irradiation and injection did not demonstrate any return to normal patterns of distribution. The alterations in lymphocyte homing observed after in vitro irradiation appear to be due to the elimination of a selective population of lymphocytes or membrane alterations of viable cells, and the detection of these homing changes is in turn dependent upon the relative numbers of various lymphoid subpopulations which are obtained from different cell sources. Radiation-induced alterations in the normal homing patterns of lymphoid cells may thus be of considerable importance in the evaluation of subsequent functional assays in recipient animals

  14. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice

    International Nuclear Information System (INIS)

    Previous studies in our laboratory indicate that arsenic alters secretion of growth promoting and inflammatory cytokines in the skin that can regulate the migration and maturation of Langerhans cells (LC) during allergic contact dermatitis. Therefore, we hypothesized that arsenic may modulate hypersensitivity responses to cutaneous sensitizing agents by altering cytokine production, LC migration, and T-cell proliferation. To investigate this hypothesis, we examined the induction and elicitation phases of dermal sensitization. Mice exposed to 50 mg/l arsenic in the drinking water for 4 weeks demonstrated a reduction in lymph node cell (LNC) proliferation and ear swelling following sensitization with 2,4-dinitrofluorobenzene (DNFB), compared to control mice. LC and T-cell populations in the draining lymph nodes of DNFB-sensitized mice were evaluated by fluorescence-activated cell sorting; activated LC were reduced in cervical lymph nodes, suggesting that LC migration may be altered following arsenic exposure. Lymphocytes from arsenic-treated animals sensitized with fluorescein isothiocyanate (FITC) exhibited reduced proliferative responses following T-cell mitogen stimulation in vitro; however, lymphocyte proliferation from nonsensitized, arsenic-treated mice was comparable to controls. Arsenic exposure also reduced the number of thioglycollate-induced peritoneal macrophages and circulating neutrophils. These studies demonstrate that repeated, prolonged exposure to nontoxic concentrations of sodium arsenite alters immune cell populations and results in functional changes in immune responses, specifically attenuation of contact hypersensitivity

  15. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    Science.gov (United States)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  16. PIC Simulations of the Ion Flow Induced by Radio Frequency Waves in Ion Cyclotron Frequency Range

    International Nuclear Information System (INIS)

    Full text: PIC simulations have been conducted to study the nonlinear interactions of plasmas and radio frequency wave in the ion cyclotron frequency range. It is found that in the presence of the mode conversion from an electromagnetic wave into an electrostatic wave (ion Bernstein wave), the ions near the lower hybrid resonance can be heated by nonlinear Landau damping via the parametric decay. As a result, the ion velocity distribution in the poloidal direction becomes asymmetric near the lower hybrid resonance and an ion poloidal flow is thus produced. The flow directions are opposite on both sides of the lower hybrid resonance. The poloidal flow is mainly produced by the nonlinear Reynolds stress and the electromagnetic force of the incident wave in the radial direction rather than poloidal direction predicted by the existing theories. (author)

  17. Protective effect of Labisia pumila on stress-induced behavioral, biochemical, and immunological alterations.

    Science.gov (United States)

    Kour, Kiranjeet; Sharma, Neelam; Chandan, Bal Krishan; Koul, Surrinder; Sangwan, Payare Lal; Bani, Sarang

    2010-10-01

    The aim of the present study was to investigate the antistress potential of LABISIA PUMILA aqueous extract (LPPM/A003) using a battery of tests widely employed in different stressful situations. Pretreatment of experimental animals with LPPM/A003 caused an increase in the swimming endurance and hypoxia time and also showed the recovery of physical stress-induced depletion of neuromuscular coordination and scopolamine induced memory deficit. LPPM/A003 at graded doses reversed the chronic restraint stress (RST), induced depletion of CD4 (+) and CD8 (+) T lymphocytes, NK cell population, and corresponding cytokines expression besides downregulating the stress-induced increase in plasma corticosterone, a major stress hormone. In addition, LPPM/A003 reversed the chronic stress-induced increase in adrenal gland weight, serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and hepatic lipid peroxidation (LP) levels and augmented the RST induced decrease in hepatic glutathione (GSH), thymus and spleen weight. Thus, we conclude that LPPM/A003 has the ability to reverse the alterations produced by various stressful stimuli and therefore restores homeostasis. PMID:20217640

  18. Quantum self-induced transparency in frequency gap media

    OpenAIRE

    John, Sajeev; Rupasov, Valery I.

    1997-01-01

    We study quantum effects of light propagation through an extended absorbing system of two-level atoms placed within a frequency gap medium (FGM). Apart from ordinary solitons and single particle impurity band states, the many-particle spectrum of the system contains massive pairs of confined gap excitations and their bound complexes - gap solitons. In addition, ``composite'' solitons are predicted as bound states of ordinary and gap solitons. Quantum gap and composite solitons propagate witho...

  19. Detection of radioiodine-induced cytogenetic alterations in circulating lymphocytes of thyroid patients

    International Nuclear Information System (INIS)

    Radioiodines are often used for experimental purposes and for diagnosis and therapy in clinical practice. Human population might also be exposed to radioiodines in nuclear accidents. The ionizing energy of radioiodine affects not only the thyroid where it concentrates but also other tissues, especially the lymphocytes during their circulation through and around the gland containing the radioisotopes. Therefore, it seemed to be of interest to carry out investigations concerning the cytogenetic alterations in blood lymphocytes of patients treated with iodine-131. The method of choice was the relatively easily performable micronucleus assay in cytokinesis-blocked cultures of human peripheral lymphocytes. The test was performed on blood samples of 30 patients before the radioisotope treatment and one, two and four days after, one as well as 6 and - in a few cases - 12 weeks later. The amounts of iodine-131 injected were dependent on the clinical practices to reach the therapeutic radiation doses for hyperthyroidism and adenomas and were in the range of 220 and 5180 MBq. it was observed that the micronucleus frequency increased in the treated hyperthyroid patients while in patients with toxic adenomas the radioiodine did not result in an increase or even as compared to the pretreatment values in a few cases decreased values were seen. The results suggest individual differences in radiosensitivity as well as that the frequency of cytogenetic alterations depend on the physiological or pathological conditions of the thyroid. The significance of this observation will be discussed for dose assessments by cytogenetic techniques due to internal radioiodine. (author)

  20. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  1. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    Full Text Available Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1 Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2 Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb. The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS.

  2. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome.

    Science.gov (United States)

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles; Grant, P Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2) Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb). The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS. PMID:23526938

  3. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    Directory of Open Access Journals (Sweden)

    DortePhillip

    2013-12-01

    Full Text Available Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD and stroke. Near infrared spectroscopy (NIRS is a non-invasive optical method to investigate regional changes in oxygenated (oxyHb and deoxygenated hemoglobin (deoxyHb in the outermost layers of the cerebral cortex. In the present study we examined oxyHb low frequency oscillations (LFOs, believed to reflect cortical cerebral autoregulation, in 16 patients with both symptomatic carotid occlusive disease and cerebral hypoperfusion in comparison to healthy controls. Each hemisphere was examined with 2 NIRS channels using a 3 cm source detector distance. Arterial blood pressure (ABP was measured via a finger plethysmograph. Using transfer function analysis ABP-oxyHb phase shift and gain as well as inter-hemispheric phase shift and amplitude ratio were assessed. We found that inter-hemispheric amplitude ratio was significantly altered in hypoperfusion patients compared to healthy controls (P= 0.010, because of relatively lower amplitude on the hypoperfusion side. The inter-hemispheric phase shift showed a trend (P = 0.061 towards increased phase shift in hypoperfusion patients compared to controls. We found no statistical difference between hemispheres in hypoperfusion patients for phase shift or gain values. There were no differences between the hypoperfusion side and controls for phase shift or gain values. These preliminary results suggest an impairment of autoregulation in hypoperfusion patients at the cortical level using NIRS.

  4. 6-Hydroxydopamine-induced glutathione alteration occurs via glutathione enzyme system in primary cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    Ji ZHANG; Jun HU; Jian-hua DING; Hong-hong YAO; Gang HU

    2005-01-01

    Aim: To define the role of enzymes involved in glutathione metabolism in 6-hydroxydopamine (6-OHDA)-induced glutathione alteration in primary cultured astrocytes.Methods: Total glutathione (GSx) levels were determined using the modified enzymatic microtiter plate assay.The mRNA levels ofγ-glutamylcysteine synthetase (γGCS), γ-glutamyltransferase (γGT), glutathione peroxidase (GPx), GR (glutathione reductase), and glutathione transferases (GST) were determined using RT-PCR.γGT activity was determined using γGT assay kits.Results: In primary cultured astrocytes, 6-OHDA induced a significant elevation of cellular GSx levels after treatment for 24 h.However, the GSx levels decreased after 24 h and the values were even lower than the value in the control group without 6-OHDA at 48 h.RT-PCR data showed that the mRNA levels of γGCS, the ratelimiting enzyme of γ-L-glutamyl-L-cysteinylglycine (GSH) synthesis, were increased by 6-OHDA after treatment for 24 h and 48 h; the mRNA levels of GPx, GR, and GST did not alter in 6-OHDA-treated astrocytes after treatment for 24 h and 48 h; and 6-OHDA increased the mRNA levels and the activity of γGT after treatment for 48 h,which induced a decrease in GSx levels, despite the up-regulation of γGCS after exposure to 6-OHDA for 48 h.Conclusion: The change in γGCS correlated with the increase in GSH levels induced by 6-OHDA after treatment for 24 h.GSx levels decreased because of increased γGT mRNA levels and γGT activity induced by 6-OHDA after treatment for 48 h.

  5. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology.

    Science.gov (United States)

    Chitwood, Daniel H; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M; Townsley, Brad T; Ichihashi, Yasunori; Martinez, Ciera C; Zumstein, Kristina; Harada, John J; Maloof, Julin N; Sinha, Neelima R

    2015-11-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  6. Inula crithmoides extract protects against ochratoxin A-induced oxidative stress, clastogenic and mutagenic alterations in male rats.

    Science.gov (United States)

    Abdel-Wahhab, Mosaad A; Abdel-Azim, Sekena H; El-Nekeety, Aziza A

    2008-09-15

    Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is unequivocal evidence of renal carcinogenicity of OTA in male rats, although the mechanism of action is unknown. Several reports suggest that exposure to OTA resulted in oxidative stress, genotoxicity and DNA damage. Therefore, the aim of the current study was to evaluate the protective effects of aqueous extract of Inula crithmoides growing in Egypt against OTA-induced mutagenicity and oxidative stress. Forty male Sprague-Dawley rats were divided into four groups and treated for 15 days as follows: control group and the groups treated with OTA (3 mg/kg b.w), I. crithmoides extract alone (370 mg/kg b.w) and OTA+I. crithmoides extract. Blood and tissue samples were collected for different biochemical analyses. Bone marrow micronucleus test and blood for random amplified polymorphism DNA-PCR (RAPD-PCR) method were performed to assess the antigenotoxic effect of the extract. The results indicated that OTA induced toxicological effects typical to those reported in the literature and increased the frequencies of MnPCEs in bone marrow. The RAPD-PCR analysis revealed the appearance of new bands in DNA resulting from genetic alteration. The extract alone was safe and succeeded in counteracting the oxidative stress and protect against the cytotoxicity resulting from OTA. PMID:18694774

  7. Sex-related differences in cadmium-induced alteration of drug action in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, R.C.; Pence, D.H.; Prosser, T.D.; Miya, T.S.

    1976-01-01

    Three days after pretreatment of rats of both sexes with cadmium (2 mg/kg, i.p.), the duration of hypnosis induced by hexobarbital (75 mg/kg, i.p.) was potentiated in males but not females. Likewise, similar treatment with cadmium leads to significant inhibition of the metabolism of hexobarbital by hepatic microsomal enzymes obtained from male but not female animals. These data suggest that there is a sex-related difference in the ability of cadmium to alter drug action in rats.

  8. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    Science.gov (United States)

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  9. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress.

    Science.gov (United States)

    Uetaki, Megumi; Tabata, Sho; Nakasuka, Fumie; Soga, Tomoyoshi; Tomita, Masaru

    2015-01-01

    Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate (ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death. PMID:26350063

  10. Sodium valproate induced increased frequency of micturition and enuresis

    Directory of Open Access Journals (Sweden)

    Devesh D Gosavi

    2013-01-01

    Full Text Available Sodium valproate is a commonly used antiepileptic drug (AED for control of a broad range of seizures. Adverse drug reactions (ADR due to sodium valproate range from sedation to nausea, vomiting, weight gain, idiosyncratic adverse effects like hepatotoxicity and life threatening conditions like pancreatitis. We present a case of sodium valproate induced enuresis in child. This ADR of valproate is an underreported ADR and requires special attention of pediatricians as it can interfere with the further treatment of the disease.

  11. [Effects of trimetazidine on altered functions of rat kidney induced by cyclosporine].

    Science.gov (United States)

    Simon, N; Morin, C; Bruguerolle, B; Tillement, J P

    2001-01-01

    A mitochondrial dysfunction has been suggested to explain chronic renal toxicity observed in ciclosporine A therapy. Our study has investigated whether trimetazidine allows inhibition of mitochondrial alteration induced by ciclosporine A. Oxidative phosphorylation was measured by polarography, calcium fluxes by a specific calcium electrode and the mitochondrial swelling by determination of the optical density at 520 nm, using a spectrophotometer. The ciclosporine A effect on the respiratory control was fully inhibited by trimetazidine (EC50 5.10 x 10(-7) M; Emax 11 per cent). Trimetazidine also inhibited the ciclosporine effects on calcium fluxes, i.e. calcium accumulation into the matrix and delay of efflux. Trimetazidine allows a decrease of mitochondrial dysfunction induced by ciclosporine A. PMID:11806297

  12. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    International Nuclear Information System (INIS)

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  13. Evaluation of chromosomal alteration in electrical workers occupationally exposed to low frequency of electro magnetic field (EMFs) in Coimbatore population, India.

    Science.gov (United States)

    Balamuralikrishnan, Balasubramanian; Balachandar, Vellingiri; Kumar, Shanmugam Suresh; Stalin, Nattan; Varsha, Prakash; Devi, Subramaniam Mohana; Arun, Meyyazhagan; Manikantan, Pappuswamy; Venkatesan, Chinnakulandhai; Sasikala, Keshavarao; Dharwadkar, Shahnaz N

    2012-01-01

    Extremely low frequency electro magnetic fields (EMFs) have been classified as possibly carcinogenic to humans by the International Agency for Research on Cancer. An increased number of chromosomal alterations in peripheral lymphocytes are correlated with elevated incidence of cancer. The aim of the present study was to assess occupationally induced chromosomal damage in EMF workers exposed to low levels of radiation. We used conventional metaphase chromosome aberration (CA) analysis and the micronucleus (MN) assay as biological indicators of non ionizing radiation exposure. In the present study totally 70 subjects were selected including 50 exposed and 20 controls. Informed written consent was obtained from all participants and the study was performed in accordance with the Declaration of Helsinki and the approval of the local ethical committee. A higher degree of CA and MN was observed in exposed subjects compared to controls, the frequency of CA being significantly enhanced with long years of exposure (P<0.05). Moreover increase in CA and MN with age was noted in both exposed subjects and controls, but was significantly greater in the former. The results of this study demonstrated that a significant induction of cytogenetic damage in peripheral lymphocytes of workers occupationally exposed to EMFs in electric transformer and distribution stations. In conclusion, our findings suggest that EMFs possess genotoxic capability, as measured by CA and MN assays; CA analysis appeared more sensitive than other cytogenetic end-points. It can be concluded that chronic occupational exposure to EMFs may lead to an increased risk of genetic damage among electrical workers. PMID:22938490

  14. Efficacy of Carnosine in Modulating Radiation-Induced Oxidative Damage and Neurotransmitter Alterations in Rat Brain

    International Nuclear Information System (INIS)

    The present study was designed to investigate the role of carnosine (β-alanyl-L-histidine) in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to gamma radiation. Male albino rats were whole body exposed to a single dose of γ- rays (5 Gy). Carnosine (50 mg/Kg/day) was administered via gavages as follows: a) during 28 successive days, b) during 14 successive days before whole body gamma irradiation and administered distilled water for 14 days after irradiation, c) during 14 successive days before whole body gamma irradiation and during 14 days after irradiation with carnosine. The animals were sacrificed at 1, 7 and 14 days post irradiation. (3 hours after the last dose of carnosine). The results revealed that exposure to γ- rays, (5 Gy(, resulted in significant increases of the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyls (CO), and advanced oxidation protein products (AOPP), associated with significant decreases of superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) content which indicate oxidative stress. Gamma rays also, induced significant decrease of the serotonin (5-HT), dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents as well as significant increase of 5-hydroxy-indole-acetic-acid (5-HIAA) level and monoamine oxidase (MAO) activity which indicated alterations in the metabolism of monoamines. Carnosine has significantly attenuated oxidative stress, and monoamine alterations in the cerebral hemispheres of irradiated rats. Carnosine might preserve the integrity of brain functions.

  15. Protective role of Tinospora cordifolia extract against radiation-induced qualitative, quantitative and biochemical alterations in testes

    International Nuclear Information System (INIS)

    In today's changing global scenario, ionizing radiation is considered as most potent cause of oxidative stress mediated by free radical flux which induces severe damage at various hierarchical levels in the organization in the living organisms. Testis is a highly prolific tissue with fast cellular renewal and poor antioxidant defense; therefore it becomes an easy target for the radiation-induced free radicals that have long been suggested as major cause of male infertility. Chemical radioprotection is an important strategy to countermeasure the deleterious effects of radiation. Several Indian medicinal plants are rich source of antioxidants and these have been used for the treatment of ailments. Tinospora cordifolia, commonly known as amrita, is one of the plants that have several pharmacological and therapeutic properties. Therefore, the present study was performed to evaluate the deleterious effects of semi lethal dose of gamma radiation on testicular tissue and their possible inhibition by Tinospora cordifolia root extract (TCE). For this purpose, healthy Swiss albino male mice were selected from an inbred colony and divided into four groups. Group I (normal) was administered double distilled water (DDW) volume equal to TCE (75 mg/kg.b.wt/animal) by oral gavage. Group II was orally supplemented TCE as 75 mg/kg. b.wt once daily for 5 consecutive days. Group III (irradiated control) received DDW orally equivalent to TCE for 5 days then exposed to 5 Gy gamma radiation. Group IV (experimental) was administered TCE as in Group II and exposed to radiation (as in Group III). Irradiation resulted into significant decrease in the frequency of different spermatogenic cell counts along with severe histo-pathological lesions up to 7th day of irradiation in testes of irradiated control animals, thereafter, recovery followed towards the normal architecture. TCE pretreatment effectively prevented radiation induced such alterations in cellular counts and testicular injuries by

  16. The effects of sex, age and cigarette smoking on micronucleus and degenerative nuclear alteration frequencies in human buccal cells of healthy Bosnian subjects

    Directory of Open Access Journals (Sweden)

    Hilada Nefić

    2013-12-01

    Full Text Available Introduction: This study was performed to establish a baseline value of micronucleus frequency in buccal cells and to estimate the impact of the most common factors (sex and age, and smoking on micronucleus and degenerative nuclear alteration frequencies in the sample of healthy Bosnian subjects.Methods: The Buccal Micronucleus Cytome (BMCyt assay, based on scoring not only micronucleus frequency but also other genome damage markers, dead or degenerated cells, provides a measure of cytotoxic and genotoxic effects.Results: Our results showed the baseline buccal micronucleus frequency was 0.135% or 1.35‰, as well as positive correlations between micronucleus frequencies and formations of degenerative nuclear alterations (nuclear buds, karyolytic and karyorrhectic cells. The number of micronuclei in buccal cells was significantly higher in females than in males. There was positive association between the age and frequency of analysed cytogenetic biomarkers. Buccal cell micronuclei and degenerative nuclear alternations were more frequent among cigarette smokers than non-smokers and significantly higher in female smokers than in male smokers. Cytogenetic damages showed significantly positive correlation between intensity of smoking and the number of nuclear alterations. The years of smoking had a significant influence not only on the number of nuclear alterations but also in micronuclei and nuclear buds in buccal cells.Conclusions: The sex influences the number of micronuclei in human buccal cells. The ageing increased the number of micronuclei and other biomarkers of DNA damage. The cigarette smoking significantly increases the frequencies of micronuclei and nuclear buds, pyknotic, karyolytic and karyorrhectic cells.

  17. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice.

    Science.gov (United States)

    Kistler, Martin; Muntean, Andreea; Szymczak, Wilfried; Rink, Nadine; Fuchs, Helmut; Gailus-Durner, Valerie; Wurst, Wolfgang; Hoeschen, Christoph; Klingenspor, Martin; Hrabě de Angelis, Martin; Rozman, Jan

    2016-03-01

    The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis. PMID:26860833

  18. Glycophenotypic alterations induced by Pteridium aquilinum in mice gastric mucosa: synergistic effect with Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    Full Text Available The bracken fern Pteridium aquilinum is a plant known to be carcinogenic to animals. Epidemiological studies have shown an association between bracken fern exposure and gastric cancer development in humans. The biological effects of exposure to this plant within the gastric carcinogenesis process are not fully understood. In the present work, effects in the gastric mucosa of mice treated with Pteridium aquilinum were evaluated, as well as molecular mechanisms underlying the synergistic role with Helicobacter pylori infection. Our results showed that exposure to Pteridium aquilinum induces histomorphological modifications including increased expression of acidic glycoconjugates in the gastric mucosa. The transcriptome analysis of gastric mucosa showed that upon exposure to Pteridium aquilinum several glycosyltransferase genes were differently expressed, including Galntl4, C1galt1 and St3gal2, that are mainly involved in the biosynthesis of simple mucin-type carbohydrate antigens. Concomitant treatment with Pteridium aquilinum and infection with Helicobacter pylori also resulted in differently expressed glycosyltransferase genes underlying the biosynthesis of terminal sialylated Lewis antigens, including Sialyl-Lewis(x. These results disclose the molecular basis for the altered pattern of glycan structures observed in the mice gastric mucosa. The gene transcription alterations and the induced glycophenotypic changes observed in the gastric mucosa contribute for the understanding of the molecular mechanisms underlying the role of Pteridium aquilinum in the gastric carcinogenesis process.

  19. Oilseed cultivars developed from induced mutations and mutations altering fatty acid composition

    International Nuclear Information System (INIS)

    One hundred and sixty-three cultivars of annual oilseed crops, developed using induced mutations, have been officially approved and released for cultivation in 26 countries. The maximum number of cultivars have been released in soybean (58), followed by groundnut (44), sesame (16), linseed (15), rapeseed (14), Indian mustard (8), castorbean (4), white mustard (3) and sunflower (1). The majority (118 of 163) of the cultivars have been developed as direct mutants and 45 of 163 by using the induced mutants in a crossing programme. While in soybean 53 out of 58 cultivars were selected as direct mutants, in groundnut 22 from 44 were developed after hybridization. Eighty-three cultivars were developed directly by exposing seeds to gamma or X-rays. Attempts have been made to infer the successful dose range, defined as the range which led to the development, registration and release of the maximum number of mutant cultivars for gamma and X-rays. The successful dose ranges in Gy for the main oilseed crops are: soybean 100-200, groundnut 150-250, rapeseed 600-800, Indian mustard 700 and sesame 100-200. The main characteristics of the new cultivars, besides higher yield, are altered plant type, early flowering and maturity and oil content. Mutants altering fatty acid composition have been isolated in soybean, rapeseed, sunflower, linseed and minor oil crops. New cultivars having altered fatty acid composition have been released in rapeseed, sunflower and linseed. The latter, previously grown for non-edible oil, has been converted to a new edible oil crop. (author)

  20. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  1. Chlorpyrifos-induced Histopathological Alterations in Duttaphrynus melanostictus (Schneider 1799 Tadpoles: Evidence from Empirical Trials

    Directory of Open Access Journals (Sweden)

    M. G. D. K. Bandara

    2012-10-01

    Full Text Available This paper reports the histopathological responses of the gill, liver and tail muscle tissues in tadpoles of the Asian Common Toad Duttaphrynus melanostictus (Schneider, 1799 exposed to chlorpyrifos a common organophosphorus pesticide. Tadpoles of Gosner stages 24-26 were continuously exposed to low, mid and high (500, 1000 and 1500 µgl–1 concentrations of chlorpyrifos for two weeks. Histological alterations in the tissues of the surviving larvae were microscopically examined both at the end of the exposure period and after a week following the final exposure. Several histological alterations were noted in the gills, liver and tail muscles of the larvae exposed to 1500 µgl–1 of chlorpyrifos. The gills of exposed larvae showed architectural distortion resulting from reduced primary and secondary gill lamellae and blood vessels, and alterations in the gill epithelium. In the liver sinusoidal congestion and dilation, cytoplasmic vacuolation and changes in hepatocytes such as hyperchromatic nuclei and nuclear fragmentation were observed.  The tail muscle tissue suffered from severe atrophy and myotomal disintegration. Although histological alterations in the gill and liver tissues were noted only at the high concentration, changes in the muscle tissue i.e. muscle degeneration and atrophy, were apparent at both low and mid concentrations. The degree of damage in surviving larvae in a week following the final exposure was lower than that observed during the exposure, probably indicating recovery or resistance. The findings of the present study emphasize the need to investigate possible sublethal damage induced by pesticides in amphibians inhabiting agricultural habitats.

  2. Role of Rosemary leaves extract against radiation-induced hematological and biochemical alterations in mice

    Directory of Open Access Journals (Sweden)

    Acharya Garima S.

    2008-01-01

    Full Text Available The present paper is a study of the modulatory effect of Rosmarinus officinalis leaves extract on radiation-induced hematological and biochemical changes in Swiss albino mice. The dose reduction factor for the Rosemary extract against gamma rays was calculated 1.53 from LD50/30 values. The Rosemary extract was administered orally for 5 consecutive days prior to radiation exposure. The hematological and biochemical parameters were assessed from day 1 to 30 post-irradiation intervals. The total erythrocyte count, total leucocytes count, hemoglobin, and hematocrit values in the experimental group were found to be elevated as compared to the control group of mice. Furthermore, the Rosemary extract treatment enhanced reduced glutathione content in the liver and blood against radiation-induced depletion. Treatment with the plant extract brought a significant fall in the lipid peroxidation level, suggesting rosemary's role in protection against radiation-induced membrane and cellular damage. The results from the present study suggest a radio-protective effect of the Rosemary extract against radiation-induced hematological and biochemical alterations in mice.

  3. Radio frequency glow discharge-induced acidification of fluoropolymers.

    Science.gov (United States)

    Krawczyk, Benjamin M; Baltrusaitis, Jonas; Yoder, Colin M; Vargo, Terrence G; Bowden, Ned B; Kader, Khalid N

    2011-12-01

    Fluoropolymer surfaces are unique in view of the fact that they are quite inert, have low surface energies, and possess high thermal stabilities. Attempts to modify fluoropolymer surfaces have met with difficulties in that it is difficult to control the modification to maintain bulk characteristics of the polymer. In a previously described method, the replacement of a small fraction of surface fluorine by acid groups through radio frequency glow discharge created a surface with unexpected reactivity allowing for attachment of proteins in their active states. The present study demonstrates that 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) reacts with the acid groups on fluoropolymer surfaces in a novel reaction not previously described. This reaction yields an excellent leaving group in which a primary amine on proteins can substitute to form a covalent bond between a protein and these surfaces. In an earlier study, we demonstrated that collagen IV could be deposited on a modified PTFE surface using EDC as a linker. Once collagen IV is attached to the surface, it assembles to form a functional stratum resembling collagen IV in native basement membrane. In this study, we show data suggesting that the fluorine to carbon ratio determines the acidity of the fluoropolymer surfaces and how well collagen IV attaches to and assembles on four different fluoropolymer surfaces. PMID:21887736

  4. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  5. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  6. Temporal Dynamics of the Default Mode Network Characterize Meditation-Induced Alterations in Consciousness

    Science.gov (United States)

    Panda, Rajanikant; Bharath, Rose D.; Upadhyay, Neeraj; Mangalore, Sandhya; Chennu, Srivas; Rao, Shobini L.

    2016-01-01

    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network. PMID:27499738

  7. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver.

    Science.gov (United States)

    Knockaert, Laetitia; Berson, Alain; Ribault, Catherine; Prost, Pierre-Emmanuel; Fautrel, Alain; Pajaud, Julie; Lepage, Sylvie; Lucas-Clerc, Catherine; Bégué, Jean-Marc; Fromenty, Bernard; Robin, Marie-Anne

    2012-03-01

    Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.38 g/kg) and parameters related to liver damage, lipid peroxidation, stress/defense and mitochondria were studied 3 h later. Some CCl(4)-intoxicated mice were also pretreated with the cytochrome P450 2E1 inhibitor diethyldithiocarbamate or the antioxidants Trolox C and dehydroepiandrosterone. CCl(4) induced a moderate elevation of aminotransferases, swelling of centrilobular hepatocytes, lipid peroxidation, reduction of cytochrome P4502E1 mRNA levels and a massive increase in mRNA expression of heme oxygenase-1 and heat shock protein 70. Moreover, CCl(4) intoxication induced a severe decrease of mitochondrial respiratory chain complex IV activity, mitochondrial DNA depletion and damage as well as ultrastructural alterations. Whereas DDTC totally or partially prevented all these hepatic toxic events, both antioxidants protected only against liver lipid peroxidation and mitochondrial damage. Taken together, our results suggest that lipid peroxidation is primarily implicated in CCl(4)-induced early mitochondrial injury. However, lipid peroxidation-independent mechanisms seem to be involved in CCl(4)-induced early hepatocyte swelling and changes in expression of stress/defense-related genes. Antioxidant therapy may not be an efficient strategy to block early liver damage after CCl(4) intoxication. PMID:22157718

  8. Alteration of the digestive motility linked with radiation-induced inflammatory processes in rats

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation, whether accidental or for medical reasons, may lead to gastro-intestinal injury, characterized by nausea, vomiting, diarrhea and abdominal cramps. The aetiology of radiation-induced diarrhea remains to date unclear. In this study, we have investigated the acute effects of a 10 Gy abdominal irradiation on rat digestive functions. The objective of the first study was to evaluate the role of sensory afferent neurons, capsaicin-sensitive, on morphological changes and the inflammatory response following exposure. Three days after irradiation, we observed an inflammatory response characterized by neutrophils infiltration and mast cells de-granulation. No effect of capsaicin pre-treatment was seen on these parameters. However, neutrophils infiltration was increased as early as one day after irradiation in capsaicin-treated rats. No difference in severity of diarrhea was observed after denervation nor in morphological changes. These data demonstrate that abdominal irradiation results in diarrhea concomitant with an inflammatory response, and that sensory innervation does not play a major protective role. The objective of the rest of the work was in the first instance to characterize radiation-induced alterations of intestinal and colonic motility leading to diarrhea and secondly to evaluate the role of serotonin in such disorders. Perturbations in intestinal (MMC) and colonic (LSB) motor profiles were observed from the first day onwards. Migrating motor complexes (MMC) were completely disrupted at three days at the same time as the onset of diarrhea. In addition to inhibition of LSB, colonic fluid absorptive capacity was decreased and serotonin colonic tissue levels were increased three days after irradiation. Radiation-induced diarrhea was reduced by treatment with an antagonist of 5-HT3 receptors, granisetron, as were alterations of colonic motility and serotonin tissue levels. However, this treatment did not significantly ameliorate fluid

  9. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P +K+-ATPase, Mg2+-ATPase and Ca2+-ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  10. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement.

    Science.gov (United States)

    Anderson, S M; Pierce, R C

    2005-06-01

    The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine. PMID:15922019

  11. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  12. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  13. Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats.

    Science.gov (United States)

    Mikuska, Livia; Vrabcova, Michaela; Tillinger, Andrej; Balaz, Miroslav; Ukropec, Jozef; Mravec, Boris

    2016-06-01

    We have previously described the development of substantial, but reversible obesity in Wistar rats fed with palatable liquid nutrition (Fresubin). In this study, we investigated changes in serum hormone levels, glycemia, fat mass, adipocyte size, and gene expression of adipokines and inflammatory markers in adipose tissue of Wistar rats fed by Fresubin (i) for 5 months, (ii) up to 90 days of age, or (iii) after 90 days of age to characterize metabolic alterations and their reversibility in rats fed with Fresubin. An intra-peritoneal glucose tolerance test was also performed to determine levels of serum leptin, adiponectin, insulin, and C-peptide in 2- and 4-month-old animals. In addition, mesenteric and epididymal adipose tissue weight, adipocyte diameter, and gene expression of pro- and anti-inflammatory adipokines and other markers were determined at the end of the study. Chronic Fresubin intake significantly increased adipocyte diameter, reduced glucose tolerance, and increased serum leptin, adiponectin, insulin, and C-peptide levels. Moreover, gene expression of leptin, adiponectin, CD68, and nuclear factor kappa B was significantly increased in mesenteric adipose tissue of Fresubin fed rats. Monocyte chemotactic protein 1 messenger RNA (mRNA) levels increased in mesenteric adipose tissue only in the group fed Fresubin during the entire experiment. In epididymal adipose tissue, fatty acid binding protein 4 mRNA levels were significantly increased in rats fed by Fresubin during adulthood. In conclusion, chronic Fresubin intake induced complex metabolic alterations in Wistar rats characteristic of metabolic syndrome. However, transition of rats from Fresubin to standard diet reversed these alterations. PMID:26939586

  14. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    Science.gov (United States)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  15. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    Science.gov (United States)

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  16. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    Science.gov (United States)

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC. PMID:25983264

  17. Effects of Chemotherapy-Induced Alterations in Cell Mechanical Properties on Cancer Metastasis

    Science.gov (United States)

    Prathivadhi, Sruti; Ekpenyong, Andrew; Nichols, Michael; Taylor, Carolyn; Ning, Jianhao

    Biological cells can modulate their mechanical properties to suit their functions and in response to changes in their environment. Thus, mechanical phenotyping of cells has been employed for tracking stem cell differentiation, bacterial infection, cell death, etc. Malignant transformation of cells also involves changes in mechanical properties. However, the extent to which mechanical properties of cancer cells contribute to metastasis is not well understood. Yet, more than 90% of all cancer deaths are directly related to metastasis. Transit of cells through the microcirculation is one of the key features of metastasis. We hypothesize that cancer treatment regimens do inadvertently alter cell mechanical properties in ways that might promote cancer metastasis. We use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that cancer cells treated with chemotherapeutic drugs such as daunorubicin, become more deformable at short timescales (0.1 s) and transit faster through the device. Our results are first steps in evaluating the pro- or anti-metastatic effects of chemotherapeutic drugs based on their induced alterations in cell mechanical properties.

