WorldWideScience

Sample records for alterations frequency induced

  1. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  2. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  3. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings.

    Directory of Open Access Journals (Sweden)

    Youbo You

    Full Text Available As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36 and a nearby non-meridian point (NAP would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz, beta (13-30 Hz and gamma (30-48 Hz bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend

  4. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self.

    Science.gov (United States)

    Lehmann, D; Faber, P L; Achermann, P; Jeanmonod, D; Gianotti, L R; Pizzagalli, D

    2001-11-30

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions. PMID:11738545

  5. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self

    OpenAIRE

    D. Lehmann(Darmstadt, GSI); Faber, P L; Achermann, P.; Jeanmonod, D; Gianotti, L. R.; Pizzagalli, D.

    2001-01-01

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal popu...

  6. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  7. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Science.gov (United States)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  8. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    Science.gov (United States)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  9. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  10. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  11. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.

    Directory of Open Access Journals (Sweden)

    Elyse L Walk

    Full Text Available Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC, provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl. Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy.

  12. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.

    Science.gov (United States)

    Walk, Elyse L; McLaughlin, Sarah; Coad, James; Weed, Scott A

    2014-01-01

    Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy. PMID:24955984

  13. Ventilation-induced Alterations in Lung Development

    OpenAIRE

    Kroon, André

    2011-01-01

    textabstractMechanical ventilation is a lifesaving treatment in critically ill neonates. However, mechanical ventilation is also one of the most important risk factors (Table 1) of Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infancy with long-term pulmonary and neurological complications (1). Exposure of immature lungs to positive pressure ventilation results in oxidative stress and ventilator-induced lung injury. The resulting injury and inflammation lead to abn...

  14. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  15. What the Erythrocytic Nuclear Alteration Frequencies Could Tell Us about Genotoxicity and Macrophage Iron Storage?

    Science.gov (United States)

    Gomes, Juliana M. M.; Ribeiro, Heder J.; Procópio, Marcela S.; Alvarenga, Betânia M.; Castro, Antônio C. S.; Dutra, Walderez O.; da Silva, José B. B.; Corrêa Junior, José D.

    2015-01-01

    Erythrocytic nuclear alterations have been considered as an indicative of organism’s exposure to genotoxic agents. Due to their close relationship among their frequencies and DNA damages, they are considered excellent markers of exposure in eukaryotes. However, poor data has been found in literature concerning their genesis, differential occurrence and their life span. In this study, we use markers of cell viability; genotoxicity and cellular turn over in order to shed light to these events. Tilapia and their blood were exposed to cadmium in acute exposure and in vitro assays. They were analyzed using flow cytometry for oxidative stress and membrane disruption, optical microscopy for erythrocytic nuclear alteration, graphite furnace atomic absorption spectrometry for cadmium content in aquaria water, blood and cytochemical and analytical electron microscopy techniques for the hemocateretic aspects. The results showed a close relationship among the total nuclear alterations and cadmium content in the total blood and melanomacrophage centres area, mismatching reactive oxygen species and membrane damages. Moreover, nuclear alterations frequencies (vacuolated, condensed and blebbed) showed to be associated to cadmium exposure whereas others (lobed and bud) were associated to depuration period. Decrease on nuclear alterations frequencies was also associated with hemosiderin increase inside spleen and head kidney macrophages mainly during depurative processes. These data disclosure in temporal fashion the main processes that drive the nuclear alterations frequencies and their relationship with some cellular and systemic biomarkers. PMID:26619141

  16. Selective Induced Altered Coccidians to Immunize and Prevent Enteritis

    Science.gov (United States)

    2016-01-01

    Microbiomic flora in digestive tract is pivotal to the state of our health and disease. Antibiotics affect GI, control composition of microbiome, and shift equilibrium from health into disease status. Coccidiosis causes gastrointestinal inflammation. Antibiotic additives contaminate animal products and enter food chain, consumed by humans with possible allergic, antibiotic resistance and enigmatic side effects. Purposed study induced nonpathogenic, immunogenic organisms to protect against disease and abolish antibiotics' use in food animals and side effects in man. Diverse species of Coccidia were used as model. Immature organisms were treated with serial purification procedure prior to developmental stages to obtain altered strains. Chicks received oral gavage immunized with serial low doses of normal or altered organisms or sham treatment and were challenged with high infective normal organisms to compare pathogenicity and immunogenicity. Mature induced altered forms of E. tenella and E. necatrix lacked developmental stage of “sporocysts” and contained free sporozoites. In contrast, E. maxima progressed to normal forms or did not mature at all. Animals that received altered forms were considerably protected with higher weight gain and antibody titers against challenge infection compared to those that received normal organisms (p < 0.05). This is the first report to induce selected protective altered organisms for possible preventive measures to minimize antibiotic use in food animals. PMID:27721824

  17. Studies on effect of stress preconditioning in restrain stress-induced behavioral alterations.

    Science.gov (United States)

    Kaur, Rajneet; Jaggi, Amteshwar Singh; Singh, Nirmal

    2010-02-01

    Stress preconditioning has been documented to confer on gastroprotective effects on stress-induced gastric ulcerations. However, the effects of prior exposure of stress preconditioning episodes on stress-induced behavioral changes have not been explored yet. Therefore the present study was designed to investigate the ameliorative effects of stress preconditioning in immobilization stress-induced behavioral alterations in rats. The rats were subjected to restrain stress by placing in restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Stress preconditioning was induced by subjecting the rats to two cycles of restraint and restrain-free periods of 15 min each. Furthermore, a similar type of stress preconditioning was induced using different time cycles of 30 and 45 min. The extent and severity of the stress-induced behavioral alterations were assessed using different behavioral tests such as hole-board test, social interaction test, open field test, and actophotometer. Restrain stress resulted in decrease in locomotor activity, frequency of head dips and rearing in hole board, line crossing and rearing in open field, and decreased following and increased avoidance in social interaction test. Stress preconditioning with two cycles of 15, 30 or 45 min respectively, did not attenuate stress-induced behavioral changes to any extent. It may be concluded that stress preconditioning does not seem to confer any protective effect in modulating restrain stress-induced behavioral alterations.

  18. Altered Frequency Distribution in the Electroencephalogram is Correlated to the Analgesic Effect of Remifentanil

    DEFF Research Database (Denmark)

    Graversen, Carina; Malver, Lasse P; Kurita, Geana P;

    2015-01-01

    Opioids alter resting state brain oscillations by multiple and complex factors, which are still to be elucidated. To increase our knowledge, multi-channel electroencephalography (EEG) was subjected to multivariate pattern analysis (MVPA), to identify the most descriptive frequency bands and scalp...... individual changes in heat pain in the delta (p = 0.045), theta (p = 0.038) and alpha (p = 0.039) bands and to bone pain in the alpha band (p = 0.0092). Hence, MVPA of multi-channel EEG was able to identify frequency bands and corresponding channels most sensitive to altered brain activity during...... locations altered by remifentanil in healthy volunteers. Sixty-two channels of resting EEG followed by independent measures of pain scores to heat and bone pain were recorded in 21 healthy males before and during remifentanil infusion in a placebo-controlled, double-blind crossover study. EEG frequency...

  19. Reversible tobramycin-induced bilateral high-frequency vestibular toxicity.

    Science.gov (United States)

    Walsh, R M; Bath, A P; Bance, M L

    2000-01-01

    We report an unusual case of tobramycin-induced bilateral high-frequency vestibular toxicity with subsequent clinical and objective evidence of functional recovery. In those patients with a clinical presentation suggestive of aminoglycoside-induced bilateral vestibular toxicity (ataxia and oscillopsia) and normal low-frequency (ENG-caloric) responses, high-frequency rotation chair testing should be performed to exclude a high-frequency vestibular deficit. PMID:10810261

  20. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants

    OpenAIRE

    Bernal, Autumn J.; Dolinoy, Dana C; Huang, Dale; Skaar, David A.; Weinhouse, Caren; Jirtle, Randy L

    2013-01-01

    Humans are exposed to low-dose ionizing radiation (LDIR) from a number of environmental and medical sources. In addition to inducing genetic mutations, there is concern that LDIR may also alter the epigenome. Such heritable effects early in life can either be positively adaptive or result in the enhanced formation of diseases, including cancer, diabetes, and obesity. Herein, we show that LDIR significantly increased DNA methylation at the viable yellow agouti (Avy) locus in a sex-specific man...

  1. Pacifier-sucking habit duration and frequency on occlusal and myofunctional alterations in preschool children

    Directory of Open Access Journals (Sweden)

    Valdeane Simone Cenci NIHI

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association of pacifier-sucking habit with occlusal and oral myofunctional alterations in preschool children. Eighty-four 2- to 5-year-old children participated in the study. Data on duration and frequency of pacifier use were collected from parents or guardians. Occlusal and oral myofunctional characteristics were examined by a dentist and a speech therapist, respectively. Chi-square tests and Poisson regression were used to analyze the data. The occlusal characteristics that were significantly associated with a pacifier-sucking habit were anterior open bite, altered canine relation, posterior crossbite, increased overjet, and malocclusion. The oral myofunctional characteristics that were significantly associated with a pacifier-sucking habit were resting lip position, resting tongue position, shape of the hard palate, and swallowing pattern. The strongest associations were for anterior open bite (prevalence ratio [PR] = 11.33, malocclusion (PR = 2.33, altered shape of the hard palate (PR = 1.29, and altered swallowing pattern (PR = 1.27. Both duration and frequency of pacifier-sucking habit were associated with occlusal and oral myofunctional alterations. These results emphasize the need for pediatric dentists to advise parents and caregivers about the risks of prolonged pacifier use and refer children to professionals for multidisciplinary assistance to minimize these risks whenever necessary.

  2. Hepatic histological alterations and biochemical changes induced by sildenafil overdoses.

    Science.gov (United States)

    Jarrar, Bashir Mahmoud; Almansour, Mansour Ibrahim

    2015-11-01

    Sildenafil is used for the treatment of erectile dysfunction and is helping millions of men around the world to achieve and maintain a long lasting erection. Fifty healthy male rabbits (Oryctolagus cuniculus) were used in the present study and exposed daily to sildenafil (0, 1, 3, 6, 9 mg/kg) for 5 days per week for 7 weeks to investigate the biochemical changes and alterations in the hepatic tissues induced by this drug overdosing. In comparison with respective control rabbits, sildenafil overdoses elevated significantly (p-value<0.05, ANOVA test) alanine aminotransferase (ALT), aspartate aminotransferase (AST), testosterone, follicular stimulating hormone and total protein, while creatinine and urea were lowered with no significant alteration was observed in uric acid and luteinizing hormone concentration. Also sildenafil provoked hepatocytes nuclear alterations, necrosis, hydropic degeneration, bile duct hyperplasia, Kupffer cells hyperplasia, inflammatory cells infiltration, hepatic vessels congestion and evident partial depletion of glycogen content. The results show that subchronic exposure to sildenafil overdoses exhibits significant biochemical and alterations in the hepatic tissues that might affect the functions of the liver and other vital organs. PMID:26639481

  3. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  4. Alteration of Heterogeneous Ice Nucleation Properties Induced by Particle Aging

    Science.gov (United States)

    Sullivan, R. C.; Polen, M.; Beydoun, H.; Lawlis, E.; Ahern, A.; Jahn, L.; Hill, T. C. J.

    2015-12-01

    Aerosol particles that can serve as ice nuclei frequently experience rapid and extensive chemical aging during atmospheric transport. This is known to significantly alter some ice nucleation modes of the few types of ice nucleation particle systems where aging effects have been simulated, such as for mineral dust. Yet much of our understanding of atmospheric particle freezing properties is derived from measurements of fresh or unaged particles. We know almost nothing regarding how atmospheric aging might alter the freezing properties of biomass burning aerosol or biological particle nucleants. We have investigated the effects of simulated aging using a chamber reactor on the heterogeneous ice nucleation properties of biomass burning aerosol (BBA) and ice-active bacteria particles. Some types of aging were found to enhance the freezing ability of BBA, exhibited as a shift in a portion of the droplet freezing curve to warmer temperatures by a few °C. Ice-active bacteria were found to consistently loose their most ice-active nucleants after repeated aging cycles. The bacterial systems always retained significantly efficient ice active sites that still allowed them to induce freezing at mild/warm temperatures, despite this decrease in freezing ability. A comprehensive series of online single-particle mass spectrometry and offline spectromicroscopic analysis of individual particles was used to determine how the aging altered the aerosol's composition, and gain mechanistic insights into how this in turn altered the freezing properties. Our new ice nucleation framework that uses a continuous distribution of ice active site ability (contact angle) was used to interpret the droplet freezing spectra and understand how aging alters the internal and external variability, and rigidity, of the ice active sites.

  5. Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner.

    Directory of Open Access Journals (Sweden)

    Laura N Vandenberg

    Full Text Available Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs and Danio rerio (zebrafish, specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures.

  6. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia.

    Science.gov (United States)

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  7. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  8. ALTERATIONS INDUCED BY LOW LEVELS OF DEOXYNIVALENOL IN WEANED PIGLETS

    Directory of Open Access Journals (Sweden)

    DANIELA ELIZA MARIN

    2013-12-01

    Full Text Available Deoxynivalenol (DON is a mycotoxin produced by different species of Fusarium genus that may contaminate feed and food. In the present study we investigated the effect of low levels of DON on the modulation of performance, hemodynamic parameters, cellular and humoral immune response in weaned pigs. Histological alterations in different organ tissues were also analyzed. Our results showed that a short in vivo exposure (14 days of weanling piglets to 0; 0.5; 1.5 mg/day of DON significantly induced a dose dependent increase of cellular immune response (lymphocytes proliferation and leucocytes numbers. The 0.5 and 1.5 mg/day of DON modulated also the humoral immune response by increasing the immunoglobulin A synthesis with 7.32 % and 37.98 % and by decreasing that of immunoglubulin G with 11.15 % and 36.87 %, respectively when compared with the control. DON produced also alterations in the hemodynamic parameters of intoxicated piglets; the activity of lactate dehydrogenase significantly increased while the activity of L-glutamate, alkaline phosphatase, urea and creatinine significantly decreased. Both doses of the toxin induced microscopic alterations of the internal organ structure. By contrast, ingestion of the contaminated material had no effect on the performance (weight gain, feed consumption, and feed efficiency, organ weights, and total serum concentration of cholesterol, calcium, sodium and potassium. Taken together these results suggest that even when present at low level DON can affect blood parameters, humoral and cellular immune response in weaned piglets with a significant importance for the swine health.

  9. Frequency-specific Alterations of Large-scale Functional Brain Networks in Patients with Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Qin; Ya-Peng Li; Shun Zhang; Ying Xiong; Lin-Ying Guo; Shi-Qi Yang; Yi-Hao Yao

    2015-01-01

    Background:Previous studies have indicated that the cognitive deficits in patients with Alzheimer's disease (AD) may be due to topological deteriorations of the brain network.However,whether the selection of a specific frequency band could impact the topological properties is still not clear.Our hypothesis is that the topological properties of AD patients are also frequency-specific.Methods:Resting state functional magnetic resonance imaging data from l0 right-handed moderate AD patients (mean age:64.3 years; mean mini mental state examination [MMSE]:18.0) and 10 age and gender-matched healthy controls (mean age:63.6 years; mean MMSE:28.2) were enrolled in this study.The global efficiency,the clustering coefficient (CC),the characteristic path length (CpL),and "small-world" property were calculated in a wide range of thresholds and averaged within each group,at three different frequency bands (0.01-0.06 Hz,0.06-0.11 Hz,and 0.11-0.25 Hz).Results:At lower-frequency bands (0.01-0.06 Hz,0.06-0.11 Hz),the global efficiency,the CC and the "small-world" properties of AD patients decreased compared to controls.While at higher-frequency bands (0.11-0.25 Hz),the CpL was much longer,and the "small-world" property was disrupted in AD,particularly at a higher threshold.The topological properties changed with different frequency bands,suggesting the existence of disrupted global and local functional organization associated with AD.Conclusions:This study demonstrates that the topological alterations of large-scale functional brain networks inAD patients are frequency dependent,thus providing fundamental support for optimal frequency selection in future related research.

  10. Subthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat

    OpenAIRE

    Bertrand Degos; Jean-Michel Deniau; Mario Chavez; Nicolas Maurice

    2013-01-01

    Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized...

  11. Cell alterations induced by a biotherapic for influenza

    Directory of Open Access Journals (Sweden)

    José Nelson Couceiro

    2011-07-01

    Full Text Available Introduction: Influenza viruses have been responsible for highly contagious acute respiratory illnesses with high mortality, mainly in the elderly, which encourages the development of new drugs for the treatment of human flu. The biotherapics are medicines prepared from biological products, which are not chemically defined. They are compounded following the homeopathic procedures indicated for infectious diseases with known etiology [1]. Aim: The purpose of the present study is to verify cellular alterations induced by a biotherapic prepared from the infectious influenza A virus. Methodology: This biotherapic was prepared for this study in the homeopathic potency of 30X according to the Brazilian Homeopathic Pharmacopeia [2]. The concentration of 10% was not cytotoxic to cells, as verified by neutral red assay. The cellular alterations observed in MDCK cells were analyzed by optical microscopy for the quantification of mitosis, nucleoli and lipid bodies. The mitochondrial activity was assessed by MTT assay and the phosphosfructokinase-1 (PFK-1 enzyme activity was analyzed on the MDCK cells treated for 5, 10 and 30 days. Macrophages J778.G8 were treated with this biotherapic to evaluate the immunostimulatory cytokine release. Results: The cellular alterations observed in MDCK cells were verified by optical microscopy. The number of lipid bodies present in MDCK cells stimulated for 10 days was significantly lower (p <0.05 when compared to controls. The biotherapic significantly increased (p <0.05 the number of mitosis and the mitochondrial activity of MDCK cells stimulated for 10 and 30 days. These changes were confirmed by a significant reduction (p <0.05 on the PFK-1 activity. These results suggest that the biotherapic was able to activate the Krebs cycle and pentose-phosphate metabolism to the generation of amino acids and nucleotides, situations common to cells whose rate of mitosis is increased. The quantification of immunostimulatory

  12. Mechanically induced alterations in cultured skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  13. Treadmill exercise induces hippocampal astroglial alterations in rats.

    Science.gov (United States)

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  14. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  15. ALTERATIONS IN FREQUENCY OF ULNAR LOOPS AND ‘ATD’ ANGLE IN CONGENITAL HEART DISEASE

    Directory of Open Access Journals (Sweden)

    Jaywant

    2016-01-01

    Full Text Available INTRODUCTION Dermatoglyphics is a scientific study of epidermal ridge configuration on palm, soles and fingertips valuable for medico legal and genetic investigations. Dermatoglyphics form in utero during early gestation and may be influenced by genetic and environmental factors operating at that time. Present investigation was undertaken to study alterations in dermatoglyphic patterns with special reference to various congenital heart diseases (CHD. The study involved 102 cases of CHD and 100 cases of normal individuals. It was observed that percent frequency of ulnar loops significantly increased in CHD group as compared to control group. Mean 'atd' angle was also increased in CHD group as compared to control group indicating distal displacement of palmar axial triradius (t. Thus, rise in frequency of ulnar loops and increase in 'atd' angle can be considered as one of the diagnostic criteria for CHD.

  16. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jr., Edward I. (Albuquerque, NM)

    2000-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  17. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  18. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  19. Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina.

    Science.gov (United States)

    Ramakrishnan, Latha; Amatya, Christina; DeSaer, Cassie J; Dalhoff, Zachary; Eggerichs, Michael R

    2014-09-01

    In planaria (Dugesia tigrina), scopolamine, a nonselective muscarinic receptor antagonist, induced distinct behaviors of attenuated motility and C-like hyperactivity. Planarian locomotor velocity (pLMV) displayed a dose-dependent negative correlation with scopolamine concentrations from 0.001 to 1.0 mM, and a further increase in scopolamine concentration to 2.25 mM did not further decrease pLMV. Planarian hyperactivity counts was dose-dependently increased following pretreatment with scopolamine concentrations from 0.001 to 0.5 mM and then decreased for scopolamine concentrations ≥ 1 mM. Planarian learning and memory investigated using classical Pavlovian conditioning experiments demonstrated that scopolamine (1 mM) negatively influenced associative learning indicated by a significant decrease in % positive behaviors from 86 % (control) to 14 % (1 mM scopolamine) and similarly altered memory retention, which is indicated by a decrease in % positive behaviors from 69 % (control) to 27 % (1 mM scopolamine). Galantamine demonstrated a complex behavior in planarian motility experiments since co-application of low concentrations of galantamine (0.001 and 0.01 mM) protected planaria against 1 mM scopolamine-induced motility impairments; however, pLMV was significantly decreased when planaria were tested in the presence of 0.1 mM galantamine alone. Effects of co-treatment of scopolamine and galantamine on memory retention in planaria via classical Pavlovian conditioning experiments showed that galantamine (0.01 mM) partially reversed scopolamine (1 mM)-induced memory deficits in planaria as the % positive behaviors increased from 27 to 63 %. The results demonstrate, for the first time in planaria, scopolamine's effects in causing learning and memory impairments and galantamine's ability in reversing scopolamine-induced memory impairments.

  20. Fracture-aperture alteration induced by calcite precipitation

    Science.gov (United States)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation

  1. Altered Cortical Responsiveness to Pain Stimuli after High Frequency Electrical Stimulation of the Skin in Patients with Persistent Pain after Inguinal Hernia Repair

    OpenAIRE

    Broeke, E.N. van den; Koeslag, L.; Arendsen, L.J.; Nienhuijs, S.W.; Rosman, C.; van Rijn, C.M.

    2013-01-01

    Background High Frequency electrical Stimulation (HFS) of the skin induces enhanced brain responsiveness expressed as enhanced Event-Related Potential (ERP) N1 amplitude to stimuli applied to the surrounding unconditioned skin in healthy volunteers. The aim of the present study was to investigate whether this enhanced ERP N1 amplitude could be a potential marker for altered cortical sensory processing in patients with persistent pain after surgery. Materials and Methods Nineteen male patients...

  2. Altered Cortical Responsiveness to Pain Stimuli after High Frequency Electrical Stimulation of the Skin in Patients with Persistent Pain after Inguinal Hernia Repair

    OpenAIRE

    van den Broeke, Emanuel N; Lonneke Koeslag; Arendsen, Laura J.; Nienhuijs, Simon W; Camiel Rosman; van Rijn, Clementina M.; Oliver H G Wilder-Smith; Harry van Goor

    2013-01-01

    BACKGROUND: High Frequency electrical Stimulation (HFS) of the skin induces enhanced brain responsiveness expressed as enhanced Event-Related Potential (ERP) N1 amplitude to stimuli applied to the surrounding unconditioned skin in healthy volunteers. The aim of the present study was to investigate whether this enhanced ERP N1 amplitude could be a potential marker for altered cortical sensory processing in patients with persistent pain after surgery. MATERIALS AND METHODS: Nineteen male patien...

  3. Reactive oxygen species induced structural alterations of substance P

    Directory of Open Access Journals (Sweden)

    Y. T. Konttinen

    1992-01-01

    Full Text Available Substance P (SP1-11 was exposed to a continuous flux of superoxide (O2- or hydroxyl radicals (.OH in a hypoxanthine (HX/xanthine oxidase (86 mU system in the presence of 1 mM deferoxamine and 40 mM D-mannitol or 50 μM FeCI3. 6H2O and 50 μM EDTA, respectively. O2- caused fragmentation between the Phe7 and Phe8, whereas .OH induced cleavage also between the Phe8 and Gly9. Reactive oxygen species H2O2 and HCIO did not cause fragmentation, but modification of the amino acid side chains and/or aggregation with altered hydrophobicity in reverse phase high performance liquid chromatography compared to native SP1-11. Furthermore, exposure of SP1-11 to phorbol myristate acetate preactivated neutrophils resuited in products similar to those observed upon exposure to superoxide or hydroxyl radicals in a cell-free HX/xanthine oxidase system. This study suggests that, in contrast to rigid proteins, fragmentation is relatively easily induced in a small peptide like SP1-11, perhaps due to strain on the peptide and t-carbon bonds caused by the movable, random coil configuration acquired by SP1-11 in an aqueous solution. Oxidative modification might modulate paracrine actions of SP1-11 at site of inflammation.

  4. Chemisorption-Induced Resonance Frequency Shift of a Microcantilever

    International Nuclear Information System (INIS)

    The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption. The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example. We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation, which depends on the bond configurations formed by the adsorbed atoms and substrate atoms. This study is helpful for optimal design of microcantilever-based sensors for various applications. (condensed matter: structure, mechanical and thermal properties)

  5. Frequency of climbing behavior as a predictor of altered motor activity in rat forced swimming test.

    Science.gov (United States)

    Vieira, Cíntia; De Lima, Thereza C M; Carobrez, Antonio de Pádua; Lino-de-Oliveira, Cilene

    2008-11-14

    Previous work has shown that the frequency of climbing behavior in rats submitted to the forced swimming test (FST) correlated to the section's crosses in the open field test, which suggest it might be taken as a predictor of motor activity in rat FST. To investigate this proposal, the frequency, duration, as well as the ratio duration/frequency for each behavior expressed in the FST (immobility, swimming and climbing) were compared in animals treated with a motor stimulant, caffeine (CAF), and the antidepressant, clomipramine (CLM). Male Wistar rats were submitted to 15min of forced swimming (pre-test) and 24h later received saline (SAL, 1ml/kg, i.p.) or CAF (6.5mg/kg, i.p.) 30min prior a 5-min session (test) of FST. To validate experimental procedures, an additional group of rats received three injections of SAL (1ml/kg, i.p.) or clomipramine (CLM, 10mg/kg, i.p.) between the pre-test and test sessions. The results of the present study showed that both drugs, CLM and CAF, significantly reduced the duration of immobility and significantly increased the duration of swimming. In addition, CAF significantly decreased the ratio of immobility, and CLM significantly increased the ratio of swimming and climbing. Moreover, CLM significantly increased the duration of climbing but only CAF increased the frequency of climbing. Thus, it seems that the frequency of climbing could be a predictor of altered motor activity scored directly in the FST. Further, we believe that this parameter could be useful for fast and reliable discrimination between antidepressant drugs and stimulants of motor activity.

  6. Diet-induced obesity alters kinematics of rat spermatozoa

    Institute of Scientific and Technical Information of China (English)

    IP Oyeyipo; PJ Maartens; SS duPlessis

    2015-01-01

    Objective:To investigate the effect of DIO on the kinematics and viability of spermatozoa in an albino rat model.Methods:Sperm suspensions from normal (Control) and diet-induced obese (DIO) Wistar rats were collected and incubated for various times (30, 60, 120 or 180 min at 37℃). Motility parameters were analyzed with computer-aided sperm analysis (CASA), while viability was assessed by means of a dye exclusion staining technique (eosin/nigrosin).Results: Results reveal that there was a significant time dependent decrease (P<0.05) in progressive motility, curvilinear velocity and beat cross frequency after 60 min, while amplitude of lateral head displacement and sperm viability was significantly reduced (P<0.05) after 120 min in the DIO group compared to control spermatozoa.Conclusions: These results provided evidence that obesity is detrimental to sperm parameter in rats possibly through increased testicular temperature as a result of a rise in fat deposition.

  7. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus;

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  8. Age-Related Reduced Somatosensory Gating Is Associated with Altered Alpha Frequency Desynchronization

    Directory of Open Access Journals (Sweden)

    Chia-Hsiung Cheng

    2015-01-01

    Full Text Available Sensory gating (SG, referring to an attenuated neural response to the second identical stimulus, is considered as preattentive processing in the central nervous system to filter redundant sensory inputs. Insufficient somatosensory SG has been found in the aged adults, particularly in the secondary somatosensory cortex (SII. However, it remains unclear which variables leading to the age-related somatosensory SG decline. There has been evidence showing a relationship between brain oscillations and cortical evoked excitability. Thus, this study used whole-head magnetoencephalography to record responses to paired-pulse electrical stimulation to the left median nerve in healthy young and elderly participants to test whether insufficient stimulus 1- (S1- induced event-related desynchronization (ERD contributes to a less-suppressed stimulus 2- (S2- evoked response. Our analysis revealed that the minimum norm estimates showed age-related reduction of SG in the bilateral SII regions. Spectral power analysis showed that the elderly demonstrated significantly reduced alpha ERD in the contralateral SII (SIIc. Moreover, it was striking to note that lower S1-induced alpha ERD was associated with higher S2-evoked amplitudes in the SIIc among the aged adults. Conclusively, our findings suggest that age-related decline of somatosensory SG is partially attributed to the altered S1-induced oscillatory activity.

  9. Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2011-03-01

    Full Text Available Abstract Background Intermittent fasting (IF improves healthy lifespan in animals by a mechanism involving reduced oxidative damage and increased resistance to stress. However, no studies have evaluated the impact of controlled meal frequency on immune responses in human subjects. Objective A study was conducted to establish the effects of controlled diets with different meal frequencies, but similar daily energy intakes, on cytokine production in healthy male and female subjects. Design In a crossover study design with an intervening washout period, healthy normal weight middle-age male and female subjects (n = 15 were maintained for 2 months on controlled on-site one meal per day (OMD or three meals per day (TMD isocaloric diets. Serum samples and peripheral blood mononuclear cells (PBMCs culture supernatants from subjects were analyzed for the presence of inflammatory markers using a multiplex assay. Results There were no significant differences in the inflammatory markers in the serum of subjects on the OMD or TMD diets. There was an increase in the capacity of PBMCs to produce cytokines in subjects during the first month on the OMD or TMD diets. Lower levels of TNF-α, IL-17, MCP-1 and MIP-1β were produced by PBMCs from subjects on the OMD versus TMD diet. Conclusions PBMCs of subjects on controlled diets exhibit hypersensitivities to cellular stimulation suggesting that stress associated with altered eating behavior might affect cytokine production by immune cells upon stimulation. Moreover, stimulated PBMCs derived from healthy individuals on a reduced meal frequency diet respond with a reduced capability to produce cytokines.

  10. Tissue cholesterol content alterations in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xin-ting WANG; Jia LI; Li LIU; Nan HU; Shi JIN; Can LIU; Dan MEI; Xiao-dong LIU

    2012-01-01

    Aim:Diabetes is associated with elevated serum total cholesterol level and disrupted lipoprotein subfractions.The aim of this study was to examine alterations in the tissue cholesterol contents closely related to diabetic complications.Methods:Intraperitoneal injection of streptozotocin was used to induce type 1 diabetes in adult male Sprague-Dawley rats.On d 35 after the injection,liver,heart,intestine,kidney,pancreas,cerebral cortex and hippocampus were isolated from the rats.The content of total and free cholesterol in the tissues was determined using HPLC.The ATP-binding cassette protein A1 (ABCA1) protein and ApoE mRNA were measured using Western blot and QT-PCR analyses,respectively.Results:In diabetic rats,the level of free cholesterol was significantly decreased in the peripheral tissues,but significantly elevated in hippocampus,as compared with those in the control rats.Diabetic rats showed a trend of decreasing the total cholesterol level in the peripheral tissues,but significant change was only found in kidney and liver.In diabetic rats,the level of the ABCA1 protein was significantly increased in the peripheral tissues and cerebral cortex; the expression of ApoE mRNA was slightly decreased in hippocampus and cerebral cortex,but the change had no statistical significance.Conclusion:Type 1 diabetes decreases the free cholesterol content in the peripheral tissues and increases the free cholesterol content in hippocampus.The decreased free cholesterol level in the peripheral tissues may be partly due to the increased expression of the ABCA1 protein.

  11. Sound frequencies induce drought tolerance in rice plant

    International Nuclear Information System (INIS)

    To test the sound's effect on plant and its contribution in drought tolerance, plants were subjected to various sound frequencies for an hour. After 24 h sound treatment, plants were exposed to drought for next five days. During the experiment it was observed that sound initiated physiological changes showing tolerance in plant. Sound frequency with = 0.8 kHz enhanced relative water content, stomatal conductance and quantum yield of PSII (Fv/Fm ratio) in drought stress environment. Hydrogen peroxide (H/sub 2/O/sub 2/) production in sound treated plant was declined compared to control. ThermaCAM (Infra-red camera) a software which was used to analyze the plant images temperature showed that sound treated plant and leaf had less temperature (heat) compared to control. The physiological mechanism of sound frequencies induce tolerance in rice plants are discussed. (author)

  12. Analysis of radiation-induced genome alterations in Vigna unguiculata

    Directory of Open Access Journals (Sweden)

    van der Vyver C

    2011-09-01

    Full Text Available Christell van der Vyver1, B Juan Vorster2, Karl J Kunert3, Christopher A Cullis41Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa; 2Department of Plant Production and Soil Science, and 3Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa; 4Case Western Reserve University, Department of Biology, Cleveland, OH, USAAbstract: Seeds from an inbred Vigna unguiculata (cowpea cultivar were gamma-irradiated with a dose of 180 Gy in order to identify and characterize possible mutations. Three techniques, ie, random amplified polymorphic DNA, microsatellites, and representational difference analysis, were used to characterize possible DNA variation among the mutants and nonirradiated control plants both immediately after irradiation and in subsequent generations. A large portion of putative radiation-induced genome changes had significant similarities to chloroplast sequences. The frequency of mutation at three of these isolated polymorphic regions with chloroplast similarity was further determined by polymerase chain reaction screening using a large number of individual parental, M1, and M2 plants. Analysis of these sequences indicated that the rate at which various regions of the genome is mutated in irradiation experiments differs significantly and also that mutations have variable “repair” rates. Furthermore, regions of the nuclear DNA derived from the chloroplast genome are highly susceptible to modification by radiation treatment. Overall, data have provided detailed information on the effects of gamma irradiation on the cowpea genome and about the ability of the plant to repair these genome changes in subsequent plant generations.Keywords: mutation breeding, gamma radiation, genetic mutations, cowpea, representational difference analysis

  13. Radiation and cadmium induced histological alteration in the mice liver

    International Nuclear Information System (INIS)

    radiation and cadmium induced changes at histological level. Alterations in the histological changes were found dose dependent. More pronounced histopathological changes were registered after the combined exposure of cadmium chloride and gamma rays. (author)

  14. Impedance Alterations in Healthy and Diseased Mice During Electrically Induced Muscle Contraction.

    Science.gov (United States)

    Sanchez, Benjamin; Li, Jia; Geisbush, Tom; Bardia, Ramon Bragos; Rutkove, Seward B

    2016-08-01

    Alterations in the health of muscles can be evaluated through the use of electrical impedance myography (EIM). To date, however, nearly all work in this field has relied upon the measurement of muscle at rest. To provide an insight into the contractile mechanisms of healthy and disease muscle, we evaluated the alterations in the spectroscopic impedance behavior of muscle during the active process of muscle contraction. The gastrocnemii from a total of 13 mice were studied (five wild type, four muscular dystrophy animals, and four amyotrophic lateral sclerosis animals). Muscle contraction was induced via monophasic current pulse stimulation of the sciatic nerve. Simultaneously, multisine EIM (1 kHz to 1 MHz) and force measurements of the muscle were performed. Stimulation was applied at three different rates to produce mild, moderate, and strong contractions. We identified changes in both single and multifrequency data, as assessed by the Cole impedance model parameters. The processes of contraction and relaxation were clearly identified in the impedance spectra and quantified via derivative plots. Reductions in the center frequency fc were observed during the contraction consistent with the increasing muscle fiber diameter. Different EIM stimulation rate-dependencies were also detected across the three groups of animals. PMID:24800834

  15. OVA-induced airway hyperresponsiveness alters murine heart rate variability and body temperature

    Directory of Open Access Journals (Sweden)

    Nicolle Jasmin Domnik

    2012-12-01

    Full Text Available Altered autonomic (ANS tone in chronic respiratory disease is implicated as a factor in cardiovascular co-morbidities, yet no studies address its impact on cardiovascular function in the presence of murine allergic airway (AW hyperresponsiveness (AHR. Since antigen (Ag-induced AHR is used to model allergic asthma (in which ANS alterations have been reported, we performed a pilot study to assess measurement feasibility of, as well as the impact of allergic sensitization to ovalbumin (OVA on, heart rate variability (HRV in a murine model. Heart rate (HR, body temperature (TB and time- and frequency-domain HRV analyses, a reflection of ANS control, were obtained in chronically instrumented mice (telemetry before, during and for 22 h after OVA or saline aerosolization in sensitized (OVA or Alum adjuvant control exposed animals. OVA mice diverged significantly from Alum mice with respect to change in HR during aerosol challenge (P < 0.001, two-way ANOVA; HR max change Ctrl = +80 ± 10 bpm vs. OVA = +1 ± 23 bpm, mean ± SEM, and displayed elevated HR during the subsequent dark cycle (P = 0.006. Sensitization decreased the TB during aerosol challenge (P < 0.001. Sensitized mice had decreased HRV prior to challenge (SDNN: P = 0.038; Low frequency (LF power: P = 0.021; Low/high Frequency (HF power: P = 0.042, and increased HRV during Ag challenge (RMSSD: P = 0.047; pNN6: P = 0.039. Sensitized mice displayed decreased HRV subsequent to OVA challenge, primarily in the dark cycle (RMSSD: P = 0.018; pNN6: P < 0.001; LF: P < 0.001; HF: P = 0.040; LF/HF: P < 0.001. We conclude that implanted telemetry technology is an effective method to assess the ANS impact of allergic sensitization. Preliminary results show mild sensitization is associated with reduced HRV and a suppression of the acute TB response to OVA challenge. This approach to assess altered ANS control in the acute OVA model may also be beneficial in chronic AHR models.

  16. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Kathryn M. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States); Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)]. E-mail: ghoffmann@holycross.edu

    2007-03-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, {beta}-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv{sup +} revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.

  17. Paroxysmal Perceptual Alteration: Drug-Induced Phenomenon or Schizophrenic Psychopathology?

    Science.gov (United States)

    Praharaj, Samir Kumar; Kongasseri, Sreejayan; Acharya, Mahima

    2016-01-01

    Brief and repetitive episodes of perceptual changes, termed paroxysmal perceptual alteration (PPA), have been described in association with antipsychotic treatment. We report a case of paranoid schizophrenia who had such perceptual changes akin to PPA for 15 years, which was not related to antipsychotic treatment. There was a rapid resolution of PPA after treatment with low-dose clonazepam. PMID:26954463

  18. High frequency application of nanosecond pulsed electric fields alters cellular membrane disruption and fluorescent dye uptake

    Science.gov (United States)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.

    2016-03-01

    Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a "threshold" point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.

  19. Quantum self-induced transparency in frequency gap media

    CERN Document Server

    John, S; John, Sajeev; Rupasov, Valery I.

    1999-01-01

    We study quantum effects of light propagation through an extended absorbing system of two-level atoms placed within a frequency gap medium (FGM). Apart from ordinary solitons and single particle impurity band states, the many-particle spectrum of the system contains massive pairs of confined gap excitations and their bound complexes - gap solitons. In addition, ``composite'' solitons are predicted as bound states of ordinary and gap solitons. Quantum gap and composite solitons propagate without dissipation, and should be associated with self-induced transparency pulses in a FGM.

  20. Functional and structural alterations induced by copper in xanthine oxidase

    Institute of Scientific and Technical Information of China (English)

    Mahnaz Hadizadeh; Ezzatollah Keyhani; Jacqueline Keyhani; Cyrus Khodadadi

    2009-01-01

    Xanthine oxidase (XO),a key enzyme in purine metab-olism,produces reactive oxygen species causing vascu-lar injuries and chronic heart failure.Here,copper's ability to alter XO activity and structure was investi-gated in vitro after pre-incubation of the enzyme with increasing Cu2+ concentrations for various periods of time.The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions.Structural alterations were assessed by electronic absorption,fluorescence,and circular dichroism spectroscopy.Results showed that Cu2+ either stimulated or inhibited XO activity,depending on metal concentration and pre-incubation length,the latter also determining the inhibition type.Cu2+-XO complex formation was characterized by modifications in XO electronic absorption bands,intrinsic fluorescence,and α-helical and β-sheet content.Apparent dissociation constant values implied high- and low-affinity Cu2+ binding sites in the vicinity of the enzyme's reactive centers.Data indicated that Cu2+ binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleo-tide centers,changes in secondary structure,and mod-erate activity inhibition;binding to low affinity sites caused alterations around all XO reactive centers including FeS,changes in tertiary structure as reflected by alterations in spectral properties,and drastic activity inhibition.Stimulation was attributed to transient stabilization of XO optimal conformation.Results also emphasized the potential role of copper in the regu-lation of XO activity stemming from its binding properties.

  1. Dependence of enhanced asymmetry-induced transport on collision frequency

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D. L. [Occidental College, Physics Department, Los Angeles, California 90041 (United States)

    2014-07-15

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  2. Extra-Low-Frequency Magnetic Fields alter Cancer Cells through Metabolic Restriction

    CERN Document Server

    Li, Ying

    2012-01-01

    Background: Biological effects of extra-low-frequency (ELF) magnetic fields (MF) have lacked a credible mechanism of interaction between MFs and living material. Objectives: Examine the effect of ELF-MFs on cancer cells. Methods: Five cancer cell lines were exposed to ELF-MFs within the range of 0.025 to 5 microT, and the cells were examined for karyotype changes after 6 days. Results: All cancer cells lines lost chromosomes from MF exposure, with a mostly flat dose-response. Constant MF exposures for three weeks allow a rising return to the baseline, unperturbed karyotypes. From this point, small MF increases or decreases are again capable of inducing karyotype contractions. Our data suggests that the karyotype contractions are caused by MF interference with mitochondria's ATP synthase (ATPS), compensated by the action of AMP-activated Protein Kinase (AMPK). The effects of MFs are similar to those of the ATPS inhibitor oligomycin. They are amplified by metformin, an AMPK stimulator, and attenuated by resisti...

  3. Coarctation induces alterations in basement membranes in the cardiovascular system

    DEFF Research Database (Denmark)

    Lipke, D W; McCarthy, K J; Elton, T S;

    1993-01-01

    ventricular hypertrophy was maximal within 5 days. In immunohistochemical studies, fibronectin and laminin were increased and the basement membrane chondroitin sulfate proteoglycan decreased in both the subendothelial space and smooth muscle cell basement membranes of the aorta above the clip compared...... membrane components in the heart and vasculature peaked before maximal cardiac hypertrophy (5 days). These studies indicate that alterations in basement membrane component deposition in the hypertrophied vasculature occur at both transcriptional and translational levels and suggest that the cell attachment...

  4. Radiation-induced motility alterations in medulloblastoma cells

    OpenAIRE

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Klaus J. Weber; Debus, Jürgen; Combs, Stephanie E

    2015-01-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metallop...

  5. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    Science.gov (United States)

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  6. Frequency-specific alterations in the fractional amplitude of low-frequency fluctuations in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Long, Zhiliang; Zheng, Junjie; Wang, Jian; Chen, Huafu

    2016-08-01

    This study used resting-state functional magnetic resonance imaging and fractional amplitude of low-frequency fluctuations (fALFF) method to investigate low-frequency spontaneous neural activity at the bands of slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) in 20 patients with amyotrophic lateral sclerosis (ALS) and 20 healthy controls. We determined that, at slow-5 band, patients with ALS showed increased fALFF in the right middle frontal gyrus and decreased fALFF in the left middle occipital gyrus. However, compared with healthy controls, patients with ALS exhibited higher fALFF in the right caudate nucleus, left superior frontal gyrus, and right anterior cingulate cortex and lower fALFF in the right inferior occipital gyrus and bilateral middle occipital gyrus at slow-4 band. Furthermore, the fALFF value in the left superior frontal gyrus at slow-4 band was negatively correlated with functional rating scale-revised score. Our results demonstrated that the fALFF changes in ALS were widespread and frequency dependent. These findings may provide a novel way to look into the pathophysiology mechanisms underlying ALS. PMID:27139743

  7. Alteration of Pentylenetetrazol-induced kindling parameters by prenatal chronic Lead exposure in rats

    Directory of Open Access Journals (Sweden)

    Kebriyaei Zadeh A

    2001-08-01

    Full Text Available The effect of prenatal chronic lead exposure on pentylenetetrazol (PTZ-induced kindling parameters (seizure index, seizure latency and seizure stage in rats was studied. Adult female rats with a weight range of 140-180 g were selected and pretreated with lead acetate (0.05% w/v orally, 25 days prior to mating. The control group was given distilled water containing sodium acetate solution (0.05% w/v. After delivery, treatment was ceased, and after lactation, male neonates were separated from the females in both groups. After maturation of male rats, the PTZ-kindling was induced by daily interapritoneally injection of PTZ (30 mg/kg. Kindling parameters in the control and treated groups were determined. The results indicated that animals with prenatal lead exposure have full kindling state with 9-19 (16.87±1.54 injections, whereas this value for control group was 12-23 (18.62±1.48 injections. The seizure latency for the treated group was lower (P<0.05 than the control (2.29±0.44 min versus 3.65±0.45 min. The seizure severity (regarding to seizure index was statistically higher in the treated group (P<0.05. The seizure stages were also different in the treated and control groups (P<0.05. The seizure frequency of first and second stages of kindling in the control group was higher than that of treated one (P<0.05. Also the seizure frequency in the third and fourth kindling stages of case group was higher than controls (P<0.05. It is concluded that prenatal lead exposure alters seizure susceptibility in rat PTZ-Kindling model.

  8. Uranium-induced sensory alterations in the zebrafish Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Faucher, K., E-mail: kfaucher@hotmail.fr [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France); Floriani, M.; Gilbin, R.; Adam-Guillermin, C. [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France)

    2012-11-15

    The effect of chronic exposure to uranium ions (UO{sub 2}{sup 2+}) on sensory tissues including the olfactory and lateral line systems was investigated in zebrafish (Danio rerio) using scanning electron microscopy. The aim of this study was to determine whether exposure to uranium damaged sensory tissues in fish. The fish were exposed to uranium at the concentration of 250 {mu}g l{sup -1} for 10 days followed by a depuration period of 23 days. Measurements of uranium uptake in different fish organs: olfactory rosettes and bulbs, brain, skin, and muscles, were also determined by ICP-AES and ICP-MS during the entire experimental period. The results showed that uranium displayed a strong affinity for sensory structures in direct contact with the surrounding medium, such as the olfactory and lateral line systems distributed on the skin. A decreasing gradient of uranium concentration was found: olfactory rosettes > olfactory bulbs > skin > muscles > brain. At the end of the experiment, uranium was present in non-negligible quantities in sensory tissues. In parallel, fish exposed to uranium showed severe sensory tissue alterations at the level of the olfactory and lateral line systems. In both sensory systems, the gross morphology was altered and the sensory hair cells were significantly damaged very early after the initiation of exposure (from the 3rd day). At the end of the experiment, after 23 days of depuration, the lateral line system still displayed slight tissue alterations, but approximately 80% of the neuromasts in this system had regenerated. In contrast, the olfactory system took more time to recover, as more than half of the olfactory rosettes observed remained destroyed at the end of the experiment. This study showed, for the first time, that uranium is able to damage fish sensory tissues to such an extent that tissue regeneration is delayed.

  9. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    Science.gov (United States)

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  10. Radiation-induced motility alterations in medulloblastoma cells.

    Science.gov (United States)

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  11. Alcohol induced alterations to the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Robin D Couch

    Full Text Available Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis. However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1 an elevation in the oxidative stress biomarker tetradecane; (2 a decrease in five fatty alcohols with anti-oxidant property; (3 a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4 a decrease in alcohol consumption natural suppressant caryophyllene; (5 a decrease in natural product and hepatic steatosis attenuator camphene; and (6 decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  12. Pneumoperitoneum induces morphological alterations in the rat testicle

    Directory of Open Access Journals (Sweden)

    Carina Teixeira Ribeiro

    2013-06-01

    Full Text Available PURPOSE:To investigate the seminiferous tubule histological morphology after an 8 mmHg pneumoperitoneum in the rat model. METHODS: Fourteen rats were divided into two groups: a Sham group submitted to anesthesia and a pneumoperitoneum (Pp group submitted to abdominal insufflation at 8 mmHg during three hours, followed by desuflation. All rats were killed after six weeks, testicles were collected and evaluated for the tubule diameter, germinative epithelium height and Johnsen´s score. Means were compared by using the Student's-t-test. RESULTS:The seminiferous tubule diameter was diminished by 11.3% in the group submitted to pneumoperitoneum (p<0.05. No significant difference was found among the groups when analyzing the epithelium height and Johnsen´s score. CONCLUSION:In the rat model, the seminiferous tubules present structural alterations when subjected to pneumoperitoneum of 8 mmHg during three hours.

  13. Alterations induced in Escherichia Coli cells by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da [Federal University of Technology of Parana (CPGEI/UTFPR), Curitiba, PR (Brazil)]. E-mails: jaquekap@yahoo.com.br; schelin@cpgei.cefetpr.br; sergei@utfpr.edu.br; Jesus, E.F.O. de; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: ricardo@lin.ufrj.br; edgar@lin.ufrj.br; Carlin, N.; Toledo, E.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica]. E-mail: nelson.carlin@dfn.if.usp.br

    2007-07-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ({sup 60}Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  14. Low frequency terahertz-induced demagnetization in ferromagnetic nickel

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2016-05-01

    A laser stimulus at terahertz (THz) frequency is expected to offer superior control over magnetization dynamics compared to an optical pulse, where ultrafast demagnetization is mediated by heat deposition. As a THz field cycle occurs on a timescale similar to the natural speed of spin motions, this can open a path for triggering precessional magnetization motion and ultimately ultrafast magnetic switching by the THz magnetic field component, without quenching. Here, we explore the ultrafast magnetic response of a ferromagnetic nickel thin film excited by a strong (33 MV/cm) terahertz transient in non-resonant conditions. While the magnetic laser pulse component induces ultrafast magnetic precessions, we experimentally found that at high pump fluence, the THz pulse leads to large quenching which dominates the precessional motion by far. Furthermore, degradation of magnetic properties sets in and leads to permanent modifications of the Ni thin film and damage.

  15. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  16. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    OpenAIRE

    Papsdorf, Katharina; Kaiser, Christoph J. O.; Drazic, Adrian; Grötzinger, Stefan W.; Haeßner, Carmen; Eisenreich, Wolfgang; Richter, Klaus

    2015-01-01

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast...

  17. Light-Induced Alterations in Striatal Neurochemical Profiles

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain

  18. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for opioid receptor involvement.

    Science.gov (United States)

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-12-01

    Prior work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli that predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. The present study examined the involvement of opioid receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. During the training phase of the experiment, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, animals were re-exposed to the distinctive environment alone prior to sacrifice. Saline or naltrexone (0.3, 1.0, 3.0 or 10.0 mg/kg) was administered during either the training or the test session. Administration of naltrexone prior to training antagonized the development of all of the conditioned alterations of immune status including changes in the mitogenic responsiveness of splenocytes, suppression of natural killer cell activity, and interleukin-2 production by splenocytes. Naltrexone administration prior to testing also was effective in antagonizing the expression of a subset of morphine-induced conditioned alterations in immune status. Taken together, these studies indicate that opioid receptor activity is involved in the establishment of conditioned morphine-induced immune alterations, as well as in the expression of a subset of these conditioned alterations of immune status.

  19. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release.

    Directory of Open Access Journals (Sweden)

    Sonja Löfmark

    Full Text Available Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections.

  20. Altered radiation recovery by DNA double-strand break inducers

    International Nuclear Information System (INIS)

    Identical biphasic time-dependent profiles of cell survival were obtained in V79 fibroblasts exposed to a split-dose protocol consisting of a fixed dose of γ-rays followed, at a variable time interval, either by a second exposure to radiation, or by contact with an equi-toxic amount of antitumor drugs acting to produce DNA double-strand breaks. The drugs used in this context were the neocarcinostatin antibiotic (NCS), which preferentially cleaves DNA in the linker region of nucleosomes, and etoposide (VP), whose major target is topoisomerase IIα, a nuclear matrix fraction-linked enzyme acting to relieve topological constraints in replicating DNA and mitotic chromosomes. Radiation-induced DNA strand break rejoining was not inhibited by either drug. The initial number of DNA strand breaks was consistently found o depend only on the radiation dose and/or on the drug concentration. However, the cytotoxicity they induced in combined treatment was determined in essence by the time elapsed after the first radiation exposure. While resistance to NCS and VP in non-irradiated, synchronized cells peaks in G2 phase of the cell cycle, enhanced drug susceptibility was observed within the radiation-induced G2 block. Concomitant exposure to drug and radiation also resulted in supra-additive cytotoxic interaction. Our data suggest that impaired split-dose radiation recovery dose not proceed from inhibition of DNA damage repair, but rather from additional double-strand breaks produced by drug or radiation during the time cells are in the dynamic process of DNA repair; a time range characterized by a dynamic DNA fragility. (authors)

  1. Ecstasy-Induced Caspase Expression Alters Following Ginger Treatment

    OpenAIRE

    Asl, Sara Soleimani; Pourheydar, Bagher; Dabaghian, Fataneh; Nezhadi, Akram; ROOINTAN, AMIR; Mehdizadeh, Mehdi

    2013-01-01

    Introduction Exposure to 3-4, methylenedioxymethamphetamine (MDMA) leads to cell death. Herein, we studied the protective effects of ginger on MDMA- induced apoptosis. Methods 15 Sprague dawley male rats were administrated with 0, 10 mg/kg MDMA, or MDMA along with 100mg/kg ginger, IP for 7 days. Brains were removed to study the caspase 3, 8, and 9 expressions in the hippocampus by RT-PCR. Data was analyzed by SPSS 16 software using the one-way ANOVA test. Results MDMA treatment resulted in a ...

  2. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  3. Proteomic alterations in mouse kidney induced by andrographolide sodium bisulfite

    Institute of Scientific and Technical Information of China (English)

    Hong LU; Xin-yue ZHANG; Yan-quan ZHOU; Xin WEN; Li-ying ZHU

    2011-01-01

    Aim: To identify the key proteins involved in the nephrotoxicity induced by andrographoiide sodium bisulfite (ASB).(MDA) and the specific activity of superoxide dismutase (SOD) in kidneys were measured. The renal homogenates were separated by two-dimensional electrophoresis, and the differential protein spots were identified using a matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry.Results: The high dose (1000 mg/kg) of ASB significantly increased the MDA content, but decreased the SOD activity as compared to the control mice. The proteomic analysis revealed that 6 proteins were differentially expressed in the high-dose group. Two stressresponsive proteins, ie heat shock cognate 71 kDa protein (HSC70) and peroxiredoxin-6 (PRDX6), were regulated at the expression level. The remaining 4 proteins involving in cellular energy metabolism, including isoforms of methylmalonyl-coenzyme A mutase (MUT),nucleoside diphosphate-linked moiety X motif 19 (Nudix motif19), mitochondrial NADH dehydrogenase 1 alpha subcomplex subunit 10(NDUFA1O) and nucleoside diphosphate kinase B (NDK B), were modified at the post-translational levels.Conclusion: Our findings suggest that the mitochondrion is the primary target of ASB and that ASB-induced nephrotoxicity results from oxidative stress mediated by superoxide produced by complex Ⅰ.

  4. Methoxychlor induces atresia by altering Bcl2 factors and inducing caspase activity in mouse ovarian antral follicles in vitro.

    Science.gov (United States)

    Basavarajappa, Mallikarjuna S; Karman, Bethany N; Wang, Wei; Gupta, Rupesh K; Flaws, Jodi A

    2012-12-01

    Methoxychlor (MXC) is an organochlorine pesticide widely used in many countries against various species of insects that attack crops and domestic animals. MXC reduces fertility by increasing atresia (death) of antral follicles in vivo. MXC also induces atresia of antral follicles after 96 h in vitro. The current work tested the hypothesis that MXC induces morphological atresia at early time points (24 and 48 h) by altering pro-apoptotic (Bax, Bok, Casp3, and caspase activity) and anti-apoptotic (Bcl2 and Bcl-xL) factors in the follicles. The results indicate that at 24 h, MXC increased Bcl-xL and Bax mRNA levels and increased the ratio of Bax/Bcl2. At 48-96 h, MXC induced morphological atresia. At 24-96 h, MXC increased caspase activities. These data suggest that MXC may induce atresia by altering Bcl2 factors and inducing caspase activities in antral follicles.

  5. [Morphological alterations induced by preservatives in eye drops].

    Science.gov (United States)

    Huber-van der Velden, K K; Thieme, H; Eichhorn, M

    2012-11-01

    A large number of experimental and clinical investigations carried out recently have confirmed that the chronic application of eye drops induces significant cytological and histological impairment in ocular tissues. It is also generally accepted that preservatives are the components responsible for the observed changes. The most commonly used preservative in ophthalmology is benzalkonium chloride (BAC), which has a relatively high toxicity. Possible consequences of preservatives on the eye are chronic inflammation and subsequent fibrosis of the subconjunctiva and cell loss and structural changes in the conjunctival epithelium as well as in the epithelial and endothelial layers of the cornea. Frequently, dry eye symptoms occur or deteriorate during therapy. During the last few years new preservatives have been developed which seem to have fewer side effects; however, relatively little data are available with regard to these new substances. To minimize impairments of the eye, preservative-free formulations should be considered for therapy.

  6. Plasma-induced Escape and Alterations of Planetary Atmospheres

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  7. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  8. Epichloe endophytes alter inducible indirect defences in host grasses.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Epichloë endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloë on constitutive and herbivore-induced emissions of volatile organic compounds (VOC, a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue and Festuca pratensis (meadow fescue. We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloë uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloë coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloë endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloë-grass symbiosis. Whether Epichloë-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation.

  9. Endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development

    DEFF Research Database (Denmark)

    Velasco-Santamaria, Y. M.; Handy, R. D.; Sloman, K. A.

    2011-01-01

    to controls. Both concentrations of endosulfan caused a 4.0 fold increase in Na(+)K(+)-ATPase activity compared to controls (ANOVA, p ANOVA, p ... alterations in the progeny of fish exposed to endosulfan were observed. Heart beat frequency was significantly lower in larvae from exposed adults to 0.16 mu g/L compared to the control (ANOVA, p

  10. Systematic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis

    International Nuclear Information System (INIS)

    Chronic irradiation of mice with ultraviolet (uv) light produces a systemic alteration of an immunologic nature. This alteration is detectable in mice long before primary skin cancers induced by uv light begin to appear. The alteration results in the failure of uv-irradiated mice to reject highly antigenic, transplanted uv-induced tumors that are rejected by unirradiated syngeneic recipients. The immunologic aspect of this systemic alteration was demonstrated by transferring lymphoid cells from uv-irradiated mice to lethally x-irradiated recipients. These recipients were unable to resist a later challenge with a syngeneic uv-induced tumor, whereas those given lymphoid cells from normal donors were resistant to tumor growth. Parabiosis of normal mice with uv-irradiated mice, followed by tumor challenge of both parabionts with a uv-induced tumor, resulted in the growth of the challenge tumors in both uv-irradiated and unirradiated mice. Splenic lymphocytes from tumor-implanted uv-treated mice were not cytotoxic in vitro against uv-induced tumors, whereas under identical conditions cells from tumor-implanted, unirradiated mice were highly cytotoxic. Our findings suggest that repeated uv irradiation can circumvent an immunologic mechanism that might otherwise destroy nascent uv-induced primary tumors that are strongly antigenic

  11. Hepatotoxic Alterations Induced by Inhalation of Trichloroethylene (TCE) in Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Trichloroethylene (TCE) is one of the most potent organic unsaturated solvents being used in dry cleaning, metal degreasing, thinner for paints varnishes and electroplating, etc. and has been reported to be a hepatotoxicant through oral and dermal exposure. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation toxicity study was carried out for hepatotoxic studies. Method Inhalation toxicity studies was carried out by exposing rats to TCE for 8, 12 and 24 weeks in a dynamically operated whole body inhalation chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results Significant increase in liver weight (liver enlargement) appearance of necrotic lesions with fatty changes and marked necrosis were observed after longer duration (12 and 24 weeks) of TCE exposure. The lysosomal rupture resulted in increased activity of acid and alkaline phosphatase alongwith reduced glutathione content and total increased sulfhydryl content in liver tissue. Conclusion TCE exposure through Inhalation route induces hepatotoxicity in terms of marked necrosis with fatty changes and by modulating the lysosomal enzymes.

  12. Endothelial Dysfunction and Amyloid-β-Induced Neurovascular Alterations.

    Science.gov (United States)

    Koizumi, Kenzo; Wang, Gang; Park, Laibaik

    2016-03-01

    Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the non-selective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca(2+) overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781

  13. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them. A lymphoblastoid cell line established from a normal donor was used to screen for alterations in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as acetylation at H3K9, H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 15 min, 1 h and 24 h after irradiation with 2 Gy and 10 Gy. The variability of alterations in acetylation marks was in addition investigated in a panel of lymphoblastoid cell lines with differing radiosensitivity established from lung cancer patients. The screening procedure demonstrated consistent hypomethylation at H3K4me3 and hypoacetylation at all acetylation marks tested. In the panel of lymphoblastoid cell lines, however, a high degree of inter-individual variability became apparent. Radiosensitive cell lines showed more pronounced and longer lasting H4K16 hypoacetylation than radioresistant lines, which correlates with higher levels of residual γ-H2AX foci after 24 h. So far, the factors affecting extent and duration of radiation-induced histone alterations are poorly defined. The present work hints at a high degree of inter-individual variability and a potential correlation of DNA damage repair capacity and alterations in PTM levels

  14. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress. PMID:7926607

  15. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice.

    Science.gov (United States)

    de Souza, Carlos At; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance. PMID:23487552

  16. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis

    Directory of Open Access Journals (Sweden)

    Héctor Rincón-Arévalo

    2016-06-01

    Full Text Available Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE−/− mice fed or not with high-fat diet (HFD, by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410 [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia.

  17. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A.; Ramírez-Pineda, José R.; Yassin, Lina M.

    2016-01-01

    Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE−/−) mice fed or not with high-fat diet (HFD), by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410) [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia. PMID:27081674

  18. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    Science.gov (United States)

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. PMID:27566141

  19. Transient and Persistent Pain Induced Connectivity Alterations in Pediatric Complex Regional Pain Syndrome

    OpenAIRE

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles Benjamin; Grant, P. Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. u...

  20. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2014-11-01

    Full Text Available Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46 and healthy controls (N = 57 using magnetoencephalography (MEG. Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia.

  1. Di-octyl phthalate induced altered host resistance: Viral and protozoal models in mice

    Energy Technology Data Exchange (ETDEWEB)

    Dogra, R.K.S.; Khanna, S.; Srivastava, S.N.; Shukla, L.; Shanker, R. (Industrial Toxicology Research Centre, Lucknow (India)); Chandra, K.; Chandra, S.; Katiyar, J.C. (Central Drug Research Institute, Lucknow (India))

    1989-01-01

    Among industrially important chemicals, the effect of phthalate ester plasticizers on host resistance and immune surveillance to disease has not been well studied. Our recent studies with Di-ccetyl phthalate (DOP) have demonstrated lymphoid organotoxicity, alteration in the functioning of immune system and altered host resistance to a hookworm parasite (Nippostrongylus brasiliensis) in rodents. These observations suggested that DOP, probably through its effect on immune system, could result in altered host resistance to infection. The present studies were, therefore, undertaken to further assess the altered host resistance in DOP treated mice when challenged with either a virus (encephalomyocarditis) or a protozoal (plasmodium) infection, to delineate the possible contribution of phthalate-induced state of immunomodulation to infections.

  2. Ischemic conditioning protects from axoglial alterations of the optic pathway induced by experimental diabetes in rats.

    Directory of Open Access Journals (Sweden)

    Diego C Fernandez

    Full Text Available Diabetic retinopathy is a leading cause of blindness. Visual function disorders have been demonstrated in diabetics even before the onset of retinopathy. At early stages of experimental diabetes, axoglial alterations occur at the distal portion of the optic nerve. Although ischemic conditioning can protect neurons and synaptic terminals against ischemic damage, there is no information on its ability to protect axons. We analyzed the effect of ischemic conditioning on the early axoglial alterations in the distal portion of the optic nerve induced by experimental diabetes. Diabetes was induced in Wistar rats by an intraperitoneal injection of streptozotocin. Retinal ischemia was induced by increasing intraocular pressure to 120 mm Hg for 5 min; this maneuver started 3 days after streptozotocin injection and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. The application of ischemia pulses prevented a deficit in the anterograde transport from the retina to the superior colliculus, as well as an increase in astrocyte reactivity, ultraestructural myelin alterations, and altered morphology of oligodendrocyte lineage in the optic nerve distal portion at early stages of experimental diabetes. Ischemia tolerance prevented a significant decrease of retinal glutamine synthetase activity induced by diabetes. These results suggest that early vision loss in diabetes could be abated by ischemic conditioning which preserved axonal function and structure.

  3. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion p

  4. Detection of Alteration Induced by Onshore Gas Seeps from ASTER and WorldView-2 Data

    Directory of Open Access Journals (Sweden)

    Sanaz Salati

    2014-04-01

    Full Text Available Hydrocarbon seeps cause chemical and mineralogical changes at the surface, which can be detected by remote sensing. This paper aims at the detection of mineral alteration induced by gas seeps in a marly limestone formation, SW Iran. For this purpose, the multispectral Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER and the high spatial resolution WorldView-2 (WV-2 data were utilized for mapping surficial rock alteration. In addition, the potential of Visible Near Infrared (VNIR bands of the WV-2 and its high spatial resolution for mapping alterations was determined. Band ratioing, principal component analysis (PCA, data fusion and the boosted regression trees (BRT were applied to enhance and classify the altered and unaltered marly limestone formation. The alteration zones were identified and mapped by remote sensing analyses. Integrating the WV-2 into the ASTER data improved the spatial accuracy of the BRT classifications. The results showed that the BRT classification of the multiple band imagery (created from ASTER and WV-2 using regions of interest (ROIs around field data provides the best discrimination between altered and unaltered areas. It is suggested that the WV-2 dataset can provide a potential tool along higher spectral resolution data for mapping alteration minerals related to hydrocarbon seeps in arid and semi-arid areas.

  5. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Aseeva, N. V., E-mail: vtyutin@hse.ru; Gromov, E. M.; Tyutin, V. V. [National Research University Higher School of Economics (Russian Federation)

    2015-12-15

    The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

  6. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    Science.gov (United States)

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  7. Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2009-01-01

    Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency fH was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.

  8. Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency

    Science.gov (United States)

    Blagoveshchenskaya, N. F.; Carlson, H. C.; Kornienko, V. A.; Borisova, T. D.; Rietveld, M. T.; Yeoman, T. K.; Brekke, A.

    2009-01-01

    Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency fH was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ). The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland), the European Incoherent Scatter (EISCAT) UHF radar at Tromsø and the Tromsø ionosonde (dynasonde). The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.

  9. Metabolic impacts of altering meal frequency and timing - Does when we eat matter?

    Science.gov (United States)

    Hutchison, Amy T; Heilbronn, Leonie K

    2016-05-01

    Obesity prevalence continues to rise throughout the developed world, as a result of positive energy balance and reduced physical activity. At present, there is still a perception within the general community, and amongst some nutritionists, that eating multiple small meals spaced throughout the day is beneficial for weight control and metabolic health. However, intervention trials do not generally support the epidemiological evidence, and data is emerging to suggest that increasing the fasting period between meals may beneficially impact body weight and metabolic health. To date, this evidence is of short term duration, and it is becoming increasingly apparent that meal timing must also be considered if we are to ensure optimal health benefits in response to this dietary pattern. The purpose of this review is to summate the existing human literature on modifying meal frequency and timing on body weight control, appetite regulation, energy expenditure, and metabolic health under conditions of energy balance, restriction and surplus.

  10. Direct observation of the saturation of stimulated Brillouin scattering by ion-trapping induced frequency shifts

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, C; Price, D; Meezan, N; Gregori, G; Divol, L; Froula, D H; Glenzer, S H; Offenberger, A A; Ao, T; Smith, C A

    2004-02-25

    We report the first measurement of the saturation of stimulated Brillouin scattering (SBS) by an ion-trapping induced frequency shift, which was achieved by directly measuring the amplitude and absolute frequency of SBS-driven ion-acoustic waves (IAW). A frequency shift of up to 30% and a simultaneous saturation of driven IAW and SBS reflectivity was observed. The scaling of the frequency shift with the IAW amplitude compares well with theoretical calculations. We have further measured fast 30 ps oscillations of the SBS-driven IAW amplitude induced by the frequency shift.

  11. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  12. Point process time-frequency analysis of respiratory sinus arrhythmia under altered respiration dynamics.

    Science.gov (United States)

    Kodituwakku, Sandun; Lazar, Sara W; Indic, Premananda; Brown, Emery N; Barbieri, Riccardo

    2010-01-01

    Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through its modulating influence on the heartbeat. We propose an algorithm for quantifying instantaneous RSA as applied to heart beat interval and respiratory recordings under dynamic respiration conditions. The blood volume pressure derived heart beat series (pulse intervals, PI) are modeled as an inverse gaussian point process, with the instantaneous mean PI modeled as a bivariate regression incorporating both past PI and respiration values observed at the beats. A point process maximum likelihood algorithm is used to estimate the model parameters, and instantaneous RSA is estimated by a frequency domain transfer function approach. The model is statistically validated using Kolmogorov-Smirnov (KS) goodness-of-fit analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative practice, with distinctive dynamics in the respiration patterns elicited as a result. Experimental results confirm the ability of the algorithm to track important changes in cardiorespiratory interactions elicited during meditation, otherwise not evidenced in control resting states.

  13. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  14. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    International Nuclear Information System (INIS)

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  15. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  16. Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism

    Directory of Open Access Journals (Sweden)

    Mario Negrette-Guzmán

    2015-01-01

    Full Text Available It has been shown that curcumin (CUR, a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM- induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2-related factor 2 (Nrf2 nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.

  17. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.

    Science.gov (United States)

    Mata, Mariana M; Napier, T Celeste; Graves, Steven M; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L

    2015-04-01

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection.

  18. A hyperpolarization-activated inward current alters swim frequency of the pteropod mollusk Clione limacina.

    Science.gov (United States)

    Pirtle, Thomas J; Willingham, Kyle; Satterlie, Richard A

    2010-12-01

    The pteropod mollusk, Clione limacina, exhibits behaviorally relevant swim speed changes that occur within the context of the animal's ecology. Modulation of C. limacina swimming speed involves changes that occur at the network and cellular levels. Intracellular recordings from interneurons of the swim central pattern generator show the presence of a sag potential that is indicative of the hyperpolarization-activated inward current (I(h)). Here we provide evidence that I(h) in primary swim interneurons plays a role in C. limacina swimming speed control and may be a modulatory target. Recordings from central pattern generator swim interneurons show that hyperpolarizing current injection produces a sag potential that lasts for the duration of the hyperpolarization, a characteristic of cells possessing I(h). Following the hyperpolarizing current injection, swim interneurons also exhibit postinhibitory rebound (PIR). Serotonin enhances the sag potential of C. limacina swim interneurons while the I(h) blocker, ZD7288, reduces the sag potential. Furthermore, a negative correlation was found between the amplitude of the sag potential and latency to PIR. Because latency to PIR was previously shown to influence swimming speed, we hypothesize that I(h) has an effect on swimming speed. The I(h) blocker, ZD7288, suppresses swimming in C. limacina and inhibits serotonin-induced acceleration, evidence that supports our hypothesis.

  19. The effects of sex, age and cigarette smoking on micronucleus and degenerative nuclear alteration frequencies in human buccal cells of healthy Bosnian subjects

    OpenAIRE

    Hilada Nefić; Jasmin Mušanović; Kemajl Kurteshi; Enida Prutina; Elvira Turcalo

    2013-01-01

    Introduction: This study was performed to establish a baseline value of micronucleus frequency in buccal cells and to estimate the impact of the most common factors (sex and age, and smoking) on micronucleus and degenerative nuclear alteration frequencies in the sample of healthy Bosnian subjects.Methods: The Buccal Micronucleus Cytome (BMCyt) assay, based on scoring not only micronucleus frequency but also other genome damage markers, dead or degenerated cells, provides a measure of cytotoxi...

  20. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    DEFF Research Database (Denmark)

    Phillip, Dorte; Iversen, Helle K; Schytz, Henrik W;

    2013-01-01

    patients with both symptomatic carotid occlusive disease and cerebral hypoperfusion in comparison to healthy controls. Each hemisphere was examined with two NIRS channels using a 3 cm source detector distance. Arterial blood pressure (ABP) was measured via a finger plethysmograph. Using transfer function......Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease and stroke. Near infrared spectroscopy (NIRS...... analysis ABP-oxyHb phase shift and gain as well as inter-hemispheric phase shift and amplitude ratio were assessed. We found that inter-hemispheric amplitude ratio was significantly altered in hypoperfusion patients compared to healthy controls (P = 0.010), because of relatively lower amplitude...

  1. Investigation of the induced gate noise of nanoscale MOSFETs in the very high frequency region

    International Nuclear Information System (INIS)

    In this paper, we investigated the induced gate current noise of nanoscale N/PMOS devices. To analyze the induced gate noise, the induced gate current noise source model was analytically derived. By using the proposed model, the induced gate noise source was compared with other noise sources, and its impact on noise parameters was also analyzed in long-channel and nanoscale N/PMOS devices in the very high frequency region (>100 GHz). The results showed that the induced gate noise of sub-40 nm CMOS technology is negligible, even in the design of very high frequency circuits. (paper)

  2. Investigation of the induced gate noise of nanoscale MOSFETs in the very high frequency region

    Science.gov (United States)

    Jeon, Jongwook; Kim, Yoon; Kang, Myounggon

    2016-06-01

    In this paper, we investigated the induced gate current noise of nanoscale N/PMOS devices. To analyze the induced gate noise, the induced gate current noise source model was analytically derived. By using the proposed model, the induced gate noise source was compared with other noise sources, and its impact on noise parameters was also analyzed in long-channel and nanoscale N/PMOS devices in the very high frequency region (>100 GHz). The results showed that the induced gate noise of sub-40 nm CMOS technology is negligible, even in the design of very high frequency circuits.

  3. A feasibility study of altered spatial distribution of losses induced by eddy currents in body composition analysis

    Directory of Open Access Journals (Sweden)

    Sepponen Raimo E

    2010-11-01

    Full Text Available Abstract Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA. Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis.

  4. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  5. Antivenom reversal of biochemical alterations induced by black scorpion Heterometrus fastigiousus Couzijn venom in mice

    Directory of Open Access Journals (Sweden)

    MK Chaubey

    2009-01-01

    Full Text Available In the present study, Heterometrus fastigiousus venom (HFV was employed as antigen to produce species-specific scorpion antivenom (SAV in albino mice (NIH strain. To determine SAV efficacy, it was pre-incubated with 10 LD50 of HFV and then injected subcutaneously into mice. Subsequently, mortality was observed after 24 hours. Minimum effective dose (MED was 12.5 LD50 of HFV/mL of SAV. SAV effectiveness to reverse HFV-induced biochemical alterations in mice was analyzed by challenge method. Simultaneously, mice received subcutaneously 40% of 24-hour-LD50 of HFV and intravenously SAV. After four hours, changes in serum glucose, free amino acids, uric acids, pyruvic acid, cholesterol, total protein, alkaline phosphatase, acid phosphatase, lactic dehydrogenase and glutamate-pyruvate transaminase enzyme level were determined. Treatment with species-specific SAV resulted in the reversal of HFV-induced biochemical alterations.

  6. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing; Wang; Ting-Jun; Fan; Xiu-Xia; Yang; Shi-Min; Chang

    2014-01-01

    AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P <0.01) and the length of F-actin,reduced the mean optical density(P <0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  7. Prenatal Immune Activation Induces Maturation-Dependent Alterations in the Prefrontal GABAergic Transcriptome

    OpenAIRE

    Richetto, J; Calabrese, F; M.A. RIVA; Meyer, U.

    2014-01-01

    Neuronal dysfunctions in the cortical GABAergic system have been widely documented in neuropsychiatric disorders with prenatal infectious etiologies, including schizophrenia. At least some of these abnormalities may stem from transcriptional impairments in the GABAergic transcriptome. However, the extent to which prenatal exposure to immune challenge can induce long-term alterations in GABAergic gene transcription remains largely elusive. Here, we use an established mouse model of prenatal im...

  8. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  9. Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities

    OpenAIRE

    Carvalho, Cristina; Cardoso, Susana; Correia, Sónia C; Santos, Renato X.; Santos, Maria S.; Baldeiras, Inês; oliveira, catarina r.; Moreira, Paula I.

    2012-01-01

    Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-A...

  10. Vitamin C Attenuates Chronic Chlorpyrifos-induced Alteration of Neurobehavioral Parameters in Wistar Rats

    OpenAIRE

    Suleiman F. Ambali; Joseph O. Ayo

    2012-01-01

    Background: Oxidative stress is one of the molecular mechanisms in chlorpyrifos toxicity. The present study was designed to evaluate the attenuating effect of vitamin C on chlorpyrifos-induced alteration of neurobehavioral performance and the role of muscle acetylchloinesterase (AChE), glycogen and lipoperoxidation in the accomplishment of this task. Materials and Methods: Male rats were randomly assigned into 4 groups with the following regimens: soya oil (S/oil), vitamin C (VC), chlorpyrifo...

  11. Phenotypic and Functional Alterations of Dendritic Cells Induced by Human Herpesvirus 6 Infection

    OpenAIRE

    Kakimoto, Miki; Hasegawa, Atsuhiko; Fujita, Shigeru; Yasukawa, Masaki

    2002-01-01

    Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 i...

  12. Modification of mercury-induced biochemical alterations by Triticum Aestivum Linn in rats.

    Science.gov (United States)

    Lakshmi, B V S; Sudhakar, M; Nireesha, G

    2014-01-01

    The present investigation has been undertaken to evaluate role of Wheat grass extract in modifying mercury-induced biochemical alterations in albino rats. Mercuric chloride 5 mg/kg body weight i.p. was given on 11, 13 & 15th day of the experiment. Wheat grass extract (400 mg/kg) and Quercetin (10 mg/kg) were administered 10 days before mercuric chloride administration and continued up to 30 days after mercuric chloride administration. The animals were sacrificed on 1, 15 and 30 days, the activity of serum alkaline and acid phosphatase and the iron, calcium, BUN, creatinine, SGPT, SGOT, total bilirubin, total protein levels were measured. Tissue lipid peroxidation content, glutathione (GSH) level, anti-oxidant enzymes- CAT and GR were measured. Hematological indices were also estimated. Mercury intoxication causes significant increase (P iron level, alkaline phosphatase, total protein, and CAT, GR and glutathione level. Wheat grass extract pre- and post-treatment ameliorated mercury-induced alterations in terms of biochemical and hematological parameters. Concomitant treatment of Wheatgrass extract with Mercury showed prominent recovery and normal architecture with mild residual degeneration in the tissues. Thus from present investigation, it can be concluded that Wheat grass extract pre- and post-treatment with HgCl2 significantly modulate or modify mercury-induced biochemical alteration in albino rats. PMID:26215012

  13. PIC Simulations of the Ion Flow Induced by Radio Frequency Waves in Ion Cyclotron Frequency Range

    International Nuclear Information System (INIS)

    Full text: PIC simulations have been conducted to study the nonlinear interactions of plasmas and radio frequency wave in the ion cyclotron frequency range. It is found that in the presence of the mode conversion from an electromagnetic wave into an electrostatic wave (ion Bernstein wave), the ions near the lower hybrid resonance can be heated by nonlinear Landau damping via the parametric decay. As a result, the ion velocity distribution in the poloidal direction becomes asymmetric near the lower hybrid resonance and an ion poloidal flow is thus produced. The flow directions are opposite on both sides of the lower hybrid resonance. The poloidal flow is mainly produced by the nonlinear Reynolds stress and the electromagnetic force of the incident wave in the radial direction rather than poloidal direction predicted by the existing theories. (author)

  14. Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry.

    Science.gov (United States)

    Jandova, Jana; Eshaghian, Alex; Shi, Mingjian; Li, Meiling; King, Lloyd E; Janda, Jaroslav; Sligh, James E

    2012-02-01

    There is increasing awareness of the role of mtDNA alterations in the development of cancer, as mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors, and the tumor mtDNAs were screened for single-nucleotide changes using temperature gradient capillary electrophoresis (TGCE), followed by direct sequencing. A mutation hot spot (9821insA) in the mitochondrially encoded tRNA arginine (mt-Tr) locus (tRNA(Arg)) was discovered in approximately one-third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNA(Arg)) alleles were generated. The resulting cybrid cell lines contained the same nuclear genotype and differed only in their mtDNAs. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein (CI), resulting in lower levels of baseline oxygen consumption and lower cellular adenosine triphosphate (ATP) production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry, supporting the development of keratinocyte neoplasia.

  15. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Directory of Open Access Journals (Sweden)

    J.G.P. Tavares

    2015-02-01

    Full Text Available The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12 and epilepsy (n=14. It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01. During the ischemia period, there was an increase in the QRS interval (P<0.05 and a reduction in the P wave and QT intervals (P<0.05 for both in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01 was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  16. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J.G.P. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Universidade Iguaçu, Campos V, Itaperuna, RJ (Brazil); Faculdade de Minas, Muriaé, MG (Brazil); Vasques, E.R. [Departamento de Gastroenterologia, LIM 37, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Arida, R.M. [Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cavalheiro, E.A. [Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cabral, F.R.; Torres, L.B. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Godoy, C.M.G. [Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Gomes da Silva, S. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Núcleo de Pesquisas Tecnológicas, Programa Integrado em Engenharia Biomédica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil)

    2015-01-13

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  17. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    Science.gov (United States)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  18. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    International Nuclear Information System (INIS)

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode

  19. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    Science.gov (United States)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  20. Radiation-induced alterations in murine lymphocyte homing patterns. I. Radiolabeling studies

    International Nuclear Information System (INIS)

    In vitro x-irradiation of 51Cr-labeled spleen, lymph node, bone marrow, or thymus cells was found to alter their subsequent in vivo distribution significantly in syngeneic BDF1 mice. Irradiated cells demonstrated an increased distribution to the liver and a significantly lower retention in the lungs. Cells going to the lymph nodes or Peyer's patches showed a significant exposure-dependent decrease in homing following irradiation. Irradiated lymph node cells homed in greater numbers to the spleen and bone marrow, while irradiated cells from other sources showed no preferential distribution to the same tissues. Sampling host tissues at various times after irradiation and injection did not demonstrate any return to normal patterns of distribution. The alterations in lymphocyte homing observed after in vitro irradiation appear to be due to the elimination of a selective population of lymphocytes or membrane alterations of viable cells, and the detection of these homing changes is in turn dependent upon the relative numbers of various lymphoid subpopulations which are obtained from different cell sources. Radiation-induced alterations in the normal homing patterns of lymphoid cells may thus be of considerable importance in the evaluation of subsequent functional assays in recipient animals

  1. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice

    International Nuclear Information System (INIS)

    Previous studies in our laboratory indicate that arsenic alters secretion of growth promoting and inflammatory cytokines in the skin that can regulate the migration and maturation of Langerhans cells (LC) during allergic contact dermatitis. Therefore, we hypothesized that arsenic may modulate hypersensitivity responses to cutaneous sensitizing agents by altering cytokine production, LC migration, and T-cell proliferation. To investigate this hypothesis, we examined the induction and elicitation phases of dermal sensitization. Mice exposed to 50 mg/l arsenic in the drinking water for 4 weeks demonstrated a reduction in lymph node cell (LNC) proliferation and ear swelling following sensitization with 2,4-dinitrofluorobenzene (DNFB), compared to control mice. LC and T-cell populations in the draining lymph nodes of DNFB-sensitized mice were evaluated by fluorescence-activated cell sorting; activated LC were reduced in cervical lymph nodes, suggesting that LC migration may be altered following arsenic exposure. Lymphocytes from arsenic-treated animals sensitized with fluorescein isothiocyanate (FITC) exhibited reduced proliferative responses following T-cell mitogen stimulation in vitro; however, lymphocyte proliferation from nonsensitized, arsenic-treated mice was comparable to controls. Arsenic exposure also reduced the number of thioglycollate-induced peritoneal macrophages and circulating neutrophils. These studies demonstrate that repeated, prolonged exposure to nontoxic concentrations of sodium arsenite alters immune cell populations and results in functional changes in immune responses, specifically attenuation of contact hypersensitivity

  2. Protective effect of Labisia pumila on stress-induced behavioral, biochemical, and immunological alterations.

    Science.gov (United States)

    Kour, Kiranjeet; Sharma, Neelam; Chandan, Bal Krishan; Koul, Surrinder; Sangwan, Payare Lal; Bani, Sarang

    2010-10-01

    The aim of the present study was to investigate the antistress potential of LABISIA PUMILA aqueous extract (LPPM/A003) using a battery of tests widely employed in different stressful situations. Pretreatment of experimental animals with LPPM/A003 caused an increase in the swimming endurance and hypoxia time and also showed the recovery of physical stress-induced depletion of neuromuscular coordination and scopolamine induced memory deficit. LPPM/A003 at graded doses reversed the chronic restraint stress (RST), induced depletion of CD4 (+) and CD8 (+) T lymphocytes, NK cell population, and corresponding cytokines expression besides downregulating the stress-induced increase in plasma corticosterone, a major stress hormone. In addition, LPPM/A003 reversed the chronic stress-induced increase in adrenal gland weight, serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and hepatic lipid peroxidation (LP) levels and augmented the RST induced decrease in hepatic glutathione (GSH), thymus and spleen weight. Thus, we conclude that LPPM/A003 has the ability to reverse the alterations produced by various stressful stimuli and therefore restores homeostasis. PMID:20217640

  3. Protective effect of Labisia pumila on stress-induced behavioral, biochemical, and immunological alterations.

    Science.gov (United States)

    Kour, Kiranjeet; Sharma, Neelam; Chandan, Bal Krishan; Koul, Surrinder; Sangwan, Payare Lal; Bani, Sarang

    2010-10-01

    The aim of the present study was to investigate the antistress potential of LABISIA PUMILA aqueous extract (LPPM/A003) using a battery of tests widely employed in different stressful situations. Pretreatment of experimental animals with LPPM/A003 caused an increase in the swimming endurance and hypoxia time and also showed the recovery of physical stress-induced depletion of neuromuscular coordination and scopolamine induced memory deficit. LPPM/A003 at graded doses reversed the chronic restraint stress (RST), induced depletion of CD4 (+) and CD8 (+) T lymphocytes, NK cell population, and corresponding cytokines expression besides downregulating the stress-induced increase in plasma corticosterone, a major stress hormone. In addition, LPPM/A003 reversed the chronic stress-induced increase in adrenal gland weight, serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and hepatic lipid peroxidation (LP) levels and augmented the RST induced decrease in hepatic glutathione (GSH), thymus and spleen weight. Thus, we conclude that LPPM/A003 has the ability to reverse the alterations produced by various stressful stimuli and therefore restores homeostasis.