  18. Haemato-biochemical alterations induced by lead acetate toxicity in wistar rats

    Directory of Open Access Journals (Sweden)

    S. G. Suradkar

    Full Text Available An experiment was conducted to study the haemato-biochemical alterations induced by lead acetate toxicity in 48 Wistar rats of either sex, divided uniformly into four different groups. The rats of group I received only deionised water as control while, group II, III and IV were given lead acetate @ 1 PPM, 100 PPM and 1000 PPM, in drinking deionised water respectively for 28 days. In group III and IV dose dependant significant (P<0.05 reductions in TEC, Hb, PCV and TLC were observed. No significant change was observed in neutrophil, eosinophil, basophil and monocyte count in any treatment groups, whereas the lymphocyte count decreased significantly (P<0.05 in group III and IV. A dose dependant significant (P<0.05 increase in AST, ALP, AKP, GGT, BUN and creatinine was experiential while TP and albumin levels were decreased in group III and IV. [Vet World 2009; 2(11.000: 429-431

  19. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.

    Directory of Open Access Journals (Sweden)

    Scott T Kelley

    Full Text Available Women with polycystic ovary syndrome (PCOS have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet.

  20. Antagonist of prostaglandin E2 receptor 4 induces metabolic alterations in liver of mice.

    Science.gov (United States)

    Li, Ning; Zhang, Limin; An, Yanpeng; Zhang, Lulu; Song, Yipeng; Wang, Yulan; Tang, Huiru

    2015-03-01

    Prostaglandin E2 receptor 4 (EP4) is one of the receptors for prostaglandin E2 and plays important roles in various biological functions. EP4 antagonists have been used as anti-inflammatory drugs. To investigate the effects of an EP4 antagonist (L-161982) on the endogenous metabolism in a holistic manner, we employed a mouse model, and obtained metabolic and transcriptomic profiles of multiple biological matrixes, including serum, liver, and urine of mice with and without EP4 antagonist (L-161982) exposure. We found that this EP4 antagonist caused significant changes in fatty acid metabolism, choline metabolism, and nucleotide metabolism. EP4 antagonist exposure also induced oxidative stress to mice. Our research is the first of its kind to report information on the alteration of metabolism associated with an EP4 antagonist. This information could further our understanding of current and new biological functions of EP4. PMID:25669961

  1. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Kelley, Scott T; Skarra, Danalea V; Rivera, Alissa J; Thackray, Varykina G

    2016-01-01

    Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet. PMID:26731268

  2. Modulation of radiation induced alteration in the antioxidant status of mice by naringin

    International Nuclear Information System (INIS)

    The alteration of antioxidant status and lipid peroxidation by naringin, a citrus flavoglycoside, was investigated in Swiss albino mice treated with 2 mg/kg b. wt. naringin before exposure to 0.5, 1, 2, 3, and 4 Gy gamma radiation. Lipid peroxidation, glutathione, glutathione peroxidase, catalase and superoxide dismutase were determined in the liver and small intestine of mice treated or not with naringin at 0.5, 1, 2, 4 and 8 h post-irradiation. Whole-body irradiation of mice caused a dose dependent elevation in the lipid peroxidation while a dose dependent depletion was observed for glutathione, glutathione peroxidase, superoxide dismutase and catalase in both liver as well as small intestine. The study demonstrates that naringin protects mouse liver and intestine against the radiation-induced damage by elevating the antioxidant status and reducing the lipid peroxidation

  3. Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements

    Science.gov (United States)

    Bandopadhyay, Aditya; Chakraborty, Suman

    2012-05-01

    We investigate a dynamical interplay between interfacial electrokinetics and a combined dissipative and elastic behavior of flow through narrow confinements, in analogy with spatiotemporal hydrodynamics of porous media. In particular, we investigate the effects of streaming potential on the pertinent dynamic responses, by choosing a Maxwell fluid model for representing the consequent electro-hydrodynamic characteristics. We transform the pertinent governing equation to the frequency domain, so that a dynamic generalization of Darcy's law in the presence of streaming potential effects can be effectively realized. We show that the frequencies corresponding to local maxima in the dynamic permeability also correspond to local maxima in the induced streaming potential. We also bring out the effects of Stern layer conductivity on the dynamic permeability. Our analytical estimates do reveal that serious overestimations in the commonly portrayed notion of massive amplifications of dynamic permeability at resonating frequencies may be possible, if interactions between spontaneous electrochemical interfacial phenomena and pulsating pressure-gradient-driven viscoelastic transport are trivially ignored.

  4. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Tetsuo Nakajima

    Full Text Available Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu was administered daily to female mice (C3H/He for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation.

  5. Magnetic Field Is the Dominant Factor to Induce the Response of Streptomyces avermitilis in Altered Gravity Simulated by Diamagnetic Levitation

    OpenAIRE

    Mei Liu; Hong Gao; Peng Shang; Xianlong Zhou; Elizabeth Ashforth; Ying Zhuo; Difei Chen; Biao Ren; Zhiheng Liu; Lixin Zhang

    2011-01-01

    BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production ...

  6. Baclofen alters gustatory discrimination capabilities and induces a conditioned taste aversion (CTA

    Directory of Open Access Journals (Sweden)

    Wilson Gina N

    2011-12-01

    Full Text Available Abstract Background Studies intending to measure drug-induced changes in learning and memory are challenged to parse out the effects of drugs on sensory, motor, and associative systems in the brain. In the context of conditioned taste aversion (CTA, drugs that alter the sensorium of subjects and affect their ability to taste and/or feel malaise may limit the ability of investigators to make conclusions about associative effects of these substances. Since the GABAergic system is implicated in inhibition, the authors were hopeful to use the GABA agonist, baclofen (BAC, to enhance extinction of a CTA, but first a preliminary evaluation of BAC's peripheral effects on animals' sensorium had to be completed due to a lack of published literature in this area. Findings Our first experiment aimed to evaluate the extent to which the GABAB agonist, BAC, altered the ability of rats to differentiate between 0.3% and 0.6% saccharin (SAC in a two bottle preference test. Here we report that 2 or 3 mg/kg (i.p. BAC, but not 1 mg/kg BAC, impaired animals' gustatory discrimination abilities in this task. Furthermore, when SAC consumption was preceded by 2 or 3 mg/kg (i.p. BAC, rats depressed their subsequent SAC drinking. A second experiment evaluated if the suppression of SAC and water drinking (revealed in Experiment 1 was mediated by amnesiac effects of BAC or whether BAC possessed US properties in the context of the CTA paradigm. The time necessary to reach an asymptotic level of CTA extinction was not significantly different in those animals that received the 3 mg/kg dose of BAC compared to more conventionally SAC + lithium chloride (LiCl, 81 mg/kg conditioned animals. Conclusions Our findings were not consistent with a simple amnesia-of-neophobia explanation. Instead, results indicated that 2 and 3 mg/kg (i.p. BAC were capable of inducing a CTA, which was extinguishable via repeated presentations of SAC only. Our data indicate that, depending on the dose, BAC

  7. Alterations in keratins and associated proteins during 4- Nitroquinoline-1-oxide induced rat oral carcinogenesis

    Directory of Open Access Journals (Sweden)

    Deepak Kanojia

    2012-01-01

    Full Text Available Background: Oral squamous cell carcinoma (OSCC is the sixth largest group of malignancies globally and the single largest group of malignancies in the Indian subcontinent. Despite the advances in treatment and therapeutic modalities the five year survival rate of OSCC has not changed in the last few decades, and remains less than 40%. Several studies have focused on defining molecular markers that can either detect cancer at an early stage or can predict patient′s outcome. However, such markers are still undefined. Keratins (K are epithelia predominant intermediate filament proteins which are expressed in a differentiation dependent and site specific manner. Keratins are being used as biomarkers in different epithelial disorders including cancer. They are associated with desmoplakin and α6β4 integrin which are components of desmosomes and hemidesmosomes respectively. Materials and Methods: 4-Nitroquinoline 1-Oxide (4NQO was used as a carcinogen for the development of various stages of oral carcinogenesis in rat lingual mucosa. Two-Dimentional gel electrophoresis was performed for the separation of Keratins followed by western blotting for their specific identification. Western blotting and RT PCR was carried out for desmoplakin and α6β4 integrin respectively to understand their levels. Immunohistochemical analysis was carried out to further study the localization of desmoplakin and α6 integrin. Results: In this study we have analysed the alterations in Keratins and associated proteins during sequential stages of 4NQO induced rat oral carcinogenesis. Our results showed that the alterations primarily begin after the dysplastic changes in the lingual epithelium like the elevation of Keratins 5/6a, ectopic expression of Keratin 8, increase in suprabasal expression of α6 integrin and increase in desmoplakin levels. Most of these alterations persisted till the development of SCC except desmoplakin, the levels of which were downregulated in

  8. Prenatal stress induces alterations in cerebellar nitric oxide that are correlated with deficits in spatial memory in rat's offspring.

    Science.gov (United States)

    Maur, Damián G; Romero, Carolina B; Burdet, Berenice; Palumbo, María L; Zorrilla-Zubilete, María A

    2012-12-01

    Prenatal stress (PS) has been linked to abnormal cognitive, behavioral and psychosocial outcomes in both animals and humans. Since PS has been shown to induce a cerebellar cytoarchitectural disarrangement and cerebellar abnormalities that have been linked to an impairment of behavioral functions, the aim of the present work was to investigate whether the exposure to PS in a period in which the cerebellum is still immature can induce behavioral deficits in the adult and whether this alterations are correlated with changes in nitric oxide (NO) and cellular oxidative mechanisms in offspring's cerebellum. Our results show impairments in spatial memory and territory discrimination in PS adult rats. PS offspring also displayed alterations in cerebellar nitric oxide synthase (NOS) expression and activity. Moreover, a correlation between spatial memory deficits and the increase in NOS activity was found. The results found here may point to a role of cerebellar NO in the behavioral alterations induced by stress during early development stages. PMID:23022609

  9. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    OpenAIRE

    van Rijn Clementina M; van Heck Casper H; van den Broeke Emanuel N; Wilder-Smith Oliver HG

    2011-01-01

    Abstract Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG). To this end we measured evoked potentials in response to ...

  10. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    OpenAIRE

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG). To this end we measured evoked potentials in response to noxious e...

  11. Stress-induced altered cholinergic-glutamatergic interactions in the mouse hippocampus.

    Science.gov (United States)

    Pavlovsky, Lev; Bitan, Yifat; Shalev, Hadar; Serlin, Yonatan; Friedman, Alon

    2012-09-01

    Psychological stress may lead to long-lasting brain dysfunction, specifically altered emotional and cognitive capabilities. Previous studies have demonstrated persistent changes in the expression of key cholinergic genes in the neocortex and hippocampus following stress with muscarinic receptor-mediated enhanced excitability. In the present study we examined cholinergic-mediated glutamatergic transmission in the hippocampus of mice after exposure to stress and its potential role in synaptic plasticity and altered behavior. Adult male mice were tested one month after repeated forced swimming test. Non-treated age-matched animals served as controls. Electrophysiological recordings were performed in the acute in-vitro slice preparation. CA1 pyramidal neurons were recorded using whole cell patch configuration. Extracellular recordings were done in response to Shaffer collaterals (SC) or stratum orien (SO) stimulation. Animal behavior in response to inhibition of acetylcholinesterase (AChE) was tested in open field paradigms. In whole cell patch recordings the frequency of excitatory post-synaptic currents (EPSCs) was significantly increased in response to muscarinic activation in stress-exposed animals. This enhanced cholinergic-modulated excitatory transmission is associated with facilitation of long-term potentiation (LTP) in response to tetanic stimulation at the SO but not at the SC. Stress-related behavioral modulation via central cholinergic pathways was enhanced by the central AChE inhibitor, physostigmine, thus further supporting the notion that stress is associated with long lasting hypersensitivity to acetylcholine. Our results revealed a pathway-specific enhancement of cholinergic-dependent glutamatergic transmission in the hippocampus after stress. These changes may underlie specific hippocampal malfunction, including cognitive and emotional disturbances, as observed in patients with post-traumatic stress disorder (PTSD). PMID:22796599

  12. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity

    Directory of Open Access Journals (Sweden)

    Pauza Mary E

    2008-03-01

    Full Text Available Abstract A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN. The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ-induced and transgene-mediated murine models of type 1 diabetes (T1D, we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1 expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL. An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG, and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception.

  13. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    Science.gov (United States)

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated. PMID:25262075

  14. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rodrigo eIturriaga

    2014-12-01

    Full Text Available The carotid body (CB plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure and obstructive sleep apnea (OSA. Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH, a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation.

  15. Kojibiose ameliorates arachidic acid-induced metabolic alterations in hyperglycaemic rats.

    Science.gov (United States)

    Moisés Laparra, José; Díez-Municio, Marina; Javier Moreno, F; Herrero, Miguel

    2015-11-14

    Herein we hypothesise the positive effects of kojibiose (KJ), a prebiotic disaccharide, selected for reducing hepatic expression of inflammatory markers in vivo that could modulate the severity of saturated arachidic acid (ARa)-induced liver dysfunction in hyperglycaemic rats. Animals were fed daily (20 d) with ARa (0·3 mg) together or not with KJ (22 mg approximately 0·5 %, w/w diet). Glucose, total TAG and cholesterol contents and the phospholipid profile were determined in serum samples. Liver sections were collected for the expression (mRNA) of enzymes and innate biomarkers, and intrahepatic macrophage and T-cell populations were analysed by flow cytometry. ARa administration increased the proportion of liver to body weight that was associated with an increased (by 11 %) intrahepatic macrophage population. These effects were ameliorated when feeding with KJ, which also normalised the plasmatic levels of TAG and N-acyl-phosphatidylethenolamine in response to tissue damage. These results indicate that daily supplementation of KJ significantly improves the severity of ARa-induced hepatic alterations. PMID:26344377

  16. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice.

    Science.gov (United States)

    Kim, Min-Soo; Bae, Jin-Woo

    2016-05-01

    Gut microbial biogeography is a key feature of host-microbe relationships. In gut viral ecology, biogeography and responses to dietary intervention remain poorly understood. Here, we conducted a metagenomic study to determine the composition of the mucosal and luminal viromes of the gut and to evaluate the impact of a Western diet on gut viral ecology. We found that mucosal and luminal viral assemblages comprised predominantly temperate phages. The mucosal virome significantly differed from the luminal virome in low-fat diet-fed lean mice, where spatial variation correlated with bacterial microbiota from the mucosa and lumen. The mucosal and luminal viromes of high-fat, high-sucrose 'Western' diet-fed obese mice were significantly enriched with temperate phages of the Caudovirales order. Interestingly, this community alteration occurred to a greater extent in the mucosa than lumen, leading to loss of spatial differences; however, these changes recovered after switching to a low-fat diet. Temperate phages enriched in the Western diet-induced obese mice were associated with the Bacilli, Negativicutes and Bacteroidia classes and temperate phages from the Bacteroidia class particularly encoded stress and niche-specific functions advantageous to bacterial host adaptation. This study illustrates a biogeographic view of the gut virome and phage-bacterial host connections under the diet-induced microbial dysbiosis. PMID:26690305

  17. The ultrastructural alterations in rat corneas with experimentally-induced diabetes mellitus

    International Nuclear Information System (INIS)

    To examine the ultrastructural changes of rat corneas in streptozotocin (STZ) induced diabetes mellitus and the and the follow-up insulin treatment. Sprague-Dawley type rats were used for experimental procedures during the period from January to April 2003 at Baskent University, Ankara, Turkey. Rats were studied in four groups: group 1: controls, group 2 sham controls (single dose IV sodium citrate); group 3 STZ-induced diabetes mellitus (Single dose 45mg/kg STZ intravenously), group 4: diabetes mellitus + insulin treatment (8U/day). We observed degenerative changes in the epithelial layer, stromal keratocytes and endothelial cells in diabetic group. In contrast, the corneal layers have revealed positive alterations in the insulin-treated group. The statistical analysis, showed significant narrowing in the epithelial layer in the diabetic group (p0.02), whereas thickening was observed in the epithelial basement membrane and Descemet's membrane (p=0.002). It was determined that that diabetes mellitus causes degenerative changes in cornea, which are positively influenced by short-term insulin treatment. (author)

  18. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  19. Magnitude and Frequency of Rainfall-induced Landslides at the Chenyulan and Tsengwen Watersheds in Taiwan

    Science.gov (United States)

    Jan, C.; Yang, S.

    2013-12-01

    We investigate the landslide magnitude associated with rainfall at the Chenyulan and Tsengwen watersheds in the central Taiwan. The dependences of landslide magnitude in area on regional average rainfall characteristics for landslides between 1988 and 2009, and the frequency-magnitude distribution of landslides caused by Typhoon Morakot in 2009 are presented in this paper. The results indicate that both total rainfall depth and maximum rainfall intensity are the major factors to the magnitude of rainfall-induced landslide. We also found that the rainfall erosivity index that is used to estimate soil erosion is well related with the landslide magnitude. Moreover, via the rainfall erosivity index, we also clarify that the magnitude of rainfall-induced landslide is affected by the Chi-Chi earthquake that occurred in 1999 in subsequent five years. The result suggests that the rainfall erosivity index could be a good parameter to evaluate the characteristics of rainfall-induced landslides. We also study the relation of landslide magnitude (in area) against its occurrence frequency caused by a severe rainfall brought by Typhoon Morakot in 2009. The landslide magnitude (in area) varies from 600 m2 to 600,000 m2. A cumulative frequency-magnitude relation in a power-law scaling is presented herein. Figure 1. Cumulative landslide frequency - mangitude distribution Figure 2. Non-cumulative landslide frequency - mangitude distribution

  20. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    Science.gov (United States)

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH. PMID:27357826

  1. Protective effect of flax seed oil against radiation induced hematological alterations in mammals

    International Nuclear Information System (INIS)

    Human beings are exposed to ionizing and non ionizing radiation from natural as well as manmade sources. Ionizing radiations are one of the predominant exogenous factors that have deleterious consequences to human life. Exposure to ionizing radiations damages the hematopoietic, gastrointestinal or central nervous systems, depending on radiation dose. Hence, there is an urgent need to prevent such deleterious effects caused due to ionizing radiations. Chemical protection involves the use of synthetic and natural products against planned radiation exposure. Medicinal plants are rich in antioxidants and their chemical constituents may be the potential source for radioprotective agents. Linum usitatissimum plant (family: Linaceae), source of flaxseed oil (FSO), is well known for its anticarcinogenic, antidiabetic, cardioprotector, antiulcer properties owing to the presence of various phytochemicals. The present study has been focused to find out the preventive action of flaxseed oil against radiation induced hematological and biochemical lesions in mammals. For this purpose, FSO (50μL/animal/day) was orally administered to Swiss albino mice for five days, prior to 6 Gy gamma radiation exposure. The animals were sacrificed on 1st, 3rd, 7th, 15th and 30th day after irradiation. Radiation treated control group exhibited significant reduction in erythrocytes count, hemoglobin content, hematocrit value and total WBC count in peripheral blood. In contrast, pretreatment with FSO significantly increased all these blood constituents. Further, the antioxidant parameters such as reduced glutathione, catalase, and superoxide dismutase showed a significant elevation in FSO pretreated group which were reduced in irradiated control group. Similarly, radiation induced increase lipid peroxidation in blood was significantly inhibited after FSO treatment. The present results indicate that the flaxseed oil has the ability to debilitate the radiation induced adverse alterations in the

  2. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  3. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    Science.gov (United States)

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc. PMID:26638879

  4. High‐frequency induced polarization measurements of hydrocarbon‐bearing rocks

    DEFF Research Database (Denmark)

    Burtman, Vladimir; Endo, Masashi; Zhdanov, Michael S.; Ingeman-Nielsen, Thomas

    2011-01-01

    We have investigated induced polarization (IP) effects in hydrocarbon‐bearing artificial rocks at frequencies greater than 100 Hz. We have examined the instrumental and electrode phase responses of Zonge International's complex resistivity (CR) system, and optimized the performance of the Zonge s...... suggest the necessity to account for IP effects in the interpretations of electromagnetic data, particularly in induction logging data....

  5. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    NARCIS (Netherlands)

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND: High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is

  6. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    NARCIS (Netherlands)

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is t

  7. High Frequency Discharge Plasma Induced Grafting of Polystyrene onto Titanium Dioxide Powder

    Institute of Scientific and Technical Information of China (English)

    ZHONG Shaofeng; OU Qiongrong; MENG Yuedong

    2007-01-01

    Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide. IR , XPS and TGA results show that PS was grafted on the titanium dioxide powder. And the crystal structure of the titanium dioxide powder observed by XRD was unchanged after plasma treatment.

  8. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    CERN Document Server

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  9. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency

    Science.gov (United States)

    Li, Haibo; Li, Xiaofeng; Li, Jianchun; Xia, Xiang; Wang, Xiaowei

    2016-03-01

    Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the firstperiod blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.

  10. Radiation-induced frequency transients in AT, BT, and SC cut quartz resonators

    International Nuclear Information System (INIS)

    Earlier studies of transient frequency changes in high-purity swept AT quartz resonators led to the conclusion that impurity-induced effects were small, while the observed changes were qualitatively and quantitatively well characterized in terms of the time changing temperature of the vibrating quartz and its effect on frequency. 5 MHz, AT cut fifth overtone, and BT and SC cut third overtone resonators were prepared from a single stone of Sawyer swept Premium-Q quartz. The resonators were operated in precision ovenized oscillators at or near their turnover temperatures. Pulsed irradiation, at dose levels of the order of 104 rads (Si) per pulse, was accomplished at Sandia. The experimental data display negative frequency transients for the AT cut resonators, positive frequency transients for the BT cut resonators, and very small transient effects for the SC cut resonators. From these experimental results, it is concluded that no measurable impurity-induced frequency changes are observed in this high-purity swept-quartz and that the frequency transients are accurately modelled in terms of transient temperature effects stemming from the thermal characteristics of the resonator structure

  11. Stress-induced alterations in large-scale functional networks of the rodent brain.

    Science.gov (United States)

    Henckens, Marloes J A G; van der Marel, Kajo; van der Toorn, Annette; Pillai, Anup G; Fernández, Guillén; Dijkhuizen, Rick M; Joëls, Marian

    2015-01-15

    Stress-related psychopathology is associated with altered functioning of large-scale brain networks. Animal research into chronic stress, one of the most prominent environmental risk factors for development of psychopathology, has revealed molecular and cellular mechanisms potentially contributing to human mental disease. However, so far, these studies have not addressed the system-level changes in extended brain networks, thought to critically contribute to mental disorders. We here tested the effects of chronic stress exposure (10 days immobilization) on the structural integrity and functional connectivity patterns in the brain, using high-resolution structural MRI, diffusion kurtosis imaging, and resting-state functional MRI, while confirming the expected changes in neuronal dendritic morphology using Golgi-staining. Stress effectiveness was confirmed by a significantly lower body weight and increased adrenal weight. In line with previous research, stressed animals displayed neuronal dendritic hypertrophy in the amygdala and hypotrophy in the hippocampal and medial prefrontal cortex. Using independent component analysis of resting-state fMRI data, we identified ten functional connectivity networks in the rodent brain. Chronic stress appeared to increase connectivity within the somatosensory, visual, and default mode networks. Moreover, chronic stress exposure was associated with an increased volume and diffusivity of the lateral ventricles, whereas no other volumetric changes were observed. This study shows that chronic stress exposure in rodents induces alterations in functional network connectivity strength which partly resemble those observed in stress-related psychopathology. Moreover, these functional consequences of stress seem to be more prominent than the effects on gross volumetric change, indicating their significance for future research. PMID:25462693

  12. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  13. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-01

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  14. Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus

    International Nuclear Information System (INIS)

    Highlights: ► Pre- and neonatal Pb exposure decreased the number of hippocampal neurons. ► Lead caused ultrastructural alterations in CA1 region of hippocampus. ► Hippocampus is highly vulnerable to low level perinatal Pb exposure. ► Lead decreased BDNF level in the developing brain. ► Decreased Bax/Bcl2 ratio may protect hippocampus against Pb-induced apoptosis. -- Abstract: The aim of this paper is to examine if pre- and neonatal exposure to lead (Pb) may intensify or inhibit apoptosis or necroptosis in the developing rat brain. Pregnant experimental females received 0.1% lead acetate (PbAc) in drinking water from the first day of gestation until weaning of the offspring; the control group received distilled water. During the feeding of pups, mothers from the experimental group were still receiving PbAc. Pups were weaned at postnatal day 21 and the young rats of both groups then received only distilled water until postnatal day 28. This treatment protocol resulted in a concentration of Pb in rat offspring whole blood (Pb-B) below the threshold of 10 μg/dL, considered safe for humans.We studied Casp-3 activity and expression, AIF nuclear translocation, DNA fragmentation, as well as Bax, Bcl-2 mRNA and protein expression as well as BDNF concentration in selected structures of the rat brain: forebrain cortex (FC), cerebellum (C) and hippocampus (H). The microscopic examinations showed alterations in hippocampal neurons.Our data shows that pre- and neonatal exposure of rats to Pb, leading to Pb-B below 10 μg/dL, can decrease the number of hippocampus neurons, occurring concomitantly with ultrastructural alterations in this region. We observed no morphological or molecular features of severe apoptosis or necrosis (no active Casp-3 and AIF translocation to nucleus) in young brains, despite the reduced levels of BDNF. The potential protective factor against apoptosis was probably the decreased Bax/Bcl-2 ratio, which requires further investigation. Our

  15. Frequencies of micronucleated polychromatic erythrocytes in mouse bone marrow induced by combined radiation-burn injury

    International Nuclear Information System (INIS)

    Objective: In order to detect if any analysis of frequency of micronucleated polychromatic erythrocytes (fMPCE) in mouse bone marrow was possible to diagnose combined radiation-burn injuries. Methods: By using the index of fMPCE, the investigation was carried out in the conditions of burn injury alone, radiation injury alone and combined radiation-burn injury. Results: The fMPCE induced by 10% and 20% body surface area (BSA) burns were not significantly increased at 24h compared with untreated groups. The fMPCE induced by combined radiation-burn injury significantly lower than those by radiation alone, and the fMPCE in the 20% BSA combined radiation-burn injury groups were lower than those in 10% BSA groups. Conclusion: These results indicate that radiation combined burns have an effect to reduce the fMPCE induced by radiation injury. The reason may be due to the frequency of increase of PCE after burn injury

  16. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    OpenAIRE

    Alessandro Ieraci; Alessandra Mallei; Maurizio Popoli

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation ...

  17. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension.

    Science.gov (United States)

    Veith, Christine; Schermuly, Ralph T; Brandes, Ralf P; Weissmann, Norbert

    2016-03-01

    Oxygen (O2) is essential for the viability and function of most metazoan organisms and thus is closely monitored at both the organismal and the cellular levels. However, alveoli often encounter decreased O2 levels (hypoxia), leading to activation of physiological or pathophysiological responses in the pulmonary arteries. Such changes are achieved by activation of transcription factors. The hypoxia-inducible factors (HIFs) are the most prominent hypoxia-regulated transcription factors in this regard. HIFs bind to hypoxia-response elements (HREs) in the promoter region of target genes, whose expression and translation allows the organism, amongst other factors, to cope with decreased environmental O2 partial pressure (pO2). However, prolonged HIF activation can contribute to major structural alterations, especially in the lung, resulting in the development of pulmonary hypertension (PH). PH is characterized by a rise in pulmonary arterial pressure associated with pulmonary arterial remodelling, concomitant with a reduced intravascular lumen area. Patients with PH develop right heart hypertrophy and eventually die from right heart failure. Thus, understanding the molecular mechanisms of HIF regulation in PH is critical for the identification of novel therapeutic strategies. This review addresses the relationship of hypoxia and the HIF system with pulmonary arterial dysfunction in PH. We particularly focus on the cellular and molecular mechanisms underlying the HIF-driven pathophysiological processes. PMID:26228924

  18. Intra-amniotic IL-1β induces fetal inflammation in rhesus monkeys and alters the regulatory T cell/IL-17 balance.

    Science.gov (United States)

    Kallapur, Suhas G; Presicce, Pietro; Senthamaraikannan, Paranthaman; Alvarez, Manuel; Tarantal, Alice F; Miller, Lisa M; Jobe, Alan H; Chougnet, Claire A

    2013-08-01

    Very low birth weight preterm newborns are susceptible to the development of debilitating inflammatory diseases, many of which are associated with chorioamnionitis. To define the effects of chorioamnionitis on the fetal immune system, IL-1β was administered intra-amniotically at ~80% gestation in rhesus monkeys. IL-1β caused histological chorioamnionitis, as well as lung inflammation (infiltration of neutrophils or monocytes in the fetal airways). There were large increases in multiple proinflammatory cytokine mRNAs in the lungs at 24 h postadministration, which remained elevated relative to controls at 72 h. Intra-amniotic IL-1β also induced the sustained expression of the surfactant proteins in the lungs. Importantly, IL-1β significantly altered the balance between inflammatory and regulatory T cells. Twenty-four hours after IL-1β injection, the frequency of CD3(+)CD4(+)FOXP3(+) T cells was decreased in lymphoid organs. In contrast, IL-17A-producing cells (CD3(+)CD4(+), CD3(+)CD4(-), and CD3(-)CD4(-) subsets) were increased in lymphoid organs. The frequency of IFN-γ-expressing cells did not change. In this model of a single exposure to an inflammatory trigger, CD3(+)CD4(+)FOXP3(+) cells rebounded quickly, and their frequency was increased at 72 h compared with controls. IL-17 expression was also transient. Interestingly, the T cell profile alteration was confined to the lymphoid organs and not to circulating fetal T cells. Together, these results suggest that the chorioamnionitis-induced IL-1/IL-17 axis is involved in the severe inflammation that can develop in preterm newborns. Boosting regulatory T cells and/or controlling IL-17 may provide a means to ameliorate these abnormalities. PMID:23794628

  19. Cognitive awareness of carbohydrate intake does not alter exercise-induced lymphocyte apoptosis

    Directory of Open Access Journals (Sweden)

    James Wilfred Navalta

    2011-01-01

    Full Text Available OBJECTIVE: The purpose of this investigation was to determine whether cognitive awareness of carbohydrate beverage consumption affects exercise-induced lymphocyte apoptosis, independent of actual carbohydrate intake. INTRODUCTION: Carbohydrate supplementation during aerobic exercise generally protects against the immunosuppressive effects of exercise. It is not currently known whether carbohydrate consumption or simply the knowledge of carbohydrate consumption also has that effect. METHODS: Endurance trained male and female (N = 10 athletes were randomly assigned to one of two groups based on either a correct or incorrect cognitive awareness of carbohydrate intake. In the incorrect group, the subjects were informed that they were receiving the carbohydrate beverage but actually received the placebo beverage. Participants completed a 60-min ride on a cycle ergometer at 80% VO2peak under carbohydrate and placebo supplemented conditions. Venous blood samples were collected at rest and immediately after exercise and were used to determine the plasma glucose concentration, lymphocyte count, and extent of lymphocyte apoptosis. Cognitive awareness, either correct or incorrect, did not have an effect on any of the measured variables. RESULTS: Carbohydrate supplementation during exercise did not have an effect on lymphocyte count or apoptotic index. Independent of drink type, exercise resulted in significant lymphocytosis and lymphocyte apoptosis (apoptotic index at rest = 6.3 ± 3% and apoptotic index following exercise = 11.6 ± 3%, P<0.01. CONCLUSION: Neither carbohydrate nor placebo supplementation altered the typical lymphocyte apoptotic response following exercise. While carbohydrate supplementation generally has an immune-boosting effect during exercise, it appears that this influence does not extend to the mechanisms that govern exercise-induced lymphocyte cell death.

  20. Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2, thyrotropin-releasing hormone (TRH, brain derived neurotrophic factor (BDNF, c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD, glutathione peroxidase (GPx-1, and heme oxygenase-1 (Hmox-1. These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to

  1. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Shih-Lung Woo

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is closely associated with obesity and insulin resistance. To better understand the pathophysiology of obesity-associated NAFLD, the present study examined the involvement of liver and adipose tissues in metformin actions on reducing hepatic steatosis and inflammation during obesity. C57BL/6J mice were fed a high-fat diet (HFD for 12 weeks to induce obesity-associated NAFLD and treated with metformin (150 mg/kg/d orally for the last four weeks of HFD feeding. Compared with HFD-fed control mice, metformin-treated mice showed improvement in both glucose tolerance and insulin sensitivity. Also, metformin treatment caused a significant decrease in liver weight, but not adiposity. As indicated by histological changes, metformin treatment decreased hepatic steatosis, but not the size of adipocytes. In addition, metformin treatment caused an increase in the phosphorylation of liver AMP-activated protein kinase (AMPK, which was accompanied by an increase in the phosphorylation of liver acetyl-CoA carboxylase and decreases in the phosphorylation of liver c-Jun N-terminal kinase 1 (JNK1 and in the mRNA levels of lipogenic enzymes and proinflammatory cytokines. However, metformin treatment did not significantly alter adipose tissue AMPK phosphorylation and inflammatory responses. In cultured hepatocytes, metformin treatment increased AMPK phosphorylation and decreased fat deposition and inflammatory responses. Additionally, in bone marrow-derived macrophages, metformin treatment partially blunted the effects of lipopolysaccharide on inducing the phosphorylation of JNK1 and nuclear factor kappa B (NF-κB p65 and on increasing the mRNA levels of proinflammatory cytokines. Taken together, these results suggest that metformin protects against obesity-associated NAFLD largely through direct effects on decreasing hepatocyte fat deposition and on inhibiting inflammatory responses in both hepatocytes and macrophages.