  4. Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating

    Science.gov (United States)

    Mukherjee, Saptarshi; Thomas, N. Lowri; Williams, Alan J.

    2016-01-01

    The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating. PMID:27703263

  5. Detection of radioiodine-induced cytogenetic alterations in circulating lymphocytes of thyroid patients

    International Nuclear Information System (INIS)

    Radioiodines are often used for experimental purposes and for diagnosis and therapy in clinical practice. Human population might also be exposed to radioiodines in nuclear accidents. The ionizing energy of radioiodine affects not only the thyroid where it concentrates but also other tissues, especially the lymphocytes during their circulation through and around the gland containing the radioisotopes. Therefore, it seemed to be of interest to carry out investigations concerning the cytogenetic alterations in blood lymphocytes of patients treated with iodine-131. The method of choice was the relatively easily performable micronucleus assay in cytokinesis-blocked cultures of human peripheral lymphocytes. The test was performed on blood samples of 30 patients before the radioisotope treatment and one, two and four days after, one as well as 6 and - in a few cases - 12 weeks later. The amounts of iodine-131 injected were dependent on the clinical practices to reach the therapeutic radiation doses for hyperthyroidism and adenomas and were in the range of 220 and 5180 MBq. it was observed that the micronucleus frequency increased in the treated hyperthyroid patients while in patients with toxic adenomas the radioiodine did not result in an increase or even as compared to the pretreatment values in a few cases decreased values were seen. The results suggest individual differences in radiosensitivity as well as that the frequency of cytogenetic alterations depend on the physiological or pathological conditions of the thyroid. The significance of this observation will be discussed for dose assessments by cytogenetic techniques due to internal radioiodine. (author)

  6. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  7. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    Full Text Available Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1 Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2 Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb. The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS.

  8. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome.

    Science.gov (United States)

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles; Grant, P Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2) Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb). The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS. PMID:23526938

  9. 6-Hydroxydopamine-induced glutathione alteration occurs via glutathione enzyme system in primary cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    Ji ZHANG; Jun HU; Jian-hua DING; Hong-hong YAO; Gang HU

    2005-01-01

    Aim: To define the role of enzymes involved in glutathione metabolism in 6-hydroxydopamine (6-OHDA)-induced glutathione alteration in primary cultured astrocytes.Methods: Total glutathione (GSx) levels were determined using the modified enzymatic microtiter plate assay.The mRNA levels ofγ-glutamylcysteine synthetase (γGCS), γ-glutamyltransferase (γGT), glutathione peroxidase (GPx), GR (glutathione reductase), and glutathione transferases (GST) were determined using RT-PCR.γGT activity was determined using γGT assay kits.Results: In primary cultured astrocytes, 6-OHDA induced a significant elevation of cellular GSx levels after treatment for 24 h.However, the GSx levels decreased after 24 h and the values were even lower than the value in the control group without 6-OHDA at 48 h.RT-PCR data showed that the mRNA levels of γGCS, the ratelimiting enzyme of γ-L-glutamyl-L-cysteinylglycine (GSH) synthesis, were increased by 6-OHDA after treatment for 24 h and 48 h; the mRNA levels of GPx, GR, and GST did not alter in 6-OHDA-treated astrocytes after treatment for 24 h and 48 h; and 6-OHDA increased the mRNA levels and the activity of γGT after treatment for 48 h,which induced a decrease in GSx levels, despite the up-regulation of γGCS after exposure to 6-OHDA for 48 h.Conclusion: The change in γGCS correlated with the increase in GSH levels induced by 6-OHDA after treatment for 24 h.GSx levels decreased because of increased γGT mRNA levels and γGT activity induced by 6-OHDA after treatment for 48 h.

  10. Genetic and histopathological alterations induced by cypermethrin in rat kidney and liver: Protection by sesame oil.

    Science.gov (United States)

    Soliman, Mohamed Mohamed; Attia, Hossam F; El-Ella, Ghada A Abou

    2015-12-01

    Pesticides are widespread synthesized substances used for public health protection and agricultural programs. However, they cause environmental pollution and health hazards. This study aimed to examine the protective effects of sesame oil (SO) on the genetic alterations induced by cypermethrin (CYP) in the liver and kidney of Wistar rats. Male rats were divided into four groups, each containing 10 rats: the control group received vehicle, SO group (5 mL/kg b.w), CYP group (12 mg/kg b.w), and protective group received SO (5 mL/kg b.w) plus CYP (12 mg/kg b.w). Biochemical analysis showed an increase in albumin, urea, creatinine, GPT, GOT, and lipid profiles in the CYP group. Co-administration of SO with CYP normalized such biochemical changes. CYP administration decreased both the activity and mRNA expression of the examined antioxidants. SO co-administration recovered CYP, downregulating the expression of glutathione-S-transferase (GST), catalase, and superoxide dismutase. Additionally, SO co-administration with CYP counteracted the CYP- altering the expression of renal interleukins (IL-1 and IL-6), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), anigotensinogen (AGT), AGT receptors (AT1), and genes of hepatic glucose and fatty acids metabolism. CYP induced degenerative changes in the kidney and liver histology which are ameliorated by SO. In conclusion, SO has a protective effect against alterations and pathological changes induced by CYP in the liver and kidney at genetic and histological levels.

  11. Repetitive transcranial magnetic stimulation decreases the kindling induced synaptic potentiation: effects of frequency and coil shape.

    Science.gov (United States)

    Yadollahpour, Ali; Firouzabadi, Seyed Mohammad; Shahpari, Marzieh; Mirnajafi-Zadeh, Javad

    2014-02-01

    The present study was aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on kindling-induced synaptic potentiation and to study the effect of frequency and coil shape on rTMS effectiveness. Seizures were induced in rats by perforant path stimulation in a rapid kindling manner (12 stimulations/day). rTMS was applied at different frequencies (0.5, 1 and 2 Hz), using either figure-8 shaped or circular coils at different times (during or before kindling stimulations). rTMS had antiepileptogenic effect at all frequencies and imposed inhibitory effects on enhancement of population excitatory postsynaptic potential slope and population spike amplitude when applied during kindling acquisition. Furthermore, it prevented the kindling-induced changes in paired pulse indices. The inhibitory effect of rTMS was higher at the frequency of 1 Hz compared to 0.5 and 2 Hz. Application of rTMS 1Hz by circular coil imposed a weaker inhibitory action compared with the figure-8 coil. In addition, the results showed that pretreatment of animals by both coils had similar preventing effect on kindling acquisition as well as kindling-induced synaptic potentiation. Obtained results demonstrated that the antiepileptogenic effect of low frequency rTMS is accompanied with the preventing of the kindling induced potentiation. This effect is dependent on rTMS frequency and slightly on coil-type.

  12. Carcinogenic alterations in murine liver, lung, and uterine tumors induced by in utero exposure to ionizing radiation.

    Science.gov (United States)

    Lumniczky, K; Antal, S; Unger, E; Wunderlich, L; Hidvégi, E J; Sáfrány, G

    1998-02-01

    The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis. PMID:9496910

  13. Sex-related differences in cadmium-induced alteration of drug action in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, R.C.; Pence, D.H.; Prosser, T.D.; Miya, T.S.

    1976-01-01

    Three days after pretreatment of rats of both sexes with cadmium (2 mg/kg, i.p.), the duration of hypnosis induced by hexobarbital (75 mg/kg, i.p.) was potentiated in males but not females. Likewise, similar treatment with cadmium leads to significant inhibition of the metabolism of hexobarbital by hepatic microsomal enzymes obtained from male but not female animals. These data suggest that there is a sex-related difference in the ability of cadmium to alter drug action in rats.

  14. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    International Nuclear Information System (INIS)

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  15. The effects of sex, age and cigarette smoking on micronucleus and degenerative nuclear alteration frequencies in human buccal cells of healthy Bosnian subjects

    Directory of Open Access Journals (Sweden)

    Hilada Nefić

    2013-12-01

    Full Text Available Introduction: This study was performed to establish a baseline value of micronucleus frequency in buccal cells and to estimate the impact of the most common factors (sex and age, and smoking on micronucleus and degenerative nuclear alteration frequencies in the sample of healthy Bosnian subjects.Methods: The Buccal Micronucleus Cytome (BMCyt assay, based on scoring not only micronucleus frequency but also other genome damage markers, dead or degenerated cells, provides a measure of cytotoxic and genotoxic effects.Results: Our results showed the baseline buccal micronucleus frequency was 0.135% or 1.35‰, as well as positive correlations between micronucleus frequencies and formations of degenerative nuclear alterations (nuclear buds, karyolytic and karyorrhectic cells. The number of micronuclei in buccal cells was significantly higher in females than in males. There was positive association between the age and frequency of analysed cytogenetic biomarkers. Buccal cell micronuclei and degenerative nuclear alternations were more frequent among cigarette smokers than non-smokers and significantly higher in female smokers than in male smokers. Cytogenetic damages showed significantly positive correlation between intensity of smoking and the number of nuclear alterations. The years of smoking had a significant influence not only on the number of nuclear alterations but also in micronuclei and nuclear buds in buccal cells.Conclusions: The sex influences the number of micronuclei in human buccal cells. The ageing increased the number of micronuclei and other biomarkers of DNA damage. The cigarette smoking significantly increases the frequencies of micronuclei and nuclear buds, pyknotic, karyolytic and karyorrhectic cells.

  16. Protective role of Tinospora cordifolia extract against radiation-induced qualitative, quantitative and biochemical alterations in testes

    International Nuclear Information System (INIS)

    In today's changing global scenario, ionizing radiation is considered as most potent cause of oxidative stress mediated by free radical flux which induces severe damage at various hierarchical levels in the organization in the living organisms. Testis is a highly prolific tissue with fast cellular renewal and poor antioxidant defense; therefore it becomes an easy target for the radiation-induced free radicals that have long been suggested as major cause of male infertility. Chemical radioprotection is an important strategy to countermeasure the deleterious effects of radiation. Several Indian medicinal plants are rich source of antioxidants and these have been used for the treatment of ailments. Tinospora cordifolia, commonly known as amrita, is one of the plants that have several pharmacological and therapeutic properties. Therefore, the present study was performed to evaluate the deleterious effects of semi lethal dose of gamma radiation on testicular tissue and their possible inhibition by Tinospora cordifolia root extract (TCE). For this purpose, healthy Swiss albino male mice were selected from an inbred colony and divided into four groups. Group I (normal) was administered double distilled water (DDW) volume equal to TCE (75 mg/kg.b.wt/animal) by oral gavage. Group II was orally supplemented TCE as 75 mg/kg. b.wt once daily for 5 consecutive days. Group III (irradiated control) received DDW orally equivalent to TCE for 5 days then exposed to 5 Gy gamma radiation. Group IV (experimental) was administered TCE as in Group II and exposed to radiation (as in Group III). Irradiation resulted into significant decrease in the frequency of different spermatogenic cell counts along with severe histo-pathological lesions up to 7th day of irradiation in testes of irradiated control animals, thereafter, recovery followed towards the normal architecture. TCE pretreatment effectively prevented radiation induced such alterations in cellular counts and testicular injuries by

  17. Chemically-induced alteration of UDP-glucuronic acid concentration in rat liver.

    Science.gov (United States)

    Watkins, J B; Klaassen, C D

    1983-01-01

    Since many xenobiotics alter hepatic UDP-glucuronosyltransferase activity, their effect on UDPGA concentration was determined. Rats were pretreated with: 1) microsomal enzyme inducers (7,8-benzoflavone, benzo(a)pyrene, butylated hydroxyanisole, isosafrole, 3-methylcholanthrene, phenobarbital, pregnenolone-16 alpha-carbonitrile (PCN), 2,3,7,8-tetrachlorodibenzo-p-dioxin, trans-stilbene oxide); 2) inhibitors of microsomal enzymes (cobaltous chloride, piperonyl butoxide, SKF 525-A, borneol, galactosamine); 3) hepatotoxins (allyl alcohol, aflatoxin B1, alpha-naphthylisothiocyanate, bromobenzene, cadmium chloride, carbon tetrachloride, 1,1-dichloroethylene), and 4) commonly used anesthetics (pentobarbital, urethane, diethyl ether, halothane, enflurane, methoxyflurane). Rats were decapitated before removal of the liver. All inducers except PCN and isosafrole increased UDPGA 36-85% above control. Mixed-function oxidase inhibitors had no effect whereas borneol and galactosamine reduced UDPGA 85-90%. Aflatoxin B1 and cadmium produced decreases of 59 and 25%, respectively. Hepatic UDPGA content was diminished 70-95% after exposure to the inhalation anesthetics, whereas the other anesthetics reduced UDPGA about 25%. Thus, numerous xenobiotics alter the concentration of UDPGA in rat liver, which may influence the rate of glucoronidation.

  18. Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice.

    Directory of Open Access Journals (Sweden)

    Takahiro Fujimoto

    Full Text Available Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP(-/- mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP(-/- mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT in KRAP(-/- mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAP(-/- mice, although UCP (Uncoupling protein expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC-1, ACC-2 and fatty acid synthase in the liver of KRAP(-/- mice, which could in part account for the metabolic phenotype in KRAP(-/- mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases.

  19. Experimental Heart Failure Induces Alterations of the Lung Proteome - Insight into Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Christoph Birner

    2014-03-01

    Full Text Available Background: Heart failure (CHF is characterized by dyspnea and pulmonary changes. The underlying molecular adaptations are unclear, but might provide targets for therapeutic interventions. We therefore conceived a study to determine molecular changes of early pulmonary stress failure in a model of tachycardia-induced heart failure. Methods: CHF was induced in rabbits by progessive right ventricular pacing (n=6. Invasive blood pressure measurements and echocardiography were repeatedly performed. Untreated animals served as controls (n=6. Pulmonary tissue specimens were subjected to two-dimensional gel electrophoresis, and differentially expressed proteins were identified by mass spectrometry. Selected proteins were validated by Western Blot analysis and localized by immunohistochemical staining. Results: CHF animals were characterized by significantly altered functional, morphological, and hemodynamic parameters. Upon proteomic profiling, a total of 33 proteins was found to be differentially expressed in pulmonary tissue of CHF animals (18 up-regulated, and 15 down-regulated belonging to 4 functional groups: 1. proteins involved in maintaining cytoarchitectural integrity, 2. plasma proteins indicating impaired alveolar-capillary permeability, 3. proteins with antioxidative properties, and 4. proteins participating in the metabolism of selenium compounds Conclusion: Experimental heart failure profoundly alters the pulmonary proteome. Our results supplement the current knowledge of pulmonary stress failure by specifying its molecular fundament.

  20. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice.

    Science.gov (United States)

    Kistler, Martin; Muntean, Andreea; Szymczak, Wilfried; Rink, Nadine; Fuchs, Helmut; Gailus-Durner, Valerie; Wurst, Wolfgang; Hoeschen, Christoph; Klingenspor, Martin; Hrabě de Angelis, Martin; Rozman, Jan

    2016-03-01

    The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis. PMID:26860833

  1. Glycophenotypic alterations induced by Pteridium aquilinum in mice gastric mucosa: synergistic effect with Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    Full Text Available The bracken fern Pteridium aquilinum is a plant known to be carcinogenic to animals. Epidemiological studies have shown an association between bracken fern exposure and gastric cancer development in humans. The biological effects of exposure to this plant within the gastric carcinogenesis process are not fully understood. In the present work, effects in the gastric mucosa of mice treated with Pteridium aquilinum were evaluated, as well as molecular mechanisms underlying the synergistic role with Helicobacter pylori infection. Our results showed that exposure to Pteridium aquilinum induces histomorphological modifications including increased expression of acidic glycoconjugates in the gastric mucosa. The transcriptome analysis of gastric mucosa showed that upon exposure to Pteridium aquilinum several glycosyltransferase genes were differently expressed, including Galntl4, C1galt1 and St3gal2, that are mainly involved in the biosynthesis of simple mucin-type carbohydrate antigens. Concomitant treatment with Pteridium aquilinum and infection with Helicobacter pylori also resulted in differently expressed glycosyltransferase genes underlying the biosynthesis of terminal sialylated Lewis antigens, including Sialyl-Lewis(x. These results disclose the molecular basis for the altered pattern of glycan structures observed in the mice gastric mucosa. The gene transcription alterations and the induced glycophenotypic changes observed in the gastric mucosa contribute for the understanding of the molecular mechanisms underlying the role of Pteridium aquilinum in the gastric carcinogenesis process.

  2. Oilseed cultivars developed from induced mutations and mutations altering fatty acid composition

    International Nuclear Information System (INIS)

    One hundred and sixty-three cultivars of annual oilseed crops, developed using induced mutations, have been officially approved and released for cultivation in 26 countries. The maximum number of cultivars have been released in soybean (58), followed by groundnut (44), sesame (16), linseed (15), rapeseed (14), Indian mustard (8), castorbean (4), white mustard (3) and sunflower (1). The majority (118 of 163) of the cultivars have been developed as direct mutants and 45 of 163 by using the induced mutants in a crossing programme. While in soybean 53 out of 58 cultivars were selected as direct mutants, in groundnut 22 from 44 were developed after hybridization. Eighty-three cultivars were developed directly by exposing seeds to gamma or X-rays. Attempts have been made to infer the successful dose range, defined as the range which led to the development, registration and release of the maximum number of mutant cultivars for gamma and X-rays. The successful dose ranges in Gy for the main oilseed crops are: soybean 100-200, groundnut 150-250, rapeseed 600-800, Indian mustard 700 and sesame 100-200. The main characteristics of the new cultivars, besides higher yield, are altered plant type, early flowering and maturity and oil content. Mutants altering fatty acid composition have been isolated in soybean, rapeseed, sunflower, linseed and minor oil crops. New cultivars having altered fatty acid composition have been released in rapeseed, sunflower and linseed. The latter, previously grown for non-edible oil, has been converted to a new edible oil crop. (author)

  3. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  4. Chlorpyrifos-induced Histopathological Alterations in Duttaphrynus melanostictus (Schneider 1799 Tadpoles: Evidence from Empirical Trials

    Directory of Open Access Journals (Sweden)

    M. G. D. K. Bandara

    2012-10-01

    Full Text Available This paper reports the histopathological responses of the gill, liver and tail muscle tissues in tadpoles of the Asian Common Toad Duttaphrynus melanostictus (Schneider, 1799 exposed to chlorpyrifos a common organophosphorus pesticide. Tadpoles of Gosner stages 24-26 were continuously exposed to low, mid and high (500, 1000 and 1500 µgl–1 concentrations of chlorpyrifos for two weeks. Histological alterations in the tissues of the surviving larvae were microscopically examined both at the end of the exposure period and after a week following the final exposure. Several histological alterations were noted in the gills, liver and tail muscles of the larvae exposed to 1500 µgl–1 of chlorpyrifos. The gills of exposed larvae showed architectural distortion resulting from reduced primary and secondary gill lamellae and blood vessels, and alterations in the gill epithelium. In the liver sinusoidal congestion and dilation, cytoplasmic vacuolation and changes in hepatocytes such as hyperchromatic nuclei and nuclear fragmentation were observed.  The tail muscle tissue suffered from severe atrophy and myotomal disintegration. Although histological alterations in the gill and liver tissues were noted only at the high concentration, changes in the muscle tissue i.e. muscle degeneration and atrophy, were apparent at both low and mid concentrations. The degree of damage in surviving larvae in a week following the final exposure was lower than that observed during the exposure, probably indicating recovery or resistance. The findings of the present study emphasize the need to investigate possible sublethal damage induced by pesticides in amphibians inhabiting agricultural habitats.

  5. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    Science.gov (United States)

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.

  6. Role of Rosemary leaves extract against radiation-induced hematological and biochemical alterations in mice

    Directory of Open Access Journals (Sweden)

    Acharya Garima S.

    2008-01-01

    Full Text Available The present paper is a study of the modulatory effect of Rosmarinus officinalis leaves extract on radiation-induced hematological and biochemical changes in Swiss albino mice. The dose reduction factor for the Rosemary extract against gamma rays was calculated 1.53 from LD50/30 values. The Rosemary extract was administered orally for 5 consecutive days prior to radiation exposure. The hematological and biochemical parameters were assessed from day 1 to 30 post-irradiation intervals. The total erythrocyte count, total leucocytes count, hemoglobin, and hematocrit values in the experimental group were found to be elevated as compared to the control group of mice. Furthermore, the Rosemary extract treatment enhanced reduced glutathione content in the liver and blood against radiation-induced depletion. Treatment with the plant extract brought a significant fall in the lipid peroxidation level, suggesting rosemary's role in protection against radiation-induced membrane and cellular damage. The results from the present study suggest a radio-protective effect of the Rosemary extract against radiation-induced hematological and biochemical alterations in mice.

  7. High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in

    Directory of Open Access Journals (Sweden)

    Amaneh Mohammadi Roushandeh

    2010-06-01

    Full Text Available Objective(sNeutrophil gelatinase-associated lipocalin (NGAL/Lcn2, comprise a group of small extracellular proteins with a common β-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic field (EMF produces reactive oxygen species (ROS in different tissues. Expression of Lcn2 following exposure to electromagnetic field has been investigated in this study. Materials and MethodsBalb/c mice (8 weeks old were exposed to 3 mT, 50 HZ EMF for 2 months, 4 hr/day. Afterwards, the mice were sacrificed by cervical dislocation and livers were removed. The liver specimens were stained with Haematoxylin- Eosin (H&E and analyzed under an optical microscope. Total RNA was extracted from liver and reverse transcription was performed by SuperScript III reverse transcriptase with 1 µg of total RNA. Assessment of Lcn2 expression was performed by semiquantitative and real time- PCR.ResultsThe light microscopic studies revealed that the number of lymphocyte cells was increased compared to control and dilation of sinosoids was observed in the liver. Lcn2 was up-regulated in the mice exposed to EMF both in mRNA and protein levels.ConclusionTo the extent of our knowledge, this is the first report dealing with up-regulation of Lcn2 in liver after exposure to EMF. The up-regulation might be a compensatory response that involves cell defense pathways and protective effects against ROS. However, further and complementary studies are required in this regards.

  8. Early Exposure to Intermediate-Frequency Magnetic Fields Alters Brain Biomarkers without Histopathological Changes in Adult Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2015-04-01

    Full Text Available Recently we have reported that intermediate-frequency magnetic field (IF-MF exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have not yet been clarified. In the present study, we investigated the effect of IF-MF exposure during development on neurological and immunological markers in the mouse hippocampus in 3- and 7-week-old male mice. Pregnant C57BL/6J mice were exposed to IF-MF (21 kHz, 3.8 mT for one hour per day from organogenesis period day 7 to 17. At adolescence, some IF-MF-exposed mice were further divided into exposure, recovery, and sham-exposure groups. The adolescent-exposure groups were exposed again to IF-MF from postnatal day 27 to 48. The expression of mRNA in the hippocampi was examined using a real-time RT-PCR method, and microglia activation was examined by immunohistochemical analysis. The expression levels of NR1 and NR2B as well as transcription factors (CaMKIV, CREB1, inflammatory mediators (COX2, IL-1 b,TNF-α, and the oxidative stress marker heme-oxygenase (HO-1 were significantly increased in the IF-MF-exposed mice, compared with the control group, in the 7-week-old mice, but not in the 3-week-old mice. Microglia activation was not different between the control and other groups. This study provides the first evidence that early exposure to IF-MF reversibly affects the NMDA receptor, its related signaling pathways, and inflammatory mediators in the hippocampus of young adult mice; these changes are transient and recover after termination of exposure without histopathological changes.

  9. Frequency-induced changes in interlimb interactions: increasing manifestations of closed-loop control.

    Science.gov (United States)

    de Boer, Betteco J; Peper, C Lieke E; Beek, Peter J

    2011-06-20

    In bimanual coordination, interactions between the limbs result in attraction to in-phase and antiphase coordination. Increasing movement frequency leads to decreasing stability of antiphase coordination, often resulting in a transition to the more stable in-phase pattern. It is unknown, however, how this frequency-induced loss of stability is engendered in terms of the interlimb interactions underwriting bimanual coordination. The present study was conducted to help resolve this issue. Using an established method (based on comparison of various unimanual and bimanual tasks involving both passive and active movements), three sources of interlimb interaction were dissociated: (1) integrated timing of feedforward signals, (2) afference-based correction of relative phase errors, and (3) phase entrainment by contralateral afference. Results indicated that phase entrainment strength remained unaffected by frequency and that the stabilizing effects of error correction and integrated timing decreased with increasing frequency. Their contributions, however, reflected an interesting interplay as frequency increased. For moderate frequencies coordinative stability was predominantly secured by integrated timing processes. However, at high frequencies, the stabilization of the antiphase pattern required combined contributions of both integrated timing and error correction. In sum, increasing frequency was found to induce a shift from predominantly open-loop control to more closed-loop control. The results may be accounted for by means of an internal forward model for sensorimotor integration in which the sensory signals are compared to values predicted on the basis of efference copies.

  10. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  11. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  12. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain.

    Directory of Open Access Journals (Sweden)

    Katrina Weston-Green

    Full Text Available BACKGROUND/AIM: Second generation antipsychotics (SGAs are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapine-induced obesity. METHODOLOGY/RESULTS: Levels of pro-opiomelanocortin (POMC, neuropeptide Y (NPY and glutamic acid decarboxylase (GAD(65, enzyme for GABA synthesis mRNA expression, and cannabinoid CB1 receptor (CB1R binding density (using [(3H]SR-141716A were examined in the arcuate nucleus (Arc and dorsal vagal complex (DVC of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (3×/day, 14-days. Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD(65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. CONCLUSIONS: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly by altering POMC transmission. Metabolic dysfunction can be modelled in the female rat using low, clinically-comparable olanzapine doses when administered in-line with the half-life of the drug.

  13. Temporal Dynamics of the Default Mode Network Characterize Meditation-Induced Alterations in Consciousness.

    Science.gov (United States)

    Panda, Rajanikant; Bharath, Rose D; Upadhyay, Neeraj; Mangalore, Sandhya; Chennu, Srivas; Rao, Shobini L

    2016-01-01

    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network. PMID:27499738

  14. Temporal Dynamics of the Default Mode Network Characterize Meditation-Induced Alterations in Consciousness

    Science.gov (United States)

    Panda, Rajanikant; Bharath, Rose D.; Upadhyay, Neeraj; Mangalore, Sandhya; Chennu, Srivas; Rao, Shobini L.

    2016-01-01

    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network. PMID:27499738

  15. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    Science.gov (United States)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  16. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement.

    Science.gov (United States)

    Anderson, S M; Pierce, R C

    2005-06-01

    The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine. PMID:15922019

  17. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  18. Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats.

    Science.gov (United States)

    Mikuska, Livia; Vrabcova, Michaela; Tillinger, Andrej; Balaz, Miroslav; Ukropec, Jozef; Mravec, Boris

    2016-06-01

    We have previously described the development of substantial, but reversible obesity in Wistar rats fed with palatable liquid nutrition (Fresubin). In this study, we investigated changes in serum hormone levels, glycemia, fat mass, adipocyte size, and gene expression of adipokines and inflammatory markers in adipose tissue of Wistar rats fed by Fresubin (i) for 5 months, (ii) up to 90 days of age, or (iii) after 90 days of age to characterize metabolic alterations and their reversibility in rats fed with Fresubin. An intra-peritoneal glucose tolerance test was also performed to determine levels of serum leptin, adiponectin, insulin, and C-peptide in 2- and 4-month-old animals. In addition, mesenteric and epididymal adipose tissue weight, adipocyte diameter, and gene expression of pro- and anti-inflammatory adipokines and other markers were determined at the end of the study. Chronic Fresubin intake significantly increased adipocyte diameter, reduced glucose tolerance, and increased serum leptin, adiponectin, insulin, and C-peptide levels. Moreover, gene expression of leptin, adiponectin, CD68, and nuclear factor kappa B was significantly increased in mesenteric adipose tissue of Fresubin fed rats. Monocyte chemotactic protein 1 messenger RNA (mRNA) levels increased in mesenteric adipose tissue only in the group fed Fresubin during the entire experiment. In epididymal adipose tissue, fatty acid binding protein 4 mRNA levels were significantly increased in rats fed by Fresubin during adulthood. In conclusion, chronic Fresubin intake induced complex metabolic alterations in Wistar rats characteristic of metabolic syndrome. However, transition of rats from Fresubin to standard diet reversed these alterations. PMID:26939586

  19. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    OpenAIRE

    van Rijn Clementina M; van Heck Casper H; van den Broeke Emanuel N; Wilder-Smith Oliver HG

    2011-01-01

    Abstract Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG). To this end we measured evoked potentials in response to ...

  20. Haemato-biochemical alterations induced by lead acetate toxicity in wistar rats

    Directory of Open Access Journals (Sweden)

    S. G. Suradkar

    Full Text Available An experiment was conducted to study the haemato-biochemical alterations induced by lead acetate toxicity in 48 Wistar rats of either sex, divided uniformly into four different groups. The rats of group I received only deionised water as control while, group II, III and IV were given lead acetate @ 1 PPM, 100 PPM and 1000 PPM, in drinking deionised water respectively for 28 days. In group III and IV dose dependant significant (P<0.05 reductions in TEC, Hb, PCV and TLC were observed. No significant change was observed in neutrophil, eosinophil, basophil and monocyte count in any treatment groups, whereas the lymphocyte count decreased significantly (P<0.05 in group III and IV. A dose dependant significant (P<0.05 increase in AST, ALP, AKP, GGT, BUN and creatinine was experiential while TP and albumin levels were decreased in group III and IV. [Vet World 2009; 2(11.000: 429-431

  1. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Science.gov (United States)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-01-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178

  2. Alteration of time-resolved autofluorescence properties of rat aorta, induced by diabetes mellitus

    Science.gov (United States)

    Uherek, M.; Uličná, O.; Vančová, O.; Muchová, J.; Ďuračková, Z.; Šikurová, L.; Chorvát, D.

    2016-10-01

    Changes in autofluorescence properties of isolated rat aorta, induced by diabetes mellitus, were detected using time-resolved fluorescence spectroscopy with pulsed ultraviolet (UV) laser excitation. We demonstrated that time-resolved spectroscopy was able to detect changes in aorta tissues related to diabetes and unambiguously discriminate diabetic (τ 1 0.63  ±  0.05 ns, τ 2 3.66  ±  0.10 ns) samples from the control (τ 1 0.76  ±  0.03 ns, τ 2 4.48  ±  0.15 ns) group. We also report changes in the ratio of relative amplitudes of the two lifetime component in aorta tissue during diabetes, most likely related to the pseudohypoxic state with altered NADH homeostasis.

  3. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation.

    Science.gov (United States)

    Stallings, Raymond L; Foley, Niamh H; Bray, Isabella M; Das, Sudipto; Buckley, Patrick G

    2011-10-01

    Many neuroblastoma cell lines can be induced to differentiate into a mature neuronal cell type with retinoic acid and other compounds, providing an important model system for elucidating signalling pathways involved in this highly complex process. Recently, it has become apparent that miRNAs, which act as regulators of gene expression at a post-transcriptional level, are differentially expressed in differentiating cells and play important roles governing many aspects of this process. This includes the down-regulation of DNA methyltransferases that cause the de-methylation and transcriptional activation of numerous protein coding gene sequences. The purpose of this article is to review involvement of miRNAs and DNA methylation alterations in the process of neuroblastoma cell differentiation. A thorough understanding of miRNA and genetic pathways regulating neuroblastoma cell differentiation potentially could lead to targeted therapies for this disease.

  4. Modulation of radiation induced alteration in the antioxidant status of mice by naringin

    International Nuclear Information System (INIS)

    The alteration of antioxidant status and lipid peroxidation by naringin, a citrus flavoglycoside, was investigated in Swiss albino mice treated with 2 mg/kg b. wt. naringin before exposure to 0.5, 1, 2, 3, and 4 Gy gamma radiation. Lipid peroxidation, glutathione, glutathione peroxidase, catalase and superoxide dismutase were determined in the liver and small intestine of mice treated or not with naringin at 0.5, 1, 2, 4 and 8 h post-irradiation. Whole-body irradiation of mice caused a dose dependent elevation in the lipid peroxidation while a dose dependent depletion was observed for glutathione, glutathione peroxidase, superoxide dismutase and catalase in both liver as well as small intestine. The study demonstrates that naringin protects mouse liver and intestine against the radiation-induced damage by elevating the antioxidant status and reducing the lipid peroxidation

  5. Feminization and alteration of Drosophila taste neurons induce reciprocal effects on male avoidance behavior.

    Science.gov (United States)

    Lacaille, Fabien; Everaerts, Claude; Ferveur, Jean-François

    2009-09-01

    Taste perception allows most animals to find edible food, potential mates, and avoid ingesting toxic molecules. Intriguingly, a small group of Drosophila taste neurones (expressing Gr66a-Gal4) involved in the perception of bitter substances is also used to detect 7-tricosene (7-T), a male cuticular pheromone. Male flies tend to be inhibited by 7-T whereas females are stimulated by this pheromone. To better understand their role on male courtship, Gr66a-Gal4 neurons were genetically feminized or altered with various transgenes, and the response of transgenic males was measured toward live targets carrying various amounts of 7-T, or of bitter molecules (caffeine, quinine and berberine). Surprisingly, tester males with feminized taste neurons showed an increased dose-dependent avoidance toward targets with high level of any of these substances, compared to other tester males. Conversely, males with altered neurons showed no, or very little avoidance. Moreover, the surgical ablation of the sensory appendages carrying these taste neurons differently affected the behavioral response of the various tester males. The fact that this manipulation did not affect the courtship toward control females nor the locomotor activity of tester males suggests that Gr66a-Gal4 neurons are involved in the sex-specific perception of molecules inducing male avoidance behavior.

  6. The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations

    Science.gov (United States)

    Meehan, R.; Whitson, P.; Sams, C.

    1993-01-01

    This paper summarizes previous in-flight infections and novel conditions of spaceflight that may suppress immune function. Granulocytosis, monocytosis, and lymphopenia are routinely observed following short duration orbital flights. Subtle changes within the monocyte and T cell populations can also be noted by flow cytometric analysis. The similarity between the immunological changes observed after spaceflight and other diverse environmental stressors suggest that most of these alterations may be neuroendocrine-mediated. Available data support the hypothesis that spaceflight and other environmental stressors modulate normal immune regulation via stress hormones, other than exclusively glucocorticoids. It will be essential to simultaneously collect in-flight endocrine, immunologic, and infectious illness data to determine the clinical significance of these results. Additional research that delineates the neuroendocrine mechanisms of stress-induced changes in normal immune regulation will allow clinicians in the future to initiate prophylactic immunomodulator therapy to restore immune competence altered by the stress of long-duration spaceflight and therefore reduce morbidity from infectious illness, autoimmune disease, or malignancy.

  7. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    Science.gov (United States)

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  8. Long-term alterations in neural and endocrine processes induced by motherhood in mammals.

    Science.gov (United States)

    Bridges, Robert S

    2016-01-01

    This article is part of a Special Issue "Parental Care". The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female's biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages. PMID:26388065

  9. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    Science.gov (United States)

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC. PMID:25983264

  10. Effects of Chemotherapy-Induced Alterations in Cell Mechanical Properties on Cancer Metastasis

    Science.gov (United States)

    Prathivadhi, Sruti; Ekpenyong, Andrew; Nichols, Michael; Taylor, Carolyn; Ning, Jianhao

    Biological cells can modulate their mechanical properties to suit their functions and in response to changes in their environment. Thus, mechanical phenotyping of cells has been employed for tracking stem cell differentiation, bacterial infection, cell death, etc. Malignant transformation of cells also involves changes in mechanical properties. However, the extent to which mechanical properties of cancer cells contribute to metastasis is not well understood. Yet, more than 90% of all cancer deaths are directly related to metastasis. Transit of cells through the microcirculation is one of the key features of metastasis. We hypothesize that cancer treatment regimens do inadvertently alter cell mechanical properties in ways that might promote cancer metastasis. We use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that cancer cells treated with chemotherapeutic drugs such as daunorubicin, become more deformable at short timescales (0.1 s) and transit faster through the device. Our results are first steps in evaluating the pro- or anti-metastatic effects of chemotherapeutic drugs based on their induced alterations in cell mechanical properties.

  11. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    Science.gov (United States)

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  12. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Tetsuo Nakajima

    Full Text Available Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu was administered daily to female mice (C3H/He for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation.

  13. Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents

    Science.gov (United States)

    Mhlongo, Msizi I.; Steenkamp, Paul A.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Dubery, Ian A.

    2016-01-01

    Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i) quinic acid (chlorogenic acids), (ii) tyramine, (iii) polyamines, or (iv) glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense metabolites. PMID

  14. Apoptosis induced by Fas signaling does not alter hepatic hepcidin expression

    Institute of Scientific and Technical Information of China (English)

    Sizhao; Lu; Emily; Zmijewski; John; Gollan; Duygu; Dee; Harrison-Findik

    2014-01-01

    AIM: To determine the regulation of human hepcidin(HAMP) and mouse hepcidin(hepcidin-1 and hepcidin-2) gene expression in the liver by apoptosis using in vivo and in vitro experimental models. METHODS: For the induction of the extrinsic apoptotic pathway, HepG2 cells were treated with various concentrations of CH11, an activating antibody for human Fas receptor, for 12 h. Male C57BL/6NCR and C57BL/6J strains of mice were injected intraperitoneally with sublethal doses of an activating antibody for mouse Fas receptor, Jo2. The mice were anesthetized and sacrificed 1 or 6 h after the injection. The level of apoptosis was quantified by caspase-3 activity assay. Liver injury was assessed by measuring the levels of ALT/AST enzymes in the serum. The acute phase reaction in the liver was examined by determining the expression levels of IL-6 and SAA3 genes by SYBR green quantitative real-time PCR(qPCR). The phosphorylation of transcription factors, Stat3, Smad4 and NF-κB was determined by western blotting. Hepcidin gene expression was determined by Taqman qPCR. The binding of transcription factors to hepcidin-1 promoter was studied using chromatin immunoprecipitation(ChIP) assays.RESULTS: The treatment of HepG2 cells with CH11 induced apoptosis, as shown by the significant activation of caspase-3(P < 0.001), but did not cause any significant changes in HAMP expression. Short-term(1 h) Jo2 treatment(0.2 μg/g b.w.) neither induced apoptosis and acute phase reaction nor altered mRNA expression of mouse hepcidin-1 in the livers of C57BL/6NCR mice. In contrast, 6 h after Jo2 injection, the livers of C57BL/6NCR mice exhibited a significant level of apoptosis(P < 0.001) and an increase in SAA3(P < 0.023) and IL-6(P < 0.005) expression in the liver. However, mRNA expression of hepcidin-1 in the liver was not significantly altered. Despite the Jo2-induced phosphorylation of Stat3, no occupancy of hepcidin-1 promoter by Stat3 was observed, as shown by ChIP assays. Compared to C57

  15. Magnetic Field Is the Dominant Factor to Induce the Response of Streptomyces avermitilis in Altered Gravity Simulated by Diamagnetic Levitation

    OpenAIRE

    Mei Liu; Hong Gao; Peng Shang; Xianlong Zhou; Elizabeth Ashforth; Ying Zhuo; Difei Chen; Biao Ren; Zhiheng Liu; Lixin Zhang

    2011-01-01

    BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production ...

  16. Magnitude and Frequency of Rainfall-induced Landslides at the Chenyulan and Tsengwen Watersheds in Taiwan

    Science.gov (United States)

    Jan, C.; Yang, S.