  2. Increases in myocardial workload induced by rapid atrial pacing trigger alterations in global metabolism.

    Directory of Open Access Journals (Sweden)

    Aslan T Turer

    Full Text Available To determine whether increases in cardiac work lead to alterations in the plasma metabolome and whether such changes arise from the heart or peripheral organs.There is growing evidence that the heart influences systemic metabolism through endocrine effects and affecting pathways involved in energy homeostasis.Nineteen patients referred for cardiac catheterization were enrolled. Peripheral and selective coronary sinus (CS blood sampling was performed at serial timepoints following the initiation of pacing, and metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS.Pacing-stress resulted in a 225% increase in the median rate·pressure product from baseline. Increased myocardial work induced significant changes in the peripheral concentration of 43 of 125 metabolites assayed, including large changes in purine [adenosine (+99%, p = 0.006, ADP (+42%, p = 0.01, AMP (+79%, p = 0.004, GDP (+69%, p = 0.003, GMP (+58%, p = 0.01, IMP (+50%, p = 0.03, xanthine (+61%, p = 0.0006], and several bile acid metabolites. The CS changes in metabolites qualitatively mirrored those in the peripheral blood in both timing and magnitude, suggesting the heart was not the major source of the metabolite release.Isolated increases in myocardial work can induce changes in the plasma metabolome, but these changes do not appear to be directly cardiac in origin. A number of these dynamic metabolites have known signaling functions. Our study provides additional evidence to a growing body of literature on metabolic 'cross-talk' between the heart and other organs.

  3. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  4. Cocaine-Induced Synaptic Alterations in Thalamus to Nucleus Accumbens Projection.

    Science.gov (United States)

    Neumann, Peter A; Wang, Yicun; Yan, Yijin; Wang, Yao; Ishikawa, Masago; Cui, Ranji; Huang, Yanhua H; Sesack, Susan R; Schlüter, Oliver M; Dong, Yan

    2016-08-01

    Exposure to cocaine induces addiction-associated behaviors partially through remodeling neurocircuits in the nucleus accumbens (NAc). The paraventricular nucleus of thalamus (PVT), which projects to the NAc monosynaptically, is activated by cocaine exposure and has been implicated in several cocaine-induced emotional and motivational states. Here we show that disrupting synaptic transmission of select PVT neurons with tetanus toxin activated via retrograde trans-synaptic transport of cre from NAc efferents decreased cocaine self-administration in rats. This projection underwent complex adaptations after self-administration of cocaine (0.75 mg/kg/infusion; 2 h/d × 5 d, 1d overnight training). Specifically, 1d after cocaine self-administration, we observed increased levels of AMPA receptor (AMPAR)-silent glutamatergic synapses in this projection, accompanied by a decreased ratio of AMPAR-to-NMDA receptor (NMDAR)-mediated EPSCs. Furthermore, the decay kinetics of NMDAR EPSCs was significantly prolonged, suggesting insertion of new GluN2B-containing NMDARs to PVT-to-NAc synapses. After 45-d withdrawal, silent synapses within this projection returned to the basal levels, accompanied by a return of the AMPAR/NMDAR ratio and NMDAR decay kinetics to the basal levels. In amygdala and infralimbic prefrontal cortical projections to the NAc, a portion of cocaine-generated silent synapses becomes unsilenced by recruiting calcium-permeable AMPARs (CP-AMPARs) after drug withdrawal. However, the sensitivity of PVT-to-NAc synapses to CP-AMPAR-selective antagonists was not changed after withdrawal, suggesting that CP-AMPAR trafficking is not involved in the evolution of cocaine-generated silent synapses within this projection. Meanwhile, the release probability of PVT-to-NAc synapses was increased after short- and long-term cocaine withdrawal. These results reveal complex and profound alterations at PVT-to-NAc synapses after cocaine exposure and withdrawal. PMID:27074816

  5. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells.

    Directory of Open Access Journals (Sweden)

    Verόnica Contreras-Shannon

    Full Text Available BACKGROUND: Metabolic syndrome (MetS is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined. METHODOLOGY/PRINCIPAL FINDINGS: Cultured mouse myoblasts (C2C12, adipocytes (3T3-L1, hepatocytes (FL-83B, and monocytes (RAW 264.7 were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line. CONCLUSIONS/SIGNIFICANCE: Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated

  6. Altered rectal sensory response induced by balloon distention in patients with functional abdominal pain syndrome

    Directory of Open Access Journals (Sweden)

    Kudaira Miwako

    2009-11-01

    Full Text Available Abstract Background Functional abdominal pain syndrome (FAPS has chronic unexplained abdominal pain and is similar to the psychiatric diagnosis of somatoform pain disorder. A patient with irritable bowel syndrome (IBS also has chronic unexplained abdominal pain, and rectal hypersensitivity is observed in a majority of the patients. However, no reports have evaluated the visceral sensory function of FAPS precisely. We aimed to test the hypothesis that FAPS would show altered visceral sensation compared to healthy controls or IBS. The present study determined the rectal perceptual threshold, intensity of sensation using visual analogue scale (VAS, and rectal compliance in response to rectal balloon distention by a barostat in FAPS, IBS, and healthy controls. Methods First, the ramp distention of 40 ml/min was induced and the thresholds of discomfort, pain, and maximum tolerance (mmHg were measured. Next, three phasic distentions (60-sec duration separated by 30-sec intervals of 10, 15 and 20 mmHg were randomly loaded. The subjects were asked to mark the VAS in reference to subjective intensity of sensation immediately after each distention. A pressure-volume relationship was determined by plotting corresponding pressures and volumes during ramp distention, and the compliance was calculated over the linear part of the curve by calculating from the slope of the curve using simple regression. Results Rectal thresholds were significantly reduced in IBS but not in FAPS. The VAS ratings of intensity induced by phasic distention (around the discomfort threshold of the controls were increased in IBS but significantly decreased in FAPS. Rectal compliance was reduced in IBS but not in FAPS. Conclusion An inconsistency of visceral sensitivity between lower and higher pressure distention might be a key feature for understanding the pathogenesis of FAPS.

  7. Induced changes in the consumption of coffee alter ad libitum dietary intake and physical activity level.

    Science.gov (United States)

    Mosdøl, Annhild; Christensen, Benedicte; Retterstøl, Lars; Thelle, Dag S

    2002-03-01

    Dietary trials with subjects on a freely selected diet may be affected by unwanted behavioural changes. Few studies, if any, have examined changes in coffee consumption and possible concomitant changes in diet and health-related habits. The aim of the present study was to examine whether induced changes in coffee consumption lead to changes in food habits and leisure-time physical activity. Healthy, non-smoking coffee-drinkers (n 214) were asked to change their coffee habits in a controlled clinical trial on the metabolic effects of coffee. The participants were asked to maintain their usual dietary habits. Self-perceived changes in diet and physical activity during the 6-week intervention period were assessed at the end. In the analyses, the participants were rearranged into groups reflecting the difference in coffee intake during the trial as compared with habitual intake. Associations with changes in food intake or physical activity were analysed by Spearman rank correlation. Changes in intake of 'chocolate, sweets' (r 0.179, Ppastry' (r 0.306, P<0.001), and 'jam' r 0.198, P<0.05) showed positive associations with change in coffee intake during the trial. Negative associations were found for 'dishes with fish' (r -0.204, P<0.01) and many of the drinks as well as with physical activity (r -0.164, P<0.05). Induced changes in coffee intake seem to alter ad libitum intake of several foods. The recognized associations between health behaviours may have physiological explanations. PMID:12064335

  8. Noise-Induced Frequency Modifications of Tamarin Vocalizations: Implications for Noise Compensation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Cara F Hotchkin

    Full Text Available Previous research suggests that nonhuman primates have limited flexibility in the frequency content of their vocalizations, particularly when compared to human speech. Consistent with this notion, several nonhuman primate species have demonstrated noise-induced changes in call amplitude and duration, with no evidence of changes to spectral content. This experiment used broad- and narrow-band noise playbacks to investigate the vocal control of two call types produced by cotton-top tamarins (Saguinus Oedipus. In 'combination long calls' (CLCs, peak fundamental frequency and the distribution of energy between low and high frequency harmonics (spectral tilt changed in response to increased noise amplitude and bandwidth. In chirps, peak and maximum components of the fundamental frequency increased with increasing noise level, with no changes to spectral tilt. Other modifications included the Lombard effect and increases in chirp duration. These results provide the first evidence for noise-induced frequency changes in nonhuman primate vocalizations and suggest that future investigations of vocal plasticity in primates should include spectral parameters.

  9. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety.

    Science.gov (United States)

    Rodríguez-Sierra, O E; Goswami, S; Turesson, H K; Pare, D

    2016-01-01

    A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed. PMID:27434491

  10. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  11. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations.

    Science.gov (United States)

    Giorgi, Filippo Sean; Biagioni, Francesca; Lenzi, Paola; Frati, Alessandro; Fornai, Francesco

    2015-06-01

    Recent evidence suggests that autophagy alterations are present in a variety of neurological disorders. These range from neurodegenerative diseases to acute neurological insults. Thus, despite a role of autophagy was investigated in a variety of neurological diseases, only recently these studies included epilepsy. This was fostered by the evidence that rapamycin, a powerful autophagy inducer, strongly modulates a variety of seizure models and epilepsies. These findings were originally interpreted as the results of the inhibition exerted by rapamycin on the molecular complex named "mammalian Target of Rapamycin" (mTOR). Recently, an increasing number of papers demonstrated that mTOR inhibition produces a strong activation of the autophagy machinery. In this way, it is now increasingly recognized that what was once defined as mTORpathy in epileptogenesis may be partially explained by abnormalities in the autophagy machinery. The present review features a brief introductory statement about the autophagy machinery and discusses the involvement of autophagy in seizures and epilepsies. An emphasis is posed on evidence addressing both pros and cons making it sometime puzzling and sometime evident, the role of autophagy in the epileptic brain. PMID:25217966

  12. Stanniocalcin 2 alters PERK signalling and reduces cellular injury during cerulein induced pancreatitis in mice

    Directory of Open Access Journals (Sweden)

    DiMattia Gabriel E

    2011-05-01

    Full Text Available Abstract Background Stanniocalcin 2 (STC2 is a secreted protein activated by (PKR-like Endoplasmic Reticulum Kinase (PERK signalling under conditions of ER stress in vitro. Over-expression of STC2 in mice leads to a growth-restricted phenotype; however, the physiological function for STC2 has remained elusive. Given the relationship of STC2 to PERK signalling, the objective of this study was to examine the role of STC2 in PERK signalling in vivo. Results Since PERK signalling has both physiological and pathological roles in the pancreas, STC2 expression was assessed in mouse pancreata before and after induction of injury using a cerulein-induced pancreatitis (CIP model. Increased Stc2 expression was identified within four hours of initiating pancreatic injury and correlated to increased activation of PERK signalling. To determine the effect of STC2 over-expression on PERK, mice systemically expressing human STC2 (STC2Tg were examined. STC2Tg pancreatic tissue exhibited normal pancreatic morphology, but altered activation of PERK signalling, including increases in Activating Transcription Factor (ATF 4 accumulation and autophagy. Upon induction of pancreatic injury, STC2Tg mice exhibited limited increases in circulating amylase levels and increased maintenance of cellular junctions. Conclusions This study links STC2 to the pathological activation of PERK in vivo, and suggests involvement of STC2 in responding to pancreatic acinar cell injury.

  13. High physical activity in young children suggests positive effects by altering autoantigen-induced immune activity.

    Science.gov (United States)

    Carlsson, E; Ludvigsson, J; Huus, K; Faresjö, M

    2016-04-01

    Physical activity in children is associated with several positive health outcomes such as decreased cardiovascular risk factors, improved lung function, enhanced motor skill development, healthier body composition, and also improved defense against inflammatory diseases. We examined how high physical activity vs a sedentary lifestyle in young children influences the immune response with focus on autoimmunity. Peripheral blood mononuclear cells, collected from 55 5-year-old children with either high physical activity (n = 14), average physical activity (n = 27), or low physical activity (n = 14), from the All Babies In Southeast Sweden (ABIS) cohort, were stimulated with antigens (tetanus toxoid and beta-lactoglobulin) and autoantigens (GAD65 , insulin, HSP60, and IA-2). Immune markers (cytokines and chemokines), C-peptide and proinsulin were analyzed. Children with high physical activity showed decreased immune activity toward the autoantigens GAD65 (IL-5, P < 0.05), HSP60 and IA-2 (IL-10, P < 0.05) and also low spontaneous pro-inflammatory immune activity (IL-6, IL-13, IFN-γ, TNF-α, and CCL2 (P < 0.05)) compared with children with an average or low physical activity. High physical activity in young children seems to have positive effects on the immune system by altering autoantigen-induced immune activity. PMID:25892449

  14. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine.

    Science.gov (United States)

    Faingold, Carl L; Randall, Marc; Kommajosyula, Srinivasa P

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism. Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. PMID:27259068

  15. 3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    International Nuclear Information System (INIS)

    The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier

  16. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state. PMID:26824042

  17. Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress.

    Science.gov (United States)

    Maur, Damian G; Pascuan, Cecilia G; Genaro, Ana M; Zorrilla-Zubilete, Maria A

    2015-01-01

    Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic-pituitary-adrenal axis activity via GR.Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO-citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed. PMID:25287536

  18. Environmental enrichment reduces behavioural alterations induced by chronic stress in Japanese quail.

    Science.gov (United States)

    Laurence, A; Houdelier, C; Calandreau, L; Arnould, C; Favreau-Peigné, A; Leterrier, C; Boissy, A; Lumineau, S

    2015-02-01

    Animals perceiving repeated aversive events can become chronically stressed. Chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis can have deleterious consequences on physiological parameters (e.g. BW, blood chemistry) and behaviour (e.g. emotional reactivity, stereotypies, cognition). Environmental enrichment (EE) can be a mean to reduce animal stress and to improve welfare. The aim of this study was first, to assess the effects of EE in battery cages on the behaviour of young Japanese quail and second, to evaluate the impact of EE on quail exposed to chronic stress. The experiment involved quail housed in EE cages and submitted or not to a chronic stress procedure (CSP) (EE cages, control quail: n=16, CSP quail: n=14) and quail housed in standard cages and exposed or not to the CSP (standard non-EE cages, control quail: n=12, CSP quail: n=16). Our procedure consisted of repeated aversive events (e.g. ventilators, delaying access to food, physical restraint, noise) presented two to five times per 24 h, randomly, for 15 days. During CSP, EE improved quail's welfare as their stereotypic pacing decreased and they rested more. CSP decreased exploration in all quail. After the end of CSP, quail presented increased emotional reactivity in emergence test. However, the effect of EE varied with test. Finally, chronic stress effects on comfort behaviours in the emergence test were alleviated by EE. These results indicate that EE can alleviate some aspects of behavioural alterations induced by CSP. PMID:25354525

  19. Study on the frequency response mechanisms of thermal stress induced by thermal stratification oscillation phenomenon

    International Nuclear Information System (INIS)

    The temperature oscillation produced by thermal stratification phenomenon induces thermal fatigue damages on structures of nuclear components, which should be prevented. To evaluate thermal fatigue, the frequency response function was developed. However, this theoretical method does not take particular effects of thermal stratification oscillation into account. To clarify these effects, finite element simulations were conducted with two fluid temperature models. Based on mechanisms of the effects, the frequency response function was improved. Agreement with the results of the finite element simulations confirmed the proposed function. (author)

  20. Effect of BCG vaccination on the frequency of 90Sr-induced osteosarcoma development in rats

    International Nuclear Information System (INIS)

    Using BCG vaccinated white rats of no breed the frequency of the development of induced osteosarcomas has been determined. It is shown that BCG injection of 5 mg per animal leads to changes in the frequency of the development of neoplasms and their multiplicity only in males which have been vaccinated 20 days before sup(90)Sr injection. The BCG dose increase up to 10 mg per animal in case of injection 10 days prior to sup(90)Sr administering has been accompanied by the suppression of the tumoral process independently of sex of experimental animals

  1. Influence of Monosodium Glutamate on Radiation-Induced Biochemical Alterations in Male Albino Rats

    International Nuclear Information System (INIS)

    no effect on insulin resistance and their co-administration produces an additive effect compared to each single treatment. Regarding lipid profile, MSG as well as RAD-exposure induced hyperlipidaemia more noticeable in case of irradiation. Their co-administration had potentiated hyperlipidaemia compared to each single treatment. It is concluded that exposure to MSG together with RAD increased oxidative stress and neurotransmitter alteration in the brain and the risk of metabolic syndrome. It is thus recommended to limit the intake of MSG when human are at risk of overexposure to ionizing radiation.

  2. Are aortic endograft prostheses fully hemo-compatible? A dielectric spectroscopy investigation of the electrical alterations induced on erythrocyte cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Basoli, Antonio [Clinica Chirurgica II, Universita di Roma ' La Sapienza' , Rome (Italy); Bordi, Federico [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Cametti, Cesare [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Faraglia, Vittorio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Gili, Tommaso [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Rizzo, Luigi [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Taurino, Maurizio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy)

    2007-03-01

    In this paper we present a new approach directed to ascertain the full hemo-compatibility of aortic endograft prostheses based on the measurement of the passive electrical parameters of the erythrocyte cell membrane. The red blood cell membrane, from an electric point of view, is characterized by an electrical permittivity, {epsilon}{sub s}, which takes into account the structural charged organization of the lipid double layer, and by the electrical conductivity, {sigma}{sub s}, which accounts for the ionic transport processes across the membrane. These parameters can be easily measured by means of a radiowave dielectric spectroscopy technique, analyzing the dependence of the electrical impedance of an erythrocyte suspension on the frequency of the applied electric field. In this preliminary report, we investigate the alterations induced, at a membrane level, by two different devices commonly employed for endovascular abdominal aortic aneurysm exclusion, i.e., Excluder (registered) and Zenith (registered) devices, implanted in ten patients. We observe, in all the cases investigated, a statistically significant increase of both the permittivity {epsilon}{sub s} and electrical conductivity {sigma}{sub s} of the erythrocyte membrane upon the prosthesis implant, this increase being higher than about 20% of the un-treated values. Moreover, these alterations remain roughly unaffected 30 days after surgery. These findings suggest that a complete hemo-compatibility of these prostheses is lacking, even if the observed alterations may not have a clinical relevance.

  3. Stress induced alterations in pre-pubertal ovarian follicular development in rat

    Directory of Open Access Journals (Sweden)

    Yajurvedi H.N.

    2011-12-01

    Full Text Available The objective of the study was to find out whether stress experienced during neo-natal period alters the timing of formation of pre-antral and antral follicles and if so, whether pre-treatment with CRH receptor antagonist prevents these effects in rats. New born rat pups (n= 15 were exposed to maternal separation (6 hours/ day from post-natal day (PND 1 to 7 and were killed on PND 8, 11 and 15. The time of exposure was randomly changed every day during light phase (7Am to 7Pm of the day to avoid habituation. There was a significant increase in serum corticosterone levels on PND 8 and 11 in stress group rats compared to controls indicating stress response in these pups. The ovary of both control and stressed rats contained oocytes and primary follicles on PND 8 and 11 and in showed progress of follicular development upto to pre-antral and early antral follicle formation on PND 11 and 15. However, mean number of healthy oocytes and all categories of follicles at all ages studied were significantly lower in stressed rats compared to controls. Concomitant with these changes, number of atreatic follicles showed an increase over control values in stressed rats. The increase in atresia of follicles was due to apoptosis as shown by increase in the percentage of granulosa cells showing TUNEL positive staining and caspase 3 activity. On the other hand, pre-treatment with CRH- receptor antagonist (CRH 9-41 2ng/ 0.1 ml/ rat prior to undergoing stress regime on PND 1 to 7, prevented alterations in pre- pubertal follicular development thereby indicating that the ovarian changes were due to effects of stress induced activation of HPA axis. The results indicate that, stress during neonatal phase, though does not affect timing of formation of pre-antral and antral follicles, it does enhance atresia of follicles of all categories, including follicular reserve, which may affect the reproductive potential of adults. The results, for the first time reveal that CRF

  4. Effect of PMD-induced Pulse Broadening on Sensitivity and Frequency Spectrum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The PMD-induced pulse broadening may cause the degradation of receiver sensitivity and has negative effects on the power spectrum of received signals. The expressions of PMD-induced pulse broadening effects on receiver sensitivity are derived based on the concept of mean square pulse width. The effects of PMD on the spectrum of received power are analyzed in detail. Finally, the scheme is discussed with which the power of a certain frequency component is extracted as a feedback control signal in a PMD compensation system.

  5. Collision-induced radio-frequency transitions in CH 3I

    Science.gov (United States)

    Tamassia, F.; Danieli, R.; Scappini, F.

    1999-02-01

    The highly sensitive method of radio-frequency-infrared double resonance inside a CO 2 laser is applied to study collision-induced transitions in CH 3I in a four-level double resonance scheme. Pure nuclear quadrupole resonances are observed as the result of collision population transfer between different rotational levels. The intensity ratios of the collision-induced dips to the corresponding three-level double resonance signals are measured for a number of transitions in the ground and excited vibrational states. Collision selection rules in the pure gas and in mixtures with polar and non-polar gases are discussed.

  6. Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes

    DEFF Research Database (Denmark)

    Køllgaard, Tania Maria Simonsen; Ugurel-Becker, Selma; Idorn, Manja;

    2015-01-01

    Various subsets of immune regulatory cells are suggested to influence the outcome of therapeutic antigen-specific anti-tumor vaccinations. We performed an exploratory analysis of a possible correlation of pre-vaccination Th17 cells, MDSCs, and Tregs with both vaccination-induced T-cell responses as...... an altered activity of immune regulatory cells. Moreover, the frequencies of Th17 cells (p=0.03) and Tregs (p=0.02) were elevated as compared to healthy donors. IL-17-secreting CD4+ T cells displayed an impact on the immunological and clinical effects of vaccination: Patients characterized by high...

  7. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish

    OpenAIRE

    Franssen, Nathan R

    2011-01-01

    Anthropogenic habitat alteration creates novel environments that can alter selection pressures. Construction of reservoirs worldwide has disturbed riverine ecosystems by altering biotic and abiotic environments of impounded streams. Changes to fish communities in impoundments are well documented, but effects of those changes on native species persisting in reservoirs, which are presumably subjected to novel selective pressures, are largely unexplored. I assessed body shape variation of a nati...

  8. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  9. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    Institute of Scientific and Technical Information of China (English)

    丁国文; 刘少斌; 章海锋; 孔祥鲲; 李海明; 李炳祥; 刘思源; 李海

    2015-01-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu-merically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect cou-pling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.

  10. Successful Treatment of Canine Cutaneous Leishmaniasis Using Radio-Frequency Induced Heat (RFH) Therapy

    OpenAIRE

    Ahuja, Anil A.; Bumb, Ram A.; Rajesh D Mehta; Prasad, Neha; Tanwar, Ram K.; Satoskar, Abhay R.

    2012-01-01

    Canine cutaneous leishmaniasis (CCL) is a significant veterinary problem. Infected dogs also serve as parasite reservoirs and contribute to human transmission of cutaneous leishmaniasis (CL). Current treatments for CCL are cumbersome and toxic because they are prolonged and involve multiple injections of antimonials. Radio-frequency induced heat (RFH) therapy has been found to be highly effective against CL in humans. Here, we examined the efficacy of topical RFH therapy in the treatment of C...

  11. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    Science.gov (United States)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  12. Noise-Induced Frequency Modifications of Tamarin Vocalizations: Implications for Noise Compensation in Nonhuman Primates

    OpenAIRE

    Cara F Hotchkin; Susan E Parks; Weiss, Daniel J.

    2015-01-01

    Previous research suggests that nonhuman primates have limited flexibility in the frequency content of their vocalizations, particularly when compared to human speech. Consistent with this notion, several nonhuman primate species have demonstrated noise-induced changes in call amplitude and duration, with no evidence of changes to spectral content. This experiment used broad- and narrow-band noise playbacks to investigate the vocal control of two call types produced by cotton-top tamarins (Sa...

  13. Modification of radiation-induced sex-linked recessive lethal mutation frequency by tocopherol

    International Nuclear Information System (INIS)

    The present study evaluates the effect of supplementing culture medium with α-tocopherol acetate on the yield of sex-linked recessive lethal mutants induced by X-irradiation in mature sperm of Drosophila. Although tocopherol treatment of males had no impact on the yield of mutations, a drastic reduction in mutation frequency was observed when irradiated males were mated to females raised and subsequently maintained on tocopherol-enriched diet. (orig./MG)

  14. A process-induced-frequency-drift resilient 32 kHz MEMS resonator

    International Nuclear Information System (INIS)

    This paper applies a frequency-drift resilient method for a 32 768 Hz lateral capacitive microelectromechanical system (MEMS) resonator design to make its resonant frequency insensitive to process-induced variation. The basic idea of the method is to synthesize the design of the supported springs and the releasing holes in the proof mass so that process-induced effective spring constant variation is approximately balanced by effective mass variation, and thus to keep their ratio and determined resonant frequency approximately unchanged. The 32 768 Hz MEMS resonator has been fabricated based on 30 µm silicon-on-insulator wafer for real-time clock application. The related testing results of more than 100 working devices from two different wafers show that the resonant frequencies are in the range of 32 102 ± 25 Hz and obey basically the normal distribution, and the drift from the designed value is less than 2.1%. The method is expected to significantly improve the reliability and fabrication yield of MEMS resonator, and can also be extended to other vibrating MEMS devices. (paper)

  15. High-frequency interaction-induced rototranslational wings of anisotropic nitrogen spectra

    International Nuclear Information System (INIS)

    The anisotropic rototranslational scattering spectra of nitrogen gas at high frequency up to 700 cm-1 for several temperatures and from low densities are analyzed in terms of new site-site (M3SV) intermolecular potential and interaction-induced pair polarizability models, using quantum spectral shapes computations. Our theoretical calculations take into account multipole contributions from the mean value and anisotropy of the dipole-dipole polarizability tensor α, two independent components of the dipole-octopole polarizability tensor E and dipole-dipole-quadrupole hyperpolarizability tensor B. The high-frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole-octopole polarizability |E 4| are obtained and checked with recent ab initio theoretical value. Good comparison is found in the frequency range 0-400 cm-1 between the theoretical and experimental spectra. When an exponential contribution [exp(-ν/ν 0)] with ν 0 = 425 cm-1 is considered to model very short-range light scattering mechanisms at room temperature, good agreement is found over the whole frequency range

  16. High-frequency interaction-induced rototranslational wings of anisotropic nitrogen spectra

    Energy Technology Data Exchange (ETDEWEB)

    El-Kader, M.S.A. [Department of Engineering Mathematics and Physics, Faculty of Engineering, Giza, 12211 (Egypt)], E-mail: mohamedsayedabdelkader@yahoo.com; Moustafa, S.I. [Department of Engineering Mathematics and Physics, Faculty of Engineering, Giza, 12211 (Egypt)

    2005-11-22

    The anisotropic rototranslational scattering spectra of nitrogen gas at high frequency up to 700 cm{sup -1} for several temperatures and from low densities are analyzed in terms of new site-site (M3SV) intermolecular potential and interaction-induced pair polarizability models, using quantum spectral shapes computations. Our theoretical calculations take into account multipole contributions from the mean value and anisotropy of the dipole-dipole polarizability tensor {alpha}, two independent components of the dipole-octopole polarizability tensor E and dipole-dipole-quadrupole hyperpolarizability tensor B. The high-frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole-octopole polarizability |E {sub 4}| are obtained and checked with recent ab initio theoretical value. Good comparison is found in the frequency range 0-400 cm{sup -1} between the theoretical and experimental spectra. When an exponential contribution [exp(-{nu}/{nu} {sub 0})] with {nu} {sub 0} = 425 cm{sup -1} is considered to model very short-range light scattering mechanisms at room temperature, good agreement is found over the whole frequency range.

  17. A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption

    International Nuclear Information System (INIS)

    This investigation clarifies the transition phenomenon between the electromagnetically induced transparency (EIT) and Raman absorption in a ladder-type system of Doppler-broadened cesium vapor. A competition window of this transition was found to be as narrow as 2 MHz defined by the probe Rabi frequency. For a weak probe, the spectrum of EIT associated with quantum interference suggests that the effect of the Doppler velocity on the spectrum is negligible. When the Rabi frequency of the probe becomes comparable with the effective decay rate, an electromagnetically induced absorption (EIA) dip emerges at the center of the power broadened EIT peak. While the Rabi frequency of the probe exceeds the effective decay rate, decoherence that is generated by the intensified probe field occurs and Raman absorption dominates the interaction process, yielding a pure absorption spectrum; the Doppler velocity plays an important role in the interaction. A theory that is based on density matrix simulation, with or without the Doppler effect, can qualitatively fit the experimental data. In this work, the coherence of atom-photon interactions is created or destroyed using the probe Rabi frequency as a decoherence source.

  18. Induced mutations in chickpea (Cicer arietinum L.) II. frequency and spectrum of chlorophyll mutations

    International Nuclear Information System (INIS)

    A comparative study of frequency and spectrum of chlorophyll mutations induced by two physical (gamma rays, fast neutrons) and two chemical mutagens (NMU, EMS) in relation to the effects in M1 plants and induction of mutations in M2 was made in four chickpea (Cicer arietinum L.) varieties, two desi (G 130 & H 214) one Kabuli (C 104) and one green seeded (L 345). The treatments included three doses each of gamma rays (400, 500 & 600 Gy) and fast neutrons (5, 10 & 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU [0.01% (20h), & 0.02% (8h)] and EMS [0.1% (20h) & 0.2% (8h)]. The frequencies and spectrum of three different kinds of induced chlorophyll mutations in the order albina (43.5%), chlorina (27.3%) and xantha (24.2%) were recorded. Chemical mutagens were found to be efficient in inducing chlorophyll mutations in chickpea. Highest frequency of mutations was observed in green seeded var. L 345 (83% of M1 families and 19.9/1000 M2 plants). Kabuli var. C 104 was least responsive for chlorophyll mutations

  19. REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy.

    Science.gov (United States)

    Maturana, Maira J; Pudell, Cláudia; Targa, Adriano D S; Rodrigues, Laís S; Noseda, Ana Carolina D; Fortes, Mariana H; Dos Santos, Patrícia; Da Cunha, Cláudio; Zanata, Sílvio M; Ferraz, Anete C; Lima, Marcelo M S

    2015-02-01

    There is compelling evidence that sleep deprivation (SD) is an effective strategy in promoting antidepressant effects in humans, whereas few studies were performed in relevant animal models of depression. Acute administration of antidepressants in humans and rats generates a quite similar effect, i.e., suppression of rapid eye movement (REM) sleep. Then, we decided to investigate the neurochemical alterations generated by a protocol of rapid eye movement sleep deprivation (REMSD) in the notably known animal model of depression induced by the bilateral olfactory bulbectomy (OBX). REMSD triggered antidepressant mechanisms such as the increment of brain-derived neurotrophic factor (BDNF) levels, within the substantia nigra pars compacta (SNpc), which were strongly correlated to the swimming time (r = 0.83; P < 0.0001) and hippocampal serotonin (5-HT) content (r = 0.66; P = 0.004). Moreover, there was a strong correlation between swimming time and hippocampal 5-HT levels (r = 0.70; P = 0.003), strengthen the notion of an antidepressant effect associated to REMSD in the OBX rats. In addition, REMSD robustly attenuated the hippocampal 5-HT deficiency produced by the OBX procedure. Regarding the rebound (REB) period, we observed the occurrence of a sustained antidepressant effect, indicated mainly by the swimming and climbing times which could be explained by the maintenance of the increased nigral BDNF expression. Hence, hippocampal 5-HT levels remained enhanced in the OBX group after this period. We suggested that the neurochemical complexity inflicted by the OBX model, counteracted by REMSD, is directly correlated to the nigral BDNF expression and hippocampal 5-HT levels. The present findings provide new information regarding the antidepressant mechanisms triggered by REMSD. PMID:24826915

  20. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Perfluorooctane sulfonate (PFOS is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response, and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.

  1. Effect of α-Ketoglutarate on Cyanide-induced Biochemical Alterations in Rat Brain and Liver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the biochemical changes in rat brain and liver following acute exposure to a lethal dose of cyanide, and its response to treatment of α-ketoglutarate (α-KG) in the absence or presence of sodium thiosulfate (STS). Methods Female rats were administered 2.0 LD50 potassium cyanide (KCN; oral) in the absence or presence of pre-treatment (-10 min), simultaneous treatment (0 min) or post-treatment (+2-3 min) of α-KG (2.0 g/kg, oral) and/or STS (1.0 g/kg,intraperitoneal, -15 min, 0 min or + 2-3 min). At the time of onset of signs and symptoms of KCN toxicity (2-4 min) and at the time of death (5-15 min), various parameters particularly akin to oxidative stress viz. Cytochrome oxidase (CYTOX),superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH) and oxidized glutathione (GSSG) in brain, and CYTOX, sorbitol dehydrogenase (SDH), alkaline phosphatase (ALP), GSH and GSSG in liver homogenate were measured. Results At both time intervals brain CYTOX, SOD, GPx, and GSH significantly reduced (percent inhibition compared to control) to 24%, 56%, 77%, and 65%, and 44%, 46%, 78%, and 57%, respectively. At the corresponding time points liver CYTOX and GSH reduced to 74% and 63%, and 44% and 68%, respectively. The levels of GSSG in the brain and liver, and hepatic ALP and SDH were unchanged. Pre-treatment and simultaneous treatment of α-KG alone or with STS conferred significant protection on above variables. Post-treatment was effective in restoring the changes in liver but failed to normalize the changes in the brain. Conclusions Oral treatment with α-KG alone or in combination with STS has protective effects on cyanide-induced biochemical alterations in rat brain and liver.

  2. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  3. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    International Nuclear Information System (INIS)

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  4. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Ksenia J., E-mail: ksenia.groh@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich (Switzerland); Suter, Marc J.-F. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich (Switzerland)

    2015-02-15

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  5. Radio-induced alteration in cordierite - Implications for petrology, gemmology and materials science

    Science.gov (United States)

    Krickl, R.; Nasdala, L.; Grambole, D.; Kaindl, R.