    2013-12-01

    We investigate the landslide magnitude associated with rainfall at the Chenyulan and Tsengwen watersheds in the central Taiwan. The dependences of landslide magnitude in area on regional average rainfall characteristics for landslides between 1988 and 2009, and the frequency-magnitude distribution of landslides caused by Typhoon Morakot in 2009 are presented in this paper. The results indicate that both total rainfall depth and maximum rainfall intensity are the major factors to the magnitude of rainfall-induced landslide. We also found that the rainfall erosivity index that is used to estimate soil erosion is well related with the landslide magnitude. Moreover, via the rainfall erosivity index, we also clarify that the magnitude of rainfall-induced landslide is affected by the Chi-Chi earthquake that occurred in 1999 in subsequent five years. The result suggests that the rainfall erosivity index could be a good parameter to evaluate the characteristics of rainfall-induced landslides. We also study the relation of landslide magnitude (in area) against its occurrence frequency caused by a severe rainfall brought by Typhoon Morakot in 2009. The landslide magnitude (in area) varies from 600 m2 to 600,000 m2. A cumulative frequency-magnitude relation in a power-law scaling is presented herein. Figure 1. Cumulative landslide frequency - mangitude distribution Figure 2. Non-cumulative landslide frequency - mangitude distribution

  17. High Frequency Discharge Plasma Induced Grafting of Polystyrene onto Titanium Dioxide Powder

    Institute of Scientific and Technical Information of China (English)

    ZHONG Shaofeng; OU Qiongrong; MENG Yuedong

    2007-01-01

    Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide. IR , XPS and TGA results show that PS was grafted on the titanium dioxide powder. And the crystal structure of the titanium dioxide powder observed by XRD was unchanged after plasma treatment.

  18. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    NARCIS (Netherlands)

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND: High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is

  19. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    NARCIS (Netherlands)

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is t

  20. Laser-frequency locking using light-pressure-induced spectroscopy in a calcium beam

    NARCIS (Netherlands)

    Mollema, A. K.; Wansbeek, L. W.; Willmann, L.; Jungmann, K.; Timmermans, R. G. E.; Hoekstra, R.

    2008-01-01

    We demonstrate a spectroscopy method that can be applied in an atomic beam, light-pressure-induced spectroscopy (LiPS). A simple pump and probe experiment yields a dispersivelike spectroscopy signal that can be utilized for laser frequency stabilization. The underlying principles are discussed and c

  1. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats

    Institute of Scientific and Technical Information of China (English)

    Viswanadha Vijaya Padma; Gurusamy Lalitha; Nicholson Puthanveedu Shirony; Rathinasamy Baskaran

    2012-01-01

    Objective: To assess the effect of quercetin (flavonoid) against lindane induced alterations in lipid profile of wistar rats. Methods: Rats were administered orally with lindane (100 mg/kg body weight) and quercetin (10 mg/kg body weight) for 30 days. After the end of treatment period lipid profile was estimated in serum and tissue. Results: Elevated levels of serum cholesterol, triglycerides, low density lipoprotein (LDL), very Low Density Lipoprotein (VLDL) and tissue triglycerides, cholesterol with concomitant decrease in serum HDL and tissue phospholipids were decreased in lindane treated rats were found to be significantly decreased in the quercetin and lindane co-treated rats. Conclusions: Our study suggests that quercetin has hypolipidemic effect and offers protection against lindane induced toxicity in liver by restoring the altered levels of lipids. The quercetin cotreatment along with lindane for 30 days reversed these biochemical alterations in lipids induced by lindane.

  2. Radiation-induced frequency transients in AT, BT, and SC cut quartz resonators

    International Nuclear Information System (INIS)

    Earlier studies of transient frequency changes in high-purity swept AT quartz resonators led to the conclusion that impurity-induced effects were small, while the observed changes were qualitatively and quantitatively well characterized in terms of the time changing temperature of the vibrating quartz and its effect on frequency. 5 MHz, AT cut fifth overtone, and BT and SC cut third overtone resonators were prepared from a single stone of Sawyer swept Premium-Q quartz. The resonators were operated in precision ovenized oscillators at or near their turnover temperatures. Pulsed irradiation, at dose levels of the order of 104 rads (Si) per pulse, was accomplished at Sandia. The experimental data display negative frequency transients for the AT cut resonators, positive frequency transients for the BT cut resonators, and very small transient effects for the SC cut resonators. From these experimental results, it is concluded that no measurable impurity-induced frequency changes are observed in this high-purity swept-quartz and that the frequency transients are accurately modelled in terms of transient temperature effects stemming from the thermal characteristics of the resonator structure

  3. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    CERN Document Server

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  4. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency

    Science.gov (United States)

    Li, Haibo; Li, Xiaofeng; Li, Jianchun; Xia, Xiang; Wang, Xiaowei

    2016-03-01

    Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the firstperiod blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.

  5. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    Directory of Open Access Journals (Sweden)

    Jang K Kim

    Full Text Available We investigated emersion-induced nitrogen (N release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  6. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rodrigo eIturriaga

    2014-12-01

    Full Text Available The carotid body (CB plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure and obstructive sleep apnea (OSA. Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH, a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation.

  7. Kojibiose ameliorates arachidic acid-induced metabolic alterations in hyperglycaemic rats.

    Science.gov (United States)

    Moisés Laparra, José; Díez-Municio, Marina; Javier Moreno, F; Herrero, Miguel

    2015-11-14

    Herein we hypothesise the positive effects of kojibiose (KJ), a prebiotic disaccharide, selected for reducing hepatic expression of inflammatory markers in vivo that could modulate the severity of saturated arachidic acid (ARa)-induced liver dysfunction in hyperglycaemic rats. Animals were fed daily (20 d) with ARa (0·3 mg) together or not with KJ (22 mg approximately 0·5 %, w/w diet). Glucose, total TAG and cholesterol contents and the phospholipid profile were determined in serum samples. Liver sections were collected for the expression (mRNA) of enzymes and innate biomarkers, and intrahepatic macrophage and T-cell populations were analysed by flow cytometry. ARa administration increased the proportion of liver to body weight that was associated with an increased (by 11 %) intrahepatic macrophage population. These effects were ameliorated when feeding with KJ, which also normalised the plasmatic levels of TAG and N-acyl-phosphatidylethenolamine in response to tissue damage. These results indicate that daily supplementation of KJ significantly improves the severity of ARa-induced hepatic alterations. PMID:26344377

  8. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  9. Frequencies of micronucleated polychromatic erythrocytes in mouse bone marrow induced by combined radiation-burn injury

    International Nuclear Information System (INIS)

    Objective: In order to detect if any analysis of frequency of micronucleated polychromatic erythrocytes (fMPCE) in mouse bone marrow was possible to diagnose combined radiation-burn injuries. Methods: By using the index of fMPCE, the investigation was carried out in the conditions of burn injury alone, radiation injury alone and combined radiation-burn injury. Results: The fMPCE induced by 10% and 20% body surface area (BSA) burns were not significantly increased at 24h compared with untreated groups. The fMPCE induced by combined radiation-burn injury significantly lower than those by radiation alone, and the fMPCE in the 20% BSA combined radiation-burn injury groups were lower than those in 10% BSA groups. Conclusion: These results indicate that radiation combined burns have an effect to reduce the fMPCE induced by radiation injury. The reason may be due to the frequency of increase of PCE after burn injury

  10. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  11. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    Science.gov (United States)

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH. PMID:27357826

  12. Protective effect of flax seed oil against radiation induced hematological alterations in mammals

    International Nuclear Information System (INIS)

    Human beings are exposed to ionizing and non ionizing radiation from natural as well as manmade sources. Ionizing radiations are one of the predominant exogenous factors that have deleterious consequences to human life. Exposure to ionizing radiations damages the hematopoietic, gastrointestinal or central nervous systems, depending on radiation dose. Hence, there is an urgent need to prevent such deleterious effects caused due to ionizing radiations. Chemical protection involves the use of synthetic and natural products against planned radiation exposure. Medicinal plants are rich in antioxidants and their chemical constituents may be the potential source for radioprotective agents. Linum usitatissimum plant (family: Linaceae), source of flaxseed oil (FSO), is well known for its anticarcinogenic, antidiabetic, cardioprotector, antiulcer properties owing to the presence of various phytochemicals. The present study has been focused to find out the preventive action of flaxseed oil against radiation induced hematological and biochemical lesions in mammals. For this purpose, FSO (50μL/animal/day) was orally administered to Swiss albino mice for five days, prior to 6 Gy gamma radiation exposure. The animals were sacrificed on 1st, 3rd, 7th, 15th and 30th day after irradiation. Radiation treated control group exhibited significant reduction in erythrocytes count, hemoglobin content, hematocrit value and total WBC count in peripheral blood. In contrast, pretreatment with FSO significantly increased all these blood constituents. Further, the antioxidant parameters such as reduced glutathione, catalase, and superoxide dismutase showed a significant elevation in FSO pretreated group which were reduced in irradiated control group. Similarly, radiation induced increase lipid peroxidation in blood was significantly inhibited after FSO treatment. The present results indicate that the flaxseed oil has the ability to debilitate the radiation induced adverse alterations in the

  13. Prenatal Hyperandrogenization Induces Metabolic and Endocrine Alterations Which Depend on the Levels of Testosterone Exposure

    Science.gov (United States)

    Amalfi, Sabrina; Velez, Leandro Martín; Heber, María Florencia; Vighi, Susana; Ferreira, Silvana Rocío; Orozco, Adriana Vega; Pignataro, Omar; Motta, Alicia Beatriz

    2012-01-01

    Prenatal hyperandrogenism is able to induce polycystic ovary syndrome (PCOS) in rats. The aim of the present study was to establish if the levels of prenatal testosterone may determine the extent of metabolic and endocrine alterations during the adult life. Pregnant Sprague Dawley rats were prenatally injected with either 2 or 5 mg free testosterone (groups T2 and T5 respectively) from day 16 to day 19 day of gestation. Female offspring from T2 and T5 displayed different phenotype of PCOS during adult life. Offspring from T2 showed hyperandrogenism, ovarian cysts and ovulatory cycles whereas those from T5 displayed hyperandrogenism, ovarian cysts and anovulatory cycles. Both group showed increased circulating glucose levels after the intraperitoneal glucose tolerance test (IPGTT; an evaluation of insulin resistance). IPGTT was higher in T5 rats and directly correlated with body weight at prepubertal age. However, the decrease in the body weight at prepubertal age was compensated during adult life. Although both groups showed enhanced ovarian steroidogenesis, it appears that the molecular mechanisms involved were different. The higher dose of testosterone enhanced the expression of both the protein that regulates cholesterol availability (the steroidogenic acute regulatory protein (StAR)) and the protein expression of the transcriptional factor: peroxisome proliferator-activated receptor gamma (PPAR gamma). Prenatal hyperandrogenization induced an anti-oxidant response that prevented a possible pro-oxidant status. The higher dose of testosterone induced a pro-inflammatory state in ovarian tissue mediated by increased levels of prostaglandin E (PG) and the protein expression of cyclooxygenase 2 (COX2, the limiting enzyme of PGs synthesis). In summary, our data show that the levels of testosterone prenatally injected modulate the uterine environment and that this, in turn, would be responsible for the endocrine and metabolic abnormalities and the phenotype of PCOS

  14. Level alterations of the 2f (1)-f (2) distortion product due to hypoxia in the guinea pig depend on the stimulus frequency.

    Science.gov (United States)

    Olzowy, Bernhard; von Gleichenstein, Gregor; Canis, Martin; Plesnila, Nikolaus; Strieth, Sebastian; Deppe, Christoph; Mees, Klaus

    2010-03-01

    Increased intracranial pressure (ICP) is known to affect the levels of distortion product otoacoustic emissions (DPOAEs) in a frequency-specific manner. DPOAEs might, therefore, be used for monitoring the ICP non-invasively. Hypoxia can also cause alterations of DPOAE levels, which can be distinguished from ICP-related changes only, when their characteristics, in particular frequency specificity, are known in detail. DPOAEs at f (2) = 2, 4, 8, 12 and 16 kHz and oxygen saturation (SaO(2)) were continuously monitored in nine spontaneously breathing guinea pigs, anaesthetized by i.m. administration of midazolam, medetomidin and fentanyl, during the respiration of a gas mixture of N(2)O and O(2) containing either 30% O(2) or 13% O(2). Fourteen hypoxic intervals in eight animals were included into final data analysis. Characteristic hypoxic level alterations with a level decrease and a remarkable level destabilization during hypoxia, and a pronounced reversible level decrease after reoxygenation were observed at the frequencies of 4, 8 and 16 kHz. At 2 and 12 kHz, the only reproducible effect of hypoxia was an increased fluctuation of the DPOAE level, which was significantly less pronounced compared with the other frequencies (P < 0.05 for 12 vs. 16 and 8 kHz and for 2 vs. 16 kHz). DPOAE level alterations due to hypoxia depend on the frequency in guinea pigs. Studies in human are warranted to improve non-invasive ICP monitoring with DPOAE by the detection of hypoxia-related changes. PMID:19629511

  15. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  16. Cellular Alterations Induced by Candida albicans RC Nosodes: an in vitro Study

    Directory of Open Access Journals (Sweden)

    Carla Holandino

    2012-09-01

    Full Text Available Introduction: Candidiasis is an opportunist infection, caused by yeast of the genus Candida, which emerges as one of the main causes of systemic infections in hospitalized patients. Candida albicans is the most common causing agent of these infections. According to the Brazilian Homeopathic Pharmacopeia[1], nosodes are medicines compounded from chemically undefined biological products. Living nosodes are prepared using the etiologic agent of an illness in its infective form, were first developed by Brazilian physician Roberto Costa (RC. Roberto Costa’s research indicated that living nosodes present a higher capability to stimulate the host’s immunological system [2]. Aim: This study aims to evaluate cellular alterations induced in C. albicans yeasts and RAW 264-7 macrophages by Candida albicans RC. Methodology: To prepare Candida albicans RC, one part of C. albicans infective yeast suspension (108 cell/ml was diluted in 9 parts of sterile distilled water and submitted to 100 mechanical succussions. This process was successively repeated to the potencies of 12x and 30x1. Water 30x was prepared by the same technique, as control. The cell viability of C. albicans previously treated with nosodes in both potencies and respective controls was evaluated using the samples at the concentration of 10% (V/V, in a volume of 1ml, distributed in 1-3 days. The viability of the yeast cells was analyzed by MTT (3-(4,5-dimetiltiazol-2-il-2,5-difeniltetrazolic (5mg/ml assay [3] and by Propidium Iodide (PI incorporation methods. Additionally, using macrophages RAW 264-7 as a cell model, Nitric Oxide (NO production and cell viability were also evaluated. For this, the following protocol of cell treatment was employed: on each experimental day, RAW 264-7 cells were treated 4 times (4 stimuli with RC nosode 30x at the concentration of 10% (V/V. Results: The nosodes (12x and 30x did not present cytotoxic effects on macrophage

  17. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-01

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  18. Measurements of frequency dependent shear wave attenuation in sedimentary basins using induced earthquakes

    Science.gov (United States)

    Richter, Tom; Wegler, Ulrich

    2015-04-01

    Modeling of peak ground velocity caused by induced earthquakes requires detailed knowledge about seismic attenuation properties of the subsurface. Especially shear wave attenuation is important, because shear waves usually show the largest amplitude in high frequency seismograms. We report intrinsic and scattering attenuation coefficients of shear waves near three geothermal reservoirs in Germany for frequencies between 2 Hz and 50 Hz. The geothermal plants are located in the sedimentary basins of the upper Rhine graben (Insheim and Landau) and the Molasse basin (Unterhaching). The method optimizes the fit between Green's functions for the acoustic, isotropic radiative transfer theory and observed energy densities of induced earthquakes. The inversion allows the determination of scattering and intrinsic attenuation, site corrections, and spectral source energies for the investigated frequency bands. We performed the inversion at the three sites for events with a magnitude between 0.7 and 2. We determined a transport mean free path of 70 km for Unterhaching. For Landau and Insheim the transport mean free path depends on frequency. It ranges from 2 km (at 2 Hz) to 30 km (at 40 Hz) for Landau and from 9 km to 50 km for Insheim. The quality factor for intrinsic attenuation is constant for frequencies smaller than 10 Hz at all three sites. It is around 100 for Unterhaching and 200 for Landau and Insheim with higher values above 10 Hz.

  19. Noise-Induced Frequency Modifications of Tamarin Vocalizations: Implications for Noise Compensation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Cara F Hotchkin

    Full Text Available Previous research suggests that nonhuman primates have limited flexibility in the frequency content of their vocalizations, particularly when compared to human speech. Consistent with this notion, several nonhuman primate species have demonstrated noise-induced changes in call amplitude and duration, with no evidence of changes to spectral content. This experiment used broad- and narrow-band noise playbacks to investigate the vocal control of two call types produced by cotton-top tamarins (Saguinus Oedipus. In 'combination long calls' (CLCs, peak fundamental frequency and the distribution of energy between low and high frequency harmonics (spectral tilt changed in response to increased noise amplitude and bandwidth. In chirps, peak and maximum components of the fundamental frequency increased with increasing noise level, with no changes to spectral tilt. Other modifications included the Lombard effect and increases in chirp duration. These results provide the first evidence for noise-induced frequency changes in nonhuman primate vocalizations and suggest that future investigations of vocal plasticity in primates should include spectral parameters.

  20. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    OpenAIRE

    Alessandro Ieraci; Alessandra Mallei; Maurizio Popoli

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation ...

  1. Study on the frequency response mechanisms of thermal stress induced by thermal stratification oscillation phenomenon

    International Nuclear Information System (INIS)

    The temperature oscillation produced by thermal stratification phenomenon induces thermal fatigue damages on structures of nuclear components, which should be prevented. To evaluate thermal fatigue, the frequency response function was developed. However, this theoretical method does not take particular effects of thermal stratification oscillation into account. To clarify these effects, finite element simulations were conducted with two fluid temperature models. Based on mechanisms of the effects, the frequency response function was improved. Agreement with the results of the finite element simulations confirmed the proposed function. (author)

  2. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension.

    Science.gov (United States)

    Veith, Christine; Schermuly, Ralph T; Brandes, Ralf P; Weissmann, Norbert

    2016-03-01

    Oxygen (O2) is essential for the viability and function of most metazoan organisms and thus is closely monitored at both the organismal and the cellular levels. However, alveoli often encounter decreased O2 levels (hypoxia), leading to activation of physiological or pathophysiological responses in the pulmonary arteries. Such changes are achieved by activation of transcription factors. The hypoxia-inducible factors (HIFs) are the most prominent hypoxia-regulated transcription factors in this regard. HIFs bind to hypoxia-response elements (HREs) in the promoter region of target genes, whose expression and translation allows the organism, amongst other factors, to cope with decreased environmental O2 partial pressure (pO2). However, prolonged HIF activation can contribute to major structural alterations, especially in the lung, resulting in the development of pulmonary hypertension (PH). PH is characterized by a rise in pulmonary arterial pressure associated with pulmonary arterial remodelling, concomitant with a reduced intravascular lumen area. Patients with PH develop right heart hypertrophy and eventually die from right heart failure. Thus, understanding the molecular mechanisms of HIF regulation in PH is critical for the identification of novel therapeutic strategies. This review addresses the relationship of hypoxia and the HIF system with pulmonary arterial dysfunction in PH. We particularly focus on the cellular and molecular mechanisms underlying the HIF-driven pathophysiological processes. PMID:26228924

  3. Cognitive awareness of carbohydrate intake does not alter exercise-induced lymphocyte apoptosis

    Directory of Open Access Journals (Sweden)

    James Wilfred Navalta

    2011-01-01

    Full Text Available OBJECTIVE: The purpose of this investigation was to determine whether cognitive awareness of carbohydrate beverage consumption affects exercise-induced lymphocyte apoptosis, independent of actual carbohydrate intake. INTRODUCTION: Carbohydrate supplementation during aerobic exercise generally protects against the immunosuppressive effects of exercise. It is not currently known whether carbohydrate consumption or simply the knowledge of carbohydrate consumption also has that effect. METHODS: Endurance trained male and female (N = 10 athletes were randomly assigned to one of two groups based on either a correct or incorrect cognitive awareness of carbohydrate intake. In the incorrect group, the subjects were informed that they were receiving the carbohydrate beverage but actually received the placebo beverage. Participants completed a 60-min ride on a cycle ergometer at 80% VO2peak under carbohydrate and placebo supplemented conditions. Venous blood samples were collected at rest and immediately after exercise and were used to determine the plasma glucose concentration, lymphocyte count, and extent of lymphocyte apoptosis. Cognitive awareness, either correct or incorrect, did not have an effect on any of the measured variables. RESULTS: Carbohydrate supplementation during exercise did not have an effect on lymphocyte count or apoptotic index. Independent of drink type, exercise resulted in significant lymphocytosis and lymphocyte apoptosis (apoptotic index at rest = 6.3 ± 3% and apoptotic index following exercise = 11.6 ± 3%, P<0.01. CONCLUSION: Neither carbohydrate nor placebo supplementation altered the typical lymphocyte apoptotic response following exercise. While carbohydrate supplementation generally has an immune-boosting effect during exercise, it appears that this influence does not extend to the mechanisms that govern exercise-induced lymphocyte cell death.

  4. Increases in myocardial workload induced by rapid atrial pacing trigger alterations in global metabolism.

    Directory of Open Access Journals (Sweden)

    Aslan T Turer

    Full Text Available To determine whether increases in cardiac work lead to alterations in the plasma metabolome and whether such changes arise from the heart or peripheral organs.There is growing evidence that the heart influences systemic metabolism through endocrine effects and affecting pathways involved in energy homeostasis.Nineteen patients referred for cardiac catheterization were enrolled. Peripheral and selective coronary sinus (CS blood sampling was performed at serial timepoints following the initiation of pacing, and metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS.Pacing-stress resulted in a 225% increase in the median rate·pressure product from baseline. Increased myocardial work induced significant changes in the peripheral concentration of 43 of 125 metabolites assayed, including large changes in purine [adenosine (+99%, p = 0.006, ADP (+42%, p = 0.01, AMP (+79%, p = 0.004, GDP (+69%, p = 0.003, GMP (+58%, p = 0.01, IMP (+50%, p = 0.03, xanthine (+61%, p = 0.0006], and several bile acid metabolites. The CS changes in metabolites qualitatively mirrored those in the peripheral blood in both timing and magnitude, suggesting the heart was not the major source of the metabolite release.Isolated increases in myocardial work can induce changes in the plasma metabolome, but these changes do not appear to be directly cardiac in origin. A number of these dynamic metabolites have known signaling functions. Our study provides additional evidence to a growing body of literature on metabolic 'cross-talk' between the heart and other organs.

  5. Altered rectal sensory response induced by balloon distention in patients with functional abdominal pain syndrome

    Directory of Open Access Journals (Sweden)

    Kudaira Miwako

    2009-11-01

    Full Text Available Abstract Background Functional abdominal pain syndrome (FAPS has chronic unexplained abdominal pain and is similar to the psychiatric diagnosis of somatoform pain disorder. A patient with irritable bowel syndrome (IBS also has chronic unexplained abdominal pain, and rectal hypersensitivity is observed in a majority of the patients. However, no reports have evaluated the visceral sensory function of FAPS precisely. We aimed to test the hypothesis that FAPS would show altered visceral sensation compared to healthy controls or IBS. The present study determined the rectal perceptual threshold, intensity of sensation using visual analogue scale (VAS, and rectal compliance in response to rectal balloon distention by a barostat in FAPS, IBS, and healthy controls. Methods First, the ramp distention of 40 ml/min was induced and the thresholds of discomfort, pain, and maximum tolerance (mmHg were measured. Next, three phasic distentions (60-sec duration separated by 30-sec intervals of 10, 15 and 20 mmHg were randomly loaded. The subjects were asked to mark the VAS in reference to subjective intensity of sensation immediately after each distention. A pressure-volume relationship was determined by plotting corresponding pressures and volumes during ramp distention, and the compliance was calculated over the linear part of the curve by calculating from the slope of the curve using simple regression. Results Rectal thresholds were significantly reduced in IBS but not in FAPS. The VAS ratings of intensity induced by phasic distention (around the discomfort threshold of the controls were increased in IBS but significantly decreased in FAPS. Rectal compliance was reduced in IBS but not in FAPS. Conclusion An inconsistency of visceral sensitivity between lower and higher pressure distention might be a key feature for understanding the pathogenesis of FAPS.

  6. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Shih-Lung Woo

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is closely associated with obesity and insulin resistance. To better understand the pathophysiology of obesity-associated NAFLD, the present study examined the involvement of liver and adipose tissues in metformin actions on reducing hepatic steatosis and inflammation during obesity. C57BL/6J mice were fed a high-fat diet (HFD for 12 weeks to induce obesity-associated NAFLD and treated with metformin (150 mg/kg/d orally for the last four weeks of HFD feeding. Compared with HFD-fed control mice, metformin-treated mice showed improvement in both glucose tolerance and insulin sensitivity. Also, metformin treatment caused a significant decrease in liver weight, but not adiposity. As indicated by histological changes, metformin treatment decreased hepatic steatosis, but not the size of adipocytes. In addition, metformin treatment caused an increase in the phosphorylation of liver AMP-activated protein kinase (AMPK, which was accompanied by an increase in the phosphorylation of liver acetyl-CoA carboxylase and decreases in the phosphorylation of liver c-Jun N-terminal kinase 1 (JNK1 and in the mRNA levels of lipogenic enzymes and proinflammatory cytokines. However, metformin treatment did not significantly alter adipose tissue AMPK phosphorylation and inflammatory responses. In cultured hepatocytes, metformin treatment increased AMPK phosphorylation and decreased fat deposition and inflammatory responses. Additionally, in bone marrow-derived macrophages, metformin treatment partially blunted the effects of lipopolysaccharide on inducing the phosphorylation of JNK1 and nuclear factor kappa B (NF-κB p65 and on increasing the mRNA levels of proinflammatory cytokines. Taken together, these results suggest that metformin protects against obesity-associated NAFLD largely through direct effects on decreasing hepatocyte fat deposition and on inhibiting inflammatory responses in both hepatocytes and macrophages.

  7. Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2, thyrotropin-releasing hormone (TRH, brain derived neurotrophic factor (BDNF, c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD, glutathione peroxidase (GPx-1, and heme oxygenase-1 (Hmox-1. These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to

  8. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells.

    Directory of Open Access Journals (Sweden)

    Verόnica Contreras-Shannon

    Full Text Available BACKGROUND: Metabolic syndrome (MetS is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined. METHODOLOGY/PRINCIPAL FINDINGS: Cultured mouse myoblasts (C2C12, adipocytes (3T3-L1, hepatocytes (FL-83B, and monocytes (RAW 264.7 were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line. CONCLUSIONS/SIGNIFICANCE: Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated

  9. Cocaine-Induced Synaptic Alterations in Thalamus to Nucleus Accumbens Projection.

    Science.gov (United States)

    Neumann, Peter A; Wang, Yicun; Yan, Yijin; Wang, Yao; Ishikawa, Masago; Cui, Ranji; Huang, Yanhua H; Sesack, Susan R; Schlüter, Oliver M; Dong, Yan

    2016-08-01

    Exposure to cocaine induces addiction-associated behaviors partially through remodeling neurocircuits in the nucleus accumbens (NAc). The paraventricular nucleus of thalamus (PVT), which projects to the NAc monosynaptically, is activated by cocaine exposure and has been implicated in several cocaine-induced emotional and motivational states. Here we show that disrupting synaptic transmission of select PVT neurons with tetanus toxin activated via retrograde trans-synaptic transport of cre from NAc efferents decreased cocaine self-administration in rats. This projection underwent complex adaptations after self-administration of cocaine (0.75 mg/kg/infusion; 2 h/d × 5 d, 1d overnight training). Specifically, 1d after cocaine self-administration, we observed increased levels of AMPA receptor (AMPAR)-silent glutamatergic synapses in this projection, accompanied by a decreased ratio of AMPAR-to-NMDA receptor (NMDAR)-mediated EPSCs. Furthermore, the decay kinetics of NMDAR EPSCs was significantly prolonged, suggesting insertion of new GluN2B-containing NMDARs to PVT-to-NAc synapses. After 45-d withdrawal, silent synapses within this projection returned to the basal levels, accompanied by a return of the AMPAR/NMDAR ratio and NMDAR decay kinetics to the basal levels. In amygdala and infralimbic prefrontal cortical projections to the NAc, a portion of cocaine-generated silent synapses becomes unsilenced by recruiting calcium-permeable AMPARs (CP-AMPARs) after drug withdrawal. However, the sensitivity of PVT-to-NAc synapses to CP-AMPAR-selective antagonists was not changed after withdrawal, suggesting that CP-AMPAR trafficking is not involved in the evolution of cocaine-generated silent synapses within this projection. Meanwhile, the release probability of PVT-to-NAc synapses was increased after short- and long-term cocaine withdrawal. These results reveal complex and profound alterations at PVT-to-NAc synapses after cocaine exposure and withdrawal. PMID:27074816

  10. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  11. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for peripheral beta-adrenergic receptor involvement.

    Science.gov (United States)

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-09-01

    The present studies examined the involvement of peripheral beta-adrenergic receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. Previous work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli which predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. During the training phase of these experiments, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, rats were reexposed to the conditioned stimulus prior to sacrifice. Saline or nadolol (0.002, 0.02, 0.2, or 2.0 mg/kg) was administered either prior to the training sessions or prior to the test session. Administration of nadolol prior to training did not affect the development of conditioned alterations of immune status. Conversely, nadolol administration prior to testing completely attenuated the expression of a subset of the conditioned morphine-induced changes in immune status. Taken together, these studies suggest that whereas peripheral beta-adrenergic receptor activity is not required for the establishment of conditioned morphine-induced alterations of immune status, it is involved in the expression of a subset of these conditioned immunomodulatory effects.

  12. Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress.

    Science.gov (United States)

    Maur, Damian G; Pascuan, Cecilia G; Genaro, Ana M; Zorrilla-Zubilete, Maria A

    2015-01-01

    Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic-pituitary-adrenal axis activity via GR.Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO-citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed. PMID:25287536

  13. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety.

    Science.gov (United States)

    Rodríguez-Sierra, O E; Goswami, S; Turesson, H K; Pare, D

    2016-01-01

    A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed. PMID:27434491

  14. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations.

    Science.gov (United States)

    Giorgi, Filippo Sean; Biagioni, Francesca; Lenzi, Paola; Frati, Alessandro; Fornai, Francesco

    2015-06-01

    Recent evidence suggests that autophagy alterations are present in a variety of neurological disorders. These range from neurodegenerative diseases to acute neurological insults. Thus, despite a role of autophagy was investigated in a variety of neurological diseases, only recently these studies included epilepsy. This was fostered by the evidence that rapamycin, a powerful autophagy inducer, strongly modulates a variety of seizure models and epilepsies. These findings were originally interpreted as the results of the inhibition exerted by rapamycin on the molecular complex named "mammalian Target of Rapamycin" (mTOR). Recently, an increasing number of papers demonstrated that mTOR inhibition produces a strong activation of the autophagy machinery. In this way, it is now increasingly recognized that what was once defined as mTORpathy in epileptogenesis may be partially explained by abnormalities in the autophagy machinery. The present review features a brief introductory statement about the autophagy machinery and discusses the involvement of autophagy in seizures and epilepsies. An emphasis is posed on evidence addressing both pros and cons making it sometime puzzling and sometime evident, the role of autophagy in the epileptic brain. PMID:25217966

  15. High physical activity in young children suggests positive effects by altering autoantigen-induced immune activity.

    Science.gov (United States)

    Carlsson, E; Ludvigsson, J; Huus, K; Faresjö, M

    2016-04-01

    Physical activity in children is associated with several positive health outcomes such as decreased cardiovascular risk factors, improved lung function, enhanced motor skill development, healthier body composition, and also improved defense against inflammatory diseases. We examined how high physical activity vs a sedentary lifestyle in young children influences the immune response with focus on autoimmunity. Peripheral blood mononuclear cells, collected from 55 5-year-old children with either high physical activity (n = 14), average physical activity (n = 27), or low physical activity (n = 14), from the All Babies In Southeast Sweden (ABIS) cohort, were stimulated with antigens (tetanus toxoid and beta-lactoglobulin) and autoantigens (GAD65 , insulin, HSP60, and IA-2). Immune markers (cytokines and chemokines), C-peptide and proinsulin were analyzed. Children with high physical activity showed decreased immune activity toward the autoantigens GAD65 (IL-5, P < 0.05), HSP60 and IA-2 (IL-10, P < 0.05) and also low spontaneous pro-inflammatory immune activity (IL-6, IL-13, IFN-γ, TNF-α, and CCL2 (P < 0.05)) compared with children with an average or low physical activity. High physical activity in young children seems to have positive effects on the immune system by altering autoantigen-induced immune activity. PMID:25892449

  16. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine.

    Science.gov (United States)

    Faingold, Carl L; Randall, Marc; Kommajosyula, Srinivasa P

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism. Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. PMID:27259068

  17. Environmental enrichment reduces behavioural alterations induced by chronic stress in Japanese quail.

    Science.gov (United States)

    Laurence, A; Houdelier, C; Calandreau, L; Arnould, C; Favreau-Peigné, A; Leterrier, C; Boissy, A; Lumineau, S

    2015-02-01

    Animals perceiving repeated aversive events can become chronically stressed. Chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis can have deleterious consequences on physiological parameters (e.g. BW, blood chemistry) and behaviour (e.g. emotional reactivity, stereotypies, cognition). Environmental enrichment (EE) can be a mean to reduce animal stress and to improve welfare. The aim of this study was first, to assess the effects of EE in battery cages on the behaviour of young Japanese quail and second, to evaluate the impact of EE on quail exposed to chronic stress. The experiment involved quail housed in EE cages and submitted or not to a chronic stress procedure (CSP) (EE cages, control quail: n=16, CSP quail: n=14) and quail housed in standard cages and exposed or not to the CSP (standard non-EE cages, control quail: n=12, CSP quail: n=16). Our procedure consisted of repeated aversive events (e.g. ventilators, delaying access to food, physical restraint, noise) presented two to five times per 24 h, randomly, for 15 days. During CSP, EE improved quail's welfare as their stereotypic pacing decreased and they rested more. CSP decreased exploration in all quail. After the end of CSP, quail presented increased emotional reactivity in emergence test. However, the effect of EE varied with test. Finally, chronic stress effects on comfort behaviours in the emergence test were alleviated by EE. These results indicate that EE can alleviate some aspects of behavioural alterations induced by CSP. PMID:25354525

  18. 3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    International Nuclear Information System (INIS)

    The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier

  19. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state. PMID:26824042

  20. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  1. Collision-induced radio-frequency transitions in CH 3I

    Science.gov (United States)

    Tamassia, F.; Danieli, R.; Scappini, F.

    1999-02-01

    The highly sensitive method of radio-frequency-infrared double resonance inside a CO 2 laser is applied to study collision-induced transitions in CH 3I in a four-level double resonance scheme. Pure nuclear quadrupole resonances are observed as the result of collision population transfer between different rotational levels. The intensity ratios of the collision-induced dips to the corresponding three-level double resonance signals are measured for a number of transitions in the ground and excited vibrational states. Collision selection rules in the pure gas and in mixtures with polar and non-polar gases are discussed.

  2. Effect of PMD-induced Pulse Broadening on Sensitivity and Frequency Spectrum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The PMD-induced pulse broadening may cause the degradation of receiver sensitivity and has negative effects on the power spectrum of received signals. The expressions of PMD-induced pulse broadening effects on receiver sensitivity are derived based on the concept of mean square pulse width. The effects of PMD on the spectrum of received power are analyzed in detail. Finally, the scheme is discussed with which the power of a certain frequency component is extracted as a feedback control signal in a PMD compensation system.

  3. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    Institute of Scientific and Technical Information of China (English)

    丁国文; 刘少斌; 章海锋; 孔祥鲲; 李海明; 李炳祥; 刘思源; 李海

    2015-01-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu-merically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect cou-pling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.

  4. Influence of Monosodium Glutamate on Radiation-Induced Biochemical Alterations in Male Albino Rats

    International Nuclear Information System (INIS)

    no effect on insulin resistance and their co-administration produces an additive effect compared to each single treatment. Regarding lipid profile, MSG as well as RAD-exposure induced hyperlipidaemia more noticeable in case of irradiation. Their co-administration had potentiated hyperlipidaemia compared to each single treatment. It is concluded that exposure to MSG together with RAD increased oxidative stress and neurotransmitter alteration in the brain and the risk of metabolic syndrome. It is thus recommended to limit the intake of MSG when human are at risk of overexposure to ionizing radiation.

  5. Modification of radiation-induced sex-linked recessive lethal mutation frequency by tocopherol

    International Nuclear Information System (INIS)

    The present study evaluates the effect of supplementing culture medium with α-tocopherol acetate on the yield of sex-linked recessive lethal mutants induced by X-irradiation in mature sperm of Drosophila. Although tocopherol treatment of males had no impact on the yield of mutations, a drastic reduction in mutation frequency was observed when irradiated males were mated to females raised and subsequently maintained on tocopherol-enriched diet. (orig./MG)

  6. Noise-Induced Frequency Modifications of Tamarin Vocalizations: Implications for Noise Compensation in Nonhuman Primates

    OpenAIRE

    Cara F Hotchkin; Susan E Parks; Weiss, Daniel J.

    2015-01-01

    Previous research suggests that nonhuman primates have limited flexibility in the frequency content of their vocalizations, particularly when compared to human speech. Consistent with this notion, several nonhuman primate species have demonstrated noise-induced changes in call amplitude and duration, with no evidence of changes to spectral content. This experiment used broad- and narrow-band noise playbacks to investigate the vocal control of two call types produced by cotton-top tamarins (Sa...

  7. High-frequency interaction-induced rototranslational wings of anisotropic nitrogen spectra

    International Nuclear Information System (INIS)

    The anisotropic rototranslational scattering spectra of nitrogen gas at high frequency up to 700 cm-1 for several temperatures and from low densities are analyzed in terms of new site-site (M3SV) intermolecular potential and interaction-induced pair polarizability models, using quantum spectral shapes computations. Our theoretical calculations take into account multipole contributions from the mean value and anisotropy of the dipole-dipole polarizability tensor α, two independent components of the dipole-octopole polarizability tensor E and dipole-dipole-quadrupole hyperpolarizability tensor B. The high-frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole-octopole polarizability |E 4| are obtained and checked with recent ab initio theoretical value. Good comparison is found in the frequency range 0-400 cm-1 between the theoretical and experimental spectra. When an exponential contribution [exp(-ν/ν 0)] with ν 0 = 425 cm-1 is considered to model very short-range light scattering mechanisms at room temperature, good agreement is found over the whole frequency range

  8. Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2014-01-01

    Full Text Available The energy generated by an extremely low frequency electromagnetic field (ELF-EMF is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010 for limiting exposure to time-varying MF (1 Hz to 100 kHz, overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  9. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  10. Are aortic endograft prostheses fully hemo-compatible? A dielectric spectroscopy investigation of the electrical alterations induced on erythrocyte cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Basoli, Antonio [Clinica Chirurgica II, Universita di Roma ' La Sapienza' , Rome (Italy); Bordi, Federico [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Cametti, Cesare [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Faraglia, Vittorio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Gili, Tommaso [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Rizzo, Luigi [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Taurino, Maurizio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy)

    2007-03-01

    In this paper we present a new approach directed to ascertain the full hemo-compatibility of aortic endograft prostheses based on the measurement of the passive electrical parameters of the erythrocyte cell membrane. The red blood cell membrane, from an electric point of view, is characterized by an electrical permittivity, {epsilon}{sub s}, which takes into account the structural charged organization of the lipid double layer, and by the electrical conductivity, {sigma}{sub s}, which accounts for the ionic transport processes across the membrane. These parameters can be easily measured by means of a radiowave dielectric spectroscopy technique, analyzing the dependence of the electrical impedance of an erythrocyte suspension on the frequency of the applied electric field. In this preliminary report, we investigate the alterations induced, at a membrane level, by two different devices commonly employed for endovascular abdominal aortic aneurysm exclusion, i.e., Excluder (registered) and Zenith (registered) devices, implanted in ten patients. We observe, in all the cases investigated, a statistically significant increase of both the permittivity {epsilon}{sub s} and electrical conductivity {sigma}{sub s} of the erythrocyte membrane upon the prosthesis implant, this increase being higher than about 20% of the un-treated values. Moreover, these alterations remain roughly unaffected 30 days after surgery. These findings suggest that a complete hemo-compatibility of these prostheses is lacking, even if the observed alterations may not have a clinical relevance.

  11. Stress induced alterations in pre-pubertal ovarian follicular development in rat

    Directory of Open Access Journals (Sweden)

    Yajurvedi H.N.

    2011-12-01

    Full Text Available The objective of the study was to find out whether stress experienced during neo-natal period alters the timing of formation of pre-antral and antral follicles and if so, whether pre-treatment with CRH receptor antagonist prevents these effects in rats. New born rat pups (n= 15 were exposed to maternal separation (6 hours/ day from post-natal day (PND 1 to 7 and were killed on PND 8, 11 and 15. The time of exposure was randomly changed every day during light phase (7Am to 7Pm of the day to avoid habituation. There was a significant increase in serum corticosterone levels on PND 8 and 11 in stress group rats compared to controls indicating stress response in these pups. The ovary of both control and stressed rats contained oocytes and primary follicles on PND 8 and 11 and in showed progress of follicular development upto to pre-antral and early antral follicle formation on PND 11 and 15. However, mean number of healthy oocytes and all categories of follicles at all ages studied were significantly lower in stressed rats compared to controls. Concomitant with these changes, number of atreatic follicles showed an increase over control values in stressed rats. The increase in atresia of follicles was due to apoptosis as shown by increase in the percentage of granulosa cells showing TUNEL positive staining and caspase 3 activity. On the other hand, pre-treatment with CRH- receptor antagonist (CRH 9-41 2ng/ 0.1 ml/ rat prior to undergoing stress regime on PND 1 to 7, prevented alterations in pre- pubertal follicular development thereby indicating that the ovarian changes were due to effects of stress induced activation of HPA axis. The results indicate that, stress during neonatal phase, though does not affect timing of formation of pre-antral and antral follicles, it does enhance atresia of follicles of all categories, including follicular reserve, which may affect the reproductive potential of adults. The results, for the first time reveal that CRF

  12. Different Stimulation Frequencies Alter Synchronous Fluctuations in Motor Evoked Potential Amplitude of Intrinsic Hand Muscles-a TMS Study.