    2009-04-01

    Cordierite is a common metamorphic and magmatic mineral, which is used as petrologic tool for reconstructing the history of its host rock. Further applications include cordierite gemstones and the use of synthetic analogs in ceramics. Cordierite is stable over a wide temperature and pressure range and relatively resistant to chemical alteration; however, its properties can be significantly changed upon the impact of external irradiation. In the course of a comprehensive study, natural radiohaloes in cordierite (a widespread feature caused by the impact of alpha-particles originating from radioactive inclusions) as well as artificial analogs produced by implantation of 8.8 MeV He2+ ions were investigated using modern micro-techniques. Additional irradiation experiments were performed using O6+ ions, electrons and gamma-rays. Ion irradiation causes yellow colouration that is strongly pleochroic, and fades at higher doses. The possibility of radiation-treatment for enhancing the quality of gem-cordierite is discussed. While samples remain crystalline up to doses of 1016 He2+/cm2, the same material is fully amorphised when irradiated with the same dose of 30 MeV O6+ ions. These different observations may help to estimate the performance assessment of cordierite-ceramics in radiated environments. A very important result concerning the petrological use of cordierite is the radio-induced transformation of channel constituents: Inside the irradiated areas the vibrational bands of CO2 decrease in intensity, whereas two new bands appear at 2135 cm-1 (both IR- and Raman-active; cf. Nasdala et al., 2006) and 1550 cm-1 (only Raman-activ). They are assigned to stretching vibrations of carbon monoxide and molecular oxygen, respectively, thus indicating a radio-chemical transformation 2CO2 → 2CO + O2 in alpha-irradiated cordierite. This study yields the first spectroscopic evidence for the irradiation-induced formation of molecular oxygen in cordierite. Polarised vibrational

  6. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca2+) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  7. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.

    Science.gov (United States)

    Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent

    2016-09-01

    Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas. PMID:27130904

  8. The influence of plutonium exposure and lung cancer on the frequency of x-ray-induced micronuclei in dog blood lymphocytes

    International Nuclear Information System (INIS)

    This study determined if lung cancer or exposure to an inhaled alpha emitter, plutonium-239, increased the frequency of micronuclei in blood lymphocytes or altered the responsiveness of lymphocytes to induction of micronuclei by subsequent doses of X rays in vitro. Beagle dogs inhaled 1.5 mm ABAD monodisperse 239PuO2 aerosols. The exposure resulted in initial lung burdens of 1.8 KBq to 48 KBq and produced cumulative alpha radiation lung doses of 1.4 to 10.4 Gy at the time of this study. Blood lymphocytes were sampled and irradiated with either 0.0 or 2.0 Gy of X rays. The lymphocytes were stimulated to divide by phytohemagglutinin, cytokinesis was blocked with cytochalasin B, and the frequency of micronuclei was determined in binucleated cells. Plutonium inhalation alone produced no significant increase in the frequency of micronuclei in blood lymphocytes. When 2 Gy of X rays ws given to blood lymphocytes of dogs that had inhaled 239PuO2 , there was a linear increase in micronuclei frequency as a function of alpha dose to the lungs; micronuclei/binucleated cell = 0.15 +0.2 D, where D is the cumulative alpha-radiation dose to the lung in Gy. Dogs with 239PuO2- induced lung cancer did not have a significant increase in the frequency of X- ray-induced micronuclei relative to dogs exposed to plutonium that did not have lung cancer. These data suggest that inhaled 239PuO2 alters the responsiveness of blood lymphocytes to subsequent X-ray exposure. (author)

  9. Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity.

    Science.gov (United States)

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2012-01-01

    Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug. PMID:22108648

  10. Context-induced reinstatement of methamphetamine seeking is associated with unique molecular alterations in Fos-expressing dorsolateral striatum neurons.

    Science.gov (United States)

    Rubio, F Javier; Liu, Qing-Rong; Li, Xuan; Cruz, Fabio C; Leão, Rodrigo M; Warren, Brandon L; Kambhampati, Sarita; Babin, Klil R; McPherson, Kylie B; Cimbro, Raffaello; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T

    2015-04-01

    Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, we found that context-induced reinstatement of methamphetamine seeking increased expression of the neural activity marker Fos in dorsal but not ventral striatum. Reversible inactivation of neural activity in dorsolateral but not dorsomedial striatum using the GABA agonists muscimol and baclofen decreased context-induced reinstatement. Based on our previous findings that Fos-expressing neurons play a critical role in conditioned drug effects, we assessed whether context-induced reinstatement was associated with molecular alterations selectively induced within context-activated Fos-expressing neurons. We used fluorescence-activated cell sorting to isolate reinstatement-activated Fos-positive neurons from Fos-negative neurons in dorsal striatum and used quantitative PCR to assess gene expression within these two populations of neurons. Context-induced reinstatement was associated with increased expression of the immediate early genes Fos and FosB and the NMDA receptor subunit gene Grin2a in only Fos-positive neurons. RNAscope in situ hybridization confirmed that Grin2a, as well as Grin2b, expression were increased in only Fos-positive neurons from dorsolateral, but not dorsomedial, striatum. Our results demonstrate an important role of dorsolateral striatum in context-induced reinstatement of methamphetamine seeking and that this reinstatement is associated with unique gene alterations in Fos-expressing neurons. PMID:25855177

  11. Influence of age, sex and life style factors on the spontaneous and radiation induced micronuclei frequencies

    International Nuclear Information System (INIS)

    Several endpoints have been used for monitoring human populations for environmental or occupational exposure to genotoxic agents, particularly ionizing radiation. The cytokinesis-block micronucleus (MN) assay in peripheral lymphocytes is a reliable method for assessing radiation induced chromosomal damage (DNA breaks and mitotic spindle disturbances) and thus, a suitable dosimeter for estimating in vivo whole body exposures. To further define the use of this assay in biological dosimetry, a study to determine the influence of age, sex and life style factors (smoking habit) on the spontaneous and radiation induced MN frequencies was performed. The estimation of MN frequencies was analyzed in lymphocytes cultures from 50 healthy donors aged between 4 and 62 years. On the basis of their smoking habit they were divided into 2 groups. A fraction of the sample was irradiated in vitro with Y rays in the range of 0.35 Gy to 4 Gy. A statistically significant influence on the spontaneous MN frequency was observed (R2 = 0.59) when the variables age and smoking habit were analyzed and also a statistically significant influence on the radiation induced MN frequency was obtained (R2 = 0.96) when dose, age and smoking habit were studied. Sex did not influence MN variability significantly but there was a greater dispersion in the results for females when compared to males, possibly due to the loss of X chromosomes. The comparison of the data from smoking to non smoking donors supports the convenience to take into account the smoking habit for estimating in vivo whole body exposures to γ-rays for doses below 2 Gy. (author)

  12. Glutamate-induced long-term potentiation enhances spontaneous EPSC amplitude but not frequency.

    Science.gov (United States)

    Cormier, R J; Kelly, P T

    1996-05-01

    1. Many examples of long-term potentiation (LPT) are induced by repetitive electrical stimulation of presynaptic axons. LTP also is induced by direct glutamate iontophoresis (1 M, 1-2 microA, 10 s) onto postsynaptic neurons in hippocampal slices without evoked presynaptic stimulation; this form of LTP is called "ionto-LTP". The studies herein test the hypothesis that ionto-LTP is expressed primarily through postsynaptic mechanisms. 2. Whole cell recordings were used to examine the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in CA1 pyramidal neurons. sEPSCs were composed of an equal mixture of tetrodotoxin (TTX)-insensitive miniature EPSCs and EPSCs that appeared to result from spontaneous action potentials (i.e., TTX-sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM), suggesting that sEPSCs were glutamate-mediated synaptic events. 3. Changes in the amplitude and frequency of sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. Our findings show that ionto-LTP expression results in increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. 4. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. We have considered alternative mechanisms. Models based on increased release probability for action potential dependent transmitter release appeared insufficient to explain our results. The most straightforward interpretation of our results is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated largely by postsynaptic changes. PMID:8734590

  13. Ginseng Extracts Restore High-Glucose Induced Vascular Dysfunctions by Altering Triglyceride Metabolism and Downregulation of Atherosclerosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Gabriel Hoi-huen Chan

    2013-01-01

    Full Text Available The king of herbs, Panax ginseng, has been used widely as a therapeutic agent vis-à-vis its active pharmacological and physiological effects. Based on Chinese pharmacopeia Ben Cao Gang Mu and various pieces of literature, Panax ginseng was believed to exert active vascular protective effects through its antiobesity and anti-inflammation properties. We investigated the vascular protective effects of ginseng by administrating ginseng extracts to rats after the induction of diabetes. We found that Panax ginseng can restore diabetes-induced impaired vasorelaxation and can reduce serum triglyceride but not cholesterol level in the diabetic rats. The ginseng extracts also suppressed the expression of atherosclerosis-related genes and altered the expression of lipid-related genes. The results provide evidence that Panax ginseng improves vascular dysfunction induced by diabetes and the protective effects may possibly be due to the downregulation of atherosclerosis-related genes and altered lipid metabolism, which help to restore normal endothelium functions.

  14. Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

    Science.gov (United States)

    Minamikawa, Takeo; Hayashi, Kenta; Mizuguchi, Tatsuya; Hsieh, Yi-Da; Abdelsalam, Dahi Ghareab; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Yasui, Takeshi

    2016-05-01

    A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency ( f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10-13 and a relative precision of 8.8 × 10-12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

  15. Alteration of the Redox State with Reactive Oxygen Species for 5-Fluorouracil-Induced Oral Mucositis in Hamsters

    OpenAIRE

    Yoshino, Fumihiko; Yoshida, Ayaka; Nakajima, Atsushi; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Lee, Masaichi Chang-il

    2013-01-01

    Oral mucositis is often induced in patients receiving cancer chemotherapy treatment. It has been reported that oral mucositis can reduce quality of life, as well as increasing the incidence of mortality. The participation of reactive oxygen species (ROS) in the pathogenesis of oral mucositis is well known, but no report has actually demonstrated the presence of ROS. Thus, the purpose of this study was thus to demonstrate the involvement of ROS and the alteration of the redox state in oral muc...

  16. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    OpenAIRE

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA tre...

  17. Alterations in the glutathione metabolism could be implicated in the ischemia-induced small intestinal cell damage in horses

    Directory of Open Access Journals (Sweden)

    de la Muela Mercedes

    2009-03-01

    Full Text Available Abstract Background Colic could be accompanied by changes in the morphology and physiology of organs and tissues, such as the intestine. This process might be, at least in part, due to the accumulation of oxidative damage induced by reactive oxygen (ROS and reactive nitrogen species (RNS, secondary to intestinal ischemia. Glutathione (GSH, being the major intracellular thiol, provides protection against oxidative injury. The aim of this study was to investigate whether ischemia-induced intestinal injury could be related with alterations in GSH metabolism. Results Ischemia induced a significant increase in lipid hydroperoxides, nitric oxide and carbon monoxide, and a reduction in reduced glutathione, and adenosine triphosphate (ATP content, as well as in methionine-adenosyl-transferase and methyl-transferase activities. Conclusion Our results suggest that ischemia induces harmful effects on equine small intestine, probably due to an increase in oxidative damage and proinflammatory molecules. This effect could be mediated, at least in part, by impairment in glutathione metabolism.

  18. Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets.

    Science.gov (United States)

    Máthé, Csaba; Beyer, Dániel; Erdodi, Ferenc; Serfozo, Zoltán; Székvölgyi, Lóránt; Vasas, Gábor; M-Hamvas, Márta; Jámbrik, Katalin; Gonda, Sándor; Kiss, Andrea; Szigeti, Zsuzsa M; Surányi, Gyula

    2009-05-01

    Microcystin-LR (MC-LR) is a heptapeptide cyanotoxin, known to be a potent inhibitor of type 1 and 2A protein phosphatases in eukaryotes. Our aim was to investigate the effect of MC-LR on the organization of microtubules and mitotic chromatin in relation to its possible effects on cell and whole organ morphology in roots of common reed (Phragmites australis). P. australis is a widespread freshwater and brackish water aquatic macrophyte, frequently exposed to phytotoxins in eutrophic waters. Reed plantlets regenerated from embryogenic calli were treated with 0.001-40 microg ml(-1) (0.001-40.2 microM) MC-LR for 2-20 days. At 0.5 microg ml(-1) MC-LR and at higher cyanotoxin concentrations, the inhibition of protein phosphatase activity by MC-LR induced alterations in reed root growth and morphology, including abnormal lateral root development and the radial swelling of cells in the elongation zone of primary and lateral roots. Both short-term (2-5 days) and long-term (10-20 days) of cyanotoxin treatment induced microtubule disruption in meristems and in the elongation and differentiation zones. Microtubule disruption was accompanied by root cell shape alteration. At concentrations of 0.5-5 microg ml(-1), MC-LR increased mitotic index at long-term exposure and induced the increase of the percentage of meristematic cells in prophase as well as telophase and cytokinesis of late mitosis. High cyanotoxin concentrations (10-40 microg ml(-1)) inhibited mitosis at as short as 2 days of exposure. The alteration of microtubule organization was observed in mitotic cells at all exposure periods studied, at cyanotoxin concentrations of 0.5-40 microg ml(-1). MC-LR induced spindle anomalies at the metaphase-anaphase transition, the formation of asymmetric anaphase spindles and abnormal sister chromatid separation. This paper reports for the first time that MC-LR induces cytoskeletal changes that lead to alterations of root architecture and development in common reed and generally, in

  19. Tunicamycin-Induced Alterations in the Vasorelaxant Response in Organ-Cultured Superior Mesenteric Arteries of Rats.

    Science.gov (United States)

    Matsumoto, Takayuki; Ando, Makoto; Watanabe, Shun; Iguchi, Maika; Nagata, Mako; Kobayashi, Shota; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-01-01

    In cellular events, endoplasmic reticulum (ER) stress has an important role in the development of various diseases including cardiovascular diseases. Tunicamycin, an inhibitor of N-linked glycosylation, is known to be an inducer of ER stress. However, the extent to which tunicamycin affects the vasorelaxant function is not completely understood. Thus, we investigated the effect of tunicamycin on relaxations induced by various vasorelaxant agents, including acetylcholine (ACh; endothelium-dependent vasodilator), sodium nitroprusside (SNP; endothelium-independent vasodilator), isoprenaline (ISO; beta-adrenoceptor agonist), forskolin (FSK; adenylyl cyclase activator), and cromakalim [ATP-sensitive K(+) (KATP) channel activator] in organ-cultured superior mesenteric arteries of rats, which are treated with either a vehicle [dimethyl sulfoxide (DMSO)] or tunicamycin (20 µg/mL for 22-24 h). Protein levels of the ER stress marker binding immunoglobulin protein (BiP) were determined by Western blotting. Tunicamycin increased the expression of BiP in organ-cultured arteries. Tunicamycin impaired ACh-induced relaxation, but did not alter SNP-induced relaxation. Tunicamycin also impaired vasorelaxation induced by ISO, FSK, and cromakalim; moreover, it reduced basal nitric oxide (NO) formation. In conclusion, short-term treatment with tunicamycin not only caused endothelial dysfunction but also impaired cAMP- and KATP-mediated responses in the superior mesenteric arteries of rats. These alterations in tunicamycin-treated arteries may be due to reduced basal NO formation. This work provides new insight into ER stress in vascular dysfunction. PMID:27582328

  20. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    DEFF Research Database (Denmark)

    Phillip, Dorte; Iversen, Helle K; Schytz, Henrik W;

    2013-01-01

    Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease and stroke. Near infrared spectroscopy (NIRS) is...... patients with both symptomatic carotid occlusive disease and cerebral hypoperfusion in comparison to healthy controls. Each hemisphere was examined with two NIRS channels using a 3 cm source detector distance. Arterial blood pressure (ABP) was measured via a finger plethysmograph. Using transfer function...

  1. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression.

    Science.gov (United States)

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-09-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus‑associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR‑19a, and the downregulation of miR‑1, let‑7f and miR‑124 expression levels following IPostC was confirmed utilizing reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  2. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Ratkevicius, Aivaras; Quistorff, Bjørn

    2002-01-01

    Metabolic costs of force generation were compared for constant-frequency and catchlike-inducing electrical stimulation. Repetitive catchlike-inducing trains consisted of 2 interpulse intervals (IPIs) at 12.5 ms, 1 IPI at 25 ms, and 5 IPIs at 50 ms. Constant-frequency trains consisted of 8 IPIs at...... generation. Our findings also suggest that catchlike-inducing stimulation produces larger forces in fatigued muscle than constant-frequency trains and thus may be beneficial for muscle training or rehabilitation when muscle loading needs to be maintained in repetitive contractions....

  3. Frequency domain and wavelet analysis of the laser-induced plasma shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Miloš, E-mail: milosb@ff.bg.ac.rs; Nikolić, Zoran

    2015-08-01

    In addition to optical emission, another trace of interest that laser-induced plasma provides is a form of acoustic feedback. The acoustic emission (AE) signals were obtained using both microphone and piezo transducers. This kind of optoacoustic signals have some distinct features resembling the short, burst-like sounds, that may differ significantly depending mainly on the sample exposed and irradiance applied. Experiments were performed on atmospheric pressure by irradiating various metallic samples. The recorded waveforms were examined and numerically processed. Single-shot acoustical spectra have shown significant potential of providing valuable supplementary information regarding plasma propagation dynamics. Moreover, the general approach suggests the possibility of making the whole measurement system cost-effective and portable. - Highlights: • We report acoustical waveform, and acoustical spectroscopy measurements and analysis in a laser-induced plasma of a different metals in air. • Both piezo and microphone transducer were used. • The acoustical spectra of the emission were obtained when the sample (and plasma) were enclosed in experimental chamber. • The acquired acoustical spectra are time-integrated and the frequency peaks were sharp and relatively isolated. • Finally, both time and frequency resolved wavelet spectrogram present a novel method of observing laser-induced plasma behavior.

  4. Mercury species induced frequency-shift of molecular orientational transformation based on SERS.

    Science.gov (United States)

    Chen, Lei; Zhao, Yue; Wang, Yaxin; Zhang, Yongjun; Liu, Yang; Han, Xiao Xia; Zhao, Bing; Yang, Jinghai

    2016-08-01

    We proposed a novel readout method based on a peculiar phenomenon in which the vibrational frequencies of a SERS-active probe (dimethyldithiocarbamic acid sodium salt, DASS) can be affected when there is mercury species. Compared to the SERS intensity-dependent quantitative determination method, SERS frequency-shift-based methods have several advantages: smaller standard deviation, perfect linear relationship, and higher accuracy and sensitivity. In addition, the SERS frequency-shift-based method was not affected by irreproducible aggregation of the SERS substrate and instrumental factors, which greatly improved the application prospect of SERS-based detection. The DASS-modified silver nanoparticles produced a highly sensitive sensor specific to mercury species. Upon the addition of a solution of mercury species to the chip, the mercury species specifically binds to the sulfur atoms, which induces a frequency shift of the band at 1374 cm(-1). The detection limit of the proposed method for Hg(2+) is as low as 10(-8) M. In addition, the proposed method exhibited the same phenomenon for organic mercury. Moreover, these results suggest that the proposed platform possesses the potential for sensitive, selective, and high-throughput on-site mercury pollution monitoring in resource-constrained settings. PMID:27273584

  5. Ultaviolet-induced frameshift mutagenesis in Salmonella typhimurium: absence of an effect of mutation frequency decline

    International Nuclear Information System (INIS)

    Enhanced yields of UV-induced back mutants to prototrophy are observed when irradiated cells of the Salmonella typhimurium frameshift strain LT2 hisC3076(R46) are plated on defined medium containing broth (2.5%, v/v) rather than a trace (0.02 μg/ml) of the required nutrient (histidine). This broth effect is not abolished, and is in fact augmented, in an excision-deficient derivative of hisC3076(R46) carrying the uvr-302 mutation. Since similar broth effects on UV-induced base-pair substitution mutagenesis have usually been attributed to inhibition of mutation frequency decline (MFD), and since MFD is in turn thought to reflect the activity of an intact excision-repair system, we sought to determine whether or not UV-induced premutational lesions leading to the production of frameshifts are susceptible to MFD. Results with the doubly auxotrophic strain LT2 hisC3076 leuA150 (pKM101) showed that in a population of cells actually undergoing MFD (as judged by a rapid loss of UV-induced reversions of the base-pair substitution marker (leuA150)), no concomitant loss of UV-induced reversions of the frameshift hisC3076 marker could be detected. (orig.)

  6. Radiation induced frequency and resistance changes in electrolyzed high purity quartz resonators

    International Nuclear Information System (INIS)

    Radiation induced frequency and resistance changes in precision 5 MHz AT-cut quartz resonators fabricated from electrolyzed, high purity quarts are described. A description is given of the radiation measurement methods, transient and steady-state data, and the results of thermal modeling. It is concluded that SARP optical and Premium-Q quartz may be pure enough as grown that (1) the usual frequency time dependent recovery characteristic of t/sup -1/2/ is not observed; (2) without electrolysis, the impurity levels are nevertheless high enough to cause a significant decrease in Q for a short time following a pulse of ionizing radiation; (3) electrolysis can further reduce radiation response so that impurity effects are no longer significant; and (4) the transient radiation response in electrolyzed quartz is primarily thermal in nature

  7. Perturbative approach in the frequency domain for the intensity correlation spectrum at electromagnetically induced transparency

    CERN Document Server

    Florez, H M; Martinelli, M

    2016-01-01

    Correlation spectroscopy has been proposed as a spectroscopic technique for measuring the coherence between the ground states in electromagnetically induced transparency (EIT). While in time domain the steep dispersion in EIT condition accounts for the robustness of the correlation linewidth against power broadening, such physical insight was not directly established in the frequency domain. We propose a perturbative approach to describe the correlation spectroscopy of two noisy lasers coupled to a $\\Lambda$-transition in cold atoms, leading to EIT. Such approach leads to an analytical expression that maps the intensity correlation directly in terms of the absorption and dispersion of the light fields. Low and high perturbative regimes are investigated and demonstrate that, for coherent light sources, the first oder term in perturbation expansion represents a sufficient description for the correlation. Sidebands resonances are also observed, showing the richness of the frequency domain approach.

  8. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  9. Treatment with anti-OX40L or anti-TSLP does not alter the frequency of T regulatory cells in allergic asthmatics.

    Science.gov (United States)

    Baatjes, A J; Smith, S G; Dua, B; Watson, R; Gauvreau, G M; O'Byrne, P M

    2015-11-01

    OX40-OX40L interactions and thymic stromal lymphopoietin (TSLP) are important in the induction and maintenance of Th2 responses in allergic disease, whereas T regulatory cells (Treg) have been shown to suppress pro-inflammatory Th2 responses. Both OX40L and TSLP have been implicated in the negative regulation of Treg. The effect of anti-asthma therapies on Treg is not well known. Our aim was to assess the effects of two monoclonal antibody therapies (anti-OX40L and anti-TSLP) on Treg frequency using a human model of allergic asthma. We hypothesized that the anti-inflammatory effects of these therapies would result in an increase in circulating Treg (CD4(+) CD25(+) CD127(low) Foxp3(+) cells) frequency. We measured Treg using flow cytometry, and our results showed that neither allergen challenge nor monoclonal antibody therapy altered circulating Treg frequency. These data highlight the need for assessment of airway Treg and for a more complete understanding of Treg biology so as to develop pharmacologics/biologics that modulate Treg for asthma therapy. PMID:26213896

  10. Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system.

    OpenAIRE

    Abel, R.P.; Mohapatra, A. K.; Bason, M. G.; Pritchard, J D; Weatherill, K. J.; Raitzsch, U.; Adams, C. S.

    2009-01-01

    We demonstrate laser frequency stabilization to excited state transitions using cascade electromagnetically induced transparency. Using a room temperature Rb vapor cell as a reference, we stabilize a first diode laser to the D2 transition and a second laser to a transition from the intermediate 5P3/2 state to a highly excited state with principal quantum number n = 19–70. A combined laser linewidth of 280±50 kHz over a 100 μs time period is achieved. This method may be applied generally to an...

  11. Frequency Shifts Induced by Field Gradients in Muon $g-2$ Experiments

    CERN Document Server

    Nouri, N; Golub, R; Plaster, B

    2016-01-01

    Two prominent efforts aimed at probing beyond Standard Model physics, searches for a neutron electric dipole moment (EDM) and measurements of the muon $g-2$ anomalous magnetic moment, employ spin precession techniques. In the most recent neutron EDM experiment, frequency shifts induced by magnetic field gradients and $\\mathbf{E} \\times \\mathbf{v}$ motional fields were a significant source of systematic error. We consider the possibility of a similar effect in the most recent muon $g-2$ experiment, and find that such an effect could potentially be as large as $\\sim 1$ ppm fractional error, to be compared with the reported $\\sim 0.5$ ppm error.

  12. Role of 239Pu-induced chromosome alterations and mutated Ki-v-ras oncogene during liver-cancer induction in Chinese hamsters and mice

    International Nuclear Information System (INIS)

    Chromosome aberrations and mutated oncogenes can cause important changes during carcinogenesis. Model systems are being studied in which defined cellular and molecular changes can be quantitated and altered, and tumor frequency, type, and time of appearance can be evaluated. Dose-response relationships for Pu Citrate-induced chromosome aberrations and liver cancer were measured in Chinese hamsters. Chromosome aberrations increased linearly according to dose, with a slope of 4.8 x 10-1 aberrations/cell/Gy; liver-tumor incidence was 1.1 x 10-1 tumors/animal/Gy. The dose was calculated at the 50% survival time. The interaction between Pu and Ki-v-ras, an altered, dominant-acting oncogene, on the induction of liver cancer was measured in B6C3F1 mice. The neo oncogene was used as a negative control in these studies. The Ki-v-ras oncogene was inserted into a viral vector and incorporated into the livers of mice either 30 days before or after the incorporation of 239Pu. Compared with both the controls and the mice injected with a single insult, mortality increased in groups of animals that received combined exposure to oncogenes, CCl4, and 239Pu. The relationships between molecular and cellular damage and the induction of cancer is being defined in both mice and Chinese hamsters

  13. Hematoporphyrin derivative induced photodamage to brain tumor cells: Alterations in subcellular membranes

    Science.gov (United States)

    Sreenivasan, Rajesh; Joshi, Preeti G.; Joshi, Nanda B.

    1997-01-01

    Photoinduced structural and functional changes were studied in the subcellular membranes isolated from HpD treated cells. Changes in the limiting anisotropy of lipid specific probes 1,6,Diphenyl-1,3,5,hexatriene (DPH) and 1-(4-Trimethyl ammonium 1,6 diphenyl)-1,3,5,hexatriene toulene sulphonate (TMA-DPH) incorporated into the membrane were used to assess the structural alterations while changes in the activity of the marker enzymes were used to assess the functional alterations. Our results suggest that damage to the endoplasmic reticulum may play an important role in the photosensitization of brain tumor cells.

  14. Theta Frequency Stimulation Induces a Local Form of Late Phase LTP in the CA1 Region of the Hippocampus

    Science.gov (United States)

    Huang, Yan-You; Kandel, Eric R.

    2005-01-01

    The late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation. This form of LTP requires activation of transcription and translation and results in the cell-wide distribution of gene products that can be captured by other marked synapses. Here we report that theta frequency stimulation (5 Hz, 30 sec) applied to the…

  15. The buccal cytome and micronucleus frequency is substantially altered in Down's syndrome and normal ageing compared to young healthy controls

    International Nuclear Information System (INIS)

    The buccal micronucleus cytome assay was used to investigate biomarkers for DNA damage, cell death and basal cell frequency in buccal cells of healthy young, healthy old and young Down's syndrome cohorts. With normal ageing a significant increase in cells with micronuclei (P < 0.05, average increase +366%), karyorrhectic cells (P < 0.001, average increase +439%), condensed chromatin cells (P < 0.01, average increase +45.8%) and basal cells (P < 0.001, average increase +233%) is reported relative to young controls. In Down's syndrome we report a significant increase in cells with micronuclei (P < 0.001, average increase +733%) and binucleated cells (P < 0.001, average increase +84.5%) and a significant decrease in condensed chromatin cells (P < 0.01, average decrease -52%), karyolytic cells (P < 0.001, average decrease -51.8%) and pyknotic cells (P < 0.001, average decrease -75.0%) relative to young controls. These changes show distinct differences between the cytome profile of normal ageing relative to that for a premature ageing syndrome, and highlight the diagnostic value of the cytome approach for measuring the profile of cells with DNA damage, cell death and proportion of cells with proliferative potential (i.e., basal cells). Significant correlations amongst cell death biomarkers observed in this study were used to propose a new model of the inter-relationship of cell types scored within the buccal micronucleus cytome assay. This study validates the use of a cytome approach to investigate DNA damage, cell death and cell proliferation in buccal cells with ageing

  16. Mutagenesis by site-specific arylamine adducts in plasmid DNA: Enhancing replication of the adducted strand alters mutation frequency

    International Nuclear Information System (INIS)

    Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by >7-fold to 2.9% and of the AAF adduct by >12-fold to 0.75%. The AF adduct produced primarily single-base deletions in the absence of uracil but only base substitutions in the uracil-containing constructs. The AAF adduct produced mutations only in the uracil-containing DNA, which included both frame shifts and base substitutions. Mutations produced by both adducts were SOS dependent

  17. How-to-Do-It: Herbivory-Induced Alteration of Community Structure--A Classroom Model.

    Science.gov (United States)

    Porter, John R.

    1989-01-01

    Described is a laboratory study designed to demonstrate loss of vegetation, alterations in the species composition of a community, and the impoverishment of a community with respect to desirable food plant species when herbivore feeding exceeds the rate of vegetation regrowth. The laboratory uses a classroom aquarium. (CW)

  18. Alterations in biochemical and physiological characters in radiation-induced mutants of grain legumes

    International Nuclear Information System (INIS)

    Selected examples from different grain legumes are studied. The biochemically and physiologically detectable alterations in distintc characters as caused by the action of mutant genes are presented comparatively. The interactions between different mutant genes in order to evaluated the influence of the genotypic constitution on the expression of mutated genes are emphasized. (M.A.C.)

  19. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice.

    Science.gov (United States)

    Gracia-Rubio, Irene; Moscoso-Castro, Maria; Pozo, Oscar J; Marcos, Josep; Nadal, Roser; Valverde, Olga

    2016-02-01

    Early life experiences play a key role in brain function and behaviour. Adverse events during childhood are therefore a risk factor for psychiatric disease during adulthood, such as mood disorders. Maternal separation is a validated mouse model for maternal neglect, producing negative early life experiences that result in subsequent emotional alteration. Mood disorders have been found to be associated with neurochemical changes and neurotransmitter deficits such as reduced availability of monoamines in discrete brain areas. Emotional alterations like depression result in reduced serotonin availability and enhanced kynurenine metabolism through the action of indoleamine 2, 3-dioxygenase in response to neuroinflammatory factors. This mechanism involves regulation of the neurotransmitter system by neuroinflammatory agents, linking mood regulation to neuroinmunological reactions. In this context, the aim of this study was to investigate the effects of maternal separation with early weaning on emotional behaviour in mice. We investigated neuroinflammatory responses and the state of the tryptophan-kynurenine metabolic pathway in discrete brain areas following maternal separation. We show that adverse events during early life increase risk of long-lasting emotional alterations during adolescence and adulthood. These emotional alterations are particularly severe in females. Behavioural impairments were associated with microglia activation and disturbed tryptophan-kynurenine metabolism in brain areas related to emotional control. This finding supports the preeminent role of neuroinflammation in emotional disorders. PMID:26382758

  20. Polychlorinated biphenyls-induced alterations of thyroid hormone homeostasis and brain development in the rat.

    NARCIS (Netherlands)

    Morse, D.C.

    1995-01-01

    IntroductionThe work described in this thesis was undertaken to gain insight in the processes involved in the developmental neurotoxicity of polychlorinated biphenyls. It has been previously hypothesized that the alteration of thyroid hormone status by PCBs may be in part responsibl

  1. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats

    Directory of Open Access Journals (Sweden)

    Sadaf A Karbelkar

    2016-01-01

    Conclusion: Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also.

  2. Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging

    International Nuclear Information System (INIS)

    Microwave-induced thermoacoustic (TA) imaging combines the dielectric contrast of microwave imaging with the resolution of ultrasound imaging. Prior studies have only focused on time-domain techniques with short but powerful microwave pulses that require a peak output power in excess of several kilowatts to achieve sufficient signal-to-noise ratio (SNR). This poses safety concerns as well as to render the imager expensive and bulky with requiring a large vacuum radio frequency source. Here, we propose and demonstrate a coherent stepped-frequency continuous-wave (SFCW) technique for TA imaging which enables substantial improvements in SNR and consequently a reduction in peak power requirements for the imager. Constructive and destructive interferences between TA signals are observed and explained. Full coherency across microwave and acoustic domains, in the thermo-elastic response, is experimentally verified and this enables demonstration of coherent SFCW microwave-induced TA imaging. Compared to the pulsed technique, an improvement of 17 dB in SNR is demonstrated.

  3. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    Science.gov (United States)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming; Li, Bing-Xiang; Liu, Si-Yuan; Li, Hai

    2015-11-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).

  4. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms

    Directory of Open Access Journals (Sweden)

    Hyeon O Kim

    2008-09-01

    Full Text Available Hyeon O Kim1, Greg P Snyder1, Tyler M Blazey1, Richard E Race2, Bruce Chesebro2, Pamela J Skinner11Department of Veterinary and Biomedical Sciences, University of Minnesota, USA; 2NIH Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USAAbstract: Prion diseases are fatal neurodegenerative disorders that affect animals and humans. There is a need to gain understanding of prion disease pathogenesis and to develop diagnostic assays to detect prion diseases prior to the onset of clinical symptoms. The goal of this study was to identify genes that show altered expression early in the disease process in the spleen and brain of prion disease-infected mice. Using Affymetrix microarrays, we identified 67 genes that showed increased expression in the brains of prion disease-infected mice prior to the onset of clinical symptoms. These genes function in many cellular processes including immunity, the endosome/lysosome system, hormone activity, and the cytoskeleton. We confirmed a subset of these gene expression alterations using other methods and determined the time course in which these changes occur. We also identified 14 genes showing altered expression prior to the onset of clinical symptoms in spleens of prion disease infected mice. Interestingly, four genes, Atp1b1, Gh, Anp32a, and Grn, were altered at the very early time of 46 days post-infection. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as surrogate markers for the early detection and diagnosis of prion disease.Keywords: prion disease, microarrays, gene expression

  5. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    International Nuclear Information System (INIS)

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics

  6. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    Directory of Open Access Journals (Sweden)

    Lara Bull-Otterson

    Full Text Available Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD. Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  7. Frequencies of aneuploidy and dominant lethal mutations in young female mice induced by low dose γ-rays

    International Nuclear Information System (INIS)

    Relationship between aneuploidy, dominant lethal mutations and doses in young feral mice induced by low dose γ-rays was examined. The results suggest that the frequencies of aneuploidy of embryos increased at 0.15 Gy, but increases at over 0.50 Gy after irradiation in groups. The frequencies of aneuploidy and dominant lethal mutations increased with increasing doses and fitted linear relationship. This dose-response relationship of trisomic was not significant. The frequency of dominant lethal mutations induced by 60Co γ irradiation is 5.59%. The effect of dominant lethal mutation is higher than that of the aneuploidy

  8. Forced oscillation technique in the detection of smoking-induced respiratory alterations: diagnostic accuracy and comparison with spirometry

    Directory of Open Access Journals (Sweden)

    Alvaro Camilo Dias Faria

    2010-01-01

    Full Text Available INTRODUCTION: Detection of smoking effects is of utmost importance in the prevention of cigarette-induced chronic airway obstruction. The forced oscillation technique offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. However, there have been no data concerning the use of the forced oscillation technique to evaluate respiratory mechanics in groups with different degrees of tobacco consumption. OBJECTIVES: (1 to evaluate the ability of the forced oscillation technique to detect smoking-induced respiratory alterations, with special emphasis on early alterations; and (2 to compare the diagnostic accuracy of the forced oscillation technique and spirometric parameters. METHODS: One hundred and seventy subjects were divided into five groups according to the number of pack-years smoked: four groups of smokers classified as 60 pack-years and a control group. The four groups of smokers were compared with the control group using receiver operating characteristic (ROC curves. RESULTS: The early adverse effects of smoking in the group with 60 pack-years, the diagnostic performance of the forced oscillation technique was similar to that observed with spirometry. CONCLUSIONS: This study revealed that forced oscillation technique parameters were able to detect early smoking-induced respiratory involvement when pathologic changes are still potentially reversible. These findings support the use of the forced oscillation technique as a versatile clinical diagnostic tool in helping with chronic obstructive lung disease prevention, diagnosis, and treatment.

  9. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  10. Allergic lung inflammation alters neither susceptibility to Streptococcus pneumoniae infection nor inducibility of innate resistance in mice

    Directory of Open Access Journals (Sweden)

    Evans Christopher M

    2009-07-01

    Full Text Available Abstract Background Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria. Methods To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days. Results We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response

  11. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats.

    Science.gov (United States)

    Sandhya, T; Sowjanya, J; Veeresh, B

    2012-05-01

    Early prenatal or post natal exposure to environmental insults such as valproic acid (VPA), thalidomide and ethanol could induce behavioral alterations similar to autistic symptoms. Bacopa monniera, a renowned plant in ayurvedic medicine is useful in several neurological disorders. The purpose of the present study was to evaluate the effect of B. monniera on VPA induced autism. On 12.5 day of gestation the female pregnant rats were divided into control and VPA treated groups. They were administered saline/VPA (600 mg/kg, i.p.) respectively and allowed to raise their own litters. Group I-male pups of saline treated mothers. On postnatal day (PND) 21 VPA induced autistic male pups were divided into two groups (n = 6); Group II-received saline and Group III-received B. monniera (300 mg/kg/p.o.) from PND 21-35. Behavioral tests (nociception, locomotor activity, exploratory activity, anxiety and social behavior) were performed in both adolescence (PND 30-40) and adulthood (PND 90-110) period. At the end of behavioral testing animals were sacrificed, brain was isolated for biochemical estimations (serotonin, glutathione, catalase and nitric oxide) and histopathological examination. Induction of autism significantly affected normal behavior, increased oxidative stress and serotonin level, altered histoarchitecture of cerebellum (decreased number of purkinje cells, neuronal degeneration and chromatolysis) when compared with normal control group. Treatment with B. monniera significantly (p < 0.05) improved behavioral alterations, decreased oxidative stress markers and restored histoarchitecture of cerebellum. In conclusion, the present study suggests that B. monniera ameliorates the autistic symptoms possibly due to its anti-anxiety, antioxidant and neuro-protective activity. PMID:22322665

  12. Postnatal fate of prenatal-induced fetal alterations in laboratory animals.

    Science.gov (United States)

    Hofmann, Thomas; Buesen, Roland; Schneider, Steffen; van Ravenzwaay, Bennard

    2016-06-01

    Currently it is common practice to evaluate the developmental toxicity hazard of chemicals or pharmaceuticals by evaluation of fetuses after administration of the compound to pregnant animals. These studies are designed to provide possible compound-related fetal changes near term, which are usually classified into malformations or variations. Malformations, but not variations are expected to adversely affect the survival or health. Therefore, classification has striking different regulatory consequences. For categorization as variation reversibility is an important criterion, but it is usually not examined in a standard guideline study. Although this issue has already been recognized long time ago, data dealing with the postnatal reversibility of fetal alterations are still rare. In the current review, literature data, regulatory documents as well as in-house data were compiled. Beside skeletal alterations of skull, vertebral column, ribs, shoulder and pelvic girdle, and extremities, kidney and heart defects are discussed and assessed. PMID:27094378

  13. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy.

    Science.gov (United States)

    Lozupone, Catherine A; Rhodes, Matthew E; Neff, Charles P; Fontenot, Andrew P; Campbell, Thomas B; Palmer, Brent E

    2014-07-01

    Consistent with an important role for adaptive immunity in modulating interactions between intestinal bacteria and host, dramatic alteration in the composition of gut microbes during chronic HIV infection was recently reported by ourselves and independently by four other research groups. Here we evaluate our results in the context of these other studies and delve into the effects of antiretroviral therapy (ART). Although gut microbiota of HIV-positive individuals on ART usually does not resemble that of HIV-negative individuals, the degree to which ART restores health-associated prevalence varies across bacterial taxa. Finally, we discuss potential drivers and health consequences of gut microbiota alterations. We propose that understanding the mechanism of HIV-associated gut microbiota changes will elucidate the role of adaptive immunity in shaping gut microbiota composition, and lay the foundation for therapeutics targeting the microbiota to attenuate HIV disease progression and reduce the risk of gut-linked disease in people with HIV. PMID:25078714

  14. Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology.

    Directory of Open Access Journals (Sweden)

    Hamid Gholami Pourbadie

    Full Text Available The entorhinal cortex (EC is one of the earliest affected brain regions in Alzheimer's disease (AD. EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs, nimodipine and isradipine, were investigated. The amyloid beta (Aβ 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days, almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.

  15. Polychlorinated biphenyls-induced alterations of thyroid hormone homeostasis and brain development in the rat.

    OpenAIRE

    Morse, D.C.

    1995-01-01

    IntroductionThe work described in this thesis was undertaken to gain insight in the processes involved in the developmental neurotoxicity of polychlorinated biphenyls. It has been previously hypothesized that the alteration of thyroid hormone status by PCBs may be in part responsible for the developmental neurotoxicity of these compounds in humans (Rogan et al. 1986). This is a logical hypothesis, given the well-described effects of PCBs on plasma thyroid hormone levels in adult animals, and ...

  16. Diet-Induced Weight Loss alters Functional Brain Responses during an Episodic Memory Task

    OpenAIRE

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 mon...

  17. Chlorpyrifos-induced Histopathological Alterations in Duttaphrynus melanostictus (Schneider 1799) Tadpoles: Evidence from Empirical Trials

    OpenAIRE

    M. G. D. K. Bandara; M. R. Wijesinghe; W D Ratnasooriya; A. A. H. Priyani

    2012-01-01

    This paper reports the histopathological responses of the gill, liver and tail muscle tissues in tadpoles of the Asian Common Toad Duttaphrynus melanostictus (Schneider, 1799) exposed to chlorpyrifos a common organophosphorus pesticide. Tadpoles of Gosner stages 24-26 were continuously exposed to low, mid and high (500, 1000 and 1500 µgl–1) concentrations of chlorpyrifos for two weeks. Histological alterations in the tissues of the surviving larvae were microscopically examined both at the en...

  18. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2011-01-01

    Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing...... are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways...

  19. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction

    OpenAIRE

    Mizuno, Yuta; Nagano‐Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2015-01-01

    Abstract The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as l‐glutamate. During l‐glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor l‐glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; ac...

  20. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).

    Science.gov (United States)

    Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves

    2015-08-01

    Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for

  1. Altered rectal sensory response induced by balloon distention in patients with functional abdominal pain syndrome

    OpenAIRE

    Kudaira Miwako; Nozu Tsukasa

    2009-01-01

    Abstract Background Functional abdominal pain syndrome (FAPS) has chronic unexplained abdominal pain and is similar to the psychiatric diagnosis of somatoform pain disorder. A patient with irritable bowel syndrome (IBS) also has chronic unexplained abdominal pain, and rectal hypersensitivity is observed in a majority of the patients. However, no reports have evaluated the visceral sensory function of FAPS precisely. We aimed to test the hypothesis that FAPS would show altered visceral sensati...

  2. Steady-State Methadone Blocks Cocaine Seeking and Cocaine-Induced Gene Expression Alterations in the Rat Brain

    OpenAIRE

    Leri, Francesco; Zhou, Yan; Goddard, Benjamin; Levy, AnneMarie; Jacklin, Derek; Kreek, Mary Jeanne

    2008-01-01

    To elucidate the effects of steady-state methadone exposure on responding to cocaine conditioned stimuli and on cocaine-induced alterations in central opioid, hypocretin/orexin, and D2 receptor systems, male Sprague-Dawley rats received intravenous infusions of 1 mg/kg/inf cocaine paired with an audiovisual stimulus over three days of conditioning. Then, mini pumps releasing vehicle or 30 mg/kg/day methadone were implanted (SC), and lever pressing for the stimulus was assessed in the absence ...

  3. Alterations in beta-islets of Langerhans in alloxan-induced diabetic rats by marine Spirulina platensis.

    Science.gov (United States)

    Muthuraman, P; Senthilkumar, R; Srikumar, K

    2009-12-01

    Marine Spirulina platensis may potentially influence the metabolic process in animal cells, and the effect of marine Spirulina platensis in normal and alloxan-induced diabetic rats was therefore investigated. Normal and diabetic rats (albino Wistar strain) were orally administered marine Spirulina platensis for 30 days and their blood levels of glucose and insulin and body weight changes were determined. Pancreatic histopathology was also noted. Treatment with marine Spirulina platensis caused significant alterations in the content of these indicators and therefore in the antidiabetic capacity of the treated animals compared to control rats. PMID:19912059

  4. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  5. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki;

    2015-01-01

    analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE), and...... induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death....

  6. Molecular alterations underlying the spontaneous and γ-ray-induced point mutations at the white locus of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    The white locus in D.Melanogaster was selected as a target gene for the study of the mutational spectra of spontaneously arising and radiation-induced gene mutations in a whole organism. Analysis of 6 spontaneous and 73 γ-ray-induced white mutations by a combination of cytological, genetic and molecular techniques revealed that on the chromosomal and genetic levels all spontaneous mutations showed themselves to be point mutants. The share of such mutants among all heritable radiation-induced gene mutations is about 40%, whereas the rest ones are due to exchange breaks (8%) as well as multilocus, single-locus or partial-locus (intragenic) deletions (52%). The DNAs from 4 spontaneous and 17 γ-ray-induced point mutants were analysed by Southern blot-hybridization. The three spontaneous and 7 radiation mutants showed an altered DNA sequence at the left (distal) half of the white gene due to insertion or DNA rearrangement. The rest (58%) of the radiation-induced point mutations did not indicate any alternations in this part of the gene as detected by this technique and probes employed. 15 refs., 3 figs., 1 tab

  7. Ethanol-induced alterations in sup 14 C-glucose utilization: Modulation by brain adenosine in mice

    Energy Technology Data Exchange (ETDEWEB)

    Anwer, J.; Dar, M.S. (East Carolina Univ., Greenville, NC (United States))

    1992-02-26

    The possible role of brain adenosine (Ado) in acute ethanol-induced alteration in glucose utilization in the cerebellum and brain stem was investigated. The slices were incubated for 100 min in a glucose medium in Warburg flasks using {sup 14}C-glucose as a tracer. Trapped {sup 14}CO{sub 2} was counted to estimate glucose utilization. Ethanol markedly increased the glucose utilization in both areas of brain. Theophylline, an Ado antagonist, significantly reduced ethanol-induced increase in glucose utilization in both brain areas. Ado agonist CHA significantly accentuated ethanol-induced increase in glucose utilization in both motor areas. Ado agonist CHA significantly accentuated ethanol-induced increase in glucose utilization in both motor areas. Ethanol was still able to produce a smaller but significant increase in glucose utilization in both brain areas when theophylline and CHA were given together, suggesting an additional mechanism. Collectively, the data indicate that ethanol-induced glucose utilization in the cerebellum and brain stem is modulated by brain Ado receptor and by non-adenosinergic mechanism.

  8. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    Science.gov (United States)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  9. Zingiber Officinale Alters 3,4-methylenedioxymethamphetamine-Induced Neurotoxicity in Rat Brain

    OpenAIRE

    Mehdizadeh, Mehdi; Dabaghian, Fataneh; Nejhadi, Akram; Fallah-huseini, Hassan; Choopani, Samira; Shekarriz, Nima; Molavi, Nima; Basirat, Arghavan; Mohammadzadeh Kazorgah, Farzaneh; Samzadeh-Kermani, Alireza; Soleimani Asl, Sara

    2012-01-01

    Objective: The spice Zingiber officinale or ginger possesses antioxidant activity and neuroprotective effects. The effects of this traditional herbal medicine on 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity have not yet been studied. The present study considers the effects of Zingiber officinale on MDMA-induced spatial memory impairment and apoptosis in the hippocampus of male rats. Materials and Methods: In this experimental study, 21 adult male Sprague Dawley rats (200-250...

  10. Stress-Induced Alterations in Coagulation : Assessment of a New Hemoconcentration Correction Technique

    OpenAIRE

    Anthony W. Austin; Wirtz, Petra H; Stephen M. Patterson; Stutz, Monika; von Känel, Roland

    2012-01-01

    For the examination of psychological stress effects on coagulation, the Dill and Costill correction (DCC) for hemoconcentration effects has been used to adjust for stress-induced plasma volume changes. Although the correction is appropriate for adjusting concentrations of various large blood constituents, it may be inappropriate for time-dependent or functional coagulation assays. Two new plasma reconstitution techniques for correcting hemoconcentration effects on stress-induced changes in co...

  11. Alteration in frequency and function of CD4⁺CD25⁺FOXP3⁺ regulatory T cells in patients with immune thrombocytopenic purpura.

    Directory of Open Access Journals (Sweden)

    Nargess Arandi

    2014-04-01

    Full Text Available Immune thrombocytopenic purpura (ITP is an autoimmune bleeding disorder characterized by production of auto-antibodies against platelet antigens. It is obvious that regulatory T cells (Tregs have a major role in controlling immune homeostasis and preventing autoimmunity.To investigate the frequency and functions of Tregs, twenty ITP patients and twenty age- and sex-matched healthy controls were recruited. The peripheral blood mononuclear cells were isolated and the proportion of Tregs was defined by flow cytometry method. The expression of immune-regulatory markers, cytotoxic T-lymphocyte associated antigen-4 (CTLA-4 and glucocorticoid induced tumor necrosis factor receptor (GITR were also assessed by quantitative Real-time PCR TaqMan method. For evaluation of Treg function, Tregs were enriched and their ability to inhibit proliferation of T cells was measured and levels of immune-regulatory cytokines IL-10 and TGF-β were also measured.Results showed that the frequency of Tregs and the mean fluorescence intensity of FOXP3 protein significantly decreased in ITP patients compared to those in healthy controls. In addition, there was a significant reduction in relative expression of both CTLA-4 and GITR mRNA in ITP patients (P=0.02 and P=0.006, respectively. The suppressive function of Tregs also diminished in ITP patients compared to that in controls. Both IL-10 and TGF-β cytokines were produced in lower amounts in ITP patients than controls.It could be concluded that alteration in Treg frequency and functional characteristics might be responsible for loss of self-tolerance and subsequently destructive immune responses observed in ITP patients.

  12. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    2015-11-01

    Full Text Available Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD, but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID. Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr scores ranged from 2 to 4 and their UPDRS III scores were 28.5±5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7±1.6. Microelectrode recording was performed in the globus pallidus internus (GPi and subthalamic nucleus (STN during pallidotomy (n=12 or STN deep brain stimulation (DBS; bilateral, n=12; unilateral, n=6. The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs and the corresponding coefficient of variation (CV. Results: A total of 295 neurons were identified from the GPi (n=12 and STN (n=18. These included 26 (8.8% highly grouped discharge, 30 (10.2% low frequency firing, 78 (26.4% rapid tonic discharge, 103 (34.9% irregular activity, and 58 (19.7% tremor-related activity. There were significant differences between the two groups (P<0.05 for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID.

  13. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  14. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes

    Science.gov (United States)

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  15. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  16. Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers

    Science.gov (United States)

    Motloch, Pavel; Alvarez-Muñiz, Jaime; Privitera, Paolo; Zas, Enrique

    2016-02-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium—like ice, salt, soil, or regolith—has been extensively investigated as a promising technique to search for ultrahigh-energy neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth's surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to ˜1 GHz . These properties encourage further work to evaluate the potential of a large-aperture ultrahigh-energy neutrino experiment based on the detection of transition radiation.

  17. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    CERN Document Server

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  18. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides

    OpenAIRE

    Dahmen, Volker; Kriehuber, Ralf

    2012-01-01

    Purpose: Triplex-forming oligonucleotides (TFO) bind to the DNA double helix in a sequence-specific manner. Therefore, TFO seem to be a suitable carrier for Auger electron emitters to damage exclusively targeted DNA sequences, e.g., in tumor cells. We studied the influence of I-125 labeled TFO with regard to cell survival and induction of DNA double-strand breaks (DSB) using TFO with different genomic targets and target numbers. Furthermore, the ability of TFO to alter the gene expression of ...

  19. Vascular Dysfunction Induced in Offspring by Maternal Dietary Fat Involves Altered Arterial Polyunsaturated Fatty Acid Biosynthesis

    OpenAIRE

    Kelsall, Christopher J.; Hoile, Samuel P.; Irvine, Nicola A.; Masoodi, Mojgan; Torrens, Christopher; Lillycrop, Karen A.; Calder, Philip C; Clough, Geraldine F.; Hanson, Mark A; Burdge, Graham C

    2012-01-01

    Nutrition during development affects risk of future cardiovascular disease. Relatively little is known about whether the amount and type of fat in the maternal diet affect vascular function in the offspring. To investigate this, pregnant and lactating rats were fed either 7%(w/w) or 21%(w/w) fat enriched in either18:2n-6, trans fatty acids, saturated fatty acids, or fish oil. Their offspring were fed 4%(w/w) soybean oil from weaning until day 77. Type and amount of maternal dietary fat altere...

  20. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 430C and 450C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 450C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 370C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 410C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  1. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  2. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    International Nuclear Information System (INIS)

    Highlights: ► A HK-2 cells model of inflammation-induced acute kidney injury. ► Two oximetry methods: high resolution respirometry and ESR spectroscopy. ► Oxygen consumption rates of renal cells decrease when treated with LPS. ► Cells do not recover normal respiration when the LPS treatment is removed. ► This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  3. Arsenic induced clinico-hemato-pathological alterations in broilers and its attenuation by vitamin e and selenium

    International Nuclear Information System (INIS)

    Present study was carried out to know the arsenic (As) induced toxico-pathological alterations in broiler chicks and their attenuation with vitamin E (Vit E) and selenium (Se). A total of 90 day-old broiler chicks were equally distributed into 5 groups. Groups 1-4 were administered As at 50 mg/kg BW daily through feed for 30 days. In addition to A , groups 2 to 4 received Vitamin E at 150 mg/kg BW, selenium at 0.25 mg/kg BW and Vitamin E plus selenium, respectively. Group 5 (Control) received normal drinking water for 30 days. Dullness, depression, open mouth breathing, increased thirst; ruffled feathers, pale comb, skin irritation and watery diarrhea were the most striking clinical signs. The body weight and feed intake was significantly decreased in treated birds. The erythrocyte counts, hemoglobin concentration and packed cell volume decreased (P<0.05) in treated broilers with As or As with Se and Vit E. Grossly pale and hemorrhagic liver and swollen kidneys were observed in As treated birds. Arsenic treated groups showed significant decrease in serum. Histopathologically, liver exhibited congestion and cytoplasmic vacuolation. In kidneys, condensation of tubular epithelium nuclei, epithelial cell necrosis, increased urinary spaces, sloughing of tubules from basement membrane and cast deposition were observed. In conclusion As induced toxico-pathological alterations and vitamin E and selenium partially ameliorate the toxic effects in broilers chicks. (author)

  4. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    Science.gov (United States)

    Dautta, Manik; Faruque, Rumana Binte; Islam, Rakibul

    2016-07-01

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signals in the midst of these low-frequency interfering signals. Both the Range of Detection (Rd) and the Probability of Detection (Pd) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.

  5. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity.

    Science.gov (United States)

    Hayley, S; Poulter, M O; Merali, Z; Anisman, H

    2005-01-01

    Stressful events promote neurochemical changes that may be involved in the provocation of depressive disorder. In addition to neuroendocrine substrates (e.g. corticotropin releasing hormone, and corticoids) and central neurotransmitters (serotonin and GABA), alterations of neuronal plasticity or even neuronal survival may play a role in depression. Indeed, depression and chronic stressor exposure typically reduce levels of growth factors, including brain-derived neurotrophic factor and anti-apoptotic factors (e.g. bcl-2), as well as impair processes of neuronal branching and neurogenesis. Although such effects may result from elevated corticoids, they may also stem from activation of the inflammatory immune system, particularly the immune signaling cytokines. In fact, several proinflammatory cytokines, such as interleukin-1, tumor necrosis factor-alpha and interferon-gamma, influence neuronal functioning through processes involving apoptosis, excitotoxicity, oxidative stress and metabolic derangement. Support for the involvement of cytokines in depression comes from studies showing their elevation in severe depressive illness and following stressor exposure, and that cytokine immunotherapy (e.g. interferon-alpha) elicited depressive symptoms that were amenable to antidepressant treatment. It is suggested that stressors and cytokines share a common ability to impair neuronal plasticity and at the same time altering neurotransmission, ultimately contributing to depression. Thus, depressive illness may be considered a disorder of neuroplasticity as well as one of neurochemical imbalances, and cytokines may act as mediators of both aspects of this illness. PMID:16154288

  6. Positional and expressive alteration of prohibitin during the induced differentiation of human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Dong-Hui Xu; Jian Tang; Qi-Fu Li; Song-Lin Shi; Xiang-Feng Chen; Ying Liang

    2008-01-01

    AIM: To explore the existence and distribution of prohibitin (PHB) in nuclear matrix and its co-localization with products of some related genes during the differentiation of human hepatocarcinoma SMMC-7721cells.METHODS: The nuclear matrix of the SHHC-7721 cells cultured with or without 5 x 10-3 mmol/L hexamethylene bisacetamide (HMBA) was selectively extracted.Western blot was used to analyze the expression of PHB in nuclear matrix; imrnunofluorescence microscope observation was used to analyze the distribution of PHB in cell. LCSM was used to observe the co-localization of PHB with products of oncogenes and tumor suppressor genes.RESULTS: Western blot analysis showed that PHB existed in the composition of nuclear matrix proteins and was down-regulated by HMBA treatment.Immunofluorescence observation revealed that PHB existed in the nuclear matrix, and its distribution regions and expression levels were altered after HMBA treatment. Laser scanning confocal microscopy revealed the co-localization between PHB and the products of oncogenes or tumor repression genes including c-fos, c-myc, p53 and Rb and its alteration of distributive area in the cells treated by HMBA.CONCLUSION: These data confirm that PHB is a nuclear matrix protein, which is located in the nuclear matrix, and the distribution and expression of PHB and its relation with associated genes may play significant roles during the differentiation of SMHC-7721 cells.

  7. Altered miRNAs expression profiling in sperm of mice induced by fluoride.

    Science.gov (United States)

    Sun, Zilong; Zhang, Wen; Li, Sujuan; Xue, Xingchen; Niu, Ruiyan; Shi, Lei; Li, Baojun; Wang, Xiaowen; Wang, Jundong

    2016-07-01

    The reproductive toxicity of fluoride has become a major concern in the world. Fluoride can decrease the abilities of sperm capacitation, hyperactivation, chemotaxis, acrosome reaction and fertilization, but the studies on the responses of sperm small noncoding RNAs (sncRNAs), especially miRNAs, to fluoride exposure are lacking. miRNAs are demonstrated to influence sperm quality and male fertility by regulating gene expression at post-transcriptional levels or translational repression. The objective of this study is to analyze miRNA profiling in sperm of mice administrated with 25 and 100 mg L(-1) sodium fluoride (NaF) for 60 d using high-throughput sequencing technology. Along with reduced sperm concentration, survival, motility, and mitochondrial membrane potential, 31 differentially expressed known miRNAs were identified in fluoride groups, compared with the control group. 671 predicted target genes against the 16 altered miRNAs were mainly involved in protease inhibitor activity, apoptosis, ubiquitin mediated proteolysis, and signaling pathways of calcium, JAK-STAT, MAPK, p53, Wnt, which were proved to be directly related to sperm quality. These findings suggested that the altered sperm miRNAs could be potential biomarkers for fluoride reproductive toxicity. PMID:27108368

  8. Ethanol in utero induces epithelial cell damage and altered kinetics in the developing rat intestine.

    Science.gov (United States)

    Estrada, G; Del Rio, J A; García-Valero, J; López-Tejero, M D

    1996-11-01

    The effect of prenatal ethanol exposure on the intestinal maturation of rat fetuses was investigated to understand the nutritional alterations found in the offspring of alcoholic mothers. Female Wistar rats were maintained on solid diet and 25% ethanol solution as drinking fluid during pregnancy, and non-alcoholic isocaloric pregnant mothers were used as controls. At birth, intestines from unsuckled pups were removed for study. The weight and length of the intestine decreased significantly when ethanol was present in utero. Ultrastructural evaluation of the epithelium revealed loss of contact between neighboring enterocytes and abnormal dilation of the cisternae of the Golgi apparatus in ethanol-exposed pups. Further, increased lysosome-like vesiculation and enhanced lysosomal beta-galactosidase activity was observed in these neonates. The total number of absorptive enterocytes in the epithelium was reduced by 30% in ethanol-exposed neonates as compared to controls, due to altered cell growth and death during fetal life. Ethanol in utero stimulated epithelial cell migration which compensated cell loss, as demonstrated by 5'-Bromodeoxyuridine labeling. These findings could have important implications for the assimilation of nutrients and failure to thrive in infants with fetal alcohol syndrome. PMID:9035346

  9. NOXA-induced alterations in the Bax/Smac axis enhance sensitivity of ovarian cancer cells to cisplatin.

    Directory of Open Access Journals (Sweden)

    Chao Lin

    Full Text Available Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy.

  10. The Protective Value of Hesperidin in Mitigating the Biochemical Perturbations and Trace Element alterations induced by Acrylonitrile in Rats

    Directory of Open Access Journals (Sweden)

    N. M. Abdallah*, N. E. Amien**, M. R. Mohamed*, A. S. Nada**, M. A. Mohamed

    2013-07-01

    Full Text Available Objective: Acrylonitrile (a chemical pollutant has been reported to induce harmful effects in humans. Therefore, this study was designed to evaluate the protective effects of hesperidin, a natural bioflavonoid, against the toxicity induced by acrylonitrile (AN in rats. Material&Methods: This study includes determination of serum total scavenger capacity “TSC”, liver enzymes (aspartate transaminase “ASAT”, alanine transaminase “ALAT” and alkaline phosphatase “ALP”, total proteins, albumin, glucose, creatinine, urea and lipid profile. Moreover, liver and kidney homogenate glutathione content “GSH”, catalase, superoxide dismutase “SOD”, glutathione peroxidase “GPx”, malondialdehyde “MDA” and some minerals were estimated. Results: revealed that administration of AN (orally 50mg/ kg b.wt. induced alterations in TSC level as well as liver, kidney and lipid profiles. In addition, a decrease in GSH-content and catalase, SOD and GPx activities was observed with an increase in MDA levels in both liver and kidney. There was disturbance in certain minerals such as Cu, Zn, Fe, Se, Ca, Mg and Mn. Conclusion: particularly, Hesperidin administration (orally 200 mg/kg b.wt. ameliorates the oxidative stress induced by AN, consistent with the reported antioxidant activity of hesperidin

  11. Bio-molecular alterations induced by a chemical or radiating stress in isolated human cells

    International Nuclear Information System (INIS)

    After having recalled some aspects of radiobiology (effects of ionizing radiations, molecular targets of radiations, cellular responses with respect to the radiation), the author discusses various aspects of radio-sensitivity: intrinsic radio-sensitivity of tumoral and normal cells, DNA injuries and in vitro radio-sensitivity, genes of susceptibility to ionizing radiations, clustered injuries. Then she reports investigations performed by infrared micro-spectroscopy: characterization of pathological lines, of biological processes, of oxidative injuries induced by xenobiotics, of injuries induced by ionizing radiations

  12. Motor Alterations Induced by Chronic 4-Aminopyridine Infusion in the Spinal Cord In vivo: Role of Glutamate and GABA Receptors

    Science.gov (United States)

    Lazo-Gómez, Rafael; Tapia, Ricardo

    2016-01-01

    Motor neuron (MN) degeneration is the pathological hallmark of MN diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure, and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP) in the rat hippocampus induces seizures and neurodegeneration, and that AMPA infusion in the spinal cord produces paralysis and MN death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on MN survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2–3 h after the implant, which ameliorated spontaneously within 6–7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate MN degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces MN death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of MN excitability in the spinal cord. PMID:27242406

  13. Effect of the heme oxygenase inducer hemin on blood haemostasis measured by high-frequency ultrasound.

    Science.gov (United States)

    Rochefort, Gaël Y; Libgot, Rachel; Desbuards, Nicolas; Schlecht, Deborah; Halimi, Jean-Michel; Ossant, Frederic; Eder, Veronique; Antier, Daniel

    2007-12-01

    1. Heme compounds, like hemin, a heme oxygenase-1 inducer, are used in the treatment of acute porphyria treatment. The side-effects of hemin on haemostasis have been reported. To address those effects, in the present study we used a sensitive, high-frequency ultrasound technique to record acoustic velocity and to investigate whole blood clotting in Wistar rats treated chronically with hemin (50 mg/kg per day). 2. The hemin-induced disturbances in haemostasis measured were comparable to the heparin reference treatment, with a significant decrease in clotting velocity in both groups compared with controls (e.g. the time to clot was 40 +/- 5, 53 +/- 13 and 10 +/- 2 min, respectively; P Precautions must be taken when using high doses of hemin or in the treatment of bleeding diseases. 3. Further investigations are required to explore the effects of hemin in thrombosis models, because it could be a promising 'old drug' for the treatment of venous thrombosis in patients. PMID:17973866

  14. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    Directory of Open Access Journals (Sweden)

    van Rijn Clementina M

    2011-04-01

    Full Text Available Abstract Background High frequency electrical stimulation (HFS of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG. To this end we measured evoked potentials in response to noxious electrical pinprick-like stimuli applied in the heterotopic skin area before, directly after and 30 minutes after HFS. Results We observed potential cortical electrophysiological correlates of heterotopic facilitation. Two different cortical correlates were found; the first one was a lateralized effect, i.e. a larger N100 amplitude on the conditioned arm than the control arm 30 minutes after end of HFS. This was comparable with the observed lateralized effect of visual analogue scale (VAS scores as response to the mechanical punctate stimuli. The second correlate seems to be a more general (non-lateralized effect, because the result affects both arms. On average for both arms the P200 amplitude increased significantly 30 minutes after end of HFS with respect to baseline. Conclusions We suggest that for studying heterotopic nociceptive facilitation the evoked brain response is suitable and relevant for investigating plasticity at the level of the brain and is perhaps a more sensitive and reliable marker than the perceived pain intensity (e.g. VAS.

  15. Frequency of anti-tuberculous therapy-induced hepatotoxicity in patients and their outcome

    International Nuclear Information System (INIS)

    Tuberculosis (TB) is a very common droplet infection especially in the northern areas. If untreated, the disease may be fatal within 5 years in more than half of cases. To study the frequency of anti-tuberculous therapy (ATT) induced hepato-toxicity was the subject of the present hospital based descriptive study. The study was conducted in Medical Unit, Ayub Teaching Hospital and patients with diagnosed Tuberculosis in whom ATT was initiated were included in the study. The subsequent development of elevated liver enzyme levels and hepatitis, amongst some members of the study group; was diagnosed, with the help of clinical findings and Liver Function Tests (LFT's) and were dealt with according to severity. Out of the 500 patients studied 277 (55.4%) were male and 223 (44.6%) were female, 203 (40.5%) were in age group 21-35 years, 136 (27.1%) in age group 36-50 years, 141 (28.1%) in age group 51-65 years while 20 (4%) were above 65 years of age. Out of them 40 (8%) developed hepatotoxicity, 21 (4.2%) patients amongst the study group developed overt hepatitis, 20 (4%) of them made an uneventful recovery while 1 (0.2%) died of Fulminant Hepatic Failure (FHF). ATT-induced hepato-toxicity, was frequently encountered in patients put on ATT. (author)

  16. Using BrdU labelling to detect the HPRT gene mutation frequencies induced by γ rays

    International Nuclear Information System (INIS)

    Using BrdU labelling to detect the HPRT gene mutation frequencies (MFs) of a normal adult induced by γ rays of different doses and to analysis the relationship between the HPRT gene MFs and the radiation doses. Blood was drawn via the vein of a normal adult and was equally divided into five groups. The blood was exposed to γ rays with a dose range from 0.0 Gy to 4.0 Gy respectively. After having cultivated the whole blood, the authors got the HPRT gene MFs of the lymphocytes. With the increase of the doses, the MFs of the HPRT gene rose accordingly. The results also showed that there is a linear-square relationship between the doses of the γ ray and the MFs of the HPRT gene. According to the results, the authors may conclude that BrdU labelling method is a quick, simple and relatively sensitive method for detecting the HPRT gene mutations of somatic cells induced by external radiation exposure and HPRT gene mutation may be used as a radiobiological dosimeter

  17. Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recently, ambient vibration test (AVT) is widely used to estimate dynamic characteristics of large civil structures. Dynamic characteristics can be affected by various environmental factors such as humidity, intensity of wind, and temperature. Besides these environmental conditions, the mass of vehicles may change the measured values when traffic-induced vibration is used as a source of AVT for bridges. The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges; (1) three-span suspension bridge (128m+404m+128m), (2) five-span continuous steel box girder bridge (59m+3@95m+59m), (3) simply supported plate girder bridge (46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field. These recorded histories are divided into individual vibrations and are combined into two groups according to the level of vibration; one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars. Separate processing of the two groups of signals shows that, for the middle and long-span bridges, the difference can be hardly detected, but, for the short span bridges whose mass is relatively small, the measured natural frequencies can change up to 5.4%.