    Science.gov (United States)

    Sale, Martin V; Rogasch, Nigel C; Nordstrom, Michael A

    2016-01-01

    The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs.

  13. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish

    OpenAIRE

    Franssen, Nathan R

    2011-01-01

    Anthropogenic habitat alteration creates novel environments that can alter selection pressures. Construction of reservoirs worldwide has disturbed riverine ecosystems by altering biotic and abiotic environments of impounded streams. Changes to fish communities in impoundments are well documented, but effects of those changes on native species persisting in reservoirs, which are presumably subjected to novel selective pressures, are largely unexplored. I assessed body shape variation of a nati...

  14. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  15. REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy.

    Science.gov (United States)

    Maturana, Maira J; Pudell, Cláudia; Targa, Adriano D S; Rodrigues, Laís S; Noseda, Ana Carolina D; Fortes, Mariana H; Dos Santos, Patrícia; Da Cunha, Cláudio; Zanata, Sílvio M; Ferraz, Anete C; Lima, Marcelo M S

    2015-02-01

    There is compelling evidence that sleep deprivation (SD) is an effective strategy in promoting antidepressant effects in humans, whereas few studies were performed in relevant animal models of depression. Acute administration of antidepressants in humans and rats generates a quite similar effect, i.e., suppression of rapid eye movement (REM) sleep. Then, we decided to investigate the neurochemical alterations generated by a protocol of rapid eye movement sleep deprivation (REMSD) in the notably known animal model of depression induced by the bilateral olfactory bulbectomy (OBX). REMSD triggered antidepressant mechanisms such as the increment of brain-derived neurotrophic factor (BDNF) levels, within the substantia nigra pars compacta (SNpc), which were strongly correlated to the swimming time (r = 0.83; P < 0.0001) and hippocampal serotonin (5-HT) content (r = 0.66; P = 0.004). Moreover, there was a strong correlation between swimming time and hippocampal 5-HT levels (r = 0.70; P = 0.003), strengthen the notion of an antidepressant effect associated to REMSD in the OBX rats. In addition, REMSD robustly attenuated the hippocampal 5-HT deficiency produced by the OBX procedure. Regarding the rebound (REB) period, we observed the occurrence of a sustained antidepressant effect, indicated mainly by the swimming and climbing times which could be explained by the maintenance of the increased nigral BDNF expression. Hence, hippocampal 5-HT levels remained enhanced in the OBX group after this period. We suggested that the neurochemical complexity inflicted by the OBX model, counteracted by REMSD, is directly correlated to the nigral BDNF expression and hippocampal 5-HT levels. The present findings provide new information regarding the antidepressant mechanisms triggered by REMSD. PMID:24826915

  16. Taxol inhibits stretch-induced electrophysiological alterations in isolated rat hearts with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Mechanosensitive channels have been determined to work as transducers of mechanoelectric feedback in the heart, which is associated with the generation of arrhythmias. Recent studies have investigated the role of the cytoskeleton in ion channels control. This study explored the ability of taxol to inhibit stretch-induced electrophysiological alterations in the ischemic myocardium. Thirty-two Wistar rats were randomly divided into four groups: normal control group (n=9), taxol group (n=7), myocardial infarction (MI) group (n=9), and MI+taxol group (n=7). After Langendorff perfusion, the isolated hearts were stretched for 5 s by balloon inflation to 0.2 or 0.3 mL. The effects of stretching on 90% monophasic action potential duration (MAPD90), premature ventricular beats (PVB), and ventricular tachycardia (VT) were observed for 30 s. Stretching increased MAPD90 in both the normal control and MI groups, but MAPD90 increased more in the MI group for the same degree of stretch. Taxol (5 μmol L?1) had no effect on MAPD90 under baseline, unstretched conditions, but MAPD90 in the taxol group was slightly increased after stretching compared with the normal control group (P>0.05). However, taxol reduced MAPD90 in infarcted myocardium (P<0.05 at V=0.3 mL). The incidences of PVB and VT in the MI group were higher than in the normal control group (both P<0.01). Taxol had no effect on the occurrence of arrhythmias in normal myocardium, but it inhibited PVB and VT in infarcted hearts (both P<0.01). Thus changes in MAPD and the occurrence of arrhythmias caused by mechanical stretching of the myocardium could be inhibited by taxol in isolated rat hearts during AMI, indicating the involvement of tubulin in mechanoelectric feedback in AMI.

  17. Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël R; Jardi, Ferran; Antonio, Leen; Lemaire, Katleen; Goyvaerts, Lotte; Deldicque, Louise; Carmeliet, Geert; Decallonne, Brigitte; Vanderschueren, Dirk; Claessens, Frank

    2016-02-01

    Androgen deficiency is associated with obesity, metabolic syndrome, and type 2 diabetes mellitus in men, but the mechanisms behind these associations remain unclear. In this study, we investigated the combined effects of androgen deficiency and high-fat diet (HFD) on body composition and glucose homeostasis in C57BL/6J male mice. Two models of androgen deficiency were used: orchidectomy (ORX) and androgen receptor knockout mice. Both models displayed higher adiposity and serum leptin levels upon HFD, whereas no differences were seen on a regular diet. Fat accumulation in HFD ORX animals was accompanied by increased sedentary behavior and occurred in spite of reduced food intake. HFD ORX mice showed white adipocyte hypertrophy, correlated with decreased mitochondrial content but not function as well as increased lipogenesis and decreased lipolysis suggested by the up-regulation of fatty acid synthase and the down-regulation of hormone-sensitive lipase. Both ORX and androgen receptor knockout exacerbated HFD-induced glucose intolerance by impairing insulin action in liver and skeletal muscle, as evidenced by the increased triglyceride and decreased glycogen content in these tissues. In addition, serum IL-1β levels were elevated, and pancreatic insulin secretion was impaired after ORX. Testosterone but not dihydrotestosterone supplementation restored the castration effects on body composition and glucose homeostasis. We conclude that sex steroid deficiency in combination with HFD exacerbates adiposity, insulin resistance, and β-cell failure in 2 preclinical male mouse models. Our findings stress the importance of a healthy diet in a clinical context of androgen deficiency and may have implications for the prevention of metabolic alterations in hypogonadal men.

  18. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Damien Maggiorani

    Full Text Available Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2 were subjected to FSS (0.5 Pa for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1, Par polarity complex (Pard6, adherens junctions (E-Cadherin, β-Catenin and the primary cilium (α-acetylated Tubulin were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  19. Effect of α-Ketoglutarate on Cyanide-induced Biochemical Alterations in Rat Brain and Liver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the biochemical changes in rat brain and liver following acute exposure to a lethal dose of cyanide, and its response to treatment of α-ketoglutarate (α-KG) in the absence or presence of sodium thiosulfate (STS). Methods Female rats were administered 2.0 LD50 potassium cyanide (KCN; oral) in the absence or presence of pre-treatment (-10 min), simultaneous treatment (0 min) or post-treatment (+2-3 min) of α-KG (2.0 g/kg, oral) and/or STS (1.0 g/kg,intraperitoneal, -15 min, 0 min or + 2-3 min). At the time of onset of signs and symptoms of KCN toxicity (2-4 min) and at the time of death (5-15 min), various parameters particularly akin to oxidative stress viz. Cytochrome oxidase (CYTOX),superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH) and oxidized glutathione (GSSG) in brain, and CYTOX, sorbitol dehydrogenase (SDH), alkaline phosphatase (ALP), GSH and GSSG in liver homogenate were measured. Results At both time intervals brain CYTOX, SOD, GPx, and GSH significantly reduced (percent inhibition compared to control) to 24%, 56%, 77%, and 65%, and 44%, 46%, 78%, and 57%, respectively. At the corresponding time points liver CYTOX and GSH reduced to 74% and 63%, and 44% and 68%, respectively. The levels of GSSG in the brain and liver, and hepatic ALP and SDH were unchanged. Pre-treatment and simultaneous treatment of α-KG alone or with STS conferred significant protection on above variables. Post-treatment was effective in restoring the changes in liver but failed to normalize the changes in the brain. Conclusions Oral treatment with α-KG alone or in combination with STS has protective effects on cyanide-induced biochemical alterations in rat brain and liver.

  20. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  1. Corneal alterations induced by topical application of commercial latanoprost, travoprost and bimatoprost in rabbit.

    Directory of Open Access Journals (Sweden)

    Wensheng Chen

    Full Text Available Prostaglandin (PG analogs, including latanoprost, travoprost, and bimatoprost, are currently the most commonly used topical ocular hypotensive medications. The purpose of this study was to investigate the corneal alterations in rabbits following exposure to commercial solution of latanoprost, travoprost and bimatoprost. A total of 64 New Zealand albino rabbits were used and four groups of treatments were constituted. Commercial latanoprost, travoprost, bimatoprost or 0.02% benzalkonium chloride (BAK was applied once daily to one eye each of rabbits for 30 days. The contralateral untreated eyes used as controls. Schirmer test, tear break-up time (BUT, rose Bengal and fluorescein staining were performed on days 5, 10, 20, and 30. Central corneal changes were analyzed by in vivo confocal microscopy, and the corneal barrier function was evaluated by measurement of corneal transepithelial electrical resistance on day 5. Whole mount corneas were analyzed by using fluorescence confocal microscopy for the presence of tight-junction (ZO-1, occludin and adherens-junction (E-cadherin, β-catenin proteins, actin cytoskeleton, proliferative marker Ki67 and cell apoptosis in the epithelium. Topical application of commercial PG analogs resulted in significant corneal epithelial and stromal defects while no significant changes in aqueous tear production, BUT, rose bengal and fluorescein staining scores on day 5. Commercial PG analogs induced dislocation of ZO-1 and occludin from their normal locus, disorganization of cortical actin cytoskeleton at the superficial layer, and disruption of epithelial barrier function. The eyes treated with 0.02% BAK and latanoprost exhibited significantly reduced Schirmer scores, BUT, and increased fluorescein staining scores on days 10 and 30, respectively. Topical application of commercial PG analogs can quickly impair the corneal epithelium and stroma without tear deficiency. Commercial PG analogs break down the barrier

  2. Corneal alterations induced by topical application of commercial latanoprost, travoprost and bimatoprost in rabbit.

    Science.gov (United States)

    Chen, Wensheng; Dong, Nuo; Huang, Caihong; Zhang, Zhenhao; Hu, Jiaoyue; Xie, Hui; Pan, Juxin; Liu, Zuguo

    2014-01-01

    Prostaglandin (PG) analogs, including latanoprost, travoprost, and bimatoprost, are currently the most commonly used topical ocular hypotensive medications. The purpose of this study was to investigate the corneal alterations in rabbits following exposure to commercial solution of latanoprost, travoprost and bimatoprost. A total of 64 New Zealand albino rabbits were used and four groups of treatments were constituted. Commercial latanoprost, travoprost, bimatoprost or 0.02% benzalkonium chloride (BAK) was applied once daily to one eye each of rabbits for 30 days. The contralateral untreated eyes used as controls. Schirmer test, tear break-up time (BUT), rose Bengal and fluorescein staining were performed on days 5, 10, 20, and 30. Central corneal changes were analyzed by in vivo confocal microscopy, and the corneal barrier function was evaluated by measurement of corneal transepithelial electrical resistance on day 5. Whole mount corneas were analyzed by using fluorescence confocal microscopy for the presence of tight-junction (ZO-1, occludin) and adherens-junction (E-cadherin, β-catenin) proteins, actin cytoskeleton, proliferative marker Ki67 and cell apoptosis in the epithelium. Topical application of commercial PG analogs resulted in significant corneal epithelial and stromal defects while no significant changes in aqueous tear production, BUT, rose bengal and fluorescein staining scores on day 5. Commercial PG analogs induced dislocation of ZO-1 and occludin from their normal locus, disorganization of cortical actin cytoskeleton at the superficial layer, and disruption of epithelial barrier function. The eyes treated with 0.02% BAK and latanoprost exhibited significantly reduced Schirmer scores, BUT, and increased fluorescein staining scores on days 10 and 30, respectively. Topical application of commercial PG analogs can quickly impair the corneal epithelium and stroma without tear deficiency. Commercial PG analogs break down the barrier integrity of corneal

  3. REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy.

    Science.gov (United States)

    Maturana, Maira J; Pudell, Cláudia; Targa, Adriano D S; Rodrigues, Laís S; Noseda, Ana Carolina D; Fortes, Mariana H; Dos Santos, Patrícia; Da Cunha, Cláudio; Zanata, Sílvio M; Ferraz, Anete C; Lima, Marcelo M S

    2015-02-01

    There is compelling evidence that sleep deprivation (SD) is an effective strategy in promoting antidepressant effects in humans, whereas few studies were performed in relevant animal models of depression. Acute administration of antidepressants in humans and rats generates a quite similar effect, i.e., suppression of rapid eye movement (REM) sleep. Then, we decided to investigate the neurochemical alterations generated by a protocol of rapid eye movement sleep deprivation (REMSD) in the notably known animal model of depression induced by the bilateral olfactory bulbectomy (OBX). REMSD triggered antidepressant mechanisms such as the increment of brain-derived neurotrophic factor (BDNF) levels, within the substantia nigra pars compacta (SNpc), which were strongly correlated to the swimming time (r = 0.83; P < 0.0001) and hippocampal serotonin (5-HT) content (r = 0.66; P = 0.004). Moreover, there was a strong correlation between swimming time and hippocampal 5-HT levels (r = 0.70; P = 0.003), strengthen the notion of an antidepressant effect associated to REMSD in the OBX rats. In addition, REMSD robustly attenuated the hippocampal 5-HT deficiency produced by the OBX procedure. Regarding the rebound (REB) period, we observed the occurrence of a sustained antidepressant effect, indicated mainly by the swimming and climbing times which could be explained by the maintenance of the increased nigral BDNF expression. Hence, hippocampal 5-HT levels remained enhanced in the OBX group after this period. We suggested that the neurochemical complexity inflicted by the OBX model, counteracted by REMSD, is directly correlated to the nigral BDNF expression and hippocampal 5-HT levels. The present findings provide new information regarding the antidepressant mechanisms triggered by REMSD.

  4. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  5. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Perfluorooctane sulfonate (PFOS is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response, and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.

  6. Influence of age, sex and life style factors on the spontaneous and radiation induced micronuclei frequencies

    International Nuclear Information System (INIS)

    Several endpoints have been used for monitoring human populations for environmental or occupational exposure to genotoxic agents, particularly ionizing radiation. The cytokinesis-block micronucleus (MN) assay in peripheral lymphocytes is a reliable method for assessing radiation induced chromosomal damage (DNA breaks and mitotic spindle disturbances) and thus, a suitable dosimeter for estimating in vivo whole body exposures. To further define the use of this assay in biological dosimetry, a study to determine the influence of age, sex and life style factors (smoking habit) on the spontaneous and radiation induced MN frequencies was performed. The estimation of MN frequencies was analyzed in lymphocytes cultures from 50 healthy donors aged between 4 and 62 years. On the basis of their smoking habit they were divided into 2 groups. A fraction of the sample was irradiated in vitro with Y rays in the range of 0.35 Gy to 4 Gy. A statistically significant influence on the spontaneous MN frequency was observed (R2 = 0.59) when the variables age and smoking habit were analyzed and also a statistically significant influence on the radiation induced MN frequency was obtained (R2 = 0.96) when dose, age and smoking habit were studied. Sex did not influence MN variability significantly but there was a greater dispersion in the results for females when compared to males, possibly due to the loss of X chromosomes. The comparison of the data from smoking to non smoking donors supports the convenience to take into account the smoking habit for estimating in vivo whole body exposures to γ-rays for doses below 2 Gy. (author)

  7. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Ksenia J., E-mail: ksenia.groh@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich (Switzerland); Suter, Marc J.-F. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich (Switzerland)

    2015-02-15

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  8. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.

    Science.gov (United States)

    Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent

    2016-09-01

    Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas.

  9. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.

    Science.gov (United States)

    Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent

    2016-09-01

    Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas. PMID:27130904

  10. Cancelation of thermally induced frequency shifts in bimaterial cantilevers by nonlinear optomechanical interactions

    Science.gov (United States)

    Vy, Nguyen Duy; Tri Dat, Le; Iida, Takuya

    2016-08-01

    Bimaterial cantilevers have recently been used in, for example, the calorimetric analysis with picowatt resolution in microscopic space based on state-of-the-art atomic force microscopes. However, thermally induced effects usually change physical properties of the cantilevers, such as the resonance frequency, which reduce the accuracy of the measurements. Here, we propose an approach to circumvent this problem that uses an optical microcavity formed between a metallic layer coated on the back of the cantilever and one coated at the end of an optical fiber irradiating the cantilever. In addition to increasing the sensitivity, the optical rigidity of this system diminishes the thermally induced frequency shift. For a coating thickness of several tens of nanometers, the input power is 5-10 μW. These values can be evaluated from parameters derived by directly irradiating the cantilever in the absence of the microcavity. The system has the potential of using the cantilever both as a thermometer without frequency shifting and as a sensor with nanometer-controlled accuracy.

  11. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass

    Directory of Open Access Journals (Sweden)

    Aki Uchida

    2014-10-01

    Full Text Available The current study examined potential mechanisms for altered circulating ghrelin levels observed in diet-induced obesity (DIO and following weight loss resulting from Roux-en-Y gastric bypass (RYGB. We hypothesized that circulating ghrelin levels were altered in obesity and after weight loss through changes in ghrelin cell responsiveness to physiological cues. We confirmed lower ghrelin levels in DIO mice and demonstrated elevated ghrelin levels in mice 6 weeks post-RYGB. In both DIO and RYGB settings, these changes in ghrelin levels were associated with altered ghrelin cell responsiveness to two key physiological modulators of ghrelin secretion – glucose and norepinephrine. In DIO mice, increases in ghrelin cell density within both the stomach and duodenum and in somatostatin-immunoreactive D cell density in the duodenum were observed. Our findings provide new insights into the regulation of ghrelin secretion and its relation to circulating ghrelin within the contexts of obesity and weight loss.

  12. Frequency domain and wavelet analysis of the laser-induced plasma shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Miloš, E-mail: milosb@ff.bg.ac.rs; Nikolić, Zoran

    2015-08-01

    In addition to optical emission, another trace of interest that laser-induced plasma provides is a form of acoustic feedback. The acoustic emission (AE) signals were obtained using both microphone and piezo transducers. This kind of optoacoustic signals have some distinct features resembling the short, burst-like sounds, that may differ significantly depending mainly on the sample exposed and irradiance applied. Experiments were performed on atmospheric pressure by irradiating various metallic samples. The recorded waveforms were examined and numerically processed. Single-shot acoustical spectra have shown significant potential of providing valuable supplementary information regarding plasma propagation dynamics. Moreover, the general approach suggests the possibility of making the whole measurement system cost-effective and portable. - Highlights: • We report acoustical waveform, and acoustical spectroscopy measurements and analysis in a laser-induced plasma of a different metals in air. • Both piezo and microphone transducer were used. • The acoustical spectra of the emission were obtained when the sample (and plasma) were enclosed in experimental chamber. • The acquired acoustical spectra are time-integrated and the frequency peaks were sharp and relatively isolated. • Finally, both time and frequency resolved wavelet spectrogram present a novel method of observing laser-induced plasma behavior.

  13. Mercury species induced frequency-shift of molecular orientational transformation based on SERS.

    Science.gov (United States)

    Chen, Lei; Zhao, Yue; Wang, Yaxin; Zhang, Yongjun; Liu, Yang; Han, Xiao Xia; Zhao, Bing; Yang, Jinghai

    2016-08-01

    We proposed a novel readout method based on a peculiar phenomenon in which the vibrational frequencies of a SERS-active probe (dimethyldithiocarbamic acid sodium salt, DASS) can be affected when there is mercury species. Compared to the SERS intensity-dependent quantitative determination method, SERS frequency-shift-based methods have several advantages: smaller standard deviation, perfect linear relationship, and higher accuracy and sensitivity. In addition, the SERS frequency-shift-based method was not affected by irreproducible aggregation of the SERS substrate and instrumental factors, which greatly improved the application prospect of SERS-based detection. The DASS-modified silver nanoparticles produced a highly sensitive sensor specific to mercury species. Upon the addition of a solution of mercury species to the chip, the mercury species specifically binds to the sulfur atoms, which induces a frequency shift of the band at 1374 cm(-1). The detection limit of the proposed method for Hg(2+) is as low as 10(-8) M. In addition, the proposed method exhibited the same phenomenon for organic mercury. Moreover, these results suggest that the proposed platform possesses the potential for sensitive, selective, and high-throughput on-site mercury pollution monitoring in resource-constrained settings. PMID:27273584

  14. Ginseng Extracts Restore High-Glucose Induced Vascular Dysfunctions by Altering Triglyceride Metabolism and Downregulation of Atherosclerosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Gabriel Hoi-huen Chan

    2013-01-01

    Full Text Available The king of herbs, Panax ginseng, has been used widely as a therapeutic agent vis-à-vis its active pharmacological and physiological effects. Based on Chinese pharmacopeia Ben Cao Gang Mu and various pieces of literature, Panax ginseng was believed to exert active vascular protective effects through its antiobesity and anti-inflammation properties. We investigated the vascular protective effects of ginseng by administrating ginseng extracts to rats after the induction of diabetes. We found that Panax ginseng can restore diabetes-induced impaired vasorelaxation and can reduce serum triglyceride but not cholesterol level in the diabetic rats. The ginseng extracts also suppressed the expression of atherosclerosis-related genes and altered the expression of lipid-related genes. The results provide evidence that Panax ginseng improves vascular dysfunction induced by diabetes and the protective effects may possibly be due to the downregulation of atherosclerosis-related genes and altered lipid metabolism, which help to restore normal endothelium functions.

  15. Perturbative approach in the frequency domain for the intensity correlation spectrum at electromagnetically induced transparency

    CERN Document Server

    Florez, H M; Martinelli, M

    2016-01-01

    Correlation spectroscopy has been proposed as a spectroscopic technique for measuring the coherence between the ground states in electromagnetically induced transparency (EIT). While in time domain the steep dispersion in EIT condition accounts for the robustness of the correlation linewidth against power broadening, such physical insight was not directly established in the frequency domain. We propose a perturbative approach to describe the correlation spectroscopy of two noisy lasers coupled to a $\\Lambda$-transition in cold atoms, leading to EIT. Such approach leads to an analytical expression that maps the intensity correlation directly in terms of the absorption and dispersion of the light fields. Low and high perturbative regimes are investigated and demonstrate that, for coherent light sources, the first oder term in perturbation expansion represents a sufficient description for the correlation. Sidebands resonances are also observed, showing the richness of the frequency domain approach.

  16. Low frequency eardrum directionality in the barn owl induced by sound transmission through the interaural canal

    DEFF Research Database (Denmark)

    Kettler, Lutz; Christensen-Dalsgaard, Jakob; Larsen, Ole Næsbye;

    2016-01-01

    The middle ears of birds are typically connected by interaural cavities that form a cranial canal. Eardrums coupled in this manner may function as pressure difference receivers rather than pressure receivers. Hereby, the eardrum vibrations become inherently directional. The barn owl also has...... a large interaural canal, but its role in barn owl hearing and specifically in sound localization has been controversial so far. We discuss here existing data and the role of the interaural canal in this species and add a new dataset obtained by laser Doppler vibrometry in a free-field setting....... Significant sound transmission across the interaural canal occurred at low frequencies. The sound transmission induces considerable eardrum directionality in a narrow band from 1.5 to 3.5 kHz. This is below the frequency range used by the barn owl for locating prey, but may conceivably be used for locating...

  17. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model.

    Science.gov (United States)

    Peelukhana, Srikara V; Goenka, Shilpi; Kim, Brian; Kim, Jay; Bhattacharya, Amit; Stringer, Keith F; Banerjee, Rupak K

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s(2), for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at pbone, structural damage quantified through empty lacunae count was significant (pbone while the trabecular bone showed significant (pbone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D).

  18. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network

    Science.gov (United States)

    Clark, Erik; Akam, Michael

    2016-01-01

    The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles. DOI: http://dx.doi.org/10.7554/eLife.18215.001 PMID:27525481

  19. Fear induced neuronal alterations in a genetic model of depression: an fMRI study on awake animals

    OpenAIRE

    Huang, Wei; Heffernan, Meghan E.; LI, ZHIXIN; Zhang, Nanyin; Overstreet, David H.; King, Jean A.

    2010-01-01

    Previous human imaging studies used facial stimuli to explore the potential association between depression and fear. This study aimed at investigating brain alterations in a rodent model of depression when innate fear was induced in the form of the predator odor trimethylthiazoline (TMT). Flinders sensitive line rats (FSL), a genetic animal model of depression, and their control counterpart Flinders resistant line (FRL), were used in this functional magnetic resonance imaging (fMRI) assessmen...

  20. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    OpenAIRE

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA tre...

  1. Tunicamycin-Induced Alterations in the Vasorelaxant Response in Organ-Cultured Superior Mesenteric Arteries of Rats.

    Science.gov (United States)

    Matsumoto, Takayuki; Ando, Makoto; Watanabe, Shun; Iguchi, Maika; Nagata, Mako; Kobayashi, Shota; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-01-01

    In cellular events, endoplasmic reticulum (ER) stress has an important role in the development of various diseases including cardiovascular diseases. Tunicamycin, an inhibitor of N-linked glycosylation, is known to be an inducer of ER stress. However, the extent to which tunicamycin affects the vasorelaxant function is not completely understood. Thus, we investigated the effect of tunicamycin on relaxations induced by various vasorelaxant agents, including acetylcholine (ACh; endothelium-dependent vasodilator), sodium nitroprusside (SNP; endothelium-independent vasodilator), isoprenaline (ISO; beta-adrenoceptor agonist), forskolin (FSK; adenylyl cyclase activator), and cromakalim [ATP-sensitive K(+) (KATP) channel activator] in organ-cultured superior mesenteric arteries of rats, which are treated with either a vehicle [dimethyl sulfoxide (DMSO)] or tunicamycin (20 µg/mL for 22-24 h). Protein levels of the ER stress marker binding immunoglobulin protein (BiP) were determined by Western blotting. Tunicamycin increased the expression of BiP in organ-cultured arteries. Tunicamycin impaired ACh-induced relaxation, but did not alter SNP-induced relaxation. Tunicamycin also impaired vasorelaxation induced by ISO, FSK, and cromakalim; moreover, it reduced basal nitric oxide (NO) formation. In conclusion, short-term treatment with tunicamycin not only caused endothelial dysfunction but also impaired cAMP- and KATP-mediated responses in the superior mesenteric arteries of rats. These alterations in tunicamycin-treated arteries may be due to reduced basal NO formation. This work provides new insight into ER stress in vascular dysfunction. PMID:27582328

  2. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns.

    Science.gov (United States)

    Groh, Ksenia J; Suter, Marc J-F

    2015-02-01

    Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over

  3. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression.

    Science.gov (United States)

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-09-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus‑associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR‑19a, and the downregulation of miR‑1, let‑7f and miR‑124 expression levels following IPostC was confirmed utilizing reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  4. Frequency Shifts Induced by Field Gradients in Muon $g-2$ Experiments

    CERN Document Server

    Nouri, N; Golub, R; Plaster, B

    2016-01-01

    Two prominent efforts aimed at probing beyond Standard Model physics, searches for a neutron electric dipole moment (EDM) and measurements of the muon $g-2$ anomalous magnetic moment, employ spin precession techniques. In the most recent neutron EDM experiment, frequency shifts induced by magnetic field gradients and $\\mathbf{E} \\times \\mathbf{v}$ motional fields were a significant source of systematic error. We consider the possibility of a similar effect in the most recent muon $g-2$ experiment, and find that such an effect could potentially be as large as $\\sim 1$ ppm fractional error, to be compared with the reported $\\sim 0.5$ ppm error.

  5. Antiviral Treatment Alters the Frequency of Activating and Inhibitory Receptor-Expressing Natural Killer Cells in Chronic Hepatitis B Virus Infected Patients

    Directory of Open Access Journals (Sweden)

    Juan Lv

    2012-01-01

    Full Text Available Natural killer (NK cells play a critical role in innate antiviral immunity, but little is known about the impact of antiviral therapy on the frequency of NK cell subsets. To this aim, we performed this longitudinal study to examine the dynamic changes of the frequency of different subsets of NK cells in CHB patients after initiation of tenofovir or adefovir therapy. We found that NK cell numbers and subset distribution differ between CHB patients and normal subjects; furthermore, the association was found between ALT level and CD158b+ NK cell in HBV patients. In tenofovir group, the frequency of NK cells increased during the treatment accompanied by downregulated expression of NKG2A and KIR2DL3. In adefovir group, NK cell numbers did not differ during the treatment, but also accompanied by downregulated expression of NKG2A and KIR2DL3. Our results demonstrate that treatment with tenofovir leads to viral load reduction, and correlated with NK cell frequencies in peripheral blood of chronic hepatitis B virus infection. In addition, treatments with both tenofovir and adefovir in chronic HBV infected patients induce a decrease of the frequency of inhibitory receptor+ NK cells, which may account for the partial restoration of the function of NK cells in peripheral blood following treatment.

  6. Treatment with anti-OX40L or anti-TSLP does not alter the frequency of T regulatory cells in allergic asthmatics.

    Science.gov (United States)

    Baatjes, A J; Smith, S G; Dua, B; Watson, R; Gauvreau, G M; O'Byrne, P M

    2015-11-01

    OX40-OX40L interactions and thymic stromal lymphopoietin (TSLP) are important in the induction and maintenance of Th2 responses in allergic disease, whereas T regulatory cells (Treg) have been shown to suppress pro-inflammatory Th2 responses. Both OX40L and TSLP have been implicated in the negative regulation of Treg. The effect of anti-asthma therapies on Treg is not well known. Our aim was to assess the effects of two monoclonal antibody therapies (anti-OX40L and anti-TSLP) on Treg frequency using a human model of allergic asthma. We hypothesized that the anti-inflammatory effects of these therapies would result in an increase in circulating Treg (CD4(+) CD25(+) CD127(low) Foxp3(+) cells) frequency. We measured Treg using flow cytometry, and our results showed that neither allergen challenge nor monoclonal antibody therapy altered circulating Treg frequency. These data highlight the need for assessment of airway Treg and for a more complete understanding of Treg biology so as to develop pharmacologics/biologics that modulate Treg for asthma therapy. PMID:26213896

  7. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    Science.gov (United States)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, pdigested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, pdigestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  8. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations.

    Science.gov (United States)

    Chen, Zhangguo; Viboolsittiseri, Sawanee S; O'Connor, Brian P; Wang, Jing H

    2012-10-15

    Activation-induced deaminase (AID) catalyses class switch recombination (CSR) and somatic hypermutation (SHM) in B lymphocytes to enhance Ab diversity. CSR involves breaking and rejoining highly repetitive switch (S) regions in the IgH (Igh) locus. S regions appear to be preferential targets of AID. To determine whether S region sequence per se, independent of Igh cis regulatory elements, can influence AID targeting efficiency and mutation frequency, we established a knock-in mouse model by inserting a core Sγ1 region into the first intron of proto-oncogene Bcl6, which is a non-Ig target of SHM. We found that the mutation frequency of the inserted Sγ1 region was dramatically higher than that of the adjacent Bcl6 endogenous sequence. Mechanistically, S region-enhanced SHM was associated with increased recruitment of AID and RNA polymerase II, together with Spt5, albeit to a lesser extent. Our studies demonstrate that target DNA sequences influence mutation frequency via regulating AID recruitment. We propose that the nucleotide sequence preference may serve as an additional layer of AID regulation by restricting its mutagenic activity to specific sequences despite the observation that AID has the potential to access the genome widely.

  9. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    Science.gov (United States)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming; Li, Bing-Xiang; Liu, Si-Yuan; Li, Hai

    2015-11-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).

  10. Role of 239Pu-induced chromosome alterations and mutated Ki-v-ras oncogene during liver-cancer induction in Chinese hamsters and mice

    International Nuclear Information System (INIS)

    Chromosome aberrations and mutated oncogenes can cause important changes during carcinogenesis. Model systems are being studied in which defined cellular and molecular changes can be quantitated and altered, and tumor frequency, type, and time of appearance can be evaluated. Dose-response relationships for Pu Citrate-induced chromosome aberrations and liver cancer were measured in Chinese hamsters. Chromosome aberrations increased linearly according to dose, with a slope of 4.8 x 10-1 aberrations/cell/Gy; liver-tumor incidence was 1.1 x 10-1 tumors/animal/Gy. The dose was calculated at the 50% survival time. The interaction between Pu and Ki-v-ras, an altered, dominant-acting oncogene, on the induction of liver cancer was measured in B6C3F1 mice. The neo oncogene was used as a negative control in these studies. The Ki-v-ras oncogene was inserted into a viral vector and incorporated into the livers of mice either 30 days before or after the incorporation of 239Pu. Compared with both the controls and the mice injected with a single insult, mortality increased in groups of animals that received combined exposure to oncogenes, CCl4, and 239Pu. The relationships between molecular and cellular damage and the induction of cancer is being defined in both mice and Chinese hamsters

  11. Alterations of 5-HT1A receptor-induced G-protein functional activation and relationship to memory deficits in patients with pharmacoresistant temporal lobe epilepsy.

    Science.gov (United States)

    Cuellar-Herrera, Manola; Velasco, Ana Luisa; Velasco, Francisco; Trejo, David; Alonso-Vanegas, Mario; Nuche-Bricaire, Avril; Vázquez-Barrón, Daruni; Guevara-Guzmán, Rosalinda; Rocha, Luisa

    2014-12-01

    The 5-hydroxytryptamine-1A (5-HT1A) receptors are known to be involved in the inhibition of seizures in epilepsy. Moreover, studies propose a role for the 5-HT1A receptor in memory function; it is believed that the higher density of this receptor in the hippocampus plays an important role in its regulation. Positron emission tomography (PET) studies in patients with mesial temporal lobe epilepsy (mTLE) have demonstrated that a decrease in 5-HT1A receptor binding in temporal regions may play a role in memory impairment. The evidences lead us to speculate whether this decrease in receptor binding is associated with a reduced receptor number or if the functionality of the 5-HT1A receptor-induced G-protein activation and/or the second messenger cascade is modified. The purpose of the present study is to determine 5-HT1A receptor-induced G-protein functional activation by 8-OH-DPAT-stimulated [(35)S]GTPγS binding assay in hippocampal tissue of surgical patients with mTLE. We correlate functional activity with epilepsy history and neuropsychological assessment of memory. We found that maximum functional activation stimulation values (Emax) of [(35)S]GTPγS binding were significantly increased in mTLE group when compared to autopsy samples. Furthermore, significant correlations were found: (1) positive coefficients between the Emax with the age of patient and frequency of seizures; (2) negative coefficients between the Emax and working memory, immediate recall and delayed recall memory tasks. Our data suggest that the epileptic hippocampus of patients with mTLE presents an increase in 5-HT1A receptor-induced G-protein functional activation, and that this altered activity is related to age and seizure frequency, as well as to memory consolidation deficit.

  12. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Poroyko, Valeriy A.; Carreras, Alba; Khalyfa, Abdelnaby; Khalyfa, Ahamed A.; Leone, Vanessa; Peris, Eduard; Almendros, Isaac; Gileles-Hillel, Alex; Qiao, Zhuanhong; Hubert, Nathaniel; Farré, Ramon; Chang, Eugene B.; Gozal, David

    2016-01-01

    Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF. PMID:27739530

  13. Low-frequency electrical stimulation induces long-term depression in patients with chronic tension-type headache

    DEFF Research Database (Denmark)

    Lindelof, Kim; Jung, Kerstin; Ellrich, Jens;

    2010-01-01

    Repetitive low-frequency electrical stimulation (LFS) induces pain inhibition in healthy volunteers and in animals, but it is unknown whether it has an analgesic effect in patients with headache. The aim of this study was to investigate if LFS could induce prolonged pain inhibition, called long-t...

  14. How-to-Do-It: Herbivory-Induced Alteration of Community Structure--A Classroom Model.

    Science.gov (United States)

    Porter, John R.

    1989-01-01

    Described is a laboratory study designed to demonstrate loss of vegetation, alterations in the species composition of a community, and the impoverishment of a community with respect to desirable food plant species when herbivore feeding exceeds the rate of vegetation regrowth. The laboratory uses a classroom aquarium. (CW)

  15. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats

    Directory of Open Access Journals (Sweden)

    Sadaf A Karbelkar

    2016-01-01

    Conclusion: Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also.

  16. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    Science.gov (United States)

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  17. Pregnancy complicated by obesity induces global transcript expression alterations in visceral and subcutaneous fat.

    Science.gov (United States)

    Bashiri, Asher; Heo, Hye J; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H; Atzmon, Gil

    2014-08-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet not much is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n = 4/group) at the time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations led to identification of indolethylamine N-methyltransferase, tissue factor pathway inhibitor-2, and ephrin type-B receptor 6, not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis as compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity.

  18. Polychlorinated biphenyls-induced alterations of thyroid hormone homeostasis and brain development in the rat.

    NARCIS (Netherlands)

    Morse, D.C.

    1995-01-01

    IntroductionThe work described in this thesis was undertaken to gain insight in the processes involved in the developmental neurotoxicity of polychlorinated biphenyls. It has been previously hypothesized that the alteration of thyroid hormone status by PCBs may be in part responsibl

  19. Alterations in biochemical and physiological characters in radiation-induced mutants of grain legumes

    International Nuclear Information System (INIS)

    Selected examples from different grain legumes are studied. The biochemically and physiologically detectable alterations in distintc characters as caused by the action of mutant genes are presented comparatively. The interactions between different mutant genes in order to evaluated the influence of the genotypic constitution on the expression of mutated genes are emphasized. (M.A.C.)

  20. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms

    Directory of Open Access Journals (Sweden)

    Hyeon O Kim

    2008-09-01

    Full Text Available Hyeon O Kim1, Greg P Snyder1, Tyler M Blazey1, Richard E Race2, Bruce Chesebro2, Pamela J Skinner11Department of Veterinary and Biomedical Sciences, University of Minnesota, USA; 2NIH Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USAAbstract: Prion diseases are fatal neurodegenerative disorders that affect animals and humans. There is a need to gain understanding of prion disease pathogenesis and to develop diagnostic assays to detect prion diseases prior to the onset of clinical symptoms. The goal of this study was to identify genes that show altered expression early in the disease process in the spleen and brain of prion disease-infected mice. Using Affymetrix microarrays, we identified 67 genes that showed increased expression in the brains of prion disease-infected mice prior to the onset of clinical symptoms. These genes function in many cellular processes including immunity, the endosome/lysosome system, hormone activity, and the cytoskeleton. We confirmed a subset of these gene expression alterations using other methods and determined the time course in which these changes occur. We also identified 14 genes showing altered expression prior to the onset of clinical symptoms in spleens of prion disease infected mice. Interestingly, four genes, Atp1b1, Gh, Anp32a, and Grn, were altered at the very early time of 46 days post-infection. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as surrogate markers for the early detection and diagnosis of prion disease.Keywords: prion disease, microarrays, gene expression

  1. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy

    Science.gov (United States)

    Tamarov, Konstantin P.; Osminkina, Liubov A.; Zinovyev, Sergey V.; Maximova, Ksenia A.; Kargina, Julia V.; Gongalsky, Maxim B.; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P.; Sentis, Marc; Ivanov, Andrey V.; Nikiforov, Vladimir N.; Kabashin, Andrei V.; Timoshenko, Victor Yu

    2014-11-01

    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  2. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  3. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Sung, Kuo-Li Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412 (United States)

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  4. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    Directory of Open Access Journals (Sweden)

    Lara Bull-Otterson

    Full Text Available Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD. Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  5. Forced oscillation technique in the detection of smoking-induced respiratory alterations: diagnostic accuracy and comparison with spirometry

    Directory of Open Access Journals (Sweden)

    Alvaro Camilo Dias Faria

    2010-01-01

    Full Text Available INTRODUCTION: Detection of smoking effects is of utmost importance in the prevention of cigarette-induced chronic airway obstruction. The forced oscillation technique offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. However, there have been no data concerning the use of the forced oscillation technique to evaluate respiratory mechanics in groups with different degrees of tobacco consumption. OBJECTIVES: (1 to evaluate the ability of the forced oscillation technique to detect smoking-induced respiratory alterations, with special emphasis on early alterations; and (2 to compare the diagnostic accuracy of the forced oscillation technique and spirometric parameters. METHODS: One hundred and seventy subjects were divided into five groups according to the number of pack-years smoked: four groups of smokers classified as 60 pack-years and a control group. The four groups of smokers were compared with the control group using receiver operating characteristic (ROC curves. RESULTS: The early adverse effects of smoking in the group with 60 pack-years, the diagnostic performance of the forced oscillation technique was similar to that observed with spirometry. CONCLUSIONS: This study revealed that forced oscillation technique parameters were able to detect early smoking-induced respiratory involvement when pathologic changes are still potentially reversible. These findings support the use of the forced oscillation technique as a versatile clinical diagnostic tool in helping with chronic obstructive lung disease prevention, diagnosis, and treatment.

  6. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH in rats

    Directory of Open Access Journals (Sweden)

    Giannini Augusto

    2010-05-01

    Full Text Available Abstract Background Azoxymethane (AOM or 1,2-dimethylhydrazine (DMH-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. Methods For gene expression analysis, 9 tumours (TUM and their paired normal mucosa (NM were hybridized on 4 × 44K Whole rat arrays (Agilent and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent and the results were analyzed by CGH Analytics (Agilent. Results Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC compared with NM: 183, 48, 39, 38, 36 and 32, respectively, while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively. Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. Conclusion The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a

  7. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Stefania Varani

    2015-11-01

    Full Text Available Toscana virus (TOSV is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs and cytokine levels in plasma and cerebrospinal fluid (CSF from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS.

  8. Allergic lung inflammation alters neither susceptibility to Streptococcus pneumoniae infection nor inducibility of innate resistance in mice

    Directory of Open Access Journals (Sweden)

    Evans Christopher M

    2009-07-01

    Full Text Available Abstract Background Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria. Methods To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days. Results We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response

  9. Postnatal fate of prenatal-induced fetal alterations in laboratory animals.

    Science.gov (United States)

    Hofmann, Thomas; Buesen, Roland; Schneider, Steffen; van Ravenzwaay, Bennard

    2016-06-01

    Currently it is common practice to evaluate the developmental toxicity hazard of chemicals or pharmaceuticals by evaluation of fetuses after administration of the compound to pregnant animals. These studies are designed to provide possible compound-related fetal changes near term, which are usually classified into malformations or variations. Malformations, but not variations are expected to adversely affect the survival or health. Therefore, classification has striking different regulatory consequences. For categorization as variation reversibility is an important criterion, but it is usually not examined in a standard guideline study. Although this issue has already been recognized long time ago, data dealing with the postnatal reversibility of fetal alterations are still rare. In the current review, literature data, regulatory documents as well as in-house data were compiled. Beside skeletal alterations of skull, vertebral column, ribs, shoulder and pelvic girdle, and extremities, kidney and heart defects are discussed and assessed. PMID:27094378

  10. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    Directory of Open Access Journals (Sweden)

    T.A. Beacham

    2015-09-01

    Full Text Available Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  11. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).

    Science.gov (United States)

    Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves

    2015-08-01

    Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for

  12. Polychlorinated biphenyls-induced alterations of thyroid hormone homeostasis and brain development in the rat.

    OpenAIRE

    Morse, D.C.

    1995-01-01

    IntroductionThe work described in this thesis was undertaken to gain insight in the processes involved in the developmental neurotoxicity of polychlorinated biphenyls. It has been previously hypothesized that the alteration of thyroid hormone status by PCBs may be in part responsible for the developmental neurotoxicity of these compounds in humans (Rogan et al. 1986). This is a logical hypothesis, given the well-described effects of PCBs on plasma thyroid hormone levels in adult animals, and ...

  13. Chlorpyrifos-induced Histopathological Alterations in Duttaphrynus melanostictus (Schneider 1799) Tadpoles: Evidence from Empirical Trials

    OpenAIRE

    M. G. D. K. Bandara; M. R. Wijesinghe; W D Ratnasooriya; A. A. H. Priyani

    2012-01-01

    This paper reports the histopathological responses of the gill, liver and tail muscle tissues in tadpoles of the Asian Common Toad Duttaphrynus melanostictus (Schneider, 1799) exposed to chlorpyrifos a common organophosphorus pesticide. Tadpoles of Gosner stages 24-26 were continuously exposed to low, mid and high (500, 1000 and 1500 µgl–1) concentrations of chlorpyrifos for two weeks. Histological alterations in the tissues of the surviving larvae were microscopically examined both at the en...

  14. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2011-01-01

    Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing...... are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways...

  15. Diet-Induced Weight Loss alters Functional Brain Responses during an Episodic Memory Task

    OpenAIRE

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 mon...

  16. Altered rectal sensory response induced by balloon distention in patients with functional abdominal pain syndrome

    OpenAIRE

    Kudaira Miwako; Nozu Tsukasa

    2009-01-01

    Abstract Background Functional abdominal pain syndrome (FAPS) has chronic unexplained abdominal pain and is similar to the psychiatric diagnosis of somatoform pain disorder. A patient with irritable bowel syndrome (IBS) also has chronic unexplained abdominal pain, and rectal hypersensitivity is observed in a majority of the patients. However, no reports have evaluated the visceral sensory function of FAPS precisely. We aimed to test the hypothesis that FAPS would show altered visceral sensati...

  17. Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology.

    Directory of Open Access Journals (Sweden)

    Hamid Gholami Pourbadie

    Full Text Available The entorhinal cortex (EC is one of the earliest affected brain regions in Alzheimer's disease (AD. EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs, nimodipine and isradipine, were investigated. The amyloid beta (Aβ 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days, almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.

  18. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    CERN Document Server

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  19. Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers

    Science.gov (United States)

    Motloch, Pavel; Alvarez-Muñiz, Jaime; Privitera, Paolo; Zas, Enrique

    2016-02-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium—like ice, salt, soil, or regolith—has been extensively investigated as a promising technique to search for ultrahigh-energy neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth's surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to ˜1 GHz . These properties encourage further work to evaluate the potential of a large-aperture ultrahigh-energy neutrino experiment based on the detection of transition radiation.

  20. Steady-State Methadone Blocks Cocaine Seeking and Cocaine-Induced Gene Expression Alterations in the Rat Brain

    OpenAIRE

    Leri, Francesco; Zhou, Yan; Goddard, Benjamin; Levy, AnneMarie; Jacklin, Derek; Kreek, Mary Jeanne

    2008-01-01

    To elucidate the effects of steady-state methadone exposure on responding to cocaine conditioned stimuli and on cocaine-induced alterations in central opioid, hypocretin/orexin, and D2 receptor systems, male Sprague-Dawley rats received intravenous infusions of 1 mg/kg/inf cocaine paired with an audiovisual stimulus over three days of conditioning. Then, mini pumps releasing vehicle or 30 mg/kg/day methadone were implanted (SC), and lever pressing for the stimulus was assessed in the absence ...

  1. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki;

    2015-01-01

    at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE...... (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P ... induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death....

  2. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    Science.gov (United States)

    Dautta, Manik; Faruque, Rumana Binte; Islam, Rakibul

    2016-07-01

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signals in the midst of these low-frequency interfering signals. Both the Range of Detection (Rd) and the Probability of Detection (Pd) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.

  3. Strains Induced in Urban Structures by Ultra-High Frequency Blasting Rock Motions: A Case Study

    Science.gov (United States)

    Dowding, C. H.; Hamdi, E.; Aimone-Martin, C. T.

    2016-10-01

    This paper describes measurement and interpretation of strains induced in two, multiple story, older, urban structures by ultra-high frequency rock blast excitation from contiguous excavation. These strains are obtained from relative displacements found by integrating time correlated velocity time histories from multiple positions on the structures and foundation rock. Observations are based on ten instrumented positions on the structures and in the foundation rock during eight blast events, which provided over 70 time histories for analysis. The case study and measurements allowed the following conclusions: despite particle velocities in the rock that greatly exceed regulatory limits, strains in external walls are similar to or lower than those necessary to crack masonry structures and weak wall covering materials. These strains are also lower than those sustained by single story residential structures when excited by low frequency motions with particle velocities below regulatory limits. Expected relative displacements calculated with pseudo velocity single degree of freedom response spectra of excitation motions measured in the rock are similar to those measured.

  4. Alteration in frequency and function of CD4⁺CD25⁺FOXP3⁺ regulatory T cells in patients with immune thrombocytopenic purpura.

    Directory of Open Access Journals (Sweden)

    Nargess Arandi

    2014-04-01

    Full Text Available Immune thrombocytopenic purpura (ITP is an autoimmune bleeding disorder characterized by production of auto-antibodies against platelet antigens. It is obvious that regulatory T cells (Tregs have a major role in controlling immune homeostasis and preventing autoimmunity.To investigate the frequency and functions of Tregs, twenty ITP patients and twenty age- and sex-matched healthy controls were recruited. The peripheral blood mononuclear cells were isolated and the proportion of Tregs was defined by flow cytometry method. The expression of immune-regulatory markers, cytotoxic T-lymphocyte associated antigen-4 (CTLA-4 and glucocorticoid induced tumor necrosis factor receptor (GITR were also assessed by quantitative Real-time PCR TaqMan method. For evaluation of Treg function, Tregs were enriched and their ability to inhibit proliferation of T cells was measured and levels of immune-regulatory cytokines IL-10 and TGF-β were also measured.Results showed that the frequency of Tregs and the mean fluorescence intensity of FOXP3 protein significantly decreased in ITP patients compared to those in healthy controls. In addition, there was a significant reduction in relative expression of both CTLA-4 and GITR mRNA in ITP patients (P=0.02 and P=0.006, respectively. The suppressive function of Tregs also diminished in ITP patients compared to that in controls. Both IL-10 and TGF-β cytokines were produced in lower amounts in ITP patients than controls.It could be concluded that alteration in Treg frequency and functional characteristics might be responsible for loss of self-tolerance and subsequently destructive immune responses observed in ITP patients.

  5. Zingiber Officinale Alters 3,4-methylenedioxymethamphetamine-Induced Neurotoxicity in Rat Brain

    OpenAIRE

    Mehdizadeh, Mehdi; Dabaghian, Fataneh; Nejhadi, Akram; Fallah-huseini, Hassan; Choopani, Samira; Shekarriz, Nima; Molavi, Nima; Basirat, Arghavan; Mohammadzadeh Kazorgah, Farzaneh; Samzadeh-Kermani, Alireza; Soleimani Asl, Sara

    2012-01-01

    Objective: The spice Zingiber officinale or ginger possesses antioxidant activity and neuroprotective effects. The effects of this traditional herbal medicine on 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity have not yet been studied. The present study considers the effects of Zingiber officinale on MDMA-induced spatial memory impairment and apoptosis in the hippocampus of male rats. Materials and Methods: In this experimental study, 21 adult male Sprague Dawley rats (200-250...

  6. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    Directory of Open Access Journals (Sweden)

    Purushottam R Lomate

    Full Text Available Jasmonate inducible plant leucine aminopeptidase (LAP is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  7. Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recently, ambient vibration test (AVT) is widely used to estimate dynamic characteristics of large civil structures. Dynamic characteristics can be affected by various environmental factors such as humidity, intensity of wind, and temperature. Besides these environmental conditions, the mass of vehicles may change the measured values when traffic-induced vibration is used as a source of AVT for bridges. The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges; (1) three-span suspension bridge (128m+404m+128m), (2) five-span continuous steel box girder bridge (59m+3@95m+59m), (3) simply supported plate girder bridge (46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field. These recorded histories are divided into individual vibrations and are combined into two groups according to the level of vibration; one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars. Separate processing of the two groups of signals shows that, for the middle and long-span bridges, the difference can be hardly detected, but, for the short span bridges whose mass is relatively small, the measured natural frequencies can change up to 5.4%.

  8. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    Directory of Open Access Journals (Sweden)

    van Rijn Clementina M

    2011-04-01

    Full Text Available Abstract Background High frequency electrical stimulation (HFS of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG. To this end we measured evoked potentials in response to noxious electrical pinprick-like stimuli applied in the heterotopic skin area before, directly after and 30 minutes after HFS. Results We observed potential cortical electrophysiological correlates of heterotopic facilitation. Two different cortical correlates were found; the first one was a lateralized effect, i.e. a larger N100 amplitude on the conditioned arm than the control arm 30 minutes after end of HFS. This was comparable with the observed lateralized effect of visual analogue scale (VAS scores as response to the mechanical punctate stimuli. The second correlate seems to be a more general (non-lateralized effect, because the result affects both arms. On average for both arms the P200 amplitude increased significantly 30 minutes after end of HFS with respect to baseline. Conclusions We suggest that for studying heterotopic nociceptive facilitation the evoked brain response is suitable and relevant for investigating plasticity at the level of the brain and is perhaps a more sensitive and reliable marker than the perceived pain intensity (e.g. VAS.

  9. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes

    Science.gov (United States)

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  10. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  11. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  12. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes.

    Science.gov (United States)

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  13. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides

    OpenAIRE

    Dahmen, Volker; Kriehuber, Ralf

    2012-01-01

    Purpose: Triplex-forming oligonucleotides (TFO) bind to the DNA double helix in a sequence-specific manner. Therefore, TFO seem to be a suitable carrier for Auger electron emitters to damage exclusively targeted DNA sequences, e.g., in tumor cells. We studied the influence of I-125 labeled TFO with regard to cell survival and induction of DNA double-strand breaks (DSB) using TFO with different genomic targets and target numbers. Furthermore, the ability of TFO to alter the gene expression of ...

  14. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study).

    Science.gov (United States)

    Michałowicz, Jaromir; Mokra, Katarzyna; Bąk, Agata

    2015-10-01

    Few studies have addressed the cellular effects of bisphenol S (BPS) and bisphenol AF (BPAF) on cells, and no study has been conducted to analyze the mechanism of action of bisphenols in blood cells. In this study, the effect of bisphenol A (BPA), bisphenol F (BPF), BPS and BPAF on human peripheral blood mononuclear cells (PBMCs) was analyzed. It was shown that BPA, BPF and BPAF in particular, decreased cell viability, which was associated with depletion of intracellular ATP level and alterations in PBMCs size and granulation. Bisphenols enhanced ROS (including OH˙) formation, which led to damage to lipids and proteins in PBMCs. The most significant alterations in ROS level were induced by BPF, and particularly BPAF. Moreover, it was shown that BPAF most strongly provoked lipid peroxidation, while BPA and BPS caused the greatest damage to proteins. It may be concluded that BPA and its analogs were capable of inducing oxidative stress and damage in PBMCs in the concentrations ranging from 0.06 to 0.5 μM (0.02-0.1 μg/ml), which may be present in human blood as a result of environmental exposure. Although, most of bisphenols studied decreased cell viability, size and ATP level at higher concentrations, BPAF exhibited its cytotoxic potential at low concentrations ranging from 0.3 to 3 μM (0.1-1.0 μg/ml) that may correspond to concentrations in humans following occupational exposure.

  15. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 430C and 450C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 450C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 370C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 410C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  16. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  17. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    International Nuclear Information System (INIS)

    Highlights: ► A HK-2 cells model of inflammation-induced acute kidney injury. ► Two oximetry methods: high resolution respirometry and ESR spectroscopy. ► Oxygen consumption rates of renal cells decrease when treated with LPS. ► Cells do not recover normal respiration when the LPS treatment is removed. ► This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  18. Positional and expressive alteration of prohibitin during the induced differentiation of human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Dong-Hui Xu; Jian Tang; Qi-Fu Li; Song-Lin Shi; Xiang-Feng Chen; Ying Liang

    2008-01-01

    AIM: To explore the existence and distribution of prohibitin (PHB) in nuclear matrix and its co-localization with products of some related genes during the differentiation of human hepatocarcinoma SMMC-7721cells.METHODS: The nuclear matrix of the SHHC-7721 cells cultured with or without 5 x 10-3 mmol/L hexamethylene bisacetamide (HMBA) was selectively extracted.Western blot was used to analyze the expression of PHB in nuclear matrix; imrnunofluorescence microscope observation was used to analyze the distribution of PHB in cell. LCSM was used to observe the co-localization of PHB with products of oncogenes and tumor suppressor genes.RESULTS: Western blot analysis showed that PHB existed in the composition of nuclear matrix proteins and was down-regulated by HMBA treatment.Immunofluorescence observation revealed that PHB existed in the nuclear matrix, and its distribution regions and expression levels were altered after HMBA treatment. Laser scanning confocal microscopy revealed the co-localization between PHB and the products of oncogenes or tumor repression genes including c-fos, c-myc, p53 and Rb and its alteration of distributive area in the cells treated by HMBA.CONCLUSION: These data confirm that PHB is a nuclear matrix protein, which is located in the nuclear matrix, and the distribution and expression of PHB and its relation with associated genes may play significant roles during the differentiation of SMHC-7721 cells.

  19. Mobile Phone Radiation Induced Plasma Protein Alterations And Eye Pathology In Newly Born Mice

    Directory of Open Access Journals (Sweden)

    F. Eid*, M. Abou Zeid **, N Hanafi *** and A. El-Dahshan

    2013-07-01

    Full Text Available Abstract: The hazardous health effect of the exposure to 900-1800 MHz radiofrequency electromagnetic fields (RF-EMF which emitted from mobile phones was investigated on the plasma protein and eye of newly born mice. Twenty one newly born mice were divided into 3 groups, the 1st group served as control, the 2nd group exposed to mobile phone radiation daily for one month (45 min/day and the 3rd group remained one month following the end of exposure. The results showed deleterious changes in the plasma protein pattern by electrophoretic analysis. Also, the microscopic examination demonstrated numerous histopathological and histochemical changes in the eye mainly represented by degenerated, hemorrhagic areas and detachment in some layers of the eye with alteration in collagen, polysaccharides, total protein and marked increase in amyloid beta (β protein contents of newly born mice exposed to RF-EMF from mobile phone (45 min/day for one month as well as after one month following the end of exposure. It was concluded that the exposure to mobile phone radiation causes plasma proteins alterations and eye pathology in newly born mice.

  20. Bio-molecular alterations induced by a chemical or radiating stress in isolated human cells

    International Nuclear Information System (INIS)

    After having recalled some aspects of radiobiology (effects of ionizing radiations, molecular targets of radiations, cellular responses with respect to the radiation), the author discusses various aspects of radio-sensitivity: intrinsic radio-sensitivity of tumoral and normal cells, DNA injuries and in vitro radio-sensitivity, genes of susceptibility to ionizing radiations, clustered injuries. Then she reports investigations performed by infrared micro-spectroscopy: characterization of pathological lines, of biological processes, of oxidative injuries induced by xenobiotics, of injuries induced by ionizing radiations

  1. Frequency modulated few-cycle optical pulse trains induced controllable ultrafast coherent population oscillations in three-level atomic systems

    OpenAIRE

    Kumar, Parvendra; Sarma, Amarendra K.

    2012-01-01

    We report a study on the ultrafast coherent population oscillations (UCPO) in two level atoms induced by the frequency modulated few-cycle optical pulse train. The phenomenon of UCPO is investigated by numerically solving the optical Bloch equations beyond the rotating wave approximation. We demonstrate that the quantum state of the atoms and the frequency of UCPO may be controlled by controlling the number of pulses in the pulse trains and the pulse repetition time respectively. Moreover, th...

  2. The Protective Value of Hesperidin in Mitigating the Biochemical Perturbations and Trace Element alterations induced by Acrylonitrile in Rats

    Directory of Open Access Journals (Sweden)

    N. M. Abdallah*, N. E. Amien**, M. R. Mohamed*, A. S. Nada**, M. A. Mohamed

    2013-07-01

    Full Text Available Objective: Acrylonitrile (a chemical pollutant has been reported to induce harmful effects in humans. Therefore, this study was designed to evaluate the protective effects of hesperidin, a natural bioflavonoid, against the toxicity induced by acrylonitrile (AN in rats. Material&Methods: This study includes determination of serum total scavenger capacity “TSC”, liver enzymes (aspartate transaminase “ASAT”, alanine transaminase “ALAT” and alkaline phosphatase “ALP”, total proteins, albumin, glucose, creatinine, urea and lipid profile. Moreover, liver and kidney homogenate glutathione content “GSH”, catalase, superoxide dismutase “SOD”, glutathione peroxidase “GPx”, malondialdehyde “MDA” and some minerals were estimated. Results: revealed that administration of AN (orally 50mg/ kg b.wt. induced alterations in TSC level as well as liver, kidney and lipid profiles. In addition, a decrease in GSH-content and catalase, SOD and GPx activities was observed with an increase in MDA levels in both liver and kidney. There was disturbance in certain minerals such as Cu, Zn, Fe, Se, Ca, Mg and Mn. Conclusion: particularly, Hesperidin administration (orally 200 mg/kg b.wt. ameliorates the oxidative stress induced by AN, consistent with the reported antioxidant activity of hesperidin

  3. NOXA-induced alterations in the Bax/Smac axis enhance sensitivity of ovarian cancer cells to cisplatin.

    Directory of Open Access Journals (Sweden)

    Chao Lin

    Full Text Available Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy.

  4. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy.

  5. Cognitive awareness of carbohydrate intake does not alter exercise‐induced lymphocyte apoptosis

    OpenAIRE

    James Wilfred Navalta; Brian Keith McFarlin; Scott Lyons; Scott Wesley Arnett; Mark Anthony Schafer

    2011-01-01

    OBJECTIVE: The purpose of this investigation was to determine whether cognitive awareness of carbohydrate beverage consumption affects exercise‐induced lymphocyte apoptosis, independent of actual carbohydrate intake. INTRODUCTION: Carbohydrate supplementation during aerobic exercise generally protects against the immunosuppressive effects of exercise. It is not currently known whether carbohydrate consumption or simply the knowledge of carbohydrate consumption also has that effect. METHODS: E...

  6. BURN-INDUCED ALTERATIONS IN TOLL-LIKE RECEPTOR-MEDIATED RESPONSES BY BRONCHOALVEOLAR LAVAGE CELLS

    OpenAIRE

    Richard F. Oppeltz; Rani, Meenakshi; Zhang, Qiong; Schwacha, Martin G.

    2011-01-01

    Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung.

  7. Adrenaline-induced immunological changes are altered in patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Kittner, JM; Jacobs, R; Pawlak, CR; Heijnen, CJ; Schedlowski, M; Schmidt, RE

    2002-01-01

    Objective. To investigate whether in rheumatoid arthritis (RA) patients the immunological changes induced by adrenaline are different from healthy controls (HC). Methods. Fifteen female RA patients and 14 HC were infused with 1 mug/kg adrenaline over 20 min. Blood was drawn before, immediately after

  8. Cyclopiazonic acid alters serotonin-induced responses in rat thoracic aorta.

    Science.gov (United States)

    Selli, C; Erac, Y; Tosun, M

    2014-01-01

    We previously showed that endothelin A (ETA) receptor antagonist BQ-123 partially inhibited cyclopiazonic acid (CPA)-enhanced endothelin-1 (ET-1)-induced contractions suggesting enhancement of ETA receptor internalization in caveolar structures by sarco/endoplasmic reticulum Ca+2 ATPase (SERCA) blockade. Since serotonin (5-Hydroxytryptamine, 5-HT) receptors are reported to be localized on caveolar membranes, we investigated whether SERCA inhibition affects 5-HT-induced responses and 5-HT receptor antagonism. For this purpose, vascular responses were measured in thoracic aorta segments from male Wistar albino rats using isolated tissue experiments. Data showed that CPA inhibits 5-HT- and PE-induced contractions in intact vessels while potentiating those in endothelium-denuded. Furthermore, non-selective 5-HT receptor blocker methysergide partially inhibited CPA-induced 5-HT contractions. However, α1-adrenergic receptor antagonist prazosin totally inhibited CPA-potentiated PE contractions. We suggest that SERCA inhibition results in 5-HT receptor internalization similar to ETA receptors possibly through protein kinase C activation by increased subsarcolemmal Ca2+ levels, eventually preventing 5-HT receptor antagonism. PMID:24704610

  9. Motor Alterations Induced by Chronic 4-Aminopyridine Infusion in the Spinal Cord In vivo: Role of Glutamate and GABA Receptors

    Science.gov (United States)

    Lazo-Gómez, Rafael; Tapia, Ricardo

    2016-01-01

    Motor neuron (MN) degeneration is the pathological hallmark of MN diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure, and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP) in the rat hippocampus induces seizures and neurodegeneration, and that AMPA infusion in the spinal cord produces paralysis and MN death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on MN survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2–3 h after the implant, which ameliorated spontaneously within 6–7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate MN degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces MN death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of MN excitability in the spinal cord. PMID:27242406

  10. Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins.

    Science.gov (United States)

    Zunquin, Gautier; Rouleau, Vincent; Bouhallab, Said; Bureau, Francois; Theunynck, Denis; Rousselot, Pierre; Arhan, Pierre; Bougle, Dominique

    2006-05-01

    Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload. PMID:17390518

  11. Electromagnetically induced transparency and lasing without inversion in three-level atoms imbedded in a frequency-dependent environment

    Science.gov (United States)

    Radeonychev, Y. V.; Erukhimova, M. A.; Kocharovskaya, O. A.; Vilaseca, R.

    2004-10-01

    The response of a three-level atomic system driven by a resonant coherent field acting on a transition near the photonic band-edge of a photonic band-gap material as well as the general case of a frequency-dependent reservoir is studied. The strong frequency dependence of the radiation mode spectral density on the scale of the driving field Rabi frequency is shown to lead to essential and controllable changes in the refractive index, as well as to effects of electromagnetically induced transparency and lasing without inversion. Such an effective dynamic control of the atomic response enables for applications in nonlinear optics and optical computing and communications.

  12. Ionization-Induced Multiwave Mixing: Terahertz Generation with Two-Color Laser Pulses of Various Frequency Ratios

    Science.gov (United States)

    Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.; Vvedenskii, N. V.

    2016-07-01

    Ultrafast strong-field ionization is shown to be accompanied by atypical multiwave mixing with the number of mixed waves defined by the dependence of the ionization rate on the field strength. For two-color laser pulses of various frequency ratios, this results in the excitation of a free-electron current at laser combination frequencies and possibly in the excitation of the zero-frequency (residual) current responsible for terahertz (THz) generation in a formed plasma. The high-order nature of ionization-induced wave mixing may cause THz generation with uncommon laser frequency ratios (such as 2 : 3 and 3 : 4 ) to be virtually as effective as that with the commonly used frequency ratio of 1 : 2 .

  13. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    Science.gov (United States)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  14. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  15. Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants.

    Directory of Open Access Journals (Sweden)

    Adrianna Szczepaniec

    Full Text Available BACKGROUND: Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae, in multiple, distantly related crop plants. METHODOLOGY/PRINCIPAL FINDINGS: Using cotton (Gossypium hirsutum, corn (Zea mays and tomato (Solanum lycopersicum plants, we show that transcription of phenylalanine ammonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. CONCLUSIONS/SIGNIFICANCE: Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides

  16. Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Vesa J Kiviniemi

    2009-07-01

    Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  17. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice.

    Science.gov (United States)

    Aguilera, M; Cerdà-Cuéllar, M; Martínez, V

    2015-01-01

    Alterations in the composition of the commensal microbiota (dysbiosis) seem to be a pathogenic component of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS), and might participate in the secretomotor and sensory alterations observed in these patients.We determined if a state antibiotics-induced intestinal dysbiosis is able to modify colonic pain-related and motor responses and characterized the neuro-immune mechanisms implicated in mice. A 2-week antibiotics treatment induced a colonic dysbiosis (increments in Bacteroides spp, Clostridium coccoides and Lactobacillus spp and reduction in Bifidobacterium spp). Bacterial adherence was not affected. Dysbiosis was associated with increased levels of secretory-IgA, up-regulation of the antimicrobial lectin RegIIIγ, and toll-like receptors (TLR) 4 and 7 and down-regulation of the antimicrobial-peptide Resistin-Like Molecule-β and TLR5. Dysbiotic mice showed less goblet cells, without changes in the thickness of the mucus layer. Neither macroscopical nor microscopical signs of inflammation were observed. In dysbiotic mice, expression of the cannabinoid receptor 2 was up-regulated, while the cannabinoid 1 and the mu-opioid receptors were down-regulated. In antibiotic-treated mice, visceral pain-related responses elicited by intraperitoneal acetic acid or intracolonic capsaicin were significantly attenuated. Colonic contractility was enhanced during dysbiosis. Intestinal dysbiosis induce changes in the innate intestinal immune system and modulate the expression of pain-related sensory systems, an effect associated with a reduction in visceral pain-related responses. Commensal microbiota modulates gut neuro-immune sensory systems, leading to functional changes, at least as it relates to viscerosensitivity. Similar mechanisms might explain the beneficial effects of antibiotics or certain probiotics in the treatment of IBS. PMID:25531553

  18. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Argel Aguilar-Valles

    Full Text Available Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.

  19. Role of Rosemary leaves extract against radiation-induced hematological and biochemical alterations in mice

    OpenAIRE

    Acharya Garima S.; Goyal Pradeep K.

    2008-01-01

    The present paper is a study of the modulatory effect of Rosmarinus officinalis leaves extract on radiation-induced hematological and biochemical changes in Swiss albino mice. The dose reduction factor for the Rosemary extract against gamma rays was calculated 1.53 from LD50/30 values. The Rosemary extract was administered orally for 5 consecutive days prior to radiation exposure. The hematological and biochemical parameters were assessed from day 1 to 30 post-irradiation intervals. The total...

  20. Altered Morphine-Induced Analgesia in Neurotensin Type 1 Receptor Null Mice

    OpenAIRE

    Roussy, Geneviève; Beaudry, Hélène; Lafrance, Mylène; Belleville, Karine; Beaudet, Nicolas; Wada, Keiji; Gendron, Louis; Sarret, Philippe

    2010-01-01

    Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the anti...

  1. Protective Effect of Dodonaea viscosa (L) Against Lead Acetate Induced Altered Glycoprotein Profiles in Rats

    OpenAIRE

    Sivanesan, D.; Selvi, A. V. Veera Thamarai; Bhakyaraj, R.; Arunachalam, T.

    2009-01-01

    The present study was undertaken to examine the inhibitory effect of crude leaves of Dodonaea viscosa (L) on lead acetate induced synthesis of glycoproteins and sialic acid in liver and plasma. Enhanced synthesis of glycoproteins (protein - bound hexose and protein - bound hexosamine) and sialic acid levels were found in liver and plasma of the lead acetate poisoned rats. Administration of crude leaves of D.viscosa (100 mg/100 g body weight P.O.) effectively suppressed the synthesis of glycop...

  2. Alteration of airway responsiveness mediated by receptors in ovalbumin-induced asthmatic E3 rats

    Institute of Scientific and Technical Information of China (English)

    Jing-wen LONG; Xu-dong YANG; Lei CAO; She-min LU; Yong-xiao CAO

    2009-01-01

    Aim:Airway hyperresponsiveness is a constant feature of asthma.The aim of the present study was to investigate airway hyperreactivity mediated by contractile and dilative receptors in an ovalbumin (OVA)-induced model of rat asthma.Methods:Asthmatic E3 rats were prepared by intraperitoneal injection with OVA/aluminum hydroxide and then challenged with intranasal instillation of OVA-PBS two weeks later.The myograph method was used to measure the responses of constriction and dilatation in the trachea,main bronchi and lobar bronchi.Results:In asthmatic E3 rata,β2 adrenoceptor-mediated relaxation of airway smooth muscle pre-contracted with 5-HT was inhibited,and there were no obvious difference in relaxation compared with normal E3 rats.Contraction of lobar bronchi mediated by 5-HT and sarafotoxin 6c was more potent than in the trachea or main bronchi.Airway contractions mediated by the endothelin (ET)A receptor,ETB receptor and M3 muscarinic receptor were augmented,and the augmented contraction was most obvious in lobar bronchi.The order of efficacy of contraction for lobar bronchi induced by agonists was ET-1,sarafotoxin 6c>ACh>5-HT.OX8 (an antibody against CD8+ T cells) strongly shifted and 0X35 (an antibody against CD4+ T cells) modestly shifted isoprenaline-induced concentration-relaxation curves in a nonparallel fashion to the left with an increased Rmax in asthmatic rats and sarafotoxin 6c-induced concentration-contractile curves to the right with a decreased Emax.Conclusion:The inhibition of airway relaxation and the augmentation of contraction mediated by receptors contribute to airway hyperresponsiveness and involve CD8+ and CD4+ T cells.

  3. Ovariectomy aggravated sodium induced hypertension associated with altered platelet intracellular Ca2+ in Dahl rats.

    Science.gov (United States)

    Otsuka, K; Ohno, Y; Sasaki, T; Yamakawa, H; Hayashida, T; Suzawa, T; Suzuki, H; Saruta, T

    1997-12-01

    Our purpose was to determine the effect of ovariectomy on intracellular Ca2+ mobilization and platelet aggregation in sodium induced hypertension. At the age of 12 weeks ovariectomy or sham operation was performed in female Dahl-Iwai salt sensitive rats on a 0.3% NaCl diet. Four weeks later we assessed the effects of ovariectomy and an 8% NaCl diet on agonist induced intracellular Ca2+ mobilization in fura-2 loaded platelets and platelet aggregation. Ovariectomy enhanced the increase of systolic blood pressure and heart to body weight ratio on an 8% NaCl diet. However, thrombin evoked intracellular Ca2+ was not correlated with systolic blood pressure (r = -0.338, P = .17), and was lowered by sodium loading and ovariectomy (360+/-23 to 285+/-9, 296+/-10 nmol/L, P calcium fraction in the absence of external Ca2+ that reflected internal Ca2+ discharge capacity was reduced in ovariectomized rats compared with sham operated rats on an 8% NaCl diet (648+/-15 v 768+/-35 nmol/L, P hypertensive rats. We concluded that ovariectomy enhanced sodium induced hypertension associated with the decreased internal Ca2+ discharge capacity and increased platelet aggregation in Dahl-Iwai salt-sensitive rats.

  4. Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance?

    Science.gov (United States)

    Hodge, Simon; Powell, Glen

    2008-12-01

    Aphids can respond both positively and negatively to virus-induced modifications of the shared host plant. It can be speculated that viruses dependent on aphids for their transmission might evolve to induce changes in the host plant that attract aphids and improve their performance, subsequently enhancing the success of the pathogen itself. We studied how pea aphids [Acyrthosiphon pisum (Harris)] responded to infection of tic beans (Vicia faba L.) by three viruses with varying degrees of dependence on this aphid for their transmission: pea enation mosaic virus (PEMV), bean yellow mosaic virus (BYMV), and broad bean mottle virus (BBMV). BYMV has a nonpersistent mode of transmission by aphids, whereas PEMV is transmitted in a circulative-persistent manner. BBMV is not aphid transmitted. When reared on plants infected by PEMV, no changes in aphid survival, growth, or reproductive performance were observed, whereas infection of beans by the other aphid-dependent virus, BYMV, actually caused a reduction in aphid survival in some assays. None of the viruses induced A. pisum to increase production of winged progeny, and aphids settled preferentially on leaf tissue from plants infected by all three viruses, the likely mechanism being visual responses to yellowing of foliage. Thus, in this system, the attractiveness of an infected host plant and its quality in terms of aphid growth and reproduction were not related to the pathogen's dependence on the aphid for transmission to new hosts. PMID:19161702

  5. Nanometer-scale elongation rate fluctuations in the Myriophyllum aquaticum (Parrot feather) stem were altered by radio-frequency electromagnetic radiation.

    Science.gov (United States)

    Senavirathna, Mudalige Don Hiranya Jayasanka; Asaeda, Takashi; Thilakarathne, Bodhipaksha Lalith Sanjaya; Kadono, Hirofumi

    2014-01-01

    The emission of radio-frequency electromagnetic radiation (EMR) by various wireless communication base stations has increased in recent years. While there is wide concern about the effects of EMR on humans and animals, the influence of EMR on plants is not well understood. In this study, we investigated the effect of EMR on the growth dynamics of Myriophyllum aquaticum (Parrot feather) by measuring the nanometric elongation rate fluctuation (NERF) using a statistical interferometry technique. Plants were exposed to 2 GHz EMR at a maximum of 1.42 Wm(-2) for 1 h. After continuous exposure to EMR, M. aquaticum plants exhibited a statistically significant 51 ± 16% reduction in NERF standard deviation. Temperature observations revealed that EMR exposure did not cause dielectric heating of the plants. Therefore, the reduced NERF was due to a non-thermal effect caused by EMR exposure. The alteration in NERF continued for at least 2.5 h after EMR exposure and no significant recovery was found in post-EMR NERF during the experimental period.

  6. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAsIII) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAsIII induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAsIII in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAsIII can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  7. Neuroplastic alteration of TTX-resistant sodium channel with visceral pain and morphine-induced hyperalgesia

    Directory of Open Access Journals (Sweden)

    Chen J

    2012-11-01

    Full Text Available Jinghong Chen,1,2,4 Ze-hui Gong,4 Hao Yan,2 Zhijun Qiao,3 Bo-yi Qin41Department of Internal Medicine, Neuroscience Program, The University of Texas Medical Branch, Galveston, TX, USA; 2The Divisions of Pharmacy, Pharmacology core lab, MD Anderson Cancer Center, Houston, TX, USA; 3University of Texas-Pan American, Edinburg, TX, USA; 4Beijing Institute of Pharmacology and Toxicology, Beijing, China Abstract: The discovery of the tetrodotoxin-resistant (TTX-R Na+ channel in nociceptive neurons has provided a special target for analgesic intervention. In a previous study we found that both morphine tolerance and persistent visceral inflammation resulted in visceral hyperalgesia. It has also been suggested that hyperexcitability of sensory neurons due to altered TTX-R Na+ channel properties and expression contributes to hyperalgesia; however, we do not know if some TTX-R Na+ channel property changes can be triggered by visceral hyperalgesia and morphine tolerance, or whether there are similar molecular or channel mechanisms in both situations. To evaluate the effects of morphine tolerance and visceral inflammation on the channel, we investigated the dorsal root ganglia (DRG neuronal change following these chronic treatments. Using whole-cell patch clamp recording, we recorded TTX-R Na+ currents in isolated adult rat lumbar and sacral (L6-S2 DRG neurons from normal and pathologic rats with colon inflammatory pain or chronic morphine treatment. We found that the amplitudes of TTX-R Na+ currents were signiflcantly increased in small-diameter DRG neurons with either morphine tolerance or visceral inflammatory pain. Meanwhile, the result also showed that those treatments altered the kinetics properties of the electrical current (ie, the activating and inactivating speed of the channel was accelerated. Our current results suggested that in both models, visceral chronic inflammatory pain and morphine tolerance causes electrophysiological changes in voltage

  8. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  9. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection.

    Directory of Open Access Journals (Sweden)

    Luigi Notari

    Full Text Available Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2 to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a "lean" epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.

  10. EFFECTS OF ADDROGRAPHIS PANICULATA (NEES. ON ARSENIC- INDUCED ALTERED GLUCOSE HOMEOSTASIS AND OXIDATIVE IMPAIRMENT IN PANCREAS OF SWISS MICE

    Directory of Open Access Journals (Sweden)

    MANDAVA V. RAO

    2007-01-01

    Full Text Available The effect of Andrographis paniculata (Nees. on arsenic-induced changes in biochemical and cellular antioxident sytem was studies in adult female mice. Daily oral administration of arsenic trioxide (0.5 and 1.0mg/kg b.w for 30days induced a significant increase in blood glucose level which was associated with impaired glucose tolrence. Arsenic treatment also resulted in elevated level panreatic tissue specific makers such as activities of amylase and lipase in serum indicating pancreatic dysfunction. Interestingly, this biochemical dysfuntion was accompanied by a marked dose related enchancement of lipid peroxidation indicating significant induction of oxidative damage. Additional evidence such as deletion in reduced gluatathione levels and alterations in enzymic antioxidant defences like superoxide dismutase, catalase and glutathione peroxidase in pancreas suggested induction of oxidative stress. Concomitant administration of Adrographis paniculata (50 mg/kg b.w. with arsenic significant restored all these parameters. These results suggest that Adrographis paniculata is capable to reducing arsenic-induce cellular oxidative and inflammatory changes in pancreas.

  11. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus- indica mucilage

    Institute of Scientific and Technical Information of China (English)

    Ricardo Vázquez-Ramírez; Marisela Olguín-Martínez; Carlos Kubli-Garfias; Rolando Hernández-Mu(n)oz

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats.METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined.Histological studies of gastric samples from the experimental groups were included.RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes.Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect.The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes.CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids,mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.

  12. Mycophenolate mofetil alters the antioxidant status in duodenum of rats: Implication for silymarin usage in mycophenolate mofetil induced gastrointestinal disorders

    Directory of Open Access Journals (Sweden)

    Sanaz Sheikhzadeh

    2013-06-01

    Full Text Available Mycophenolate mofetil (MMF as an immunosuppressive agent is used to prevent graftrejection. One of the adverse effects of long time administration of MMF is the gastrointestinaldisorder. This study aimed to investigate the gastroprotective effect of silymarin (SMN onMMF-induced gastrointestinal (GI disorders. Twenty-four adult female Wistar rats wereassigned into three groups including the control and test groups. The control animals receivedsaline(5 mL kg-1andthe test animals were treated with MMF (40 mg kg-1, orally and saline,MMF and silymarin (SMN, 50 mg kg-1, orally for 14 consecutive days, respectively. To evaluatethe GI disorders due to the MMF-induced oxidative stress and subsequently the protective effectof SMN, malondialdehyde (MDA,total thiol molecules(TTM levels and total anti-oxidantcapacity (TAC were determined. Additionally, histopathological examinations in the duodenalregion of small intestine were performed. The MMF-increased level of MDA was reduced bySMN administration, while the MMF-reduced level of TTM increased significantly (p< 0.05 bySMN administration. Histopathological examinations showed the goblet cell reduction andcongestion in the MMF-received animals; while SMN was able to improve the MMF-inducedgoblet cell reduction and congestion. Our data suggest that the MMF-induced GI disorders arecharacterized by changes in antioxidant status, which presented by the elevation of MDA leveland reduction of TTM concentration. Moreover, the improved biochemical alterations andhistopathologic damages by SMN indicating its gastroprotective and antioxidant effects

  13. AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.

    Science.gov (United States)

    Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula

    2016-10-01

    Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. PMID:27430620

  14. Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara.

    Science.gov (United States)

    Jiang, Jinlin; Gu, Xueyuan; Song, Rui; Wang, Xiaorong; Yang, Liuyan

    2011-06-15

    Microcystins produced by cyanobacteria in the aquatic environment are a potential risk to aquatic plants. In the present study, the uptake of microcystin-LR (MC-LR) and related physiological and biochemical effects on Vallisneria natans (Lour.) Hara were investigated at concentrations of 0.1-25.0 μg L(-1). Results showed that O(2)(-) intensity was significantly induced at 1.0 μg L(-1) and reached a maximum level at 5.0 μg L(-1). Superoxide dismutase (SOD) and peroxidase (POD) were induced with increasing MC-LR concentrations as an antioxidant response. Catalase (CAT) was significantly induced while GSH/GSSG (reduced/oxidized glutathione) ratio was significantly reduced at 0.1 μg L(-1). The induction of glutathione S-transferase (GST) and inhibition of GSH revealed that GSH was involved in the detoxification of MC-LR in plants. Oxidative damage was evidenced by the significant increase of malondialdehyde content at 1.0 μg L(-1). A pigment pattern change and a series of significant ultrastructural alterations were also observed due to MC-LR exposure. The lowest non-effect concentration of MC-LR for V. natans at the subcellular and molecular level is around 0.5 μg L(-1). These results imply that even at relatively low MC-LR concentrations the aquatic plants may still suffer a negative ecological impact. PMID:21466917

  15. Plasticity Induced by Intermittent Theta Burst Stimulation in Bilateral Motor Cortices Is Not Altered in Older Adults

    Directory of Open Access Journals (Sweden)

    Daina S. E. Dickins

    2015-01-01

    Full Text Available Numerous studies have reported that plasticity induced in the motor cortex by transcranial magnetic stimulation (TMS is attenuated in older adults. Those investigations, however, have focused solely on the stimulated hemisphere. Compared to young adults, older adults exhibit more widespread activity across bilateral motor cortices during the performance of unilateral motor tasks, suggesting that the manifestation of plasticity might also be altered. To address this question, twenty young (65 years underwent intermittent theta burst stimulation (iTBS whilst attending to the hand targeted by the plasticity-inducing procedure. The amplitude of motor evoked potentials (MEPs elicited by single pulse TMS was used to quantify cortical excitability before and after iTBS. Individual responses to iTBS were highly variable, with half the participants showing an unexpected decrease in cortical excitability. Contrary to predictions, however, there were no age-related differences in the magnitude or manifestation of plasticity across bilateral motor cortices. The findings suggest that advancing age does not influence the capacity for, or manifestation of, plasticity induced by iTBS.