  18. BURN-INDUCED ALTERATIONS IN TOLL-LIKE RECEPTOR-MEDIATED RESPONSES BY BRONCHOALVEOLAR LAVAGE CELLS

    OpenAIRE

    Richard F. Oppeltz; Rani, Meenakshi; Zhang, Qiong; Schwacha, Martin G.

    2011-01-01

    Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung.

  19. Cognitive awareness of carbohydrate intake does not alter exercise-induced lymphocyte apoptosis

    OpenAIRE

    James Wilfred Navalta; Brian Keith McFarlin; Scott Lyons; Scott Wesley Arnett; Mark Anthony Schafer

    2011-01-01

    OBJECTIVE: The purpose of this investigation was to determine whether cognitive awareness of carbohydrate beverage consumption affects exercise‐induced lymphocyte apoptosis, independent of actual carbohydrate intake. INTRODUCTION: Carbohydrate supplementation during aerobic exercise generally protects against the immunosuppressive effects of exercise. It is not currently known whether carbohydrate consumption or simply the knowledge of carbohydrate consumption also has that effect. METHODS: E...

  20. Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins.

    Science.gov (United States)

    Zunquin, Gautier; Rouleau, Vincent; Bouhallab, Said; Bureau, Francois; Theunynck, Denis; Rousselot, Pierre; Arhan, Pierre; Bougle, Dominique

    2006-05-01

    Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload. PMID:17390518

  1. Induced mutations for yield and yield components showing altered partitioning of dry matter

    International Nuclear Information System (INIS)

    Mutants for yield or yield components and their high yielding derivatives of blackgram, pigeonpea and groundnut were analysed for plant dry matter and its partitioning. None of the genotypes analysed showed an increased dry matter yield for the same crop duration, although the partitioning was altered. In blackgram, a short duration (about 75 days) crop, a higher grain yield was associated with increased plant dry matter. A higher pod yield in bunch type groundnut was associated with decreased plant dry matter and an improved harvest index compared with the original parent Spanish Improved. A larger seed size in pigeonpea mutants contributed to a higher yield in some environments where the number of pods was not reduced. In other environments, a larger seed size was compensated for by a reduction in the pod number, but no gain in yield was realized. (author). 9 refs, 1 fig., 7 tabs

  2. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain;

    2009-01-01

    . Skeletal muscle insulin resistance was observed after 12 wk of HFD. Na(+)-K(+)-ATPase alpha(1)-subunit protein expression was increased 1.6-fold (P <0.05), whereas alpha(2)- and beta(1)-subunits and protein expression were decreased twofold (P <0.01) in parallel with decrease in plasma membrane Na......) and alpha(1) mRNA expression were increased after HFD and restored by ET. DNA binding activity of Sp-1, a transcription factor involved in the regulation of alpha(2)- and beta(1)-subunit expression, was decreased after HFD. ET increased phosphorylation of the Na(+)-K(+)-ATPase regulatory protein...... phospholemman. Phospholemman mRNA and protein expression were increased after HFD and restored to control levels after ET. Insulin-stimulated translocation of the alpha(2)-subunit to plasma membrane was impaired by HFD, whereas alpha(1)-subunit translocation remained unchanged. Alterations in sodium pump...

  3. Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants.

    Directory of Open Access Journals (Sweden)

    Adrianna Szczepaniec

    Full Text Available BACKGROUND: Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae, in multiple, distantly related crop plants. METHODOLOGY/PRINCIPAL FINDINGS: Using cotton (Gossypium hirsutum, corn (Zea mays and tomato (Solanum lycopersicum plants, we show that transcription of phenylalanine ammonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. CONCLUSIONS/SIGNIFICANCE: Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides

  4. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  5. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    International Nuclear Information System (INIS)

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia

  6. Biochemical and histological alterations induced by fluid percussion brain injury in the rat.

    Science.gov (United States)

    Toulmond, S; Duval, D; Serrano, A; Scatton, B; Benavides, J

    1993-08-20

    In the present study we have characterized the time-course of the histopathological and biochemical alterations resulting from mechanical brain injury caused by lateral fluid percussion centered over the parietal cortex in the rat. The injury device used was an HPLC pump coupled to a solenoid valve which delivered a constant and short lasting (10 ms) impact pressure (1.6 atm). This traumatic procedure resulted in an accumulation of blood in the subarachnoid space and cortical edema at 4-24 h post-trauma. From 4 h after injury, cortical neurons exhibited a pathologic appearance and phagocytic cells invaded the brain parenchyma. At 3 and 7 days post-injury, complete neuronal loss was observed in the parietal cortex around the impact site. In the ipsilateral cortex, the time-course of histologically assessed neuronal loss and phagocytic/glial activation paralleled the time-course of the loss of omega 1-2 (benzodiazepine) sites (a neuronal marker) and of the increase in p sites (peripheral-type benzodiazepine binding sites; a glial/macrophage marker). Neuronal loss and increase in the density of the glial/macrophage biochemical marker were also observed in the hippocampus but not in the contralateral cortex or in other subcortical structures, suggesting a selective vulnerability of the hippocampus to this traumatic procedure. There was a very good spatial correlation between the histological alterations and the changes in the density of the neuronal and glial/macrophage biochemical markers (as assessed by autoradiography). The volume of the lesion, integrated from the surface of the lesion measured at 10 coronal levels cut at a 1 mm interval and stained with haemalum and eosin, represented 32.9 +/- 1.7 mm3.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7691381

  7. Vimentin and laminin are altered on cheek pouch microvessels of streptozotocin-induced diabetic hamsters

    Directory of Open Access Journals (Sweden)

    Jemima Fuentes R Silva

    2011-01-01

    Full Text Available OBJECTIVE: Normal endothelial cells respond to shear stress by elongating and aligning in the direction of fluid flow. Hyperglycemia impairs this response and contributes to microvascular complications, which result in deleterious effects to the endothelium. This work aimed to evaluate cheek pouch microvessel morphological characteristics, reactivity, permeability, and expression of cytoskeleton and extracellular matrix components in hamsters after the induction of diabetes with streptozotocin. METHODS: Syrian golden hamsters (90-130 g were injected with streptozotocin (50 mg/kg, i.p. or vehicle either 6 (the diabetes mellitus 6 group or 15 (the diabetes mellitus 15 group days before the experiment. Vascular dimensions and density per area of vessels were determined by morphometric and stereological measurements. Changes in blood flow were measured in response to acetylcholine, and plasma extravasation was measured by the number of leakage sites. Actin, talin, α-smooth muscle actin, vimentin, type IV collagen, and laminin were detected by immunohistochemistry and assessed through a semiquantitative scoring system. RESULTS: There were no major alterations in the lumen, wall diameters, or densities of the examined vessels. Likewise, vascular reactivity and permeability were not altered by diabetes. The arterioles demonstrated increased immunoreactivity to vimentin and laminin in the diabetes mellitus 6 and diabetes mellitus 15 groups. DISCUSSION: Antibodies against laminin and vimentin inhibit branching morphogenesis in vitro. Therefore, laminin and vimentin participating in the structure of the focal adhesion may play a role in angiogenesis. CONCLUSIONS: Our results indicated the existence of changes related to cell-matrix interactions, which may contribute to the pathological remodeling that was already underway one week after induction of experimental diabetes.

  8. Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Vesa J Kiviniemi

    2009-07-01

    Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  9. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice.

    Science.gov (United States)

    Aguilera, M; Cerdà-Cuéllar, M; Martínez, V

    2015-01-01

    Alterations in the composition of the commensal microbiota (dysbiosis) seem to be a pathogenic component of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS), and might participate in the secretomotor and sensory alterations observed in these patients.We determined if a state antibiotics-induced intestinal dysbiosis is able to modify colonic pain-related and motor responses and characterized the neuro-immune mechanisms implicated in mice. A 2-week antibiotics treatment induced a colonic dysbiosis (increments in Bacteroides spp, Clostridium coccoides and Lactobacillus spp and reduction in Bifidobacterium spp). Bacterial adherence was not affected. Dysbiosis was associated with increased levels of secretory-IgA, up-regulation of the antimicrobial lectin RegIIIγ, and toll-like receptors (TLR) 4 and 7 and down-regulation of the antimicrobial-peptide Resistin-Like Molecule-β and TLR5. Dysbiotic mice showed less goblet cells, without changes in the thickness of the mucus layer. Neither macroscopical nor microscopical signs of inflammation were observed. In dysbiotic mice, expression of the cannabinoid receptor 2 was up-regulated, while the cannabinoid 1 and the mu-opioid receptors were down-regulated. In antibiotic-treated mice, visceral pain-related responses elicited by intraperitoneal acetic acid or intracolonic capsaicin were significantly attenuated. Colonic contractility was enhanced during dysbiosis. Intestinal dysbiosis induce changes in the innate intestinal immune system and modulate the expression of pain-related sensory systems, an effect associated with a reduction in visceral pain-related responses. Commensal microbiota modulates gut neuro-immune sensory systems, leading to functional changes, at least as it relates to viscerosensitivity. Similar mechanisms might explain the beneficial effects of antibiotics or certain probiotics in the treatment of IBS. PMID:25531553

  10. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Argel Aguilar-Valles

    Full Text Available Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.

  11. Serotoninergic involvement in ethanol-induced alterations of thermoregulation in long-sleep and short-sleep mice.

    Science.gov (United States)

    French, T A; Weiner, N

    1991-11-01

    The effect of ethanol and pentobarbital on in vivo tryptophan hydroxylase activity and its relationship to drug-induced alterations of thermoregulation was examined in long-sleep (LS) and short-sleep (SS) mice. Serotonin function was measured in both the presence and absence of ethanol or pentobarbital in six discrete brain regions. Differences in basal levels of serotonin, 5-hydroxyindole acetic acid or in vivo tryptophan hydroxylase (TpH) activity were found only in the hypothalamus and dorsal raphe nuclei (SS slightly higher). Ethanol (4.2 g/kg i.p) caused significant reductions in in vivo TpH activity in the dorsal and pontine-medullary raphe nuclei and hypothalamus (putative thermoregulatory areas) in both LS (50-60% decrease) and SS (15-30% decrease) mice, but it had no effect on TpH activity in the striatum, cortex or hippocampus. The greater degree of ethanol-induced reduction in TpH activity in LS mice was associated with a greater degree of hypothermia (LS, 4.2 degrees C vs SS, 2.0 degrees C). Pentobarbital had equivalent effects in LS and SS mice on TpH activity in central nervous system thermoregulatory areas (decreases of 40-60%) and on body temperature (decreases of 6.8-7.5 degrees C). When the mice were given ethanol at an elevated environmental temperature (34 degrees C) the hypothermia was almost abolished completely, but depressant effects on TpH activity remained, suggesting that ethanol-induced decreases in TpH activity were direct effects and not secondary to hypothermia. Alterations in ethanol or pentobarbital elimination did not appear to account for the observed differences.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1941631

  12. Ozone and allergen exposure during postnatal development alters the frequency and airway distribution of CD25+ cells in infant rhesus monkeys

    International Nuclear Information System (INIS)

    The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone + HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air; animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone + HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone + HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone + HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking

  13. Frequency modulated few-cycle optical pulse trains induced controllable ultrafast coherent population oscillations in three-level atomic systems

    OpenAIRE

    Kumar, Parvendra; Sarma, Amarendra K.

    2012-01-01

    We report a study on the ultrafast coherent population oscillations (UCPO) in two level atoms induced by the frequency modulated few-cycle optical pulse train. The phenomenon of UCPO is investigated by numerically solving the optical Bloch equations beyond the rotating wave approximation. We demonstrate that the quantum state of the atoms and the frequency of UCPO may be controlled by controlling the number of pulses in the pulse trains and the pulse repetition time respectively. Moreover, th...

  14. Frequency-Dependent Squeeze Amplitude Attenuation and Squeeze Angle Rotation by Electromagnetically Induced Transparency for Gravitational Wave Interferometers

    OpenAIRE

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2005-01-01

    We study the effects of frequency-dependent squeeze amplitude attenuation and squeeze angle rotation by electromagnetically induced transparency (EIT) on gravitational wave (GW) interferometers. We propose the use of low-pass, band-pass, and high-pass EIT filters, an S-shaped EIT filter, and an intra-cavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous...

  15. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice.

    Science.gov (United States)

    Cao, Jay J; Sun, Li; Gao, Hongwei

    2010-03-01

    Obesity-derived body mass may be detrimental to bone health through not well-defined mechanisms. In this study we determined changes in bone structure and serum cytokines related to bone metabolism in diet-induced obese mice. Mice fed a high-fat diet (HFD) had higher serum tartrate-resistant acid phosphatase (TRAP) and leptin but lower osteocalcin concentrations than those fed the normal-fat diet. The HFD increased multinucleated TRAP-positive osteoclasts in bone marrow compared to the control diet. Despite being much heavier, mice fed the HFD had lower femoral bone volume, trabecular number, and connectivity density and higher trabecular separation than mice on the control diet. These findings suggest that obesity induced by a HFD increases bone resorption that may blunt any positive effects of increased body weight on bone. PMID:20392249

  16. Altered Expression of Signaling Genes in Jurkat Cells upon FTY720 Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Shaoheng He

    2010-09-01

    Full Text Available FTY720, a novel immunosuppressant, has a marked activity in decreasing peripheral blood T lymphocytes upon oral administration. Recent investigations suggest that the action of FTY720 on lymphocytes may result from its ability to induce cell apoptosis. However, the cell signaling mechanism involved in the FTY720-induced cell apoptosis remains unclear. Here we examined the apoptotic signal pathways mediated by FTY720 in Jurkat cells using microarray analysis. The results showed that FTY720 can induce Jurkat cell apoptosis in a dose and time dependent manner as assessed by cell viability, Hoechst 33258 staining, Annexin V binding and DNA fragmentation tests. cDNA microarray analysis showed that 10 µM of FTY720 up-regulated 54 and down-regulated 10 genes in Jurkat cells among the 458 apoptotic genes examined following the 6 h incubation period. At least five-fold increased expression of modulator of apoptosis-1 (MOAP-1, vascular endothelial growth factor (VEGF, tumor necrosis factor receptor-associated factors (TRAF 6, Caspase 2 (CASP 2, E2F transcription factor 1 (E2F 1 and Casapse 5 (CASP 5 genes was observed in microarray analyses; these results were confirmed with reverse transcription polymerase chain reaction (RT-PCR examination. Our findings suggest that the mitochondria related signaling pathways are the key pathways involved in the FTY720-induced apoptosis in Jurkat cells. And our results provide a new insight into the mechanism of FTY720, which allows us to draw the first simple diagram showing the potential pathways mediated by FTY720.

  17. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity

    OpenAIRE

    Pauza Mary E; Khardori Romesh; Peng Siying; Yu Shuang-Quan; Pabbidi Reddy M; Premkumar Louis S

    2008-01-01

    Abstract A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN). The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ)-induced and transgene-mediated murine models of type 1 diabetes (T1D), we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1) expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D a...

  18. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe

    OpenAIRE

    Penuelas, J.; Poulter, B.; Sardans, J.; Ciais, P; van der Velde, M.; Bopp, L.; O. Boucher; Godderis, Y.; Hinsinger, P.; Llusia, J; Nardin, E.; S. Vicca; M. Obersteiner; I. A. Janssens

    2013-01-01

    The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earth's history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:...

  19. Social status alters defeat-induced neural activation in Syrian hamsters

    OpenAIRE

    Morrison, Kathleen E.; Curry, Daniel W.; Cooper, Matthew A.

    2012-01-01

    While exposure to social stress leads to increased depression-like and anxiety-like behavior, some individuals are more vulnerable than others to these stress-induced changes in behavior. Prior social experience is one factor that can modulate how individuals respond to stressful events. In this study we investigated whether experience-dependent resistance to the behavioral consequences of social defeat was associated with a specific pattern of neural activation. We paired weight-matched male...

  20. Role of Rosemary leaves extract against radiation-induced hematological and biochemical alterations in mice

    OpenAIRE

    Acharya Garima S.; Goyal Pradeep K.

    2008-01-01

    The present paper is a study of the modulatory effect of Rosmarinus officinalis leaves extract on radiation-induced hematological and biochemical changes in Swiss albino mice. The dose reduction factor for the Rosemary extract against gamma rays was calculated 1.53 from LD50/30 values. The Rosemary extract was administered orally for 5 consecutive days prior to radiation exposure. The hematological and biochemical parameters were assessed from day 1 to 30 post-irradiation intervals. The total...

  1. Altered Morphine-Induced Analgesia in Neurotensin Type 1 Receptor Null Mice

    OpenAIRE

    Roussy, Geneviève; Beaudry, Hélène; Lafrance, Mylène; Belleville, Karine; Beaudet, Nicolas; Wada, Keiji; Gendron, Louis; Sarret, Philippe

    2010-01-01

    Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the anti...

  2. Altered Energy Homeostasis and Resistance to Diet-Induced Obesity in KRAP-Deficient Mice

    OpenAIRE

    Fujimoto, Takahiro; Miyasaka, Kyoko; Koyanagi, Midori; Tsunoda, Toshiyuki; Baba, Iwai; Doi, Keiko; Ohta, Minoru; Kato, Norihiro; Sasazuki, Takehiko; Shirasawa, Senji

    2009-01-01

    Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP−/− ) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia....

  3. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile

    OpenAIRE

    Salilew-Wondim, Dessie; Ibrahim, Sally; Gebremedhn, Samuel; Tesfaye, Dawit; Heppelmann, Maike; Bollwein, Heinrich; PFARRER, Christiane; Tholen, Ernst; Neuhoff, Christiane; Schellander, Karl; Hoelker, Michael

    2016-01-01

    Background Clinical and subclinical endometritis are known to affect the fertility of dairy cows by inducing uterine inflammation. We hypothesized that clinical or subclinical endometritis could affect the fertility of cows by disturbing the molecular milieu of the uterine environment. Here we aimed to investigate the endometrial molecular signatures and pathways affected by clinical and subclinical endometritis. For this, Holstein Frisian cows at 42–60 days postpartum were classified as heal...

  4. Protective Effect of Dodonaea viscosa (L) Against Lead Acetate Induced Altered Glycoprotein Profiles in Rats

    OpenAIRE

    Sivanesan, D.; Selvi, A. V. Veera Thamarai; Bhakyaraj, R.; Arunachalam, T.

    2009-01-01

    The present study was undertaken to examine the inhibitory effect of crude leaves of Dodonaea viscosa (L) on lead acetate induced synthesis of glycoproteins and sialic acid in liver and plasma. Enhanced synthesis of glycoproteins (protein - bound hexose and protein - bound hexosamine) and sialic acid levels were found in liver and plasma of the lead acetate poisoned rats. Administration of crude leaves of D.viscosa (100 mg/100 g body weight P.O.) effectively suppressed the synthesis of glycop...

  5. High temperature, drought and their interaction induced protein alterations in sensitive and tolerant wheat varieties

    OpenAIRE

    Vikender Kaur, Reena Mahla And R.K.Behl

    2014-01-01

    Two contrasting wheat (Triticum aestivum L.) cultivars WH730 (high temperature tolerant) and UP2565 (high temperature sensitive) were tested for differential response to combined and individually applied high temperature (HT) and drought (D) stress at seedling stage for peptide profile. Initial profile of the stress induced peptides was outlined via SDS electrophoresis of leaf extracts. Electrophoretic pattern of proteins revealed expression of new bands as well as disappearance of certain ot...

  6. Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance?

    Science.gov (United States)

    Hodge, Simon; Powell, Glen

    2008-12-01

    Aphids can respond both positively and negatively to virus-induced modifications of the shared host plant. It can be speculated that viruses dependent on aphids for their transmission might evolve to induce changes in the host plant that attract aphids and improve their performance, subsequently enhancing the success of the pathogen itself. We studied how pea aphids [Acyrthosiphon pisum (Harris)] responded to infection of tic beans (Vicia faba L.) by three viruses with varying degrees of dependence on this aphid for their transmission: pea enation mosaic virus (PEMV), bean yellow mosaic virus (BYMV), and broad bean mottle virus (BBMV). BYMV has a nonpersistent mode of transmission by aphids, whereas PEMV is transmitted in a circulative-persistent manner. BBMV is not aphid transmitted. When reared on plants infected by PEMV, no changes in aphid survival, growth, or reproductive performance were observed, whereas infection of beans by the other aphid-dependent virus, BYMV, actually caused a reduction in aphid survival in some assays. None of the viruses induced A. pisum to increase production of winged progeny, and aphids settled preferentially on leaf tissue from plants infected by all three viruses, the likely mechanism being visual responses to yellowing of foliage. Thus, in this system, the attractiveness of an infected host plant and its quality in terms of aphid growth and reproduction were not related to the pathogen's dependence on the aphid for transmission to new hosts. PMID:19161702

  7. Theta frequency stimulation induces a local form of late phase LTP in the CA1 region of the hippocampus

    OpenAIRE

    Huang, Yan-You; Kandel, Eric R.

    2005-01-01

    The late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation. This form of LTP requires activation of transcription and translation and results in the cell-wide distribution of gene products that can be captured by other marked synapses. Here we report that theta frequency stimulation (5 Hz, 30 sec) applied to the Schaeffer-collateral pathway can induce a form of late phase of LTP that is restricted locally to the dendritic compartment. The late phase of theta fre...

  8. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAsIII) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAsIII induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAsIII in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAsIII can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  9. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  10. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons.

    Science.gov (United States)

    Pittman, Sherry K; Gracias, Neilia G; Fehrenbacher, Jill C

    2016-05-01

    Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity. PMID:26883566

  11. Methods of reducing low frequency cabin noise and sonically induced stresses, based on the intrinsic structural tuning concept

    Science.gov (United States)

    Sengupta, G.

    1977-01-01

    Control of low frequency interior noise has been difficult in all commercial and general aviation aircraft, since the existing sound attenuation techniques are less effective at these frequencies. Therefore low frequency cabin noise and sonically induced stresses can be reduced mainly by a proper design of the fuselage structure. For this purpose, a concept based on intrinsic tuning and damping of fuselage structural elements has been under development at Boeing for the past three years. This paper describes the results of some laboratory and field tests that were conducted for evaluation of the concept.

  12. Neuroplastic alteration of TTX-resistant sodium channel with visceral pain and morphine-induced hyperalgesia

    Directory of Open Access Journals (Sweden)

    Chen J

    2012-11-01

    Full Text Available Jinghong Chen,1,2,4 Ze-hui Gong,4 Hao Yan,2 Zhijun Qiao,3 Bo-yi Qin41Department of Internal Medicine, Neuroscience Program, The University of Texas Medical Branch, Galveston, TX, USA; 2The Divisions of Pharmacy, Pharmacology core lab, MD Anderson Cancer Center, Houston, TX, USA; 3University of Texas-Pan American, Edinburg, TX, USA; 4Beijing Institute of Pharmacology and Toxicology, Beijing, China Abstract: The discovery of the tetrodotoxin-resistant (TTX-R Na+ channel in nociceptive neurons has provided a special target for analgesic intervention. In a previous study we found that both morphine tolerance and persistent visceral inflammation resulted in visceral hyperalgesia. It has also been suggested that hyperexcitability of sensory neurons due to altered TTX-R Na+ channel properties and expression contributes to hyperalgesia; however, we do not know if some TTX-R Na+ channel property changes can be triggered by visceral hyperalgesia and morphine tolerance, or whether there are similar molecular or channel mechanisms in both situations. To evaluate the effects of morphine tolerance and visceral inflammation on the channel, we investigated the dorsal root ganglia (DRG neuronal change following these chronic treatments. Using whole-cell patch clamp recording, we recorded TTX-R Na+ currents in isolated adult rat lumbar and sacral (L6-S2 DRG neurons from normal and pathologic rats with colon inflammatory pain or chronic morphine treatment. We found that the amplitudes of TTX-R Na+ currents were signiflcantly increased in small-diameter DRG neurons with either morphine tolerance or visceral inflammatory pain. Meanwhile, the result also showed that those treatments altered the kinetics properties of the electrical current (ie, the activating and inactivating speed of the channel was accelerated. Our current results suggested that in both models, visceral chronic inflammatory pain and morphine tolerance causes electrophysiological changes in voltage

  13. Ionization-Induced Multiwave Mixing: Terahertz Generation with Two-Color Laser Pulses of Various Frequency Ratios

    Science.gov (United States)

    Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.; Vvedenskii, N. V.

    2016-07-01

    Ultrafast strong-field ionization is shown to be accompanied by atypical multiwave mixing with the number of mixed waves defined by the dependence of the ionization rate on the field strength. For two-color laser pulses of various frequency ratios, this results in the excitation of a free-electron current at laser combination frequencies and possibly in the excitation of the zero-frequency (residual) current responsible for terahertz (THz) generation in a formed plasma. The high-order nature of ionization-induced wave mixing may cause THz generation with uncommon laser frequency ratios (such as 2 : 3 and 3 : 4 ) to be virtually as effective as that with the commonly used frequency ratio of 1 : 2 .

  14. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection.

    Directory of Open Access Journals (Sweden)

    Luigi Notari

    Full Text Available Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2 to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a "lean" epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.

  15. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus- indica mucilage

    Institute of Scientific and Technical Information of China (English)

    Ricardo Vázquez-Ramírez; Marisela Olguín-Martínez; Carlos Kubli-Garfias; Rolando Hernández-Mu(n)oz

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats.METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined.Histological studies of gastric samples from the experimental groups were included.RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes.Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect.The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes.CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids,mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.

  16. EFFECTS OF ADDROGRAPHIS PANICULATA (NEES. ON ARSENIC- INDUCED ALTERED GLUCOSE HOMEOSTASIS AND OXIDATIVE IMPAIRMENT IN PANCREAS OF SWISS MICE

    Directory of Open Access Journals (Sweden)

    MANDAVA V. RAO

    2007-01-01

    Full Text Available The effect of Andrographis paniculata (Nees. on arsenic-induced changes in biochemical and cellular antioxident sytem was studies in adult female mice. Daily oral administration of arsenic trioxide (0.5 and 1.0mg/kg b.w for 30days induced a significant increase in blood glucose level which was associated with impaired glucose tolrence. Arsenic treatment also resulted in elevated level panreatic tissue specific makers such as activities of amylase and lipase in serum indicating pancreatic dysfunction. Interestingly, this biochemical dysfuntion was accompanied by a marked dose related enchancement of lipid peroxidation indicating significant induction of oxidative damage. Additional evidence such as deletion in reduced gluatathione levels and alterations in enzymic antioxidant defences like superoxide dismutase, catalase and glutathione peroxidase in pancreas suggested induction of oxidative stress. Concomitant administration of Adrographis paniculata (50 mg/kg b.w. with arsenic significant restored all these parameters. These results suggest that Adrographis paniculata is capable to reducing arsenic-induce cellular oxidative and inflammatory changes in pancreas.

  17. Mycophenolate mofetil alters the antioxidant status in duodenum of rats: Implication for silymarin usage in mycophenolate mofetil induced gastrointestinal disorders

    Directory of Open Access Journals (Sweden)

    Sanaz Sheikhzadeh

    2013-06-01

    Full Text Available Mycophenolate mofetil (MMF as an immunosuppressive agent is used to prevent graftrejection. One of the adverse effects of long time administration of MMF is the gastrointestinaldisorder. This study aimed to investigate the gastroprotective effect of silymarin (SMN onMMF-induced gastrointestinal (GI disorders. Twenty-four adult female Wistar rats wereassigned into three groups including the control and test groups. The control animals receivedsaline(5 mL kg-1andthe test animals were treated with MMF (40 mg kg-1, orally and saline,MMF and silymarin (SMN, 50 mg kg-1, orally for 14 consecutive days, respectively. To evaluatethe GI disorders due to the MMF-induced oxidative stress and subsequently the protective effectof SMN, malondialdehyde (MDA,total thiol molecules(TTM levels and total anti-oxidantcapacity (TAC were determined. Additionally, histopathological examinations in the duodenalregion of small intestine were performed. The MMF-increased level of MDA was reduced bySMN administration, while the MMF-reduced level of TTM increased significantly (p< 0.05 bySMN administration. Histopathological examinations showed the goblet cell reduction andcongestion in the MMF-received animals; while SMN was able to improve the MMF-inducedgoblet cell reduction and congestion. Our data suggest that the MMF-induced GI disorders arecharacterized by changes in antioxidant status, which presented by the elevation of MDA leveland reduction of TTM concentration. Moreover, the improved biochemical alterations andhistopathologic damages by SMN indicating its gastroprotective and antioxidant effects

  18. AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.

    Science.gov (United States)

    Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula

    2016-10-01

    Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. PMID:27430620

  19. The nest site lottery: how selectively neutral density dependent growth suppression induces frequency dependent selection.

    Science.gov (United States)

    Argasinski, K; Broom, M

    2013-12-01

    Modern developments in population dynamics emphasize the role of the turnover of individuals. In the new approaches stable population size is a dynamic equilibrium between different mortality and fecundity factors instead of an arbitrary fixed carrying capacity. The latest replicator dynamics models assume that regulation of the population size acts through feedback driven by density dependent juvenile mortality. Here, we consider a simplified model to extract the properties of this approach. We show that at the stable population size, the structure of the frequency dependent evolutionary game emerges. Turnover of individuals induces a lottery mechanism where for each nest site released by a dead adult individual a single newborn is drawn from the pool of newborn candidates. This frequency dependent selection leads towards the strategy maximizing the number of newborns per adult death. However, multiple strategies can maximize this value. Among them, the strategy with the greatest mortality (which implies the greatest instantaneous growth rate) is selected. This result is important for the discussion about universal fitness measures and which parameters are maximized by natural selection. This is related to the fitness measures R0 and r, because the number of newborns per single dead individual equals the lifetime production of newborn R0 in models without aging. We thus have a two-stage procedure, instead of a single fitness measure, which is a combination of R0 and r. According to the nest site lottery mechanism, at stable population size, selection favors strategies with the greatest r, i.e. those with the highest turnover, from those with the greatest R0. PMID:24071631

  20. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels.

    Science.gov (United States)

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J; Kier, Ann B; Schroeder, Friedhelm

    2016-09-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559

  1. Chronic radiation-induced leukemogenesis: alterations of hematopoietic progenitor repair functions during preclinical phases

    International Nuclear Information System (INIS)

    Chronic exposure to low daily doses of whole-body gamma irradiation elicits a high incidence of myeloid leukemia (ML) and related myeloproliferative diseases (MPD) in beagles. Previously, the authors identified and partially characterized a four-phase sequence of evolving MPD as a consequence of chronic radiation exposure. With a focus on preclinical alterations in granulocyte/monocyte-committed stem cells, they have identified two critical events in the process: (i) an early event, involving the coupling of acquired radioresistance of the stem cell with renewed proliferative capacity; and (ii) a late event, involving acquired autocrine functions and associated change in stem cell clonality. In terms of the early event, repair-associated parameters are currently being examined on the cellular level by both split-dose and low dose-rate-type assays with survival enhancement used as the measured end point. On the molecular level, these parameters are examined by microfluorometric alkaline elution assays with DNA damage and repair used as end points

  2. Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats.

    Science.gov (United States)

    Sankhwar, Madhu L; Yadav, Rajesh S; Shukla, Rajendra K; Singh, Dhirendra; Ansari, Reyaz W; Pant, Aditya B; Parmar, Devendra; Khanna, Vinay K

    2016-03-01

    Human exposure to monocrotophos, an organophosphate pesticide, could occur due to its high use in agriculture to protect crops. Recently, we found that postlactational exposure to monocrotophos impaired cholinergic mechanisms in young rats and such changes persisted even after withdrawal of monocrotophos exposure. In continuation to this, the effect of monocrotophos on noncholinergic targets and role of oxidative stress in its neurotoxicity has been studied. Exposure of rats from postnatal day (PD)22 to PD49 to monocrotophos (0.50 or 1.0 mg kg(-1) body weight, perorally) significantly impaired motor activity and motor coordination on PD50 as compared to controls. A significant decrease in the binding of (3)H-spiperone to striatal membrane (26%, p 0.05; 37%, p < 0.05) in those exposed at a higher dose, respectively, was observed on PD50 compared with the controls. Alterations in the binding persisted even after withdrawal of monocrotophos exposure on PD65. Increased oxidative stress in brain regions following exposure of rats to monocrotophos was also observed on PD50 that persisted 15 days after withdrawal of exposure on PD65. The results suggest that monocrotophos exerts its neurobehavioral toxicity by affecting noncholinergic functions involving dopaminergic and serotonergic systems associated with enhanced oxidative stress. The results also exhibit vulnerability of developing brain to monocrotophos as most of the changes persisted even after withdrawal of its exposure. PMID:24105069

  3. Mechanisms of Indomethacin-Induced Alterations in the Choline Phospholipid Metabolism of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2006-09-01

    Full Text Available Human mammary epithelial cells (HMECs exhibit an increase in phosphocholine (PC and total cholinecontaining compounds, as well as a switch from high glycerophosphocholine (GPC/low PC to low GPC/high PC, with progression to malignant phenotype. The treatment of human breast cancer cells with a nonsteroidal anti-inflammatory agent, indomethacin, reverted the high PC/low GPC pattern to a low PC/high GPC pattern indicative of a less malignant phenotype, supported by decreased invasion. Here, we have characterized mechanisms underlying indomethacininduced alterations in choline membrane metabolism in malignant breast cancer cells and nonmalignant HMECs labeled with [1,2-13C]choline using 1H and 13C magnetic resonance spectroscopy. Microarray gene expression analysis was performed to understand the molecular mechanisms underlying these changes. In breast cancer cells, indomethacin treatment activated phospholipases that, combined with an increased choline phospholipid biosynthesis, led to increased GPC and decreased PC levels. However, in nonmalignant HMECs, activation of the anabolic pathway alone was detected following indomethacin treatment. Following indomethacin treatment in breast cancer cells, several candidate genes, such as interleukin 8, NGFB, CSF2, RHOB, EDN1, and JUNB, were differentially expressed, which may have contributed to changes in choline metabolism through secondary effects or signaling cascades leading to changes in enzyme activity.