  16. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study

    Science.gov (United States)

    Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.

    2016-01-01

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.

  17. Mechanisms of Indomethacin-Induced Alterations in the Choline Phospholipid Metabolism of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2006-09-01

    Full Text Available Human mammary epithelial cells (HMECs exhibit an increase in phosphocholine (PC and total cholinecontaining compounds, as well as a switch from high glycerophosphocholine (GPC/low PC to low GPC/high PC, with progression to malignant phenotype. The treatment of human breast cancer cells with a nonsteroidal anti-inflammatory agent, indomethacin, reverted the high PC/low GPC pattern to a low PC/high GPC pattern indicative of a less malignant phenotype, supported by decreased invasion. Here, we have characterized mechanisms underlying indomethacininduced alterations in choline membrane metabolism in malignant breast cancer cells and nonmalignant HMECs labeled with [1,2-13C]choline using 1H and 13C magnetic resonance spectroscopy. Microarray gene expression analysis was performed to understand the molecular mechanisms underlying these changes. In breast cancer cells, indomethacin treatment activated phospholipases that, combined with an increased choline phospholipid biosynthesis, led to increased GPC and decreased PC levels. However, in nonmalignant HMECs, activation of the anabolic pathway alone was detected following indomethacin treatment. Following indomethacin treatment in breast cancer cells, several candidate genes, such as interleukin 8, NGFB, CSF2, RHOB, EDN1, and JUNB, were differentially expressed, which may have contributed to changes in choline metabolism through secondary effects or signaling cascades leading to changes in enzyme activity.

  18. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia.

    Science.gov (United States)

    Koshida, Ryusuke; Oishi, Hisashi; Hamada, Michito; Takahashi, Satoru

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia.

  19. Lead-induced alterations in rat kidneys and testes in vivo.

    Science.gov (United States)

    Massanyi, Peter; Lukac, Norbert; Makarevich, Alexander V; Chrenek, Peter; Forgacs, Zsolt; Zakrzewski, Marian; Stawarz, Robert; Toman, Robert; Lazor, Peter; Flesarova, Slavka

    2007-04-01

    The purpose of this study was to assess the effects of lead administration on the kidney and testicular structure of adult rats. Rats received lead (PbNO(3)) in single intraperitoneal dose 50 mg/kg (group A), 25 mg/kg (group B) and 12.5 mg (group C) per kilogram of body weight and were killed 48 h following lead administration. After the preparation of histological samples the results were compared with control. After the lead administration dilated Bowman's capsules and blood vessels in interstitium of kidney with evident hemorrhagic alterations were noted. Quantitative analysis determined increased relative volume of interstitium and tubules. Also, the diameter of renal corpuscules, diameter of glomeruli and diameter of Bowman's capsule were significantly increased, especially in group A, with the highest lead concentration. In testes, dilatation of blood capillaries in interstitium, undulation of basal membrane and occurrence of empty spaces in seminiferous epithelium were detected. An apoptosis assay confirmed increased incidence of apoptosis in the spermatogenetic cells after the lead administration. Also further morphometric analysis showed significant differences in evaluated parameters between control and treated groups. The number of cell nuclei was decreased in lead-treated groups, which is concerned with the occurrence of empty spaces as well as with the higher apoptosis incidence in germinal epithelium. This study reports a negative effect of lead on the structure and function of kidney and testes.

  20. One-carbon cycle alterations induced by Dyrk1a dosage

    Directory of Open Access Journals (Sweden)

    Jean-Maurice Delabar

    2014-01-01

    Full Text Available Hyperhomocysteinemia due to cystathionine beta synthase deficiency confers diverse clinical manifestations. It is characterized by elevated plasma homocysteine levels, a common amino acid metabolized by remethylation to methionine or transsulfuration to cysteine. We recently found a relationship between hepatic Dyrk1A protein expression, a serine/threonine kinase involved in signal transduction in biological processes, hepatic S-adenosylhomocysteine activity, and plasma homocysteine levels. We aimed to study whether there is also a relationship between Dyrk1a and cystathionine beta synthase activity. We used different murine models carrying altered gene coy numbers for Dyrk1a, and found a decreased cystathionine beta synthase activity in the liver of mice under-expressing Dyrk1a, and an increased in liver of mice over-expressing Dyrk1a. For each model, a positive correlation was found between cystathionine beta synthase activity and Dyrk1a protein expression in the liver of mice, which was confirmed in a non-modified genetic context. The positive correlation found between liver Dyrk1a protein expression and CBS activity in modified and non-modified genetic context strengthens the role of this kinase in one carbon metabolism.

  1. Preliminary evidence of phenytoin-induced alterations in embryonic gene expression in a mouse model.

    Science.gov (United States)

    Musselman, A C; Bennett, G D; Greer, K A; Eberwine, J H; Finnell, R H

    1994-01-01

    SWV mouse embryos collected on gestational days (GD) 9:12 and 10:00 following chronic in utero exposure to teratogenic concentrations of phenytoin were utilized for in situ transcription studies of gene expression. The substrate cDNA obtained from the frozen embryo sections was amplified into radiolabelled antisense RNA (RT/aRNA) and used as a probe to screen a panel of 20 cDNA clones representing genes that are important regulators of craniofacial and neural development. The magnitude of alteration in gene expression following phenytoin treatment was determined densitometrically by changes in the hybridization intensity of the aRNA probes to the cDNA clones immobilized to the slot blots. We found that both Wnt-1 and the calcium channel gene were developmentally regulated, as their level of expression decreased significantly between the two collection times. Phenytoin treatment produced a significant downregulation in the level of expression for 25% of the genes examined in the GD 9:12 embryos, including the growth factors TGF-beta and NT3, the proto-oncogene Wnt-1, the nicotinic receptor, and the voltage sensitive calcium channel gene. Additional changes in the coordinate expression of several of the growth and transcription factors were observed at both gestational timepoints. The application of RT/aRNA technology has extended our appreciation of the normal patterns of gene expression during craniofacial and neural development, and provided the first demonstration of multiple coordinate changes in transcription patterns following teratogenic insult.

  2. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  3. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  4. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  5. Terazosin-induced alterations in catalase expression and lipid peroxidation in the rat seminal vesicles.

    Science.gov (United States)

    Mitropoulos, D; Patris, E; Deliconstantinos, G; Kyroudi-Voulgari, A; Anastasiou, I; Perea, D

    2013-04-01

    Previous studies have shown that alpha1-adrenergic receptor antagonists may alter seminal vesicle contractility and impair fertility in male rats. This study was designed to investigate the effects of terazosin on the catalase expression in the seminal vesicles and the lipid peroxidation of the seminal fluid in normal adult rats. Wistar rats were treated with terazosin (1.2 mg kg(-1) body weight, given orally every second day) for 120 days. Catalase expression was assessed immunohistochemically in tissue sections of the seminal vesicles, and lipid peroxidation was estimated by measuring the malondialdehyde (MDA) levels in the seminal vesicles' fluid. The seminal vesicles in terazosin-treated rats were particularly distended in comparison with those of controls, and their secreting epithelium was suppressed. Cytoplasmic catalase expression in the secreting epithelial cells (% of cells) was increased in terazosin-treated specimens in comparison with controls (76.1 ± 17.1 versus 51.3 ± 25.1, P = 0.005). MDA levels (μm) were also higher in samples from treated subjects in comparison with controls (2.67 ± 1.19 versus 1.39 ± 0.19, P = 0.01). Although the direct effect of terazosin treatment on the seminal vesicles is that of impaired contractility, an indirect effect is that on fertility by increasing lipid peroxidation in the seminal fluid and/or through degrading of hydrogen peroxide that is essential for sperm capacitation.

  6. Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats.

    Science.gov (United States)

    Sankhwar, Madhu L; Yadav, Rajesh S; Shukla, Rajendra K; Singh, Dhirendra; Ansari, Reyaz W; Pant, Aditya B; Parmar, Devendra; Khanna, Vinay K

    2016-03-01

    Human exposure to monocrotophos, an organophosphate pesticide, could occur due to its high use in agriculture to protect crops. Recently, we found that postlactational exposure to monocrotophos impaired cholinergic mechanisms in young rats and such changes persisted even after withdrawal of monocrotophos exposure. In continuation to this, the effect of monocrotophos on noncholinergic targets and role of oxidative stress in its neurotoxicity has been studied. Exposure of rats from postnatal day (PD)22 to PD49 to monocrotophos (0.50 or 1.0 mg kg(-1) body weight, perorally) significantly impaired motor activity and motor coordination on PD50 as compared to controls. A significant decrease in the binding of (3)H-spiperone to striatal membrane (26%, p 0.05; 37%, p < 0.05) in those exposed at a higher dose, respectively, was observed on PD50 compared with the controls. Alterations in the binding persisted even after withdrawal of monocrotophos exposure on PD65. Increased oxidative stress in brain regions following exposure of rats to monocrotophos was also observed on PD50 that persisted 15 days after withdrawal of exposure on PD65. The results suggest that monocrotophos exerts its neurobehavioral toxicity by affecting noncholinergic functions involving dopaminergic and serotonergic systems associated with enhanced oxidative stress. The results also exhibit vulnerability of developing brain to monocrotophos as most of the changes persisted even after withdrawal of its exposure. PMID:24105069

  7. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels.

    Science.gov (United States)

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J; Kier, Ann B; Schroeder, Friedhelm

    2016-09-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559

  8. Developmental exposure to Passiflora incarnata induces behavioural alterations in the male progeny.

    Science.gov (United States)

    Bacchi, André D; Ponte, Bianca; Vieira, Milene L; de Paula, Jaqueline C C; Mesquita, Suzana F P; Gerardin, Daniela C C; Moreira, Estefânia G

    2013-01-01

    Passiflora incarnata is marketed in many countries as a phytomedicine and is prescribed mainly as a sedative and anxiolytic. Even though the directions of most marketed phytomedicines recommend them to be used under medical supervision, reproductive and developmental studies are sparse and not mandatory for regulatory purposes. To evaluate the reproductive and developmental toxicity of P. incarnata, Wistar female rats were gavaged with 30 or 300 mg kg(-1) of this herb from gestational Day (GD) 0 to postnatal Day (PND) 21. P. incarnata treatment did not influence dams' bodyweight or food intake or their reproductive performance (post-implantation loss, litter size, litter weight). There was also no influence on the physical development of pups (bodyweight gain, day of vaginal opening or preputial separation) or their behaviour in the open-field at PND 22, 35 and 75. Sexual behaviour was disrupted in adult male pups exposed to 300 mg kg(-1) of P. incarnata; in this group, only 3 out of 11 pups were sexually competent. This behavioural disruption was not accompanied by alterations in plasma testosterone levels, reproductive-related organs and glands weights or sperm count. It is hypothesised that aromatase inhibition may be involved in the observed effect.

  9. Early repeated maternal separation induces alterations of hippocampus reelin expression in rats

    Indian Academy of Sciences (India)

    Jianlong Zhang; Lina Qin; Hu Zhao

    2013-03-01

    The long-term effects of repeated maternal separation (MS) during early postnatal life on reelin expression in the hippocampus of developing rats were investigated in the present study. MS was carried out by separating Wistar rat pups singly from their mothers for 3 h a day during postnatal days (PND) 2–14. Reelin mRNA and protein levels in the hippocampus were determined using qRT-PCR and Western blotting, at PND 22, PND 60 and PND 90. MS resulted in the loss of body weight in the developing rats, and reelin mRNA and protein levels in the hippocampus generally were down-regulated over the developing period, but the reelin mRNA and protein levels in the hippocampus of 90-day-old male rats were up-regulated. These findings suggest that the long-term effects of MS on the expression levels of hippocampal reelin mRNA and protein depends on the age at which the stressed rats’ brains were collected; reelin had important implications for the maternal-neonate interaction needed for normal brain development. In conclusion, repeated MS occurring during early postnatal life may cause the alterations of hippocampal reelin expression with the increasing age of developing rats.

  10. Zingiber Officinale Alters 3,4-methylenedioxymethamphetamine-Induced Neurotoxicity in Rat Brain

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2012-01-01

    Full Text Available Objective: The spice Zingiber officinale or ginger possesses antioxidant activity and neuroprotective effects. The effects of this traditional herbal medicine on 3,4-methylenedioxymethamphetamine (MDMA induced neurotoxicity have not yet been studied. The present study considers the effects of Zingiber officinale on MDMA-induced spatial memory impairment and apoptosis in the hippocampus of male rats.Materials and Methods: In this experimental study, 21 adult male Sprague Dawley rats (200-250 g were classified into three groups (control, MDMA, and MDMA plus ginger. The groups were intraperitoneally administered 10 mg/kg MDMA, 10 mg/kg MDMA plus 100 mg/kg ginger extract, or 1 cc/kg normal saline as the control solution for one week (n=7 per group. Learning memory was assessed by Morris water maze (MWM after the last administration. Finally, the brains were removed to study the cell number in the cornu ammonis (CA1 hippocampus by light microscope, Bcl-2 by immunoblotting, and Bax expression by reverse transcription polymerase chain reaction (RT-PCR. Data was analyzed using SPSS 16 software and a one-way ANOVA test.Results: Escape latency and traveled distances decreased significantly in the MDMA plus ginger group relative to the MDMA group (p<0.001. Cell number increased in the MDMA plus ginger group in comparison to the MDMA group. Down-regulation of Bcl-2 and up-regulation of Bax were observed in the MDMA plus ginger group in comparison to the MDMA group (p<0.05.Conclusion: Our findings suggest that ginger consumption may lead to an improvement of MDMA-induced neurotoxicity.

  11. Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem.

    Science.gov (United States)

    Teper-Bamnolker, Paula; Dudai, Nativ; Fischer, Ravit; Belausov, Eduard; Zemach, Hanita; Shoseyov, Oded; Eshel, Dani

    2010-06-01

    Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 microl l(-1), showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 microl l(-1) of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days' exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants. PMID:20390295

  12. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta).

    Science.gov (United States)

    Kumari, Puja; Reddy, C R K; Jha, Bhavanath

    2015-10-01

    The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1-100 µM was a strong stimulant of reactive oxygen species (H(2)O(2), HO· and O(2) (·-)) (P < 0.05) causing considerable oxidative stress in G. dura. This further led to lipid peroxidation and degradation of the pigments Chl a and phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress.

  13. Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem.

    Science.gov (United States)

    Teper-Bamnolker, Paula; Dudai, Nativ; Fischer, Ravit; Belausov, Eduard; Zemach, Hanita; Shoseyov, Oded; Eshel, Dani

    2010-06-01

    Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 microl l(-1), showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 microl l(-1) of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days' exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants.

  14. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta).

    Science.gov (United States)

    Kumari, Puja; Reddy, C R K; Jha, Bhavanath

    2015-10-01

    The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1-100 µM was a strong stimulant of reactive oxygen species (H(2)O(2), HO· and O(2) (·-)) (P phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress. PMID:26276825

  15. Social status alters defeat-induced neural activation in Syrian hamsters.

    Science.gov (United States)

    Morrison, K E; Curry, D W; Cooper, M A

    2012-05-17

    Although exposure to social stress leads to increased depression-like and anxiety-like behavior, some individuals are more vulnerable than others to these stress-induced changes in behavior. Prior social experience is one factor that can modulate how individuals respond to stressful events. In this study, we investigated whether experience-dependent resistance to the behavioral consequences of social defeat was associated with a specific pattern of neural activation. We paired weight-matched male Syrian hamsters in daily aggressive encounters for 2 weeks, during which they formed a stable dominance relationship. We also included control animals that were exposed to an empty cage each day for 2 weeks. Twenty-four hours after the final pairing or empty cage exposure, half of the subjects were socially defeated in 3, 5-min encounters, whereas the others were not socially defeated. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains after social defeat and processed the tissue for c-Fos immunoreactivity. We found that dominants were more likely than subordinates to counter-attack the resident aggressor during social defeat, and they showed less submissive and defensive behavior at conditioned defeat testing compared with subordinates. Also, social status was associated with distinct patterns of defeat-induced neural activation in select brain regions, including the amygdala, prefrontal cortex, hypothalamus, and lateral septum. Our results indicate that social status is an important form of prior experience that predicts both initial coping style and the degree of resistance to social defeat. Further, the differences in defeat-induced neural activation suggest possible brain regions that may control resistance to conditioned defeat in dominant individuals.

  16. On-off control of burst high frequency electrical stimulation to suppress 4-AP induced seizures

    Science.gov (United States)

    Chiang, Chia-Chu; Lin, Chou-Ching K.; Ju, Ming-Shaung

    2013-06-01

    Objective. The goal of this study was to investigate, using model simulations and animal experiments, the efficiency and the side effects of burst high frequency stimulation combined with on-off control in seizure suppression. Approach. A modified mathematical hippocampal seizure model was created to provide evidence of the eligibility of this approach. In the experimental setup, two recording electrodes were inserted into bilateral septal CA1 of the hippocampus, and a stimulation electrode was placed on the ventral hippocampal commissure of a rat. After seizures had been induced by 4-aminopyridine treatment, on-off control stimulation was used to suppress the seizures at 20 s intervals. The stimulation time, cumulative charge and post-stimulation suppression were used to assess the effects of burst duration. Main results. The results showed that burst stimulation could suppress the seizures during the control period and burst stimulation of a shorter duration could keep the seizure suppressed with less effort. By decreasing the burst duration, the cumulative stimulation time became shorter, the delivered cumulative charge became lower, and the cumulative time of post-stimulation suppression became longer. Significance. The on-off control stimulation not only prolonged the duration of suppression but also avoided the side effects of the conversion of seizure patterns. In particular, decreasing the specified burst duration increased the efficiency of the burst stimulation.

  17. A crude model to study radio frequency induced density modification close to launchers

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, Dirk [Laboratory for Plasma Physics (ERM/KMS), EUROfusion Consortium Member, Trilateral Euregio Cluster, Brussels (Belgium); Crombé, Kristel [Laboratory for Plasma Physics (ERM/KMS), EUROfusion Consortium Member, Trilateral Euregio Cluster, Brussels (Belgium); Department of Applied Physics, Ghent University, Ghent (Belgium)

    2015-12-15

    The interplay between radio frequency (RF) waves and the density is discussed by adopting the general framework of a 2-time-scale multi-fluid treatment, allowing to separate the dynamics on the RF time scale from that on the time scale on which macroscopic density and flows vary as a result of the presence of electromagnetic and/or electrostatic fields. The focus is on regions close to launchers where charge neutrality is incomplete and waves are commonly evanescent. The fast time scale dynamics influences the slow time scale behavior via quasilinear terms (the Ponderomotive force for the case of the equation of motion). Electrons and ions are treated on the same footing. Also, both fast and slow waves are retained in the wave description. Although this work is meant as a subtopic of a large study—the wave induced “convective cell” physics at hand is of a 2- or 3-dimensional nature while this paper limits itself to a single dimension—a few tentative examples are presented.

  18. A crude model to study radio frequency induced density modification close to launchers

    International Nuclear Information System (INIS)

    The interplay between radio frequency (RF) waves and the density is discussed by adopting the general framework of a 2-time-scale multi-fluid treatment, allowing to separate the dynamics on the RF time scale from that on the time scale on which macroscopic density and flows vary as a result of the presence of electromagnetic and/or electrostatic fields. The focus is on regions close to launchers where charge neutrality is incomplete and waves are commonly evanescent. The fast time scale dynamics influences the slow time scale behavior via quasilinear terms (the Ponderomotive force for the case of the equation of motion). Electrons and ions are treated on the same footing. Also, both fast and slow waves are retained in the wave description. Although this work is meant as a subtopic of a large study—the wave induced “convective cell” physics at hand is of a 2- or 3-dimensional nature while this paper limits itself to a single dimension—a few tentative examples are presented

  19. Pulse transformation and time-frequency filtering with electromagnetically induced transparency

    International Nuclear Information System (INIS)

    A simple analytical solution for the propagation of a weak Gaussian pulse in a dense absorptive medium with electromagnetically induced transparency is found. This solution is applied to the analysis of three regimes: (1) and (2) the pulse spectrum is narrower than the transparency window [which is narrow (1) or wide (2) with respect to the width of the absorption line] and (3) the pulse spectrum is broader than the transparency window. It is shown that the pulse maintains its area in all three regimes and maintains its Gaussian shape but narrows in spectrum in regime 1. In regime 2, the pulse begins to distort after a certain distance. In regime 3, the pulse is split into two parts. One part is an adiabatic part with a spectrum defined by the effective width of the transparency window for a thick medium and the other is an oscillating nonadiabatic part of short duration. The adiabatic part propagates slowly and the nonadiabatic part propagates with a velocity close to the speed of light. Thus in regime 3, the medium acts as a time-frequency filter, separating the narrow and wide spectrum components of the pulse in time at the output of the absorber

  20. Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma

    OpenAIRE

    Steven Haenen; Jeroen A.J. Vanoirbeek; Vanessa De Vooght; Liliane Schoofs; Benoit Nemery; Elke Clynen; Hoet, Peter H. M.

    2015-01-01

    Introduction and Aim The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mi...

  1. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J;

    2014-01-01

    The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055...... SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose...

  2. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J.;

    2014-01-01

    The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055...... SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose...

  3. Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation

    International Nuclear Information System (INIS)

    Mycoplasmas are the smallest microorganisms capable of self-replication. Our previous studies show that some mycoplasmas are able to induce malignant transformation of host mammalian cells. This malignant transformation is a multistage process with the early infection, reversible and irreversible stages, and similar to human tumor development in nature. The purpose of this study is to explore mechanisms for this malignant transformation. To better understand mechanisms for this unique process, we examined gene expression profiles of C3H cells at different stages of the mycoplasma-induced transformation using cDNA microarray technology. A total of 1185 genes involved in oncogenesis, apoptosis, cell growth, cell-cycle regulation, DNA repair, etc. were examined. Differences in the expression of these genes were compared and analyzed using the computer software AtlasImage. Among 1185 genes screened, 135 had aberrant expression at the early infection stage, 252 at the reversible stage and 184 at the irreversible stage. At the early infection stage, genes with increased expression (92 genes) were twice more than those with decreased expression (42 genes). The global gene expression at the reversible stage appeared to be more volatile than that at any other stages but still resembled the profile at the early infection stage. The expression profile at the irreversible stage shows a unique pattern of a wide range of expression levels and an increased number of expressing genes, especially the cancer-related genes. Oncogenes and tumor suppressors are a group of molecules that showed significant changes in expression during the transformation. The majority of these changes occurred in the reversible and irreversible stages. A prolonged infection by mycoplasmas lead to the expression of more cancer related genes at the irreversible stage. The results indicate that the expression profiles correspond with the phenotypic features of the cells in the mycoplasma induced

  4. Collective properties of injection-induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions

    Science.gov (United States)

    Dempsey, David; Suckale, Jenny; Huang, Yihe

    2016-05-01

    Probabilistic seismic hazard assessment for induced seismicity depends on reliable estimates of the locations, rate, and magnitude frequency properties of earthquake sequences. The purpose of this paper is to investigate how variations in these properties emerge from interactions between an evolving fluid pressure distribution and the mechanics of rupture on heterogeneous faults. We use an earthquake sequence model, developed in the first part of this two-part series, that computes pore pressure evolution, hypocenter locations, and rupture lengths for earthquakes triggered on 1-D faults with spatially correlated shear stress. We first consider characteristic features that emerge from a range of generic injection scenarios and then focus on the 2010-2011 sequence of earthquakes linked to wastewater disposal into two wells near the towns of Guy and Greenbrier, Arkansas. Simulations indicate that one reason for an increase of the Gutenberg-Richter b value for induced earthquakes is the different rates of reduction of static and residual strength as fluid pressure rises. This promotes fault rupture at lower stress than equivalent tectonic events. Further, b value is shown to decrease with time (the induced seismicity analog of b value reduction toward the end of the seismic cycle) and to be higher on faults with lower initial shear stress. This suggests that faults in the same stress field that have different orientations, and therefore different levels of resolved shear stress, should exhibit seismicity with different b-values. A deficit of large-magnitude events is noted when injection occurs directly onto a fault and this is shown to depend on the geometry of the pressure plume. Finally, we develop models of the Guy-Greenbrier sequence that captures approximately the onset, rise and fall, and southwest migration of seismicity on the Guy-Greenbrier fault. Constrained by the migration rate, we estimate the permeability of a 10 m thick critically stressed basement

  5. APL1, an altered peptide ligand derived from human heat-shock protein 60, increases the frequency of Tregs and its suppressive capacity against antigen responding effector CD4 + T cells from rheumatoid arthritis patients.

    Science.gov (United States)

    Barberá, Ariana; Lorenzo, Noraylis; van Kooten, Peter; van Roon, Joel; de Jager, Wilco; Prada, Dinorah; Gómez, Jorge; Padrón, Gabriel; van Eden, Willem; Broere, Femke; Del Carmen Domínguez, María

    2016-07-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4 + T cells producing IL-17 and CD4 + CD25(high)FoxP3 + Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4 + CD25(high)FoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients. PMID:27241313

  6. Plant cell death and cellular alterations induced by ozone: Key studies in Mediterranean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Faoro, Franco, E-mail: franco.faoro@unimi.i [Istituto di Patologia Vegetale, Universita di Milano and CNR, Istituto di Virologia Vegetale, U.O.T di Milano, Via Celoria 2, 20133 Milan (Italy); Iriti, Marcello [Istituto di Patologia Vegetale, Universita di Milano and CNR, Istituto di Virologia Vegetale, U.O.T di Milano, Via Celoria 2, 20133 Milan (Italy)

    2009-05-15

    An account of histo-cytological and ultrastructural studies on ozone effect on crop and forest species in Italy is given, with emphasis on induced cell death and the underlying mechanisms. Cell death phenomena possibly due to ambient O{sub 3} were recorded in crop and forest species. In contrast, visible O{sub 3} effects on Mediterranean vegetation are often unclear. Microscopy is thus suggested as an effective tool to validate and evaluate O{sub 3} injury to Mediterranean vegetation. A DAB-Evans blue staining was proposed to validate O{sub 3} symptoms at the microscopic level and for a pre-visual diagnosis of O{sub 3} injury. The method has been positively tested in some of the most important crop species, such as wheat, tomato, bean and onion and, with some restriction, in forest species, and it also allows one to gain some very useful insights into the mechanisms at the base of O{sub 3} sensitivity or tolerance. - Ozone-induced cell death is a frequent phenomenon in Mediterranean conditions, not only in the most sensitive crops but also in forest species.

  7. Histone modifications and alcohol-induced liver disease: Are altered nutrients the missing link?

    Institute of Scientific and Technical Information of China (English)

    Akshata Moghe; Swati Joshi-Barve; Smita Ghare; Leila Gobejishvili; Irina Kirpich; Craig J McClain; Shirish Barve

    2011-01-01

    Alcoholism is a major health problem in the United States and worldwide, and alcohol remains the single most significant cause of liver-related diseases and deaths. Alcohol is known to influence nutritional status at many levels including nutrient intake, absorption, utilization, and excretion, and can lead to many nutritional disturbances and deficiencies. Nutrients can dramatically affect gene expression and alcohol-induced nutrient imbalance may be a major contributor to pathogenic gene expression in alcohol-induced liver disease (ALD). There is growing interest regarding epigenetic changes, including histone modifications that regulate gene expression during disease pathogenesis. Notably, modifications of core histones in the nucleosome regulate chromatin structure and DNA methylation, and control gene transcription. This review highlights the role of nutrient disturbances brought about during alcohol metabolism and their impact on epigenetic histone modifications that may contribute to ALD. The review is focused on four critical metabolites, namely, acetate, S-adenosylmethionine, nicotinamide adenine dinucleotide and zinc that are particularly relevant to alcohol metabolism and ALD.

  8. Methoxychlor induced biochemical alterations and disruption of spermatogenesis in adult rats.

    Science.gov (United States)

    Aly, Hamdy A A; Azhar, Ahmad S

    2013-09-01

    Adult male albino rats were treated orally with methoxychlor at doses of 0, 50, 100 or 200 mg/kg/day for 15 consecutive days. Testicular weight, sperm count and motility were significantly decreased. Methoxychlor at doses of 100 and 200 mg/kg significantly inhibited α-glucosidase activity, while plasma testosterone was significantly decrease by the three dose levels in a dose-related pattern. Testicular activities of 3β-HSD, 17β-HSD, SDH were significantly decreased, while ACP, ALP (except for 50 mg/kg), and LDH were significantly increased. H2O2 production and LPO were significantly increased while the enzymic (SOD, CAT and GPx) and non-enzymic antioxidants (thiol content) were significantly decreased. Caspase-3 activity was significantly increased in a dose related manner. The findings of this study indicate that methoxychlor induces oxidative stress associated with impairment of spermatogenesis, in addition to apoptosis. These data provide insight into the mode of action of methoxychlor-induced toxicity in the rat testis.

  9. The Role of Altered Nucleotide Excision Repair and UVB-Induced DNA Damage in Melanomagenesis

    Directory of Open Access Journals (Sweden)

    Timothy Budden

    2013-01-01

    Full Text Available UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth’s surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V. XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.

  10. Time course study of microglial and behavioral alterations induced by 6-hydroxydopamine in rats.

    Science.gov (United States)

    Silva, Thiago Pereira da; Poli, Anicleto; Hara, Daniela Balz; Takahashi, Reinaldo Naoto

    2016-05-27

    Understanding the mechanisms responsible for nonmotor manifestations of Parkinson's disease (PD) is crucial in the search for new therapeutic approaches. The aim of the present study was to evaluate the time course of behavioral, neurochemical, and microglial responses after a retrograde partial lesion of the nigrostriatal pathway induced by bilateral injection of 6-hydroxydopamine (6-OHDA). The results showed that 6-OHDA was able to produce both anhedonic and anxiety behaviors; however, an increase of microglial density in some brain areas (substantia nigra, hippocampus and striatum) and deficits in locomotor activity was observed only one week after the lesion. Striatal levels of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) were reduced by approximately 60% at all times tested. Conversely, increased levels of serotonin (5-HT) and its metabolite were also noted in the striatum only at the first week. These data extend our previous findings and suggest that the retrograde and partial damage of dopaminergic neurons in the substantia nigra can induce effects resembling premotor symptoms of PD, two and three weeks after injury. PMID:27113204

  11. Atherosclerosis Alters Loading-Induced Arterial Damage: Implications for Robotic Surgery

    Science.gov (United States)

    Geenens, Rachel; Famaey, Nele; Gijbels, Andy; Verhelle, Silke; Vinckier, Stefan; Vander Sloten, Jos; Herijgers, Paul

    2016-01-01

    Background Lack of intra-operative haptic information during robotic surgery increases the risk for unintended tissue overload and damage. Knowledge about the acute and chronic fundamental relationship between force load and induced damage in healthy and diseased arteries is crucial to enable intra-operative haptic feedback or shared autonomy and improve patient safety. Methods Arteries of wildtype and atherosclerotic mice were clamped in vivo for 2 minutes (0.0N, 0.6N or 1.27N). Histological analysis (Verhoeff’s-Van Gieson, Osteopontin, CD45, CD105) was performed immediately, or after 6 hours, 2 weeks or 1 month. Endothelium-dependent and–independent vasodilatation was assessed immediately or 1 month after clamping. Results Endothelium dependent vasodilatation is worse after clamping of wildtype arteries, but is restored after one month. Clamping also results in flattening of the innermost elastic membrane of both genotypes, which is reversed over time for wildtype arteries but not for vessels from atherosclerotic mice. Higher osteopontin content in wildtype and LDLR-/- mice after 2 weeks suggests a phenotypic switch of the medial smooth muscle cells (SMCs), an effect that is reversed after 1 month. While inflammation in the intima diminishes, medial CD45 content rises through time in both genotypes. CD105 staining shows that even manipulation without clamping results in endothelial cell loss in both LDLR+/+ and LDLR-/- mice. Conclusions Arterial clamping induces different acute and long-term injury to the vessel wall of atherosclerotic and healthy arteries. PMID:27295082

  12. A correlative study on the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mammals

    International Nuclear Information System (INIS)

    A series of investigations on the correlation between the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mouse and rhesus monkey is described. In the mouse the induction of reciprocal translocations in bone-marrow cells was compared with that in spermatogonia (as scored in the descending spermatocytes). In the rhesus monkey frequencies of radiation-induced chromosome aberrations in spermatogonia and peripheral blood lymphocytes were studied. Furthermore the effect of multigeneration irradiation (69 generations with 200 rads X-rays) on the sensitivity for translocation induction in spermatogonia of male mice was studied. Frequencies of dicentric chromosomes and chromosomal deletions in cultured peripheral blood lymphocytes of 5 different types of mice were determined following in vitro irradiation with doses of 100 and/or 200 rad X-rays. To obtain more insight into the processes underlying translocation induction in spermatogonia of the mouse, fractionation experiments were conducted

  13. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Science.gov (United States)

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  14. Attenuation of Helicteres isora L. bark extracts on streptozotocin-induced alterations in glycogen and carbohydrate metabolism in albino rats.

    Science.gov (United States)

    Kumar, G; Sharmila Banu, G; Murugesan, A G

    2009-11-01

    The present study was undertaken to assess the effect of Helicteres isora L. on four important enzymes of carbohydrate metabolism (glucokinase [GK], hexokinase [HK] phosphofructokinase [PFK] and fructose-1, 6-bisphosphatase [FBP]) along with glycogen content of insulin-dependent (skeletal muscle and liver) and insulin-independent tissues (kidneys and brain) in streptozotocin (STZ; 60 mg/kg)-induced model of diabetes for 30 days. Administration of bark extracts (100, 200 mg/kg) for 30 days led to decrease in plasma glucose levels by approximately 9.60% and 22.04% and 19.18% and 33.93% on 15th and 30th day, respectively, of the experiment. Liver and two-kidney weight expressed as percentage of body weight significantly increased in diabetics (P bark extract of H. isora partially corrected this alteration. The efficacy of the bark extract was comparable with Tolbutamide, a well-known hypoglycemic drug.

  15. Isokinetic eccentric exercise as a model to induce and reproduce pathophysiological alterations related to delayed onset muscle soreness

    DEFF Research Database (Denmark)

    Lund, Henrik; Vestergaard-Poulsen, P; Kanstrup, I.L.;

    1998-01-01

    /Pi), the ratio of inorganic phosphate to adenosintriphosphate (Pi/ATP), the ratio of phosphocreatine to adenosintriphosphate (PCr/ATP) (all three ratios measured with 31P-nuclear magnetic resonance spectroscopy), dynamic muscle strength, plasma creatine kinase (CK), degree of pain and 'muscle' blood flow rate...... subjects experienced pain, reaching a maximum 48 h after eccentric exercise in both exp. I and II. A systematic effect over time for CK (increasing 278% resp. 308%), muscle strength (decreasing more than 10%), PCr/Pi (decreasing 31% resp. 43%) and Pi/ATP (increasing 55% resp. 99%) was found in both exp. I...... and II (P muscle strength, PCr/Pi, Pi/ATP and PCr/ATP. It is concluded that pathophysiological alterations in m. quadriceps following eccentric exercise can be induced and can...

  16. Effect of milk hydrolysates on inflammation markers and drug-induced transcriptional alterations in cell-based models

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Theil, Peter Kappel; Larsen, Lotte Bach;

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAID) are associated with gastrointestinal inflammation and subsequent damage to the intestinal tissue. Earlier studies in our laboratory have found that specific casein hydrolysates (CH) might be useful in the treatment of gastrointestinal wounds....... The underlying mechanisms that support inflammation and wound healing are not completely understood, but transcriptional alterations may be used as markers for inflammation and wound healing. The bioactivity of 3 CH prepared by treatment of commercial casein with pepsin (60 min) followed by corolase (0, 10......B (NFκB) by real-time PCR. Furthermore, the effect of CH on lipopolysaccharide-induced inflammation was evaluated in macrophages by measuring PG E2 levels. Casein hydrolysates treated with corolase for 10 or 60 min after pepsin treatment downregulated transcription of TGF-β1 and NFκB (P

  17. Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period.

    Science.gov (United States)

    Berendt, Frank J; Fröhlich, Thomas; Schmidt, Susanne E M; Reichenbach, Horst-Dieter; Wolf, Eckhard; Arnold, Georg J

    2005-07-01

    During the peri-implantation period, molecular signaling between embryo and endometrium (layer of tissue lining the uterus lumen) is supposed to be crucial for the maintenance of pregnancy. To investigate embryo-induced alterations in the proteome of bovine endometrium in the preattachment period (day 18), we used monozygotic cattle twins (generated by embryo splitting) as a model eliminating genetic variability as a source for proteome differences. One of the twins was pregnant after the transfer of two in vitro produced blastocysts, while the corresponding twin received a sham-transfer and served as a nonpregnant control. The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) analysis of the endometrium samples of three twin pairs (pregnant/nonpregnant) revealed four proteins with significantly higher abundance (p embryo-maternal interactions.

  18. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders.

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  19. Alterations of mtDNA number and 4977 bp deletion induced by ionizing radiation in human peripheral blood

    International Nuclear Information System (INIS)

    Alterations of mitochondria DNA (mtDNA) 4977 bp common deletion (CD) and mtDNA copy number induced by ionizing radiation were observed in human different cell lines and total body irradiation patients. However, only few experiments have evaluated the levels of the CD and mtDNA copy number in human peripheral blood exposed to ionizing radiation till now. The aim of this study is to analyze the mtDNA alterations in irradiated human peripheral blood from healthy donors as well as to explore their feasibility as biomarkers for constructing new biodosimeter. Peripheral blood samples were collected from six healthy donors, and exposed to 60Co gamma ray with the doses of 0 Gy, 1 Gy, 2 Gy, 3 Gy, 4 Gy and 5 Gy. Levels of the CD and mtDNA copy number in irradiated samples after 2h or 24 h incubation were detected using TaqMan real-time PCR, and the CD ratio was calculated. The results showed that the mean of the CD ratio and the CD copy number exhibited a dose-dependent increase 2 h in the dose range from 0-5 Gy, and of the mtDNA copy number significantly increased 24 h in irradiated groups compared with 0 Gy group after irradiation. It indicates that the parameters in human peripheral blood may be considered as molecular biomarkers to applying construction of new biodosimeter. (authors)

  20. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  1. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    Directory of Open Access Journals (Sweden)

    Norshalizah Mamikutty

    2015-01-01

    Full Text Available Background. Nonalcoholic fatty liver disease (NAFLD is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  2. Characterization of oncogene-induced metabolic alterations in hepatic cells by using ultrahigh performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Tang, Zhi; Cao, Tingting; Lin, Shuhai; Fu, Li; Li, Shangfu; Guan, Xin-Yuan; Cai, Zongwei

    2016-05-15

    Elucidation of altered metabolic pathways by using metabolomics may open new avenues for basic research on disease mechanisms and facilitate the development of novel therapeutic strategies. Here, we report the development of ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomics platform with capability of measuring both cationic and anionic intermediates in cellular metabolism. The platform was established based on the hydrophobic ion-pairing interaction chromatography coupled with tandem mass spectrometry in multiple reaction monitoring (MRM) mode. The MRM transitions were created and optimized via energy-resolved collision-induced dissociation experiments, serving as an essential reference point for the quantification and identification. For chromatographic separation, application of hydrophobic ion-pairing interaction led to dramatic enhancement on retention of water-soluble metabolites and provision of good peak shapes. Two volatile ion-pairing reagents, namely heptafluorobutyric acid and tributylamine, were used with dedicated C18 columns as complementary separation systems coupled with the MRM analysis, allowing measurement of the metabolites of interest at nanomolar levels. The developed platform was successfully applied to investigate the altered metabolism in hepatic cells with over-expression of an oncogene, thus can provide important information on the rewired metabolism. PMID:26992502

  3. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  4. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach.

    Science.gov (United States)

    Madeira, D; Araújo, J E; Vitorino, R; Capelo, J L; Vinagre, C; Diniz, M S

    2016-07-01

    Climate change has pervasive effects on marine ecosystems, altering biodiversity patterns, abundance and distribution of species, biological interactions, phenology, and organisms' physiology, performance and fitness. Fish early life stages have narrow thermal windows and are thus more vulnerable to further changes in water temperature. The aim of this study was to address the sensitivity and underlying molecular changes of larvae of a key fisheries species, the sea bream Sparus aurata, towards ocean warming. Larvae were exposed to three temperatures: 18°C (control), 24°C (warm) and 30°C (heat wave) for seven days. At the end of the assay, i) survival curves were plotted for each temperature treatment and ii) entire larvae were collected for proteomic analysis via 2D gel electrophoresis, image analysis and mass spectrometry. Survival decreased with increasing temperature, with no larvae surviving at 30°C. Therefore, proteomic analysis was only carried out for 18°C and 24°C. Larvae up-regulated protein folding and degradation, cytoskeletal re-organization, transcriptional regulation and the growth hormone while mostly down-regulating cargo transporting and porphyrin metabolism upon exposure to heat stress. No changes were detected in proteins related to energetic metabolism suggesting that larval fish may not have the energetic plasticity needed to sustain cellular protection in the long-term. These results indicate that despite proteome modulation, S. aurata larvae do not seem able to fully acclimate to higher temperatures as shown by the low survival rates. Consequently, elevated temperatures seem to have bottleneck effects during fish early life stages, and future ocean warming can potentially compromise recruitment's success of key fisheries species. PMID:27062348

  5. Decoding motor responses from the EEG during altered states of consciousness induced by propofol

    Science.gov (United States)

    Blokland, Yvonne; Farquhar, Jason; Lerou, Jos; Mourisse, Jo; Scheffer, Gert Jan; van Geffen, Geert-Jan; Spyrou, Loukianos; Bruhn, Jörgen

    2016-04-01

    Objective. Patients undergoing general anesthesia may awaken and become aware of the surgical procedure. Due to neuromuscular blocking agents, patients could be conscious yet unable to move. Using brain-computer interface (BCI) technology, it may be possible to detect movement attempts from the EEG. However, it is unknown how an anesthetic influences the brain response to motor tasks. Approach. We tested the offline classification performance of a movement-based BCI in 12 healthy subjects at two effect-site concentrations of propofol. For each subject a second classifier was trained on the subject’s data obtained before sedation, then tested on the data obtained during sedation (‘transfer classification’). Main results. At concentration 0.5 μg ml-1, despite an overall propofol EEG effect, the mean single trial classification accuracy was 85% (95% CI 81%-89%), and 83% (79%-88%) for the transfer classification. At 1.0 μg ml-1, the accuracies were 81% (76%-86%), and 72% (66%-79%), respectively. At the highest propofol concentration for four subjects, unlike the remaining subjects, the movement-related brain response had been largely diminished, and the transfer classification accuracy was not significantly above chance. These subjects showed a slower and more erratic task response, indicating an altered state of consciousness distinct from that of the other subjects. Significance. The results show the potential of using a BCI to detect intra-operative awareness and justify further development of this paradigm. At the same time, the relationship between motor responses and consciousness and its clinical relevance for intraoperative awareness requires further investigation.