  4. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  5. Early repeated maternal separation induces alterations of hippocampus reelin expression in rats

    Indian Academy of Sciences (India)

    Jianlong Zhang; Lina Qin; Hu Zhao

    2013-03-01

    The long-term effects of repeated maternal separation (MS) during early postnatal life on reelin expression in the hippocampus of developing rats were investigated in the present study. MS was carried out by separating Wistar rat pups singly from their mothers for 3 h a day during postnatal days (PND) 2–14. Reelin mRNA and protein levels in the hippocampus were determined using qRT-PCR and Western blotting, at PND 22, PND 60 and PND 90. MS resulted in the loss of body weight in the developing rats, and reelin mRNA and protein levels in the hippocampus generally were down-regulated over the developing period, but the reelin mRNA and protein levels in the hippocampus of 90-day-old male rats were up-regulated. These findings suggest that the long-term effects of MS on the expression levels of hippocampal reelin mRNA and protein depends on the age at which the stressed rats’ brains were collected; reelin had important implications for the maternal-neonate interaction needed for normal brain development. In conclusion, repeated MS occurring during early postnatal life may cause the alterations of hippocampal reelin expression with the increasing age of developing rats.

  6. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  7. Mercury Induced Biochemical Alterations As Oxidative Stress In Mugil Cephalus In Short Term Toxicity Test

    Directory of Open Access Journals (Sweden)

    J.S.I Rajkumar

    2013-04-01

    Full Text Available Mugil cephalus juveniles of size 2.5 ±0.6cm were exposed to mercury in short term chronic toxicity test through static renewal bioassay to detect the possible biochemical agent as biomarkers in aquatic pollution and in estuarine contamination as specific. Lipid peroxidation levels, glutathione S -transferase, catalase, reduced glutathione and acetylcholinesterase were studied as biochemical parameters. Increased thio-barbituric acid reactive substances levels were observed under exposure to mercury, leading to the oxidative damage resulting in lipid peroxidation. Decreased activities of antioxidants, catalase and increased glutathione-S-transferase under short term chronic exposures to mercury were more prominent in metal stress suggesting activation of physiological mechanism to scavenge the ROS produced. Decreased values of reduced glutathione on prolonged exposures to mercury indicate utilization of this antioxidant, either to scavenge oxy-radical or act in combination with other enzymes. The acetylcholinesterase activity was found to be decreased during mercury exposure. The results also suggest that mercury alters the active oxygen metabolism by modulating antioxidant enzyme activities, which can be used as biomarker to detect sub-lethal effects in aquatic pollution

  8. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  9. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study

    Science.gov (United States)

    Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.

    2016-01-01

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.

  10. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance

  11. Zingiber Officinale Alters 3,4-methylenedioxymethamphetamine-Induced Neurotoxicity in Rat Brain

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2012-01-01

    Full Text Available Objective: The spice Zingiber officinale or ginger possesses antioxidant activity and neuroprotective effects. The effects of this traditional herbal medicine on 3,4-methylenedioxymethamphetamine (MDMA induced neurotoxicity have not yet been studied. The present study considers the effects of Zingiber officinale on MDMA-induced spatial memory impairment and apoptosis in the hippocampus of male rats.Materials and Methods: In this experimental study, 21 adult male Sprague Dawley rats (200-250 g were classified into three groups (control, MDMA, and MDMA plus ginger. The groups were intraperitoneally administered 10 mg/kg MDMA, 10 mg/kg MDMA plus 100 mg/kg ginger extract, or 1 cc/kg normal saline as the control solution for one week (n=7 per group. Learning memory was assessed by Morris water maze (MWM after the last administration. Finally, the brains were removed to study the cell number in the cornu ammonis (CA1 hippocampus by light microscope, Bcl-2 by immunoblotting, and Bax expression by reverse transcription polymerase chain reaction (RT-PCR. Data was analyzed using SPSS 16 software and a one-way ANOVA test.Results: Escape latency and traveled distances decreased significantly in the MDMA plus ginger group relative to the MDMA group (p<0.001. Cell number increased in the MDMA plus ginger group in comparison to the MDMA group. Down-regulation of Bcl-2 and up-regulation of Bax were observed in the MDMA plus ginger group in comparison to the MDMA group (p<0.05.Conclusion: Our findings suggest that ginger consumption may lead to an improvement of MDMA-induced neurotoxicity.

  12. Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem.

    Science.gov (United States)

    Teper-Bamnolker, Paula; Dudai, Nativ; Fischer, Ravit; Belausov, Eduard; Zemach, Hanita; Shoseyov, Oded; Eshel, Dani

    2010-06-01

    Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 microl l(-1), showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 microl l(-1) of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days' exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants. PMID:20390295

  13. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta).

    Science.gov (United States)

    Kumari, Puja; Reddy, C R K; Jha, Bhavanath

    2015-10-01

    The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1-100 µM was a strong stimulant of reactive oxygen species (H(2)O(2), HO· and O(2) (·-)) (P phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress. PMID:26276825

  14. Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma

    OpenAIRE

    Steven Haenen; Jeroen A.J. Vanoirbeek; Vanessa De Vooght; Liliane Schoofs; Benoit Nemery; Elke Clynen; Hoet, Peter H. M.

    2015-01-01

    Introduction and Aim The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mi...

  15. Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation

    International Nuclear Information System (INIS)

    Mycoplasmas are the smallest microorganisms capable of self-replication. Our previous studies show that some mycoplasmas are able to induce malignant transformation of host mammalian cells. This malignant transformation is a multistage process with the early infection, reversible and irreversible stages, and similar to human tumor development in nature. The purpose of this study is to explore mechanisms for this malignant transformation. To better understand mechanisms for this unique process, we examined gene expression profiles of C3H cells at different stages of the mycoplasma-induced transformation using cDNA microarray technology. A total of 1185 genes involved in oncogenesis, apoptosis, cell growth, cell-cycle regulation, DNA repair, etc. were examined. Differences in the expression of these genes were compared and analyzed using the computer software AtlasImage. Among 1185 genes screened, 135 had aberrant expression at the early infection stage, 252 at the reversible stage and 184 at the irreversible stage. At the early infection stage, genes with increased expression (92 genes) were twice more than those with decreased expression (42 genes). The global gene expression at the reversible stage appeared to be more volatile than that at any other stages but still resembled the profile at the early infection stage. The expression profile at the irreversible stage shows a unique pattern of a wide range of expression levels and an increased number of expressing genes, especially the cancer-related genes. Oncogenes and tumor suppressors are a group of molecules that showed significant changes in expression during the transformation. The majority of these changes occurred in the reversible and irreversible stages. A prolonged infection by mycoplasmas lead to the expression of more cancer related genes at the irreversible stage. The results indicate that the expression profiles correspond with the phenotypic features of the cells in the mycoplasma induced

  16. Histone modifications and alcohol-induced liver disease: Are altered nutrients the missing link?

    Institute of Scientific and Technical Information of China (English)

    Akshata Moghe; Swati Joshi-Barve; Smita Ghare; Leila Gobejishvili; Irina Kirpich; Craig J McClain; Shirish Barve

    2011-01-01

    Alcoholism is a major health problem in the United States and worldwide, and alcohol remains the single most significant cause of liver-related diseases and deaths. Alcohol is known to influence nutritional status at many levels including nutrient intake, absorption, utilization, and excretion, and can lead to many nutritional disturbances and deficiencies. Nutrients can dramatically affect gene expression and alcohol-induced nutrient imbalance may be a major contributor to pathogenic gene expression in alcohol-induced liver disease (ALD). There is growing interest regarding epigenetic changes, including histone modifications that regulate gene expression during disease pathogenesis. Notably, modifications of core histones in the nucleosome regulate chromatin structure and DNA methylation, and control gene transcription. This review highlights the role of nutrient disturbances brought about during alcohol metabolism and their impact on epigenetic histone modifications that may contribute to ALD. The review is focused on four critical metabolites, namely, acetate, S-adenosylmethionine, nicotinamide adenine dinucleotide and zinc that are particularly relevant to alcohol metabolism and ALD.

  17. Time course study of microglial and behavioral alterations induced by 6-hydroxydopamine in rats.

    Science.gov (United States)

    Silva, Thiago Pereira da; Poli, Anicleto; Hara, Daniela Balz; Takahashi, Reinaldo Naoto

    2016-05-27

    Understanding the mechanisms responsible for nonmotor manifestations of Parkinson's disease (PD) is crucial in the search for new therapeutic approaches. The aim of the present study was to evaluate the time course of behavioral, neurochemical, and microglial responses after a retrograde partial lesion of the nigrostriatal pathway induced by bilateral injection of 6-hydroxydopamine (6-OHDA). The results showed that 6-OHDA was able to produce both anhedonic and anxiety behaviors; however, an increase of microglial density in some brain areas (substantia nigra, hippocampus and striatum) and deficits in locomotor activity was observed only one week after the lesion. Striatal levels of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) were reduced by approximately 60% at all times tested. Conversely, increased levels of serotonin (5-HT) and its metabolite were also noted in the striatum only at the first week. These data extend our previous findings and suggest that the retrograde and partial damage of dopaminergic neurons in the substantia nigra can induce effects resembling premotor symptoms of PD, two and three weeks after injury. PMID:27113204

  18. TPP and TCEP induce oxidative stress and alter steroidogenesis in TM3 Leydig cells.

    Science.gov (United States)

    Chen, Guanliang; Zhang, Songbin; Jin, Yuanxiang; Wu, Yan; Liu, Ling; Qian, Haifeng; Fu, Zhengwei

    2015-11-01

    Effects of triphenyl phosphate (TPP) and tris-(2-chloroethyl) phosphate (TCEP) exposure on induction of oxidative stress and endocrine disruption were investigated in TM3 cells. After 24h exposure, cell growth declined and morphology changed in TPP and TCEP treated groups with high dosages. Significant increases in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione S-transferase (GST) activities and their respective gene expressions in a dose-dependent and/or time-dependent manner in TPP or TCEP groups. Moreover, the expression of main genes related to testosterone (T) synthesis including cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α), 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD) were dramatically reduced by TPP and TCEP treatments, especially with the high dosage for 24h. TPP and TCEP treatments for 24h caused significant decreases in T levels in the medium. Furthermore, co-treatments of hCG with TPP or TCEP could inhibit hCG-induced changes in the expression of P450scc, P450-17α and 17β-HSD and T levels. Taken together, TPP and TCEP could induce oxidative stress and endocrine disruption in TM3 cells. PMID:26049154

  19. Iron metabolism and cell membranes. III. Iron-induced alterations in HeLa cells.

    Science.gov (United States)

    Jauregui, H. O.; Bradford, W. D.; Arstila, A. U.; Kinney, T. D.; Trump, B. F.

    1975-01-01

    The morphologic characteristics of acute iron loading were studied in HeLa cells incubated in an iron-enriched Eagle's medium containing 500 mug/ml of iron. Chemical studies showed that ferritin synthesis was rapidly induced and the concentration of intracellular ferritin increased up to 72 hours. Closely coupled with an increase in HeLa cell ferritin was a marked decrease in the rate of cell multiplication. The significant ultrastructural findings of iron-induced HeLa cell injury are characterized by the appearance of both autophagic multivesicular and residual bodies over the first 72 hours of iron incubation. The prominence of multivesicular bodies was noted after only 4 hours' incubation, with iron and myelin figures first appearing after 6 hours. Thus, the partial arrest of cell multiplication was associated with an increase in cytoplasmic residual bodies containing iron and other debris. The distribution of intracellular ferritin within HeLa cells differs significantly from the distribution described previously in hepatic parenchymal cells. In HeLa cells, ferritin particles were confined to lysosomal vesicles and were not identified in cell sap, endoplasmic reticulum, or Golgi apparatus. Images Figure 8 Figure 1 Figure 9 Figure 10 Figure 11 Figure 12 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1155583

  20. Plant cell death and cellular alterations induced by ozone: Key studies in Mediterranean conditions

    International Nuclear Information System (INIS)

    An account of histo-cytological and ultrastructural studies on ozone effect on crop and forest species in Italy is given, with emphasis on induced cell death and the underlying mechanisms. Cell death phenomena possibly due to ambient O3 were recorded in crop and forest species. In contrast, visible O3 effects on Mediterranean vegetation are often unclear. Microscopy is thus suggested as an effective tool to validate and evaluate O3 injury to Mediterranean vegetation. A DAB-Evans blue staining was proposed to validate O3 symptoms at the microscopic level and for a pre-visual diagnosis of O3 injury. The method has been positively tested in some of the most important crop species, such as wheat, tomato, bean and onion and, with some restriction, in forest species, and it also allows one to gain some very useful insights into the mechanisms at the base of O3 sensitivity or tolerance. - Ozone-induced cell death is a frequent phenomenon in Mediterranean conditions, not only in the most sensitive crops but also in forest species.

  1. The Role of Altered Nucleotide Excision Repair and UVB-Induced DNA Damage in Melanomagenesis

    Directory of Open Access Journals (Sweden)

    Timothy Budden

    2013-01-01

    Full Text Available UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth’s surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V. XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.

  2. Atherosclerosis Alters Loading-Induced Arterial Damage: Implications for Robotic Surgery

    Science.gov (United States)

    Geenens, Rachel; Famaey, Nele; Gijbels, Andy; Verhelle, Silke; Vinckier, Stefan; Vander Sloten, Jos; Herijgers, Paul

    2016-01-01

    Background Lack of intra-operative haptic information during robotic surgery increases the risk for unintended tissue overload and damage. Knowledge about the acute and chronic fundamental relationship between force load and induced damage in healthy and diseased arteries is crucial to enable intra-operative haptic feedback or shared autonomy and improve patient safety. Methods Arteries of wildtype and atherosclerotic mice were clamped in vivo for 2 minutes (0.0N, 0.6N or 1.27N). Histological analysis (Verhoeff’s-Van Gieson, Osteopontin, CD45, CD105) was performed immediately, or after 6 hours, 2 weeks or 1 month. Endothelium-dependent and–independent vasodilatation was assessed immediately or 1 month after clamping. Results Endothelium dependent vasodilatation is worse after clamping of wildtype arteries, but is restored after one month. Clamping also results in flattening of the innermost elastic membrane of both genotypes, which is reversed over time for wildtype arteries but not for vessels from atherosclerotic mice. Higher osteopontin content in wildtype and LDLR-/- mice after 2 weeks suggests a phenotypic switch of the medial smooth muscle cells (SMCs), an effect that is reversed after 1 month. While inflammation in the intima diminishes, medial CD45 content rises through time in both genotypes. CD105 staining shows that even manipulation without clamping results in endothelial cell loss in both LDLR+/+ and LDLR-/- mice. Conclusions Arterial clamping induces different acute and long-term injury to the vessel wall of atherosclerotic and healthy arteries. PMID:27295082

  3. APL1, an altered peptide ligand derived from human heat-shock protein 60, increases the frequency of Tregs and its suppressive capacity against antigen responding effector CD4 + T cells from rheumatoid arthritis patients.

    Science.gov (United States)

    Barberá, Ariana; Lorenzo, Noraylis; van Kooten, Peter; van Roon, Joel; de Jager, Wilco; Prada, Dinorah; Gómez, Jorge; Padrón, Gabriel; van Eden, Willem; Broere, Femke; Del Carmen Domínguez, María

    2016-07-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4 + T cells producing IL-17 and CD4 + CD25(high)FoxP3 + Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4 + CD25(high)FoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients. PMID:27241313

  4. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders.

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  5. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  6. Alterations of mtDNA number and 4977 bp deletion induced by ionizing radiation in human peripheral blood

    International Nuclear Information System (INIS)

    Alterations of mitochondria DNA (mtDNA) 4977 bp common deletion (CD) and mtDNA copy number induced by ionizing radiation were observed in human different cell lines and total body irradiation patients. However, only few experiments have evaluated the levels of the CD and mtDNA copy number in human peripheral blood exposed to ionizing radiation till now. The aim of this study is to analyze the mtDNA alterations in irradiated human peripheral blood from healthy donors as well as to explore their feasibility as biomarkers for constructing new biodosimeter. Peripheral blood samples were collected from six healthy donors, and exposed to 60Co gamma ray with the doses of 0 Gy, 1 Gy, 2 Gy, 3 Gy, 4 Gy and 5 Gy. Levels of the CD and mtDNA copy number in irradiated samples after 2h or 24 h incubation were detected using TaqMan real-time PCR, and the CD ratio was calculated. The results showed that the mean of the CD ratio and the CD copy number exhibited a dose-dependent increase 2 h in the dose range from 0-5 Gy, and of the mtDNA copy number significantly increased 24 h in irradiated groups compared with 0 Gy group after irradiation. It indicates that the parameters in human peripheral blood may be considered as molecular biomarkers to applying construction of new biodosimeter. (authors)

  7. Characterization of oncogene-induced metabolic alterations in hepatic cells by using ultrahigh performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Tang, Zhi; Cao, Tingting; Lin, Shuhai; Fu, Li; Li, Shangfu; Guan, Xin-Yuan; Cai, Zongwei

    2016-05-15

    Elucidation of altered metabolic pathways by using metabolomics may open new avenues for basic research on disease mechanisms and facilitate the development of novel therapeutic strategies. Here, we report the development of ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomics platform with capability of measuring both cationic and anionic intermediates in cellular metabolism. The platform was established based on the hydrophobic ion-pairing interaction chromatography coupled with tandem mass spectrometry in multiple reaction monitoring (MRM) mode. The MRM transitions were created and optimized via energy-resolved collision-induced dissociation experiments, serving as an essential reference point for the quantification and identification. For chromatographic separation, application of hydrophobic ion-pairing interaction led to dramatic enhancement on retention of water-soluble metabolites and provision of good peak shapes. Two volatile ion-pairing reagents, namely heptafluorobutyric acid and tributylamine, were used with dedicated C18 columns as complementary separation systems coupled with the MRM analysis, allowing measurement of the metabolites of interest at nanomolar levels. The developed platform was successfully applied to investigate the altered metabolism in hepatic cells with over-expression of an oncogene, thus can provide important information on the rewired metabolism. PMID:26992502

  8. Antioxidant and anti-inflammatory effects of quercetin in functional and morphological alterations in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Maciel, R M; Costa, M M; Martins, D B; França, R T; Schmatz, R; Graça, D L; Duarte, M M M F; Danesi, C C; Mazzanti, C M; Schetinger, M R C; Paim, F C; Palma, H E; Abdala, F H; Stefanello, N; Zimpel, C K; Felin, D V; Lopes, S T A

    2013-10-01

    The aim of this study was to investigate functional and morphological alterations caused by oxidative stress in streptozotocin (STZ)-induced diabetic rats and to evaluate the antioxidant effect of quercetin (QUE) in this disease. One hundred and thirty male Wistar rats, it were randomly distributed in 10 different experimental groups, with ten animals per group: Control Saline (CS), Control Ethanol (CE), Control QUE 5mg/kg (CQ5), Control QUE 25mg/kg (CQ25), Control QUE 50mg/kg (CQ50), Diabetic Saline (DS), Diabetic Ethanol (DE), Diabetic QUE 5mg/kg (DQ5), Diabetic QUE25 mg/kg (DQ25), Diabetic QUE 50mg/kg (DQ50). Therefore, hyperglycemia is directly involved in oxidative stress production, as well as in functional and morphological alterations caused by the excess of free radicals. QUE, specially at the dosage of 50mg/kg, can act as an antioxidant and anti-inflammatory agent, becoming a promising adjuvant in the treatment of diabetes mellitus. PMID:23706762

  9. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  10. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    Directory of Open Access Journals (Sweden)

    Norshalizah Mamikutty

    2015-01-01

    Full Text Available Background. Nonalcoholic fatty liver disease (NAFLD is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  11. Effect of milk hydrolysates on inflammation markers and drug-induced transcriptional alterations in cell-based models

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Theil, Peter Kappel; Larsen, Lotte Bach;

    2012-01-01

    underlying mechanisms that support inflammation and wound healing are not completely understood, but transcriptional alterations may be used as markers for inflammation and wound healing. The bioactivity of 3 CH prepared by treatment of commercial casein with pepsin (60 min) followed by corolase (0, 10, or......B (NFκB) by real-time PCR. Furthermore, the effect of CH on lipopolysaccharide-induced inflammation was evaluated in macrophages by measuring PG E2 levels. Casein hydrolysates treated with corolase for 10 or 60 min after pepsin treatment downregulated transcription of TGF-β1 and NFκB (P < 0.05) compared...... with the hydrolysate treated with pepsin only. Hydrolysate prepared by corolase treatment for 60 min after pepsin hydrolysis downregulated transcription of COX-2 (P < 0.05) compared with hydrolysate treated with corolase for only 10 min whereas transcription of PPAR-γ was not affected (P > 0...

  12. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Science.gov (United States)

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  13. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Tomonori [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)]. E-mail: tomo@rerf.or.jp; Hayashi, Ikue [Central Research Laboratory, Hiroshima University Faculty of Dentistry, Hiroshima (Japan); Shinohara, Tomoko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Morishita, Yukari [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Nagamura, Hiroko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kusunoki, Yoichiro [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kyoizumi, Seishi [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Seyama, Toshio [Yasuda Women' s University, Hiroshima (Japan); Nakachi, Kei [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)

    2004-11-22

    To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34{sup +}/CD38{sup -}, CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34{sup +}/CD38{sup -} cell population, where the level of O2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34{sup +}/CD38{sup -} cell population, and this intracellular pH decreased as early as 4h post-irradiation, virtually simultaneous with the significant elevation of O2- generation. These results suggest that the CD34{sup +}/CD38{sup -} stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O2-, compare to more differentiated CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells and that its intracellular pH declines at an early phase in the apoptosis process.

  14. Microgravity-induced alterations in signal transduction in cells of the immune system

    Science.gov (United States)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  15. Low temperature conditioning of garlic (Allium sativum L. "seed" cloves induces alterations in sprouts proteome

    Directory of Open Access Journals (Sweden)

    Miguel David Dufoo-Hurtado

    2015-05-01

    Full Text Available Low-temperature conditioning of garlic seed cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that seed bulbs from ‘Coreano’ variety conditioned at 5 °C for five weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic seed cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23 °C, and the other was conditioned at low temperature (5 °C for five weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic seed cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous

  16. Decoding motor responses from the EEG during altered states of consciousness induced by propofol

    Science.gov (United States)

    Blokland, Yvonne; Farquhar, Jason; Lerou, Jos; Mourisse, Jo; Scheffer, Gert Jan; van Geffen, Geert-Jan; Spyrou, Loukianos; Bruhn, Jörgen

    2016-04-01

    Objective. Patients undergoing general anesthesia may awaken and become aware of the surgical procedure. Due to neuromuscular blocking agents, patients could be conscious yet unable to move. Using brain-computer interface (BCI) technology, it may be possible to detect movement attempts from the EEG. However, it is unknown how an anesthetic influences the brain response to motor tasks. Approach. We tested the offline classification performance of a movement-based BCI in 12 healthy subjects at two effect-site concentrations of propofol. For each subject a second classifier was trained on the subject’s data obtained before sedation, then tested on the data obtained during sedation (‘transfer classification’). Main results. At concentration 0.5 μg ml-1, despite an overall propofol EEG effect, the mean single trial classification accuracy was 85% (95% CI 81%-89%), and 83% (79%-88%) for the transfer classification. At 1.0 μg ml-1, the accuracies were 81% (76%-86%), and 72% (66%-79%), respectively. At the highest propofol concentration for four subjects, unlike the remaining subjects, the movement-related brain response had been largely diminished, and the transfer classification accuracy was not significantly above chance. These subjects showed a slower and more erratic task response, indicating an altered state of consciousness distinct from that of the other subjects. Significance. The results show the potential of using a BCI to detect intra-operative awareness and justify further development of this paradigm. At the same time, the relationship between motor responses and consciousness and its clinical relevance for intraoperative awareness requires further investigation.

  17. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids

    Institute of Scientific and Technical Information of China (English)

    Lotta K Stenman; Reetta Holma; Riitta Korpela

    2012-01-01

    AIM:To investigate whether high-fat-feeding is associated with increased intestinal permeability via alterations in bile acid metabolism.METHODS:Male C57B1/6J mice were fed on a high-fat (n =26) or low-fat diet (n =24) for 15 wk.Intestinal permeability was measured from duodenum,jejunum,ileum and colon in an Ussing chamber system using 4 kDa FITC-labeled dextran as an indicator.Fecal bile acids were analyzed with gas chromatography.Segments of jejunum and colon were analyzed for the expression of farnesoid X receptor (FXR) and tumor necrosis factor (TNF).RESULTS:Intestinal permeability was significantly increased by high-fat feeding in jejunum (median 0.334 for control vs 0.393 for high-fat,P =0.03) and colon (0.335 for control vs 0.433 for high-fat,P =0.01),but not in duodenum or ileum.The concentration of nearly all identified bile acids was significantly increased by high-fat feeding (P < 0.001).The proportion of ursodeoxycholic acid (UDCA) in all bile acids was decreased (1.4% ± 0.1% in high-fat vs 2.8% ± 0.3% in controls,P < 0.01) and correlated inversely with intestinal permeability (r =-0.72,P =0.01).High-fat feeding also increased jejunal FXR expression,as well as TNF expression along the intestine,especially in the colon.CONCLUSION:High-fat-feeding increased intestinal permeability,perhaps by a mechanism related to bile acid metabolism,namely a decreased proportion of fecal UDCA and increased FXR expression.

  18. Trawling-induced alterations of deep-sea sediment accumulation rates during the Anthropocene

    Science.gov (United States)

    Puig, P.; Paradis, S.; Masque, P.; Martin, J.; Juan, X.; Palanques, A.

    2015-12-01

    Commercial bottom trawling causes direct physical disturbance of the marine sedimentary environments by scraping and ploughing the seabed, generating periodic resuspension of surface sediments. However, the quantification of the sediment that is removed by trawling and exported across the continental margin remains largely unaddressed, and the preservation of the signal of such impacts in the geological record have been mostly overlooked. The analysis of sediment cores collected along the Catalan margin (NW Mediterranean) has allowed evaluating the contribution of this anthropogenic activity to the present-day sediment dynamics. Sediment cores at intensively trawled sites are characterized by over-consolidated sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sedimentary deposits. In turn, combined 210Pb and 137Cs chronologies indicate a significant increase of sediment accumulation rates within submarine canyon environments since the 1970s, coincidently with a strong impulse in the industrialization of the trawling fleets of this region. Two sampling sites that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied 1-2 decades after the first studies and revealed a second and even larger increase of sediment accumulation rates (>2 cm/y) occurring at the beginning of the XXI century. This recent change has been attributed to a preferential displacement of the trawling fleet towards fishing grounds surrounding submarine canyons and, also, to technical improvements in trawling vessels, presumably related to financial subsidies provided to the fishing sector. The alteration of sediment accumulation rates described in this continental margin may occur in many regions of the World's oceans given the wide geographical distribution of this human activity, and therefore, it could represent a potential marker of the Anthropocene in deep-sea environments.

  19. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach.

    Science.gov (United States)

    Madeira, D; Araújo, J E; Vitorino, R; Capelo, J L; Vinagre, C; Diniz, M S

    2016-07-01

    Climate change has pervasive effects on marine ecosystems, altering biodiversity patterns, abundance and distribution of species, biological interactions, phenology, and organisms' physiology, performance and fitness. Fish early life stages have narrow thermal windows and are thus more vulnerable to further changes in water temperature. The aim of this study was to address the sensitivity and underlying molecular changes of larvae of a key fisheries species, the sea bream Sparus aurata, towards ocean warming. Larvae were exposed to three temperatures: 18°C (control), 24°C (warm) and 30°C (heat wave) for seven days. At the end of the assay, i) survival curves were plotted for each temperature treatment and ii) entire larvae were collected for proteomic analysis via 2D gel electrophoresis, image analysis and mass spectrometry. Survival decreased with increasing temperature, with no larvae surviving at 30°C. Therefore, proteomic analysis was only carried out for 18°C and 24°C. Larvae up-regulated protein folding and degradation, cytoskeletal re-organization, transcriptional regulation and the growth hormone while mostly down-regulating cargo transporting and porphyrin metabolism upon exposure to heat stress. No changes were detected in proteins related to energetic metabolism suggesting that larval fish may not have the energetic plasticity needed to sustain cellular protection in the long-term. These results indicate that despite proteome modulation, S. aurata larvae do not seem able to fully acclimate to higher temperatures as shown by the low survival rates. Consequently, elevated temperatures seem to have bottleneck effects during fish early life stages, and future ocean warming can potentially compromise recruitment's success of key fisheries species. PMID:27062348

  20. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    Science.gov (United States)

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as l-glutamate. During l-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor l-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  1. Females uniquely vulnerable to alcohol-induced neurotoxicity show altered glucocorticoid signaling.

    Science.gov (United States)

    Wilhelm, Clare J; Hashimoto, Joel G; Roberts, Melissa L; Bloom, Shelley H; Beard, Douglas K; Wiren, Kristine M

    2015-03-19

    Women are more sensitive to the harmful effects of alcohol (EtOH) abuse than men, yet the underlying mechanisms remain poorly understood. Previous gene expression analysis of the medial prefrontal cortex (mPFC) following a chronic intoxication paradigm using continuous 72 h vapor inhalation found that females, but not males, exhibit an inflammatory response at peak withdrawal that is associated with cell damage. Given that glucocorticoids can function as anti-inflammatories, are known to increase with EtOH exposure, and influence neurotoxicity, we hypothesized that males and females may exhibit an altered corticosterone (CORT) response following chronic intoxication. Analysis of serum CORT levels revealed the expected increase during withdrawal with no difference between males and females, while control males but not females exhibited higher CORT concentrations than naive animals. Glucocorticoid signaling characterized using focused qPCR arrays identified a sexually dimorphic response in the mPFC during withdrawal, particularly among astrocyte-enriched genes. These genes include aquaporin-1 (Aqp1), sphingosine kinase 1 (Sphk1) and connective tissue growth factor (Ctgf); genes associated with inflammatory signaling, and tissue damage and repair. Bioinformatic analysis also revealed activation of inflammatory signaling and cell death pathways in females. Confirmation studies showed that female mice exhibited significant neuronal degeneration within the anterior cingulate cortex (ACC). By contrast, EtOH exposure lead to a significant reduction in cell death in males. Thus, distinct glucocorticoid signaling pathways are associated with sexually dimorphic neurotoxicity, suggesting one mechanism by which EtOH-exposed females are particularly vulnerable to the damaging effects of alcohol in the CNS. PMID:25601008

  2. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    International Nuclear Information System (INIS)

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period

  3. In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice.

    Science.gov (United States)

    Ribeiro, André Luiz Teroso; Shimada, Ana Lúcia Borges; Hebeda, Cristina Bichels; de Oliveira, Tiago Franco; de Melo Loureiro, Ana Paula; Filho, Walter Dos Reis Pereira; Santos, Alcinéa Meigikos Dos Anjos; de Lima, Wothan Tavares; Farsky, Sandra Helena Poliselli

    2011-10-01

    Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50ppm HQ (1h/day for 5 days). One hour later, oxidative burst, cell cycle, DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1h later the last exposures, inflammation was induced by LPS inhalation (0.1mg/ml/10min) and 3h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of β(2) and β(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ

  4. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  5. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  6. Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage.

    Directory of Open Access Journals (Sweden)

    Alexandre Fouré

    Full Text Available Isometric contractions induced by neuromuscular electrostimulation (NMES have been shown to result in a prolonged force decrease but the time course of the potential central and peripheral factors have never been investigated. This study examined the specific time course of central and peripheral factors after isometric NMES-induced muscle damage. Twenty-five young healthy men were subjected to an NMES exercise consisting of 40 contractions for both legs. Changes in maximal voluntary contraction force of the knee extensors (MVC, peak evoked force during double stimulations at 10 Hz (Db(10 and 100 Hz (Db(100, its ratio (10:100, voluntary activation, muscle soreness and plasma creatine kinase activity were assessed before, immediately after and throughout four days after NMES session. Changes in knee extensors volume and T2 relaxation time were also assessed at two (D2 and four (D4 days post-exercise. MVC decreased by 29% immediately after NMES session and was still 19% lower than the baseline value at D4. The decrease in Db(10 was higher than in Db(100 immediately and one day post-exercise resulting in a decrease (-12% in the 10:100 ratio. On the contrary, voluntary activation significantly decreased at D2 (-5% and was still depressed at D4 (-5%. Muscle soreness and plasma creatine kinase activity increased after NMES and peaked at D2 and D4, respectively. T2 was also increased at D2 (6% and D4 (9%. Additionally, changes in MVC and peripheral factors (e.g., Db(100 were correlated on the full recovery period, while a significant correlation was found between changes in MVC and VA only from D2 to D4. The decrease in MVC recorded immediately after the NMES session was mainly due to peripheral changes while both central and peripheral contributions were involved in the prolonged force reduction. Interestingly, the chronological events differ from what has been reported so far for voluntary exercise-induced muscle damage.