  6. Trawling-induced alterations of deep-sea sediment accumulation rates during the Anthropocene

    Science.gov (United States)

    Puig, P.; Paradis, S.; Masque, P.; Martin, J.; Juan, X.; Palanques, A.

    2015-12-01

    Commercial bottom trawling causes direct physical disturbance of the marine sedimentary environments by scraping and ploughing the seabed, generating periodic resuspension of surface sediments. However, the quantification of the sediment that is removed by trawling and exported across the continental margin remains largely unaddressed, and the preservation of the signal of such impacts in the geological record have been mostly overlooked. The analysis of sediment cores collected along the Catalan margin (NW Mediterranean) has allowed evaluating the contribution of this anthropogenic activity to the present-day sediment dynamics. Sediment cores at intensively trawled sites are characterized by over-consolidated sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sedimentary deposits. In turn, combined 210Pb and 137Cs chronologies indicate a significant increase of sediment accumulation rates within submarine canyon environments since the 1970s, coincidently with a strong impulse in the industrialization of the trawling fleets of this region. Two sampling sites that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied 1-2 decades after the first studies and revealed a second and even larger increase of sediment accumulation rates (>2 cm/y) occurring at the beginning of the XXI century. This recent change has been attributed to a preferential displacement of the trawling fleet towards fishing grounds surrounding submarine canyons and, also, to technical improvements in trawling vessels, presumably related to financial subsidies provided to the fishing sector. The alteration of sediment accumulation rates described in this continental margin may occur in many regions of the World's oceans given the wide geographical distribution of this human activity, and therefore, it could represent a potential marker of the Anthropocene in deep-sea environments.

  7. Selenium Protects Retinal Cells from Cisplatin-Induced Alterations in Carbohydrate Residues

    Science.gov (United States)

    Akşit, Dilek; Yazıcı, Alper; Akşit, Hasan; Sarı, Esin S.; Yay, Arzu; Yıldız, Onur; Kılıç, Adil; Ermiş, Sıtkı S.; Seyrek, Kamil

    2016-01-01

    Background: Investigate alterations in the expression and localization of carbohydrate units in rat retinal cells exposed to cisplatin toxicity. Aims: The aim of the study was to evaluate putative protective effects of selenium on retinal cells subjected to cisplatin. Study Design: Animal experiment. Methods: Eighteen healthy Wistar rats were divided into three equal groups: 1. Control, 2. Cisplatin and 3. Cisplatin+selenium groups. After anesthesia, the right eye of each rat was enucleated. Results: Histochemically, retinal cells of control groups reacted with α-2,3-bound sialic acid-specific Maackia amurensis lectin (MAA) strongly, while cisplatin reduced the staining intensity for MAA. However, selenium administration alleviated the reducing effect of cisplatin on the binding sites for MAA in retinal cells. The staining intensity for N-acetylgalactosamine (GalNAc residues) specific Griffonia simplicifolia-1 (GSL–1) was relatively slight in control animals and cisplatin reduced this slight staining for GSL-1 further. Selenium administration mitigated the reducing effect of cisplatin on the binding sites for GSL-1. A diffuse staining for N-acetylglucosamine (GlcNAc) specific wheat germ agglutinin (WGA) was observed throughout the retina of the control animals. In particular, cells localized in the inner plexiform and photoreceptor layers are reacted strongly with WGA. Compared to the control animals, binding sites for WGA in the retina of rats given cisplatin were remarkably decreased. However, the retinal cells of rats given selenium reacted strongly with WGA. Conclusion: Cisplatin reduces α-2,3-bound sialic acid, GlcNAc and GalNAc residues in certain retinal cells. However, selenium alleviates the reducing effect of cisplatin on carbohydrate residues in retinal cells. PMID:27606141

  8. Alterations of Thymic Epithelial Cells in Lipopolysaccharide-induced Neonatal Thymus Involution

    Institute of Scientific and Technical Information of China (English)

    Yong-Jie Zhou; Hua Peng; Yan Chen; Ya-Lan Liu

    2016-01-01

    Background: Vascular endothelial growth factor (VEGF) in the thymus was mainly produced by the thymic epithelial cells (TECs), the predominant component of the thymic microenvironment.The progression of TECs and the roles of VEGF in the neonatal thymus during sepsis have not been reported.This study aimed to explore the alterations of TECs and VEGF level in the neonatal thymus involution and to explore the possible mechanisms at the cellular level.Methods: By establishing a model of clinical sepsis, the changes of TECs were measured by hematoxylin-eosin staining, confocal microscopy, and flow cytometry.Moreover, the levels of VEGF in serum and thymus were assessed based on enzyme-linked immunosorbent assay and Western blotting.Results: The number ofthymocytes and TECs was significantly decreased 24 h after lipopolysaccharide (LPS) challenge, (2.40 ± 0.46)× 107 vs.(3.93 ± 0.66)×107 and (1.16 ± 0.14)×105 vs.(2.20 ± 0.19)×105, P < 0.05, respectively.Cortical TECs and medullary TECs in the LPS-treated mice were decreased 1.5-fold and 3.9-fold, P < 0.05, respectively, lower than those in the controls.The number of thymic epithelial progenitors was also decreased.VEGF expression in TECs was down-regulated in a time-dependent manner.Conclusion: VEGF in thymic cells subsets might contribute to the development of TECs in neonatal sepsis.

  9. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Anis Rageh Al-Maleki

    Full Text Available Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV] to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk, ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.

  10. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids

    Institute of Scientific and Technical Information of China (English)

    Lotta K Stenman; Reetta Holma; Riitta Korpela

    2012-01-01

    AIM:To investigate whether high-fat-feeding is associated with increased intestinal permeability via alterations in bile acid metabolism.METHODS:Male C57B1/6J mice were fed on a high-fat (n =26) or low-fat diet (n =24) for 15 wk.Intestinal permeability was measured from duodenum,jejunum,ileum and colon in an Ussing chamber system using 4 kDa FITC-labeled dextran as an indicator.Fecal bile acids were analyzed with gas chromatography.Segments of jejunum and colon were analyzed for the expression of farnesoid X receptor (FXR) and tumor necrosis factor (TNF).RESULTS:Intestinal permeability was significantly increased by high-fat feeding in jejunum (median 0.334 for control vs 0.393 for high-fat,P =0.03) and colon (0.335 for control vs 0.433 for high-fat,P =0.01),but not in duodenum or ileum.The concentration of nearly all identified bile acids was significantly increased by high-fat feeding (P < 0.001).The proportion of ursodeoxycholic acid (UDCA) in all bile acids was decreased (1.4% ± 0.1% in high-fat vs 2.8% ± 0.3% in controls,P < 0.01) and correlated inversely with intestinal permeability (r =-0.72,P =0.01).High-fat feeding also increased jejunal FXR expression,as well as TNF expression along the intestine,especially in the colon.CONCLUSION:High-fat-feeding increased intestinal permeability,perhaps by a mechanism related to bile acid metabolism,namely a decreased proportion of fecal UDCA and increased FXR expression.

  11. Microgravity-induced alterations in signal transduction in cells of the immune system

    Science.gov (United States)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  12. Low temperature conditioning of garlic (Allium sativum L. "seed" cloves induces alterations in sprouts proteome

    Directory of Open Access Journals (Sweden)

    Miguel David Dufoo-Hurtado

    2015-05-01

    Full Text Available Low-temperature conditioning of garlic seed cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that seed bulbs from ‘Coreano’ variety conditioned at 5 °C for five weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic seed cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23 °C, and the other was conditioned at low temperature (5 °C for five weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic seed cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous

  13. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    International Nuclear Information System (INIS)

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period

  14. Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage.

    Directory of Open Access Journals (Sweden)

    Alexandre Fouré

    Full Text Available Isometric contractions induced by neuromuscular electrostimulation (NMES have been shown to result in a prolonged force decrease but the time course of the potential central and peripheral factors have never been investigated. This study examined the specific time course of central and peripheral factors after isometric NMES-induced muscle damage. Twenty-five young healthy men were subjected to an NMES exercise consisting of 40 contractions for both legs. Changes in maximal voluntary contraction force of the knee extensors (MVC, peak evoked force during double stimulations at 10 Hz (Db(10 and 100 Hz (Db(100, its ratio (10:100, voluntary activation, muscle soreness and plasma creatine kinase activity were assessed before, immediately after and throughout four days after NMES session. Changes in knee extensors volume and T2 relaxation time were also assessed at two (D2 and four (D4 days post-exercise. MVC decreased by 29% immediately after NMES session and was still 19% lower than the baseline value at D4. The decrease in Db(10 was higher than in Db(100 immediately and one day post-exercise resulting in a decrease (-12% in the 10:100 ratio. On the contrary, voluntary activation significantly decreased at D2 (-5% and was still depressed at D4 (-5%. Muscle soreness and plasma creatine kinase activity increased after NMES and peaked at D2 and D4, respectively. T2 was also increased at D2 (6% and D4 (9%. Additionally, changes in MVC and peripheral factors (e.g., Db(100 were correlated on the full recovery period, while a significant correlation was found between changes in MVC and VA only from D2 to D4. The decrease in MVC recorded immediately after the NMES session was mainly due to peripheral changes while both central and peripheral contributions were involved in the prolonged force reduction. Interestingly, the chronological events differ from what has been reported so far for voluntary exercise-induced muscle damage.

  15. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    Science.gov (United States)

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission. PMID:26276081

  16. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  17. In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice.

    Science.gov (United States)

    Ribeiro, André Luiz Teroso; Shimada, Ana Lúcia Borges; Hebeda, Cristina Bichels; de Oliveira, Tiago Franco; de Melo Loureiro, Ana Paula; Filho, Walter Dos Reis Pereira; Santos, Alcinéa Meigikos Dos Anjos; de Lima, Wothan Tavares; Farsky, Sandra Helena Poliselli

    2011-10-01

    Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50ppm HQ (1h/day for 5 days). One hour later, oxidative burst, cell cycle, DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1h later the last exposures, inflammation was induced by LPS inhalation (0.1mg/ml/10min) and 3h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of β(2) and β(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ

  18. Training-induced improvements in postural control are accompanied by alterations in cerebellar white matter in brain injured patients

    Directory of Open Access Journals (Sweden)

    David Drijkoningen

    2015-01-01

    Full Text Available We investigated whether balance control in young TBI patients can be promoted by an 8-week balance training program and whether this is associated with neuroplastic alterations in brain structure. The cerebellum and cerebellar peduncles were selected as regions of interest because of their importance in postural control as well as their vulnerability to brain injury. Young patients with moderate to severe TBI and typically developing (TD subjects participated in balance training using PC-based portable balancers with storage of training data and real-time visual feedback. An additional control group of TD subjects did not attend balance training. Mean diffusivity and fractional anisotropy were determined with diffusion MRI scans and were acquired before, during (4 weeks and at completion of training (8 weeks together with balance assessments on the EquiTest® System (NeuroCom which included the Sensory Organization Test, Rhythmic Weight Shift and Limits of Stability protocols. Following training, TBI patients showed significant improvements on all EquiTest protocols, as well as a significant increase in mean diffusivity in the inferior cerebellar peduncle. Moreover, in both training groups, diffusion metrics in the cerebellum and/or cerebellar peduncles at baseline were predictive of the amount of performance increase after training. Finally, amount of training-induced improvement on the Rhythmic Weight Shift test in TBI patients was positively correlated with amount of change in fractional anisotropy in the inferior cerebellar peduncle. This suggests that training-induced plastic changes in balance control are associated with alterations in the cerebellar white matter microstructure in TBI patients.

  19. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Directory of Open Access Journals (Sweden)

    Linda V. Hjørnevik

    2015-12-01

    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  20. Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    DEFF Research Database (Denmark)

    Sayanjali, Behnam; Christensen, Gitte J M; Al-Zeer, Munir A;

    2016-01-01

    Propionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation......-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested...... the hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant...

  1. Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    Directory of Open Access Journals (Sweden)

    Matthias Schleuning

    2012-12-01

    Full Text Available Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species.

  2. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice.

    Science.gov (United States)

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P; Nadav, Tali; Roberto, Marisa; Lasek, Amy W; Roberts, Amanda J

    2016-08-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk -/-) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk -/- mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk -/- mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk -/- mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk -/- mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  3. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion.

    Science.gov (United States)

    Lucas, Samuel J E; Ainslie, Philip N; Murrell, Carissa J; Thomas, Kate N; Franz, Elizabeth A; Cotter, James D

    2012-08-01

    Regular exercise improves the age-related decline in cerebral blood flow (CBF) and is associated with improved cognitive function; however, less is known about the direct relationship between CBF and cognitive function. We examined the influence of healthy aging on the capability of acute exercise to improve cognition, and whether exercise-induced improvements in cognition are related to CBF and cortical hemodynamics. Middle cerebral artery blood flow velocity (MCAv; Doppler) and cortical hemodynamics (NIRS) were measured in 13 young (24±5 y) and 9 older (62±3 y) participants at rest and during cycling at 30% and 70% of heart rate range (HRR). Cognitive performance was assessed using a computer-adapted Stroop task (i.e., test of executive function cognition) at rest and during exercise. Average response times on the Stroop task were slower for the older compared to younger group for both simple and difficult tasks (Pexercise (Pexercise (P=0.04 vs. 30% HRR). Higher MCAv was correlated with faster response times for simple and difficult tasks at rest (R(2)=0.47 and R(2)=0.47, respectively), but this relation uncoupled progressively during exercise. Exercise-induced increases in MCAv were similar and unaltered during cognitive tasks for both age groups. In contrast, prefrontal cortical hemodynamic NIRS measures [oxyhemoglobin (O(2)Hb) and total hemoglobin (tHb)] were differentially affected by exercise intensity, age and cognitive task; e.g., there were smaller increases in [O(2)Hb] and [tHb] in the older group between exercise intensities (Pexercising; 2) while MCAv is strongly related to cognition at rest, this relation becomes uncoupled during exercise, and 3) there is dissociation between global CBF and regional cortical oxygenation and NIRS blood volume markers during exercise and engagement of prefrontal cognition. PMID:22230488

  4. Retinol induces morphological alterations and proliferative focus formation through free radicalmediated activation of multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Daniel Pens GELAIN; Matheus Augusto de Bittencourt PASQUALI; Fernanda Freitas CAREGNATO; Mauro Antonio Alves CASTRO; José Claudio Fonseca MOREIRA

    2012-01-01

    Aim:Toxicity of retinol (vitamin A)has been previously associated with apoptosis and/or cell malignant transformation.Thus,we investigated the pathways involved in the induction of proliferation,deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats.Methods:Sertoli cells were isolated from immature rats and cultured.The cells were subjected to a 24-h treatment with different concentrations of retinol.Parameters of oxidative stress and cytotoxicity were analyzed.The effects of the p38 inhibitor SB203580(10 μmol/L),the JNK inhibitor SP600125 (10 μmol/L),the Akt inhibitor LY294002 (10 μmol/L),the ERK inhibitor U0126 (10 μmol/L)the pan-PKC inhibitor G(O)6983 (10 μmol/L)and the PKA inhibitor H89 (1 μmol/L)on morphological and proliferative/transformationassociated modifications were studied.Results:Retinol (7 and 14 μmol/L)significantly increases the reactive species production in Sertoli cells,inhibition of p38,JNK,ERK1/2,Akt,and PKA suppressed retinol-induced[3H]dT incorporation into the cells,while PKC inhibition had no effect.ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells,while Akt and JNK inhibition partially decreased focus formation.ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells,while other treatments had no effect.Conclusion:Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level.

  5. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium.

    Science.gov (United States)

    Kim, Jeongjin; Jo, Ara; Ding, Tian; Lee, Hyeon-Yong; Ahn, Juhee

    2016-08-01

    This study describes a new effort toward understanding the interaction mechanisms between antibiotic-resistant Salmonella Typhimurium and phages. The antibiotic susceptibility, β-lactamase activity, bacterial motility, gene expression, and lytic activity were evaluated in ciprofloxacin-induced antibiotic-sensitive Salmonella Typhimurium (ASST(CIP)) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium (ARST(CIP)), which were compared to the wild-type strains (ASST(WT) and ARST(WT)). The MIC values of ampicillin, norfloxacin, chloramphenicol, and tetracycline were significantly increased to > 512, 16, 16, and 256 μg/ml, respectively, in the ARST(CIP). The lowest and highest extracellular lactamase activities were observed in ASST(WT) (6.85 μmol/min/ml) and ARST(CIP) (48.83 μmol/min/ml), respectively. The acrA, lpfE, and hilA genes were significantly upregulated by more than tenfold in both ASST(CIP) and ARST(CIP). The induction of multiple antibiotic resistance resulted from the increased efflux pump activity (AcrAB-TolC). The highest phage adsorption rates were more than 95 % for ASST(WT), ASST(CIP), and ARST(WT), while the lowest adsorption rate was 52 % for ARST(CIP) at 15 min of infection. The least lytic activity of phage was 20 % against the ARST(CIP), followed by ASST(CIP) (30 %). The adsorption rate of phage against ARST(CIP) was 52 % at 15 min of infection, which resulted in the decrease in lytic activity (12 %). Understanding the interaction of phage and bacteria is essential for the practical application of phage to control and detect antibiotic-resistant bacteria. The results provide useful information for understanding the binding specificity of phages for multiple antibiotic-resistant pathogens. PMID:27000396

  6. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    International Nuclear Information System (INIS)

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: → Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. → Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs

  7. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries.

    Science.gov (United States)

    Fos, M; Nuez, F; García-Martínez, J L

    2000-02-01

    We investigated the role of gibberellins (GAs) in the effect of pat-2, a recessive mutation that induces facultative parthenocarpic fruit development in tomato (Lycopersicon esculentum Mill.) using near-isogenic lines with two different genetic backgrounds. Unpollinated wild-type Madrigal (MA/wt) and Cuarenteno (CU/wt) ovaries degenerated, but GA(3) application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of MA/pat-2 and CU/pat-2 fruits, which occurs in the absence of pollination and hormone application, was not affected by GA(3). Pollinated MA/wt and parthenocarpic MA/pat-2 ovary development was negated by paclobutrazol, and this inhibitory effect was counteracted by GA(3). The main GAs of the early-13-hydroxylation pathway (GA(1), GA(3), GA(8), GA(19), GA(20), GA(29), GA(44), GA(53), and, tentatively, GA(81)) and two GAs of the non-13-hydroxylation pathway (GA(9) and GA(34)) were identified in MA/wt ovaries by gas chromatography-selected ion monitoring. GAs were quantified in unpollinated ovaries at flower bud, pre-anthesis, and anthesis. In unpollinated MA/pat-2 and CU/pat-2 ovaries, the GA(20) content was much higher (up to 160 times higher) and the GA(19) content was lower than in the corresponding non-parthenocarpic ovaries. The application of an inhibitor of 2-oxoglutarate-dependent dioxygenases suggested that GA(20) is not active per se. The pat-2 mutation may increase GA 20-oxidase activity in unpollinated ovaries, leading to a higher synthesis of GA(20), the precursor of an active GA. PMID:10677440

  8. An increased frequency of autoantibody-inducing CD4+ T cells in pre-diseased lupus-prone mice.

    Science.gov (United States)

    Busser, Brian W; Cancro, Michael P; Laufer, Terri M

    2004-07-01

    Pathogenic autoantibody production in murine models of lupus is dependent on autoreactive CD4+ helper T cells. However, the mechanisms which permit the selection and maintenance of this autoantibody-inducing CD4+ T-cell repertoire are currently unknown. We hypothesized that the peripheral CD4+ T-cell repertoire of lupus-prone mice was enriched with autoantibody-inducing specificities. To test this, we utilized the splenic focus assay to determine if pre-diseased lupus-prone (NZB x NZW)F(1) mice have an elevated frequency of autoreactive CD4+ T lymphocytes capable of supporting autoantibody production. The splenic focus limiting dilution assay permits anti-nuclear antibodies to be generated from contact-dependent T-B interactions in vitro. We show that young, pre-diseased lupus-prone mice have an elevated frequency of autoantibody-inducing CD4+ T cells. Interestingly, these autoantibody-inducing CD4+ T-cell responses are also present in the thymus. Therefore, an elevated frequency of autoantibody-inducing CD4+ T cells predisposes lupus-prone mice to the development of autoantibodies.

  9. Silencing an N-acyltransferase-like involved in lignin biosynthesis in Nicotiana attenuata dramatically alters herbivory-induced phenolamide metabolism.

    Directory of Open Access Journals (Sweden)

    Emmanuel Gaquerel

    Full Text Available In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT gene whose expression is controlled by MYB8, a transcription factor that regulates the production of phenylpropanoid polyamine conjugates (phenolamides, PAs. To evaluate the involvement of this HCT-like gene in lignin production as well as the resulting crosstalk with PA metabolism during insect herbivory, we transiently silenced (by VIGs the expression of this gene and performed non-targeted (UHPLC-ESI/TOF-MS metabolomics analyses. In agreement with a conserved function of N. attenuata HCT-like in lignin biogenesis, HCT-silenced plants developed weak, soft stems with greatly reduced lignin contents. Metabolic profiling demonstrated large shifts (up to 12% deregulation in total extracted ions in insect-attacked leaves due to a large diversion of activated coumaric acid units into the production of developmentally and herbivory-induced coumaroyl-containing PAs (N',N''-dicoumaroylspermidine, N',N''-coumaroylputrescine, etc and to minor increases in the most abundant free phenolics (chlorogenic and cryptochlorogenic acids, all without altering the production of well characterized herbivory-responsive caffeoyl- and feruloyl-based putrescine and spermidine PAs. These data are consistent with a strong metabolic tension, exacerbated during herbivory, over the allocation of coumaroyl-CoA units among lignin and unusual coumaroyl-containing PAs, and rule out a role for HCT-LIKE in tuning the herbivory-induced accumulation of other PAs. Additionally, these results are consistent with a role for lignification as an induced anti-herbivore defense.

  10. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Ratkevicius, Aivaras; Quistorff, Bjørn

    2002-01-01

    at 37.5 ms. One train was delivered to the peroneal nerve every 2.5 s for 36 times under ischemic conditions. Anaerobic adenosine triphosphate (ATP) turnover was determined using 31-phosphorus magnetic resonance spectroscopy (P-MRS) of the human tibialis anterior muscle. Compared with constant....../minus 1.0 micromol ATP/kg wet weight/Ncenter dots, respectively, P = 0.601). This suggests that the positive effects of catchlike-inducing stimulation on force maintenance are mediated by potentiated Ca(2+) release from the sarcoplasmic reticulum rather than by lower metabolic costs of muscle force......-frequency trains, catchlike-inducing trains produced a faster force generation and were more effective in maintaining the force--time integral as well as peak force. However, ATP costs of force generation were similar for the catchlike-inducing and constant-frequency stimulation (6.7 plus/minus 1.1 and 6.6 plus...

  11. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kakinuma, Shizuko, E-mail: skakinum@nirs.go.jp [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Amasaki, Yoshiko; Takada, Mayumi; Yamauchi, Kazumi; Sudo, Satomi; Shang, Yi [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Doi, Kazutaka; Yoshinaga, Shinji [Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shimada, Yoshiya [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2012-09-01

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-indcued point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens.

  12. Herbivore-induced "deshrubification" alters the biogeochemistry of subarctic riparian ecosystems

    Science.gov (United States)

    Smis, Adriaan; Ravolainen, Virve; Bråthen, Kari Anne; Ims, Rolf; Meire, Patrick; Struyf, Eric

    2013-04-01

    also a continuum between low and high Si:N- and Si:P-ratios in the vegetation, affecting both the size, reactivity and availability of the soil Si, N and P pools, as well as the export of these nutrients towards deeper soil layers and finally towards the river system. This has potentially large implications for the aquatic phytoplankton community, especially in adjacent estuarine and coastal systems, where low Si availability in relation to N and P can cause a transition from diatom dominance to non-diatom dominance, altering food-webs structure and carbon sequestration potential.

  13. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  14. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  15. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    International Nuclear Information System (INIS)

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  16. Altered lymphatic function and architecture in salt-induced hypertension assessed by near-infrared fluorescence imaging

    Science.gov (United States)

    Kwon, Sunkuk; Agollah, Germaine D.; Chan, Wenyaw; Sevick-Muraca, Eva M.

    2012-08-01

    The lymphatic system plays an important role in maintaining the fluid homeostasis between the blood vascular and interstitial tissue compartment and there is recent evidence that its transport capabilities may regulate blood pressure in salt-induced hypertension. Yet, there is little known how the lymphatic contractile function and architecture responds to dietary salt-intake. Thus, we longitudinally characterized lymphatic contractile function and vessel remodeling noninvasively using dynamic near-infrared fluorescence imaging in animal models of salt-induced hypertension. The lymphatics of mice and rats were imaged following intradermal injection of indocyanine green to the ear tip or the base of the tail before and during two weeks of either a high salt diet (HSD) or normal chow. Our noninvasive imaging data demonstrated dilated lymphatic vessels in the skin of mice and rats on a HSD as compared to their baseline levels. In addition, our dynamic imaging results showed increased lymphatic contraction frequency in HSD-fed mice and rats. Lymphatic contractile function and vessel remodeling occurs in response to salt-induced hypertension suggesting a possible role for the lymphatics in the regulation of vascular blood pressure.

  17. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    Science.gov (United States)

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.

  18. Exploring Mycobacterium tuberculosis infection-induced alterations in gene expression in macrophage by microarray hybridization

    Institute of Scientific and Technical Information of China (English)

    XIE; Jianping; (谢建平); LI; Yao; (李; 瑶); YUE; Jun; (乐; 军); XU; Yongzhong; (徐永忠); HUANG; Daqiang; (黄达蔷); LIANG; Li; (梁; 莉); WANG; Honghai; (王洪海)

    2003-01-01

    Tuberculosis remains a serious threat to public health. Its causative agent Mycobacte- rium tuberculosis is an intracellular pathogen which survives and replicates within cells of the host immune system, primarily macrophages. Knowledge of the bacteria-macrophage interaction can help to develop novel measures to combat the disease. The global gene expression of macro- phage following invasion by and growth of M. tuberculosis was studied by cDNA microarray. Of the 12800 human genes analyzed, totally 473 (3.7%) macrophage genes were differentially expressed after being infected by M. tuberculosis, among which, only 25 (5.2%, corresponding to less than 0.2% of the 12800 genes) genes were up-regulated, while others (94.8%) were down-regulated against the control. Of the 473 genes, 376 genes are registered in the GenBank, and 97 are novel genes. Expression of 5 up-regulated genes has been induced by more than 3-fold. 25 genes were down-regulated by more than 3-fold. Syndecan binding protein has been down-regu- lated up to 12.5-fold. The data gave an insight into the early gene expression in macrophage ensuing M. tuberculosis infection and a basis for further study.

  19. High temperature, drought and their interaction induced protein alterations in sensitive and tolerant wheat varieties

    Directory of Open Access Journals (Sweden)

    Vikender Kaur, Reena Mahla And R.K.Behl

    2014-12-01

    Full Text Available Two contrasting wheat (Triticum aestivum L. cultivars WH730 (high temperature tolerant and UP2565 (high temperature sensitive were tested for differential response to combined and individually applied high temperature (HT and drought (D stress at seedling stage for peptide profile. Initial profile of the stress induced peptides was outlined via SDS electrophoresis of leaf extracts. Electrophoretic pattern of proteins revealed expression of new bands as well as disappearance of certain others in HT, D and interactive HT+D stress treated and revived samples in both wheat varieties relative to untreated control samples. Some of the bands that appeared in stress treated seedlings were also present after revival indicating their protective role, while some new peptides synthesized after stress but disappeared after revival period may be designated true stress proteins. However, all the plants from heat, drought and their interactive stress treatments continued to grow during recovery period. This suggests that these proteins and other newly synthesized proteins may have protective effects at high temperature (40°C and water scarcity and provide plants for healthy growth during the recovery period. Furthermore, elucidating the functions of proteins expressed by genes in stress tolerant and susceptible plants may provide important information for designing new strategies for crop improvement.

  20. Hypnotically induced somatosensory alterations: Toward a neurophysiological understanding of hypnotic anaesthesia.

    Science.gov (United States)

    Zeev-Wolf, Maor; Goldstein, Abraham; Bonne, Omer; Abramowitz, Eitan G

    2016-07-01

    Whereas numerous studies have investigated hypnotic analgesia, few have investigated hypnotic anaesthesia. Using magnetoencephalography (MEG) we investigated and localized brain responses (event-related fields and oscillatory activity) during sensory processing under hypnotic anaesthesia. Nineteen right handed neurotypical individuals with moderate-to-high hypnotizability received 100 vibrotactile stimuli to right and left index fingers in a random sequence. Thereafter a hypnotic state was induced, in which anaesthetic suggestion was applied to the left hand only. Once anaesthetic suggestion was achieved, a second, identical, session of vibrotactile stimuli was commenced. We found greater brain activity in response to the stimuli delivered to the left (attenuated) hand before hypnotic anaesthesia, than under hypnotic anaesthesia, in both the beta and alpha bands. In the beta band, the reduction of activity under hypnotic anaesthesia was found around 214-413ms post-stimuli and was located mainly in the right insula. In the alpha band, it was found around 253-500ms post-stimuli and was located mainly in the left inferior frontal gyrus. In a second experiment, attention modulation per se was ruled out as the underlying cause of the effects found. These findings may suggest that the brain mechanism underlying hypnotic anaesthesia involves top-down somatosensory inhibition and, therefore, a reduction of somatosensory awareness. The result of this mechanism is a mental state in which individuals lose bodily sensation. PMID:27212058

  1. A Yang-invigorating compound mixture alters neurotransmitters in rat telencephalon after exercise-induced fatigue

    Institute of Scientific and Technical Information of China (English)

    Hongzhen Liu; Li Zeng; Xiliang Kong; Lei Zhu; Benhua Hou

    2011-01-01

    The aim of this study was to observe the changes in monoamine and amino acid neurotransmitters in the telencephalon of rats at four functional states after exhaustive exercise and treatment with a Yang-invigorating compound recipe.The main components of this Chinese traditional medicine preparation included Radix Ginseng,Rhizoma Chuanxiong,Fructus Schisandrae,Cortex Cinnamomi,Cornu Cervi Pantotrichum,Radix Morindae Officinalis,and Gecko.This experiment showed that dopamine (DA),5-hydroxyindole acetic acid (5-HIAA),and γ-aminobutyric acid levels noticeably decreased,while DA/5-hydroxytryptamine (5-HT) increased.Furthermore,glutamate (Glu) and Glu/γ-aminobutyric acid significantly increased after 1 hour of exercise in rats in the exercise + medication group.The 5-HT and 5-HT/5-HIAA levels noticeably decreased,and DA/5-HT and Glu levels showed a robust and significant increase immediately after exhaustive exercise.The 5-HT,5-HT/5-HIAA levels sharply decreased,while DA/5-HT,Glu and γ-aminobutyric acid levels increased at 12 hours after exhaustion recovery.The results prove that Chinese herbal formula for strengthening Yang can induce changes in neurotransmitters in the telencephalon of rats after exhaustive exercise during the recovery process,and further improve central nervous system function.

  2. Effects of Salvadora persica Extract on the Hematological and Biochemical Alterations against Immobilization-Induced Rats

    Science.gov (United States)

    Ramadan, Kholoud S.; Alshamrani, Salha A.

    2015-01-01

    A total of 24 rats were divided into 4 groups: control, stress, extract alone, and stress + extract (n = 6 each), for total 21 days of treatment. The immobilization stress was induced in rats by putting them in 20 cm × 7 cm plastic tubes for 2 h/day for 21 days. Rats were postorally treated with Salvadora persica at a dose of 900 mg/kg body weight via intragastric intubations. At the end of the test period, hematological and biochemical parameters were determined in blood and serum samples with determination of vital organs weights. The vital organ weights were not significantly affected in stressed rats as compared to control rats. Compared to the control group, the stress treated group showed significances in several hematological parameters, including decreases in WBC, RBC, and PLT counts. Furthermore, in comparison to the control group, the stress group showed significantly increased blood glucose, serum total cholesterol, LDL-cholesterol, and triacylglycerols levels and decreased HDL-cholesterol level. The hematological and biochemical parameters in the stress + extract treated group were approximately similar to control group. The SP extract restored the changes observed following stress treatment. PMID:26221565

  3. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    Science.gov (United States)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. PMID:27304513

  4. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells.

    Directory of Open Access Journals (Sweden)

    Ravi Shankar Akundi

    Full Text Available BACKGROUND: Periventricular white matter injury (PWMI is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro. METHODOLOGY/FINDINGS: Cultures of oligodendrocyte precursor cells (OPCs were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2 or hypoxia (1% or 4% O(2 for up to 7 days. We observed that 1% O(2 lead to an increase in the proportion of myelin basic protein (MBP-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1 and phospho-cdc2, which play a role in OL differentiation, was seen as well. CONCLUSIONS: These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation.

  5. IGF-I augments resection-induced mucosal hyperplasia by altering enterocyte kinetics.

    Science.gov (United States)

    Dahly, Elizabeth M; Guo, Ziwen; Ney, Denise M

    2003-10-01

    Our objective was to determine if exogenous insulin-like growth factor-I (IGF-I) augments the adaptive growth response to mid small bowel resection in association with changes in enterocyte kinetics. We determined structural adaptation and concomitant changes in enterocyte proliferation, apoptosis, and migration of the jejunum in growing, parenterally fed rats after mid small bowel resection or small bowel transection, and treatment with IGF-I or vehicle. IGF-I treatment in resected rats significantly increased jejunal mucosal mass by 20% and mucosal concentrations of protein and DNA by 36 and 33%, respectively, above the response to resection alone. The enhancement of resection-induced adaptive growth and cellularity by IGF-I reflected an increase in enterocyte proliferation, an expansion of the proliferative compartment in the crypt, and no further decrease in enterocyte apoptosis or increase in enterocyte migration beyond the effects of resection. The ability of IGF-I to augment the mucosal hyperplasia stimulated by the endogenous response to resection substantiates the role of IGF-I as an intestinal mitogen that promotes tissue regeneration.

  6. Exercise-induced dehydration does not alter time trial or neuromuscular performance.

    Science.gov (United States)

    Stewart, C J; Whyte, D G; Cannon, J; Wickham, J; Marino, F E

    2014-08-01

    This study examined the effect of exercise-induced dehydration by ~4% body mass loss on 5-km cycling time trial (TT) performance and neuromuscular drive, independent of hyperthermia. 7 active males were dehydrated on 2 occasions, separated by 7 d. Participants remained dehydrated (DEH, -3.8±0.5%) or were rehydrated (REH, 0.2±0.6%) over 2 h before completing the TT at 18-25 °C, 20-30% relative humidity. Neuromuscular function was determined before dehydration and immediately prior the TT. The TT started at the same core temperature (DEH, 37.3±0.3°C; REH, 37.0±0.2 °C (P>0.05). Neither TT performance (DEH, 7.31±1.5 min; REH, 7.10±1.3 min (P>0.05)) or % voluntary activation were affected by dehydration (DEH, 88.7±6.4%; REH, 90.6±6.1% (P>0.05)). Quadriceps peak torque was significantly elevated in both trials prior to the TT (Pperformance and neuromuscular function are not reduced by dehydration, independent of hyperthermia.

  7. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    Science.gov (United States)

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  8. Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Methamphetamine (MA is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers.

  9. Early TBI-induced cytokine alterations are similarly detected by two distinct methods of multiplex assay.

    Directory of Open Access Journals (Sweden)

    Sanjib eMukherjee

    2011-09-01

    Full Text Available Annually, more than a million persons experience traumatic brain injury (TBI in the US and a substantial proportion of this population develop debilitating neurological disorders, such as, paralysis, cognitive deficits and epilepsy. Despite the long-standing knowledge of the risks associated with TBI, no effective biomarkers or interventions exist. Recent evidence suggests a role for inflammatory modulators in TBI-induced neurological impairments. Current technological advances allow for the simultaneous analysis of the precise spatial and temporal expression patterns of numerous proteins in single samples which ultimately can lead to the development of novel treatments. Thus, the present study examined 23 different cytokines, including chemokines, in the ipsi and contralateral cerebral cortex of rats at 24 hours after a Fluid Percussion Injury (FPI. Furthermore, the estimation of cytokines were performed in a newly developed multiplex assay instrument, MAGPIX (Luminex Corp and compared with an established instrument, Bio-Plex (Bio-Rad, in order to validate the newly developed instrument. The results show numerous inflammatory changes in the ipsi and contralateral side after FPI that were consistently reported by both technologies.

  10. Steroid androgen 17α-methyltestosterone induces malformations and biochemical alterations in zebrafish embryos.

    Science.gov (United States)

    Rivero-Wendt, Carla Letícia Gediel; Oliveira, Rhaul; Monteiro, Marta Sofia; Domingues, Inês; Soares, Amadeu Mortágua Velho Maia; Grisolia, Cesar Koppe

    2016-06-01

    The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l). PMID:27137108

  11. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation.

    Directory of Open Access Journals (Sweden)

    Adam D Cohen

    Full Text Available In vivo GITR ligation has previously been shown to augment T-cell-mediated anti-tumor immunity, yet the underlying mechanisms of this activity, particularly its in vivo effects on CD4+ foxp3+ regulatory T cells (Tregs, have not been fully elucidated. In order to translate this immunotherapeutic approach to the clinic it is important gain better understanding of its mechanism(s of action. Utilizing the agonist anti-GITR monoclonal antibody DTA-1, we found that in vivo GITR ligation modulates regulatory T cells (Tregs directly during induction of melanoma tumor immunity. As a monotherapy, DTA-1 induced regression of small established B16 melanoma tumors. Although DTA-1 did not alter systemic Treg frequencies nor abrogate the intrinsic suppressive activity of Tregs within the tumor-draining lymph node, intra-tumor Treg accumulation was significantly impaired. This resulted in a greater Teff:Treg ratio and enhanced tumor-specific CD8+ T-cell activity. The decreased intra-tumor Treg accumulation was due both to impaired infiltration, coupled with DTA-1-induced loss of foxp3 expression in intra-tumor Tregs. Histological analysis of B16 tumors grown in Foxp3-GFP mice showed that the majority of GFP+ cells had lost Foxp3 expression. These "unstable" Tregs were absent in IgG-treated tumors and in DTA-1 treated TDLN, demonstrating a tumor-specific effect. Impairment of Treg infiltration was lost if Tregs were GITR(-/-, and the protective effects of DTA-1 were reduced in reconstituted RAG1(-/- mice if either the Treg or Teff subset were GITR-negative and absent if both were negative. Our results demonstrate that DTA-1 modulates both Teffs and Tregs during effective tumor treatment. The data suggest that DTA-1 prevents intra-tumor Treg accumulation by altering their stability, and as a result of the loss of foxp3 expression, may modify their intra-tumor suppressive capacity. These findings provide further support for the continued development of agonist

  12. Peripheral drive in Aα/β-fiber neurons is altered in a rat model of osteoarthritis: changes in following frequency and recovery from inactivation

    Directory of Open Access Journals (Sweden)

    Wu Q

    2013-03-01

    Full Text Available Qi Wu, James L HenryDepartment of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, CanadaPurpose: To determine conduction fidelity of Aα/β-fiber low threshold mechanoreceptors in a model of osteoarthritis (OA.Methods: Four weeks after cutting the anterior cruciate ligament and removing the medial meniscus to induce the model, in vivo intracellular recordings were made in ipsilateral L4 dorsal root ganglion neurons. L4 dorsal roots were stimulated to determine the refractory interval and the maximum following frequency of the evoked action potential (AP. Neurons exhibited two types of response to paired pulse stimulation. Results: One type of response was characterized by fractionation of the evoked AP into an initial nonmyelinated-spike and a later larger-amplitude somatic-spike at shorter interstimulus intervals. The other type of response was characterized by an all-or-none AP, where the second evoked AP failed altogether at shorter interstimulus intervals. In OA versus control animals, the refractory interval measured in paired pulse testing was less in all low threshold mechanoreceptors. With train stimulation, the maximum rising rate of the nonmyelinated-spike was greater in OA nonmuscle spindle low threshold mechanoreceptors, possibly due to changes in fast kinetics of currents. Maximum following frequency in Pacinian and muscle spindle neurons was greater in model animals compared to controls. Train stimulation also induced an inactivation and fractionation of the AP in neurons that showed fractionation of the AP in paired pulse testing. However, with train stimulation this fractionation followed a different time course, suggesting more than one type of inactivation.Conclusion: The data suggest that joint damage can lead to changes in the fidelity of AP conduction of large diameter sensory neurons, muscle spindle neurons in particular, arising from articular and nonarticular tissues in OA animals compared to

  13. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2016-05-01

    Full Text Available Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT. It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT, inguinal subcutaneous WAT (sWAT and epididymal WAT (eWAT were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA and white adipocyte (WA treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.

  14. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  15. Photoinhibition induced alterations in energy transfer process in phycobilisomes of PS II in the cyanobacterium, Spirulina platensis.