  7. Time Course of Central and Peripheral Alterations after Isometric Neuromuscular Electrical Stimulation-Induced Muscle Damage

    Science.gov (United States)

    Fouré, Alexandre; Nosaka, Kazunori; Wegrzyk, Jennifer; Duhamel, Guillaume; Le Troter, Arnaud; Boudinet, Hélène; Mattei, Jean-Pierre; Vilmen, Christophe; Jubeau, Marc; Bendahan, David; Gondin, Julien

    2014-01-01

    Isometric contractions induced by neuromuscular electrostimulation (NMES) have been shown to result in a prolonged force decrease but the time course of the potential central and peripheral factors have never been investigated. This study examined the specific time course of central and peripheral factors after isometric NMES-induced muscle damage. Twenty-five young healthy men were subjected to an NMES exercise consisting of 40 contractions for both legs. Changes in maximal voluntary contraction force of the knee extensors (MVC), peak evoked force during double stimulations at 10 Hz (Db10) and 100 Hz (Db100), its ratio (10∶100), voluntary activation, muscle soreness and plasma creatine kinase activity were assessed before, immediately after and throughout four days after NMES session. Changes in knee extensors volume and T2 relaxation time were also assessed at two (D2) and four (D4) days post-exercise. MVC decreased by 29% immediately after NMES session and was still 19% lower than the baseline value at D4. The decrease in Db10 was higher than in Db100 immediately and one day post-exercise resulting in a decrease (−12%) in the 10∶100 ratio. On the contrary, voluntary activation significantly decreased at D2 (−5%) and was still depressed at D4 (−5%). Muscle soreness and plasma creatine kinase activity increased after NMES and peaked at D2 and D4, respectively. T2 was also increased at D2 (6%) and D4 (9%). Additionally, changes in MVC and peripheral factors (e.g., Db100) were correlated on the full recovery period, while a significant correlation was found between changes in MVC and VA only from D2 to D4. The decrease in MVC recorded immediately after the NMES session was mainly due to peripheral changes while both central and peripheral contributions were involved in the prolonged force reduction. Interestingly, the chronological events differ from what has been reported so far for voluntary exercise-induced muscle damage. PMID:25215511

  8. Nicotine induces alteration of H3K27 demethylase UTX in kidney cancer cell.

    Science.gov (United States)

    Guo, X; Li, X; Wang, Y; Tian, Z; Duan, X; Cai, Z

    2014-03-01

    Cigarette smoking is one of the most important risk factors for kidney cancer, but the molecular mechanism is poorly understood. To examine the expression change of histone H3 on lysine 27 trimethylase (H3K27me3) demethylases ubiquitously transcribed TPR gene on the X chromosome (UTX) in kidney cancer cell line 786-O after nicotine treatment, quantitative real-time-polymerase chain reaction and western blotting analysis were carried out. These results showed that nicotine can increase UTX messenger RNA and protein levels and also decrease the content of H3K27me3. The decreased content of H3K27me3 may activate specific gene expression and lead to kidney cancer. Future investigation on nicotine induced UTX expression and its epigenetic effect would deepen our understanding on nicotine toxicity and carcinogenicity. PMID:23925944

  9. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Directory of Open Access Journals (Sweden)

    Linda V. Hjørnevik

    2015-12-01

    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  10. [Acute alterations of neurotransmitters levels in striatum of young rat after pilocarpine-induced status epilepticus].

    Science.gov (United States)

    de Freitas, Rivelilson Mendes; de Sousa, Francisca Cléa Florenço; Vasconcelos, Silvânia Maria Mendes; Viana, Glauce Socorro Barros; Fonteles, Marta Maria de França

    2003-06-01

    High doses of the muscarinic cholinergic agonist, pilocarpine, result in behavioural changes, seizures and status epilepticus in rats. The purpose of the present work is to invetigate the striatal neurotransmissors level in young rats after status epilepticus induced by pilocarpine. Wistar rats were treated with a single dose of pilocarpine (400mg/Kg; s.c.). Controls received saline. Young animals were closed observed for behavioural changes during 1 and 24h. In these periods, the animals that developed status epilepticus and didn't survive this acute phase of seizures had the brains removed and striatal neurotransmissors level determined by HPLC. The concentration of dopamine, serotonine, dihydroxyphenylacetic acid, 5-hydroxyindolacetic acid was reduced and an increase in 4-hydroxy-3-methoxy-phenylacetic acid was observed. These results suggest that cholinergic activation can interage with dopaminergic and serotonergic systems in acute phase of the convulsive process in immature striatum. PMID:12894279

  11. Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    DEFF Research Database (Denmark)

    Sayanjali, Behnam; Christensen, Gitte J M; Al-Zeer, Munir A;

    2016-01-01

    Propionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation......-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested the...... hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant on...

  12. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J;

    2014-01-01

    The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055......, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype...

  13. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J.;

    2014-01-01

    The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055......, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype...

  14. Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    Directory of Open Access Journals (Sweden)

    Matthias Schleuning

    2012-12-01

    Full Text Available Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species.

  15. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    International Nuclear Information System (INIS)

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: → Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. → Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs

  16. Tunisian radish (Raphanus sativus) extract prevents cadmium-induced immunotoxic and biochemical alterations in rats.

    Science.gov (United States)

    ben Salah-Abbès, Jalila; Abbès, Samir; Zohra, Haous; Oueslati, Ridha

    2015-01-01

    Cadmium (Cd), a known carcinogen and potent immunotoxicant in humans and animals, is dispersed throughout the environment as a result of pollution from a variety of sources. Tunisian radish (Raphanus sativus) extract (TRE) is a known anti-oxidant and free radical scavenger that has been shown to help alleviate immune system disorders, including some induced by environmental toxicants. The present study was undertaken to investigate potential protective effects of TRE against Cd-induced immunotoxicities (and general toxicities) in situ. Cadmium chloride (at 2.5 mg CdCl2/kg BW) and TRE (5, 10, or 15 mg/kg BW) were given (alone or in combination [actually, in sequence of Cd and then TRE]) to rats daily by oral gavage for 2 weeks. Results indicated that treatment with CdCl2 alone resulted in significant decreases in plasma levels of total protein, triglycerides, creatine kinase, creatinine, IgG and IgA, T-lymphocyte sub-types (CD4(+), CD3(+), CD56(+), and CD8(+)), and in thymic and hepatic indices (relative weights). In contrast, CdCl2 treatment caused significant increases in serum LDH, AST, and ALT, in the formation/release of pro-inflammatory cytokines (IL-1 and TNFα), and in the relative weights of host spleen and kidneys. Rats treated with TRE alone had no discernable changes compared to the controls with regard to all test parameters. Combined treatment of CdCl2 and TRE-at any dose-resulted in a significant improvement of all test parameters compared to those seen with Cd alone. These results illustrated (and provided further support for a continuing belief in) the beneficial effects of TRE in reducing the harmful outcomes of commonly encountered toxicants (like Cd) on the immune system and on overall host health status. PMID:24524755

  17. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice.

    Science.gov (United States)

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P; Nadav, Tali; Roberto, Marisa; Lasek, Amy W; Roberts, Amanda J

    2016-08-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk -/-) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk -/- mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk -/- mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk -/- mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk -/- mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  18. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion.

    Science.gov (United States)

    Lucas, Samuel J E; Ainslie, Philip N; Murrell, Carissa J; Thomas, Kate N; Franz, Elizabeth A; Cotter, James D

    2012-08-01

    Regular exercise improves the age-related decline in cerebral blood flow (CBF) and is associated with improved cognitive function; however, less is known about the direct relationship between CBF and cognitive function. We examined the influence of healthy aging on the capability of acute exercise to improve cognition, and whether exercise-induced improvements in cognition are related to CBF and cortical hemodynamics. Middle cerebral artery blood flow velocity (MCAv; Doppler) and cortical hemodynamics (NIRS) were measured in 13 young (24±5 y) and 9 older (62±3 y) participants at rest and during cycling at 30% and 70% of heart rate range (HRR). Cognitive performance was assessed using a computer-adapted Stroop task (i.e., test of executive function cognition) at rest and during exercise. Average response times on the Stroop task were slower for the older compared to younger group for both simple and difficult tasks (Pexercise (Pexercise (P=0.04 vs. 30% HRR). Higher MCAv was correlated with faster response times for simple and difficult tasks at rest (R(2)=0.47 and R(2)=0.47, respectively), but this relation uncoupled progressively during exercise. Exercise-induced increases in MCAv were similar and unaltered during cognitive tasks for both age groups. In contrast, prefrontal cortical hemodynamic NIRS measures [oxyhemoglobin (O(2)Hb) and total hemoglobin (tHb)] were differentially affected by exercise intensity, age and cognitive task; e.g., there were smaller increases in [O(2)Hb] and [tHb] in the older group between exercise intensities (Pexercising; 2) while MCAv is strongly related to cognition at rest, this relation becomes uncoupled during exercise, and 3) there is dissociation between global CBF and regional cortical oxygenation and NIRS blood volume markers during exercise and engagement of prefrontal cognition. PMID:22230488

  19. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium.

    Science.gov (United States)

    Kim, Jeongjin; Jo, Ara; Ding, Tian; Lee, Hyeon-Yong; Ahn, Juhee

    2016-08-01

    This study describes a new effort toward understanding the interaction mechanisms between antibiotic-resistant Salmonella Typhimurium and phages. The antibiotic susceptibility, β-lactamase activity, bacterial motility, gene expression, and lytic activity were evaluated in ciprofloxacin-induced antibiotic-sensitive Salmonella Typhimurium (ASST(CIP)) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium (ARST(CIP)), which were compared to the wild-type strains (ASST(WT) and ARST(WT)). The MIC values of ampicillin, norfloxacin, chloramphenicol, and tetracycline were significantly increased to > 512, 16, 16, and 256 μg/ml, respectively, in the ARST(CIP). The lowest and highest extracellular lactamase activities were observed in ASST(WT) (6.85 μmol/min/ml) and ARST(CIP) (48.83 μmol/min/ml), respectively. The acrA, lpfE, and hilA genes were significantly upregulated by more than tenfold in both ASST(CIP) and ARST(CIP). The induction of multiple antibiotic resistance resulted from the increased efflux pump activity (AcrAB-TolC). The highest phage adsorption rates were more than 95 % for ASST(WT), ASST(CIP), and ARST(WT), while the lowest adsorption rate was 52 % for ARST(CIP) at 15 min of infection. The least lytic activity of phage was 20 % against the ARST(CIP), followed by ASST(CIP) (30 %). The adsorption rate of phage against ARST(CIP) was 52 % at 15 min of infection, which resulted in the decrease in lytic activity (12 %). Understanding the interaction of phage and bacteria is essential for the practical application of phage to control and detect antibiotic-resistant bacteria. The results provide useful information for understanding the binding specificity of phages for multiple antibiotic-resistant pathogens. PMID:27000396

  20. A self-resonant micro flow velocity sensor based on a resonant frequency shift by flow-induced vibration

    International Nuclear Information System (INIS)

    We report the development of a self-resonant flow sensor based on a resonant frequency shift due to flow-induced vibrations. The vibration of a microcantilever beam, induced by a turbulent flow, is modulated with its own natural frequency, and the resonant frequency is shifted by a surface stress on the beam due to fluid drag force. The vibration induced by air flow is measured by using a piezoelectric PZT material on a silicon cantilever beam. The theoretical resonant frequencies of two cantilever beams (lengths: 610 µm and 2000 µm) are 12416 Hz and 1155 Hz, respectively. For the air flow velocities of 2.8 m s−1 and 9.7 m s−1, the shifted resonant frequencies of the cantilever beam whose length is 610 µm are 12 810 Hz and 15 602 Hz, respectively. Sensitivities of the two self-resonant flow sensors with the 610 and 2000 µm long beams are approximately 384 ± 15 Hz/(m/s) and 20.4 ± 0.6 Hz/(m/s), respectively.

  1. On-off control of burst high frequency electrical stimulation to suppress 4-AP induced seizures

    Science.gov (United States)

    Chiang, Chia-Chu; Lin, Chou-Ching K.; Ju, Ming-Shaung

    2013-06-01

    Objective. The goal of this study was to investigate, using model simulations and animal experiments, the efficiency and the side effects of burst high frequency stimulation combined with on-off control in seizure suppression. Approach. A modified mathematical hippocampal seizure model was created to provide evidence of the eligibility of this approach. In the experimental setup, two recording electrodes were inserted into bilateral septal CA1 of the hippocampus, and a stimulation electrode was placed on the ventral hippocampal commissure of a rat. After seizures had been induced by 4-aminopyridine treatment, on-off control stimulation was used to suppress the seizures at 20 s intervals. The stimulation time, cumulative charge and post-stimulation suppression were used to assess the effects of burst duration. Main results. The results showed that burst stimulation could suppress the seizures during the control period and burst stimulation of a shorter duration could keep the seizure suppressed with less effort. By decreasing the burst duration, the cumulative stimulation time became shorter, the delivered cumulative charge became lower, and the cumulative time of post-stimulation suppression became longer. Significance. The on-off control stimulation not only prolonged the duration of suppression but also avoided the side effects of the conversion of seizure patterns. In particular, decreasing the specified burst duration increased the efficiency of the burst stimulation.

  2. Pulse transformation and time-frequency filtering with electromagnetically induced transparency

    International Nuclear Information System (INIS)

    A simple analytical solution for the propagation of a weak Gaussian pulse in a dense absorptive medium with electromagnetically induced transparency is found. This solution is applied to the analysis of three regimes: (1) and (2) the pulse spectrum is narrower than the transparency window [which is narrow (1) or wide (2) with respect to the width of the absorption line] and (3) the pulse spectrum is broader than the transparency window. It is shown that the pulse maintains its area in all three regimes and maintains its Gaussian shape but narrows in spectrum in regime 1. In regime 2, the pulse begins to distort after a certain distance. In regime 3, the pulse is split into two parts. One part is an adiabatic part with a spectrum defined by the effective width of the transparency window for a thick medium and the other is an oscillating nonadiabatic part of short duration. The adiabatic part propagates slowly and the nonadiabatic part propagates with a velocity close to the speed of light. Thus in regime 3, the medium acts as a time-frequency filter, separating the narrow and wide spectrum components of the pulse in time at the output of the absorber

  3. A crude model to study radio frequency induced density modification close to launchers

    International Nuclear Information System (INIS)

    The interplay between radio frequency (RF) waves and the density is discussed by adopting the general framework of a 2-time-scale multi-fluid treatment, allowing to separate the dynamics on the RF time scale from that on the time scale on which macroscopic density and flows vary as a result of the presence of electromagnetic and/or electrostatic fields. The focus is on regions close to launchers where charge neutrality is incomplete and waves are commonly evanescent. The fast time scale dynamics influences the slow time scale behavior via quasilinear terms (the Ponderomotive force for the case of the equation of motion). Electrons and ions are treated on the same footing. Also, both fast and slow waves are retained in the wave description. Although this work is meant as a subtopic of a large study—the wave induced “convective cell” physics at hand is of a 2- or 3-dimensional nature while this paper limits itself to a single dimension—a few tentative examples are presented

  4. A crude model to study radio frequency induced density modification close to launchers

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, Dirk [Laboratory for Plasma Physics (ERM/KMS), EUROfusion Consortium Member, Trilateral Euregio Cluster, Brussels (Belgium); Crombé, Kristel [Laboratory for Plasma Physics (ERM/KMS), EUROfusion Consortium Member, Trilateral Euregio Cluster, Brussels (Belgium); Department of Applied Physics, Ghent University, Ghent (Belgium)

    2015-12-15

    The interplay between radio frequency (RF) waves and the density is discussed by adopting the general framework of a 2-time-scale multi-fluid treatment, allowing to separate the dynamics on the RF time scale from that on the time scale on which macroscopic density and flows vary as a result of the presence of electromagnetic and/or electrostatic fields. The focus is on regions close to launchers where charge neutrality is incomplete and waves are commonly evanescent. The fast time scale dynamics influences the slow time scale behavior via quasilinear terms (the Ponderomotive force for the case of the equation of motion). Electrons and ions are treated on the same footing. Also, both fast and slow waves are retained in the wave description. Although this work is meant as a subtopic of a large study—the wave induced “convective cell” physics at hand is of a 2- or 3-dimensional nature while this paper limits itself to a single dimension—a few tentative examples are presented.

  5. Radio frequency induced ionized collisional flow model for application at atmospheric pressures

    International Nuclear Information System (INIS)

    We present the development and application of a versatile finite-element method to discretize direct current and radio frequency (rf) induced plasma-sheath dynamics, using multifluid equations. For the former, argon gas is assumed, and the solution is verified by comparison with a theoretical model obtained from the literature. For rf discharges, partially ionized helium gas is considered between two electrodes coated in a dielectric material. The computed solutions for charge densities, the ion velocity and the neutral gas density and crossflow distributions show expected trends. Specifically, ion and electron number densities at the peak discharge current are compared with published numerical results. The derived electric field is utilized with a simple phenomenological model applicable to the transverse velocity in a one-dimensional situation to predict the anticipated hump in the near wall profile. The next step of extending the model, through future work, to two dimensions and for polyphase supply as implemented in realistic configurations is greatly facilitated by the generality of the chosen finite-element method

  6. Collective properties of injection-induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions

    Science.gov (United States)

    Dempsey, David; Suckale, Jenny; Huang, Yihe

    2016-05-01

    Probabilistic seismic hazard assessment for induced seismicity depends on reliable estimates of the locations, rate, and magnitude frequency properties of earthquake sequences. The purpose of this paper is to investigate how variations in these properties emerge from interactions between an evolving fluid pressure distribution and the mechanics of rupture on heterogeneous faults. We use an earthquake sequence model, developed in the first part of this two-part series, that computes pore pressure evolution, hypocenter locations, and rupture lengths for earthquakes triggered on 1-D faults with spatially correlated shear stress. We first consider characteristic features that emerge from a range of generic injection scenarios and then focus on the 2010-2011 sequence of earthquakes linked to wastewater disposal into two wells near the towns of Guy and Greenbrier, Arkansas. Simulations indicate that one reason for an increase of the Gutenberg-Richter b value for induced earthquakes is the different rates of reduction of static and residual strength as fluid pressure rises. This promotes fault rupture at lower stress than equivalent tectonic events. Further, b value is shown to decrease with time (the induced seismicity analog of b value reduction toward the end of the seismic cycle) and to be higher on faults with lower initial shear stress. This suggests that faults in the same stress field that have different orientations, and therefore different levels of resolved shear stress, should exhibit seismicity with different b-values. A deficit of large-magnitude events is noted when injection occurs directly onto a fault and this is shown to depend on the geometry of the pressure plume. Finally, we develop models of the Guy-Greenbrier sequence that captures approximately the onset, rise and fall, and southwest migration of seismicity on the Guy-Greenbrier fault. Constrained by the migration rate, we estimate the permeability of a 10 m thick critically stressed basement

  7. Herbivore-induced "deshrubification" alters the biogeochemistry of subarctic riparian ecosystems

    Science.gov (United States)

    Smis, Adriaan; Ravolainen, Virve; Bråthen, Kari Anne; Ims, Rolf; Meire, Patrick; Struyf, Eric

    2013-04-01

    also a continuum between low and high Si:N- and Si:P-ratios in the vegetation, affecting both the size, reactivity and availability of the soil Si, N and P pools, as well as the export of these nutrients towards deeper soil layers and finally towards the river system. This has potentially large implications for the aquatic phytoplankton community, especially in adjacent estuarine and coastal systems, where low Si availability in relation to N and P can cause a transition from diatom dominance to non-diatom dominance, altering food-webs structure and carbon sequestration potential.

  8. Flood-Induced Surface Blooms Alter Deep Chlorophyll Maxima Community Structure in Lake Michigan.

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.; Seline, L.

    2008-12-01

    Watershed-wide floods can bring increased nutrients and phytoplankton to receiving waters. This input can alter physical, chemical and phytoplankton community structure in a major way. Phytoplankton species composition and size distribution are key factors in their use as ecological indicators. Since 2003, phytoplankton communities in Lake Michigan have shifted from diatom and big cell (>10μm)- dominated to small cell picocyanobacteria-dominated phytoplankton (phycobiliprotein pigments for deepwater light quality, have a higher surface-to-volume ratio for effective nutrient scavenging, and are smaller than the preferred range (5-100μm) for filter-feeding mussel populations. After only five years with Quagga Mussels, dampened seasonal cycling of silicate indicated a basin-wide reduction of diatom production, and unicellular Cyanobacteria became dominant in deep chlorophyll maximum (DCM) zones. In the DCM, Synechococcus-like cells reached populations of at least 210,000 cells/ml. DCM chlorophyll (chl) remained similar (3-4μg/l) but late summer species composition changed dramatically to mostly 10μm fraction increased from previous years, and over 75% of the particulate Si was also in this size fraction. Because of the rapid sinking of diatoms during calm weather of late June-early July of 2008, particulate Si did not reach high values in surfaces waters (ca. 1.5μM) but remained at a consistently higher level than in 2007. Sinking of diatoms from the surface depleted chl in a progression from inshore to offshore during July 2008. In July surface chl was higher 40-70 km offshore than in the coastal zone. Surface phytoplankton waxed and waned in population density as if a wave or lens moved continuously further offshore, with sinking cells depleting the surface algae following behind the crest. In the wake, strong DCM populations with higher chl and particulate Si accumulated in the 30-45m zone at the bottom of the thermocline. However, in 2008 DCM zones

  9. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma

    International Nuclear Information System (INIS)

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-indcued point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens.

  10. Effects of some natural extracts on tradescantia somatic cell pink mutation frequencies induced by gamma-ray

    International Nuclear Information System (INIS)

    This study deals with the effect of some natural extracts on the pink mutations induced by radiation in Tradescantia 4430 stamen hair cells. Inflorescence cuttings, with or without pretreatments of natural extracts for 3 hours, were exposed to 1 Gy of gamma ray. Comparisons were made on the basis of pooled data during the peak interval between the mean pink mutation frequencies of the two experimental groups. Pretreatments of FB or FB-I resulted in two-fold increases of the pink mutation frequencies, compared to those of control group. Synergism between certain fractions and radiation was a possible cause of increased DNA damage. On the other hand, the extract PG in proper concentrations significantly reduced the pink mutation frequencies (p<0.05). The result meant that PG had a protective effect on radiation-induced cell damage. Tradescantia proved to be an excellent biological model system for assessing the radiomodification effects of natural materials

  11. A correlative study on the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mammals

    International Nuclear Information System (INIS)

    A series of investigations on the correlation between the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mouse and rhesus monkey is described. In the mouse the induction of reciprocal translocations in bone-marrow cells was compared with that in spermatogonia (as scored in the descending spermatocytes). In the rhesus monkey frequencies of radiation-induced chromosome aberrations in spermatogonia and peripheral blood lymphocytes were studied. Furthermore the effect of multigeneration irradiation (69 generations with 200 rads X-rays) on the sensitivity for translocation induction in spermatogonia of male mice was studied. Frequencies of dicentric chromosomes and chromosomal deletions in cultured peripheral blood lymphocytes of 5 different types of mice were determined following in vitro irradiation with doses of 100 and/or 200 rad X-rays. To obtain more insight into the processes underlying translocation induction in spermatogonia of the mouse, fractionation experiments were conducted

  12. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    International Nuclear Information System (INIS)

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  13. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  14. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  15. Comparison of somatic mutation frequencies at HGPRT locus induced by radiation and chemical pollutant from energy system

    International Nuclear Information System (INIS)

    The somatic induction frequencies of mutation at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus induced by 60Co γ-rays and Benzo-a-pyrene (B(a)P), which are representative of hazardous emission and pollutant from nuclear energy cycle and fossil-fuelled energy cycle respectively, were detected by using forward mutation assay and cloning technique in both V79 Chinese hamster cells and human peripheral blood T-lymphocytes. Resistant mutants were selected with 6-thioguanine (6-TG). Dose-response curves and mathematical expressions were obtained for mutation frequencies and survival following γ-ray and B(a)P(+S9) treatments. The dose ranges for the two mutagens were compared when they induced the same mutation frequencies. In V79/HGPRT assay system, when the mutation frequencies were 5∼35 mutants/106 cells the response of γ-rays in the dose range from 0.93∼4.96 Gy at dose rate of 1.16 Gy/min is nearly equivalent to that in the B(a)P dose range from 0.52∼4.27 μg/ml. By using cloning technique in T-lymphocytes, when the mutation frequencies were 1∼14 mutants/105 cells the response of γ-rays in the dose range from 0.05∼4.77 Gy at dose rate of 1.03 Gy/min is nearly equivalent to that in the B(a)P dose range from 0.15∼7.36 μg/ml. When the survival fraction is 37%, the mutation frequency induced by B(a)P is higher than that induced by 60Co γ-rays

  16. Heavy-ion irradiation induced alteration in histopathology and cancer stem cell markers

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate whether carbon ion irradiation had beneficial effects by targeting cancer stem cells, human colon cancer cells were treated in vitro and in vivo by carbon ion or X-rays irradiation. The relative biological effectiveness (RBE) value of carbon ion relative to X-rays was calculated to be 1.6 in vitro (D10 survival fraction) and 3.82 in vivo (tumor regrowth delay). FACS data provide evidence that cancer stem-like CD133+, CD44+ and EpCAM+ cells were highly enriched after low linear energy transfer (LET) X-rays compared to high LET carbon ion irradiation in a dose-dependent manner. At an isodose of 30 Gy, carbon ion irradiation predominantly induced xenograft tumor cell cavitation and fibrosis, whereas X-rays irradiation only partially destroyed the tumor cell mass. The expression of cancer stem-like cell markers, CD133, EpCAM, and CD44 were significantly suppressed following carbon ion irradiation. In contrast, X-rays actually increased the expression of these proteins. Heavy ion irradiation has a great potential to effectively target radioresistant cancer stem cells. This is considered to be one of the major contributing factors for the high radiocurability of heavy ion cancer treatment. (author)

  17. Exploring Mycobacterium tuberculosis infection-induced alterations in gene expression in macrophage by microarray hybridization

    Institute of Scientific and Technical Information of China (English)

    谢建平; 李瑶; 乐军; 徐永忠; 黄达蔷; 梁莉; 王洪海

    2003-01-01

    Tuberculosis remains a serious threat to public health. Its causative agent Mycobacte- rium tuberculosis is an intracellular pathogen which survives and replicates within cells of the host immune system, primarily macrophages. Knowledge of the bacteria-macrophage interaction can help to develop novel measures to combat the disease. The global gene expression of macro- phage following invasion by and growth of M. tuberculosis was studied by cDNA microarray. Of the 12800 human genes analyzed, totally 473 (3.7%) macrophage genes were differentially expressed after being infected by M. tuberculosis, among which, only 25 (5.2%, corresponding to less than 0.2% of the 12800 genes) genes were up-regulated, while others (94.8%) were down-regulated against the control. Of the 473 genes, 376 genes are registered in the GenBank, and 97 are novel genes. Expression of 5 up-regulated genes has been induced by more than 3-fold. 25 genes were down-regulated by more than 3-fold. Syndecan binding protein has been down-regu- lated up to 12.5-fold. The data gave an insight into the early gene expression in macrophage ensuing M. tuberculosis infection and a basis for further study.

  18. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    Science.gov (United States)

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits. PMID:26566837

  19. Hypnotically induced somatosensory alterations: Toward a neurophysiological understanding of hypnotic anaesthesia.

    Science.gov (United States)

    Zeev-Wolf, Maor; Goldstein, Abraham; Bonne, Omer; Abramowitz, Eitan G

    2016-07-01

    Whereas numerous studies have investigated hypnotic analgesia, few have investigated hypnotic anaesthesia. Using magnetoencephalography (MEG) we investigated and localized brain responses (event-related fields and oscillatory activity) during sensory processing under hypnotic anaesthesia. Nineteen right handed neurotypical individuals with moderate-to-high hypnotizability received 100 vibrotactile stimuli to right and left index fingers in a random sequence. Thereafter a hypnotic state was induced, in which anaesthetic suggestion was applied to the left hand only. Once anaesthetic suggestion was achieved, a second, identical, session of vibrotactile stimuli was commenced. We found greater brain activity in response to the stimuli delivered to the left (attenuated) hand before hypnotic anaesthesia, than under hypnotic anaesthesia, in both the beta and alpha bands. In the beta band, the reduction of activity under hypnotic anaesthesia was found around 214-413ms post-stimuli and was located mainly in the right insula. In the alpha band, it was found around 253-500ms post-stimuli and was located mainly in the left inferior frontal gyrus. In a second experiment, attention modulation per se was ruled out as the underlying cause of the effects found. These findings may suggest that the brain mechanism underlying hypnotic anaesthesia involves top-down somatosensory inhibition and, therefore, a reduction of somatosensory awareness. The result of this mechanism is a mental state in which individuals lose bodily sensation. PMID:27212058

  20. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish.

    Science.gov (United States)

    Jin, Yuanxiang; Zhu, Zhihong; Wang, Yueyi; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei

    2016-06-01

    The fungicide imazalil (IMZ) is used extensively to protect vegetable fields, fruit plantations and post-harvest crops from rot. Likely due to its wide-spread use, IMZ is frequently detected in vegetable, fruit, soil and even surface water samples. Even though several previous studies have reported on the neurotoxicity of IMZ, its effects on the neurobehavior of zebrafish have received little attention to date. In this study, we show that the heartbeat and hatchability of zebrafish were significantly influenced by IMZ concentrations of 300 μg L(-1) or higher. Moreover, in zebrafish larvae, locomotor behaviors such as average swimming speed and swimming distance were significantly decreased after exposure to 300 μg L(-1) IMZ for 96 h, and acetylcholinesterase (AChE) expression and activity were consistently inhibited in IMZ-treated fish. Our results further suggest that IMZ could act as a neuroendocrine disruptor by decreasing the expression of neurotoxicity-related genes such as Glial fibrillary acidic protein (Gfap), Myelin basic protein (Mbp) and Sonic hedgehog a (Shha) during early developmental stages of zebrafish. In conclusion, we show that exposure to IMZ has the potential to induce developmental toxicity and locomotor behavior abnormalities during zebrafish development. PMID:27035382

  1. A Yang-invigorating compound mixture alters neurotransmitters in rat telencephalon after exercise-induced fatigue

    Institute of Scientific and Technical Information of China (English)

    Hongzhen Liu; Li Zeng; Xiliang Kong; Lei Zhu; Benhua Hou

    2011-01-01

    The aim of this study was to observe the changes in monoamine and amino acid neurotransmitters in the telencephalon of rats at four functional states after exhaustive exercise and treatment with a Yang-invigorating compound recipe.The main components of this Chinese traditional medicine preparation included Radix Ginseng,Rhizoma Chuanxiong,Fructus Schisandrae,Cortex Cinnamomi,Cornu Cervi Pantotrichum,Radix Morindae Officinalis,and Gecko.This experiment showed that dopamine (DA),5-hydroxyindole acetic acid (5-HIAA),and γ-aminobutyric acid levels noticeably decreased,while DA/5-hydroxytryptamine (5-HT) increased.Furthermore,glutamate (Glu) and Glu/γ-aminobutyric acid significantly increased after 1 hour of exercise in rats in the exercise + medication group.The 5-HT and 5-HT/5-HIAA levels noticeably decreased,and DA/5-HT and Glu levels showed a robust and significant increase immediately after exhaustive exercise.The 5-HT,5-HT/5-HIAA levels sharply decreased,while DA/5-HT,Glu and γ-aminobutyric acid levels increased at 12 hours after exhaustion recovery.The results prove that Chinese herbal formula for strengthening Yang can induce changes in neurotransmitters in the telencephalon of rats after exhaustive exercise during the recovery process,and further improve central nervous system function.

  2. Effects of Salvadora persica Extract on the Hematological and Biochemical Alterations against Immobilization-Induced Rats

    Science.gov (United States)

    Ramadan, Kholoud S.; Alshamrani, Salha A.

    2015-01-01

    A total of 24 rats were divided into 4 groups: control, stress, extract alone, and stress + extract (n = 6 each), for total 21 days of treatment. The immobilization stress was induced in rats by putting them in 20 cm × 7 cm plastic tubes for 2 h/day for 21 days. Rats were postorally treated with Salvadora persica at a dose of 900 mg/kg body weight via intragastric intubations. At the end of the test period, hematological and biochemical parameters were determined in blood and serum samples with determination of vital organs weights. The vital organ weights were not significantly affected in stressed rats as compared to control rats. Compared to the control group, the stress treated group showed significances in several hematological parameters, including decreases in WBC, RBC, and PLT counts. Furthermore, in comparison to the control group, the stress group showed significantly increased blood glucose, serum total cholesterol, LDL-cholesterol, and triacylglycerols levels and decreased HDL-cholesterol level. The hematological and biochemical parameters in the stress + extract treated group were approximately similar to control group. The SP extract restored the changes observed following stress treatment. PMID:26221565

  3. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    Science.gov (United States)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. PMID:27304513

  4. Permanent crystal lattice contraction, a primary mechanism in thermally induced alteration of Na bentonite

    International Nuclear Information System (INIS)

    The basic process in thermal transformation of smectite to hydrous mica is generally thought to be a lattice charge change caused by partial replacement of tetrahedral silica by aluminum. This is assumed to yield preferential uptake of potassium with concomitant contraction and loss of expandability of smectite aggregates as well as release of silica that migrates by diffusion from interlayer space into interaggregate voids, where it may form amorphous silica hydrogels and possibly quartz. The latter process was investigated by use of hydrothermal tests of fully water saturated, as well as partly saturated Na-montmorillonite gels, the intention being to identify possible heat-induced changes in expandability on a molecular scale by applying electron microscopy. The gels were exposed to a temperature of 2250C for 18 days in a first test series and the microstructural patterns compared with those of non-heated material. A clear tendency of lattice contraction was observed in the heated clay gels, particularly in the non-saturated one. The microstructure had the form of networks of virtually non-expandable, interwoven dense stacks. A possible physical explanation of the contraction is that the heat caused instability of the interlayer water lattices, yielding dominant interatomic mass forces which caused contraction of the stacks. In connection herewith, silica was released from the smectite lattices and precipitated at the edges of the stacks, which reduced or eliminated the expandability. Minute, precipitated silicic bodies, amorphous as well as crystalline, appeared in both clays. 13 references, 9 figures

  5. Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Methamphetamine (MA is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers.

  6. Early TBI-induced cytokine alterations are similarly detected by two distinct methods of multiplex assay.

    Directory of Open Access Journals (Sweden)

    Sanjib eMukherjee

    2011-09-01

    Full Text Available Annually, more than a million persons experience traumatic brain injury (TBI in the US and a substantial proportion of this population develop debilitating neurological disorders, such as, paralysis, cognitive deficits and epilepsy. Despite the long-standing knowledge of the risks associated with TBI, no effective biomarkers or interventions exist. Recent evidence suggests a role for inflammatory modulators in TBI-induced neurological impairments. Current technological advances allow for the simultaneous analysis of the precise spatial and temporal expression patterns of numerous proteins in single samples which ultimately can lead to